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Abstract

We transform the system /reservoir coupling model into a one-dimensional semi-infinite discrete
chain through unitary transformation to simulate the open quantum system numerically with the
help of time evolving block decimation (TEBD) algorithm. We apply the method to study the
dynamics of dissipative systems. We also generate the thermal state of a multimode bath using
minimally entangled typical thermal state (METTS) algorithm, and investigate the impact of the
thermal bath on an empty system. For both cases, we give an extensive analysis of the impact of the
modeling and simulation parameters, and compare the numerics with the analytics.

Introduction

Open quantum systems—i.e. quantum systems which are described as separate entities from the surrounding
environment while being somehow coupled to it— have drawn attention over the decades because of their
applicability in the foundation of statistical mechanics, quantum mechanics, and the realization of optical,
atomic and molecular physics. The dynamics of open quantum systems is one of the most fundamental
problems in quantum mechanics, encompassing concepts such as the boundary between quantum and classical
physics [1], and the measurement paradox [2]. On general grounds, the system /bath (S/B) interaction
represents an important aspect of the physics of condensed matter [3, 4], and complex systems, ranging from the
energy transport in photosynthetic complexes [5] to the physics of ultracold gases [6, 7].

The theory of open quantum systems has been merged with experimental activities in the field of quantum
computation and decoherence measurement in a two-level system, which has extensive applications in quantum
networks [8, 9] of mesoscopic systems, including superconducting circuits [10], ion traps [11, 12], and photonic
crystals [13]. The uses of the coupling between system and environment is rooted in measurement and sensing
applications, ranging from electromagnetic fields [14] to gravitational waves [15]. On the other side, the impact
of the external environment on the system represents a source of noise and dissipation when we look at from the
quantum-dynamical perspective. However, the technological applications of quantum mechanics have been
observed in the relatively recent development of nanoscale fabrication techniques, particularly in
superconducting qubits, nanomechanical resonators and, more in general, circuit quantum electrodynamics
(QED) setups [16, 17], where the dynamical quantum property shows dependency on the characteristic scales,
which is affected by the presence of coupling to the surrounding environment. Within this framework, it was
recently observed that a specific quantum state of the system can be generated by manipulating the properties of
the environment or even the nature of the system environment coupling itself, which is known as reservoir
engineering [18]. For example, the manipulation led to the possibility of measurement and control [19] of
quantum states, and to protecting certain quantum states (cat states) from decoherence by designing a specific
coupling (nonlinear) between system and environment [20, 21].

The dissipative dynamics of a Markovian system and the noise interference due to the linear coupling
between the system and environment have been described in terms of linear quantum Langevin equations (QLE)
[19], which are an extension of the classical Langevin equation to the quantum regime. However, the linear
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coupling between the system and the environment does not appear as the most general situation; for instance,
nanomechanical resonators [22, 23], circuit QED setups [16, 17], optomechanical systems [24, 25] and the
impurity affected solid state systems [26]. In these cases, the theory has been implemented after transforming the
nonlinear Hamiltonian to alinear one by linearizing the quantum fluctuation over a nonlinear steady state field
amplitude. Appreciating its simplicity, this model, however, does not provide a satisfactory platform to obtain
exact dynamical behavior. The interesting effects, e.g. non-classical behavior of the nonlinear systems [27], are
often overlooked when we cannot handle the interaction between two systems in a perturbative manner. Apart
from nonlinear S/B coupling, the analytical model is also limited to providing the exact solution in case of
non-Markovian dynamical phenomenon, for instance phase transition in a two level system (TLS) between
dynamically localized and delocalized states, at zero temperature for Ohmic and sub-Ohmic reservoirs 3,
28-30]. The limitation of the analytics explicitly provokes us to simulate the time evolution numerically. The
numerical approach consists of transforming the environmental degrees of freedom to many body systems and
simulate it in order to obtain the time evolution. The computational method includes a numerical
diagonalization and renormalization process.

The time-adaptive density matrix renormalization group (t-DMRG) is considered as one of the most
powerful methods in atomic, optical and condensed matter physics to study strongly correlated many-body
quantum system. The method have often been used for some renowned models of quantum mechanics, such as
the Ising model [31, 32], the Hubbard model [33—35] and the Bose—Hubbard model [36—38], especially aiming
to study the magnetization, quenching dynamics and phase transition properties. In order to implement it in
this case, we map the canonical S/B model to a one-dimensional harmonic chain with nearest neighbor
interactions.

Here, we present a numerical model for the analysis of the simple coupling between the system and
environment, along with the consequences associated with the modeling and the numerical simulation. We start
with simulating the dissipative dynamics of an open quantum system, an then we study the thermalization of the
system in the presence of a thermal bath.

According to quantum statistical mechanics, the thermal state is a mixed state, and therefore, it is
represented by an ensemble of pure states. It is naturally expressed by using density matrix p; = exp(—3H) for
the inverse temperature (3and Hamiltonian H. A few numerical approaches have been employed to study the
impact of thermal bath on an interactive system, e. g. quasi adiabatic propagator path integral algorithm
(QUAPI) [39, 40] or solving hierarchical equations of motion (HEOM) [41], but in all cases, the influence of the
bath on the dynamics of the system is taken care analytically using well defined Feynman-Vernon influence
functional. The influence functional appears to be different for different types of coupling between system and
environment, and in some cases, it becomes extremely difficult to determine, especially when nonlinear
coupling appears. However, the method we discuss here has the ability to overcome this problem. This includes
generation of thermal bath numerically and evaluation of time dynamics of both the system and environment.
Even though the DMRG technique is designed to determine the ground state [42] and the time evolution of
many body systems, a different method has been used to study the thermal state. Here, we introduce a
complementary approach which includes taking a large number of sample pure states and determine an
observable by averaging over them, instead of expressing the state by a density matrix. The states whose
ensemble collectively generates the impact of thermal state, are determined through imaginary time evolution
and projective measurements, typically known as minimally entangled typical thermal states (METTS) [43]. In
this article, we impose the algorithm for the first time to generate the thermal bath, parameterize it and
investigate the consequences to study the thermalization of open quantum system.

Theoretical model

In this article, we discuss the dynamics of a simple coupling model between the system and the reservoir. We
start with the Hamiltonian of the system coupled to a thermal environment, which is given by

Hy,: = Hs + Hp + Hgg, (1)

where Hs = w,c’c is the Hamiltonian of the isolated system, w, is the frequency, and ¢ (c) are the bosonic
creation (annihilation) operators corresponding to the mode of the system. Hy = > ,Ij: _N Wk d,j' diand

Hgp = > ,f’: N (cfdy + cd,j ) represent the Hamiltonian of a multimode bosonic reservoir and the interaction
Hamiltonian, respectively, where d,j (dy) are the creation (annihilation) operators, and wy and g are the
frequency of oscillation and the coupling strength between the system and environment, respectively, for the
environmental mode k. The frequency range of the reservoir, wy € [w. — €, w; + €], is chosen to be symmetric
around the system mode (w,). The idea behind kind of modeling is the fact that, realistically, the system couples
to the few modes of the environment around its resonating mode (w,). The model also includes consideration of
the linear dispersion relation of the modes of the bath (wy o< k).
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In order to characterize the properties of the bath, we define the spectral density function J(wy) [30],
implying the hard cutoff limit of the reservoir and wide band limit approximation (g, = co) [44], as

@) = 70N = DO + b, @
where 0 is the Heaviside step function, and v = 27wDc; is the decay rate of the system where D = 6% = g is the
density of states (DOS). In case of a large cutofflimit (¢ — ©0), the quantum Langevin equation (QLE) is [19]

() = —iwee(t) — %c(t) + (D), 3)
where ¢;,(t) = —1i ﬁ >, e~k di (0) is the input field to the system. If the reservoir remains at zero

temperature, no input field has contributed to the system. Therefore, the Heisenberg equation of motion (HEM)
of the system modeis ¢(¢) = —iw,c(t) — %c (t), which determines the free dissipative nature of the system

population (n(t) = (c"(t)c(t))) as
n(t) = e "n(0). 4

TEBD numerical model

Transformation of the Hamiltonian

We transform the S/B coupling Hamiltonian to a one-dimensional lattice chain Hamiltonian for the numerical
simulation. The transformation is done by mapping the bath operators into the operators of the lattice chain by
defining a unitary transformation: b, = 3 ,f]: N U,f di. The normalized shifted Hahn polynomial is a natural

choice for the spectral density defined by equation (2) as the unitary operator U,f = piQ,, [(k + N) / 2, N1,
where Q,(k, N) is the Hahn polynomial, and p, = (—1)"(N!),/ m is the normalization coefficient.

The transformed Hamiltonian of the 1-D lattice chain is

N N-1
Hchain = HS + U’(ﬂTbo + abJ) + Z Wn b; bn + Z 77,1(17; bn+l + bn b;+l) (5)
n=0 n=0
(n+ DJIN—mN+n+2)
DJ@n + H(2n +3)
the transformation is shown in figure 1(a). Recently, similar mapping was introduced in [45] to simulate open
quantum systems aiming to be applied to spin-boson models [46] and biomolecular systems [47]. In all cases, the
model had remain successful to overcome the complexity of the deduction of non-Markovian dynamical
phenomenon, but the bath was considered to be at zero temperature. But, in the following section, we introduce
METTS algorithm for the first time, for the generation of thermal bath at finite temperature and the evolution of
system in the presence of the thermal bath.

where the coefficients are ' = ¢y+/2N, w, = w,and 7, = ( ) The schematic diagram of

Real-time evolution
We use time-evolving block decimation algorithm (TEBD) to do the numerical simulation, which requires
expressing the state of the full chain as a matrix product state (MPS):
X M . . ;
) = > > AT ARITRIS NI AN iy ), iy i) (©6)

aran a3 aN
Qs aN+1=0 7...iN=0
The MPS state is obtained through the Schmidt decomposition of the pure state of N sites where M is the
dimension of local Hilbert space and  is the Schmidt number [48]. The method of numerical simulation for the
real-time evolution is shown diagrammatically in figure 1(b), where we choose the second order Suzuki Trotter
(ST) expansion [49], which minimizes the error in third order of the time step by evolving the pairs of alternate
sites. Using ST expansion, we express the unitary evolution operator as

Uy, = e idtHoain — g=iFdt/2p—iGdtp—iFdt/2 1 O[d¢?] 7)
. ii+1 _ iit1
where, F = Zi odd Hchuin and G = Zi even Hchuin :

The simulation parameters are estimated bylooking at errors which can appear in two ways: while modeling
the S/B formalism to a one-dimensional chain and simulating each step during the real-time evolution. The
errors are discussed extensively afterwards to estimate the parameters for numerical simulation.

Algorithm for thermal state
We imply the METTS algorithm by sampling over a huge number of pure quantum states [43]. Overall, these
samples contain physical properties of the system for a given temperature, which approximates thermal
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Figure 1. (a) Transformation of Hamiltonian from system/bath coupling model to semi-infinite chain model (b) Time evolution
operation on alternating pairs (c) Generation of a set of METTS through imaginary time evolution and projective measurement.

expectation values of any observable (O)g, are determined using a set of orthonormal basis { |n) } of classical
product states (CPS): [n) = );|n;), where |n;) is an arbitrary orthonormal basis state of the lattice site i. The
thermal expectation value of an operator is

(O)y = — 3 (mle~H/20¢~H/2|n), ®)

B
where Z1s the partition function. The CPS |n) becomes a matrix product state (MPS) | ¢, ) after the imaginary
time evolution with the probabilities P,, as

6) = —=e n), B~ (nlen). ©)
In the next step, the METTS |¢,) collapses to a new CPS |#’) through a projective measurement with an
arbitrary measurement basis from which one can subsequently compute anew METTS |¢,/), and, this process
keeps on going on to generate a large set of MPS which typically represents a thermal state altogether. Thus, the
generation of METTS samples undergoes a Markov process which is illustrated in figure 1(c). In this framework,
the thermal average is determined from the set of imaginary time evolved normalized MPS states (|¢,)) with the
probabilities P,,/Z3

(O)s = %qubnlém». (10)
L~ n

The algorithm has been used widely to simulate the spin chain at finite temperatures [50-52]. However, we
use the technique to study the thermalization of the open quantum system numerically for the first time, which
includes generation of the thermal bath using the METTS algorithm, and afterwards, evolve an empty system in
the presence of the thermal bath.

The computation cost of TEBD increases with the entanglement of the quantum state, and hence the CPS is
the natural choice to start with for having least entanglement. The entanglement of the obtained MPS states
remains relatively low during real time evolution, which makes the simulation efficient.

Free dissipative system

We check the applicability of the TEBD algorithm in the dynamics of open quantum systems by comparing it
with the analytics of a simple system /bath coupling model, where we assume that one photon is kept initially in
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Figure 2. Plot of system population determined numerically by TEBD and analytically from the solution of QLE for different rates of
dissipation (a) y = 0.031 4w.and (b)y = 0.125 6w,. The parameters for TEBD simulation are cutoff frequency € = 0.3w,; total
number of sites, including system and bath: N = 17; Schmidt number (x) = 5; size of local Hilbert space (M) = 2; time step
8t = 0.5w, . In the inset, the image plot of the population on the sites shows how the particle reflects back from the boundary.
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Figure 3. (a) Plot of time evolution of a free dissipative system for the variation of DOS, which is obtained by fixing the cutoff frequency
and changing number of modes/lattice sites (y = 0.031 4w,). (b)Plot of time evolution of a free dissipative system for different time
steps (v = 0.125 6w,). All other parameters remain same for both the figures (a) and (b) with figure 2.

the system and the bath is completely empty at zero temperature. Transforming the modes of the bath to a chain,
we see that the first site is populated by a single quantum and all other sites remain empty. In figure 2, the
dissipative nature of the system, which is obtained numerically by doing real-time evolution of the full chain, is
compared with the analytics determined from the Heisenberg equation of motion (HEM) given by equation (4).
We see an increment in the system population obtained in the numerical result after a certain time due to the
reflection of the particle from the end of the chain, which is visible explicitly from the plots of the population of
the full chain given in the insets of figure 2.

Recurrence time and density of states

The recurrence time decreases with the increment of the group velocity, causing the phonon to travel faster in

the lattice. The group velocity is defined by v, = %, where wy is the frequency, and ky is the wavenumber
N

determined by the number of lattice sites (kxocN). Eventually, the group velocity is inversely proportional to the
density of states (v, o< D™!), and therefore, the recurrence time increases linearly with the increment of DOS,
which is seen in figure 3(a), where we increased the DOS by increasing the number of sites, keeping the cutoff

frequency fixed.
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Errors and estimation of parameters

The case of real-time evolution, the ST expansion introduces time error, which tends to concentrate in the
overall phase [49]. In figure 3(b), we show how the accuracy of the simulation improved while reducing the
time step.

Truncation of the Hilbert space is also an issue in TEBD simulation. However, we chose the size of local
Hilbert space to be 2 for having a single particle, and therefore the set is complete and we do not expect any error
associated with the truncation of local Hilbert space. Because the time evolution started from an initial product
state, the entanglement of the sites remains relatively low, and therefore the impact of the truncation in the
Schmidt spectrum is also negligible.

Thermalization of an open quantum system

Analytics of the thermalization of a system
Accounting for the back action of the environment, we determine the time dynamics of the field operator of the
system by integrating QLE of a simple S/B coupling model, given in equation (3) as

: Y dk(o) it —(iw+
c(t) = —i [ iwkt _ o~ (iwety/Dt) 11
® 27TD;—i(wk—wc)+%{ } (a
The initial thermal population distribution of the bath is
1
(di ©d(0) = —— (12)
which determines the population of the system as
Wt €
n(t)= > Al + B, (13)
Wk=we—€
where
~v/27wD 1
Ik = 2 [eﬁwk 1] >
2 1 Pk —
I:(wk - Wc) + (T)]
Jo— (7/27mD)cos((wi — ‘:Jc)t) zml ’ (14)
[(wk — w)® + (f)] e = 1]
and
A=(14+e), B = —2e /2, (15)

As the coefficient B goes to zero at the steady state, the population of the system is determined by the function
I given in equation (14). Realistically, the population dynamics of the system are dependent on a few modes of
the bath around the resonating mode of the system, and therefore, the cutofflimit (¢) should be considered in
such a way that the contribution of the modes of the bath, those which far away from the system mode, can be
marginalized. Hence, the function I is expected to converge when the frequency (wy) goes far away from w,.
However, figure 4 shows that even though the function I; exhibits a peak at the resonating frequency of the
system, it rises up again when the frequency of the bath mode is much lower than the frequency of the system
mode (wy < w,), which comes from the fact that the exponential function of the thermal population

v/ 2wD

]
up to the limit of the second order perturbation for the theoretical formulation of an open quantum system, is
essentially based on the weak coupling between system and environment, ensuring the Lorentzian function acts
like a delta function around w,.

Itis also seen from figure 4 that I; rises up faster towards the lower cutoff limit in the case of a bath which is at
alower temperature than it does in the case of a high temperature. Such situations can even be bypassed by
reducing €, but that increases the ratio between yand e. However, we can solve this issue by reducing the value of
v, but that demands more time for the system to reach the stationary state, and hence it might not be possible at
times to reach the steady state before the recurrence of the particle from the boundary. In that case, we increase
the recurrence time by increasing the density of states. However, in the case of a zero temperature bath, the
thermal population remains zero for all modes. Therefore, the relaxation of the system to the ground state is not
affected by the cutoff frequency.

distribution of the bath ( ! ) dominates over the Lorentzian function

[ 1] . The acceptance
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Figure 4. Plot of the function I, for different temperatures and rates of dissipation of the system. The temperature is fixed for all
plotsin columns: 5 = 5,10[1/w,] for the first and second column respectively, and the dissipation rate changes over rows. y =
0.011 3,0.031 4,0.061 6w, for the first, second and third row respectively.

Anticipating the fact that the Lorentzian function becomes a delta function for a given condition v < <,
the steady state population of the system is approximated to

1

nox) = ———
(00) = ——

, (16)

which is the thermal population of the bath corresponding to the mode of the system. So the steady state
population of the system is approximated to the population of the bath corresponding to the mode of the system.

Generation of the thermal bath

The quality of the thermal state generated by the METTS algorithm is dependent on two crucial parameters:
temperature and number of samples. The frequency spectrum of the thermal population of the bath is plotted in
figure 5(a), which determines that in the case of lower temperatures, as the thermal population reduces rapidly,
the fewer modes are required to be taken into account to express a thermal state. This is also suggested by

figure 5(b), which shows that the cumulative probability saturates faster for the low temperature bath, reducing
the requirement of number of METTS samples to represent the thermal state. The consequence is observed in
figure 5(c), where the plot of population distribution becomes smooth, and therefore defines a significant
pattern while reducing the temperature for a fixed number of METTS, which indicates a better quality of the
preparation of thermal state. In table 1 we compare the thermal population obtained analytically and
numerically by taking average over 50 METTS samples. However, anticipating better performance of the
METTS algorithm at low temperatures, it is also seen that the overall thermal population reduces so significantly
that after a certain range, the number is not reliable for numerical simulation. Therefore, we prefer to generate a
thermal state higher temperature in order to obtain the thermal population to a significant level, which forces us
to take alarge number of METTS samples into account while doing real time evolution. In figure 5(d), we show
how the increment of the number of METTS samples modifies the population distribution over the entire lattice
chain. As anticipated, the quality of the preparation of the bath improves while increasing the number of METTS
samples, which is indicated by the improvement of the smoothness of the plot.

7
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Figure 5. (a) Population spectra, (b) cumulative probability distribution of photon occupation, and (c) population variation on the
lattice sites for different temperatures (3 = 5, 10,25, 50 [1/w,] ). The number of METTS samples is 50. (d) Population variation on the
lattice sites with the variation of the number of METTS samples (50, 100, 500, 1000) for a fixed temperature (3 = 5[1/w,]). Density of
states (DOS) is 25[1/w,] for all cases. (e) Population distribution on lattice sites for higher density of states (DOS = 50[1/w,]). The
number of METTS samples is 1000, inverse temperature 3 = 5 [1/w,]. The frequency range of the reservoir is wy € [0.7, 1.3]w,, fixed
in all cases.

Table 1. Population of a thermal bath for different
temperatures in the frequency range wy € [0.7, 1.3]w,. The
density of states (DOS = 25[1/w,]) and the number of
METTS samples (METTS = 50) are kept fixed for all cases.

Bl1/w] Analytical population TEBD population
5 0.162 6 0.173 0

10 0.002 8 0.003 0

25 39723 x 1078 3.9677 x 1078

50 7.2920 x 107° 7.9524 x 107°

As we increase the density of states for a fixed frequency range, the number of modes and number of lattice
sites also increase, which essentially demands more METTS samples to represent a thermal state. Therefore, we
see a poor population distribution in figure 5(e) compared to figure 5(d)[iv], when we doubled the DOS and
keep the number of METTS fixed. However, the increase of the density of states increases the total population of
the bath, which is shown in table 2.

Real-time propagation of systems coupled to thermal bath

Hereafter, we study the thermalization of an empty system in the presence of a thermal bath at inverse
temperature 8 = 5[1/w,]. The time evolution of the system population for different cutoff frequencies and rates
of dissipation are shown in figure 6. As anticipated from equation (13), the oscillation in the population of the
system is introduced by the left tail of figure 4. The extension of the lower cutoff frequency contributes more
oscillation to the dynamics, and more population in the stationary state of the system, which is visible when we
compare figures 6(a) and (b). The higher value of v also contributes more oscillation as an error to the dynamics

8



10P Publishing

J. Phys. Commun. 4(2020) 015002 S Agasti
(Y- : g 10
| Sy i —acoidiindt S pr— 8r
5 8t 5 I e e e e o e I e s o o o o
s, B ol
= =0
= Qs
Qe €.
£ .| £ =
g’ —4=0.0113w S, —7=0.0113w,
Nl —7=0.0314w_ a2l —7=0.0314w
I 7=0.0616, 1 7=0.0616_
y ‘ | )
] 50 100 150 0 50 100 150
Time(1lw)  (a) Time(1/w ) (b)

=24

w

|—~=0.01 13.;0'
—~=0.0314w,|
—7=0.0616w,|

System Population

o

100 150 200 250 300

Time(1/w) (c)

O a—
S.

Figure 6. (a), (b) Plot of the time evolution of the system population for different cutoff frequency: (a)e = 0.3w,isand (b)e = 0.6w,.
The length of the chain of the bath is 16 and 31, respectively, keeping the DOS fixed DOS = 25[1/w]. (c) Plot of the time evolution of
the system population increasing the density of state DOS = 50[1/w.]. The length of the chain of the bath is 31, and the cutoff
frequencyis (¢ = 0.3w,) . The temperature (3 = 5[1/w,]) and number of METTS samples (4000) are kept fixed in all cases. Thick lines
correspond to the TEBD numerical result and the thin lines represent analytical results obtained from equation (13). The black dashed
line stands for the thermal population corresponding to the mode of the system expressed in equation (16).

Table 2. Population of a thermal bath for different density of
states in the frequency range wy € [0.7, 1.3]w, and temperature
8 = 5[1/w,]. The number of METTS samples is kept fixed at
1000 for all cases.

DOS [1/w] Analytical population TEBD population

25 0.162 6 0.163 0
50 0.308 2 0.308 8

of the system population. We see the steady state population of the system is comparable to the thermal
population at w,, which is indicated by equation (16). In both figures 6(a) and (b), the system has not been able to
achieve the steady state for the slow dissipation rate (especially y = 0.011 3w,). Therefore, we extend the
recurrence time by increasing the DOS in figure 6(c), which gives sufficient freedom to the system to relax to the
steady state.

The numerical technique, therefore proves a promising scheme to study the open quantum dynamics. In
order to investigate its applicability in the physics of quantum Brownian motion, we plot real-time dynamics of
the quadrature fluctuations in figure 7 with a comparison to its analytics. The arbitrary quadrature is defined as
Xo(t) = ec(t) + e ct(t). As (di(0)) = (d] (0)) = (d}(0)) = (d,j2 (0)) = 0, the quadrature fluctuation
becomes phase (f) independent (6Xy(¢t) = /1 + 2#n(t)),andits time dynamics gives a pattern similar to the
population dynamics.
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Conclusion

In this article, we intended to investigate the applicability of MET TS algorithm in the thermalization dynamics
of open-quantum systems, anticipating the fact that the DMRG technique has the ability to extract out exact
dynamics without linearizing nonlinear Hamiltonians. The consequences of this approach are demonstrated in
terms of the efficiency of the algorithm with a discussion of advantages and disadvantages of this simulation. In
this spirit, we also compare the numerical result with analytical result determined using Heisenberg equation of
motion. We started with presenting a model that transforms the Hamiltonian of a quantum system coupled
linearly to a discrete set of modes of a bosonic reservoir, to a Hamiltonian of a one-dimensional chain with
nearest-neighbour interactions. We then used the model to study free dissipation and thermalization of that
open quantum system. We found the recurrence time of the real-time evolution increases linearly with the
increment of density of states. Our results also show that even though the minimally entangled typical thermal
states (METTYS) algorithm performs better at lower temperatures, we preferred to work at higher temperature in
order to obtain the thermal population at a significant level and avoid unwanted error in the population
dynamics of the system contributed by the lower cutoff frequency limit. Therefore, more METTS samples are
taken into account, which consume more computation resources. In conclusion, one can say that the
numerically generated thermal bath shows promise, but, this requires a compromise between the quality of the
result and the computation resources. The numerical scheme presented here was mainly motivated by an
attempt to determine the exact solution in the case of nonlinear coupling between the system and the
environment [26], non-classical dynamics of non-linear systems [27], and reach out single photon limitin
optomechanical systems [24, 25]. The combination of real and imaginary time evolution of open quantum
system will allow us to investigate quantum Brownian motion of topological quantum matter [53, 54]. In
addition, the method will be useful to study the non-Markovian dynamics and critical behaviors of the sub-
ohmic or ohmic spin-Bosson coupling models [3, 4, 28, 29].
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