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Abstract
We transform the system/reservoir couplingmodel into a one-dimensional semi-infinite discrete
chain through unitary transformation to simulate the open quantum systemnumerically with the
help of time evolving block decimation (TEBD) algorithm.We apply themethod to study the
dynamics of dissipative systems.We also generate the thermal state of amultimode bath using
minimally entangled typical thermal state (METTS) algorithm, and investigate the impact of the
thermal bath on an empty system. For both cases, we give an extensive analysis of the impact of the
modeling and simulation parameters, and compare the numerics with the analytics.

Introduction

Open quantum systems—i.e. quantum systemswhich are described as separate entities from the surrounding
environment while being somehow coupled to it— have drawn attention over the decades because of their
applicability in the foundation of statisticalmechanics, quantummechanics, and the realization of optical,
atomic andmolecular physics. The dynamics of open quantum systems is one of themost fundamental
problems in quantummechanics, encompassing concepts such as the boundary between quantum and classical
physics [1], and themeasurement paradox [2]. On general grounds, the system/bath (S/B) interaction
represents an important aspect of the physics of condensedmatter [3, 4], and complex systems, ranging from the
energy transport in photosynthetic complexes [5] to the physics of ultracold gases [6, 7].

The theory of open quantum systems has beenmergedwith experimental activities in the field of quantum
computation and decoherencemeasurement in a two-level system, which has extensive applications in quantum
networks [8, 9] ofmesoscopic systems, including superconducting circuits [10], ion traps [11, 12], and photonic
crystals [13]. The uses of the coupling between system and environment is rooted inmeasurement and sensing
applications, ranging from electromagnetic fields [14] to gravitational waves [15]. On the other side, the impact
of the external environment on the system represents a source of noise and dissipationwhenwe look at from the
quantum-dynamical perspective. However, the technological applications of quantummechanics have been
observed in the relatively recent development of nanoscale fabrication techniques, particularly in
superconducting qubits, nanomechanical resonators and,more in general, circuit quantum electrodynamics
(QED) setups [16, 17], where the dynamical quantumproperty shows dependency on the characteristic scales,
which is affected by the presence of coupling to the surrounding environment.Within this framework, it was
recently observed that a specific quantum state of the system can be generated bymanipulating the properties of
the environment or even the nature of the system environment coupling itself, which is known as reservoir
engineering [18]. For example, themanipulation led to the possibility ofmeasurement and control [19] of
quantum states, and to protecting certain quantum states (cat states) fromdecoherence by designing a specific
coupling (nonlinear) between system and environment [20, 21].

The dissipative dynamics of aMarkovian system and the noise interference due to the linear coupling
between the system and environment have been described in terms of linear quantumLangevin equations (QLE)
[19], which are an extension of the classical Langevin equation to the quantum regime.However, the linear
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coupling between the system and the environment does not appear as themost general situation; for instance,
nanomechanical resonators [22, 23], circuit QED setups [16, 17], optomechanical systems [24, 25] and the
impurity affected solid state systems [26]. In these cases, the theory has been implemented after transforming the
nonlinearHamiltonian to a linear one by linearizing the quantum fluctuation over a nonlinear steady state field
amplitude. Appreciating its simplicity, thismodel, however, does not provide a satisfactory platform to obtain
exact dynamical behavior. The interesting effects, e.g. non-classical behavior of the nonlinear systems [27], are
often overlookedwhenwe cannot handle the interaction between two systems in a perturbativemanner. Apart
fromnonlinear S/B coupling, the analyticalmodel is also limited to providing the exact solution in case of
non-Markovian dynamical phenomenon, for instance phase transition in a two level system (TLS) between
dynamically localized and delocalized states, at zero temperature forOhmic and sub-Ohmic reservoirs [3,
28–30]. The limitation of the analytics explicitly provokes us to simulate the time evolution numerically. The
numerical approach consists of transforming the environmental degrees of freedom tomany body systems and
simulate it in order to obtain the time evolution. The computationalmethod includes a numerical
diagonalization and renormalization process.

The time-adaptive densitymatrix renormalization group (t-DMRG) is considered as one of themost
powerfulmethods in atomic, optical and condensedmatter physics to study strongly correlatedmany-body
quantum system. Themethod have often been used for some renownedmodels of quantummechanics, such as
the Isingmodel [31, 32], theHubbardmodel [33–35] and the Bose–Hubbardmodel [36–38], especially aiming
to study themagnetization, quenching dynamics and phase transition properties. In order to implement it in
this case, wemap the canonical S/Bmodel to a one-dimensional harmonic chainwith nearest neighbor
interactions.

Here, we present a numericalmodel for the analysis of the simple coupling between the system and
environment, alongwith the consequences associatedwith themodeling and the numerical simulation.We start
with simulating the dissipative dynamics of an open quantum system, an thenwe study the thermalization of the
system in the presence of a thermal bath.

According to quantum statisticalmechanics, the thermal state is amixed state, and therefore, it is
represented by an ensemble of pure states. It is naturally expressed by using densitymatrix ( )r b= -b Hexp for
the inverse temperatureβ andHamiltonianH. A fewnumerical approaches have been employed to study the
impact of thermal bath on an interactive system, e. g. quasi adiabatic propagator path integral algorithm
(QUAPI) [39, 40] or solving hierarchical equations ofmotion (HEOM) [41], but in all cases, the influence of the
bath on the dynamics of the system is taken care analytically usingwell defined Feynman-Vernon influence
functional. The influence functional appears to be different for different types of coupling between system and
environment, and in some cases, it becomes extremely difficult to determine, especially when nonlinear
coupling appears. However, themethodwe discuss here has the ability to overcome this problem. This includes
generation of thermal bath numerically and evaluation of time dynamics of both the system and environment.
Even though theDMRG technique is designed to determine the ground state [42] and the time evolution of
many body systems, a differentmethod has been used to study the thermal state. Here, we introduce a
complementary approachwhich includes taking a large number of sample pure states and determine an
observable by averaging over them, instead of expressing the state by a densitymatrix. The states whose
ensemble collectively generates the impact of thermal state, are determined through imaginary time evolution
and projectivemeasurements, typically known asminimally entangled typical thermal states (METTS) [43]. In
this article, we impose the algorithm for thefirst time to generate the thermal bath, parameterize it and
investigate the consequences to study the thermalization of open quantum system.

Theoreticalmodel

In this article, we discuss the dynamics of a simple couplingmodel between the system and the reservoir.We
start with theHamiltonian of the system coupled to a thermal environment, which is given by

( )= + +H H H H , 1tot S B SB

where †w=H c cS c is theHamiltonian of the isolated system,ωc is the frequency, and ( )†c c are the bosonic
creation (annihilation) operators corresponding to themode of the system. †w= å =-H d dB k N

N
k k k and

( )† †= å +=-H g c d cdSB k N
N

k k k represent theHamiltonian of amultimode bosonic reservoir and the interaction
Hamiltonian, respectively, where ( )†d dk k are the creation (annihilation) operators, andωk and gk are the
frequency of oscillation and the coupling strength between the system and environment, respectively, for the
environmentalmode k. The frequency range of the reservoir, [ ]w w wÎ - + ,k c c , is chosen to be symmetric
around the systemmode (ωc). The idea behind kind ofmodeling is the fact that, realistically, the system couples
to the fewmodes of the environment around its resonatingmode (ωc). Themodel also includes consideration of
the linear dispersion relation of themodes of the bath (w µ kk ).
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In order to characterize the properties of the bath, we define the spectral density function J(ωk) [30],
implying the hard cutoff limit of the reservoir andwide band limit approximation ( )=g ck 0 [44], as

( ) ( ) ( ) ( )w gq q= - +J N k N k
1

2
, 2k

where θ is theHeaviside step function, and g p= Dc2 0
2 is the decay rate of the systemwhere = =d

dw 
D k N

k
is the

density of states (DOS). In case of a large cutoff limit ( ) ¥ , the quantumLangevin equation (QLE) is [19]

( ) ( ) ( ) ( ) ( ) w
g

g= - - +c t i c t c t c t
2

, 3c in

where ( ) ( )= - åp
w-c t i e d 0in D k

i t
k

1

2
k is the inputfield to the system. If the reservoir remains at zero

temperature, no inputfield has contributed to the system. Therefore, theHeisenberg equation ofmotion (HEM)
of the systemmode is ( ) ( ) ( ) w= - - gc t i c t c tc 2

, which determines the free dissipative nature of the system

population ( ( ) ( ) ( )†= á ñn t c t c t ) as

( ) ( ) ( )= g-n t e n 0 . 4t

TEBDnumericalmodel

Transformation of theHamiltonian
We transform the S/B couplingHamiltonian to a one-dimensional lattice chainHamiltonian for the numerical
simulation. The transformation is done bymapping the bath operators into the operators of the lattice chain by
defining a unitary transformation: = å =-b U dn k N

N
n
k

k. The normalized shiftedHahn polynomial is a natural

choice for the spectral density defined by equation (2) as the unitary operator [( ) ]= +
r

U Q k N N2,n
k

n
1

n
,

whereQn(k,N) is theHahn polynomial, and ( ) ( !) ( )
( )!( )!

r = - +
+ + -

N1n
n n

N n N n

2 1

1
is the normalization coefficient.

The transformedHamiltonian of the 1-D lattice chain is

( ) ( ) ( )† † † † †å åh w h= + ¢ + + + +
= =

-

+ +H H a b ab b b b b b b 5chain S
n

N

n n n
n

N

n n n n n0 0
0 0

1

1 1

where the coefficients are h w w¢ = =c N2 , n c0 and ( )( ) ( )( )
( )( )

h = + - + +

+ +n
n N n N n

D n n

1 2

2 1 2 3
. The schematic diagramof

the transformation is shown infigure 1(a). Recently, similarmappingwas introduced in [45] to simulate open
quantum systems aiming to be applied to spin-bosonmodels [46] and biomolecular systems [47]. In all cases, the
model had remain successful to overcome the complexity of the deduction of non-Markovian dynamical
phenomenon, but the bathwas considered to be at zero temperature. But, in the following section, we introduce
METTS algorithm for thefirst time, for the generation of thermal bath atfinite temperature and the evolution of
system in the presence of the thermal bath.

Real-time evolution
Weuse time-evolving block decimation algorithm (TEBD) to do the numerical simulation, which requires
expressing the state of the full chain as amatrix product state (MPS):

∣ · · ∣ ( )[ ] [ ] [ ] [ ] [ ] [ ] [ ]å å l l l lYñ = G G G ñ
a a

c

a a a a a a a a a
= =

+
-

+

+
i i i i... , , .., , 6

i i

M
i i N N i N

N N
,., 0 ... 0

1 1 2 2 1
1 2 1

N N

N N

N

N

1 1 1

1 1 2
2

2 2 3
3

1

TheMPS state is obtained through the Schmidt decomposition of the pure state ofN sites whereM is the
dimension of localHilbert space andχ is the Schmidt number [48]. Themethod of numerical simulation for the
real-time evolution is showndiagrammatically infigure 1(b), wherewe choose the second order Suzuki Trotter
(ST) expansion [49], whichminimizes the error in third order of the time step by evolving the pairs of alternate
sites. Using ST expansion, we express the unitary evolution operator as

[ ] ( )= = +- - - -U e e e e O td 7t
i tH iF t iG t iF t

d
d d 2 d d 2 3chain

where, = å +F Hi chain
i i

odd
, 1 and = å +G Hi chain

i i
even

, 1.
The simulation parameters are estimated by looking at errors which can appear in twoways: whilemodeling

the S/B formalism to a one-dimensional chain and simulating each step during the real-time evolution. The
errors are discussed extensively afterwards to estimate the parameters for numerical simulation.

Algorithm for thermal state
We imply theMETTS algorithmby sampling over a huge number of pure quantum states [43]. Overall, these
samples contain physical properties of the system for a given temperature, which approximates thermal
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expectation values of any observable ˆá ñbO , are determined using a set of orthonormal basis {∣ }ñn of classical
product states (CPS): ∣ ⨂ ∣ñ = ñnn i i , where ∣ ñni is an arbitrary orthonormal basis state of the lattice site i. The
thermal expectation value of an operator is

ˆ ∣ ˆ ∣ ( )åá ñ = á ñb
b

b b- -O
Z

e Oen n
1

, 8
n

H H2 2

whereZβ is the partition function. TheCPS ∣ ñn becomes amatrix product state (MPS) ∣f ñn after the imaginary
time evolutionwith the probabilities Pn as

∣ ∣ ∣ ∣ ( )f ñ = ñ = á ñb b- -

P
e P en n n

1
, . 9n

n

H
n

H2

In the next step, theMETTS ∣f ñn collapses to a newCPS ∣ ¢ñn through a projectivemeasurement with an
arbitrarymeasurement basis fromwhich one can subsequently compute a newMETTS ∣f ñ¢n , and, this process
keeps on going on to generate a large set ofMPSwhich typically represents a thermal state altogether. Thus, the
generation ofMETTS samples undergoes aMarkov process which is illustrated infigure 1(c). In this framework,
the thermal average is determined from the set of imaginary time evolved normalizedMPS states (∣f ñn )with the
probabilitiesPn/Zβ

ˆ ∣ ˆ∣ ( )å f fá ñ = á ññb
b

O
Z

P O
1

. 10
n

n n n

The algorithmhas been usedwidely to simulate the spin chain atfinite temperatures [50–52]. However, we
use the technique to study the thermalization of the open quantum systemnumerically for the first time, which
includes generation of the thermal bath using theMETTS algorithm, and afterwards, evolve an empty system in
the presence of the thermal bath.

The computation cost of TEBD increases with the entanglement of the quantum state, and hence theCPS is
the natural choice to start with for having least entanglement. The entanglement of the obtainedMPS states
remains relatively low during real time evolution, whichmakes the simulation efficient.

Free dissipative system

Wecheck the applicability of the TEBD algorithm in the dynamics of open quantum systems by comparing it
with the analytics of a simple system/bath couplingmodel, wherewe assume that one photon is kept initially in

Figure 1. (a)Transformation ofHamiltonian from system/bath couplingmodel to semi-infinite chainmodel (b)Time evolution
operation on alternating pairs (c)Generation of a set ofMETTS through imaginary time evolution and projectivemeasurement.
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the system and the bath is completely empty at zero temperature. Transforming themodes of the bath to a chain,
we see that thefirst site is populated by a single quantumand all other sites remain empty. Infigure 2, the
dissipative nature of the system,which is obtained numerically by doing real-time evolution of the full chain, is
comparedwith the analytics determined from theHeisenberg equation ofmotion (HEM) given by equation (4).
We see an increment in the systempopulation obtained in the numerical result after a certain time due to the
reflection of the particle from the end of the chain, which is visible explicitly from the plots of the population of
the full chain given in the insets offigure 2.

Recurrence time and density of states
The recurrence time decreases with the increment of the group velocity, causing the phonon to travel faster in

the lattice. The group velocity is defined by = dw
d

vg k
k

N
, whereωk is the frequency, and kN is thewavenumber

determined by the number of lattice sites (kN∝N). Eventually, the group velocity is inversely proportional to the
density of states ( )µ -v Dg

1 , and therefore, the recurrence time increases linearly with the increment ofDOS,
which is seen infigure 3(a), wherewe increased theDOS by increasing the number of sites, keeping the cutoff
frequency fixed.

Figure 2.Plot of systempopulation determined numerically byTEBD and analytically from the solution ofQLE for different rates of
dissipation (a) γ=0.031 4ωc and (b) γ=0.125 6ωc. The parameters for TEBD simulation are cutoff frequency ò=0.3ωc; total
number of sites, including system and bath:N=17; Schmidt number (χ)=5; size of localHilbert space (M)=2; time step
d w= -t 0.5 c

1. In the inset, the image plot of the population on the sites shows how the particle reflects back from the boundary.

Figure 3. (a)Plot of time evolution of a free dissipative system for the variation ofDOS, which is obtained byfixing the cutoff frequency
and changing number ofmodes/lattice sites (γ=0.031 4ωc). (b)Plot of time evolution of a free dissipative system for different time
steps (γ=0.125 6ωc). All other parameters remain same for both thefigures (a) and (b)with figure 2.
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Errors and estimation of parameters
The case of real-time evolution, the ST expansion introduces time error, which tends to concentrate in the
overall phase [49]. Infigure 3(b), we showhow the accuracy of the simulation improvedwhile reducing the
time step.

Truncation of theHilbert space is also an issue in TEBD simulation.However, we chose the size of local
Hilbert space to be 2 for having a single particle, and therefore the set is complete andwe do not expect any error
associatedwith the truncation of localHilbert space. Because the time evolution started from an initial product
state, the entanglement of the sites remains relatively low, and therefore the impact of the truncation in the
Schmidt spectrum is also negligible.

Thermalization of an open quantum system

Analytics of the thermalization of a system
Accounting for the back action of the environment, we determine the time dynamics of thefield operator of the
systemby integratingQLEof a simple S/B couplingmodel, given in equation (3) as

( ) ( )
( )

{ } ( )( )åg
p w w

= -
- - +

-g
w w g- - +c t i

D

d

i
e e

2

0
. 11

k

k

k c

i t i t

2

2k c

The initial thermal population distribution of the bath is

( ) ( ) ( )†á ñ =
-bw

d d
e

0 0
1

1
, 12k k

k

which determines the population of the system as

( ) ( )å= +
w w

w

= -

+





n t AI BJ , 13k k

k c

c

where

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )

( )

( ) [ ]

( ) (( ) )

( ) [ ]
( )

g p

w w

g p w w

w w

=
- + -

=
-

- + -

g bw

g bw

I
D

e

J
D t

e

2 1

1
,

2 cos 1

1
, 14

k

k c

k
k c

k c

2
4

2
4

k

k

2

2

and

( ) ( )= + = -g g- -A e B e1 , 2 . 15t t 2

As the coefficient B goes to zero at the steady state, the population of the system is determined by the function
Ik given in equation (14). Realistically, the population dynamics of the system are dependent on a fewmodes of
the bath around the resonatingmode of the system, and therefore, the cutoff limit (ò) should be considered in
such away that the contribution of themodes of the bath, thosewhich far away from the systemmode, can be
marginalized.Hence, the function Ik is expected to convergewhen the frequency (ωk) goes far away fromωc.
However,figure 4 shows that even though the function Ik exhibits a peak at the resonating frequency of the
system, it rises up againwhen the frequency of the bathmode ismuch lower than the frequency of the system
mode ( )w wk c , which comes from the fact that the exponential function of the thermal population

distribution of the bath ( )[ ]-bwe

1

1k
dominates over the Lorentzian function

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( )

g p

w w- + g

D2

k c
2

2

4

. The acceptance

up to the limit of the second order perturbation for the theoretical formulation of an open quantum system, is
essentially based on theweak coupling between system and environment, ensuring the Lorentzian function acts
like a delta function aroundωc.

It is also seen from figure 4 that Ik rises up faster towards the lower cutoff limit in the case of a bathwhich is at
a lower temperature than it does in the case of a high temperature. Such situations can even be bypassed by
reducing ò, but that increases the ratio between γ and ò. However, we can solve this issue by reducing the value of
γ, but that demandsmore time for the system to reach the stationary state, and hence itmight not be possible at
times to reach the steady state before the recurrence of the particle from the boundary. In that case, we increase
the recurrence time by increasing the density of states. However, in the case of a zero temperature bath, the
thermal population remains zero for allmodes. Therefore, the relaxation of the system to the ground state is not
affected by the cutoff frequency.
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Anticipating the fact that the Lorentzian function becomes a delta function for a given condition g < < ,
the steady state population of the system is approximated to

( ) ( )¥ =
-bw

n
e

1

1
, 16

c

which is the thermal population of the bath corresponding to themode of the system. So the steady state
population of the system is approximated to the population of the bath corresponding to themode of the system.

Generation of the thermal bath
The quality of the thermal state generated by theMETTS algorithm is dependent on two crucial parameters:
temperature and number of samples. The frequency spectrumof the thermal population of the bath is plotted in
figure 5(a), which determines that in the case of lower temperatures, as the thermal population reduces rapidly,
the fewermodes are required to be taken into account to express a thermal state. This is also suggested by
figure 5(b), which shows that the cumulative probability saturates faster for the low temperature bath, reducing
the requirement of number ofMETTS samples to represent the thermal state. The consequence is observed in
figure 5(c), where the plot of population distribution becomes smooth, and therefore defines a significant
patternwhile reducing the temperature for afixed number ofMETTS, which indicates a better quality of the
preparation of thermal state. In table 1we compare the thermal population obtained analytically and
numerically by taking average over 50METTS samples. However, anticipating better performance of the
METTS algorithm at low temperatures, it is also seen that the overall thermal population reduces so significantly
that after a certain range, the number is not reliable for numerical simulation. Therefore, we prefer to generate a
thermal state higher temperature in order to obtain the thermal population to a significant level, which forces us
to take a large number ofMETTS samples into account while doing real time evolution. Infigure 5(d), we show
how the increment of the number ofMETTS samplesmodifies the population distribution over the entire lattice
chain. As anticipated, the quality of the preparation of the bath improves while increasing the number ofMETTS
samples, which is indicated by the improvement of the smoothness of the plot.

Figure 4.Plot of the function Ik for different temperatures and rates of dissipation of the system. The temperature is fixed for all
plots in columns: β=5,10[1/ωc] for the first and second column respectively, and the dissipation rate changes over rows. γ=
0.011 3,0.031 4,0.061 6ωc for the first, second and third row respectively.
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Aswe increase the density of states for afixed frequency range, the number ofmodes and number of lattice
sites also increase, which essentially demandsmoreMETTS samples to represent a thermal state. Therefore, we
see a poor population distribution infigure 5(e) compared tofigure 5(d)[iv], whenwe doubled theDOS and
keep the number ofMETTSfixed.However, the increase of the density of states increases the total population of
the bath, which is shown in table 2.

Real-time propagation of systems coupled to thermal bath
Hereafter, we study the thermalization of an empty system in the presence of a thermal bath at inverse
temperatureβ=5[1/ωc]. The time evolution of the systempopulation for different cutoff frequencies and rates
of dissipation are shown infigure 6. As anticipated from equation (13), the oscillation in the population of the
system is introduced by the left tail offigure 4. The extension of the lower cutoff frequency contributesmore
oscillation to the dynamics, andmore population in the stationary state of the system,which is visible whenwe
comparefigures 6(a) and (b). The higher value of γ also contributesmore oscillation as an error to the dynamics

Figure 5. (a)Population spectra, (b) cumulative probability distribution of photon occupation, and (c) population variation on the
lattice sites for different temperatures (β=5, 10, 25, 50 [1/ωc] ). The number ofMETTS samples is 50. (d)Population variation on the
lattice sites with the variation of the number ofMETTS samples (50, 100, 500, 1000) for afixed temperature (β=5 [1/ωc]). Density of
states (DOS) is 25[1/ωc] for all cases. (e)Population distribution on lattice sites for higher density of states (DOS=50[1/ωc]). The
number ofMETTS samples is 1000, inverse temperature β=5 [1/ωc]. The frequency range of the reservoir is [ ]w wÎ 0.7, 1.3k c ,fixed
in all cases.

Table 1.Population of a thermal bath for different
temperatures in the frequency range [ ]w wÎ 0.7, 1.3k c . The
density of states ( [ ])w=DOS 25 1 c and the number of
METTS samples (METTS=50) are kept fixed for all cases.

[ ]b w1 c Analytical population TEBDpopulation

5 0.162 6 0.173 0

10 0.002 8 0.003 0

25 3.972 3×10−8 3.967 7×10−8

50 7.292 0×10−16 7.952 4×10−16
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of the systempopulation.We see the steady state population of the system is comparable to the thermal
population atωc, which is indicated by equation (16). In bothfigures 6(a) and (b), the systemhas not been able to
achieve the steady state for the slow dissipation rate (especially γ=0.011 3ωc). Therefore, we extend the
recurrence time by increasing theDOS infigure 6(c), which gives sufficient freedom to the system to relax to the
steady state.

The numerical technique, therefore proves a promising scheme to study the open quantumdynamics. In
order to investigate its applicability in the physics of quantumBrownianmotion, we plot real-time dynamics of
the quadraturefluctuations infigure 7with a comparison to its analytics. The arbitrary quadrature is defined as

( ) ( ) ( )†= +q
q q-X t e c t e c ti i . As ( ) ( ) ( ) ( )† †á ñ = á ñ = á ñ = á ñ =d d d d0 0 0 0 0k k k k

2 2 , the quadraturefluctuation

becomes phase (θ) independent ( ( ) ( ) )d = +qX t n t1 2 , and its time dynamics gives a pattern similar to the
population dynamics.

Table 2.Population of a thermal bath for different density of
states in the frequency range [ ]w wÎ 0.7, 1.3k c and temperature
β=5[1/ωc]. The number ofMETTS samples is keptfixed at
1000 for all cases.

DOS [ ]w1 c Analytical population TEBDpopulation

25 0.162 6 0.163 0

50 0.308 2 0.308 8

Figure 6. (a), (b)Plot of the time evolution of the systempopulation for different cutoff frequency: (a)ò=0.3ωc is and (b)ò=0.6ωc.
The length of the chain of the bath is 16 and 31, respectively, keeping theDOSfixed [ ]w=DOS 25 1 c . (c)Plot of the time evolution of
the systempopulation increasing the density of state [ ]w=DOS 50 1 c . The length of the chain of the bath is 31, and the cutoff
frequency is (ò=0.3ωc) . The temperature (β=5[1/ωc]) and number ofMETTS samples (4000) are kept fixed in all cases. Thick lines
correspond to the TEBDnumerical result and the thin lines represent analytical results obtained from equation (13). The black dashed
line stands for the thermal population corresponding to themode of the system expressed in equation (16).
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Conclusion

In this article, we intended to investigate the applicability ofMETTS algorithm in the thermalization dynamics
of open-quantum systems, anticipating the fact that theDMRG technique has the ability to extract out exact
dynamics without linearizing nonlinearHamiltonians. The consequences of this approach are demonstrated in
terms of the efficiency of the algorithmwith a discussion of advantages and disadvantages of this simulation. In
this spirit, we also compare the numerical result with analytical result determined usingHeisenberg equation of
motion.We startedwith presenting amodel that transforms theHamiltonian of a quantum system coupled
linearly to a discrete set ofmodes of a bosonic reservoir, to aHamiltonian of a one-dimensional chainwith
nearest-neighbour interactions.We then used themodel to study free dissipation and thermalization of that
open quantum system.We found the recurrence time of the real-time evolution increases linearly with the
increment of density of states. Our results also show that even though theminimally entangled typical thermal
states (METTS) algorithmperforms better at lower temperatures, we preferred towork at higher temperature in
order to obtain the thermal population at a significant level and avoid unwanted error in the population
dynamics of the system contributed by the lower cutoff frequency limit. Therefore,moreMETTS samples are
taken into account, which consumemore computation resources. In conclusion, one can say that the
numerically generated thermal bath shows promise, but, this requires a compromise between the quality of the
result and the computation resources. The numerical scheme presented herewasmainlymotivated by an
attempt to determine the exact solution in the case of nonlinear coupling between the system and the
environment [26], non-classical dynamics of non-linear systems [27], and reach out single photon limit in
optomechanical systems [24, 25]. The combination of real and imaginary time evolution of open quantum
systemwill allow us to investigate quantumBrownianmotion of topological quantummatter [53, 54]. In
addition, themethodwill be useful to study the non-Markovian dynamics and critical behaviors of the sub-
ohmic or ohmic spin-Bosson couplingmodels [3, 4, 28, 29].
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