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Abstract: Big data processing systems are evolving to be more stream oriented where data is

processed continuously by processing it as soon as it arrives. Earlier data was often stored in

a database, a file system or other form of data storage system. Applications would query the

data as needed. Stram processing is the processing of data in motion. It works on continuous

data retrieved from different resources. Instead of periodically collecting huge static data,

streaming frameworks process data as soon as it becomes available, hence reducing latency.

This thesis aims to conduct a comparative analysis of different streaming processors based

on selected features. Research focuses on Apache Samza, Apache Flink, Apache Storm and

Apache Spark Structured Streaming. Also, this thesis explains Apache Kafka which is a

log-based data storage widely used in streaming frameworks.

Keywords: Big Data, Stream Processing,Batch Processing,Streaming Engines, Apache Kafka,

Apache Samza

Suomenkielinen tiivistelmä: Big data-käsittelyjärjestelmät ovat tällä hetkellä kehittymässä

stream-orientoituneiksi, eli data käsitellään heti saapuessaan. Perinteisemmin data säilöt-

tiin tietokantaan, tiedostopohjaisesti tai muuhun tiedonsäilytysjärjestelmään, ja applikaatiot

hakivat datan tarvittaessa. Stream-pohjainen järjestelmä käsittelee liikkuvaa dataa, jatkuva-

aikaista dataa useasta lähteestä.

Sen sijaan, että haetaan ajoittain dataa, stream-pohjaiset frameworkit pystyvät käsittelemään
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dataa heti kun se on saatavilla, täten vähentäen viivettä. Tässä tutkielmassa tehdään kom-

paratiivinen analyysi eri stream-pohjaisten frameworkien välillä, perustuen valittuihin omi-

naisuuksiin. Tutkittavat frameworkit ovat Apache Samza, Apache Flink, Apache Storm ja

Apache Spark Structured Streaming. Tutkielmassa perehdytään myös Apache Kafkaan, joka

on lokiperusteinen tietovarasto, jota laajalti käytetään stream-pohjaisissa frameworkeissa.

Avainsanat: Big data, Stream-käsittely, Batch-prosessointi, Streamausmoottorit, Apache

Kafka, Apache Samza
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1 Introduction

Recent years have witnessed an exponential increase in magnitude and velocity of data. In

the 20th century, most of the data on the internet was in the form of transactions e.g sales data

on a shopping website, banking transactions, etc. Relational databases were used to store

and process the data. However, At the start of the 21st century, organizations have started

generating new kinds of data e.g activity-based data on websites, click-stream data, and

sensors data. To process these new kinds of data, Organizations are using batch processes.

For example, a business may run a batch process by the end of the month to calculate bills of

each of their customer or an IT company might run a job to analyze the system logs on hourly

basis. They are very successful for these use-cases. But they can not be used for a use-case

where the data needs to be processed in near real-time. For example, showing a user some

recommendations based on the recent activity. The reason is that in batch processing first,

the data needs to be collected in batches and then wait for the whole data to be processed.

Certain types of data streams such as stock values, credit card transactions, traffic conditions

need to be processed in near real-time to get useful insights from it. Traditional processing

systems have shortcomings for processing data in a near real-time fashion. Therefore, to

process the data in near real-time streaming frameworks were developed. Stream processing

applications are long-running processes that continuously consume one or more streams of

data, process them and produce results. The result can be output to a front end or saved to a

database or can be input to another process.

In the thesis, we will study these streaming frameworks and at the end do a comparative

analysis of selected streaming frameworks namely Apache Samza, Apache Flink, Apache

Storm, and Apache Spark Structured Streaming. The comparison will be based on the fea-

tures which are essential to streaming frameworks.

The rest of the thesis is organized as follows. Chapter 2 focuses on batch processing and

explains certain concepts related to batch processing. Chapter 3 Introduces the Apache Kafka

and explains Apache Kafka in detail. Chapter 4 introduces Streaming. It explains streaming

in detail, and selected streaming engines are introduced. Chapter 4 also explains the essential

features of a streaming engine. In chapter 5, a comparison has been made between the
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selected streaming engines based on the features of a streaming engine. Finally, Chapter 6

concludes the work.
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2 Batch Processing

Batch processing frameworks process Big data across the cluster of computers. A batch

processing job takes a large amount of data, process it and produce output results. Batch

processing frameworks can be scaled to thousands of computers. (“Hadoop Official Website”

2020). A batch job takes some time to process data. Time can be from a few minutes to

several days. A batch processing system works on bounded data. Bounded data is a finite set

of data. In bounded data, we already know that data is completed and we are not expecting

new data to arrive. An Example of bounded data can be a daily sales of a website, hourly

GPS data generated by a GPS sensor. Batch processing is an efficient way of processing

huge volumes of data. Data is collected in batches, processed with a batch job and results

are produced.

2.1 Hadoop

Apache Hadoop is an open-source framework for distributed storage and processing of a

large amount of data in a scalable way. Hadoop can be scaled to thousands of computers.

Apache Hadoop stack consists of the following modules.

HDFS

YARN

MapReduce

Common Libraries

Hadoop uses HDFS for storage purposes and MapReduce for processing of data. HDFS

breaks data into small chunks and distributes across the nodes in the cluster. Apache Hadoop

uses YARN for job scheduling and resource management of clusters. Common libraries

supports different Hadoop modules.

3



2.2 MapReduce

MapReduce is a programming paradigm for processing large amount of data. MapReduce

is the heart of Hadoop1. The applications can be run in parallel on clusters (thousands of

nodes) in a reliable and fault-tolerant manner. The system automatically distributes the

workload over different nodes in cluster. Typically MapReduce uses a file-system for data

storage (HDFS). The MapReduce system itself takes care of scheduling tasks, monitoring,

and re-execution of failed tasks. According to Google (Dean and Ghemawat 2008) , they

have used MapReduce in many projects. MapReduce become popular due to several rea-

sons. First, MapReduce model is very simple to use, even for the programmers without

having experience of parallel and distributed computing. As the framework itself handles

parallelization,fault-tolerance, monitoring, and load balancing, etc. Second, MapReduce can

be scaled to large cluster of machines comprised of thousands of machines. The implemen-

tation of MapReduce makes it easy to use the resources of thousands of machines. Finally,

Large number of problems can be easily expressed as MapReduce computations e.g, filter-

ing, counting and sorting. (Dean and Ghemawat 2008)

The programming model of MapReduce is based on MapReduce Functions. A user uses

two MapReduce functions: Map and Reduce. Map function takes an input and produces an

intermediate result in the form of key/value pairs. The MapReduce library collects all the

key/value pairs produced by the map function, group all the values having same key and

passes it to reducer function. Reduce function gets a key and all the values associated with

that key and merges the values into a single output. (Dean and Ghemawat 2008)

2.3 Hadoop Distributed File System (HDFS)

HDFS is a distributed file system designed to store a large amount of data in a reliable

fashion. HDFS runs on commodity hardware. HDFS provides high throughput of data and

is an excellent tool for storing a large amount of data. HDFS is highly fault-tolerant. (“HDFS

Design” 2020). HDFS is designed for batch processing. Hadoop application have large data

1. The ApacheTM Hadoop R© project develops open-source software for reliable, scalable, distributed com-

puting. https://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/

4

https://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/


sets, usually from gigabytes to terabytes and HDFS takes care of these large data sets. HDFS

is designed in a way that can scale to hundreds of nodes in a cluster.

HDFS architecture is based on master/slave paradigm. HDFS has a single master node called

NameNode and other dataNodes. Data Nodes are usually one node per cluster. NameNode

keeps the metadata about the data on each dataNode and keeps track of all the files. Client’s

applications use NameNode to access the files for reading or writing data. DataNodes man-

age the storage attached to nodes. HDFS stores user data in files by exposing the file system

namespace. A file in HDFS is split into blocks and blocks are stored on DataNodes. The

DataNodes takes care of read/write request from the client’s file system. The DataNodes

also takes care of block creation, deletion and replication under the supervision of NameN-

ode. The NameNode and DataNode are software that runs on commodity machines. HDFS

is written in Java and any machine that supports Java can run it. Because Java is highly

portable and can be run on different machines, HDFS can be deployed on different types of

machines. A typical deployment of HDFS has a dedicated machine that runs the NameNode

and other machines that runs a single instance of DataNode. Together they form a cluster of

HDFS.(“HDFS Design” 2020). Having a single NameNode in a cluster simplifies the archi-

tecture but it also means that NameNode is a single point of failure in HDFS. (“NameNode

- HADOOP2” 2020)

HDFS supports a traditional hierarchical file organization. A user or an application creates

directories and files are saved in these directories. For fault tolerance, HDFS replicates the

files by replicating the blocks of a file. An application can choose the replication factor by

itself. HDFS is designed to reliably store very large files across machines in a large cluster. It

stores each file as a sequence of blocks. The blocks of a file are replicated for fault tolerance.

The block size and replication factor are configurable per file. The NameNode takes care of

the replication of blocks. It periodically receives a Heartbeat and a Blockreport from each

of the DataNodes in the cluster. Receiving a heartbeat means that DataNode is functioning

correctly while Blockreport is a list of all blocks on that particular DatNode.
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3 Logs and Apache Kafka

This chapter explains Logs, their usage in different systems and Apache Kafka.

3.1 Logs

A Log is an append-only, sequence of records ordered by time. According to Jay 2013,

Log is perhaps the simplest storage abstraction. Records are appended to the end of the log.

Reads proceed from left to right. Each record that appends to log, gets a unique sequential

number that acts as a unique key in the log. This unique number can be thought of as the

"timestamp" of the entry. Many systems use logs for different purposes. We will explain

them in the next section.

Figure 1. log (“Apache Kafka” 2016)

3.2 Logs usages in different systems

Relational databases and some other systems uses logs internally for different purposes.

3.2.1 Write-Ahead Log in databases

Relational databases e.g MySQL use write-ahead logs to make it reliable and consistent.(Kleppmann

2016b). A write-ahead log (WAL) in the database is an append-only file. Before making any

actual changes to the database state, the changes are first written to WAL and saved it to disk.
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After saving the changes to disk, storing-engine makes the actual changes to the database.

This makes the database reliable and consistent. If a database crashes, WAL can be used to

recover it and bring it back into a consistent state.

3.2.2 Log-Structured Storage

Some storage engines like HBase and Cassandra use the log as a primary storage medium,

known as log-structured storage. (Kleppmann 2016b). In log-structured storage, data is

not always appended to one single file because a single log file will become very large and

finding data in that file will become too difficult. Therefore the log is broken into segments.

The segments in log-structured storage are merged from time to time and duplicate keys are

discarded as shown in the figure.

Figure 2. Log structured storage

3.2.3 Database replication

Relational databases use logs for replicating data between the databases. As discussed ear-

lier that databases use the log to keep in sync the data-structures and indexes of database

hence it can also be used to keep remote replica databases in sync with the master database.

Oracle, MySQL, and PostgreSQL include log shipping protocols to transmit portions of the

log to replica databases that act as slave databases. Oracle has two products XStreams and

GoldenGate which use logs for sending changes of databases to client applications (“Ora-

cle Xstream” 2020) (“Oracle goldengate” 2020). similarly, MySQL and PostgreSQL also
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use logs for replication of databases (Jay 2013). PostgreSQL uses the WAL to replicate the

database while MySQL uses a separate replication log for replicating the database.

Data systems use logs over the years for different internal implementation. In the next sec-

tion, I will discuss Apache Kafka which is also built around the logs but rather than using

the logs as an internal implementation, Kafka exposes the logs to users and users build ap-

plications around it.

3.3 Apache Kafka

Apache Kafka1 is a scalable, real-time publish-subscribe messaging system rethought as a

distributed commit log. It incorporates the idea of messaging systems and logs. Kafka is

a distributed, partitioned, replicated commit log service. According to (Wang et al. 2015)

Kafka was built by LinkedIn Engineers. According to LinkedIn Kafka handles more than 10

billion messages writes per day (Jay 2013). Since Oct. 2012, Kafka has become a top-level

Apache open-source project (Jay 2013). The motivation behind building Kafka was to make

a data pipeline system that can handle real-time data feeds by ingesting them from different

producers and deliver it to different consumers.

Figure 3. Kafka (“Apache Kafka” 2016)

.

Apache Kafka is designed having in mind the following characteristics. (Garg 2015)

1. http://kafka.apache.org/
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• Persistent storage

Kafka stores every message persistently on disk and is replicated across multiple disks

to prevent data loss. Kafka is designed with O(1) disk structures, so even with a very

large volume of data, it gives a constant performance.

• High Throughput

Keeping in mind a large amount of data, Kafka is designed to handle hundreds of MBs

of reads and writes per second from large numbers of producers and consumers

• Distributed

Kafka is distributed in nature. It supports message partitioning over Kafka servers

and distributing consumption over a cluster of consumer machines while maintaining

per-partition ordering semantics. Kafka cluster can grow elastically.

• Real-time

Kafka system supports real-time availability of data. It immediately provides Data

produced by producers to consumers.

At a higher level, Kafka is a data pipeline in which data is arriving from different data

sources. These sources can be called producers or publishers. Kafka then serves this data to

different subscribers or consumers. (“Apache Kafka” 2016)

3.3.1 Architecture

Before explaining Kafka architecture first I will explain some key concepts of Kafka:topics,

producers, consumers, and brokers

Topics

All Kafka messages are organized into Kafka topics. A Topic is the stream of mes-

sages of a particular type. A Producer publishes messages to a topic. A Consumer

consumes messages from the topic. For Scalability purpose A Topic is divided into

multiple partitions. Each partition is an ordered, immutable, writes-ahead log of mes-

sages. Each message in a partition is assigned with a unique id called offset. Offset

uniquely identify each message within a partition. A partition can be replicated across
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the number of servers for fault tolerance. Users choose the replicated factor. One of the

partitions in these replicas becomes leader while others become followers. A leader

is responsible for all the read/writes operations of a given partition. If a leader fails,

another replica takes over as a new leader. Topics are saved on a set of servers called

brokers.

Producers

Producers publish data to Kafka Topics. As Topic is divided into multiple partitions,

the producer chooses which message will be assigned to which partition within the

topic. If a key is provided, then messages having the same key will be assigned to the

same partition. If the key is not provided, then messages will be assigned to partitions

in a round-robin fashion.

Brokers

Since Kafka is distributed in nature, a Kafka cluster typically consists of multiple

servers called brokers. Each Topic is persistently saved on these brokers. Each broker

store one or more partition of a particular topic.

Consumers

A consumer is subscribed to one or more topics and consume messages to process. A

consumer can be an Off-line system like Hadoop or traditional data warehouse system

or it can be a NoSQL data store such as HBase for near real-time analytics. Simi-

larly, it can be a streaming engine like Apache Samza or Apache Storm for real-time

processing of streams. In Kafka, consumers are in the form of groups. A Kafka con-

sumer consumes messages from a unique partition of a topic. This means that no

two consumers of the same group can consume messages from a single partition of a

topic.(“Apache Kafka” 2016)

In Kafka the key abstraction is Topic. As discussed above, a topic is a stream of messages

of a particular type. For example, the temperature data collected from a weather station can

be a topic. A Producer publishes messages to the topic. Topics are divided into a number

of partitions. Messages are stored persistently on the Kafka broker. Each time producers

send a message, it is appended to one of the partitions. Hence each partition is a logical log.

Physically each log is implemented as a set of segment files of approximately the same size.

Users can selects the number of messages accumulated before flushed to disk or set the time
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interval to flushed the messages to disk. Messages are available to the consumers only after

it has flushed to disk. Each message in a partition is assigned with a unique id called offset

which uniquely identifies the message within the partition. For fault tolerance, each partition

is replicated across the number of brokers. Each partition has one broker which serves as

a leader and zero or more brokers which serves as followers. All read and write operations

are handled by the leader and followers follow the leader. If a leader fails then Kafka elects

a new leader. To balance the load within the cluster, each Kafka broker acts as a leader for

some partitions and followers for other partitions.(“Apache Kafka” 2016)

Figure 4. Log anatomy (“Apache Kafka” 2016)

Figure 5. kafka partitions and brokers (“Kafka in a nutshell” 2020)

A consumer subscribes to one or more topics by creating message streams for that particular

topic. A consumer can then consume messages from the topic. Kafka uses "pull" model

to deliver messages to consumers. The info about how much messages are consumed by

consumers are tracked by the consumer itself. Consumers do it by consuming messages
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sequentially from a particular partition and acknowledges the offset id, which means that the

consumer has received all the messages prior to that id. The consumer sends an asynchronous

pull request to the broker to have data ready for application to consume. Each pull request

contains the offset of the message from which consumption of messages begins and the

number of bytes of data to consume. As the state about messages consumption is maintained

by consumers, it has one great advantage that if there is some error in programming logic of

consumer or data is lost due to the crash, a consumer can rewind back to older offset and can

re-consume the data. Kafka has the concept of consumer groups. Each consumer group has

one or more consumers. Messages from a single partition within a topic are consumed by a

single consumer in the same consumer group. This means that the same partition can not be

consumed by two consumers in the same group. There is no coordination required between

the two consumers about who consumes what messages and hence no state management is

needed between different consumers.

Kafka decouples data pipelines. The publishers and consumers do not need to know each

other. A performance issue on consumers do not impact producers. Similarly, different

consumers do not have any impact on each other. Kafka uses Apache Zookeeper for different

coordination needs.

At a high level, Kafka gives the following guarantees about messages.

• Message sent by a producer to a particular topic will be appended in the order they are

sent. For example, If two messages M1 and M2 are sent by the same producer to a

particular topic partition and M1 is sent first then M1 will have a lower offset than M2

and will appear earlier in the log.

• A consumer consumes messages in the order they are stored in the log.

• For a topic with replication factor N, Kafka tolerates up to N-1 server failures without

losing any messages committed to the log. (more explained in subsection Replication

in Kafka below).(“Apache Kafka” 2016)
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3.3.2 Replication in Kafka

Replication is keeping a copy of the same data on multiple machines that are connected

through a network (Kleppmann 2016a). There are several reasons data is replicated.

• It reduces latency by keeping data geographically closer to users.

• It increases the availability of the data. The system can continue to work if there is a

failure in some part of the system.

• It increases read throughput by increasing the number of servers that serve read re-

quests.

A Kafka topic is replicated across a number of brokers. Kafka guarantees that a message

will not be lost and will be available for consumption even when there are failures. Failure

can be machine error, program error, etc. Kafka allows automatic failover 2. If a server

in the cluster fails, messages will be still remain available to consume. Each partition in

Kafka has a single leader and zero or more followers. Leader and followers constitute the

replication factor in Kafka. Normally, there are more partitions than brokers. Leaders are

evenly distributed among the brokers for load balancing. All read and writes operation goes

through the Leader. Follower consumes messages from the leader the same way normal

consumer consume from them. The replicas which are alive and caught-up to the leader are

called in-sync replicas (ISR). Zookeeper keeps track of in-sync replicas. If a follower dies

or lags from the leader, the leader removes it from the list of in-sync replicas. A message

is considered to be committed when all in-sync replicas get it. Messages are available for a

consumer to consume only after they are committed. The guarantee that Kafka offers is that

a committed message will not be lost, as long as there is at least one in-sync replica alive. If

a leader dies, Kafka handles it by electing a new leader from the in-sync replicas. Zookeeper

maintains a list of all in-sync replicas and any of the in-sync replica can ba a contender of

becoming a leader. There are two common strategies to keep replicas in-sync. 1. Primary

backup 2. Quorum based . In Quorum based replication one replica is chosen as Leader and

the rest are followers. All write requests go through the leader first and the leader then waits

until the write happens in the majority of the replicas. Only then the write is committed and

2. if a leader fails, system elects new leader, all reads and writes go to new leader and followers now follow

the new leader. This process is called failover
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available to consume. The size of replicas does not change even if some replicas are down.

If we have 2 f +1 replicas, quorum based replication can tolerate up to f failures. In the case

of leader failures, quorum based replication needs at least f +1 replicas to elect a new leader.

In primary back-up replication, the leader waits until the write happens on each replica. If

one of the followers is down, Leader removes it from the replica’s list and continuous to

write to remaining replicas. If a failed replica comes back it is allowed to rejoin the group.

Primary back-up with f replicas can tolerate f −1 replicas (Neha 2013).

The tradeoffs between two approaches are as follows:

1. Quorum based replication has better write latency than the Primary back-up because

we do not need to wait for the write to happen on all replicas.

2. With the same number of replicas, Primary back-up can tolerate more failures. (Neha

2013).

According to Kafka (Neha 2013), they have chosen the primary-backup replication in Kafka

since it tolerates more failures.

It is also possible that all replicas die. Two approaches can be made in this situation.

• Wait for an in-sync replica to come back and that replica can be chosen as leader

• Choose a non-in-sync replica as leader

This is a trade-off between consistency and availability. If we wait for an in-sync replica

there might be a chance that it has gone down permanently while if we take a non-in-sync

replica as a leader then there might be a chance that it has not all the data. By default Kafka

chooses second option. A non-in-sync replica becomes leader although it is not guaranteed to

be consistent. This option can be disabled using configuration where downtime is preferable

to inconsistency.

Availability and Durability Guarantees

Writing in Kafka can be done in a synchronous or asynchronous fashion. In asyn-

chronous replication, the leader acknowledges the clients about the commit as soon as

it finishes writing to its own local log. The Leader does not wait for the followers to
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catch up it. There is no guarantee that a commit message can survive any failure. In

synchronous replication, the leader first writes the message to its local log. Followers

then pull the message from the leader and write it to their own logs. Leader waits

for followers to commit message in their logs. Followers send an acknowledgment to

the leader and the leader sends the acknowledgment to the client that write has been

committed. The acknowledgment is only from in-sync replicas. If we choose asyn-

chronous replication then durability would be a problem, because if a leader die and

another leader is chosen among the followers there could be a possibility that some

messages will be lost. On the other hand, if synchronous replication is chosen then

availability would be a problem but there is another option that can be used with syn-

chronous replication. Kafka gives an option to set a minimum ISR size. We can specify

a minimum ISR size by ourselves. In this case, a write will only be acknowledged if

the size of the in-sync replicas is above the minimum ISR size. This offers a trade-off

between consistency and availability. A higher value for minimum ISR guarantees

better consistency but it reduces the availability since the partition will be unavailable

for writes if the number of in-sync replicas drops below the minimum value. (“Kafka

Official” 2016).

3.3.3 Compaction in Kafka

As discussed earlier Kafka uses persisted logs for storage. Having data in the form of logs is

very useful because we can replay them and do our computation whenever we want. How-

ever, the problem with logs is that they are ever-growing and the disk can go out of space

at some time. Therefore, Kafka deletes older records from logs to free up space. Originally

Kafka had only supported the time window retaining mechanism: deleting old messages

from the log after some fixed time. By default, it is configured for seven days but users can

set it according to their requirements. It works well for temporal systems. For example, A

website owner might be interested to count the number of website visitors per day. Users

can set the window time of 24 hours and messages will be retained only for 24 hours. Sim-

ilarly, if the log reaches some predetermined size then messages are deleted. But it would

be a problem in some use-cases to delete the data by time -based retention: if a Kafka log
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is used to store the shipping addresses of customers. In that case, retaining messages by

time and size will not work and the system needs to store the last shipping address for every

customer. Another example is, Apache Samza (discussed in chapter 4) uses Kafka to store

its current state of an application. Every time the state changes, Samza writes the new state

into the Kafka log. In case of a crash, Samza can read Kafka and recover its latest state.

In this case, Kafka needs to have only the latest state every time. In these cases, data can

not be deleted simply by time-based approach therefore Log compaction adds an alternative

retention mechanism, retaining messages by key instead of purely by time. For every unique

key Kafka keeps the last value and throws away the duplicate values. This means Kafka

will have a recent update for each key in the log. Log compaction addresses use cases such

as restoring state after application crashes, system failure or reloading caches after applica-

tion restarts during operational maintenance. This retention policy can be set per-topic. A

Kafka cluster can have some topics where retention is by size or time and other topics where

retention is by compaction(key-based).

Figure 6. Kafka Log compaction (“Apache Kafka” 2016)

The figure shows a logical structure of Kafka log with offset of messages. The head of the

log is more like a traditional Kafka log where offsets are sequential ids. The Tail of the log

shows compaction in Kafka. Compaction ensures that each key is unique at the tail of Log.

Every Key in the tail has only the latest value. Each message in the tail still has original offset

assigned when they were first written. In the figure, 24,25,26,27 and 28 are all equivalent

positions. A read beginning at any of these offsets would return a message set beginning

with 28.
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Compaction is also used for deletes. A message with a key and null value will be treated as

a delete from the log. Kafka keeps this message for a configurable amount of time. During

this time consumer will see this message and know that that the value is null. The deleted

messages are no longer retained after "delete retention point".

Log compaction is handled by a pool of background threads that recopy log segment files, re-

moving records whose key appears in the head of the log. Cleaning does not block read/write

operations and logs serve the requests normally. Log compaction guarantees the following:

• Ordering of messages is always maintained.

• The messages will have sequential offsets and the offset never changes.

• Reads progressing from offset 0, or the consumer progressing from the start of the log,

will see at least the final state of all records in the order they were written.

A pool of background threads called log pool handles log compaction operation.it works as

follows.

• It chooses the log that has the highest ratio of log head to log tail.

• It creates a summary of the last offset for each key in the head of the log.

• It recopies the log from beginning to end removing keys which have a later occurrence

in the log

(Jay 2016),(“Kafka Introduction” 2016)

3.3.4 Kafka use-cases

Kafka is used as Messaging, Log aggregation, Event sourcing, Stream processing and com-

mit logs.

Kafka provides better throughput, built-in replication, and fault-tolerance, therefore it can be

a good fit in applications, where large scale message processing is needed.

Typically Log aggregation collects logs files from the server and puts them in a central file

e.g HDFS. Kafka can be used to collect the log data as a stream of messages from multiple

sources and consumers can then consume the data from Kafka message’s stream and process
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it in low latency fashion.

Event sourcing is an application type where changes are logged as a time-ordered sequence

of records. Because Kafka can store very large data in totally ordered style, it makes Kafka

a good back-end type for an event sourcing application

In a distributed system, the Kafka commit log helps replicate data between nodes and works

as a re-sync mechanism for restoring data on failed nodes.

Stream processors use Kafka for providing different streaming functionality to users. A

Stream processor consumes Kafka topics, process it and transform into new Kafka topics.

Stream processors use Kafka for different operations like aggregations, filtering and joining.

Similarly, other use-cases of Kafka are website activity tracking, Metrics, IoT solutions, etc.
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4 Stream Processing

Stream processing is the processing of data in motion i.e processing data as at is produced or

received. Data is produced in the form of continuous streams. For example, sensor events,

user activity on a website, stock exchange data, database changes. All types of data is cre-

ated as a series of events over time. The ability to process data as a continuous stream is

becoming an essential part of building a data-driven organization. Getting meaningful and

timely insights from unbounded data is very challenging and traditional batch processing

such as Hadoop has shortcomings for it. Batch processing frameworks have to wait for data

to be collected in batches and then process it, therefore they produce results with latency.

In many applications like fraud detection in credit cards, healthcare systems using sensors,

IoT, data must be processed as it is produced. Because in certain use cases such as stock

exchange prices, traffic conditions, credit card transactions if data is not processed immedi-

ately, it become less important. Unlike Traditional data systems that collect and periodically

process large static data, streaming frameworks process data as it becomes available. This

chapter introduces some popular streaming frameworks. It will focus on discussion of var-

ious real-time available streaming frameworks. These frameworks can store, analyze and

predict results for enormously large bulks of data in considerable amount of time. Also, the

important features of streaming frameworks are explained .

4.1 Key Features of streaming engines

Following are some of the Key features of a streaming engine.

1. Windowing

2. State management

3. Message processing Guarantee

4. Fault Tolerance And recovery

19



4.1.1 Windowing

Windowing is a concept of taking an infinite stream and splitting into chunks of finite

streams. For example, a traffic sensor that counts every 15 minutes the number of vehi-

cles passing through a certain location. Streaming engines provide these kinds of jobs by

windowing. User sets a window size of 15 minutes, counts the number of vehicles, aggre-

gates the result and discard window after 15 minutes. A window is usually defined either

by time duration or record count. Count-based window is sized by the number of records

included in windows. An example of count-based window can be every hundred readings

from an Iot device. Time-based windows can be fixed windows, sliding windows and session

windows. Fixed windows split streams into fixed-size segments, each with a fixed temporal

length, start time and end time. Incoming data goes to one and only one window in fixed

windows. Sliding windows have a fixed length but are separated by an interval time. If

the interval time is less than the window’s length than the windows overlaps and incoming

data will go to more than one window. If the interval is equal to windows length then slid-

ing windows become fixed windows. A Session window does not have a fixed time length

and is composed of a series of events terminated by a gap of inactivity greater than some

threshold time. Session windows do not overlap and do not have a fixed start and end time.

Time notion for windowing can be event-time or processing-time. Some processing engines

have only support for processing-time while others have for both event-time and processing-

time: processing-time is the time at which event is processed by the streaming engine while

event-time is the time at which event occurred.

4.1.2 State management

State management is one of the important features of streaming engines. Some streaming

operations are stateless by nature and there is no need for maintaining their state e.g filter

or map operations. But some operations are stateful and there is a need for maintaining

the states for these operations. An example of a stateful operation is count e.g counting

the number of visitors that visits a website every day. Streaming engines have support for

maintaining states for stateful operations. Some streaming engines provide in-memory state

management while other stores state locally on the same machine. Similarly, some streaming
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engines maintain state remotely in a database. Some streaming engines use all of these

approaches for state management.

4.1.3 Message Processing Guarantee

Message-processing guarantee is an important feature of streaming engines. The semantics

for message-processing guarantee are at-most-once, at-least-once, and exactly-once. In an

at-most-once semantics, the streaming engine ensures that a message will at most processed

once, means that a message might be lost in the process. This is the least favorite guaran-

tee semantics because if a message get lost during the process, no effort will be made to

deliver it and hence it is the least fault-tolerant among all. In an at-least-once semantics,

a streaming engine ensures that a message must be processed at least once but a message

might be processed more than once in some cases. For example, if a failure occurs and

the job needs to reprocess again, some messages might be processed more than once. In

an exactly-once semantics, the streaming engines ensures that a message must be processed

exactly once. In exactly-once processing, the message can’t be lost or processed multiple

times and it is the most fault-tolerant semantics. The choice of these semantics involves a

trade-off between reliability and cost. for example, in some applications, faster processing

having weaker guarantees may be fine but in other applications, a reliable process with a

stronger message guarantee will be required. Streaming engines support message processing

semantics by different techniques like snapshotting, write-ahead logs, recovery algorithm,

and acking mechanism.

4.1.4 Fault tolerance and Recovery

Fault tolerance is one of the important features of streaming engines. Streaming applications

are often real-time applications and reprocessing it from the start is impractical if a failure oc-

curs. Therefore, in case of failures e.g network failure, node failure, etc, a streaming engine

should be able to recover and start processing again from the point where it left. Streaming

engines achieve fault tolerance through different techniques e.g changelog, checkpointing

and savepoint.
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other important features for a streaming engines are programming Model, data source inter-

action model, data partitioning strategy, deployment, community support, support for high

level languages, support for storage systems and support for input sources

4.2 Apache Samza - streaming

Apache Samza 1 is a streaming engine that is used to process data in real-time. Apache

Samza uses Apache Kafka for messaging, and Apache Hadoop YARN for fault tolerance,

processor isolation, security, and resource management. Samza Provides a very Simple API

comparable to MapReduce. Samza manages its state by keeping a snapshot of its state.

Samza is extremely fault-tolerant. Whenever a node in the cluster fails, Samza works with

YARN to migrate the task to another node. Samza uses Kafka for message processing and

Kafka guarantees that messages are processed in the order they are written to a Kafka parti-

tion. Though Samza works out of the box with Kafka and YARN, Samza provides a plug-

gable API that lets you run Samza with other messaging systems and execution environ-

ments. (“Samza Official” 2019)

Apache Samza has some key concepts: Streams, Jobs, Partitions, Tasks

Streams

Samza processes data in the form of streams. A Stream is a collection of immutable

messages of the same type. Examples of Streams are all the clicks on a website,

temperature data send by a sensor, events send by an IoT device. A stream can have

any number of consumers that can read the messages. Streams are always persisted by

the Samza in its brokering layer. Messages can optionally have an associated key that

is used for partitioning.

Partition

To achieve Scalability, Each stream in Samza is further divided into Partitions A Parti-

tion is a sequence of messages in an ordered form. Each message in a Partition has an

identifier called offset. Offset uniquely identify each message in the partition. Offset

can be of different type e.g sequential integer, byte offset, and string. When a message

1. http://samza.apache.org/
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is written to a stream, it is appended to one of the partition. .

Figure 7. Samza partion (“Samza Official” 2019)

Jobs

Figure 8. Samza job (“Samza Official” 2019)

A Samza Job is a code that performs a logical transformation on a set of input streams

and produces output streams. For scalability purposes, A job is further divided into

tasks.

Tasks

Like Samza streams A job is further divided into tasks for achieving scalability. Each

task consumes data from one partition for each of the job’s input streams. Messages

are processed sequentially from the input partition. As ordering is provided within the

partition and there is no ordering across the partitions, each task consumes from one

partition of the same input streams.
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YARN takes care of the assignments of tasks to each machine. A job can be distributed

across many machines

Figure 9. Samza tasks (“Samza Official” 2019)

Containers

Both Tasks and partitions are the logical units of parallelisim in Samza. A container

is the physical unit of parallelism. A container is Unix or Linux process. A container

runs one or more tasks. The number of tasks is determined by the number of partitions.

The number of containers (and resources with it) is determined by the user at run time

and can be changed. .

Figure 10. Samza Container (“Samza Official” 2019)

Together these all make a Samza application. A Samza application processes messages from

input streams, transform them and save results to an output stream or a database. It chains

multiple operators, each of which transforms one or more input streams. (“Samza Official”

2019)
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4.3 Apache Storm - streaming

Apache Storm is one of open source, real-time streaming framework originally created by

Backtype and later acquired by Twitter (Toshniwal et al. 2014). It is written in Java and

Clojure. Apache Storm is an open-source distributed framework that is known for its low

latency, reliability and fault tolerance. It follows in-memory computation mode (Dendane

et al. 2019). Storm braces many use cases like online machine learning, real-time analyt-

ics, extract transformation load (ETL) and continuous computation (Wingerath et al. 2016).

Storm architecture is based on a master-slave paradigm. The cluster is made up of one

main node and many other slave nodes. The main node in storm architecture is known to

be “Nimbus”. Nimbus allocates codes, distributes data among worker nodes, assign tasks

and monitor errors. Nimbus is similar to Hadoop’s Job tracker in functionality (Alkatheri,

Abbas, and Siddiqui 2019). Slave node is known to be the supervisor node that follows the

instructions given by the nimbus. It further delegates tasks to the work processes. Work

processes further hand-over tasks related to a specific topology to Executors. Single work

process can have multiple executors. The task is the actual data transaction performed. It is

either a Spout or Bolt.

The three main concepts in Apache Storm are spout, bolt, and topology. A spout is a source

of stream in Apache storm. Usually, A spout reads from message queue like Apache Kafka

but a spout can generate its own streams also. Similarly, a spout can read from other sources

like Twitter stream API. A bolt processes the input streams and produces output streams.

A topology is the network of spouts and bolts. Storm is none different than a road with

several connecting checkpoints. Data traffic begins at a point and passes through various

checkpoints in topology. Graph of computation is topology in Storm and is treated as directed

acylic graph. Traffic in the topology is data stream that enters through a retrieving point

that is spout. Spout is like a stimuli starting the journey, data passes through receiving

terminals called bolts. In bolts, the data is filtered, sanitized, aggregated and analyzed . Data

from spout would flow to one or multiple bolts. Bolts further may forward received data to

another bolt or output it to UI. . Nimbus and supervisor nodes interact with one another via

Zookeeper. It is a service that is used for robust and synchronized data sharing. States of

both; nimbus and supervisor are maintained by Zookeeper. Nimbus that fails to share data
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Figure 11. Storm topology (“Storm Official” 2019)

can restart its state right from where it stopped working. (“Storm Official” 2019)

4.4 Apache Flink

Apache Flink was started under project Stratosphere and is considered to be a top-level

Apache project built on a philosophy that entertains different classes of data processing

applications. Batch data computation, real-time systems analytic, continuous data stream-

ing and machine learning analysis are key computations provided by Flink (Carbone et

al. 2015). For reading and writing data, Flink can use different systems like HDFS( Hadoop

Distributed File system), S3(Simple Storage Service from Amazon), RDBMS(Any Rela-

tional Database), Hbase(NoSql Database), Flume (Data Collection and Aggregation Tool),

KAFKA(Distributing Messaging Queue) and MONGODB(NoSql Database). Data in Flink

can be processed both in bounded and unbounded fashion. Flink can be run standalone, on

YARN, on Mesos and on AWS. Flink also embeds master-slave prototype. Manager/ Mas-

ter node receives tasks from the client further, it distributes and submits it to slave nodes.

Distributed computing enables Flink to compute data efficiently and rapidly. Slave node in

cluster happens to be task manager executing work assigned by Job manager that happens to

be a centralized master node. A noteworthy attribute of Flink architecture is accurate data in-

gestion. It continues data processing at high throughput with low latency. Kernel/ Core layer

in Flink is a distributed streaming engine that executes data flow programs. The building

block of Flink application is streams and transformation. A stream is a flow of data records

and transformation is an operation that takes one or more streams as input and produces one
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or more output streams as an output result. The programs are represented as DAG (directed

acyclic graphs). . To achieve parallelism A stream in Flink is further divided into partitions

Figure 12. Fllink dataflow model (“Flink programming-model” 2019)

and each task (operator) is subdivided into operator subtasks. The operator subtasks are in-

dependent of each other and can be executed on different machines or containers. operator’s

parallelism is the number of operators subtasks while the parallelism of streams is always the

number of subtasks operator of the producing operator. (“Flink programming-model” 2019)

.

Figure 13. Flink parallel data flow (“Flink programming-model” 2019)

4.5 Apache Spark Structured Streaming

Structured Streaming is a streaming engine built on top of the Spark SQL engine. It can

be run as standalone, on EC2, on Hadoop YARN, etc. Structured streaming reads data
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from an input source and write it to output source called sink. Input sources can be file

source, Apache Kafka, Apache kinesis and SQL databases. Output sink can be apache

Kafka, Hadoop, SQL databases, etc. Structured Streaming programming model is based

on continuous processing. The input data stream is considered as a table where data is con-

tinuously appended and spark runs an incremental query on the data stream. Every time new

data arrives, it is appended to the input table . Querying input table will generate "Result

Figure 14. Spark Structured Streaming (“Structured streaming programming-model” 2019)

Table". On every trigger interval, new rows get appended to the input table and update the

Result Table. Triggers control how often Spark will compute a new result and update the

Result Table. whenever the result tables get updated, the changed result is written into an

external sink called output. there are three modes of output, append, complete and update.

In append mode, only the new rows appended in the Result Table since the last trigger is

written to external storage. Append mode is applicable for a scenario where existing rows

in the result do not need to be changed. For example, the map operation on any stream. In

complete mode, the entire updated Result Table is written to the external storage. The stor-

age connector decides how to handle the writing of the entire table. In update mode, only the

rows that were updated in the Result Table since the last trigger will be changed in external

storage. (“Structured streaming programming-model” 2019) .
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Figure 15. Spark Structured Streaming Programming Model (“Structured streaming

programming-model” 2019)
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5 Comparative Analysis of streaming Frameworks

In this chapter, the frameworks presented in chapter 4 are compared according to several

features that are essential to streaming processors e.g windowing Mechanism, messaging

delivering and processing guarantee, state management, fault tolerance mechanism. Simi-

larly, the frameworks are also compared to some other features e.g data sources, supporting

programming languages, SQL support, etc.

5.1 Windowing Mechanism

Samza supports time windows, session windows, and global windows (“Samza Windowing”

2019). A global window is a single infinite window over the entire message-stream. Samza

supports both fixed and sliding time windows.

Samza only supports processing time windowing but with integrating Apache beam, Samza

also supports event-time windowing. (“Samza core-concepts” 2019).

Flink supports time-based windows, session windows, and global windows. Flink supports

both fixed and sliding time windows. Flink has support for both processing time and event

time windowing. (“Flink Windowing” 2019)

Storm has also support for different windowing. Storm supports both fixed and sliding time

windowing. Storm does not have support for session windowing. Storm has support for

global windowing. Storm has support for both processing time and event time windowing

(“Storm Windowing” 2019).

Structured Streaming has support for fixed and sliding windowing. Spark Structured Stream-

ing does not have support for session windowing and global windowing. Structured Stream-

ing has support for both processing and even time windowing. (“Structured streaming Win-

dowing” 2019)
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Windowing Fea-

ture

Apache Samza Apache Flink Apache Storm Apache Spark

Structured

Streaming

Fixed Windows yes yes yes yes

Sliding Windows yes yes yes yes

Session Windows yes yes no no

Global windows yes yes yes no

5.2 state management

State management is an important feature of streaming frameworks because frameworks

require to do stateful computation on data streams. Examples of stateful computations are

count and join operations. These kinds of operations require state and are not idempotent

operations. Different streaming engines provide different state management mechanisms.

Samza implements the state management by a technique called state-store where each Samza

task has its own state database. The state-store is associated with a particular Samz’s task

and stores data corresponding to that task. Also, Samza stores the state locally on the same

computer on which the task is running. This is because to achieve the performance by not

making remote queries over the network. Also, the state is stored on disk so that more state

can be fit in than memory. Any storage engine e.g LevelDB, LMDB can be used for storage

but Samza ships with a key-value store engine built on top of RocksDB. Having state storage

locally with a Samza job on the same computer and storing it on disk brings a great advantage

in Samza, especially for a task where there is a large state storage. (“Samza statemangement”

2019)

Spark Structured Streaming maintains states in both continuous model and micro-batch.

The state is maintained using two external storage systems: a write-ahead-log that supports

durable, atomic writes and a state-store that can store a large amount of data durably and

allowing parallel excess e.g S3, HDFS. (Isah et al. 2019)

Storm has support for both in-memory and disk-based storage for maintaining state. Storm

has a default in-memory based state implementation. Also Storm has a Redis backed persis-
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tent state implementation. (Isah et al. 2019) (“Storm Statemangement” 2019)

Flink supports both local and external storage for state management. Local storage for state

management is either manage in local memory or on disk with a key-value database such

as RocksDB. Also, External storage is also used for maintaining state in Flink Examples of

external storage are HDFS, S3. (Isah et al. 2019) (“Flink Statemagement” 2019)

Streaming engine State management

Apache Samza key-value,local storage, RocksDB

Apache Flink key-value. local storage, external

storage, RocksDB,S3

Apache Storm key-value, in-memory,local stor-

age,redis

Apache Spark Struc-

tured Streaming

externl storage, write ahead, state-

store

5.3 processing guarantee

Samza guarantees at-least-once processing (“Samza Processing Gurantee” 2019). Samza

ensures that a message will be processed at least once but might be reprocessed more than

once e.g reprocessing the streams in-case of failures. Samza ensures that no data is lost but

a duplicate might still be possible. Samza achieves at-least-one semantic by a concept called

checkpointing. Samza expects the input system to meet the following requirements 1) An

incoming stream is divided into one or more partitions. Each partition is independent of

each other. Each partition is replicated across multiple partitions to continue the availability

of stream in-case of a machine failure.

2) Messages in each partition are in sequence and having a fixed order. Each message has

an offset which uniquely identifies the position of the message in the partition. Similarly,

messages are consumed sequentially within each partition.

3) A Samza job can start consuming the sequence of messages from any starting offset.

Kafka or Kafka like system ensures these requirements.
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A Samza task consumes messages from only one partition of a particular stream. The task

has the current offset of each input stream (the offset of the next message to be read from

stream partition). Every time the task consumes a new message the current offset moves

forward. Samza periodically checkpoints the current offset for each task instance. If a Samza

container fails, Samza restarts the process on another machine and resume consuming from

where the failed process left off. Samza achieves this by looking the offset in the most recent

checkpoint and start consuming messages from the offset. In case of an unexpected failure,

the most recent checkpoint may be slightly behind the current offsets because before writing

the last checkpoint a task may have consumed more messages. In that case, some messages

may be reprocessed again. This is how Samza guarantees at-least-once processing.

Spark Structured Streaming ensures exactly-once processing. It ensures exactly-once guar-

antee through check-pointing and write-ahead log. offsets of the streaming data processed

are saved in checkpoints and write-ahead log. In case of failure reprocessing can be started

from the beginning but it will not process the acknowledged data. (Isah et al. 2019) (“Struc-

tured streaming exactly-once” 2019)

Flink supports exactly-once processing guarantee (“Flink Processing Gurantee” 2019). Flink

supports it by using checkpointing and recovery algorithm Flink snapshot the latest state of

the processing to durable storage. In-case of failure Apache Flink restores the latest snapshot

from durable storage. Flink’s snapshot algorithm is based on a technique introduced in 1985

by Chandy and Lamport (“ververica exactly-once” 2019). (Isah et al. 2019)

Storm ensures at-least-once processing guarantee Although Trident (An abstraction on top of

Storm) storm can supports exactly-once processing guarantee. Storm relies on acking mech-

anisim for ensuring at-least-once processing guarantee. (Isah et al. 2019) (“Storm Processing

Guarantee” 2019)
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Streaming engine processing guarantee

Apache Samza Exactly-Once

Apache Flink Exactly-Once

Apache Storm At-Least-Once and Exactly-Once

through Tradient

Apache Spark Struc-

tured Streaming

Exactly-Once

5.4 Fault tolerance

Streaming Engines need to recover quickly from failures to resume processing. This mech-

anism is called fault tolerance. Samza achieves fault tolerance by saving every change to a

separate stream called changelog. In case of a failure, recovery of processing can be made

by reading data from the changelog. Usually, a log-compacted Kafka topic is used as a

changelog. It retains the most recent value of each key. Also in case of failure Samza tries to

reschedule the tasks on the same hosts to reuse the snapshot of local-state saved on the same

host. This feature is called host-affinity. With host affinity, Samza does not need to reseed

the local state from the changelog. if the state is large reseed can take a long time and for

real-time processing, it does not work. (“Samza fault tolerance” 2019)

Flink implements fault tolerance mechanism by a combination of checkpointing and stream

replay. A checkpoint is a snapshot of the input stream along with the state for each opera-

tor at a specific point. in case of failure, streaming data flow can be reprocessed from the

checkpoint by restoring the state of operators and replaying the events from the checkpoint’s

point. (“Flink fault tolerance” 2019)

Spark Structured Streaming implements fault tolerance mechanisms by checkpointing and

write-ahead-log. The write-ahead-log keeps track of which data has been processed and

written to the output sink reliably while checkpointing hold snapshot of the state of operators.

In case of failure in Structured Streaming, it tracks which state it has last updated in the log

and recomputes the state from the data starting from that place. Both for checkpointing and

write-ahead-log external storage such as HDFS, S3 can be used. (“Structured Streaming faul

34



tolerance” 2019) (Isah et al. 2019)

Storm uses acking mechanism for fault tolerance. In case of failure, the acking mechanism

replays the storm tuples. The acking mechanisim tracks the completion of each tuple tree

with a checksum hash. The value of checksum is zero if all the tuples are successfully

acknowledged. In Storm, topology has a "message timeout" associated with it. if every

message in a spout fails to process in timeout times, Storm considers that tuple has been

failed and replays it. Similarly, the mechanism periodically checkpoints the state of bolt to

ensure that it can be restart from the saved state if it needs to restart. (Isah et al. 2019)

Streaming engine Fault tolerance

Apache Samza change-log, host-affinity,

Apache Flink checkpointing, stream replay

Apache Storm checkpointing, stream replay

Apache Spark Struc-

tured Streaming

checkpointing, write-ahead-log

5.5 Other Comparisons

Samza applications can only be written in Java currently. It offers built-in support for dif-

ferent data sources like Apache Kafka, AWS Kinesis, Azure Event Hubs, Elastic Search

and Apache Hadoop. Also, it’s quite easy to integrate with other sources. Samza can read

streams from AWS Kinesis but can’t write to it. Samza has some limited support for SQL

Also. Samza SQL only supports simple stateless queries including selections and projec-

tions. (“Samza Official” 2019)

Flink applications can be written in Java, Scala and Python. It offers built-in support for

different data sources like Apache Kafka, AWS Kinesis, Apache Cassandra, RabbitMQ,

Apache Nifi, Twitter Streaming API, Google Pub/Sub, Elastic Search and Apache Hadoop.

Flink has support for SQL Also. (“Flink Official” 2019)

Spark Structured Streaming applications can be written in Java, Scala, Python and R It offers

built-in support for different data sources like Apache Kafka, AWS Kinesis, AWS S3, Azure

Event Hubs and Delta Lake. Structured streaming has support for SQL also. (“Structured
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streaming Programming-guide” 2019)

Storm applications can be written in Java It offers built-in support for Apache Kafka, HDFS,

Hive, Solr, Cassandra, RocketMQ, JMS, JDBC, MQTT, Redis, Events Hubs, Kinesis, Kestrel,

MongoDB, OpenTSDB, PMML and Elasticsearch Storm has also support for SQL. (“Storm

Official” 2019)

other Features Apache

Samza

Apache Flink Apache Storm Apache Spark

Structured

Streaming

Programming

Language

Java Java, Scala, Python Java Java, Scala,

Python, R

Data Sources Kafka,

Eventhubs,

AWS

kinesis etc

Kafka, Eventhubs,

AWS kinesis etc

Kafka, Rab-

bitMQ / AMPQ,

AWS kinesis etc

Kafka, AWS S3,

AWS kinesis,

EvenT Hubs etc

SQL Support Samza

SQL

Flink SQL Storm SQL Spark SQL

Deployment Standalone,

Hadoop

YARN

Standalone,Hadoop

YARN, Apache Mesos,

AWS,Docker, Kuber-

netes, MapR,GCE

Apache

Zookeeper

Standalone,

Hadoop YARN,

Apache Mesos,

kubernetes

The comparison between streaming engines is made on some of the important features of

a streaming engine. From the comparison, we can’t say which one is the best streaming

engine because every streaming engine has some strengths and some limitations too. So

How to choose a streaming framework? The answer is it depends on use-cases. A streaming

framework might fit more than the other one for a certain use-case. for example familiarity

with a certain stack e.g if a company has experts in R language then Spark Structured stream-

ing might be a good choice because it has support for R language. Similarly, if some once is

already using Kafka as a message broker than Samza might be a good choice because Kafka

comes out of the box with Samza. Similarly, if someone needs to work with twitter streaming

API the storm might be a good option as it has built-in support for Twitter-streaming API.
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Another scenario is if someone needs both batch processing and stream processing then

Flink or Spark Structured Streaming would be good options because they both have batch

processing support also. Similarly for a machine learning Analytic Flink and Spark Struc-

tured Streaming might be good options because of their built-in machine learning libraries.

similarly, if exactly-once semantics for processing the messages is an absolute necessary

then Spark Structured Streaming and Flink would be the options as they both guarantee

exactly-once semantics.
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6 Conclusion

There are many applications that require real-time processing of large volumes of data. Ex-

tracting meaningful timely insight from unbounded data is very challenging. Earlier Batch

processing was used to get insights from these unbounded data by collecting it in batches.

Batch processing is very useful to process Big data but they are not useful in those use-cases

where results are required in real-time. Streaming engines were designed for these kinds of

applications where data needs to be processed in real-time. This thesis explained streaming

frameworks and introduced some streaming engines. The important features of Streaming

engines are explained. The main contribution of this thesis is to make a comparison between

Apache Samza, Apache Flink, Apache Storm and Apache Spark Structured Streaming based

on the important streaming engines features like windowing, processing guarantees, fault tol-

erance mechanism, state management and some other features like programming languages

support and data interaction tools. Also, another contribution of this thesis was to introduced

Apache Kafka and explain the architecture of Apache Kafka.
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