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 
Abstract—Mental fatigue is a common phenomenon with 

implicit and multidimensional properties. It brings dynamic 
changes of functional brain networks. However, the challenging 
problem of false positives appears when the connectivity is 
estimated by Electroencephalography (EEG). In this paper, we 
propose a novel framework based on spatial clustering to explore 
the sources of mental fatigue and functional activity changes 
caused by them. To suppress the false positive observations, 
spatial clustering is implemented in brain networks. The nodes 
extracted by spatial clustering are registered back to functional 
magnetic resonance imaging (fMRI) source space to determined 
the sources of mental fatigue. The wavelet entropy of EEG in a 
sliding window is calculated to find the temporal features of 
mental fatigue. Our experimental results show that the extracted 
nodes correspond to the fMRI sources across different subjects 
and different tasks. The entropy values on the extracted nodes 
demonstrate clearer staged decreasing changes (deactivation). 
Additionally, the synchronization among the extracted nodes is 
stronger than that among all the nodes in the deactivation stage. 
The initial time of the strong synchronized deactivation is 
consistent with the subjective fatigue time reported by the 
subjects themselves. It means the synchronization and 
deactivation corresponds to the subjective feelings of fatigue. 
Therefore, this functional activity pattern may be caused by the 
sources of mental fatigue. The proposed framework is useful for a 
wide range of prolonged functional imaging and fatigue detection 
studies. 
 

Index Terms—Mental fatigue, EEG, spatiotemporal imaging, 
functional connectivity, spatial clustering 
 

I. INTRODUCTION 

ENTAL fatigue represents a kind of neurophysiologic 
state caused by prolonged cognitive load and easily leads 
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to decreasing in mental and physical performance capacity [3], 
[4]. It is multidimensional in nature [5]. From the perspective of 
information flow, Desmond and Hancock made a distinction 
between active and passive fatigue states that reflect different 
styles of perceptual-motor response requirements [6]. From the 
perspective of psychophysiology, the state change has 
subjective and objective manifestations, which include an 
increased feeling of tiredness, an increased propensity towards 
less analytic information processing, and alterations in brain 
activity [4], [7]. Therefore fatigue has implications for many 
aspects, not only in the researches, but also in daily life [4]. In 
the studies of cognition and psychology, the commonly used 
stimulus sequences certainly will induce fatigue, more or less 
[1], [3], [8]. In the workplace, mental fatigue has been found to 
have a strong association with errors and inadequate 
performance adjustments after errors [4], [9], [10]. In the 
transportation system, mental fatigue gives rise to road crashes 
[11]. It causes 10%-20% of all traffic accidents every year all 
over the world. Despite these multifaceted effects, still little is 
known about the brain mechanisms underlying mental fatigue 
and previous studies did not embody the implicit information of 
fatigue from multi-dimensions [5], [9], [12]. For example, 
where are the cortical generators of mental fatigue (in spatial 
dimension) and how do the source activities in our brains 
change (in time dimension), when we feel tired? 

Changes in functional connectivity across mental states can 
provide richer information about human cognition than simpler 
univariate approaches [13]. Recently, several studies have 
reported that in adults with chronic fatigue syndrome, 
subjective reports of fatigue are correlated with decreased 
functional connectivity between the salience network  and the 
default mode network during resting state [14]–[16]. Sun et al. 
[13] also revealed the degraded performance of small-world 
features in a mentally-demanding test of sustained attention, 
providing further support for the presence of a reshaped global 
topology in cortical connectivity networks under fatigue state. 
Langner et al. [17] attributed the decrease of cerebral blood 
flow in the network of areas to a depletion of neural resources, 
or an inability to retrieve these resources related to mental 
fatigue.  

In spite of the existing contributions, significant challenges 
in the functional connectivity analysis of time series remain 
[18]. Traditional approaches of functional connectivity analysis, 
which can be used to explore the brain mechanisms underlying 
mental fatigue, focus on the long time behavior of at most a few 
dynamical variables, characterizing either different single 
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connections or the system’s average behavior [19]. In addition, 
the connectivity analysis from sensor space data is generally 
not reliable and robust. This issue is even serious for the 
measure of electroencephalography (EEG), which records 
brain electrical activities non-invasively at a millisecond time 
scale. Because of signal mixing, which translates to volume 
conduction in the case of EEG recordings and to signal leakage 
in source reconstructed EEG data, a spatially widespread group 
of sensors detects the activity of any single neuronal source 
[20]. This means the same source may be detected by multiple 
sensors and the same sensor may always pick up multiple 
sources, resulting in false positives such as spurious 
interactions (referred to as ghost interactions).  

Even though source reconstruction can be used to reduce 
signal mixing and elucidate the likely neuroanatomical sources 
of the EEG signals, so far no source reconstruction approach 
can yield an unambiguous estimate of the source topography, 
due to ill-posed nature of the EEG inverse problem [21]–[23]. 
Residual signal mixing in source space, signal leakage, is 
quantitatively dependent on the source-reconstruction method 
of choice but qualitatively characteristic to all such methods 
[23]. 

Since EEG source reconstruction has the inevitable ill-posed 
problem, we explore a solution through dual-modal imaging. 
With high spatial resolution, functional magnetic resonance 
imaging (fMRI) is a powerful tool to probe and monitor human 
full-brain activity for cognition. On the basis of fMRI 
localization precision in brain imaging space, Han et al. [24] 
developed a dense individualized and common 
connectivity-based cortical landmarks (DICCCOL) system to 
map and annotate the large scale functional networks. They 
proved that it could provide more comprehensive, accurate, and 
reliable regions of interests (ROIs). Nevertheless, it is 
impractical to acquire large scale task-based fMRI data for the 
same group of subjects because of the cost and time constraints 
[24]. An interesting observation from the results in [25] is that 
structural connection patterns and the same functional ROI 
obtained by fMRI are reasonably consistent across different 
subjects. Furthermore, Zhang et al. [26] established a 
framework to predict ROIs from the diffusion tensor imaging 
(DTI) data of new subjects according to the correspondence 
relationship of the dual-modal imaging results. It avoided 
large-scale task-based fMRI acquisition and the average 
prediction error was around 3.94mm. 

This motivates us to develop an EEG connectivity analysis 
approach based on spatial clustering to explore the sources of 
mental fatigue and functional activity changes caused by them. 
The EEG acquisition is adopted, because it is suitable for 
dynamic analysis of mental fatigue in the prolonged task with 
millisecond time resolution. The sources of mental fatigue are 
determined by the correspondence relationship of EEG (scalp 
electrical activity) and fMRI (source localization) results. To 
suppress the false positive observations of EEG coupling, we 
consider that all the links connected to a sensor (node) is basic 
unit of connectivity analysis, not a single link or the node itself. 
The same source may be detected by multiple sensors. 
However, different basic analysis units contain different 

information of the source, because every time we consider the 
relationship between the signals from a sensor and the other 
sensors. The basic analysis units can be clustered spatially over 
time with the progress of fatigue to acquire more precise 
determination of local areas (represented by nodes) modulated 
by fatigue. Thereafter, a basic analysis unit will be referred to a 
cluster. To determine the sources of mental fatigue, we attempt 
to register the nodes extracted by spatial clustering back to the 
fMRI neuroimages. The fMRI neuroimages (alternative 
sources) come from the previous fMRI studies. Mahalanobis 
distance is utilized to measure the matching degree of two 
modality results from different subjects and even different tasks. 
We will show the consistent performance between the results 
from the two modalities, under the same dominant factor (i.e. 
fatigue). 

The signal flowchart of the proposed methodology is shown 
in Fig. 1. The kernel of the methodology is spatial clustering. 
Through spatial clustering, the spatio-temporal analysis of 
mental fatigue is implemented. After EEG preprocessing, brain 
networks were constructed based on EEG connectivity 
estimation. The nodes of the discriminative clusters were 
extracted through spatial clustering to reduce the influence of 
false positives. In spatial dimension, the sources localized by 
the previous fMRI studies related to mental fatigue are 
introduced as alternative sources. The nodes extracted by 
spatial clustering are used as the fiducial points to realize the 
co-registration with the alternative sources. The fMRI sources 
with the shortest Mahalanobis distance to the fiducial points are 
determined as the sources of mental fatigue. In temporal 
dimension, the EEG features based on wavelet entropy are 
extracted from the nodes after spatial clustering. Finally, the 
temporal nonlinear dynamic features on the extracted nodes 
were linked to the neuroimages so that mental fatigue can be 
examined over time-on-task. The data-driven results are 
verified regarding the functional significance of the 
spatiotemporal dynamics and the subjectivity of mental fatigue. 

This paper is organized as follows. In Section II, we describe 
the experimental details and EEG data (see Section II-A and B), 
elaborate functional connectivity analysis and spatial clustering 
applied to suppress signal mixing and leakage to find the 
fiducial points (see Section II-C), illustrate temporal feature 
extraction according to the fiducial points to examine mental 

Fig. 1. Flowchart of the data-driven methodology. 
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fatigue over time-on-task (see Section II-D), and discuss 
spatiotemporal imaging used for fMRI co-registration based on 
the fiducial points to evaluate mental fatigue in both time and 
space domains (see Section II-E). Results of the study are 
presented in Section III and discussed in IV. Finally, the paper 
concludes in Section V. 
 

II. MATERIALS AND METHODS 

A. Experiments and data 

This study was reviewed and approved by Ethics Committee,  
Dalian University of Technology (protocol number: 2018-040). 
Written informed consents were obtained from all participants 
before the experiments. The electrophysiological data (EEG) 
were collected from twelve right-handed subjects (age range: 
20-35) while performing the simulated driving task lasting for 
more than one hour under monotonous highway environment 
produced on the medium-fidelity driving simulator of Dalian 
University of Technology. The subjects are all college students. 
The driving simulator mainly consisted of a cockpit, a host 
computer, a CRT monitor, an audio system, operating sensors, 
and a data collector. The cockpit contained the same 
operational components as the real vehicle, such as a steering 
wheel, a clutch, a foot brake, an accelerator pedal and a hand 
brake. The simulator had both automatic and manual 
transmission (including five forward gears and one reverse 
gear). To reduce the movements of the subjects and make the 
task boring, we asked the subjects to drive using automatic 
transmission. Their responses to the driving scene stimuli are 
the control outputs of vehicle to avoid accidents. When the 
subjects felt fatigued, they self-reported this in real time by 
telling it to the researcher and the corresponding times were 
recorded by defining time-stamp to the data. The temporal 
indication of the events was used as the criterion (critical 
position) from subjective fatigue [Fig. 8(d)]. The subjects who 
already had the driving licenses drove in monotonous highway 
environment produced on the driving simulator. There is no 
difference of driving environment in the simulator for subjects 
with different length of driving experience. Altogether, 10 out 
of 12 subjects provided the exact temporal indication of their 
subjective fatigue and avoided accident in the experiments. 
Thence the EEG data throughout the fatigue process from these 
10 subjects were used. Nineteen standard electrodes (i. e. Fp1, 
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, 
O1, and O2) were attached to the scalps following the 
International 10-20 System to collect the subjects’ EEG data. 
The EEG’s sampling frequency is 200Hz. 

B. Data preprocessing 

Since some studies have demonstrated the high correlation 
between alpha activity and fatigue [27], [28], we used wavelet 
decomposition with 4 levels to obtain the sub-band EEG waves 
(i. e. alpha). Wavelet transform is an effective tool to analyze 
the various components of a non-stationary signal due to its 
attractive properties such as good local representation in both 
time and frequency domain and multi-rate filtering 

(differentiating the signals having various frequencies) [29]. 
The decomposition based on the wavelet transform at each 
level output approximate and detailed components 
corresponding to scale and wavelet coefficients respectively. 
The detailed component at 4th level was roughly within the 
alpha range (8–13Hz). Discrete Meyer (dmey) was selected as 
mother wavelet, because of its resemblance with the EEG 
signal in our case.  

As the decomposed wavelet coefficients reflect detailed 
information, the signal reconstruction in alpha band has a 
certain suppression effect on low-frequency artifacts like large 
body movements and respiration [see Fig. 2(b)]. Besides, the 
wavelet coefficients also represent the correlation between the 
signal and the basic functions in terms of the high-frequency 
content. The signal will generate high amplitude coefficients at 
places where the artifacts [e. g. the blinks in the red boxes of 
Fig. 2(b)] are present. We utilized the following threshold 
technique to remove them. It has proven to be effective in the 
research about driver fatigue analysis [30], [31]. 

 ( ) 2 std( )j j jT mean C C                       (1) 

where Cj denotes the wavelet coefficient at the jth level of 
wavelet decomposition and Tj is its threshold. If any of the 
coefficients is greater than this threshold, it is halved to reduce 
the impact of artifacts. Then the wavelet-corrected EEG signals 
are obtained by reconstruction from the processed coefficients. 
To reduce the effect of the artifacts further, high amplitude 
coefficients actually need to be processed recursively. In this 
analysis, the wavelet coefficients with artifacts were halved no 
more than twice taking into account the efficiency and 
effectiveness of the algorithm. The EEG signals from all 
channels were pre-processed in the same way as mentioned 
above. 

The comparison of the EEG signals before and after 
preprocessing is shown in Fig. 2. Fig. 2(a) gives a typical 
10-second original EEG signal disturbed by a variety of 
artifacts. Fig. 2(b) shows alpha waves extracted by wavelet 
decomposition. The relatively large fluctuations which may be 
caused by body movements were apparently eliminated, 

(a) 
 

 
(b) 

 

 
(c) 

 

 
Fig. 2.  EEG data preprocessing. (a) Original EEG signal. (c) Detailed
component in alpha subband obtained by wavelet decomposition. (c) Artifact
removal.  
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whereas a few of artifacts are still left (e. g. the artifacts 
probably caused by blinks in the red boxes). Fig. 2(c) shows the 
result of the wavelet-based artifact removal. Compared to the 
original signal, the corrected signal is not only free from the 
dominated noise contamination, but also retains the main trend. 
It is reflected by the alpha rhythm nonlinear oscillations. 
 

C. Source analysis model 

Until now, all the EEG source localization methods are 
developed based on the generative model of EEG data [32], 
[33]. According to Maxwell’s equations, the EEG signals 
measured at K EEG electrodes are linear functions of M dipole 
amplitudes on the cortex (i.e. sources), represented by primary 
current density. The generative model of EEG data is given by 

 ( ) ( ) ( )  t LJ t t                             (2) 

where ( ) Kt  is the EEG signal measured at K EEG 

electrodes at time t. 3( ) MJ t  is the activity of N sources 

with 3D orientation. 3K ML  is a lead matrix summarizing 

the propagation of M sources throughout the brain. ( ) Kt  

denotes the measurement noise. Given the geometry and 
electrical conductivity of the majority tissues in the head 
(between the electrodes and the sources), L can be calculated. 
This process is called forward modeling. Reversely, the sources 
J(t) can be estimated from the measured signal Φ(t) and 
calculated L by inverse modeling. This reverse process is also 
called source reconstruction. 

The EEG inverse problem of source estimation from EEG on 
the scalp has ill-posed nature, because the solution is 
underdetermined for all admissible output voltages. The 
number of dipoles M is usually much larger than the number of 
electrodes K. Additionally, the solution is unstable, because it is 
highly sensitive to small changes in the noisy data [34]. In the 
present study, we utilize the fMRI co-registration to avoid the 
ill-posed problem. From Eq. (2), we know that there must be 
the related specific EEG activities on the scalp, if the sources 
J(t) are given, and vice versa. We do not solve this equation. 
The alternative sources of J(t) come from related fMRI studies. 
The specific EEG activity is revealed by the following 
functional connectivity and spatial clustering (see the next 
section). The sources J(t) are determined by registration back to 
fMRI source space after spatial clustering [see Fig.3(a)].  
 

D. Functional connectivity and spatial clustering 

As shown in Fig. 1, the key method which can be used to 
integrate spatial and temporal information of fatigue is divided 
into two parts: brain network constructing and spatial clustering 
on the constructed brain networks. 

Representing the complex system brain as a network requires 
identification of nodes and edges [35]. Here, we assign EEG 
electrodes to the nodes of the brain networks. The adjacency 
relations among the nodes in the networks can be described by 
the adjacency matrix A whose element A(i, j) shows the 
measured edge between electrodes (nodes) i and j. Since the 

electrodes for EEG recording are distributed in different brain 
regions, the edges embody functional connectivity among these 
brain regions and this kind of brain network is known as a 
functional brain network. A simple and most commonly used 
measure of the functional connectivity is the cross-correlation 
function [36]. The correlation between EEG signals si and sj can 
be calculated by the following equations 

 
( , )( )

( , )(0) ( , )(0)

i j
ij

i i j j

CC s s

CC s s CC s s


                      (3) 

 1

( ) ( ),   0
( , )( )

( , )( ),     0

N

i j
ti j

j i

s t s t
CC s s

CC s s



 


 






  

  


              (4) 

where time delay τ is set to 0. γij is corresponding to the element 
of the cross correlation matrix R, which presents in ith row and 
jth column. si and sj represent the EEG signals from electrodes i 
and j respectively. 

The adjacency matrix A can be obtained by the correlation 
matrix R. First, define the adjacency matrix A=R. To exclude 
self-connections of nodes, the elements on the main diagonal of 
A were set to zero. The other elements of A reflect functional 
coupling (i. e. functional connectivity) of the signals in 
different brain regions. 

In the present study, the spatial clustering on brain networks 
is defined as a process of classifying a set of networks’ clusters 
into groups in which similarity in the same group is maximized 
in terms of distance formed by the functional connectivity 
between the clusters. A cluster consists of a node and all the 
connections to it. We employ the number of the node to indicate 
the number of the cluster and consider the connections as the 
node’s attributes. 

Hence spatial clustering is also a process of electrode 
selection considering multiple interaction attributes. 
Mathematically, a brain network with N nodes, each of which 
has M links (M=N-1 for weighted network), is denoted by 

X={X1, X2, …, XN}T, where Xi={
1

ix , 
2

ix , ...,
 

M

ix } is a vector 

denoting the ith node whose attribute ( , )j

ix i j A  (j≠i) is a 

scalar represents the strength of the functional connectivity 
between Node i and Node j. 

The following is based on agglomerative hierarchical 
clustering, which establishes the foundations for inducing a 
hierarchical clustering from a newly represented, or newly 
encoded, mapping of functional connectivity matrix A. 

To begin with, each node of a brain network is used to 

represented a cluster at the lowest level, i.e. Ci={Xi}, 1≤i≤N. 

Dendrogramk = {C1, C2, ..., CN}, k=N. Then, based on the 
distance (similarity function) calculation, two closest clusters 
are successively merged to reduce the number of clusters by 1 
until a single cluster remains at the highest level (i. e. k=1). 

 

 ( , ) ( ) :( , ) { , } 1i j i jargmin d C C ia b j k    ,     (5) 

 

 2 1merge( , )a b N kC C C   ,                      (6) 
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 1

2 1

{ , }

                             { }  2
a b

N k

k k C C

C k N





 
  

Dendrogram Dendrogram
    (7) 

where Ci and Cj denote two different clusters; k is the level 
number; Dendrogram indicates the cluster set and its element 
number is reduced by 1 to reach a higher level in Eq. (7); d 
represents Euclidean distance between two clusters. Eqs. (5) 
and (6) means when the Euclidean distance of Ci and Cj is 
minimal among the k clusters, a new cluster C2N+1-k is generated. 
At the next level, Ci and Cj are replaced by C2N+1-k. C2N+1-k 
consists of Ci and Cj representing a merging operation. The 
Euclidean distance can be calculated by the following 
expressions: 

 ( , ) ( , )i j a bd dC C X X ,                       (8) 

 2

1

(( , ) )
M

m m
a b a b

m

x xd


 X X ,              (9) 

where M denotes the number of attributes of the node vectors 

Xa and Xb. 
m

ax  and 
m

bx
 
indicate the attributes (corresponding to 

functional connectivity) of the two node vectors. 
Finally, we cut the dendrogram to complete clustering on 

brain networks to obtain different node groups whose number 
(Z) is predetermined. As the number of the clusters contained in 
Dendrogram is equal to the level number k, Z clusters will be 
left by the Zth level cut through the dendrogram. That means 
we classify the nodes of brain networks into Z groups according 

to the elements (clusters) of DendrogramZ. In this work, Z is 
set to 2 to find the node cluster in the specific brain areas 
associated with mental fatigue (Fig. 5). As mentioned in Sec. 
II-C, the EEG activity related to the sources J(t) has a specific 
topology and is different from other activities. Therefore, Z is 
set to 2 so that 2 groups of clusters are left. The specific one is 
determined by fatigue information (see Figs. 3, 5 and 6). In this 
study, the brain network construction and spatial clustering 
were performed in a sliding window with the length of 30s 
without overlap to obtain evolution of the node clusters over 
time. The result of spatio-temporal dynamical analysis was like 
a movie. Every time after spatial clustering in the sliding 
window, it generated a timeframe. 

 

E. Temporal feature extraction based on wavelet entropy 

After spatial clustering, the result of functional connectivity 
analysis is no longer presented in a manner of the system’s 
average behavior, but optimized local information (node 
cluster). As the dynamical EEG activities on the extracted 
nodes still contain voluminous information from mentality and 
physicality, fatigue-related information is often implied. 
Normally, in order to differentiate between different levels of 
fatigue, a set of nonlinear EEG features need to be extracted. 
Among the nonlinear analysis approaches of the dynamical 
EEG activities, entropy-based algorithms have been useful and 
robust estimators for evaluating regularity or predictability [30], 
[31], [37]. Shannon entropy (SE) is a measure of average 
uncertainty of event set. In information theory, it reflects the 
information content and complexity of source (event set). In 
this work, we define the set of the EEG activities in a time 

(a)               

T1                                    T2                                    T3 

(b) 

 
 

Fig. 4. Functional connectivity and networks’ average behavior. (a) Functional
connectivity matrix. (b) Global connectivity energy. The averages and
standard deviations are plotted. *p<0.05. Electrodes Fp1, Fp2, F7, F3, Fz, F4,
F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 correspond to node
number 1-19 respectively. Color bar shows the correlation value. T1, T2, and
T3 indicate the initial, intermediate, and final states, corresponding to the time
windows of 0min, 30mins, and 60mins respectively.  

  (a)                            (b) 
 

         

 

(c)   
     

 
Fig. 3.  Spatiotemporal imaging. (a) Registration between the fMRI and the
EEG features. The nodes obtained by spatial clustering were used as reference 
points (red points). The alternative source nodes (blue points) in the cortex
were from the previous fMRI studies about mental fatigue [1], [2]. The nodes 
with two colors are the determined sources of mental fatigue in Fig. 7(a). (b)
Sequence of space-time matrices (spatiotemporal images). Axes t, y, and s
represent time, space (node), and subject respectively. The features extracted
through wavelet entropy constitute the space-time matrices. (c) Mahalanobis 
distances between the three reference points and alternative source nodes. 
Color bar indicates Mahalanobis distance. The sources with shortest distances
are the nodes with two colors in Fig. 3(a). 
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window as the event set. The alpha sub-band after 
preprocessing [Fig. 2(c)] was employed to calculate the 
Shannon entropy values. The same sliding window as spatial 
clustering was used for dynamically estimating the fatigue of 
drivers. The equations are as follows: 
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where Vi is the amplitude of the ith sampling point. If Vi>0, Vlim 
is defined to be the upper limit of measurement range of the 
instrument (the upper limit>0). If Vi<0, Vlim is defined to be the 
lower limit (the lower limit<0). If Vi=0, then Ej is defined to be 
0. L indicates the length of the sliding window (L= 
30*sampling length). m denotes the shift factor. N represents 
the number of samples. 

The EEG signals on the nodes gained from the spatial 
clustering (in the following section) were selected to extract the 
fatigue-related features. Alpha waves were among the earliest 
described functional oscillatory components in the human EEG 
[38], and research has supported the general notion that alpha 
band power is inversely related to brain activation [39], [40] 
and reflects deactivated or inhibited cortical processes [41]. 
Thus, the alpha waves were used to calculate the entropy 
features. The window moves forward along the experimental 
data. Every time when the window moves a step, we first 
decompose the data of the window into four levels by wavelet 
transform to get the alpha sub-band, and take advantage of 
wavelet-based threshold technique [Eq. (1)] to suppress 
artifacts. Then we calculate the entropy using Eq. (11). As the 
window moves to the last part of the data, we can get the 
entropy versus time curve [Fig. 7(a)]. 

 

F. Spatiotemporal imaging 

A T1-weighted structural MRI (fieldtrip template) from the 
scanner in DICOM format was manually co-registered to the 
EEG coordinate system (10-20 System) through the position of 
the template fiducials and EEG channel positions. The MRI 
was then segmented to obtain a representation of the brain, 
including grey and white matter, and cerebrospinal fluid. A 
single-shell model in [42] was used to construct a volume 

conduction model.  
The brain regions (voxels) associated with mental fatigue 

provided in the previous fMRI studies [1], [2] were marked 
with blue points in the structural MRI template in Fig. 3(a). 

When we focus on the specific node clusters on brain 
networks, spatial clustering actually play a role in information 
extraction in spatial domain for adapting to fMRI registration 
and dynamic feature extraction for prolonged task. To link the 
EEG features to the fMRI images, we consider the nodes 
extracted by spatial clustering [red points in Fig. 3(a)] as 
fiducial points to search the nearest coordinates of brain regions 
(voxels) associated with mental fatigue provided in the 
previous fMRI studies [1], [2]. These studies reported the 
coordinates of sources. In the same MRI coordinate system, the 
sources can be registered to the template MRI in this study. The 
coordinates from the previous fMRI results which were nearest 
to the coordinates of the extracted nodes were considered as the 
source coordinates of mental fatigue [the nodes with two colors 
in Fig. 3(a)]. Mahalanobis distance was calculated to measure 
the coordinate closeness. Mahalanobis distance represents the 
covariance distance of the data. It is an effective method to 
calculate the similarity between two unknown sample sets [43], 
[44]. Fig. 3(c) shows the Mahalanobis distances between the 
three extracted nodes and fMRI alternative sources. The 
alternative sources with shortest Mahalanobis distances were 
determined as the sources J(t) in Eq. (2). All the alternative 
sources came from the previous studies of mental fatigue. Thus, 
the coordinates of the sources J(t) were considered as the 
source coordinates of mental fatigue. Whether they correspond 
to the mental fatigue in this study can be verified in time 
domain [see Fig 7(c) and Fig 8(d)]. 

Through the spatiotemporal combination (Fig. 3), we have 
not only spatial information reflected by the fMRI sources 
(specific clusters), but also temporal information reflected by 
the dynamic EEG features (wavelet entropy). The feature data 
are represented as a tensor (i. e. sequence of space-time 
matrices), whereas 2D images (feature dynamics after spatial 
clustering) evolve over subject, as shown in Fig. 3(b). If let I be 
the tensor of the entropy-based features [WE in Fig. 3(b)], the 
element I(i, j, k) corresponds to the wavelet entropy value of 
subject k at the jth key spatial node and in ith sliding window. 
According to the deactivation level [Fig. 8(c)], the critical 
points of mental fatigue can be obtained by the edge detection 

of spatial values of the measured feature field at t－y, I(t, y), at 

each instant s [Fig. 8(d)]. 

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on February 28,2020 at 09:56:33 UTC from IEEE Xplore.  Restrictions apply. 



2379-8920 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2020.2976610, IEEE
Transactions on Cognitive and Developmental Systems

 7

III. RESULTS 

A. Functional connectivity and spatial clustering 

As mentioned above, the analysis in a sliding window 
generated timeframes. Each timeframe was marked as the time 
corresponding to the first data point in the sliding window. Fig. 
4(a) shows the functional connectivity matrices in different 
stages (T1, T2, and T3). T1, T2, and T3 correspond to 
timeframes 0min, 30mins, and 60mins respectively. T1 
indicates the initial state, which is considered as alert state 
according to the experimental setup. The time of self-reported 
subjective fatigue from the subjects is 26±9mins (mean value ± 
standard deviation). Thus, most subjects already began to feel 
tired at the stage T2 (30mins). T3 (60mins) was selected to 
present the result of the final state of the subjects in the 
prolonged task. Each small square surface in Fig. 4(a) 
represents a connection between two nodes. Color indicates the 
value of the correlation coefficient. The correlation coefficients 
were set to zero (deep blue), if the nodes were self-connected. 
Since fatigue reduced the activity complexity of the whole 
brain, the overall functional connectivity in the final state 
became weaker comparing with the initial state. To measure the 
overall functional connectivity of each brain network in the 
three stages, the energy of all the elements of the functional 
connectivity matrix A was calculated and the results of 
statistical analysis are shown in Fig. 4(b). The global 
connectivity energy averaged across the subjects significantly 
decreased at the stage T3. Through statistical unpaired 
two-sample t-test, p<0.05 between stages T1 and T3 revealed 

statistically significant differences in connectivity with a 
confidence interval of 95%. 

Nevertheless, as mentioned in Section I, the functional 
connectivity analysis at sensor level involves the problem of 
signal mixing, which may bring the fluctuations to the 
networks’ average behavior. As shown in Fig. 4(b), the average 
connectivity energy at the stage T2 was abnormally higher than 
that at the stage T1 and there was no statistically significant 
difference between the two stages. It assuredly brought 
challenges for interpreting and reporting the connectivity 
results, and it was ambiguous whether fatigue impacted the 
functional connectivity at the stage T2 according to the 
traditional connectivity analysis. As most subjects already 
began to feel tired at the stage T2 in the experiments [see Fig. 
8(d)], it probably left some traces in the objective brain signals. 
Obviously, the fatigue information was ‘implied’ for the 
traditional connectivity analysis. 

To improve the information accuracy from space domain, we 
extracted the significant nodes of the brain networks using 
spatial clustering. The significant nodes will be adopted as the 
fiducial points in the following spatiotemporal imaging. 

Through spatial clustering based on the connectivity, the 
nodes of the brain networks in Fig. 5(a) were classified into two 
groups by using Eqs. (5)–(9) and nodes Fz, C3, and P3 (the 
cyan nodes) were distinguished out as the sparse spatial sources 
whose synchronized deactivation information was retained 
[Figs. 7(b) and (d)]. The dendrograms in Fig. 5(b) demonstrated 
the clustering processes of the brain networks. Two clusters 
were merged at each level. Hence, at the penultimate level 
corresponding to the position of the cutting line, one cluster 

(a) 
 

              

 

               

 

 
(b) 

     

 
 

Fig. 5.  Extracted spatial nodes. (a) Spatial nodes extracted from the average brain networks across all the subjects by using
clustering algorithm. Nodes Fz, C3, and P3 (cyan nodes) with distinct connectivity attributes (red links) were differentiated
throughout each network from timeframes 0min, 30mins, and 60mins respectively. (b) Dendrograms representing the clustering 
processes. Electrodes Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 correspond to node number 
1-19 respectively. 
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contained only one EEG node and the other cluster contained 
the remaining 18 nodes. The cluster corresponding to the single 
node at the penultimate level was the most different one from 
others, as the other 18 clusters are merged. Such multiple 
merging or dendrogram structure change was probably caused 
by internal source activity change, since signal mixing does not 
vary over time [22]. Therefore, at the each stage of spatial 
clustering, the single node is considered as the pivotal node 
which is modulated by mental fatigue in the prolonged task. As 
shown in Fig. 5(a), the clusters with red links and cyan nodes 
had spatial gradient changes in the three stages not subject to 
the problem of spurious interactions in Fig. 4. In addition, the 
temporal features on the three extracted nodes also significantly 
improved comparing with all the network nodes and every 
single node (see next section). 

B.  Comparison with existing methods 

We compared the performance of our proposed method with 
that of commonly used method, connectivity estimation in EEG 
source space (see technical details in [32] and [45]). The EEG 
recorded on electrodes was projected back to the cortex level 

using two source reconstruction methods, Dynamic Imaging of 
Coherent Sources (DICS) and Minimum Norm Estimation 
(MNE). In source space, connectivity was calculated by 
Granger causality and phase lag index (PLI). The networks 
were constructed by the connectivity and the cortex nodes from 
the same structural MRI template used in the proposed method. 
The cortex nodes with maximum number of links were 
determined as the source nodes. Fig. 6 shows the extracted 
source nodes in different stages (T1, T2, and T3). The link 
number in the Granger and PLI networks was normalized by 
dividing by maximum link number and converted to relative 
link number. From Fig. 6(a) to Fig. 6(c), the source nodes (red 
nodes) obtained by all the three methods under the DICS source 
reconstruction condition have a tendency to moved to the 
hindbrain as driving time increases. However, when the source 
reconstruction condition was changed to MNE, the extracted 
source nodes by the connectivity methods based on Granger 
causality and PLI did not maintain this trend. Since the 
proposed method was combined with the fMRI neuroimages, it 
was unaffected by the EEG source reconstruction and the 
extracted source nodes correspond to the activity on the scalp 

DICS                                                                                   MNE 

Spatial clustering   Granger causality          PLI                 Spatial clustering   Granger causality        PLI 
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Fig. 6.  Extracted sources. (a) Extracted sources at the stage T1 (0min). (b) Extracted sources at the stage T2 (30mins). (c) 
Extracted sources at the stage T3 (60mins). The first three columns refer to DICS source reconstruction. The last three columns
refer to MNE source reconstruction. For each column, results obtained with spatial clustering, Granger causality, and PLI are
reported next to each other. Color bar indicates the relative link number of node in Granger and PLI networks.  
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electrode.  

C.  Temporal feature extraction based on wavelet entropy 

Even though the global topology in the brain networks 
demonstrated the degraded performance of the connectivity 
with the accumulation of fatigue [T3 stage in Fig. 4(a) and (b)], 
it was hard to know when it started just using traditional 
connectivity analysis, due to the lack of dynamic variables and 
the problem of signal mixing.  

Fig. 7(a) presents the dynamic entropy features of all the 
EEG channels. The red dashed line shows the time when the 
subject reports the feeling of fatigue (subjective fatigue) in the 
experiment. In Fig. 7(a), the features from different spatial loci 
of EEG recordings had a certain synchronous trend and the 
inflection point (turning-point) seemed to correspond to the 
dashed line of subjective fatigue. Nonetheless the spatial 
residual fluctuations in different channels blur the inflection 
point position which was important labeling information of 

fatigue. In Fig. 7(b), the temporal features from the significant 
nodes (fiducial points) obtained by spatial clustering had better 
synchronized changes. The synchronization among all the 
nodes and extracted nodes was estimated by fuzzy 
synchronization Likelihood (FSL, see details in [46]) and 
presented in Fig. 7(c). Note that FSL was calculated in a 
moving window with the length of 5mins without overlap. 
Therefore Fig. 7(c) did not include the synchronization of the 
features in last 5mins of Fig. 7(b). The most points on the FSL 
curve of the extracted nodes were above the curve of all the 
nodes, especially after the subjective fatigue time, which 
demonstrated the effectiveness of the proposed method. As a 
measure of average uncertainty of event set [47], the entropy 
values decreasing revealed complexity decreasing of brain 
activities [Fig. 7(a)]. The whole brain was less active. 
Consequently, the subjects were in the fatigue stage after the 
critical points. This was confirmed by the temporal records of 
subjective feelings in the experiment [Figs. 7(a) and 8(d)]. The 
synchronous deactivations corresponding to less alternative 
brain activities means only the most important function areas 
will stay relatively active after the subjects are fatigued.  

It is important to note that the residual fluctuations exist not 
only in space domain, but also in time domain. Although the 
usefulness and robustness of entropy-based algorithms have 
been proven by the previous studies [30], [31], [37], the entropy 
features extracted from single channel of EEG may still be 
unreliable and hard to be interpreted sometimes. In Fig. 7(b), 
the entropy value of C3 is larger than that of Fz from 0min to 
25mins. However, in Fig. 7(d), the mean entropy value of Fz is 
larger than that of C3 at 0min. This means the entropy values of 
Fz of most subjects except the subject corresponding to Fig. 7(b) 
are larger than those of C3 at 0min. The entropy feature of C3 
from 0min to 25mins has a fluctuation. Additionally, in Fig. 
7(d), the mean entropy value of Fz at 60mins is larger than that 
at 30mins and even close to the mean entropy value at 0min, 
which seems anomalous comparing with the mean entropy 
values of C3 and P3 with the fatigue accumulation. To avoid 
the multiple fluctuations, the results of spatial clustering were 
added to the temporal features at the three stages. The mean 
entropy values of the extracted nodes were marked with red 
dots. As shown in Fig. 7(d), the mean entropy values with red 
dots had temporal gradient changes in the three stages not 
subject to the problem of temporal fluctuations. Therefore, the 
proposed method is also useful for the statistical analysis based 
on the mean entropy values to show the effect of time on task of 
mental fatigue. 

 

D. Spatiotemporal imaging 

For the further source analysis in space domain, we linked 
our EEG results to fMRI images. According to previous 
fMRI-based studies of mental fatigue [1], [2], the main regions 
significantly correlated with mental fatigue included: anterior 
cingulate (Brodmann area (BA) 24/32), middle cingulated (BA 
23), left inferior frontal (BA 44), temporal (BA 21 and 22), 
postcentral (BA 3 and 4), and parietal (BA 7) regions. We 
registered between the fMRI and the EEG features based on 
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(b) 

 

 
 

(c)                                               (d) 

   

 
Fig. 7.  Temporal entropy features. (a) Entropy features of the 19 electrodes
extracted from the EEG data. The numbering rule of the nodes is the same as
Figs. 4 and 5. (b) Entropy features of the clustered  electrodes. (c)
Synchronization comparison between the entropy features on the extracted
nodes and all the nodes. (d) Mean entropy values of all the subjects on nodes
Fz, C3, and P3 at three timeframes (0min, 30mins, and 60mins). The error bars
indicate SEM. The nodes obtained by the spatial clustering algorithm are
marked with red dots. 
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three fiducial points (Fz, C3, and P3) to determine the space 
coordinates. As these sources were sparse enough and had a 
certain distance from each other, the unrelated ones with our 
experiment can be rejected easily [Fig. 3(a)]. The coupling foci 
in our study were located at anterior cingulate cortex (ACC: BA 
24 and 32), postcentral gyrus (PCG: BA 3 and 4, left 
hemisphere), and posterior parietal cortex (PPC: BA 7, left 
hemisphere) regions [see Fig. 8(a)]. After the correction and 
projection of EEG features, the fMRI images had temporal 
dynamics and showed strong synchronized deactivations in a 
specific period of time [Fig. 8(b)]. 

To further visualize the fatigue patterns, we converted the 
temporal features on the spatial regions into spatiotemporal 
images [Fig. 8(c)]. The feature values were normalized and 

represented by different colors. The color gradients on the large 
time scale revealed the degradations of brain activity and 
retained the synchronization in certain periods of time. The 
blocks containing wide range pixels in the similar colors are 
observable. With larger gradients, the more definite critical 
points in time were obtained, distinguishing the strong 
synchronized deactivations. As mentioned above, FSL was 
employed to quantify the intensity of synchronized 
deactivations. Fig. 7(c) corresponded to Fig. 8(c). As shown in 
Fig. 8(c), the strongest deactivation can be observed in a rough 
range of 30mins to 50mins. In Fig. 7(c), the range was 
determined as 28.5–45.5mins. We considered the initial time 
[e.g. 28.5mins in Fig. 7(c)] of the range of the strongest 
deactivation as the physiological fatigue time of the subjects. 
The fatigue time of all the subjects was represented by the red 
asterisks presented in Fig. 8(d). Since the fatigue time was 
obtained by the spatio-temporal dynamical analysis of 
objective EEG signals, the state of the subjects was defined as 
the state of objective fatigue when the strongest synchronized 
deactivation occurred. As shown in Fig. 8(d), the objective 
fatigue timing points of all the subjects were corresponding to 
the recording points of subjective fatigue. 

IV. DISCUSSION 

As we know, the effects of fatigue are multifaceted [5]. For 
our brains, it weakens functional coupling among different 
areas and brings synchronously inhibitory performance of 
electrical activities. The results of the present study confirm the 
link between the proposed spatio-temporal images and mental 
fatigue. 

As shown in Fig. 5, the clustering algorithm distinguished 
the special nodes with distinct connectivity attributes 
throughout the networks. If we project them to time dimension, 
the clustered sources indicating enriched alpha activities move 
from frontal region to parietal region in the fatigue process. 
Mental fatigue brings the variations of space distribution 
features. The results of the present study are consistent with 
existing evidence on the cognitive science. Rhythmic alpha 
activity increases in posterior brain regions (parietal-occipital) 
during attentional lapses [48], [49] and during states of 
drowsiness relative to states of alertness [28], [38], [50]. 

In time domain, the critical points between different stages 
definitely have practical significance, for they can become 
triggers of feedback warnings. As shown in Fig. 7(c), the 
temporal features on the extracted nodes had better 
synchronized changes, especially when strong synchronized 
deactivation occurred in Fig. 8(c). This also proves that the 
compressed spatial information by clustering is effective. 

In space domain, the three critical source areas further 
localized by fMRI play key roles in brain circuitry that include 
essentially cognitive and executive functions [1], [51], [52]. 
The anterior source of BA 24 and 32 is located in ACC which is 
involved in higher cognitive functions, such as working 
memory, selective attention, error detection, and controlled 
information processing [8], [51], [53], [54]. The primary 
somatosensory and motor cortices (also known as M1 and S1 
respectively) covering PCG (BA 3 and 4) contribute to the 
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Fig. 8.  Spatiotemporal dynamics and subjective responses of mental fatigue.
(a) Locations of coupling foci (ACC, PCG, and PPC) on the pathway. The
temporal features were plotted from the outer layers to the inner layers of the
nodes. (b) Activation evolvement of ACC (BA 24 and 32)-PCG (BA 3 and
4)-PPC (BA 7) in the fMRI images through the fatigue process. In order to
make the result more conducive to observation, activations at focus
coordinates were enlarged to 1000 voxels. (c) Spatiotemporal dynamical
image. The activations in (b) were normalized. The blocks contain wide range
pixels in deep blue color are observable. The spatiotemporal dynamics show
strongly synchronized decreasing after critical points (P<0.05). (d)
Comparison between objective and subjective temporal indications of mental
fatigue. The objective critical time is consistent with the subjective critical
time, which validates the deactivation information is associated with mental
fatigue. 
 

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on February 28,2020 at 09:56:33 UTC from IEEE Xplore.  Restrictions apply. 



2379-8920 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2020.2976610, IEEE
Transactions on Cognitive and Developmental Systems

 11

somatosensory input and the motor control adapting the scene 
changes [55], [56]. PPC (BA 7) lying between visual areas and 
M1 is believed to play a role in transforming the spatial 
information from the visual system into a motor plan [57]–[59]. 
All the functional activations centered on the three sources 
exhibited phased declines linked to the subjective feedbacks of 
mental fatigue. It illustrated the multiple negative effects of 
mental fatigue over time in the prolonged task. Centered on 
these essential functions, mental fatigue may have a powerful 
impact upon the external performances. Since the goal-directed 
attention was necessarily deployed with every movement in the 
driving task, anterior cingulate cortex involved in the brain’s 
error checking and conflict-monitoring system would trigger 
compensatory adjustments to avoid accidents [60], [61]. This 
explained why the anterior source was active again at the later 
stage in Fig. 8(c). In line with previous mental fatigue analysis, 
the nodes detected in Fig. 5 show hemispheric asymmetry [13], 
[62]. The previous study [13] reported that the asymmetrical 
pattern of connectivity in fronto-parietal regions associated 
with sustained attention. Using the spatial clustering algorithm, 
we found the sets of connections with nodes (cyan nodes in Fig. 
5) which were the most different from others were distributed 
in the left hemisphere. In this study, all the subjects were 
right-handed. As is well known, each hemisphere of the brain 
controls the opposite side of the body. Hence, the left 
lateralization of the extracted nodes involved in the motor, 
somatosensory, and posterior regions may have a relationship 
with the excessive use of attention and body control on the right 
to complete the prolonged driving task [55]. 

As shown in Fig. 1, the core of the proposed neuroimaging 
method in this paper is spatial clustering and we have added 
dynamical variables (i.e. entropy features) to it. Note that a 
single link of EEG may be a spurious link and the networks’ 
average behavior is also unstable for the fatigue investigation 
(see Fig. 4) because of the problem of EEG signal mixing. The 
proposed method considers the connections on a node together 
as a cluster. Even if the signals are mixed, it can be resolved in 
such a way that when we analyze the connectivity considering 
the relationship between the signals from every single sensor 
and the other sensors. Additionally, since signal mixing does 
not vary over time [22], the multiple merging and dendrogram 
structure change of spatial clustering is probably caused by 
internal source activity change. The results (Fig. 5) of this study 
have proved that the clusters involve the relationship between 
the signals from every single sensor and the other sensors can 
be classified into groups by spatial clustering over time with the 
progress of fatigue and acquire more precise determination of 
local area modulated by fatigue. Thus, the proposed method 
makes it possible to combine the EEG results with the fMRI 
neuroimages to analyze the source changes related to fatigue 
[Figs. 3(a) and 8(b)].  

As shown in Fig. 6, the proposed method is unaffected by the 
EEG source reconstruction. Because we did not solve Eq. (2) 
directly, it avoided the ill-posed problem. As mentioned in Sec. 
II-C, the solution of Eq. (2) for EEG inverse problem is 
non-unique and unstable. The accuracy of the source 
reconstruction is affected by a diverse range of factors 

including the head model errors, the source-modelling errors, 
and EEG noise (instrumental or biological) [32]. Therefore, the 
results of Granger causality and PLI are inconsistent under the 
two conditions of source reconstruction. In this study, the 
sources are determined by registration back to fMRI source 
space after spatial clustering. The alternative sources are from 
the related fMRI studies. Obviously, some errors come from the 
similarity of the EEG and fMRI results, because the data of the 
two modalities were collected from different subjects and even 
different tasks. The different task (i.e. prolonged driving task) 
was selected to exclude the possibility that the consistent 
performance came from the same task. The dominant factor 
was the same (i.e. fatigue), so there was a corresponding 
relationship between the results of the two modalities. We used 
Mahalanobis distance to measure the similarity. In Fig. 3(c), the 
sources with shortest distances were determined as the sources 
correlated with mental fatigue. It has the more consistent 
performance compared with other existing methods in Fig. 6. In 
addition, the synchronous deactivations from the extracted 
sources correspond to subjective fatigue in time domain [see 
Figs. 7(b) and 8(c)]. It is important to note that there may be 
coordinates from related fMRI studies which are not included 
in Fig. 3(a). The shortest Mahalanobis distances in Fig. 3(c) 
may become smaller. We do not focus on proving the accuracy 
of these sources from the fMRI studies. In this study, we just 
provide an interface method which can combine the EEG and 
fMRI results and determine which sources inside brain are 
more relevant to mental fatigue. 

The limitation of the current spatial clustering is that it 
calculates the distance only between the extracted nodes and 
the alternative sources. Only one source can be selected for the 
multiple sources under an extracted node. In the future, we will 
calculate the distance considering the connections on the 
extracted nodes to improve the algorithm.  

Additionally, deep learning-based studies have impressive 
performance in many areas [63]–[65]. Of cause, it also has the 
potential to investigate mental fatigue. The clustering algorithm 
in spatial clustering is a kind of machine learning algorithm. 
Another future direction is to replace the clustering algorithm 
by deep learning model to improve the analysis performance of 
mental fatigue.  

In this study, the sliding window length is selected as 30s so 
that the number of samples is enough to estimate the 
connectivity and extract the temporal features. This parameter 
of sliding windows may affect the final result, but there is no 
standard for the length selection. Fortunately, the consistent 
performance is obtained by spatial clustering in Fig. 6, which 
can point to mental fatigue. 

Because of residual temporal fluctuations, the temporal 
features from a single channel of EEG are also not reliable 
sometimes, even for the nonlinear dynamic features like 
entropy. In Fig. 7, the temporal fluctuations bring difficulties to 
interpret the results of statistical analysis, or the trade-off 
between individual differences and averages is difficult. Hence, 
the results of spatial clustering (extracted nodes) are used as the 
fiducial points to suppress the problem of temporal fluctuations. 
As shown in Fig. 7(b) and (d), the fluctuations can be excluded 
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in some extent, when we just focus on the periodic statistical 
analysis of the temporal features based on the fiducial points 
(the mean entropy values with red dots) and the 
synchronization of the temporal features of the fiducial points. 
The mean entropy values with red dots have temporal gradient 
changes in the three stages corresponding to the process of 
increasing fatigue.  

Note that we do not reduce the residual fluctuations of the 
temporal features in every channel in the current study. The 
proposed method emphasizes the directive role of the effective 
information of mental fatigue. It is particularly helpful to add 
correct dynamical variables to the neuroimages after spatial 
clustering is applied. As shown in Fig. 7(c), we have quantified 
the synchronized deactivation from the spatiotemporal 
neuroimages in Fig. 8(c). The synchronized deactivation 
presents phase changes and the time range of the strong 
synchronized deactivation is obtained. The initial time of the 
strongest synchronized deactivation corresponds to appearance 
of subjective fatigue reported by the subjects themselves [see 
Figs. 7(c) and 8(d)]. Therefore, the spatio-temporal dynamical 
analysis may help to find the source of subjective feelings of 
mental fatigue or in which way it is truly modulated. It may not 
be one or several spatial loci, but a pathway in brain. 

Concurring with previous studies focusing specifically on 
each functional subsystem [8], [51]–[61], [66], our results 
indicated that ACC, PCG, and PPC served as the pivotal nodes 
engaged in the fatigue modulation. Through community 
structure analyses, the fMRI study [66] reported that 
fronto-parietal network compensated with cognitive decline 
due to mental fatigue. That may explain the strong 
synchronized deactivation of the fronto-parietal regions in this 
study. What’s more, from ACC to PCG, other research also 
proved that rich anatomical connectivity with association and 
motor cortices supported the operation of the higher cognitive 
subsystems centered on ACC [67], [68]. From the point of view 
of neuropharmacology, multiple neurotransmitters, e. g. 
dopamine and adenosine, are speculated to convey the 
connectivity of the pathway, which shows that regulating motor 
control and monitoring functions of ACC rely on dopaminergic 
inputs from the midbrain [9], [69]. At the same time, the 
accumulation of adenosine (an inhibitory neurotransmitter) has 
also been found in the motor area and ACC (due to a mentally 
fatiguing task) and explains the endurance performance 
reduction [4]. Similarly, the link between ACC and PCG is also 
indispensable to support functional implementation from 
visuo-motor coordination to intended movement [57], [69]. 
Coupled with the electrophysiological connectivity in our study, 
the negative effects of mental fatigue on the pathway 
(ACC-PCG-PPC) may be attributed to the microstructure and 
multidimensional property. 

Overall, the strong deactivations on nodes ACC, PCG, and 
PPC modulated by mental fatigue exhibit synchronization and 
gradient from temporal and spatial dimensions respectively. By 
means of the pathway, mental fatigue reduces the complexity 
and diversity of brain activities, which reflects the multifaceted 
effect. In accordance with the order of functions to achieve, 
fatigue first may block sensory information receiving or 

sensory stimulus interpreting. In the halfway, it affects motor 
function. At last, the overshoot of higher-order cognitive 
responses will be increased and there may be more error 
responses. With the spatiotemporal attribute structure, such a 
pathway provides an evidence of multidimensional property 
that should be accommodated by any mechanism model of 
mental fatigue. 

V. CONCLUSION 

In this paper, we have presented a spatio-temporal mapping 
method based on spatial clustering for imaging mental fatigue 
with the advantages of EEG and fMRI. It demonstrates the 
consistent performance related to mental fatigue across 
different subjects and different tasks. During the fatigue 
process, the clustered sources (ACC, PCG, and PPC) show 
strong deactivations corresponding to subjective feelings of 
fatigue. The deactivations are interrelated to each other on 
account of synchronization and gradient from temporal and 
spatial dimensions respectively. The multidimensional property 
of mental fatigue can be expressed as the combined effect of 
ACC-PCG-PPC to a certain degree. 
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