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Abstract 22 

Raman spectroscopy offers a non-destructive means to identify minerals in rocks, but the 23 

ability to use the technology for quantitative mineralogical analysis is limited by fluorescence 24 

that can mask the spectral features of minerals. In this paper we apply continuous wavelet 25 

transformation (CWT) to remove fluoresence from Raman data acquired from 26 carbonate 26 

rock samples. We then record the intensity values of individual spectral features, proxies for 27 

mineral abundances, using the original Raman data and the thus inferred CWT data. The 28 

intensity values are then compared against the known mineral abundances determined using the 29 

scanning electron microscope (SEM) technology. This comparison is conducted using a linear 30 

regression model to determine whether fluorescence removal enhances the mineral abundance 31 

predictions. Our results suggest that CWT enhances the accuracy of mineral abundance 32 

estimates, thus highlighting the importance of fluorescence removal when using Raman for 33 

quantitative mineralogical analysis.      34 

Keywords: Raman, fluorescence, wavelets, wollastonite, calcite 35 

1. Introduction 36 

Raman provides spectral fingerprints unique to many minerals thus enabling their detection 37 

and identification. This characteristic has been used for mineral identification since the advent 38 

of the technology (Landsberg and Mandelstam, 1928; and references therein). The technology 39 

is based on irradiating the material of interest and subsequently recording the resulting photons. 40 

Most photons have the same frequency as the laser beam, but a small fraction have shifted 41 

frequencies due to changes in the vibrational or rotational energy stages in molecules or crystals 42 

(Hope et al., 2001). In a Raman spectrum, these shifted frequencies are expressed as spectral 43 

features (commonly called “peaks”) that correspond to the energies of the vibrational modes of 44 

minerals (Burke, 2001). The sharp and generally non-overlapping Raman spectral features are 45 
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well suited for the identification of minerals (Wang et al., 1995; Smith and Carabatos-Nédelec, 46 

2001) and for specific applications such as the determination of the composition of fluid 47 

inclusions (Nasdala et al., 2004). Being rapid and nondestructive, the technology offers many 48 

essential applications for geosciences (Vítek et al., 2012), including mineral quantification.  49 

The ability to estimate mineral abundances using Raman is based on the linear relationship 50 

between the intensity of the spectral features of the mineral and the solution concentration (Cai 51 

et al., 2001). This ability that has been known since the 1970s (see Irish and Chen, 1971; and 52 

references therein) can be reduced by luminescence emissions (also called “the background”) 53 

that are generally the main source of noise in Raman data. As luminescence is in general 106-54 

108 times stronger than the signal (Matousek et al., 2001, Vítek et al., 2012), the phenomenon 55 

can severely impair the ability to detect Raman fingerprints. Luminescence, or 56 

photoluminescence, as the material is excited by laser light, has two components: the short-life 57 

(10-8-10-9 s-1) fluorescence and the longer-life (10-6 s-1) phosphorescence (Becker, 1969). In 58 

minerals, the prevailing process is fluorescence that is induced by the presence of transition 59 

metals, rare-earth elements, actinides, color centers and organic residues (Urmos et al., 1991; 60 

Reisfeld et al., 1996; Wang and Mullins, 1997). Fluorescence can also result from residues (e.g. 61 

fingerprints) or fluid inclusions (Burke, 2001). To be able to analyze the mineral-related signal, 62 

it is essential to separate fluorescence and Raman signals. For this end, hardware and software-63 

oriented approaches have been devised. 64 

Regarding hardware-related approaches that aim to subdue fluorescence, it is a common 65 

practice to lower the energy of the excitation by selecting a laser operating at longer wavelength, 66 

commonly 785 nm or even 1064 nm (Efremov et al., 2007). When using these relatively long 67 

wavelengths, it is less probable to excite the material to the higher electronic states, which is 68 

prerequisite for the fluorescence to occur (Frosch et al., 2007). The approach has the 69 

disadvantage of the Raman scattering intensity being inversely proportional to the laser 70 
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wavelength by λ-4 (Efremov et al., 2007) and thus, longer excitation wavelengths inducing a 71 

weaker signal response. Also, minerals can contain small amounts of rare earth elements as 72 

impurities, and since some of these elements are excited at relatively low energy levels, they 73 

can nevertheless induce fluorescence. As an alternative to long excitation wavelengths, short 74 

ultraviolet (UV; wavelengths below 250 and up to 280 nm) excitation wavelengths have been 75 

used to suppress fluorescence (Johnson and Asher, 1984, Li and Stair, 1996). The use of the 76 

UV excitation wavelengths is based on the fluorescence emissions being rare or absent in this 77 

wavelength domain, thus enabling a complete spectral separation between Raman and 78 

fluorescence emissions (Frosch et al., 2007). Furthermore, when using this excitation 79 

wavelength range, Raman excitation may occur within a highly excited electronic resonance 80 

band, thus resulting in a strong signal (Frosch et al., 2007).  81 

Another hardware-related approach that has gained momentum in recent years is time 82 

gating. Conventional Raman systems apply continuous-wave lasers to excite the sample with a 83 

continuous beam of photons. Of these photons, only a small fraction (circa. 10−7) is Raman 84 

scattered, and to strengthen the Raman signal, integration times of several seconds typically 85 

take place (Sharma et al., 2010). This approach can result in Raman fingerprints being 86 

superimposed on a fluorescence background. To overcome this problem, the signal is recorded 87 

before it is subdued by the fluorescence signal (Bozlee et al., 2005; Efremov et al., 2007).  88 

technology has been successfully used to eliminate fluorescence in mineral samples by a 89 

number of studies (see e.g. Bozlee et al., 2005; Misra et al., 2005; Romppanen et al., 2019).  90 

Fluorescence has also been subdued using the photobleaching approach, a technique of 91 

keeping a sample under a sustained laser exposure (Barman et al., 2011). However, some 92 

researchers (e.g. Esposito et al., 2003; Cadush et al., 2013) argue that fluorescence may not be 93 

completely removed using this approach and moreover, alterations in the intensity of the 94 
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spectral features can take place due to the long laser exposure that can change the physico-95 

chemical properties of the sample (Macdonald and Wyeth, 2006). 96 

As choosing specific excitation wavelengths or using a specific data acquisition approach 97 

is not always feasible, computational approaches of removing fluorescence have received 98 

attention. Wavelet transformation, a technique of decomposing the signal into localized 99 

contributions (details and approximations) labeled as scales (Hoang, 2014), is one of the most 100 

popular advanced background-correction methods in the field of Raman spectroscopy (Sobron 101 

et al. 2008, Zhang et al., 2009). The popularity of the method is based on the known ability of 102 

the wavelet transformation to de-noise Raman spectra without changing the wavelength 103 

positions of the spectral features of materials (Cai et al., 2001). Because the background has a 104 

lower frequency than the material (Hu et al., 2007), background can be eliminated without a 105 

significant loss of spectral information (Ma and Shao, 2004). As reviewed by Ma and Shao 106 

(2004), the ability to use wavelet transformation for background removal is due to the concept 107 

of vanishing moments. With certain vanishing moments, the ratio between the intensity of the 108 

background and the intensity of the analytical signal is large enough for the background to be 109 

negligible. In addition to its ability to remove the background from the signal, wavelet 110 

transformation has the benefit that it does not require a priori information about the composition 111 

or the background signal of the samples (Hu et al., 2007), an important characteristic when 112 

analyzing often incompletely known rock samples. Wavelet transformation can be implemented 113 

as continuous (CWT) or discrete (DWT). 114 

Our research was motivated by the observation that despite a body of research on the use of 115 

Raman spectroscopy for quantitative mineralogy (e.g. Dörfer et al., 2009), the ability to use 116 

computational methods to mask fluorescence are not well established in that field of research. 117 

To partially fill this knowledge gap, we acquired high spatial resolution Raman data from a set 118 

of 26 rock samples. Using these data, CWT was conducted to remove the background signal. 119 
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Energy-dispersive-scanning electron microscope (EDS-SEM; for simplicity ”SEM” from 120 

herein) was then used to determine the mineralogy of the samples. These data were used as a 121 

benchmark against which the mineral abundances extracted from the original Raman data and 122 

the thus derived CWT data were assessed. The accuracy of the Raman-inferred mineral 123 

abundances was evaluated using correlation coefficients and linear regression. In this context, 124 

we aim to respond the following question: does computational fluorescence removal improve 125 

the accuracy of Raman-based quantifications of minerals in rocks? 126 

2. Materials and Methods 127 

2.1. The Study Site 128 

The 3 km long and 0.8 km wide Paleoproterozoic (1.9 Ga) Ihalainen deposit (61° 2'0.60" 129 

N, 28°10'52.96" E; in Lappeenranta, southeastern Finland, Fig. 1) is one of the most important 130 

calcite-marble deposits in Svecofennia and one of the few wollastonite mines in Europe 131 

(Lehtinen, 2015). The deposit hosts significant reserves of wollastonite (Ca[SiO3]), calcite 132 

(CaCO3) and dolomite (CaMg(CO3)2). The deposit is currently being exploited by Nordkalk 133 

Ltd. that has owned the site since 1910 (Lehtinen, 1999). Wollastonite occurs as lath-shaped, 134 

0.5 x 0.1-0.2 mm crystals, comprising 20-24% of the ore (Keeling, 1963, Dumont, 2005). 135 

Wollastonite as a commercial mineral is being used to substitute asbestos (Maxim and 136 

McConnell, 2005) and to increasing the durability and strength of concrete (Kalla et al., 2015), 137 

among other uses.  138 

The study area mainly comprises calcite-rich limestone rocks that are surrounded by 139 

younger (1.6 Ga) rapakivi granites. Wollastonite is principally sourced from the limestone rocks 140 

where the mineral occurs in association with diopside and quartz bands surrounded by a calcite 141 

matrix (Lehtinen, 1999). The wollastonite occurrences are located in a 1.5 km, N-S conforming 142 

strike of a 65% eastward dip (Lehtinen, 2015). The limestone body of the study area is cut by 143 
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rapakivi dykes and NW-SE running diabase (amphibolite) dykes (Keeling, 1963), and mixtures 144 

of the two (Lehtinen, 1999). There are also leptitic dykes that follow the dip and strike of the 145 

limestone rocks (Pekkala, 1988). The bedrock has undergone strong deformation. 146 

Wollastonite formed during two stages. The first, older stage, occurred 1.858 Ga ago during 147 

medium-to high grade metamorphism when water infiltrated the silicious beds of the carbonate-148 

rich sediments (Lehtinen, 1999; Lehtinen, 2015). The second, younger event, occurred when 149 

wollastonite skarns formed during contact metamorphism of the granitic rocks in the vicinity 150 

of the limestone body (Lehtinen, 1999, Lehtinen, 2015). During these metamorphic stages, two 151 

types of wollastonite developed (Lehtinen, 2015). The first type comprises wollastonite and 152 

diopside-containing calc-silicate bands (+/- quartz) in a matrix of bluish calcite (Lehtinen, 153 

2015). Here, calcite is the main ore mineral with abundances of 55-75% and the amount of 154 

wollastonite seldom exceeds 30% (Lehtinen, 2015). This type of wollastonite formed during 155 

the older, regional event that precedes the rapakivi magmatism that occurred around 1.6 Ga ago 156 

(Lehtinen, 2015). The second type of is a skarn-type wollastonite ore where the wollastonite 157 

content typically exceeds 30% (Lehtinen, 2015). This rock type is associated with the younger 158 

contact metamorphic event.   159 

2.2. Sample Set 160 

The sample set comprises 26 rock samples that were collected from different parts of the 161 

study site (rock piles). Because the original locations of the samples are uncertain, their 162 

coordinates were not recorded. The samples were selected to represent the different wollastonite 163 

types of the study area, discussed in section 2.1.  164 

Here, the objective was to have wollastonite and calcite -rich samples to compare the effects of 165 

fluorescence removal on mineralogically distinct samples. Petrographic analysis of the samples 166 

confirmed that the average grain size of the samples is approximately 0.5 mm. The 167 
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crystallographic orientations of the samples were furthermore observed to be random and not 168 

to have a preferred orientation.  169 

To prepare the samples for SEM analysis, a 2.5 cm drill core was extracted from each 170 

sample. Next, one surface of each sample was cut and polished. Using these polished sample 171 

surfaces, a 1x1 cm area was marked using Cu-tape. This was done to help align the Raman and 172 

SEM data and to acquire them from the same surface area of each sample.  173 

2.3. Raman Data Acquisition 174 

The Raman data were acquired at the University of Jyväskylä with an in-house Raman setup 175 

(backscattering geometry). The data were acquired using a solid state continuous wave laser by 176 

CNI (excitation wavelength: 532 nm, laser power: 200 mW). Raman signal was collected to 177 

imaging spectrograph (Princeton Instruments, Acton SP2500i), coupled to a CCD detector 178 

(Andor Newton) using a 0.1 s integration time. Dark noise and the spectral features induced by 179 

the foreoptics were subtracted from the data. Care was taken to only acquire data from the inside 180 

of the areas marked with the Cu-tape, resulting in 4900 analyses per sample and a 100 µm 181 

spatial resolution. 182 

2.4. Scanning Electron Microscope (SEM) Data Acquisition and Results 183 

To record the mineralogy and mineral proportions of the samples, the polished samples 184 

were analysed in the Field Emission Scanning Electron Microscope (FE-SEM) Laboratory of 185 

the Geological Survey of Finland (Espoo, Finland). For this end, a JEOL JSM-7100F Schottky 186 

instrument, equipped with an Oxford Instruments energy dispersive X-ray spectroscopy (EDS)  187 

with a X-Max 80 mm2 silicon drift detector (SDD) was applied. The SEM data were acquired 188 

with a 20 kV acceleration voltage and 0.5 nA probe current.  189 

The mineral phases were characterized using the Oxford INCA feature phase detection and 190 

classification software. Next, the elemental compositions of the samples were recorded using 191 
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the EDS. A number of analyses were obtained from each sample such that data were acquired 192 

only from areas that fell inside the ones marked with a Cu-tape. The spatial resolution of the 193 

analyses is ca. 102 µm. Here, the objective was to achieve a spatial resolution that would be as 194 

close to the Raman data as possible. The exact number of analyses per sample is given in Table 195 

1. The amount of analyses varies in the sample set because the boundaries for the data 196 

acquisition were set manually, and care was taken not to go outside of the taped areas. This 197 

resulted in an average number of analyses of 5205 per sample, which is slightly higher than the 198 

number of analyses of the Raman data (4900 analyses).  199 

The results, listed in Table 1, suggest that the majority of the samples have a high 200 

wollastonite content (average: 69.2%), moderate calcite and diopside contents (averages: 15.9% 201 

and 11.1%, respectively) and low contents of all other minerals (average: 0.3%). Using the 30% 202 

wollastonite content threshold, discussed in section 2.1, to divide the samples into two 203 

categories, 80.8% (21 out of 26) of the samples fall into Type 1 category that represents the 204 

wollastonite ore. Of the ramaining 5 samples, samples 15, 17, 21 and 22 fall into Type 2 205 

category where calcite content is 55% or higher, and hence these samples represent the calcite 206 

ore. Sample 20 does not clearly fall into either of the two categories. Also, even if the samples 207 

represent one or the other category, they can still contain a relatively large amount of the other 208 

mineral. For instance, sample 2 contains 75% of wollastonite, but nevertheless has 17.2% of 209 

calcite. 210 

It should be noted that zero values in Table 1 represent analyses where the mineral in 211 

question has been detected, but the total percentage falls below the number of decimal digits 212 

shown in Table 1. Also, although not specifically listed in the table, the SEM results suggest 213 

that sample 6 contains two grains (features) of an unidentified Cu-mineral. 214 

2.5 Spectral features  215 
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In this paper, the focus is on wollastonite and calcite, the ore minerals of the study site. The 216 

chosen minerals have a set of characteristic Raman spectral features, described by Urmos et al. 217 

(1991), Richet et al. (1998) and Prencipe et al. (2012). Of these features, the following were 218 

selected for data analysis due to their pronounced nature and unique position in the 219 

electromagnetic spectrum that minimizes potential confusion with other minerals in the sample 220 

set: i) 281 cm-1 (f1 from herein), ii) 414 cm-1 (f2 from herein), iii) 972 cm-1 (f3 from herein) and 221 

iv) 1092 cm-1 (f4 from herein). The first spectral feature, f1, is a translational lattice mode T(Ca, 222 

CO3) in calcite. The second and third (f2 and f3) spectral features are induced by the 223 

deformation of the Si-O-Si bonds (Richet et al., 1998) in wollastonite. The fourth spectral 224 

feature (f4) is a prominent vibrational mode, induced by the v1 symmetric CO3 stretching mode 225 

in calcite (Urmos et al. 1991). It should be noted that wollastonite has a pronounced feature 226 

near 637 cm-1 (Richet et al., 1998), also present in the dataset, but this feature was left out of 227 

analysis to avoid confusion with diopside that is abundant in the sample set and that has a 228 

potentially overlapping spectral feature in the same wavelength range (Prencipe et al. 2012).  229 

The spectral features f1-f4 were analyzed as follows. First, the quality of the data were 230 

assessed for potential outliers and low signal-to-noise ratios. It was deemed that the data had 231 

no underlying quality issues, and hence no data was removed prior to data analysis. Next, an 232 

average spectrum was extracted from i) samples that were classified as belonging into Type 1 233 

(n=21) or Type 2 (n=4) sample category and ii) from each sample (n=26, Fig. 2). The former 234 

analysis was conducted to visually compare the differences between the two types of rock 235 

samples. The intensities of the four spectral features of interest (f1-f4) were recorded using the 236 

results of the latter analysis (the sample average).   237 

2.6. Continuous wavelet transformation (CWT) 238 
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Continuous wavelet transformation (CWT) was applied to the original data to remove the 239 

background fluorescence. This analysis was carried out using the Anaconda client version 1.6.9. 240 

with Python 3.6.4. The Ricker (also called: the “Mexican hat”) as the mother wavelet, 241 

decomposed into ten scales using the standard dilation and translation functions described by 242 

Lau and Weng (1995). Here, CWT (as opposed to DWT) was chosen because its outputs are 243 

directly comparable with the original spectra (Rivard et al., 2008). The Mexican hat wavelet 244 

was chosen based on its demonstrated ability for background removal (see e.g. Zhang et al., 245 

2009; Liu et al., 2017). As Ricker is a symmetric function, fluorescence will be automatically 246 

removed for as long as it slowly changing and monotonic (Zhang et al., 2009). The number of 247 

scales (n=10) was chosen using pre-existing knowledge of the feature widths of the spectral 248 

features f1-f4.   249 

The bivariate normal distribution of the SEM data and the Raman data, tested using the 250 

Shapiro-Wilk W statistic (Shapiro and Wilk, 1965), suggests that the SEM data (W=0.764664, 251 

df=26 p=0) and Raman data associated with the spectral features f1 and f4 are not normally 252 

distributed (for details, see Table S1). Due to the generally non-normal bivariate data 253 

distribution, the non-parametric Spearman rank correlation coefficient (Rs), a measure that does 254 

not make assumptions about the frequency distribution of the data (Hauke and Kossowski, 255 

2011), was used to conduct all of the correlation analyses of this study. 256 

To find which wavelet has the highest correlation with the SEM data, bivariate correlation 257 

analysis was conducted between the ten scales and the four spectral features of interest. Of the 258 

outputs of this analysis, the scale that had the highest correlation coefficient with the SEM data 259 

was chosen for further analysis. The correlation analysis results, shown in Figure 3, reveals a 260 

generally high correlation between the SEM data and the ten wavelets of the CWT data 261 

(Rs=0.845-0.880, 99% confidence level, 2-tailed). Of these wavelets, scale 3 has the highest 262 

correlation with the SEM data (Rs=0.880, n=26). Therefore, data associated with this specific 263 
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scale was selected for all the ensuing data analysis steps, and will simply be referred to as the 264 

“CWT data” from herein.   265 

2.7 Linear regression analysis 266 

The relationship between the SEM data (predictor variable) and Raman data (the response 267 

variable) was further assessed using Spearman’s rank correlation coefficients and linear 268 

regression analysis. This analysis was conducted separately for the original data and the CWT 269 

data to determine which dataset is more robust in predicting the quantitities of the minerals of 270 

interest (wollastonite and calcite).  271 

Prior to regression analysis, Levene’s test (Levene, 1960; Brown and Forsythe, 1974) was 272 

used to evaluate the homogeneity of variances, a prerequisite of that specific analysis (Williams 273 

et al., 2013). The Shapiro-Wilk statistic was used to test the normality of the residuals of the 274 

model. All statistical analyses were performed using the IBM® SPSS® Statistics version 25 at 275 

a 95% confidence interval, unless otherwise stated. 276 

3. Results 277 

3.1 The effects of the fluorescence removal 278 

The average spectra of the Type 1 and Type 2 samples show that both sample types have 279 

varying degrees of background fluorescence (Figure 4). Of the two sample categories, Type 1 280 

(wollastonite ore) appears to have a higher degree of fluorescence than Type 2 (calcite ore). 281 

Also, with the exception of spectral feature 2, the spectral features of interest, labeled as f1-f4 282 

in Figure 4, are detectable irrespective of the sample category, due to the presence of the 283 

minerals of interest across the sample set.  284 

As can be seen in Figure 5, the CWT transformation has removed the background 285 

fluorescence from the Raman spectra. This can also be noted in the boxplot figures of the 286 
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original and CWT spectra where the median of each spectral feature has a lower intensity than 287 

the intensity of the original data (Fig. 6a-b).  288 

As noted by Zhang et al. (2009), wavelet transformed Raman spectra can contain negative 289 

values that do not bear a physical significance. The coefficients are negative because the 290 

product of the chosen wavelet (here: Ricker/Mexican hat) and the unit step is a negative 291 

constant. As can be seen in Figure 6a-b, the CWT spectra have negative values in the 292 

wavenumber positions of abrupt transitions marking the shift from the background to the signal 293 

(i.e. mineral spectral features). Nevertheless, as the spectral feature positions have not shifted 294 

from the original, these negative values do not affect data analysis in our study.  295 

3.2. Linear regression analysis 296 

In general, the correlation coefficients are lower between the original Raman data and SEM 297 

data (Rs=0.806, n=26, 99% confidence level, 2-tailed, Figure 7) than between the CWT data 298 

and SEM data (Rs=0.880, n=26, 99% confidence level, 2-tailed, Figure 8). Thus, removing the 299 

background strenghtens the relationship between the intensity of the spectral features and the 300 

abundance of the minerals of interest (calcite and wollastonite). Of the individual spectral 301 

features, f1 and f4, associated with calcite, have slightly higher correlation coefficients than 302 

those of the spectral features f2 and f3, associated with wollastonite. More specifically, the 303 

average Rs between the original Raman data and the SEM data is 0.865 in the case of calcite 304 

and 0.748 in the case of wollastonite. The corresponding coefficients are 0.932 and 0.829, 305 

respectively, for the CWT data.   306 

The Levene’s test reveals that the assumption of homogeity of variances is satisfied (F(1, 307 

206)= 2.589, df1=1, df2=206, p=0.109). Furthermore, the Shapiro-Wilk test results suggest that 308 

the residuals of the model are not normally distributed (W=0.885, df=208, p=0). As regression 309 

analysis is relatively robust against violations against normally distributed errors (Williams et 310 
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al., 2013) and the relationship between the SEM data and the Raman data can be considered 311 

linear based on a visual interpretation (see Figure 7), simple linear regression was used to assess 312 

the relationship between the SEM data and the intensity values of the Raman data.  313 

When examining the resulting R2 values of the minerals of interest, given in Table 2, the 314 

results suggest that 87% of the average variation of the spectral features of calcite of the original 315 

Raman data, and 94% of the CWT data can be explained by the SEM data. The corresponding 316 

figures are 66% and 78% for wollastonite. Averaged across all spectral features, the results 317 

suggest that 77% of the total variation of the original Raman data, and 86% of the CWT data 318 

can be explained by the SEM data. Thus, the CWT treatment enhances the predictive ability of 319 

the Raman data by an average of 9 percentage units across all spectral features. However, there 320 

is large inter-spectral feature variation and while the enhancement is 14% for spectral feature 321 

f1, it is only 3% for spectral feature f4 even if both features represent calcite. Similarly The 322 

enhancement is 5% for spectral feature f2 and 31% for spectral feature f3. Hence, the average 323 

enhancement, induced by the CWT, is higher for wollastonite (average: 18%) than for calcite 324 

(average: 8.5%). 325 

4. Discussion 326 

We have applied Raman spectroscopy to assess the quantities of calcite and wollastonite in 327 

a set of 26 rock samples collected from the Ihalainen open pit mine in Eastern Finland. Our 328 

results suggest that there is a strong positive correlation and thus, a strong relationship, between 329 

the intensity values of the individual spectral features and the known mineral abundances 330 

determined by the SEM. Similar to previous studies to have created calibration models using 331 

Raman data (e.g. Wan and Small, 2010), our results suggest that fluorescence removal can 332 

enhance the ability to use Raman data for quantitative mineral analysis. 333 

4.1 The accuracy of mineral abundance prediction using Raman spectroscopy 334 
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The strong positive correlation between the known abundances of wollastonite and calcite 335 

and their Raman spectral feature intensities conforms to the results by Cai et al. (2001) who 336 

applied Raman data to infer concentrations of ethanolic solutions. However, the intensity values 337 

of the individual Raman spectral features are not only related to concentrations, but also to 338 

factors such as the crystal orientation with respect to the polarization direction of the light 339 

(Andò and Garzanti, 2014), and thus factors such as grain orientation in rocks need to be 340 

considered in the context of geological Raman studies. If the average grain size of the sample 341 

is smaller than the spot size of the spectrograph, the signal of a single measurement can be a 342 

mixture of two or more minerals, thus making interpretations on the mineralogy of the sample 343 

more challenging. In this study, the spot size is smaller than the average grain size of the 344 

samples (0.1 and 0.5 mm, respectively), thus ensuring that any spectral mixing is negligent and 345 

mainly confined to marginal areas of individual mineral grains. Furthermore, if the sample 346 

contain minerals that have spectral features in the same wavelength region, interpretations on 347 

the presence or absence of a specific mineral can become more challenging. In this study, such 348 

confusion was minimized by only analyzing the spectral features that do not overlap with any 349 

other spectral features of the sample set. 350 

It is important to note that the quantitative information that Raman can provide should be 351 

seen as relative, as opposed to absolute, since the intensity values of the spectral features lack 352 

universal meaning (Irish and Chen, 1971) due to differences in instrumental response, 353 

instrument drift and sample-specific variation (Wan and Small, 2010). Because of this, data 354 

obtained using different Raman setups need to be individually calibrated in each study. Also, 355 

care should be taken to acquire the calibration data and the Raman data from the same mineral 356 

surfaces when there are potential differences in the quantities of individual minerals in different 357 

parts of the rock samples. In this study, calibration was conducted using SEM data and 358 
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furthermore, areas from which the Raman data and the calibration data were acquired were 359 

carefully marked using Cu-tape to ensure the ability for cross comparisons.  360 

As suggested by our results, some minerals may be more amenable for Raman-based 361 

mineral quantification than others. In our study, correlations between calcite and SEM were 362 

stronger than those between wollastonite and SEM. Being a strong Raman scatterer (Wang et 363 

al., 1998), calcite gives an easily recognizable spectral signature with strong features. In our 364 

dataset, these features provide a stronger link between the Raman data and the mineral 365 

abundances than in the case of wollastonite. One potential explanation is the stronger signal 366 

and lower fluorescence background of calcite when compared to wollastonite.  367 

4.2 The effects of applying CWT for background removal 368 

Fluorescence can completely overwhelm the Raman signal which is several degrees of 369 

magnitude weaker (Burke, 2001), and thus removing it can enhance the ability to quantify 370 

mineral abundances. Our results suggest that CWT effectively removes the background induced 371 

by fluorescence in Raman spectra, which enhances the relationship between the mineral 372 

abundances and their Raman intensities. However, this effect varies as a function mineral and  373 

specific spectral feature. According to our results, the average enhancement in the predictive 374 

power of wollastonite, induced by the CWT treatment, is higher than in the case of wollastonite. 375 

As seen in Figure 4, wollastonite appears to have a higher level of background fluorescence 376 

than calcite, thus potentially explaining this result.  In calcite, Ca can be substituted by rare 377 

earth and transition metal ions (Gaft et al., 2001) to induce strong fluorescence in calcite 378 

(Sharma et al., 2012). Wollastonite, albeit typically relatively pure CaSiO3, can also contain 379 

fluorescence-inducing transition elements, such as iron (United States Geological Survey, 380 

2001). To the knowledge of the authors, rare earth elements have not been reported in the study 381 

area, as also suggested by the generally low amount of fluorescence background in our samples. 382 

It is likely that the fluorescence background of the wollastonite-rich samples is caused by 383 
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transition elements, but the exact chemical composition of the samples is beyond the scope of 384 

our study.  385 

The methodology discussed in this paper can be a useful tool for a rapid mineral 386 

identification. To further test the applicability of our research across a range mineralogical 387 

compositions, we suggest a baseline study that spans across mineral samples that represent 388 

varying degrees of fluorescence.   389 

4. Conclusions  390 

Raman spectroscopy is an established technology in the field of mineral identification, but 391 

thus far has not been widely applied for quantitative mineralogical analysis. One of the reasons 392 

for this may be fluorescence, a phenomenon that can completely mask the spectral features of 393 

minerals. As the intensities of the spectral features are associated with their abundances, 394 

fluorescence can make the use of Raman data for mineral quantification challenging or 395 

impossible.  396 

Our results suggest that there is a high correlation between the intensity values of the Raman 397 

spectral features of calcite and wollastonite and their known abundances. This relationship was 398 

made stronger by the removal of fuorescence, conducted using the CWT. Nevertheless, the 399 

predictive ability of different minerals and their spectral features varies, thus emphasizing the 400 

importance of careful selection of specific spectral features prior to using them from 401 

quantitative mineralogical analysis.   402 

 403 

-- 404 

 405 

 406 
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TABLES 567 

Table 1. The scanning electron microscope (SEM) results for the samples of the study. The 568 

significance of the letters: A=albite, B=ankerite, C=apatite, D=calcite, E=chrysotile, 569 

F=diopside, G=fluorite, H=galena, I=K-feldspar, J=Mg-hornblende, K=Mg-olivine, 570 

L=pectolite, M=plagioclase, N=quartz, O=sphene, P=talc, Q=tremolite, R=vesuvianite, 571 

S=wollastonite. Abbreviations: An.=analyses, Nr.=number,  572 

Table 2. The regression analysis results for the original and CWT treated Raman data of the 573 

spectral features f1-f4. Abbreviations: Adj.=adjusted, Std.=standard. 574 

Table S1. The bivariate Shapiro-Wilk (W) normality of the original and CWT-treated Raman 575 

data of the spectral features f1-f4.  576 

FIGURES 577 

Figure 1. A map of southeastern Finland and the location of the study site. 578 

Figure 2. An average spectrum of all the samples of the original Raman data. The shaded areas 579 

depict the maximum and minimum ranges of the individual spectra. Labels f1-f4 refer to the 580 

spectral features of calcite and wollastonite. For details, see section 2.5. Abbreviations: 581 

a.u.=arbitrary units. 582 
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Figure 3. The Spearman correlation coefficients (Rs) across the ten wavelet scales. 583 

Figure 4. The average Raman spectra of Type 1 (wollastonite) and Type 2 (calcite) samples. 584 

Labels f1-f4 refer to the spectral features of calcite and wollastonite.  585 

Figure 5. An average spectrum of all the samples of the CWT data. The shaded areas depict 586 

the maximum and minimum ranges of the individual spectra. Labels f1-f4 refer to the spectral 587 

features of calcite and wollastonite.  588 

Figure 6. A box plot representation of the intensity variation of a) the individual spectral 589 

features f1-f4 and b) across all of the spectral features. The presentations are given separately 590 

for the original Raman data and CWT data.  591 

Figure 7. Raman intensities of the spectral features a) f1 (calcite), b) f2 (wollastonite), c) f3 592 

(wollastonite) and d) f4 (calcite) against the mineral percentages of the SEM data. 593 

Abbreviations: a.u.=arbitrary units. 594 

Figure 8. CWT Raman intensities of the spectral features a) f1 (calcite), b) f2 (wollastonite), c) 595 

f3 (wollastonite) and d) f4 (calcite) against the mineral percentages of the SEM data. 596 

Abbreviations: a.u.=arbitrary units. 597 

 598 

 599 

 600 


