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Kubelka-Munk Model and Stochastic Model
Comparison in Skin Physical Parameter
Retrieval

Leevi Annala and Ilkka Pölönen

Abstract In medical field there is need for non-invasive diagnostic tools. One partic-
ular research area is skin cancer diagnostics. Here we study Kubelka-Munk model
and stochastic skin reflectance model, which we combined from two sources to
better reflect the physical structure of the skin. Our objective is to compare the
models to each other in terms of accuracy, usefulness and biophysical parameter
retrieval using convolutional neural network. The results are promising. Both model
are found suitable options for further research and used stochastic model is similar
to Kubelka-Munk in terms of accuracy. In physical parameter retrieval both models
performmoderately. Inverted models reasonably retrieve the pigment concentrations
from the simulated test data set. With empirical testing data the inverted models are
mutually consistent.

1 Introduction

There is a need for automated non-invasive diagnostic methods for different illnesses
and diseases in the medical field. Especially in case of melanomas and other skin
cancers, the accuracy of the clinical diagnostic tools are poor, resulting in unneces-
sary operations and re-operations [9]. Awell working non-invasive detection method
could decrease the number of unnecessary operations and therefore bring savings
to the hospital. One potential technology is combination of hyperspectral cameras,
machine learning and neural networks in skin diagnostics [21, 23, 25].

Machine learning, and particularly training of the neural networks, require large
amount of training data. A way to avoid laborious data gathering process is to use
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mathematicalmodelling in producing such augmented data set.Mathematicalmodels
for skin reflectance can be roughly divided into two categories: deterministic and
stochastic [4]. Deterministic models are models where the inputs directly determine
the output. Stochasticmodels include randomness. Examples of deterministicmodels
includemultitude ofKubelka-Munk equation basedmodels [12, 26, 3, 6, 17, 1, 31, 7],
Boltzmann photon transport equation [10], diffusion theory models [29] and many
more, while stochastic modelling is exclusively based on Monte Carlo modelling
[8, 27, 32, 19]. Model, that augments training data for machine learning, should have
useful input parameters for inversion. This model should be easy to understand and
modify and it should be sufficiently accurate.

Examples of previous research in non-invasive methods to determinate biochem-
ical and biophysical skin properties using hyperspectral imaging include a study
where skin thickness was successfully retrieved from hyperspectral image using in-
verted Kubelka-Munk Model [30]. The results were verified by ultrasound imaging
and the machine learning method used in inversion was support vector regressor.
Jolivot et al. retrieved melanin and blood concentrations and skin layer thicknesses
from multispectral images [12]. They inverted Kubelka-Munk Model using genetic
algorithm.

In this chapter we compare the Kubelka-Munk implementation of Jolivot et al.
[12] to our own implementation of Stochastic Model, which is based on multi-
layered stochastic radiative transfer model by Maier et al. [19] and parameters
described in [11]. Our objective is to use both models to skin reflectance modeling
and compare them in terms of accuracy, usefulness and inversion with convolutional
neural network [18]. Based on our knowledge this approach of stochastic modeling
and convolutional neural network has not been used previously in skin physical
parameter retrieval.

2 Materials and Methods

2.1 Stochastic Model

Stochastic Model (SM) is a Markov chain based model for the light propagation in
layered media. The SM we use is modified from [19], by changing the pigments
to those of the skin and using more general absorption and scattering coefficients.
The basic principle of the SM is that the skin is seen as a network of states, and
there is a certain probability of each transition between two states. The states and
possible transitions are described in Figure 1. For this study, we assume that the
skin has two layers: epidermis and dermis. Light that goes past these two layers
is considered absorbed. The transition probabilities (P) are based on Beer’s law
and calculated as follows[19]. For up and down states the up/down, scattering and
absorption probabilities are [19]
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Fig. 1 Network of states and transitions in Stochastic Model.

Pup/down(λ) = 1 − Pabsorption − Pscattering, (1)

Pscattering(λ) =
s(λ)

a(λ) + s(λ)
· (1 − e−(a(λ)+s(λ))·L), and (2)

Pabsorption(λ) =
a(λ)

a(λ) + s(λ)
· (1 − e−(a(λ)+s(λ))·L), (3)

where a(λ) is the absorption coefficient [11],

a(λ) =
∑
n

ai(λ)ci, (4)

s(λ) is the reduced scattering coefficient [11],

s(λ) = s(500 nm) ·

(
fRay

(
λ

500 nm

)−4
+ (1 − fRay)

(
λ

500 nm

)−bMie
)
and (5)

L is the length of the light path (in cm), which is assumed to be the same as
the thickness of the layer. In the previous equations (4) and (5) ai are absorption
coefficients (in cm−1) for each pigment, ci are their concentrations (in fractions of
total concentration), s(500 nm) is the measured reduced scattering coefficient (in
cm−1) at 500 nm, fRay is the Rayleigh scatterings part of total scattering and bMie is
Mie scattering power.
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For the scattered state, the scattering and absorption probabilities are the same as
for up/down states in the same layer. The up/down probabilities are

Pup = Pdown =
Pup/down

2
, (6)

as the photon can now go both ways. The probability of direct reflection is given
as a parameter to the model Pdr = 0.02 and therefore transition probability to the
first layers down state is 1 − P(dr) = 0.98. Transition probabilities from absorbed,
reflected or emitted state to itself is 1, and transition between states that are not
connected is impossible.

The parameters needed for calculating the transition probabilities include pigment
concentrations in skin layers, scattering coefficients and thicknesses of the skin layers
and blood oxygenation level. These are sufficiently described in [11] and listed in
Table 1. Example reflectance spectrum produced by SM can be seen in Figure 2.
The values used in creating Figure 2 can be seen in Table 2.

Table 1 Input parameters and their ranges for Stochastic Model.
Input parameter Range Layer
Melanosome volume fraction 0 - 0.08 Epidermis
Blood volume fraction 0 - 0.01 Dermis
Blood oxygen fraction 0.2 - 0.5 Dermis
Water volume fraction 0.5 - 0.8 Dermis
Reduced scattering
coefficient at 500nm (cm−1) 38 - 58 Both
Rayleigh scattering fraction 0.38 - 0.42 Both
Mie scattering power 0.3 - 1 Both
Thickness of epidermis (cm) 0.005 - 0.035 Epidermis
Thickness of dermis (cm) 0.1 - 0.4 Dermis

Table 2 Input parameters and their ranges for Stochastic Model and Kubelka-Munk Model in
Figure 2.

Input parameter Value for SM Value for KM
Melanosome volume fraction 0.1 0.1
Blood volume fraction 0.02 0.02
Blood oxygen fraction 0.5 0.5
Water volume fraction 0.4 Not applicable
Reduced scattering
coefficient at 500nm (cm−1) 48 48
Rayleigh scattering fraction 0.41 0.41
Mie scattering power 0.7 0.7
Thickness of epidermis 0.007 cm 0.000 07 m
Thickness of dermis 0.2 cm 0.002 m
Anisotropy Not applicable 0
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2.2 Kubelka-Munk Model

Kubelka-Munk Model (KM) is a special case solution to the radiative transfer equa-
tion [17]. The model consists of two differential equations for opposing light fluxes
I and J: {

dI
dx = −KI − SI + SJ
dJ
dx = −K J − SJ + SI,

(7)

where K and S are absorption and scattering functions, and x is the thickness of the
media. Their reasoning and analytical solution can be found for example in [22].

Our implementation of the model follows the implementation described in [12].
Compared to that we changed the scattering coefficient to the same we used in
SM, from [11]. The model takes into account the two first main layers of the skin:
epidermis and dermis. Light that goes through these layers is considered absorbed.
The parameters and their used ranges are adapted from [11, 12] and are described
in Table 3. Details of the implementation can be found in [12]. Example spectrum
produced by KM can be seen in Figure 2. The values used in creating Figure 2 can
be seen in Table 2.

Table 3 Inputs and their ranges for KM.
Input parameter Range Layer
Melanosome volume fraction 0.01 - 3.01 Epidermis
Blood volume fraction 0.001 - 0.501 Dermis
Blood oxygen fraction 0.6 - 0.99 Dermis
Reduced scattering
coefficient at 500nm (cm−1) 38 - 58 Both
Rayleigh scattering fraction 0.38 - 0.42 Both
Mie scattering power 0.3 - 1 Both
Thickness of epidermis (m) 0.0001 - 0.0006 Epidermis
Thickness of dermis (m) 0.001 - 0.004 Dermis
Anisotropy 0.7 - 0.8 Both

2.3 Convolutional neural network

Convolutional neural network (CNN) is a neural network where at least one of the
traditional fully connected layers is replacedwith convolutional layer [18]. It has been
found useful in various tasks including image and signal type data [16, 13, 28, 5, 24].

Our CNN implementation can be seen in Table 4. It consists of two convolutional
layers and three dense layers. Additionally there are two pooling layers and one
dropout layer and the output layer. It is very conventional CNN. The optimization
algorithm used is the Adam-algorithm [14] with meta parameters of learning rate =
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Fig. 2 Example spectra produced by stochastic and KMs using realistic values and a measured
spectrum.

0.001, β1 = 0.9, β2 = 0.999, ε = 1 · 10−7. As the loss function we use the mean
square error. The CNN is implemented with Keras using Tensorflow backend [20].
CNN is used in inverting the KM and SM models.

Table 4 Convolutional neural network used in inversions.
Layer Kernel / Output Shape Parameters

pool size or
Activation

Conv1D (3) ReLU (38, 64) 256
MaxPooling1D (2) (19, 64) 0
Conv1D (3) ReLU (17, 128) 24704
MaxPooling1D (2) (8, 128) 0
Flatten (1024) 0
Dense ReLU (128) 131200
Dense ReLU (64) 8256
Dense ReLU (32) 2080
Dropout (0.25) (32) 0
Dense (9) 297
Total params: 166,793
Trainable params: 166,793
Non-trainable params: 0
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Table 5 Correlation coefficients of values retrieved from Stochastic Model.
Retrieved parameter Correlation coefficient

between estimated and real value
Melanosome 0.96
Blood volume fraction 0.87
Blood oxygen fraction 0.07
Water volume fraction 0.27
Reduced scattering
coefficient at 500nm 0.57
Rayleigh scattering fraction 0.11
Mie scattering power 0.92
Thickness of epidermis 0.95
Thickness of dermis 0.96

2.4 Model Inversion

Both SM and KM are inversed by CNN and the inversion results are used to predict
parameters from simulated and empirical data. For the inversion, the training and
validation labels described in Tables 1 and 3 are scaled to range from 0 to 1 in order
to receive best possible performance from CNN. Hence, the predictions are also in
range from 0 to 1. For predictions using simulated data, correlation coefficients are
calculated and analyzed. Predictions from empirical data are visually interpreted and
their potential for further research is discussed.

Our empirical data consinsts of a hyperspectral image of human skin with a large
nevus. Example spectrum can be seen in Figure 2.

3 Results and Discussion

3.1 Retrieval Results

The inversion results for SM were strongest at dermis and epidermis thicknesses and
melanosome concentration, with correlations of 0.96, 0.95 and 0.96 respectively.
The weakest correlations were in blood oxygenation, Rayleigh scattering fraction,
and water volume fraction at 0.07, 0.11, and 0.27, respectively. Altogether three
correlations could be considered weak, one moderate and five strong. (Figure 3,
Table 5)

The results of the inversion of the KM had strongest retrieval correlations in blood
oxygen fraction, blood volume fraction and thicknesses of epidermis and dermis at
0.99, 0.94, 0.94 and 0.92 respectively. The weakest correlations were in Rayleigh
scattering fraction andMie scattering power at 0.02 and 0.29, respectively. Altogether
two correlations could be considered weak, two moderate and five strong.
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Fig. 3 Inversion of Stochastic Model.
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Table 6 Correlation coefficients of values retrieved from Kubelka-Munk Model.
Retrieved parameter Correlation coefficient

between estimated and real value
Melanosome 0.89
Blood volume fraction 0.94
Blood oxygen fraction 0.99
Reduced scattering
coefficient at 500nm 0.40
Rayleigh scattering fraction 0.02
Mie scattering power 0.29
Thickness of epidermis 0.94
Thickness of dermis 0.92
Anisotropy 0.39

The results for empirical data (Figure 5) showed that there is potential for further
research using both models as a training data source for CNN. The models were
mutually consistent in showing higher and lower values for different parameters and
at least for the melanin concentration the models rightly predicted higher melanin
concentrations on the area of the nevus.

3.2 Model Comparison

3.2.1 Accuracy

Both of these models seemed to produce spectra, which mimic skin reflectance,
although the the effect of haemoglobin absorption (450-550 nm) in KM spectrum
was suspiciously symmetrical (Figure 2). The haemoglobin absorption seems to have
too much influence to the KM while the SM seems to be influenced too little. The
spectrum of KM seemed similar to normal skin while the spectrum of SM appeared
to be similar to pale (less blood) skin [2, 11, 15]. The fact that parameters given
to the KM (Table 3) were not realistic decreases the KMs credibility. Especially
melanosome volume fraction was too high. The accuracy of the KM we used has
been partially verified previously by inverting the model with evolutionary algorithm
and retrieving plausible pigment concentrations from living skin [12].

The accuracy of SM was verified in previous research with pigments typical to
plants [19]. The modifications we made did not change the mathematical core of
the model, therefore the accuracy of the model is derived from the accuracy of the
pigment absorption spectrums.

The accuracy of the inversions varied for both models. From SM, predictions
(Figure 3) of skin layer thicknesses and melanosome concentration were well pre-
dicted and Mie scattering power and blood volume fraction less accurately. For the
rest of the parameters the accuracy was non-existent.
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Fig. 4 Inversion of Kubelka-Munk Model.
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Fig. 5 Values predicted by inversed Kubelka-Munk Model (left) and Stochastic Model (right).
Predicted parameters are, from top to bottom,Melanosome volume fraction, blood volume fraction,
epidermis thickness and dermis thickness. The units are arbitrary.
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From KM (Figure 4), the blood oxygen fraction and blood volume fraction were
particularlywell predicted andmelanosome concentration, and skin layer thicknesses
were little less accurate. Once again, for the rest of the parameters (4), the accuracy
was poor.

3.2.2 Usefulness

KM is the most used in the field of colour modelling [26], and it is sufficiently
accurate while being easy to understand and fast to calculate. Our implementation of
SM takes a while to calculate, but it seems like it has potential to be more accurate
than KM.

For physical parameter retrieval, the models were useful in different areas. For
some reason the scattering parameters seemed to have little to no impact on the KM,
while for the SM the result were a little bit better. KM seemed more likely to return
the correct values on the actual pigment concentrations, and SM gave better results
at evaluating the thicknesses of the skin layers.

3.3 Discussion

The results indicate that the both KM and SM can be used as a data augmentation
source in physical parameter retrieval from skin. KMs strengths are in calculation
time and its simplicity. SMs strengths are higher potential accuracy and adaptability,
as the absorption and scattering coefficients are independently tunable and the layers
are easily added and removed and probability calculations can be changed if needed.
With more investigation the reason for the irretrievable parameters could be found.
The easiest hypothesis is that they simply do not affect the spectrum enough to be
retrieved, and based on Figure 2, this seems to be the case for SM. Water absorption
in the studied wavelength range is quite small compared to the other parameters [11],
and haemoglobin absorption has a negative peak between 450 nm and 550 nm [15],
and our SM does not seem to show it. In KM retrieval, only parameters related to
scattering are poorly retrieved. They are also poorly retrieved in SM and they appear
to affect the spectrum very little.

When we compare the spectra in Figure 2 to previous research it is clear that the
measured skin spectra can be replicated pretty closely [2]. The empirical implications
are left for further research, but this research and previous research have given us
reason to believe that the SM can be well adapted for accurate skin reflectance
modelling [19]. If this holds, it means that we could use SM and a skin structure
model to produce accurate training data for machine learning applications in medical
field. This would decrease the need for data gathering for such application. However,
measured data always includes noise, therefore one needs to find a way to introduce
realistic noise to the model.
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4 Conclusion

We have demonstrated that the Stochastic Model originally developed for leaf optical
properties can be successfully transported to skin reflectance modelling by changing
equations and parameters of the model to skin related equations and parameters.
We have demonstrated that the model has similar accuracy with Kubelka-Munk
Model, while being easier to modify. It is up for debate if the probability and
transition net based Stochastic Model is easier to understand when compared to
Kubelka-Munk Model, which is based on solutions of a differential equations. The
most direct implications of our work are, that the model should be first verified and
further adapted to skin reflectance modelling and then tested in machine learning
applications in the medical field.
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