
Faluke Aikebaier

JYU DISSERTATIONS 188

New Forms of Superconductivity



Faluke Aikebaier

New Forms of Superconductivity

Esitetään Jyväskylän yliopiston matemaattis-luonnontieteellisen tiedekunnan  
suostumuksella julkisesti tarkastettavaksi yliopiston Ylistönrinteen salissa FYS1

tammikuun 31. päivänä 2020 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Mathematics and Science of the University of Jyväskylä,

in Ylistönrinne, auditorium FYS1, on January 31, 2020 at 12 o’clock noon.

JYU DISSERTATIONS 188

JYVÄSKYLÄ 2020



Editors
Timo Sajavaara
Department of Physics, University of Jyväskylä
Timo Hautala
Open Science Centre, University of Jyväskylä

ISBN 978-951-39-8036-8 (PDF)
URN:ISBN:978-951-39-8036-8
ISSN 2489-9003

Copyright © 2020, by University of Jyväskylä
This is a printout of the original online publication.
Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-8036-8

Jyväskylä University Printing House, Jyväskylä 2020



Preface
This thesis is based on my research work carried out in the condensed matter theory
group lead by Professor Tero Heikkilä, in the Department of Physics and Nanoscience
Center at the University of Jyväskylä, Finland.

This work is an outcome of fruitful and pleasant stay in the beautiful city of Jyväskylä,
with the guidance and companionship of many people.

First and foremost, I would like to express my deepest gratitude to my supervisor
Professor Tero Heikkilä. I am very grateful to him for giving me the chance to start
a career in theoretical condensed matter physics. It was a joy to learn and carry out
research in his group. I am indebted to Tero’s guidance, patience, and continuous
support both at work and in life.

Besides my supervisor, I am obliged to my coauthors, Dr. Ville Kauppila, Dr. Mihail
Silaev, Dr. Pauli Virtanen, Dr. Subrata Chakraborty, Mr. Mikel Rouco, Dr. Vitaly
Golovach, Dr. Elia Strambini, Dr. Jagadeesh Moodera, Dr. Francesco Giazotto, and
Dr. Sebastian Bergeret. I would like to acknowledge the reviewers, Dr. Irina Bobkova
and Dr. Mircea Trif. I am also thankful to the wonderful colleagues that I had over the
years, Dr. Philippe Djorwé, Mr. Souvik Agasti, Dr. Timo Hyart, Mr. Teemu Peltonen,
Mr. Risto Ojajärvi, Mr. Kalle Kansanen, and Dr. Yao Lu.

In addition, I would like to extent my appreciation to the kind help and friendship of
Katri, Eskimo, and others during our stay in Jyväskylä.

Importantly, I offer my sincerest thanks to my parents for their support and love
during all these years. I would like to express my warmest thanks to my wife, Kadirya.
Without her support and love, life would be much difficult. I am genuinely thankful
for her sacrifice and the support of my parents in law over the years. Last but not
least, I would like to thank my son, Fazil, he has always been my best motivation.

The financial support of Ellen and Artturi Nyyssönen Foundation is greatly acknowl-
edged.

Helsinki, January, 2020

Faluke Aikebaier

i



ii



Abstract
Flat band superconductivity in strained Dirac materials and transport properties of
superconductors with a spin-splitting field are studied in this thesis.

Flat band superconductivity is a route to high temperature superconductivity. Strain
induced flat band in Dirac materials provides a new mechanism to the flat band
superconductivity. Superconductors with a spin-splitting field reveal novel features
which do not exist or very small in non spin-split superconductors, for example, long-
range spin accumulation and thermoelectric effects. Exploring other effects is beneficial
for understanding the transport phenomena in such systems.

For the flat band superconductivity in strained Dirac materials, the Bogoliubov-de
Gennes equation is used to study the properties of the strained Dirac materials in the
superconducting state, including the inhomogeneous pair potential, local density of
states and a finite supercurrent.

For the superconductors with a spin-splitting field, quasiclassical Green’s function
method is used to study the transport properties of such systems. The properties
studied in this thesis include those in equilibrium and out of equilibrium. The non-
collinearity of the spin-splitting fields between two spin-split superconductors intro-
duces new features to the tunnelling conductance and gives rise to a finite Josephson
current in the absence of external voltage. In the presence of a supercurrent, the short-
range charge imbalance is converted to long-range spin accumulation in the presence
of a homogeneous spin-splitting field. The inhomogeneous spin-splitting field alters
many physical observables, such as the spin current density, domain wall size, and
density of states. As a precursor to the domain wall motion in a superconductor with
an inhomogeneous spin-splitting field, the domain wall motion in a diffusive weak fer-
romagnet reveals characteristic features like time dependent domain wall velocity for
the force much larger than the torque, and occurring of the intrinsic pinning eventually
for the torque much larger then the force.

The study on flat band superconductivity in strained Dirac materials show how this
model results an inhomogeneous superconductivity, including its various properties.
The study on the transport properties of superconductors with a spin-splitting field,
by considering the effect of supercurrent, noncollinearity and inhomogeneity of the
spin-splitting fields, fill many gaps in the previous research.
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1 Introduction

Superconductivity is a fascinating quantum phenomenon. Below a critical tempera-
ture, many metals and alloys suddenly lose their electrical resistivity [1], and expel
magnetic fields from their interior (Meissner effect) [2].

Following the phenomenological theories [3, 4] based on electromagnetic and thermo-
dynamic properties respectively, a successful microscopic theory of superconductivity
was laid by Bardeen, Cooper, and Schrieffer in 1957 [5], later commonly called the
BCS theory. Since then, superconductivity has gone through huge development and
has thrived as a field with many theoretical and applied aspects.

These aspects include searching for new superconducting materials, especially super-
conductors with higher critical temperatures, various properties of superconductors,
nonequilibrium superconductivity, and new features of superconductors making con-
tact with nonsuperconducting materials, as well as their immediate and potential
applications in technology.

This thesis focuses on two rapidly evolved aspects, flat band superconductivity and
superconductors with a spin-splitting field, which could be considered as new forms
of superconductivity.

Ever since the discovery of superconductors, the attempt on searching for high tem-
perature superconductors has never stopped. Flat band superconductors pave a new
way on such efforts. Flat band superconductors are a type of superconductors with
flat energy bands in the normal state around the Fermi level, which causes a very high
density of states. Since the electrons around the Fermi level form bound pairs (Cooper
pairs) and condense into the superconducting state below the critical temperature, a
high density of states around the Fermi level indicates a stronger superconductivity,
and according to the BCS theory, a stronger superconductivity implies a higher critical
temperature.

Another long-standing struggle is the combination of superconductivity and ferro-
magnetism. This combination could be achieved in hybrid nanostructures via mutual
proximity effects. In the case of a superconductor and a ferromagnetic insulator, prop-
erties of the superconductor are modified by an induced spin-splitting field. One sig-
nificant feature of such superconductors is the spin splitting of the density of states.
This type of superconductors have very interesting properties, like thermoelectric ef-
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2 Introduction

fects and long-range spin accumulations, which are very small or absent without the
spin-splitting field.

In this thesis, the discussion on flat band superconductivity is centred on strained
Dirac materials, and the discussion on the superconductors with a spin-splitting field
covers their properties both in equilibrium and out of equilibrium, together with ho-
mogeneous and inhomogeneous spin-splitting fields. The outline of the thesis is as
follows. In chapter 2, some fundamental properties of superconductivity and ferro-
magnetism are introduced. These properties are related to the discussions in the rest
of the thesis. The flat band superconductivity in strained Dirac materials, including
various properties are discussed in chapter 3. Transport properties of superconductors
with a spin-splitting field are discussed in chapter 4. In this section, the equilibrium
and nonequilibrium properties are separately discussed, both in the cases of homo-
geneous and inhomogeneous spin-splitting fields. As a nonequilibrium problem in the
case of an inhomogeneous spin-splitting field in the normal state, domain wall motion
in a weak ferromagnet is discussed independently in chapter 5. In chapter 6, the main
results in this thesis and an outlook for the future work are shortly described.



2 Fundamental concepts

Before starting the discussions on the new forms of superconductivity, it is worth-
while to review the fundamental properties of superconductivity and ferromagnetism.
In this chapter some of these properties are introduced. For superconductivity, the
discussions start by the key concepts of the BCS theory, and review some of the
basic features of superconductivity. For ferromagnetism, the Heisenberg and Stoner
models are introduced briefly, and the domain structure of ferromagnet including the
formation of the domain walls are discussed.

2.1 Fundamentals of superconductivity

2.1.1 BCS theory

The free electron model is successful in describing many properties of metals, but it
fails to explain some others, especially at low temperatures. To go beyond the free
electron model, we need to take into account the correlations between electrons. In
electrostatics, the direct interaction (Coulomb interaction) between electrons is repul-
sive. However, in certain conditions the effective interaction between electrons could
be attractive. For example, the phonon mediated electron-electron interaction [5]. The
BCS theory starts from such an effective attraction between electrons.

The BCS theory does not concern the origin of the attractive interaction, which can
overcome the Coulomb repulsion, but rather the consequence of it. It is also assumed
such an attractive interaction takes place for electrons within an energy range. This
range for the phonon-mediated interaction is the phonon energy (Debye energy), ~ωD
(BCS cutoff energy) [5]. Through this interaction, no matter how weak it is, electrons
in the ground state pair themselves into bound pairs around the Fermi level, known
as Cooper pairs, which can condense into a superconducting state.

For many low temperature superconductors, the attractive interaction is spin-indepen-
dent, which leads to spin-singlet superconductivity. This thesis considers such super-
conductors. Moreover, if the interaction is weak compared to both the Fermi energy
and phonon energy, then it can be represented as a point-like interaction. Then the

3



4 Fundamental concepts

Hamiltonian of a system with an attractive interaction can be written as

H =
∑
σ

∫
drψ†σ(r)H0(r)ψσ(r)− g

∫
drψ†↑(r)ψ†↓(r)ψ↓(r)ψ↑(r), (2.1)

where

H0(r) =
1

2m

(
~
i
∇− eA

)2

+ U(r)− εF

is the single-particle Hamiltonian of the free electron gas, A is the vector potential,
U(r) is a potential describing deviations from a regular crystal lattice caused by, for
example, disorder, and εF is the Fermi energy. Here ψ(†)

σ (r) is the second quantized
field operator which annihilates (creates) an electron at position r, and g characterizes
the strength of the attractive interaction.

The theoretical approach for the treatment of the interacting part of the Hamiltonian
in Eq. (2.1) in the BCS theory is the mean field approximation. This means that one
could replace product of operators as AB ≈ 〈A〉B + A〈B〉 − 〈A〉〈B〉. By choosing
A = ψ†↑(r)ψ†↓(r) and B = ψ↓(r)ψ↑(r), the Hamiltonian in Eq. (2.1) can be written as

HBCS ≈
∑
σ

∫
drψ†σ(r)H0(r)ψσ(r)+

∫
dr
[
∆∗(r)ψ↓(r)ψ↑(r) + ∆(r)ψ†↑(r)ψ†↓(r)

]
−E0,

(2.2)
where the superconducting pair potential is defined as

∆(r) = g〈ψ↑(r)ψ↓(r)〉, (2.3)

and
E0 =

∫
dr
|∆(r)|2

g

describes the energy difference between the normal and superconducting states.

We can use the Bogoliubov transformation to diagonalize the mean-field Hamiltonian.
The field operators can be written in terms of fermionic annihilation and creation
operators γ(†)

kσ (Bogoliubov operators) as

ψ↑(r) =
∑
k

[
γk↑uk(r)− γ†k↓v

∗
k(r)

]
(2.4a)

ψ↓(r) =
∑
k

[
γk↓uk(r) + γ†k↑v

∗
k(r)

]
, (2.4b)

where γ(†)
kσ annihilates (creates) a particle in state k with spin σ. They satisfy the

fermionic anticommutation relations

{γkσ, γ†k′σ′} = δkk′δσσ′ ,
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{γ(†)
kσ , γ

(†)
k′σ′
} = 0.

It is also easy to show that the coefficients uk(r) and vk(r) satisfy∑
k

[uk(r′)u∗k(r) + vk(r)v∗k(r′)] = δ(r − r′).

The Bogoliubov transformation leads to the Bogoliubov-de Gennes (BdG) equation(
H0(r) ∆(r)

∆∗(r) −H†0(r)

)(
uk(r)
vk(r)

)
= εk

(
uk(r)
vk(r)

)
. (2.5)

In the normal state, this is nothing but the Schrödinger equation for electrons and
holes. Therefore, the Bogoliubov-de Gennes equation is a correspondence of the Schrö-
dinger equation in the superconducting state.

Substituting the field operators in Eq. (2.4) to the expressions of the pair potential in
Eq. (2.3), and remembering the fact that

〈γ(†)
kσγ

(†)
k′σ′
〉 = 0

〈γ†kσγk′σ′〉 = δkk′δσσ′f(εk),

where f(εk) is the Fermi distribution function

f(εk) =
1

eεk/(kBT ) + 1
, (2.7)

we can write
∆(r) = g

∑
k

v∗k(r)uk(r) tanh

(
εk

2kBT

)
. (2.8)

We can see that the solutions of the Bogoliubov-de Gennes equation depend on the
superconducting pair potential ∆(r), and ∆(r) also depends on them. This means
∆(r) has to be determined self-consistently.

The Bogoliubov-de Gennes equation can be solved for the case of a homogeneous pair
potential ∆(r) = ∆. By assuming uk(r) = u0

ke
ik·r and vk(r) = v0

ke
ik·r the results are

εk = ±
√
ξ2
k + ∆2 (2.9)

and

u0
k =

1√
2

√
1 +

ξk
εk

(2.10a)

v0
k =

1√
2

√
1− ξk

εk
, (2.10b)



6 Fundamental concepts

where ξk = ~2k2/(2m)−εF is the normal state energy. Here Eq. (2.9) gives the energy
spectrum of the superconducting state. We can also determine the density of states
as

Ns(ε) = N0
|ε|√

ε2 −∆2
Θ(|ε| −∆), (2.11)

where N0 = mkF/(2π
2~2) is the density of states at the Fermi level, and Θ(x) is the

Heaviside step function. The energy spectrum in Eq. (2.9) and the density of states
in Eq. (2.11) are plotted in Fig. 2.1(a,b). We can see the energy gap in the spectrum
is Eg = 2∆ and the BCS divergence at ε = ±∆.

-1 0 1

-1

0

1

-2 -1 0 1 2
0

2

4

6

8

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1
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Figure 2.1: (a) BCS energy spectrum of one direction in momenta kx. The spectrum is the same
in other directions in an isotropic system. (b) Density of states of a bulk superconductor. (c) Tem-
perature dependence of the superconducting pair potential.

Substituting the results in Eq. (2.10) to Eq. (2.8), and using the relations

∑
k

→
∫

~dk
(2π~)3

= 2N0

∫ Ec

0

dξk (2.12)

obtain
∆ =

g

2(2π)3

∫
dk

∆√
ξ2
k + ∆2

tanh

(
εk

2kBT

)
(2.13)

⇒ 1 = γ

∫ Ec

∆

dεk√
ε2k −∆2

tanh

(
εk

2kBT

)
, (2.14)

where γ = gN0 is the interaction constant, and Ec = ~ωD is the phonon energy.

Equation (2.14) gives the temperature dependence of the superconducting pair po-
tential and the critical temperature Tc. The numerical result is given in Fig. 2.1(c).
At zero temperature it can be solved analytically. In this case, tanh[ε/(2kBT )] → 1,
and we get

1

γ
=

∫ Ec

∆

dεk√
ε2k −∆2

= log

(
2Ec
∆

)
.
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We denote ∆(T = 0) = ∆0, and obtain

∆0 = 2Ece
−1/γ.

On the other hand, at T = Tc the pair potential ∆ = 0, and we have

1

γ
=

∫ Ec

0

tanh

(
εk

2kBTc

)
dεk
εk
.

This can be solved as

kBTc =
2eC

π
Ece

−1/γ,

where C = 0.577 is the Euler constant. Then the zero temperature pair potential can
be written as

∆0 = πe−CTc ≈ 1.764kBTc. (2.15)

This is one of the best well known predictions of the BCS theory. It relates the critical
temperature to the superconducting pair potential at zero temperature, and most of
the conventional superconductors satisfy this relation at least approximately.

The pair potential at zero temperature ∆0 is also related to the spatial range of the
Cooper pairs, called the superconducting coherence length, usually denoted by ξ0. The
BCS theory also gives an estimate to this length, which is

ξclean
0 =

~vF
π∆0

, (2.16)

where vF is the Fermi velocity. This result is for clean superconductors, namely, when
the coherence length ξ0 is much smaller than the electron mean free path lel. For the
opposite limit ξ0 � lel, the coherence length is given by

ξdirty
0 =

√
~D
2∆0

, (2.17)

where D = vF lel/3 is the diffusion constant.

The coherence length is usually of the order of 103 nanometers, which is much larger
than the atomic scale. Therefore, one Cooper pair is in the center of many others
(millions or even more). This long range nature of the Cooper pairs is an important
characteristic of the superconducting state.

The above are some of the most essential features of superconductivity. There are
also many other properties, which can be explained by the BCS theory. In the next
section, we present some of the properties relevant to this thesis.
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2.1.2 Properties of superconductors

Magnetic properties

A superconductor reacts in peculiar ways to a magnetic field. For example, it expels
a magnetic field from its interior below its critical temperature (Meissner effect) [2].

Early phenomenological London theory was able to explain the Meissner effect [3].
A magnetic field decays in a superconductor exponentially in a length λL, called the
London penetration depth. The BCS theory calculated this depth as [5]

λL =

√
me

µ0nse2
, (2.18)

where me is the mass of an electron, e is the charge of the electron, µ0 is the vacuum
permeability, and ns is the superconducting electron density.

A magnetic field could also destroy the superconductivity. The BCS theory also de-
termined such a critical magnetic field. For a bulk superconductor, the critical field is
given by the (Helmholtz) free energy density difference between the normal and super-
conducting phases. From the Gibbs free energy density in the presence of a magnetic
field, we can write

H2
c

2µ0

= fn − fs,

where fi is the free energy density for i = n, s normal and superconducting states,
respectively. For a homogeneous superconductor [5]

fs = −4N0

∫ ∞
0

dξkεkf(εk) + 2N0

∫ Ec

0

dξk

(
ξk −

ξ2
k

εk

)
− ∆2

g
,

= −2N0

∫ ∞
∆

dεk
2ε2k −∆2√
ε2k −∆2

f(εk)− 1

2
∆2N0.

Equation (2.14) is used in the second equal sign. The normal state free energy density
can be obtained by setting ∆ = 0 as

fn = −4N0

∫ ∞
0

dξkξkf(ξk) = −π
2

3
N0(kBT )2.

Then the critical field is determined by

H2
c

2µ0

= −π
2

3
N0(kBT )2 + 2N0

∫ ∞
∆

dεk
2εk −∆2√
ε2k −∆2

f(εk) +
1

2
∆2N0. (2.19)
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The critical field calculated from Eq. (2.19) is plotted in Fig. 2.2(a). Here the critical
field is normalized to the critical field at zero temperature

H2
c (T = 0)

2µ0

=
1

2
∆2

0N0 ⇒ H0
c =

√
µ0N0∆0.

Superconductors with the above critical field are called type I superconductors. There
are also type II superconductors which have two critical fields. The most important
characteristic of such superconductors is the formation of magnetic vortices between
the lower and upper critical fields [6]. In this thesis, we only consider type I super-
conductors.

For thin film superconductors, a perpendicular magnetic field also creates magnetic
vortices. But a parallel magnetic field enhances the critical field compared to that
of the bulk in type I superconductors [7]. For thin films with thickness less than the
London penetration depth in Eq. (2.18), the Meissner effect is negligible. In this case,
the critical field of a superconductor is determined by the normal state paramag-
netism [8, 9]. This is shortly discussed in Sec. 4.1.

0 0.2 0.4 0.6
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0.2
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Figure 2.2: (a) Temperature dependence of the critical field. (b) Schematics of the normal metal
(superconductor)-insulator-superconductor junction. (c) Tunnelling conductance of the NIS junction.

Tunnelling

Tunnelling is a quantum mechanical phenomenon where a particle passes through a
potential barrier. If two metals are separated by a thin insulator, electrons can pass
through from one metal to the other when a voltage difference is applied, and the
current-voltage relation obeys the Ohm’s low.

If one of the metals is replaced by a superconductor [Fig. 2.2(b)], due to the existence
of the superconducting gap, no quasiparticles pass through unless the voltage reaches a
threshold value equal to the superconducting pair potential [10]. Therefore, the energy
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gaps in superconductors can be measured by normal metal-insulator-superconductor
(NIS) junctions.

The (quasiparticle) tunnelling current for a NIS junction can be expressed as [11]

I(V ) =
GT

e

∫ +∞

−∞
dεNs(ε) [f(ε− eV )− f(ε)] , (2.20)

where V is the applied voltage, eV is the resulting difference in the chemical poten-
tials between the superconductor and normal metal, GT is the conductance of the
tunnelling barrier, and f(ε) is the Fermi distribution function in Eq. (2.7).

Another quantity for measuring the energy gap is the tunnelling conductance. Differ-
entiating the tunnelling current with respect to the applied voltage V yields

G =
dI

dV
= GT

∫ +∞

−∞
dεNs(ε)

∂f(ε− eV )

∂(eV )
. (2.21)

The tunnelling conductance for different temperatures is plotted in Fig. 2.2(c). It looks
very much like the superconducting density of states, especially at low temperatures.
This can be seen as follows. The derivative of the Fermi distribution function in the
integrand can be written as

∂f(ε− eV )

∂(eV )
=

1

4kBT
sech2

(
ε− eV
2kBT

)
. (2.22)

This is a a Bell-shaped function of ε peaked at eV with a width 4kBT . For T → 0, it
is equivalent to a Dirac delta function. Then we have

G

GT

T→0−−−→ Ns(e|V |).

Therefore, the tunnelling conductance can also be used to measure the density of
states directly at a low temperature.

In Sec. 4.3.1 the tunnelling conductance is calculated for junctions of a superconduc-
tor with a spin-splitting field with a normal metal (NIS) and a ferromagnet (FIS).
In the case for a FIS junction, the expression for the tunnelling current in Eq. (2.20)
is extended to include the polarization of the ferromagnet. In Article II, the expres-
sion of the tunnelling conductance is derived for a SIS junction, where both of the
superconductors are with spin-splitting fields.

Supercurrent

The Cooper pairs are effectively bosons, and they condense into a Bose condensate
with a wave function

Ψ = |Ψ|eiϕ, (2.23)
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where the amplitude determines the particle density ns/2 = |Ψ|2, and the phase ϕ
characterizes the coherence of the Cooper pairs since a single wave function represents
all the pairs. Similarly, we can introduce a phase to the superconducting pair potential
as

∆(r) = |∆(r)|eiϕ(r).

The expression of the current in quantum mechanics in terms of the wave function is
given by

j =
e∗

2m∗
(
Ψ∗p̂Ψ + Ψp̂†Ψ∗

)
,

where e∗ = 2e, m∗ = 2me for Cooper pairs, and p̂ is the momentum operator. For
charged particles p̂ = −i~∇−e∗A/c, where c is the speed of light and A is the vector
potential. Using Eq. (2.23), the current becomes

j = −e
2ns
mec

(
A− ~c

2e
∇ϕ
)
. (2.24)

If the total vector potentialAt = A−~c∇ϕ/(2e) in Eq. (2.24) is strong in a supercon-
ductor, the magnetic field associated with At may reach the critical field and destroy
superconductivity. The related current in this case is called the critical current.

In the absence of a magnetic field

js =
ens~
2me

∇ϕ. (2.25)

This means that a supercurrent appears when the condensed wave function (through
its phase) slowly changes in space.

The Cooper pair density ns can be found from a detailed calculation. With the field
operators, the supercurrent can be expressed as

js =
e

2me

∑
σ

〈ψ†σ(r)p̂ψσ(r) + ψσ(r)p̂†ψ†σ(r)〉.

Using the Bogoliubov transformation in Eq. (2.4), js becomes

js =
e

me

∑
k

{f(εk)u∗k(r)p̂uk(r) + [1− f(εk)] vk(r)p̂v∗k(r) + c.c.}. (2.26)

If the position dependence of the pair potential is only via the phase, namely,

∆(r) = ∆eiϕ(r),

then the BdG equation can be solved with the ansatz uk(r) = u0
ke

ik·reiϕ/2 and vk(r) =
v0
ke

ik·re−iϕ/2 as

εsk = ±

√[
ξk +

~2(∇ϕ)2

8me

]2

+ ∆2 +
~2k · ∇ϕ

2me

.
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For a slowly varying phase in space

εsk ' ±
√
ξ2
k + ∆2 +

~2k · ∇ϕ
2me

= εk +
~2k · ∇ϕ

2me

.

Now the supercurrent becomes

js =
e~
me

∑
k

{f(εsk)|u0
k|2 + [1− f(εsk)] |v0

k|2}(∇ϕ)

− 2e~
me

∑
k

k{f(εsk)|u0
k|2 − [1− f(εsk)] |v0

k|2}.
(2.27)

By adding and subtracting terms with f(εk), we can rewrite the above expression as

js =
e~
me

∑
k

{f(εk)|u0
k|2+[1− f(εk)] |v0

k|2}∇ϕ+
e~
me

∑
k

[f(εsk)− f(εk)] (|u0
k|2−|v0

k|2)∇ϕ

−2e~
me

∑
k

k{f(εk)|u0
k|2 − [1− f(εk)] |v0

k|2} −
2e~
me

∑
k

k [f(εsk)− f(εk)] (|u0
k|2 + |v0

k|2)

In the above expression, the second term vanishes since |u0
k|2−|v0

k|2 is an odd function
of ξk and the third term is zero since k sums up with plus and minus sign. We define
the total electron density and normal electron density as

n = 〈ψ†σ(r)ψσ(r)〉 = 2
∑
k

{f(εk)|u0
k|2 + [1− f(εk)] |v0

k|2},

nn∇ϕ = 4
∑
k

k [f(εsk)− f(εk)] (|u0
k|2 + |v0

k|2) =
2~2

me

∑
k

k2∂εkf(εk)∇ϕ

for ~2(∇ϕ)2/2me � ξk. Then the superconducting electron density

ns = 2
∑
k

{
f(εk)|u0

k|2 + [1− f(εk)] |v0
k|2 −

~2k2

me

∂εkf(εk)
}

leads to the expression for the supercurrent in Eq. (2.25). This can be evaluated for
T → 0, where ∂εkf(εk)→ 0, and we have

n = ns = 2N0∆0.

In Sec. 3.4, the supercurrent in a pure flat band ξk = 0 is discussed shortly. In Article I,
a supercurrent is calculated for a flat band superconductor (strained Dirac materials)
by adding a phase gradient to the superconducting pair potential.
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Josephson tunnelling

If the normal metal in the tunnelling junction in Fig. 2.2(b) is replaced by a supercon-
ductor (SIS), the tunnelling current depends on the density of states in both super-
conductors. This brings new features to the tunnelling conductance, like extending the
peaks location. However, more interesting effect happens if the two superconductors
have a phase difference.

In this case, when V = 0 a supercurrent appears across the junction satisfying [12]

IJ = Ic sin (ϕ1 − ϕ2) ,

where Ic is the critical current for this junction. This is called the dc Josephson effect.
In the case of ∆1 = ∆2 = ∆, a microscopic approach yields the Ambegaokar-Baratoff
relation [13] for Ic as

Ic =
GTπ∆

2e
tanh

(
∆

2kBT

)
. (2.28)

If a voltage V is applied across the Josephson junction, the superconducting phase
difference is determined by

dϕ

dt
=

2eV

~
,

where ϕ = ϕ1 − ϕ2. Solution of this equation is given by

ϕ(t) = ϕ(0) +
2eV t

~
. (2.29)

Then the Josephson current becomes

IJ = Ic sinϕ(t).

This introduces an oscillatory behaviour of the Josephson current as a function of
time. This is called the ac Josephson effect.

There are various systems and devices based on the Josephson effects. In this thesis,
however, we only focus on the above fundamental model of the Josephson effects.
In Sec. 4.3.1 and Article II, the Josephson current is evaluated for a system of two
superconductors with noncolinear spin-splitting fields.

Nonequilibrium effects

In thermal equilibrium, the quasiparticle states are occupied with a probability de-
scribed by the Fermi distribution function in Eq. (2.7). An external perturbation,
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however, causes a distortion to this distribution. As a response to this perturbation,
nonequilibrium excitations arise in the superconductor.

It is convenient to express these nonequilibrium excitations in terms of their deviation
from thermal equilibrium as

δfk = fk − f(ε).

Here, δfk represents two sets of nonequilibrium excitations, due to temperate and
charge density, respectively [14]. These excitations are shown in Fig. 2.3.
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4
ElectronlikeHolelike

Normal state

(a)
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4
ElectronlikeHolelike

(b)

-4 -2 0 2 4
0

1

2

3

4
ElectronlikeHolelike

(c)

Figure 2.3: (a) Energy spectrum of quasiparticles in thermal equilibrium with the occupied
states labelled with filled circles. The thin straight curve represents the normal state energy
ξk = ~2k2/(2m)− εF . The occupied sates are evenly distributed for electronlike ξk > 0 and holelike
ξk < 0 branches. (b) Excitation of the even mode. (c) Excitation of the odd mode with electronlike-
holelike branch transitions.

The nonequilibrium excitation due to a temperature change in Fig. 2.3(b) is even
with respect to the Fermi level. It represents changes in quasiparticles populations on
both electronlike and holelike branches in the spectrum. It is called the longitudinal
or energy mode and we label this mode as fL. It is an antisymmetric function of
energy with respect to the Fermi level. The nonequilibrium excitation due to a charged
perturbation in Fig. 2.3(c) is odd with respect to the Fermi level. It introduces a branch
imbalance to the spectrum. It is called the transverse or charge mode and we label it
as fT . It is a symmetric function of energy with respect to the Fermi level.

The nonequilibrium properties of superconductors are related to these modes. For
example, a charge imbalance created by injection of electric current from a normal
metal injector is related to the charge mode fT [15], and the energy mode fL is related
to the steady state enhancement of superconductivity in the presence of a microwave
field [16]. The coupling between these two modes also leads to very interesting nonequi-
librium effects. For example, a supercurrent flowing along a temperature gradient is
known to induce a charge imbalance [17, 18].

In Sec. 4.3.2, the nonequilibrium charge fT and energy fL modes are extended to
include the spin degrees of freedom for superconductors with a homogeneous spin-
splitting field. The spin and spin energy modes are excited in such cases, and the
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coupling between these modes in the presence of supercurrent leads to the charge-
spin conversion in Article III.

2.2 Fundamentals of ferromagnetism

2.2.1 Models of ferromagnetism

In the absence of an external magnetic field, the magnetic moments of materials are
directed randomly, which results to zero net magnetic moment. Below a critical tem-
perature, however, magnetic moments of some materials start to align. If the alignment
is parallel (hence with a nonzero net magnetization, also called spontaneous magneti-
zation), these materials are called ferromagnets, and the related critical temperature
is called Curie temperature.

Ferromagnetism originates from the exchange interaction between the magnetic mo-
ments, due to the electron-electron Coulomb interaction together with the Pauli ex-
clusion principle. If one assumes that the atoms are well separated so that the overlap
of the atomic wave functions is very small, the exchange interaction can be described
by the Heisenberg Hamiltonian [19, 20]

HHeisenberg = −
∑
i,j

JijSi · Sj, (2.30)

where the sum runs over the lattice sites i, j, Jij is the exchange integral, which is
positive for ferromagnets, and Si/j is the spin operator.

In the presence of an external magnetic field, the magnetic moments interact with
the field, and this interaction also contributes to the Hamiltonian of the system. The
Zeeman Hamiltonian is given by

HZeeman = −2µB
∑
i

H i · Si,

where µB = e~/(2me) is the Bohr magneton andH i is the local magnetic field acting
on the ith spin. If the external field is applied in the z-axis direction, then the total
Hamiltonian for a ferromagnet can be written as

HF = −
∑
i,j

JijSi · Sj − 2µBH
∑
i

Szi . (2.31)

The Heisenberg model works well with many materials and phenomena. However,
solving it is not an easy task. Approximations are always needed. The mean field
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approximation simplifies the problem substantially, but it is a crude approximation to
the Heisenberg model. Although it gives an insight on the qualitative physical picture
of the model, it fails to explain many features, especially at temperatures close to the
Curie temperature [21, 22]. There are also more advanced approximations, but this
is not the focus of this thesis. The focus is rather on the phenomenological level, and
the transport properties in the semiclassical regime. Therefore, there is no need to
discuss the solutions of the Heisenberg model.

The energy spectrum and density of states of ferromagnets are complicated. However,
we can use a simplified model (Stoner model) to discuss the features of different types
of ferromagnets [23].

Most of the ferromagnets are metals. For a ferromagnetic metal below the Curie
temperature, the spontaneous magnetization splits the electron bands. The splitting
of the electron bands leads to the splitting of the density of states, see Fig. 2.4(b). For
a comparison, the density of states of a paramagnetic metal is shown in Fig. 2.4(a).
The degree of the splitting in the density of states, namely, the degree of the alignment
of spins in a ferromagnet, can be represented by the spin polarization as

P =
N↑0 −N

↓
0

N↑0 +N↓0
, (2.32)

where N s
0 is the density of states at the Fermi level for spin s =↑ / ↓.

N↓(ϵ)N↑(ϵ)

ϵ

ϵF

N↓(ϵ)N↑(ϵ)

ϵ

N↓(ϵ)N↑(ϵ)

ϵ

(a) (b) (c)

Figure 2.4: Schematic description of the density of states for different types of ferromagnets. (a)
Paramagnetic metal, (b) ferromagnetic metal, (c) ferromagnetic insulator.

Although they are not as common as ferromagnetic metals, ferromagnetic insulators
also exist and have very unique properties. For example, Europium chalcogenides
have simple cubic structure, low Curie temperature, and splitting of the conduction
band [24], as shown in Fig. 2.4(c). Europium chalcogenides are required for many
applications. For example, they have been used as spin filters in various devices with
tunnel junctions.
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2.2.2 Domain structure

A large ferromagnetic material with a constant magnetization creates a magnetic field
outside of itself (stray field) and hence a large magnetostatic energy. In order to reduce
this energy, a ferromagnet splits itself into many domains, with different magnetization
directions [25]. When an external magnetic field is applied, the domains tend to align
with the direction of the field.

Domains are separated by domain walls, with a size much smaller than that of the
domains. In the domain walls, the direction of the magnetization rotates smoothly
from one domain to the other.

The formation of the domains is associated with a competition of various types of
energies. The most relevant ones are the exchange energy, anisotropy energy, and the
magnetostatic energy. The exchange energy prefers parallel configuration of the mag-
netization direction, while the anisotropy energy tends to align the magnetization to
a particular direction. The magnetostatic energy is indeed the reason of the formation
of the domains, it also determines the shape of the domain walls. Below, these energies
are introduced separately.

Exchange (nonuniformity) energy

The exchange energy results from the exchange interaction. This energy is related to
the Heisenberg model in Eq. (2.30). It can be derived from Heisenberg model in some
limiting cases [26]. It is usually expressed phenomenologically as the gradient of the
magnetization unit vector m as

Uex = Q

[(
∂m

∂x

)2

+

(
∂m

∂y

)2

+

(
∂m

∂z

)2
]
, (2.33)

where
Q =

nJS2

a

is called the exchange stiffness constant. In which, a is the lattice constant, S is the
amplitude of the spins, J is the exchange integral for nearest-neighbour exchange
interaction, and n is a constant. For a simple cubic lattice n = 1, for a body-centered
cubic lattice n = 2, and for a face-centered cubic lattice n = 4.
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Anisotropy energy

Magnetic anisotropy represents the contribution of magnetization direction to the
energy of the system. It is the origin of hysteresis and coercivity.

The anisotropy energy density is given by a series powers of the direction cosines of
the magnetization unit vector m. It is invariant under time reversal and depends on
the crystal structure [27].

For cubic crystals, sincem ·m = 1, the anisotropy energy density is expressed as [25]

U cubic
aniso = Kc1(m2

xm
2
y +m2

xm
2
z +m2

ym
2
z) +Kc2m

2
xm

2
ym

2
z + ...,

where Kc1 and Kc2 are the first- and second-order cubic anisotropy constants.

For uniaxial and biaxial crystals, the anisotropy energy density can be written as [27]

Uuniaxial
ansio = Ku1(m2

x +m2
y) +Ku2(m2

x +m2
y)

2 + ...,

where Ku1 and Ku2 are the first- and second-order uniaxial or biaxial anisotropy
constants.

The anisotropy constants are functions of temperature, and their magnitude generally
decreases with increasing order. Moreover, using symmetry analysis, one can show that
the anisotropy constants of different crystals are convertable. Namely, we can write
the anisotroy constants for the uniaxial crystals in terms of the ones for the cubic
crystals. For example [22],

Ku1 = Kc1

Ku2 = −7Kc1

8
+
Kc2

8
.

Due to their simple form, we use the uniaxial and biaxial anisotropy energy density
for discussions. If we use spherical coordinates for the unit vector,

m = (sinα cosφ, sinα sinφ, cosα), (2.35)

then the anisotropy energy density up to the second order can be written as

Uaniso = K1 sin2 α +K2 sin4 α. (2.36)

The sign of the anisotropy constants determines the magnetization direction [27]. If
K1 > 0, the magnetization direction is along the z-axis, and this is called the direction
of easy magnetization. Such ferromagnets are called easy-axis type. If K1 < 0, the
magnetization direction lies in the xy-plane (basal plane of the crystal), then the
ferromagnets are called easy-plane type.
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The second order anisotropy contant K2 contributes corrections to the direction of
magnetization [28]. For K1 > 0 and K2 > −K1, the z-axis is the easy axis. For
K1 > 0, K2 < −K1 and K1 < 0, K2 < −K1/2, the xy-plane is easy plane. The
case of −2K2 < K1 < 0 makes the ferromagnet an easy-cone type. In this case, the
magnetization direction lies outside of the basal plane and has an angle between the
z-axis.

Domain wall

With the exchange energy and anisotropy energy, we are able to solve for the general
domain wall structure and energy. It is energetically favourable for a ferromagnet
that the rotation of the magnetization direction happens in a plane. This is because,
rotation in three dimensional space causes extra energy [27]. This means that one of
the component of the unit vector m of the magnetization direction is zero and α is a
function of one coordinate x only.

The total energy up to the first order in the anisotropy energy density is given by

Edw =

∫ ∞
−∞

d3x(Uex + Uaniso) = W

∫ ∞
−∞

dx(Qα′2 +K1 sin2 α),

where W is the cross sectional area of the ferromagnet. Minimizing this energy with
respect to α(x), the corresponding Euler’s equation gives

Qα′′ −K1 sinα cosα = 0.

This equation can be solved with the boundary conditions α(−∞) = 0 and α(+∞) =
π as

α(x) = cos−1
[
− tanh

(x
λ

)]
, (2.37)

where λ =
√
Q/K1 is the domain wall size. With this solution, the domain wall energy

can be written as
Edw = 4W

√
K1Q.

Also another type of a rotation angle can be found in the literature,

α(x) =
π

λ

(
x+

λ

2

)
Θ

(
x+

λ

2

)
Θ

(
λ

2
− x
)

+ πΘ

(
x− λ

2

)
, (2.38)

where Θ is the heaviside step function. This simplified ansatz for the domain wall
structure allows an SU(2) type transformation in transport equations, and brings
many conveniences to the analytics to the problem. With this domain wall structure,
the domain wall size and energy are given by

λ =

√
2Q

K1

π,
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Edw = W
√

2K1Qπ.

This energy is just slightly larger than the one of the domain wall structure in
Eq. (2.37).

Types of the domain wall

As already mentioned above, in domain walls the rotation of magnetization happens
in a plane, and this can be represented by setting, for example, φ = 0 or π/2 in the
magnetization unit vector in Eq. (2.35). The first choice is called the Néel wall, which
describes the rotation of the magnetization happening in the plane of the domain
wall. The second is called the Bloch wall, in which the magnetization rotates out of
the plane of the domain wall. The schematics of these domain walls are shown in
Fig. 2.5(a).

(a)

Bloch wall

Néel wall

0 1 2 3 4

1

1.5

2
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0.4

0.6

0.8

1
(c)(b)

Figure 2.5: (a) Schematic view of the two types of domain wall structure. (b) Minimized domain
wall energy and (c) domain wall size for two types of domain wall structure, as a function of thickness
of a ferromagnet.

The prefered types of the domain walls is determined by the magnetostatic energy
caused by the stray field. Since the demagnetizing factor depends on the shape of a
material, the magnetostatic energy density of the two types of the domain walls are
slightly different [29]

UBloch
mag =

λ

λ+ t

µ0M
2
a

2

UNéel
mag =

t

λ+ t

µ0M
2
a

2
,

where t is the thickness of the ferromagnet, and Ma is the average magnetization of
the ferromagnet.

We can use the rotation angle in Eq. (2.38), and take the anisotropy energy density
for a uniaxial crystal up to the second order to calculate the total energy. Note that
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for a thin film K1 → K1 + Ks/t, where Ks is the surface anisotropy constant [30].
Then we get

EBloch
dw = F1 +

λ2

λ+ t

µ0M
2
a

2
W

ENéel
dw = F1 +

tλ

λ+ t

µ0M
2
a

2
W,

where
F1 =

Qπ2

λ
W +

1

2
KeffλW, (2.41)

and Keff = K1 +Ks/t+ 3K2/4.

Minimization of these two energies with respect to the domain wall size λ produces
the domain wall energies and sizes for the two types of the domain walls. The results
are plotted in Fig. 2.5(b,c). For simplicity, we assume |Ks|/t � |K1| and normalize
the domain wall energy and domain wall size with the solutions in the absence of the
magnetostatic energy

λ0 =

√
2Q

Keff

π, (2.42a)

E0
dw = W

√
2KeffQπ. (2.42b)

We can see that, although its domain wall size is larger, Néel wall is preferred en-
ergetically for thin ferromagnets, while the Bloch walls appear in bulk ferromagnets
(t → ∞). Moreover, for thin ferromagnets with t � λ, the contribution of the mag-
netostatic energy to the domain wall size is very small, and the domain wall size is
determined by λ0 in Eq. (2.42a). Namely, the exchange energy and anisotropy energy
are enough to the energetics of a Néel wall for a thin ferromagnet. If we relax the as-
sumption |Ks|/t� |K1|, there would be some corrections to the domain wall energy
and domain wall sizes at small t, but the overall behaviour is not changed.

In Sec. 4.4, the induced exchange field in a superconductor making contact with
a ferromagnetic insulator is considered to be inhomogeneous. The inhomogeneity is
represented by a Néel domain wall since it is energetically favorable for thin films.



3 Flat band superconductivity in
strained Dirac materials

Ensuing some of the fundamental properties of superconductivity, the first topic in
the new forms of superconductivity, flat band superconductivity, is discussed in this
chapter. The discussions start from presenting the general ideas of the flat band su-
perconductivity, and then the strained Dirac materials are introduced briefly. The su-
perconducting state, including the Bogoliubov-de Gennes equation, of strained Dirac
materials are discussed at the end.

3.1 Flat band superconductivity

As shown in Sec. 2.1.1, in the BCS theory the size of the superconducting pair potential
of a homogeneous superconductor is suppressed exponentially. At zero temperature

∆0 = 2Ece
−1/(gN0),

where N0 is the density of states at the Fermi level. Since the BCS theory predicts
∆0 be of the same order as the critical temperature Tc [Eq. (2.15)], aiming to increase
the density of states is a way in searching for superconductors with higher critical
temperatures.

One way to pursue is an extreme case when ξk = 0, namely a dispersionless normal
state energy (flat band). In this case Eq. (2.13) becomes

∆ =
g

2

∫
dk

(2π)d
tanh

(
∆

2kBT

)
=

gVd
2(2π)d

tanh

(
∆

2kBT

)
, (3.1)

where d is the dimensionality of the system, and Vd is the volume (area or length) of
the flat band in the momentum space. At zero temperature, this equation results to
a superconducting pair potential that is linear in the interaction strength g, so that
the flat band system may give rise to a very high Tc.

The best known flat bands are the Landau levels [31]. However, the strong magnetic
field also suppresses the superconductivity as discussed in Sec. 2.1.2, so that Landau
levels are not applicable to the flat band superconductivity. The first model of flat

22
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band superconductivity was given by Khodel and Shaginyan, in a case where the flat
bands are induced by interactions between the fermions as a result of merging of
different fermionic levels [32].

There are also other types of flat bands that are not due to the interaction. Flat bands
or partially flat bands (with higher order energy dispersion around the Fermi level)
are formed at the surface states of some topological semimetals [33–35]. One example
is the rhombohedral graphite [36], where the formation of the flat band happens on
the surface of a multilayered rhombohedral structure with a large number of layers.

Another possible formation of the topological flat bands appears at certain strained
surfaces or interfaces with misfit dislocations. Examples of these types of flat bands
were used to explain the appearance of superconductivity at the interfaces of combi-
nations of nonsuperconducting materials containing misfit dislocation [37–39], and the
superconductivity in graphite interfaces with Bernal stacking [40]. A strain induced
flat band can be also realized in graphene and other Dirac materials [41, 42]. In this
case, a periodic strain field plays the role of an effective gauge field and forms partially
flat bands without breaking the time-reversal symmetry. We discuss this type of flat
band superconductivity is this chapter.

3.2 Strained Dirac materials

The Dirac materials are a class of materials whose low-energy excitations behave like
massless Dirac fermions and obey the Dirac Hamiltonian [43]. In energy spectrum,
Dirac materials have conical dispersions near zero energy, called Dirac cones. The zero
energy takes place at two or more inequivalent Dirac points in the momentum space,
the area around these points is called valley.

The Hamiltonian of a Dirac material with a periodic strain field around a Dirac cone
discussed in Ref. [42] (Tang-Fu model) is given by

HTF = ~vF k̂xσ1 + ~vF
[
k̂y + Ay(x)

]
σ2, (3.2)

where vF is the Fermi velocity of the Dirac material, and σi is the ith Pauli spin matrix,
which acts on the pseudospin degree of freedom. Here the strain induced gauge field
Ay(x) is a component of the effective vector potential A ∝ (0, Ay(x), 0) with a strain
period L so that Ay(x+ L) = Ay(x) and

∫ L
0
Ay(x) = 0.

The form of the periodic strain field (pseudo vector potential) is given by [42]

Ay(x) =
β

L
cos

(
2πx

L

)
,
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where β is a dimensionless parameter describing the strength of the strain. The esti-
mated realistic values for the massless Dirac fermions are between β ≈ 20 ∼ 40.

The Hamiltonian in Eq. (3.2) describes the physics at one valley, the sign of the strain
field is reversed for the partner valley. We can use the Bloch theorem to transform
this Hamiltonian in the momentum space as

HTF (k) = ~vF
(

2πm

L
+ kx

)
σ1δml + ~vFkyσ2δml + ~vF

β

2L
σ2(δm,l−1 + δm,l+1), (3.3)

where m, l are the Bloch indices. Here kx ranges between −π/L to π/L.

Diagonalization of this Hamiltonian yields the energy spectrum ξk, which is plotted
in Fig. 3.1(a) for different values of β. See Appendix B.3 for the numerical method
used for the diagonalization. We can see that the partially flat band appears around
ky ∈ [−β/(2L), β/(2L)]. However, for very small values of ky, the dispersion is linear.
This linear dispersion and the emergence of the flat band can be understood within a
perturbation model. For k̂y = 0, Eq. (3.2) has the following zero energy solutions [44]

Ψ+ =

(
0
1

)
exp

[∫ x

0

A(x′)dx′
]

=

(
0
1

)
exp

[
β sin(2πx/L)

2π

]
Ψ− =

(
1
0

)
exp

[
−
∫ x

0

A(x′)dx′
]

=

(
1
0

)
exp

[
−β sin(2πx/L)

2π

]
.

Then we treat k̂y as a perturbation and obtain

ξkyL

~vF
= ±Cky, (3.4)

where
C = I−1

0 (β/π).

Here I0(x) is the zeroth modified Bessel function of the first kind. Then C → 0 for
β � π, and a flat band is formed.

The density of states in Fig. 3.1(b) can be numerically determined as

N(ε) =
1

nk

∑
k

δ(ε− ξk),

where δ(x) is the Dirac delta function, and nk is the total number of k-vectors used
in the calculations. We can see that the density of states is very high at kyL = 0, and
the peak is higher for larger β.

The topological properties of materials are characterized by topological invariants.
Here we calculate the winding number for the strain induced flat band [45]

ν =
1

4πi

∫ π/L

−π/L
dkxTr[σ3H

−1
TF (k)∂kxHTF (k)].



3.3 Bogoliubov-de Gennes equation 25

-40 -20 0 20 40
-30

-15

0

15

30

-4 -2 0 2 4
-0.1

-0.05

0

0.05

0.1

-0.5 0 0.5
0

10

20

30

40

50
(a) (b)

-10 0 10
-0.5

0

0.5
(c)

Figure 3.1: (a) Strain induced flat band energy spectrum at kx = 0 and (b) the density of states.
(c) Winding number of the induced flat band for β = 30.

The winding number ν = 0 describes topologically trivial states, and ν 6= 0 cor-
responds to topological nontrivial states. We can see from Fig. 3.1(c) that as kyL
changes sign at kyL = 0, the strain induced flat band transforms from one topological
state ν = 0.5 to an other ν = −0.5.

3.3 Bogoliubov-de Gennes equation

The superconducting state of the strain induced flat band is described by the Bogoliubov-
de Gennes equation in Eq. (2.5). In the momentum space, we can write

HBdG =

(
HTF (k) ∆ml

∆∗ml −HTF (k)

)
, (3.5)

where ∆
(∗)
ml = ∆

(∗)
n δl,m±n. Here ∆n is a 2× 2 matrix due to the pseudospin degress of

freedom. If we assume in lattice coupling, we can write

∆n =

(
∆n↑ 0

0 ∆n↓

)
.

The Hamiltonian in Eq. (3.5) represents the superconductivity at one valley. The
other valley also contributes to the superconductivity. Therefore, the self-consistent
determination of ∆n from Eq. (2.8) in the momentum space is given by

∆n = ∆K
n + ∆−Kn , (3.6)

where
∆K
n = g

∑
k

∑
m

∑
b

ub,m(k)σ0v
∗
b,m−n(k) tanh

(
εb,k

2kBT

)
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∆−Kn = g
∑
k

∑
m

∑
b

v∗b,m(k)σ0ub,m−n(k) tanh

(
εb,k

2kBT

)
,

where m is the Bloch index, b is the band index, K represents the valley, and σ0 is
the unit matrix in the pseudospin space.

The superconducting pair potential determined in Eq. (3.6) leads to three types of
superconductivity, depending on the size of the interaction strength g. When g �
~vFCL, the superconductivity is of the type found in pure Dirac materials [46, 47].
When ~CL� g � ~vFL/β, the system is in the pure flat-band regime, and only the
lowest energy bands contribute to superconductivity. Our focus is this regime in this
chapter. When g > ~vFL/β, also higher bands contribute to superconductivity. This
situation was considered in Ref. [48] in strained graphene where an inhomogeneous
superconducting state was also found.

Note that there is a quantum critical point in the case of g � ~vFCL, below which
superconductivity does not take place. This can be seen as follows. Due to the Dirac
cone structure, it is reasonable to assume that the energy spectrum in kx axis also
has the form of Eq. (3.4). Then Eq. (2.13) becomes

1 =
4g

2(2π)2

∫
dk

1√
[~vFC

√
k2
x + k2

y/L]2 + ∆2
tanh

(
εk

2kBT

)
,

where the pseudospin and the valley degeneracies are included. At the quantum critical
point, ∆ = 0, we can use the polar coordinate to evaluate this integral at T = 0 as

1 =
gmin

2π2L

∫ kc

0

kdk

∫ 2π

0

dφ
1

~vFCk/L
=

gminkc
π~vFC

.

Since the flat appears around ky ∈ [−β/(2L), β/(2L)], we choose the momentum
cutoff as kc = β/(2L), this yields

gmin =
2πC

β
~vFL. (3.7)

Then for g < gmin, there is no superconducting state of the system.

3.4 Superconducting state

Equation. (3.6) is used to calculate the superconducting pair potential as shown in
Fig. 3.2. The numerical methods used for the diagonalization of the Hamiltonian, the
self-consistency calculations and the integrations are discussed in Appendix B. The



3.4 Superconducting state 27

position averaged ∆ = (1/L)
∫ L

0
dx∆(x) is plotted in Fig. 3.2(a) for different β, as a

function of g. We can see the superconductivity is stronger for larger β. For β = 20, we
can see the visible quantum critical point described in Eq. (3.7) as gmin ≈ 0.003~vFL.
For larger β, the dependence of ∆ave on g is approximately linear as ∆ave ≈ βg/(2L2).
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Figure 3.2: (a) Averaged superconducting pair potential ∆ave as a function of interaction strength
g for different β. (b) Profile of ∆(x) for the same values of β with (a). (c) Temperature dependence
of ∆ave.

Next, the profiles of the superconducting pair potential for a fixed g = 0.01~vFL
for different β are shown in Fig. 3.2(b). There two peaks show up in the profile for
each strain period, due to the pseudospin degree of freedom. Note that the minima
is finite in the profiles. The temperature dependence of the averaged ∆(x) is plotted
Fig. 3.2(c). We can see that the critical temperature is approximately equal to ∆ave,
namely, the superconducting pair potential is of the same order with the critical
temperature as in the BCS theory. Thus, the dependence of Tc on g is also linear. We
can therefore expect a high Tc in the flat band regime.

The energy spectrum and density of states of the superconducting state are shown in
Fig. 3.3. As the superconducting pair potential is stronger for larger β, the energy gap
in the spectrum is also larger. At εk=0 = 2∆ave, the gap reaches its maximum. The
density of states show a peculiar two-peaked shape for larger β. However, for β = 20,
the weaker superconductivity leads to a single peak structure in the density of states.
These features could act as a possible experimental signature for superconductivity
described by this model.

One last thing to examine is the supercurrent. The supercurrent in flat band materials
is also interesting. The dispersionless spectrum, in principle, leads the vanishing of the
supercurrent. This can be seen as follows. The supercurrent expression in Eq. (2.27)
can be written as

js = −2e
∑
k

{f(εsk)veg − [1− f(εsk)] vhg},

where
ve(h)
g = ∓1

~
∂kξk∓∇ϕ/2 =

{
u∗k(k)p̂uk(r)/me

vk(k)p̂v∗k(r)/me
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Figure 3.3: Energy spectrum and density of states both in the normal and superconducting state
for (a,d) β = 20, (b,e) β = 30, (c,f) β = 40.

is the group velocity for electronlike (holelike) quasiparticles. For flat bands then
v
e(h)
g = 0, the supercurrent becomes zero. Therefore, it is reasonable to think that
the paired electrons are localized in flat bands, and unable to carry supercurrent.
However, a finite supercurrent is predicted in the superconducting state of multilayered
rhombohedral graphene [49] and in general for a topological flat band due to an
additional geometric contribution to the superfluid weight [50]. Then one can expect
a finite supercurrent due to the topological nature [Fig. 3.1(c)] of strain induced flat
band in Dirac materials.

The expression for the supercurrent in strained Dirac materials can be written as

js =
evF
L

∑
k,b

[
fk,bu

∗
k,bσuk,b + (fk,b − 1)v∗k,bσvk,b

]
,

where fk,b is the Fermi distribution function for quasiparticles occupying the bth band
at momentum k. The averaged supercurrent and its various properties are shown in
Article I.

In Dirac materials, such as, graphene, the superconductivity was shown with strong
doping, and with a critical temperature of a few Kelvin [51, 52]. Strain induced flat
bands, however, offers a promising alternative for the appearance of superconductivity
in Dirac materials with a very high critical temperature even in the absence of dop-
ing. A detailed discussion on the prediction of the critical temperature of a strained
graphene can be found in Article I.



4 Superconductors with a
spin-splitting field

Transport properties of superconductors with a spin-splitting field are discussed in
this chapter. After presenting the spin-splitting in a superconductor at the beginning,
the Quasiclassical Green’s function method is reviewed shortly. Thereupon, the equi-
librium and nonequilibrium effects related to Article II to Article IV are summarized.

4.1 Spin-splitting in superconductors

In the presence of an applied magnetic field, the critical field is determined by Eq. (2.19).
However, for very thin films with thickness less than the London penetration depth
in Eq. (2.18), the Meissner effect is negligible under a parallel magnetic field. Then
the critical field is determined by an other mechanism.

A normal metal experiences a paramagnetic effect under a Zeeman field [21]. If the
parallel magnetic field destroys the superconductivity of a thin film at a critical field,
then the corresponding normal state beyond this critical field must be related to the
paramagnetism, and the parallel magnetic field is equivalent to a Zeeman field.

The free energy density of a metal at the critical field is lowered by a magnetic energy
density, and this energy density should be equal to the superconducting free energy
density as

fs = fn −MHc,

where Hc is the critical field, and M is the related magnetization density. It can be
written in terms of the density of states at the Fermi level as [21]

M = µ2
BHN0.

Then we have
fn − fs = N0(µBHc)

2.

We can write Eq. (2.19) as

N0(µBHc)
2 = −π

2

3
N0(kBT )2 + 2N0

∫ ∞
∆

dεk
2εk −∆2√
ε2k −∆2

f(εk) +
1

2
∆2N0.

29
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At T = 0, it becomes

(µBHc)
2 =

1

2
∆2 ⇒ µBHc =

∆√
2
. (4.1)

This is known as the Chandrasekhar-Clogston limit [8, 9].

Superconductors with a Zeeman field have another very important property. Since a
Zeeman field splits the energy spectrum for two spin species, the density of states also
splits [53–57]. This is shown in Fig. 4.1. The Zeeman field splits the density of states
for each spin species. In this case, the density of states in Eq. (2.11) becomes

Ns(ε)

N0

=
1

2

|ε+ h|√
(ε+ h)2 −∆2

Θ(|ε+ h| −∆) +
1

2

|ε− h|√
(ε− h)2 −∆2

Θ(|ε− h| −∆), (4.2)

where h = µB|H| is the effective Zeeman splitting in energy and H is the applied
parallel field (Zeeman field). Due to the splitting of the spectrum and the density of
states, H is also called the spin-splitting field.
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Figure 4.1: Spin splitting of the density of states. The peak at higher energy in the density of states
is higher than the one at the lower energy, due to the contribution of both spin species.

The spin splitting can also be induced by making contact of a superconductor (S)
with a ferromagnetic insulator (FI). In this case, the Hamiltonian of the S is shown in
Eq. (2.2), and the Hamiltonian of the FI is shown in Eq. (2.30) together with a term
describing anisotropy. Some of the properties of FI are discussed in Sec. 2.2.1. The
coupling between the S and the FI can be considered by a model of localized magnetic
moments of FI interacting with the spin of the conduction electrons of the S on the
exchange interaction [58–62]

Hex = −Jex
∑
ss′

∫
drψ†s(r)[S(r) · σ]ss′ψs′(r), (4.3)

where ψ(†)(r) is the destruction (creation) operator, σ = (σ1, σ2, σ3) is a vector of
Pauli spin matrices, s is the spin index, and Jex is an effective parameter describing
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the exchange interaction (s-d or s-f type). Here the integral goes only over the localized
spin S(r) at the FI/S interface.

If we assume that the Curie temperature of the FI is much larger than the supercon-
ducting critical temperature (TCurie � Tc), then the magnetization of the FI is not
affected by the S. Thus, the effective spin-splitting field induced in the S is propor-
tional to the averaged spin 〈S(r)〉. If the thickness tS of the superconductor is much
smaller than the superconducting coherence length ξ0, the effective spin-splitting field
can be expressed as [60, 62, 63]

h = Jex〈S(r)〉 a
tS
,

where a is the lattice constant of the FI. This effective spin-splitting field creates a
strong splitting in the density of states in Eq. (4.2) (in the case of a homogeneous
spin-splitting field) in the presence of a small external magnetic field or even in its
absence [64–69]. In this case, the spin-splitting field is also called the exchange field.

Superconductors with spin-splitting density of states have many novel features which
are not present or very small in the absence of the spin-splitting field. For example,
thermoelectric effects are negligibly small in conventional superconductors. However,
huge thermoelectric effects (large values of figure of merit) were predicted and detected
in superconductors with a spin-splitting field [70–74]. Another example is the long-
range spin accumulation. Inside a metal, spins relax within a spin relaxation length.
This length scale is even shorter in the superconducting state [75]. However, in su-
perconductors with a spin-splitting field, spin accumulation persists in much longer
distances than the spin relaxation length in the normal state [76–82]. These effects
and other nonequilibrium properties of superconductors with a spin-splitting field are
reviewed in Refs. [83, 84].

In the effects reviewed in Refs. [83, 84], the spin-splitting field induced in the super-
conductors is considered to be homogeneous. However, if it is induced by a FI, then the
exchange field may be inhomogeneous due to the nonuniformity of the magnetization
in the FI. The properties of superconductors with an inhomogeneous exchange field
are less studied compared to the ones with a homogeneous exchange field. A recent
study shows a peculiar tunnelling conductance in a FI/S structure, where the peak at
the lower energy is higher than the one at the higher energy (opposite to the ones in
Fig. 4.1), and the magnetic domain structure of the FI is considered responsible for
this effect [85].

In this chapter, we discuss both equilibrium and out of equilibrium properties of
superconductors with both homogeneous and inhomogeneous exchange fields.
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4.2 Quasiclassical Green’s function approach

As shown in Sec. 2.1.1 and in Chapter 3, the BdG equation works well with an effective
mean-field Hamiltonian. However, in the presence of disorder, or for the nonequilib-
rium effects, for example, mentioned in Sec. 2.1.2, one needs easier theoretical treat-
ments. The Green’s function technique for the BCS theory provides a powerful tool
for the description of nonequilibrium superconductivity, especially in the presence of
disorder [86]. In this section, the basic principles of this method are reviewed.

4.2.1 Quasiclassical approximation

For superconductors with an exchange field, the Green’s function is defined in the
Nambu × spin space. Using the spinor ψ̂† = (ψ†↑, ψ

†
↓,−ψ↓, ψ↑), the Green’s function

can be written as an expectation value of a product of field operators

Ĝ(r1, t1; r2, t2) = −i〈TCψ̂(r1, t1)ψ̂†(r2, t2)〉, (4.4)

where TC means a time ordering on a time-loop contour C, and the average means
the Gibbs statistical average. Within the BCS theory, this Green’s function satisfies
the Gorkov equation [87]

(σ0Ĝ
−1
0 − σ0∆̂− ih · στ3 − Σ̌)(r1, t1; r2, t2)⊗ Ĝ(r2, t2; r′1, t

′
1) = δ(r1, t1, r

′
1, t
′
1), (4.5)

where Σ̂ is the self-energy, ⊗ represents a convolution over the coordinates, σ is
a vector of Pauli matrices in the spin space, and τ3 is the third Pauli matrix in
the Nambu space. Here the superconducting pair potential has the following matrix
structure

∆̂(r1, t1; r2, t2) = δ(r1, t1; r2, t2)

(
0 ∆

∆∗ 0

)
and Ĝ−1

0 is the Green’s function of a free electron

Ĝ−1
0 (r2, t2; r′1, t

′
1) = δ(r1, t1, r

′
1, t
′
1)

(
iτ3

∂

∂t1
+

1

2m
∂̂

2

r1
+ εF

)
,

where ∂̂r = ∇r − ieAτ3 is the gauge-invariant spatial derivative with the vector
potential A.

In Eq. (4.5), it is assumed that ~ = kB = 1. The identity matrix in the Nambu (τ0)
and spin space (σ0) are also suppressed below. The matrix dimensions are fulfilled
with these identity matrices where it is needed.

The Gorkov equation is indeed very powerful for studying various properties of super-
conductors. However, the double coordinate Green’s functions are very cumbersome,
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especially for inhomogeneous systems. Further approximations are needed to simplify
the Gorkov equation. Quasiclassical method provides such a possibility by making use
of the fact that the energy scale involved in the superconducting phenomena is much
smaller than the characteristic energy of the normal state, namely the Fermi energy
EF . (Note that this may not be true for flat band superconductivity in Chapter 3
since the superconducting pair potential is enhanced.)

The Green’s function in Eq. (4.4) oscillates as a function of the relative coordinate
r1− r2 with the scale of the Fermi wavelength λF [88], which is typically of the order
of a nanometer. It is much smaller than the superconducting coherence length ξ0 in
Eq. (2.16). This is equivalent to the above mentioned limit ∆� EF . The information
contained in this oscillation may be ignored, since the contributions of this oscillation
to the effects in superconducting state are very small. This can be done by integrating
over the relative coordinate r = r1 − r2. This yields the Wigner transform of the
Green’s function

Ĝ(R,p) =

∫
dre−ip·rĜ

(
R+

r

2
,R− r

2

)
,

where R = (r1 + r2)/2 is the center-of-mass coordinate. This is a highly peaked
function around |p| ≈ pF . If we take the Fourier transform of this Green’s function by
writing p = pF p̂, the momentum integral can be transformed into an energy integral
as in Eq. (2.12).

The quasiclassical Green’s function is defined as

ĝ(p̂,R) =
i

π

∫
dξpĜ(ξp, p̂,R),

where ξp = p2/(2m)− εF is the normal state energy spectrum. With the quasiclassical
Green’s function, the Gorkov equation reduces to the Eilenberger equation (via the
gradient expansion, see the derivation in Ref. [89] as an example). In the stationary
case it is written as [90–92]

−vF
[
∂̂R, ĝ(p̂,R)

]
=
[
−iετ3 + ih · στ3 + ∆̂ + Σ̂, ĝ(p̂,R)

]
,

where vF is the Fermi velocity, and the superconducting pair potential has the struc-
ture

∆̂ = σ0

(
0 ∆(R)

∆∗(R) 0

)
.

This equation has to be supplemented by the boundary condition ĝ2 = 1̂ [93].

The Eilenberger equation is much easier to solve compared to the original Gorkov
equation. The Green’s function now depends on the center-of-mass coordinate and
the direction of the quasiparticles. The Eilenberger equation is especially useful for
clean superconductors.
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4.2.2 Diffusive limit

The Eilenberger equation can be further simplified for the diffusive limit, namely, in
the case when the elastic scattering self-energy is much larger than any other energy
scales in the problem. This is equivalent to the case where elastic mean free path lel
is much smaller than all the other length scales, and the Green’s function is nearly
isotropic. This allows the expansion of the Green’s function ĝ(p̂,R) with respect to p̂
in spherical harmonics. Taking the lowest order in p̂ (namely, only s-wave term) and
angular averaging of the Eilenberger equation results in a diffusion equation, known
as the Usadel equation [94]

D∇ · (ĝ∇ĝ)−
[
−iετ3 + ih · στ3 + ∆̂ + Σ̂, ĝ

]
= 0, (4.6)

whereD is the diffusion constant in Eq. (2.17). Here the quasiclassical Green’s function
is a function of R and the energy ε.

The self-energy consists of elastic and inelastic parts. In the simplest approximation,
the inelastic part of the self-energy can be described by energy independent Dynes
term [95]

Σ̂inel = Γτ3,

where Γ is called the Dynes parameter. It affects the spectral properties of the sys-
tem, for example, the density of states. Beyond this limit, the most relevant inelastic
processes are the particle-particle and particle-phonon collisions. These collisions do
not conserve the energy but conserve the total spin. These collisions for quasiclassical
approximation are discussed in Ref. [96, 97].

There are two main contributions for elastic scattering, which conserve the energy.
One arises from the nonmagnetic impurities, and which has already been taken into
account in the diffusion constant by the electron mean free path lel. Another one
is scattering arising from magnetic impurities, which relax the spin. Two types of
mechanisms are possible due to the spin-orbit coupling and spin-flip processes. Within
the Born approximation, these terms can be expressed as [83, 84]

Σ̂so =
1

8τso
σ · ĝσ, (4.7)

Σ̂sf =
1

8τsf
σ · τ3ĝτ3σ,

where τso and τsf are the spin-orbit and spin-flip relaxation times, respectively. The
spin-orbit coupling considered here is extrinsic, namely, originating from a random
impurity potential. Since only the centrosymmetric superconductors are considered
in this thesis, the intrinsic spin-orbit coupling originating from the lack of inversion
symmetry is excluded.
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In the case where the spin-splitting is induced by an external magnetic field, the
contribution of the vector potential can be approximated as an effective self-energy as

Σ̂orb =
1

τorb
τ3ĝτ3,

where τorb is the orbital depairing rate. For a superconducting thin film with thickness
tS, τorb can be determined in the case of a parallel magnetic field H [98, 99]. Moreover,
in the presence of supercurrent, the effective vector potential (see Sec. 2.1.2) also
contributes to τorb [100]. Then the orbital depairing rate can be written as

1

τorb
=
D(eHtS)2

6
+
D∆(∇ϕ)2

2
, (4.8)

where ϕ is the phase of the superconducting pair potential.

4.2.3 Matsubara technique

In thermal equilibrium, physical observables are independent of time. One can in-
troduce an imaginary time τ = it to describe the time evolution of an operator to
take into account a finite temperature. It was shown by Matsubara that the Green’s
function is time-ordered along this imaginary time within the interval 0 < τ < 1/T ,
where T is the temperature [101]. Then Eq. (4.4) can be written as

Ĝ(r1, r2; τ1 − τ2) = 〈Tτ ψ̂(r1, τ1)ψ̂†(r2, τ2)〉,

where Tτ means time-ordering in τ . It was also shown that, all the necessary informa-
tion is contained in the Green’s function for a discrete set of energies ε+iΓ = iωn [101].
Here ωn = (2n+ 1)πT are the Matsubara fermionic frequencies (energies) and n is an
integer. Then the Usadel equation can be written as

D∇ · (ĝ∇ĝ)−
[
ωnτ3 + ih · στ3 + ∆̂ + Σ̂so + Σ̂sf + Σ̂orb, ĝ

]
= 0. (4.9)

The convenience of the Matsubara technique is that the physical observables are
directly related to the solution of the Usadel equation in Eq. (4.9). For example, the
superconducting pair potential is determined by the self-consistency equation as

∆ =
1

2
πTγ

ωD∑
ωn>0

Tr(τ1ĝ), (4.10)

where ωD is the BCS cutoff energy. Another important quantity is the superconducting
free energy related to its normal state. It can be written in terms of the quasiclassical
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Green’s function as [102] (also derived in Article IV)

fsn = fs − fn = πTN0

∑
ωn>0

Tr

{
(ωn + ih · σ)(1̂− τ3ĝ)− 1

2
∆̂ĝ +

D

4
(∇ĝ)2

+
1

16τso

[
3 · 1̂− (σĝ) · (σĝ)

]
+

1

16τsf

[
3 · 1̂− (στ3ĝ) · (στ3ĝ)

]
+

1

2τorb

[
1̂− (τ3ĝ)2]} ,

(4.11)

where fsn = fsn[h], ∆̂ and ĝ are self-consistent values of the pair potential and the
Green’s function.

When a system which is driven out of equilibrium, a time dependent or a dissipative
state is created due to the nonequilibrium distribution of excitations, for example fT
and fL modes in Sec. 2.1.2. There are two ways to include these excitations. One
is an analytical continuation from imaginary into the real frequency axis [96, 103],
the other one is dealing with real-time Green’s functions defined with special rules of
time-ordering [104], known as the Keldysh technique as discussed in the next section.

4.2.4 Keldysh technique

If the system is in thermal equilibrium at a time t0 = −∞, then the time evolution
of this system out of equilibrium is described by a forward and backward propagator
(an expectation value of a product of field operators). It was shown by Keldysh that
the proper time ordering TC of the Green’s function is achieved along a time contour
with a forward and backward branch running parallel to the real-time axis [104]. This
ordering splits the Green’s function to different analytical parts, depending on which
branch the time arguments are on. The auxiliary Green’s functions are defined as

Ĝ>(r1, t1; r2, t2) = −i〈ψ̂(r1, t1)ψ̂†(r2, t2)〉

Ĝ<(r1, t1; r2, t2) = i〈ψ̂†(r1, t1)ψ̂(r2, t2)〉.

The physical observables related to nonequilibrium effects can be expressed in terms of
these Green’s functions. For convenience, we can take appropriate linear combinations
of these Green’s functions, by introducing retarded (advanced) Green’s function GR(A)

and the Keldysh Green’s function GK as

ĜR(r1, t1; r2, t2) = Θ(t1 − t′1)[Ĝ<(r1, t1; r2, t2)− Ĝ>(r1, t1; r2, t2)]

ĜA(r1, t1; r2, t2) = −Θ(t′1 − t1)[Ĝ<(r1, t1; r2, t2)− Ĝ>(r1, t1; r2, t2)]

ĜK(r1, t1; r2, t2) = Ĝ<(r1, t1; r2, t2) + Ĝ>(r1, t1; r2, t2),
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where Θ(t) is a Heaviside step function in time.

We take the quasiclassical approximation, and write these Green’s function in a matrix
form in the Keldysh space as [105]

ǧ =

(
ĝR ĝK

0 ĝA

)
, (4.12)

which satisfies the Usadel equation in the diffusive limit (in steady state)

D∇ · (ǧ∇ǧ)−
[
−i(ε+ iΓ)τ3 + ih · στ3 + ∆̂ + Σ̌so + Σ̌sf + Σ̌orb, ǧ

]
= 0. (4.13)

Here, the self-energies in the commutator follow the structure of the Green’s function
ǧ in Eq. (4.12), and the other terms are diagonal in the Keldysh space.

The retarded and advanced Green’s functions contain the information on the eigen-
states of the system, namely, energy dependent properties of the system. For example,
the density of states for each spin species can be written as

N↑/↓s =
1

4
N0Re

{
Tr
[
(τ3 ± σsτ3) ĝR

]}
, (4.14)

where s = 1, 2, 3 represents the spin component. The retarded and advanced Green’s
functions are related as ĝA = −τ3ĝ

R†τ3. The retarded (advanced) Green’s function
can also be obtained from the Matsubara Green’s function by analytical continuation
iωn → ε± iΓ with positive (negative) ωn.

The Keldysh Green’s function contains information on the nonequilibrium distribution
functions. This can be seen from the normalization condition ǧ2 = 1̌. It yields (ĝR)2 =
(ĝA)2 = 1̂ and requires the Keldysh Green’s function to be related to the retarded and
advanced Green’s functions via

ĝK = ĝRf̂ − f̂ ĝA, (4.15)

where f̂ is called the distribution matrix. It was shown that f̂ = n01̂ in thermal
equilibrium [106], where

n0 = tanh
( ε

2T

)
(4.16)

is the equilibrium distribution function. Then, regarding to the nonequilibrium effects,
the distribution matrix f̂ must contain a nonequilibrium distribution of excitations.

If we substitute Eq. (4.15) into the Keldysh part of the Usadel equation in Eq. (4.13),
we obtain a linear equation for f̂ as follows

D
{
∇2f̂ +

(
ĝR∇ĝR

)
∇f̂ −∇

[
ĝR
(
∇f̂
)
ĝA
]
−∇f̂

(
ĝA∇ĝA

)}
+ i(ε+ iΓ)ĝR

[
τ3, f̂

]
− i(ε+ iΓ)

[
τ3, f̂

]
ĝA − ĝR

[
∆̂, f̂

]
+
[
∆̂, f̂

]
ĝA

− iĝR
[
h · σ, f̂

]
+ i
[
h · σ, f̂

]
ĝA +

∑
j=0,3

∑
i=1,2

[
1

8τsj

(
Ξ̂ij ĝ

A − ĝRΞ̂ij

)]
= 0,

(4.17)
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where Ξ̂ij = σiτj ĝ
R[f̂ , σiτj] + [f̂ , σiτj]ĝ

Aσiτj, and τsj = τso, τsf for j = 0, 3. In the
derivation, the retarded and advanced part of the Usadel equation is substituted to the
Keldysh part. We can see that there are no terms contributed from the orbital depair-
ing mechanism. Namely, orbital depairing does not contribute to the spin-relaxation
processes, rather it affects the equilibrium properties of the superconductor.

Since Eq. (4.17) is linear, it is convenient to parameterize the density matrix f̂ for a
general case of an inhomogeneous exchange field h as

f̂ = fL + fT τ3 +
3∑
j=1

(fTjσj + fLjσjτ3). (4.18)

Here fT and fL are the charge and energy modes discussed in Sec. 2.1.2. The terms in
the summation represent the nonequilibrium modes generalized for the spin-dependent
case. For example, in the case of a homogeneous exchange field h = hẑ, fT3 represents
the spin mode, and fL3 represents the spin energy mode. Moreover, their symmetries
in energy also follows with T (symmetric) and L (antisymmetric) labelled modes.

We can further derive kinetic equations for each component of the distribution matrix
f̂ . This can be done by multipling Eq. (4.17) by the different matrix components in
Eq. (4.18) separately, and taking the trace of each matrix equation. This leads to a
set of kinetic equations as follows [83, 84]

∇kj
sc
k = Hsc +Rsc + Ssc, (4.19)

where k = x, y, z and s, c range between 0 to 3. The terms in the equation describe the
spectral current tensor jsck , the Hanle precession of spin caused by the exchange field
Hsc, the conversion between the quasiparticles and the superconducting condensate
Rsc, and the scattering processes with self energy Ssc, respectively. These terms are
defined as

jsck =
1

8
Tr
{
σsτc

[
∇f̂ +

(
ĝR∇ĝR

)
f̂ − ĝR

(
∇f̂
)
ĝA − f̂

(
ĝA∇ĝA

)]}
(4.20a)

Hsc =
1

8
Tr
{
σsτc

(
iĝR

[
h · σ, f̂

]
− i
[
h · σ, f̂

]
ĝA
)}

(4.20b)

Rsc =
1

8
Tr
{
σsτc

(
ĝR
[
∆̂, f̂

]
−
[
∆̂, f̂

]
ĝA
)}

(4.20c)

Ssc =
1

8
Tr

{
σsτc

∑
j=0,3

∑
i=1,2

[
1

8τsj

(
ĝRΞ̂ij − Ξ̂ij ĝ

A
)]}

. (4.20d)

Solving these kinetic equations with proper boundary conditions, we can obtain all
relevant observables from the Keldysh Green’s function by using Eq. (4.15). For ex-
ample, the superconducting pair potential can be determined self-consistently as

∆ =
γ

16i

∫ Ec

−Ec

dεTr
[
(τ1 − iτ2) ĝK(ε)

]
, (4.21)
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where Ec is the BCS cutoff energy. This equation contains both equilibrium and
nonequilibrium contributions, as ĝK = (ĝR − ĝA) tanh[ε/(2T )] in equilibrium. The
nonequilibrium charge imbalance and spin accumulation can be calculated as

µ(R) =

∫ ∞
−∞

dε

16
Tr[ĝK(ε,R)] (4.22)

µs(R) =

∫ ∞
−∞

dε

16
Tr{σsτ3[ĝK(ε,R)− ĝKeq(ε,R)]}, (4.23)

where s = 1, 2, 3 is the spin components. The energy integrals of the different compo-
nents of the spectral current tensor yield charge, spin, energy, and spin-energy current
densities [90]

J ck =
σN
2e

∫ ∞
−∞

dεj03
k (4.24a)

Jsk =
σN
2e2

∫ ∞
−∞

dεjs0k (4.24b)

Jek =
σN
2e2

∫ ∞
−∞

dεεj00
k (4.24c)

Jsek =
σN
2e2

∫ ∞
−∞

dεεjs3k , (4.24d)

where σN = 2e2DN0 is the normal state conductivity and N0 is the density of states
at the Fermi level.

The detailed forms of the kinetic equations and the nonequilibrium observables in
particular cases are discussed in the following sections.

4.3 Homogeneous magnetization

The typical size of a domain in the ferromagnet is much larger than the superconduct-
ing coherence length ξ0 of many superconductors. In such a situation, a homogeneous
exchange field in a superconductor in a FI/S structure is a good assumption. This
is also the case of an applied parallel magnetic field. With a homogeneous magne-
tization, the term representing the exchange field in the Usadel equation becomes
ih · στ3 = ihσ3τ3. Moreover, the solution of the Usadel equation in equilibrium is
independent of the gradient terms. Namely, only the commutator determines the so-
lutions in Eqs. (4.9) and (4.13). For Eq. (4.13), we have[

−i(ε+ iΓ)τ3 + ih · στ3 + ∆̂ + Σ̌so + Σ̌sf + Σ̌orb, ǧ
]

= 0, (4.25)
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where
∆̂ = |∆| (cosϕτ1 − sinϕτ2) ,

and ϕ is the phase of the superconducting pair potential. This allows us to parame-
terize the retarded (or Matsubara) Green’s function as

ĝR = g01(τ1 cosϕ− τ2 sinϕ) + g03τ3 + g31σ3(τ1 cosϕ− τ2 sinϕ) + g33σ3τ3, (4.26)

where gi are complex scalar functions. Substituting this equation to Eq. (4.14), we
can write the total density of states and the density of states difference between the
two spin species as

N+ = N↑ +N↓ = Re(g03) (4.27a)

N− = N↑ −N↓ = Re(g33). (4.27b)

In the absence of the spin relaxation processes, the Usadel equation in Eq. (4.25) can
be solved analytically with the normalization condition (ĝR)2 = 1̂. The solutions are

g01/31 =
|∆|
2

(
1√

|∆|2 − (ε+ iΓ− h)2
± 1√

|∆|2 − (ε+ iΓ + h)2

)
(4.28a)

g03/33 =− i

2

[
ε

(
1√

|∆|2 − (ε+ iΓ− h)2
± 1√

|∆|2 − (ε+ iΓ + h)2

)

−h

(
1√

|∆|2 − (ε+ iΓ− h)2
∓ 1√

|∆|2 − (ε+ iΓ + h)2

)]
.

(4.28b)

The solutions in the Matsubara representation can be obtained by replacing ε+ iΓ→
iωn. In the presence of spin relaxation processes, however, these solutions have to be
determined numerically. Below, we solve the Usadel equation numerically and study
the effects both in equilibrium and out of equilibrium in some particular cases. The
numerical methods for solving the Usadel equation for homogeneous magnetization,
and the integrations are summarized in Appendix B.3.

4.3.1 Effects in equilibrium

Superconducting pair potential

Matsubara Green’s function technique is very efficient for calculating the supercon-
ducting pair potential in thermal equilibrium. With the parameterization in Eq. (4.26),
the self-consistency equation in Eq. (4.10) becomes

|∆| = 2πTγ

ωD∑
ωn>0

g01.
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The sum over Matsubara frequency gives a temperature dependent cutoff ND =
ωD/(2πT ) to the sum over n. Consider the following relation

2πT

ND(T )∑
n=0

1

ωn
= 2πT

ND(Tc)∑
n=0

+

ND(T )∑
ND(Tc)

 1

ωn
=

1

γ
+ log

(
Tc
T

)
,

where the definition of γ is used in the first sum [91], and the second sum is evaluated
with the harmonic series

k∑
n=1

1

n
≈ log k.

Then the self-consistency equation becomes

|∆| log

(
T

Tc

)
= 2πT

∑
ωn>0

(
g01 −

|∆|
ωn

)
. (4.29)

The self-consistent calculation using this equation, together with the free energy den-
sity in Eq. (4.11) are shown in Fig. 4.2. The numerical methods used in the calcu-
lations are discussed in Appendix B.1. The Chandrasekhar-Clogston limit can also
be determined analytically from the free energy in Eq. (4.11) in the absence of spin
relaxation processes. In this case, with the parameterization in Eq. (4.26), the free
energy becomes

fsn = 4πTN0

∑
ωn>0

[
ωn(1− g03)− 1

2
|∆|g01 − ihg33

]
.

Substituting the solutions in Eq. (4.28), and to the lowest order in temperature, we
can determine the Chandrasekhar-Clogston limit as

fsn
T→0−−−→ −πT |∆|

2 − 2h2
c

2
√
|∆|2 − h2

c

= 0 ⇒ hc =
|∆|√

2
.

We can see form Fig. 4.2(a) that the exchange field suppresses the superconducting
pair potential |∆| and the critical temperature Tc compared to the case h = 0. The
effect of the spin-flip relaxation and the orbital depairing rate is similar. Both of the
processes suppress |∆| and Tc, and the critical field of the Chandrasekhar-Clogston
limit, compared to the absence of the spin-relaxation processes [See Fig. 4.2(a,b)].
Although the spin-orbit relaxation also suppresses |∆| and Tc compared to the case
h = 0, the overall effect is reducing the effect of the exchange field (larger |∆| compared
to the absence of the spin-orbit relaxation), and increasing the critical field of the
Chandrasekhar-Clogston limit. This can be seen from the red curve in Fig. 4.2(a,b).
In the presence of a supercurrent, the dependence of |∆| on the phase gradient is
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Figure 4.2: Superconducting pair potential as a function of temperature (a), exchange field (b),
and the phase gradient (c). In (a) and (b), we defined the total spin-relaxation rate τ−1sn = τ−1so +τ−1sf .
The black dotted curve in (a) and (c) are the cases h = 0 and τ−1sn/orb = 0. The parameters used in
the calculations are T = 0.05∆0 and h = 0.3∆0 unless specified otherwise.

shown in Fig. 4.2(c). Here we consider a FI/S structure, so that the only contribution
to the orbital depairing rate is the phase gradient ξ0∂xϕ. For different spin-relaxation
processes, the phase gradient that makes |∆| = 0 corresponds to a critical phase
gradient that destroys superconductivity.

Density of states

The density of states of a superconductor with a spin-splitting field can be calculated
from Eq. (4.27). The results of the numerical calculations are shown in Fig. 4.3(b). We
can see that the overall effect of the spin-relaxation processes is reshaping the peaks
in the density of states. We also can see again that the spin-flip and orbital depairing
rates suppress |∆|, and the spin-orbit relaxation reduce the effect of the spin-splitting
field. This can be seen from the tendency of the combination of the two peaks around
ε = ∆0 in N+ (blue curve).

Tunnelling conductance

The most common way to detect the spin splitting in a superconductor is by us-
ing a tunnelling junction. The tunnelling current through a NIS junction is given
in Eq. (2.20). In the case of a ferromagnetic electrode with a non-vanishing spin
polarization, this expression should be extended to include the polarization of the
ferromagnetic electrode as [107]

I(V ) =
GT

e

∫ +∞

−∞
(N+ + PN−)[f(ε− eV )− f(ε)], (4.30)
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where the polarization P is defined as

P =
G↑ −G↓
G↑ +G↓

,

and Gs is the normal state conductance for spin s =↑ / ↓. In Fig. 4.3, the numerically
calculated tunnelling conductance dI/dV is shown for a normal metal and ferromag-
netic electrode, and the effects of different spin-relaxation processes are also consid-
ered. We can see that the tunnelling conductance with the normal metal electrode

I

V N or F
I
S

FI

H

-2 -1 0 1 2
0

1

2

3

-2 -1 0 1 2
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Figure 4.3: Tunnelling through a N(F)IS junction. (a) Schematics of the junction. Here the spin-
splitting field is induced either by a parallel magnetic field H or a ferromagnetic insulator. (b) Tun-
nelling conductance with a normal metal electrode. (c) Tunnelling conductance with a ferromagnetic
electrode with polarization P = 0.2. The black dotted line represents the tunnelling conductance in
the absence of spin-relaxation processes. The parameters used in the calculations are T = 0.01∆0

and h = 0.3∆0.

(and hence P = 0) is proportional to the density of states of the superconductor, as
discussed in Sec. 2.1.2. For the tunnelling conductance with the ferromagnetic elec-
trode, the peaks are antisymmetric. This is due to the polarization of the conduction
electrons in the ferromagnetic electrode. Therefore, the tunnelling conductance in this
case can also be used to measure the polarization of the ferromagnetic materials.

Tunnel junction between two FI/S structures

As shown in Sec. 2.1.2, the tunnelling current through a SIS junction not only in-
cludes the quasiparticle tunnelling current, but a Josephson current is also created
in the presence of a superconducting phase difference in the two superconductors. If
we replace the superconductors in the SIS junction by superconductors with a spin-
splitting field, new and interesting effects may arise due to the splitting of the density
of states, especially from the noncollinearity of the spin-splitting fields. These effects
are discussed in details in Article II. Below, the quasiparticle current and Josephson
current are summarized.

In order to take into account the most general situation, we assume that the spin-
splitting fields in the superconductors are induced by ferromagnetic insulators, and
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a spin-polarized tunnelling barrier is placed in between the two FI/S structures, as
shown in Fig. 4.4.

Figure 4.4: Schematics of a tunnel junction between two FI/S structures with a spin-polarized
tunnelling barrier studied in Article II. The spin-splitting fields in the superconductors are induced
by the neighbouring ferromagnetic insulators with different magnetization directions.

Here the spin-splitting field in the left (right) superconductor is induced by the left
(right) ferromagnetic insulator with a magnetization direction hL = hLmL (hR =
hRmR). The spin-polarized tunnelling barrier is also a ferromagnetic insulator with
polarization P = PmP . The mL/R/P is the unit vector pointing in the respective
direction. In order to avoid magnetic proximity effect, the two superconductors are
separated from the tunnelling barrier with thin insulators.

If we choose the polarization direction of the tunnelling barrier along the z axismP =
(0, 0, 1), then the magnetization unit vectors of the two ferromagnetic insulators can
be expressed as

mL = (sinαL, 0, cosαL)

mR = (sinαR cosφ, sinαR sinφ, cosαR),

where αL/R is the angle between the magnetization direction and the z axis, and φ is
the magnetization angle in the xy plane. In the case of αL = αR = 0 or φ = 0 and
αL = αR ± (π), the magnetization directions in the two ferromagnetic insulators are
in a collinear configuration. In the case of φ = 0 and αL 6= αR, the magnetization
directions in the two ferromagnetic insulators are in a coplanar configuration. The
most general configuration is the case of αL 6= αR and φ 6= 0.

Since the two insulators separate the two superconductors from the tunnelling barrier,
we can solve the Green’s function in the two superconductors separately. The results
can be used to calculate the total current through the double FI/S structure (see the
derivation in Article IV)

It(t) = I + IJ1 sin

(
ϕ+

2eV t

~

)
+ IJ2 cos

(
ϕ+

2eV t

~

)
,

where I is the quasiparticle tunnelling current, IJ1 is the usual Josephson critical
current, and IJ2 is the anomalous Josephson critical current. Below we discuss each
component separately.
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The quasiparticle tunnelling current can be expressed in terms of the solutions of the
Green’s functions as

I =
GT

2e

∫ +∞

−∞
dε
[
f(ε− eV, TL)− f(ε, TR)

]{
NL

+(ε− eV )NR
+ (ε)

+ P
[
NL

+(ε− eV )NR
− (ε)mR ·mP +NL

−(ε− eV )NR
+ (ε)mL ·mP

]
+NL

−(ε− eV )NR
− (ε)

[
m
‖
L ·m

‖
R +
√

1− P 2m⊥L ·m⊥R
]}

,

(4.32)

where
mL/R ·mP = cosαL/R

m
‖
L ·m

‖
R = cosαL cosαR

m⊥L ·m⊥R = sinαL sinαR cosφ.

The integrand in the first line of Eq. (4.32) gives the usual quasiparticle tunnelling
current in the absence of the exchange field. The terms proportional to mL/R ·mP

andm‖L ·m
‖
R are related to the exchange field. These terms survive if the magnetiza-

tion direction in the two ferromagnetic insulators are collinear. If we replace the left
superconductor with a normal metal, these terms simply become PNR

− (ε) cosαR, and
Eq. (4.32) reduces to Eq. (4.30) in the case of αR = 0. The termm⊥L ·m⊥R only exists
in the noncollinear configuration.

We can see from Eq. (4.32) that the current strongly depends on the configurations of
the spin-splitting fields. Drastic effects could take place if the magnetization directions
differ by large angles. For simplicity, we fix αL = 0, and calculate the tunnelling
conductance for different αR by assuming the temperatures in the two superconductors
are equal TL = TR = T = 0.01∆0. The tunnelling conductance with different αR are
plotted in Fig. 4.5.
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Figure 4.5: Tunnelling conductance of the system in Fig. 4.4 with polarization P = 0.2, (a) in the
absence of spin-relaxation processes, (b) in the presence of spin-flip relaxation process τ−1sf = 0.05∆0,
and (c) in the presence of spin-orbit relaxation process τ−1so = 0.5∆0. The strengths of the spin-
splitting fields are hL = 0.1∆0 and hR = 0.3∆0, respectively.
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We can see that in the collinear configurations of the spin-splitting fields, four peaks
appear in the tunnelling conductance at eV = ±(∆L + ∆R) ± (hL − hR). This is
an expected result since we assume that the strengths of the spin-splitting fields are
different, and it is observed in many experiments with FI/S structures [64, 65, 85].
Interestingly, if the configurations are not collinear, four more peaks appear as eV =
±(∆L+∆R)±(hL±hR) and these peaks are higher for larger αR. This is a new feature
in the tunnelling conductance of two superconductors with spin-splitting fields.

The Josephson critical currents IJ1 and IJ2 can be expressed in terms of the solutions
of the Green’s functions as

IJ1 = A0

√
1− P 2 + A3

[√
1− P 2m

‖
L ·m

‖
R +m⊥L ·m⊥R

]
−B3PmP · (mL ×mR)

IJ2 = B0

√
1− P 2 +B3

[√
1− P 2m

‖
L ·m

‖
R +m⊥L ·m⊥R

]
+ A3PmP · (mL ×mR),

where
mP · (mL ×mR) = sinαL sinαR sinφ

and

Ai =
GT

2e

∫ +∞

−∞
dε
{
f(ε, TR)Re

[
gLi1(ε− eV )

]
Im
[
gRi1(ε)

]
+f(ε− eV, TL)Im

[
gLi1(ε− eV )

]
Re
[
gRi1(ε)

]}
Bi =

GT

2e

∫ +∞

−∞
dε [f(ε− eV, TL)− f(ε, TR)] Im

[
gLi1(ε− eV )

]
Im
[
gRi1(ε)

]
,

where i = 0, 3.

If we assume TL = TR = T , Bi terms are zero. Then the Josephson critical currents
depend only on the Ai terms. The dependence of these terms on the spin-splitting
fields and the spin-relaxation rates are plotted in Fig. 4.6. These terms can also be
determined in the absence of spin-relaxation processes and in the case hL = hR = h
for T → 0 as

A0 =
GTπ|∆|

2e
η

A3 = −GTπ|∆|
2e

(η − 1),

where
η =

32|∆|2 (9h4 − 32h2|∆|2 + 256|∆|4)

(16|∆|2 − h2)3 − 1.

We can see from Fig. 4.6 and the expressions for Ais that η = 1 for h = 0, so
that A3 = 0 and A0 gives the Ambegaokar-Baratoff relation in Eq. (2.28) at T = 0.
Namely, A3 is nonzero only in the presence of a spin-splitting field. This gives a
correction to IJ1 and a nonzero IJ2 for a general configuration of the magnetization
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Figure 4.6: Integrals in the Josephson critical currents. The panels (a)-(c) are the spin-splitting field,
spin-flip relaxation rate, and spin-orbit relaxation rate dependence of A0. The panels (d)-(f) are the
dependence of those of A3. The calculations are done for hL = hR = h and τ−1,Lso/sf = τ−1,Rso/sf = τ−1so/sf
at a temperature TL = TR = T = 0.01∆0.

directions. Moreover, for a strong polarization P = 1, IJ2 is the only contribution to
the Josephson current in the case TL = TR.

In nonmagnetic Josephson junctions, IJ2 is nonzero when applying a voltage, and
known as the cosine term [108, 109]. But here it is finite in the absence of a voltage
with noncollinear spin-splitting fields. Then this is similar to the so-called anomalous
Josephson current that appears in some systems with inhomogeneous magnetization
and spin-orbit interaction [110].

4.3.2 Effects out of equilibrium

Many nonequilibrium effects in superconductors with a spin-splitting field are studied
in a nonlocal lateral structure shown in Fig. 4.7(a). It consists of a superconducting
wire, an injector electrode (normal or ferromagnetic), and a ferromagnetic detector
electrode placed at a distance Ldet from the injector electrode. The spin-splitting
field is induced either by an in-plane magnetic field, or by a ferromagnetic insulator
attached to the superconducting wire.

In this section, we study the nonequilibrium effects in such a structure in the presence
of an externally induced supercurrent.
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Figure 4.7: (a) The nonlocal lateral structure studied in Article III. A ferromagnetic detector is
placed a distance Ldet away from the normal metal injector on a superconducting wire with a spin-
splitting field together with an externally induced supercurrent. (b) Couplings between different
nonequilibrium modes via the spin-splitting field and the spectral supercurrents.

Kinetic equations

In the presence of supercurrent, the kinetic equations related to the nonequilibrium
effects in Eq. (4.19) in a homogeneous magnetization become

∇ ·


je
js
jc
jse

 =


0 0 0 0
0 ST3 0 0
0 0 RT RL3

0 0 RL3 RT + SL3



fL
fT3

fT
fL3

 , (4.37)

where 
je
js
jc
jse

 =


DL∇ DT3∇ jE∇ϕ jEs∇ϕ
DT3∇ DL∇ jEs∇ϕ jE∇ϕ
jE∇ϕ jEs∇ϕ DT∇ DL3∇
jEs∇ϕ jE∇ϕ DL3∇ DT∇



fL
fT3

fT
fL3

 . (4.38)

Here the kinetic coefficients DL/T/T3/L3, RT/L3, and ST3/L3 are defined in terms of the
Green’s function ĝR(A). The definitions and the energy dependence of these coefficients
are given in Appendix A. The terms with the phase gradient (considered to be a
constant) are the spectral supercurrents, the total spectral supercurrent jE = j↑E + j↓E
and spectral spin supercurrent jE = j↑E − j

↓
E, where j

s
E is the spectral supercurrent

for spin s =↑ / ↓. Note that the energy mode fL does not have a source term. This is
because we only consider systems with sizes much smaller than the inelastic relaxation
length. This makes fL mode long-ranged.

In equilibrium, gK = (gR − gA)n0, where n0 is the equilibrium distribution function
in Eq. (4.16). From the charge and spin-energy current densities in Eq. (4.24), the
supercurrent Is and spin-energy current Ise can be obtained as

Is =
σNW

2e

∫ ∞
−∞

dεjE tanh
( ε

2T

)
∇ϕ (4.39)

Ise =
σNW

2e2

∫ ∞
−∞

dεεjEs tanh
( ε

2T

)
∇ϕ,
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where W is the cross-sectional area of the superconducting wire. In the absence of
spin relaxation processes, these integrals can be solved analytically at T → 0. With
the solutions in Eq. (4.28), we obtain

Is =
σNWπ|∆|

2e
∇ϕ

Ise =
h

e
Is.

Out of equilibrium, we can see from Eq. (4.37) and Eq. (4.38) that all the nonequilib-
rium modes are coupled, as shown in Fig. 4.7(b). In the absence of the spin-splitting
field, fL and fT modes are coupled by jE. This coupling leads to charge imbalance in
the presence of a temperature gradient [17, 18]. In the absence of the supercurrent, h
couples fL and fT3 (as well as fT and fL3). This coupling leads to the long-range spin
accumulation due to the long-range feature of fL [76–82]. The combinations of the
above may lead to interesting effects. Especially, the coupling of fT and fT3 through
fL. Since fL is a long-range mode, it is possible to convert a short-range charge im-
balance to a long-range spin accumulation. This effect is discussed in Article III. The
summary of the discussions are given in this subsection.

In order to achieve the charge-spin conversion, we consider a nonmagnetic injector
electrode attached at x = 0. The injection of quasiparticle current from the injec-
tor electrode requires suitable boundary conditions to solve the kinetic equations in
Eq. (4.37).

Boundary conditions

The injection of matrix quasiparticle current is described by the boundary conditions
at the tunnelling interface [111] extended to the spin-dependent case [83, 84]

[jc]
[je]
[js]
[jse]

 = kI


N+ PN− PN+ N−
PN− N+ N− PN+

PN+ N− N+ PN−
N− PN+ PN− N+




[fT ]
[fL]
[fT3]
[fL3]

 , (4.40)

where kI = 1/(RI�σN) is the injector transparency, RI� is the injector interface resis-
tance per unit area and σN is the normal state conductivity, P is the spin-polarization
of the tunnelling barrier, N± is the density of states in Eq. (4.27).

The spectral currents on the left-hand side of Eq. (4.40) are the currents at the injector.
The nonequilibrium modes on the right-hand side of Eq. (4.40) are the difference
between nonequilibrium modes in the superconducting wire and the injector electrode



50 Superconductors with a spin-splitting field

[fk] = fSk − f
N/F
k , where k = T, L, T3, L3. For a normal metal injector, which we are

considering, [fNk ] = (n+, n−, 0, 0)>, where > means transpose, n± = [n0(ε − eV ) ±
n0(ε+eV )]/2 is the voltage-biased distribution function in the normal metal electrode,
and n0 is the equilibrium distribution function in Eq. (4.16).

Superconducting pair potential

The superconducting pair potential used to calculate the kinetic coefficients should
be determined self-consistently. With the Keldysh technique, the self-consistent cal-
culation is given in Eq. (4.21). With the parameterization in Eq. (4.26), it becomes

|∆| = γ

2

∫ Ec

−Ec

dε
{

Im(gR01)fL + Im(gR31)fT3 + i
[
Re(gR01)fT + Re(gR31)fL3

]}
.

If the superconductor couples to the injection electrode via a tunnelling junction,
the spectral properties of the superconductor are not affected by the nonequilibrium
modes within the leading order in the interface transmission. Then only the first term
in the integrand (with fL = n0) is relevant for the self-consistent calculations, and |∆|
is the same as the superconducting pair potential in equilibrium, and its properties
are discussed in Sec. 4.3.1.

Spin accumulation and nonlocal conductance

The injection of quasiparticle current from a normal metal injector creates charge
imbalance and spin accumulation in the superconducting wire. With the parameteri-
zation in Eq. (4.26), these quantities in Eq. (4.22) and Eq. (4.23) become

µ =
1

2

∫ ∞
0

dε(N+fT +N−fL3) (4.41)

µz =
1

2

∫ ∞
0

dε[N+fT3 +N−(fL − n0)]. (4.42)

Due to the couplings between the nonequilibrium modes, injected quasiparticle current
creates all the modes. The coupling between these modes leads to different nonequi-
librium effects. The charge imbalance and spin accumulation representing different
nonequilibrium effects are shown in Fig. 4.8. The numerical methods for solving the
boundary value problems and the integration of array functions are introduced in
Appendix B.2 and Appendix B.3, respectively.



4.3 Homogeneous magnetization 51

As we can see from Eq. (4.41) and Eq. (4.42), via N−, the spin-splitting field leads to
the fact that fL3 and fL modes contribute to the charge imbalance and spin accumu-
lation, respectively. These are shown as the red curves in Fig. 4.8(a). Since fL modes
only relaxes with inelastic scattering processes, it is linear in position and also makes
the spin accumulation long-ranged [79]. Through the supercurrent, the charge im-
balance (spin accumulation) converts into the spin accumulation (charge imbalance).
These are shown as the blue curves in Fig. 4.8(a). Since these conversions contain fL
mode, the supercurrent induced terms are also long-ranged.

We can see from the boundary conditions in Eq. (4.40) that the pure charge imbalance
is odd in applied voltage, while the heat induced spin accumulation is even. Thus, in
the linear response regime, the supercurrent solely induces the conversion between the
charge imbalance to the spin accumulation. In article III, we study the dependence of
spin accumulation in the linear response regime on various parameters.

In many experiments, the spin accumulation is detected by the nonlocal conductance.
The nonlocal conductance is determined from the current through the detector in the
case of a zero bias Vdet = 0 at the detector

gnl =
dIdet
dVinj

,

where
Idet = Gdet (µ+ Pdetµz) .

Here Gdet is the detector interface conductance in the normal state, Pdet is the po-
larization of the ferromagnetic detector, µ and µz are the charge imbalance and spin
accumulation in Eq. (4.41) and Eq. (4.42), respectively.

The nonlocal conductance can be separated into four components in terms of the
symmetry with respect to Vinj and Pdet as

gnl = gcharge + gscharge + (gsuper + gheat)Pdet.

Since gnl is a result of differentiation of Idet with respect to Vinj, the pure charge
imbalance gcharge is even with respect to Vinj and Pdet. The supercurrent induced
charge imbalance in the presence of a temperature gradient results to gscharge, which
is odd in Vinj. The term gheat is the long-range spin accumulation due to the heat
injection. This term is odd in Vinj and Pdet. Finally, gsuper, which is odd in Pdet and
even in Vinj, is the term caused by the supercurrent induced charge-spin conversion.

With this symmetry analysis, we can subtract the terms which are odd in the detector
polarization, and plot the results in Fig. 4.8(b,c). We can see that gheat is antisymmet-
ric with respect to Vinj, while gsuper is symmetric. The total conductance is asymmetric
due to these two contributions.
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Figure 4.8: (a) Pure charge imbalance and heat induced spin accumulation (red) and supercurrent
induced charge imbalance and spin accumulation (blue) at T = 0.15∆0 and Vinj = 0.1∆0. From
Article III. The nonlocal conductance for spin-orbit relaxation dominated case in (b) and for spin-
flip relaxation dominated case in (c) at T = 0.05∆0 and ξ0∂xϕ = 0.3. The blue solid curve represents
the total nonlocal conductance, the red dotted curve represents gheat, and gsuper is plotted in a
smaller scale. The spin relaxation rates in (b) are τ−1so = 0.0475∆0, τ−1sf = 0.0025∆0, and in (c) are
τ−1so = 0.0125∆0, τ−1sf = 0.0375∆0. The other parameters used in the calculations are h = 0.3∆0,
and L = 20ξ0.

4.4 Inhomogeneous magnetization

As discussed in Sec. 2.2.2, ferromagnets have domain structure. Namely, a ferromag-
net may consist of many domains with different magnetization directions connected
by domain walls. Thus, in a FI/S structure, the induced exchange field in the super-
conductor could also be inhomogeneous.

In this section, we relax the assumption of the previous section, a homogeneous mag-
netization, and study the effects of an inhomogeneity in a FI/S structure, especially
domain walls. For simplicity, we consider an inhomogeneous exchange field induced in
the superconductor as a domain wall structure separating two domains with opposite
magnetization directions. The theoretical treatment of the Usadel equation in this
case is developed in Article IV. The main steps are summarized in this section.

We consider a Néel domain wall [see Fig. 4.9(a)] induced in the superconductor, since
it is energetically favourable in thin ferromagnets, as shown in Sec. 2.2.2. We use the
rotation angle representing the domain wall structure in Eq. (2.38). It brings certain
technical advantages when we solve the Usadel equation as shown below.

With this rotation angle, the exchange field in the Usadel equation in Eq. (4.9) can
be written as

h = h (sinα(x), 0, cosα(x)) ,

where h is the exchange field strength. Correspondingly, the gradient in the Usadel
equation becomes a derivative in the x direction.
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We can introduce a rotation matrix, to rotate the spin axis parallel to the local
magnetization direction. Since the rotation of a Néel domain wall happens in the xz
plane in the spin space, we can define the rotation matrix as

R̂ = eiσ2α(x)/2,

where α(x) is the rotation angle in Eq. (2.38). With this rotation matrix, we can
rotate the quasiclassical Green’s function ĝ as

ĝ = R̂†ĝ0R̂, (4.43)

so that the new Green’s function ĝ0 satisfies

D∂̂Ax ·
(
ĝ0∂̂

A
x ĝ0

)
−
[
ωnτ3 + ihσ3τ3 + ∆̂ + Σ̂, ĝ0

]
= 0, (4.44)

where
∆̂ = ∆τ1,

∂̂Ax Y = ∂xY − [Â, Y ], (4.45)

and
Â =

i

2
σ2α

′(x).

Here we use the Matsubara representation. For the Usadel equation in the real-time
representation, the rotation matrix is doubled in the Keldysh space, and ĝ0 takes the
form of Eq. (4.12).

The long derivative contains an SU(2) type vector potential Â. It produces more
terms in the first term in Eq. (4.44) compared to the Usadel equation in homogeneous
magnetization in Eq. (4.25), as follows

D∂̂Ax ·
(
ĝ0∂̂

A
x ĝ0

)
= D∂x (ĝ0∂xĝ0) +D

[
Â, ĝ0Âĝ0

]
−D

[
Â, ĝ0∂xĝ0

]
−D∂x

(
ĝ0Âĝ0

)
.

We are especially interested in the second term on the right hand side

D
[
Â, ĝ0Âĝ0

]
=

1

2
α′(x)2D [σ2ĝ0σ2, ĝ0] . (4.46)

This term has a similar form with the extrinsic spin-orbit relaxation in Eq. (4.7) in
the Usadel equation, with a relaxation rate α′(x)2D/2 but only in one spin direction.
Thereby it is similar to the intrinsic (Rashba or Dresselhaus) spin-orbit coupling [112–
114]. This means that the inhomogeneous exchange field acts like spin-orbit relaxation,
and its effect would be similar to the one with spin-orbit relaxation discussed in
the previous section. Moreover, the rotation of the magnetization also indicates an
equilibrium spin current. Then this is similar to the equilibrium spin current for the
case when the direction of the Zeeman field is perpendicular to the direction of the
Rashba spin-orbit field in a superconducting wire [115].
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The derivative of the rotation angle α′(x) is discontinuous at the domain wall bound-
aries x = ±λ/2. This implies a discontinuity in the long derivative of ĝ0 in Eq. (4.45).
In order to describe this discontinuity we can integrate the Usadel equation in Eq. (4.44)
at the boundary to obtain the boundary conditions for the Usadel equation as

ĝ0∂xĝ0|x±b − ĝ0∂xĝ0|x∓b =
1

2
α′(x) [ĝ0iσ2, ĝ0] |x±b , (4.47)

where xb = ±λ/2 and ± refer to the right and left sides of the boundary. Far away
from the domain wall structure, the Usadel equation is the same with the one in the
case of a homogeneous exchange field. The solutions in this case constitute the rest of
the boundary conditions.

In order to solve the Usadel equation for a position dependent Green’s function, we
use an extended θ parameterization as in Ref. [116]

ĝ0 = cos θ (M0 + i tan θM · σ) τ3 + sin θ (M0 − i cot θM · σ) τ1, (4.48)

where M = (M1,M2,M3). The advantage of using this parameterization is that the
parameters θ, M0, and M are all real in the Matsubara representation. The normal-
ization condition ĝ2

0 = 1̂ implies a constraint on these parameters

M2
0 −M 2 = 1. (4.49)

With the parameterization in Eq. (4.48), the Usadel equation reduces to a set of
differential equations for the parameters θ,M0, andM . With the boundary conditions
in Eq. (4.47), these equations can be solved numerically. The numerical method for
solving the boundary value problems are introduced in Appendix B.2.

The solutions of the differential equations are shown in Article IV for the Matsubara
Green’s function. For retarded Green’s function, we can substitute iω → ε+ iΓ in the
differential equations, and obtain complex solutions of these parameters. Finally, the
unrotated Green’s function in Eq. (4.43) (Matsubara or retarded), can be written as

ĝ = cos θ [M0 + i tan θ cosα(x)M · σ + i tan θ sinα(x) (M3σ1 −M1σ3)] τ3

+ sin θ [M0 − i cot θ cosα(x)M · σ − i cot θ sinα(x) (M3σ1 −M1σ3)] τ1.
(4.50)

In the next section, this Green’s function is used to calculate various physical quan-
tities.

4.4.1 Effects in equilibrium

In this section, the equilibrium effects studied in Article IV is reviewed. We consider a
FI/S structure containing a Néel domain wall, as shown in Fig. 4.9(a), and the domain
wall center is at x = 0.
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Figure 4.9: (a) Schematic view of the structure considered in Article IV. A superconductor is placed
on top of a ferromagnetic insulator containing a domain wall. (b) Equilibrium spin current density
for λ = 0.5ξ0, T = 0.05∆0, and h = 0.3∆0. From Article IV.

Superconducting pair potential

In equilibrium, with the parameterization in Eq. (4.48), the self-consistency equation
for the superconducting pair potential in Eq. (4.29) becomes

∆ log

(
T

Tc

)
= 2πT

∑
ωn>0

(
M0 sin θ − ∆

ωn

)
. (4.51)

We can see that ∆ does not explicitly depend on the rotation angle α(x), since we
only consider spin-singlet pairing.

The self-consistent ∆ is position dependent around the domain wall structure. The
effect of the spin-relaxation processes are similar with the case of a homogeneous
exchange field in Sec. 4.3.1. However, the effects are weaker in the domain wall region,
since the inhomogeneous exchange field acts as a spin-orbit relaxation as in Eq. (4.46),
which already reduces the effect of the exchange field.

Equilibrium spin current density

Due to the inhomogeneity of the exchange field, the spin of the quasiparticles rotates
with respect to the local magnetization. This produces a flow of spin, namely an
equilibrium spin current density [117].

The spin current density in Eq. (4.24b) in the Matsubara representation can be written
as

jk,s =
σN
2e2

πT i
∑
ωn>0

Tr [σs (ĝ∇kĝ)] .

Since the rotation of the magnetization takes place along the spin y direction, the
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only nonzero component of the spin current is along this direction

jx,2 =
2σN
e2

πT
∑
ωn>0

[
α′(x)

(
M2

1 +M2
3

)
+M3∂xM1 −M1∂xM3

]
.

This is then consistent with the equilibrium spin current in a spin-split superconductor
with Rashba spin-orbit field [115].

The position dependence of jx,2 is shown in Fig. 4.9(b). We can see that inside the
domain wall, the maximum spin current density is a constant, and smoothly goes to
zero at the outside of the domain wall. Moreover, the spin-relaxation processes reduce
the spin current density. The dependence of the spin current density on temperature,
exchange field strength, and domain wall size are discussed in Article IV.

Effects of superconductivity on the domain wall size

In a thin ferromagnet, the (Néel) domain wall size and energy are given in Eq. (2.42).
These are determined from the free energy F1 in Eq. (2.41). The effect of the super-
conductivity which influences the formation of the domain wall should be added to
F1 when minimizing the total free energy. The contribution of the domain wall to the
energetics of the system is given by the difference of the superconducting free energy
in the case of inhomogeneous and homogeneous magnetization as

F2 = Fsn(h)− Fsn(h = hẑ),

where
Fsn =

∫ ∞
−∞

fsndV = W

∫ ∞
−∞

fsndx,

and W is the cross sectional area of the superconductor, and fsn is the free energy
density in Eq. (4.11). The free energy F2 and the domain wall size determined from
the total free energy F = F1 + F2 are discussed in detail in Article IV. The overall
effect of the superconductivity on energetics of the system is to reduce it, especially
for the domain walls with sizes of the order of ξ0.

Density of states

With the parameterization in Eq. (4.48), the density of states for each spin species in
Eq. (4.14) becomes (for s = 3)

N↑/↓ =
1

2
N0Re [cos θM0 ± (cosαM3 − sinαM1) i sin θ] .
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Here the parameters are complex since this expression is derived from the retarded
Green’s function. This density of states is position dependent and it is plotted in
Fig. 4.10(a) at different positions around the domain wall for λ = 0.1ξ0. We can see
that the density of states is affected by the inhomogeneity of the exchange field, and
it forms a shark-fin shape at the center of the domain wall.
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Figure 4.10: Density of states of a superconductor in the presence of a domain wall studied in
Article IV. (a) The density of states for each spin species at different positions around the domain
wall for λ = 0.1ξ0. (b) The total density of states at the domain wall center for different domain wall
sizes. (c) The effects of the spin-relaxation processes on the total density of states at the center of the
domain wall for λ = 0.1ξ0. The parameters used in the calculations are T = 0.05∆0, and h = 0.3∆0.

In Fig. 4.10(b), the total density of states at the center of the domain wall for different
domain wall sizes are shown. We can see that as the domain wall size decreases, the
inner peaks in the density of states are shifted to the outer ones, and the shark-fin
structure is formed for a small domain wall size. Finally, the effects of the spin-
relaxation processes on the density of states at the center of the domain wall are
shown in Fig. 4.10(c).

4.4.2 Effects out of equilibrium

The most interesting nonequilibrium effect in the case of an inhomogeneous exchange
field is the domain wall motion. The domain wall motion has been extensively studied
in ferromagnets in recent years [118]. However, this topic is much less studied in the
superconductor based hybrid structures. A thermally induced domain wall motion
was recently studied in the presence of a temperature gradient in a clean ferromag-
net/superconductor structure [119]. But in a FI/S structure, this effect has never been
studied so far to the author’s knowledge.

The currents inducing the domain wall motion in the superconductor are the currents
in Eq. (4.24). This requires solutions of the nonequilibrium modes for an inhomo-
geneous magnetization. Although the rotation of the magnetization takes place in a
plane, an equilibrium spin current exists in the perpendicular spin direction, as shown
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in Sec. 4.4.1. As a result, all the nonquilibrium modes in Eq. (4.18) are nonzero in
this case.

We can derive the kinetic equations for the nonequilibrium modes similar to the ones
in Eq. (4.37). In the absence of the supercurrent, these equations decouple into two
sets. One consists of the kinetic equations for fT and fLs modes, the other for fL and
fTs modes, where s = 1, 2, 3. However, this is a rather complicated problem.

It is instructive to examine the normal state form of these kinetic equations. If we
take the energy integral of the Usadel equation in Eq. (4.13), and take the trace after
multiplying with Pauli spin matrices, we reach a spin diffusion equation as

D∂2
xs =

1

τsn
s− 2h× s, (4.52)

where s = (s1, s2, s3) is a vector of spin accumulation. It is defined as

s(r) = N0

∫
dεf(r, ε), (4.53)

where f = (fT1, fT2, fT3).

This equation describes the spin accumulation in a weak ferromagnet with a domain
wall structure. This is due to the fact that the exchange splitting is small in a weak
ferromagnet, and hence the spin-relaxation rate and the diffusion constant are inde-
pendent of the spin index.

In order to understand the domain wall motion in a superconductor with an inhomo-
geneous exchange field, it is useful to study the domain wall motion in a system in
which the spin accumulation can be described by the above kinetic equation. As the
domain wall motion in a ferromagnet is an independent topic, we discuss it in the
next chapter.



5 Domain wall motion in a diffusive
weak ferromagnet

In this chapter, continuing the previously discussed nonequilibrium effects in the case
of inhomogeneous magnetization, the domain wall motion in a diffusive weak ferro-
magnet is discussed. First, the theory of domain wall motion is demonstrated briefly,
and then the theoretical model is presented. After reviewing the force and torque
acting on the domain wall shortly, the domain wall dynamics are discussed at the
end.

5.1 Theory of Domain wall motion in brief

A domain wall appears between two magnetic domains with opposite magnetizations
in a ferromagnet, as a result of the competition between the exchange energy and
anisotropy energy, as discussed in Sec. 2.2.2.

When a current is injected to a ferromagnet, an electron could be reflected or transmit-
ted from the domain wall. The reflection corresponds to a linear momentum transfer,
and the transmission corresponds to a spin (angular momentum) transfer, due to the
interaction between the localized spins with the conduction electrons by, for example,
an s-d type interaction as in Eq. (4.3).

Due to the conservation of momentum, a momentum transfer process leads to a do-
main wall motion. Due to the above two momentum transfer processes, the domain
wall motion cannot be simply described by a set of equations of motion of, for example,
a particle. The Lorentz force, for example, is perpendicular to the magnetic field and
velocity. A domain wall motion, as the magnetization direction rotates, also indicates
an accompanying out-of-plane angle of the magnetization direction. This idea was
proposed in the early phenomenological theoretical studies in Refs. [120–123]. After
a series of experimental confirmations [124–128], a microscopic theory of domain wall
motion was finally laid on more than a decade ago [129].

The equations of the domain wall motion are given by [118, 129]

φ̇+ α0
Ẋ

λ
=

λ

~NwS
(F + Fpin) (5.1a)
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Ẋ − α0λφ̇ =
K⊥λ

2~
S sin(2φ) +

λ

~NwS
Tz, (5.1b)

where S is the size of the localized spin, and φ is the out-of-plane angle of the magneti-
zation in the domain wall, and it is a function of time. This angle requires a hard-axis
anisotropy energy represented by K⊥. The number of localized spins in the domain
wall is Nw = 2λW/a3 in the case of a thin ferromagnet, whereW is the cross-sectional
area of the ferromagnet, and a is the lattice constant.

The force, representing the momentum transfer, and the torque, representing the spin
transfer, are given by [118, 129]

F = −
∫
dV∇h · s, (5.2a)

Tz = −
∫
dV (h× s)z, (5.2b)

where s is the spin density, and h is the exchange field in the ferromagnet. Its ampli-
tude h = |h|, the exchange splitting is defined as h = JexS, where Jex is the effective
parameter describing the s-d type exchange interaction, see Eq. (4.3).

For the current driven domain wall motion, the force is much larger than the torque,
in the case of a small domain wall, since in this case, the electron scattering is strong.
In the opposite limit, for large domain walls, the electrons scattering is weak, and the
torque is much larger than the force. This is known as the adiabatic limit [118].

The term Fpin represents the extrinsic pinning which modifies the easy axis anisotropy.
For a point defect, it can be written as

Fpin = −dVpin

dX
,

where
Vpin =

NwV0

ζ2

(
X2 − ζ2

)
Θ(ζ − |X|).

Here Θ(x) is the Heaviside step function, V0 is the pinning strength per spin, and ζ
is the pinning range.

The equations of motion of a domain wall in Eq. (5.1) are simple. The nonnontrival
task is to evaluate the force and torque, especially the spin density. Once determining
the spin density, and choosing the domain wall structure, we can discuss the domain
wall dynamics by solving the equations of motion with proper initial conditions, usu-
ally chosen as X(0) = 0 and φ(0) = 0.

In this chapter, we discuss the domain wall motion induced by a spin current in a weak
ferromagnet, resulting from the induced spin accumulation. The spin accumulation
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is the spin density s in the force and torque in this case. We determine the spin
accumulation from the spin diffusion equation in Eq. (4.52).

One major difference of the spin current from the spin-polarized charge current (used
in most of the domain wall motion studies) is that it decays within the spin-relaxation
length ls, due to the spin-relaxation processes. In fact, the spin-relaxation processes
bring many effects in the domain wall motion induced from spin-polarized charge
current. For example, it enhances nonadiabaticity of the domain wall close to the
adiabatic limit [130, 131]. A spin current without the charge current going along may
bring interesting effects to the domain wall motion.

5.2 Spin accumulation in a weak ferromagnet

In this chapter, we study the domain wall motion in the structure shown in Fig. 5.1.
This structure consists of a weak ferromagnet containing a domain wall with size λ,
and a strong ferromagnetic injector with polarization PI . The injector is placed on the
left of the domain wall structure at z = 0, where the magnetization is homogeneous.
We consider the Néel domain wall since it is energetically preferred in thin films (see
Sec. 2.2.2).

zX

λ

Weak ferromagnetic metal
0

V

I I = 0⃗PI

Charge  
Current

Spin  
Current

Figure 5.1: Schematics of a weak ferromagnet containing a domain wall considered in Article V.
An injector is placed on the left side of the domain wall at a position z = 0, where the magnetization
is homogeneous.

The domain wall structure is described in the exchange field as

h = hm(z −X), (5.3)

where m(x) is given in Eq. (2.35) with the rotation angle α given in Eq. (2.38) by
replacing x→ z −X.

The "weak" and "strong" ferromagnets are considered in terms of the size of the spin
polarization in Eq. (2.32). For a weak ferromagnet with a small exchange splitting,
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the density of states for each spin species at the Fermi level are equal N↑0 ' N↓0 , and
hence P → 0. This allows us to use a spin-independent transport equation to describe
the spin accumulation in the weak ferromagnet.

When a spin polarized current is injected from the ferromagnetic injector, a spin accu-
mulation is created in the weak ferromagnet. Due to the spin relaxation processes, this
spin accumulation decays exponentially within the spin-relaxation length, ls =

√
Dτs,

where τs is the spin-flip relaxation time. The spin diffusion equation in Eq. (4.52)
can also be derived from the Boltzmann equation in the diffusive limit, as we have
shown in Article V. After including the Plank’s constant, we rewrite the spin-diffusion
equation as

~D∂2
zs =

~
τs
s− 2h× s.

Similar to the trick in Sec. 4.4, we can use a rotation matrix to transform the spin-
diffusion equation to a simpler form. Considering the out-of-plane angle φ, the rotation
matrix can be defined as

R̂ = eiσ2α(z−X)/2eiσ3φ/2,

so that we can write the spin accumulation as

s = R̂†s0R̂. (5.4)

Then the spin accumulation s0 = (s0
1, s

0
2, s

0
3) in the rotated spin space satisfies the

following spin-diffusion equation

~D∂̂2
zs0 =

~
τs
s0 − 2hẑ × s0, (5.5)

where ẑ = (0, 0, 1), and the long derivative is given in Eq. (4.45).

The boundary conditions for this equation representing the discontinuity of α′(z) can
be obtained by integrating the boundary conditions in Eq. (4.47) in energy as

∂zs
0
1|z±b − ∂zs

0
1|z∓b = −π

λ
s0

3|z±b ,

∂zs
0
2|z±b − ∂zs

0
2|z∓b = 0,

∂zs
0
3|z±b − ∂zs

0
3|z∓b =

π

λ
s0

1|z±b ,

where zb = ±(X ± λ/2), and ± refers to the right and left sides of the domain wall
boundary.

The boundary conditions representing the injection of the spin-polarized current can
be obtained by taking the energy integral of the boundary conditions in Eq. (4.40)
[and also multiplied by N0 as in Eq. (4.53)] as

~D∂zs0
1 = 0
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~D∂zs0
2 = 0

~D∂zs0
3 = kI~D(s0

3 − PIV N0).

Note that, the voltage V here represents a rescaled voltage at the injector Vinj by a
factor η as V = ηVinj (e = 1). This is due to the fact that the spin accumulation in
the weak ferromagnet is affected by the spin accumulation in the injector (strong)
ferromagnet (see the detail in Article V).

Finally, the spin accumulation s0 in the rotated space can be transformed into the
unrotated space by using Eq. (5.4). In detail, we have

s1 = cosφ(s0
1 cos θ + s0

3 sin θ)− s0
2 sinφ (5.8a)

s2 = s0
2 cosφ+ sinφ(s0

1 cos θ + s0
3 sin θ) (5.8b)

s3 = s0
3 cos θ − s0

1 sin θ. (5.8c)

The position dependence of the components of s0 and s are shown in Article V.
The numerical methods for solving the boundary value problems are introduced in
Appendix B.2. In the preceding section, we use s to calculate the force and torque.

5.3 Force and torque

Substituting the spin accumulation in Eq. (5.8) and the exchange field in Eq. (5.3) to
the expressions of the force and torque in Eq. (5.2), obtain

F = −hπW
λ

∫
dzs0

1 (5.9a)

Tz = −hW
∫
dzs0

2 sin θ, (5.9b)

where W is the cross-sectional area of the weak ferromagnet.

The dependence of the force and torque on various parameters as a function of the
domain wall position X are shown in Article V. Due to the decaying feature of the
spin current and spin accumulation, the force and torque also decay exponentially.
Moreover, the amplitudes of the force and torque do not solely depend on the domain
wall size λ, but they also depend on the spin-relaxation processes. For strong spin
relaxation, the force is much larger then the torque unless λ is of the order of lh. For
weak spin relaxation, on the other hand, the torque is much larger than the force
unless λ � lh. These properties are different from the ones in the case of current
driven domain wall motion [118].
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5.4 Domain wall dynamics

The units of F and Tz/λ are hV N0W . In order to make the equations of motion in
Eq. (5.1) dimensionless, one can choose a unit time as

t0 =
2~S

a3N0hV
.

Multiplying Eq. (5.1) by t0, and reorganising the terms, obtain (in the absence of the
external pinning)

Ẋ

λ
=

1

1 + α2
0

[
α0f +

τz
λ

+ k⊥ sin(2φ)
]

(5.10a)

φ̇ =
1

1 + α2
0

[
f − α0

τz
λ
− α0k⊥ sin(2φ)

]
. (5.10b)

Here the unitless force, torque, and perpendicular anisotropy energy are defined as

f = − π

λV N0

∫
dxs0

1

τz = − 1

V N0

∫
dxs0

2 sin θ

k⊥ =
K⊥S

2

a3N0hV
.

Before solving these equations with the force and torque in Eq. (5.9), we first discuss
the case of constant force and torque.

Constant force and torque

For constant force and torque, which are denoted as f0 and τ 0
z , respectively, the

equations of motion in Eq. (5.10) can be solved analytically with the initial conditions
X(0) = 0 and φ(0) = 0. Due to the lengthy form of the analytical expressions, only the
numerical solutions are plotted in Fig. 5.2 and the analytical results in the limit t→∞
are used for discussions. The numerical methods for solving initial value problems are
summarized in Appendix B.3.

In the case of the force much larger than the torque, φ̇ = 0 for f0 < α0k⊥ when t→∞.
Substituting Eq. (5.10b) to Eq. (5.10a), we obtain a constant domain wall velocity

Ẋ =
λf0

α0

. (5.11)
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Figure 5.2: Domain wall motion with constant force and torque. In the left column (a,d), the
domain wall motion is shown in the absence of the torque f0 = 1.0V hN0W , τ0z /λ = 0 for λ = 0.01lh.
In the middle column (b,e), the domain wall motion is shown in the absence of the force f0 = 0,
τ0z λ = 1.0V hN0W for λ = 100lh. In the right column (c,f), the domain wall motion is shown in the
presence of both force and torque f0 = 0.01V hN0W , τ0z /λ = 1.0V hN0W for λ = 100lh. The Gilbert
damping parameter α0 = 0.1 is used in the calculation.

Using this result, we can also determine

φ =
1

2
arcsin

(
f0

α0k⊥

)
. (5.12)

If f0 > α0k⊥, however, φ̇ oscillates in time, and this leads to an oscillatory domain wall
motion as can be seen from Fig. 5.2(a). This is known as the Walker breakdown [132].

In the case of the torque much larger than the force, we also have φ̇ = 0 for τ 0
z < k⊥λ

when t→∞. This makes the domain wall stop

Ẋ = 0.

This means that the spin transfer is completely absorbed by the perpendicular anisotropy
energy represented by k⊥. This is known as the intrinsic pinning [129]. In this case, φ
can be determined from Eq. (5.10b) as

φ = −1

2
arcsin

(
τ 0
z

k⊥λ

)
.

In the opposite regime τ 0
z > k⊥λ, however, the domain wall keeps moving as the

time evolves. The domain wall position as a function of time in this case is shown in
Fig. 5.2(b).
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In the presence of both force and torque, even a small force is enough to break the
intrinsic pinning and the domain wall moves with a constant velocity for k⊥ > |f/α0−
τ 0
z /λ| as in Eq. (5.11). The out-of-plane angle φ in Eq. (5.12) becomes

φ =
1

2
arcsin

[
1

k⊥

(
f0

α0

− τ 0
z

λ

)]
. (5.13)

In the opposite case, k⊥ < |f/α0−τ 0
z /λ|, the domain wall again moves in an oscillatory

fashion, see Fig. 5.2(c,f).

Decaying force and torque

The force and torque in Eq. (5.9) decay exponentially as a function of X. The three
cases of the domain wall motion, force much larger than the torque, the torque much
larger than the force, and comparable force and torque, are plotted for a decaying
force f = f0e

−X/ls and torque τz = τ 0
z e
−X/ls in Fig. 5.3.
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Figure 5.3: Domain wall motion with decaying force and torque studied in Article V. In the left
column (a,d), the domain wall motion is shown for the case of the force much larger than the torque
for λ = 0.01lh and ls = 3.2lh. In the middle column (b,e), the domain wall motion is shown for the
case of the torque much larger than the force λ = 20lh and ls = 100lh. In the right column (c,f),
the domain wall motion is shown for comparable force and torque for λ = lh and ls = 3.2lh. The
other parameters used in the calculations are PI = 0.5, kI lh = 0.5, X0 = λ/2, and α0 = 0.1. In the
calculations k⊥ = 1.2|f0/α0 − τ0z /λ|.

In the case of the force much larger than the torque, similar consideration with
Eq. (5.11) yields in the case of φ̇ → 0 and f0 < α0k⊥ an equation for the domain
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wall velocity

Ẋ =
λf0

α0

e−X/ls . (5.14)

This equation can be solved as

X = X(0) + ls log

(
1 +

f0λt

lsα0

)
,

and
Ẋ =

f0lsλ

lsα0 + f0λt
.

Here X(0) is the domain wall position when φ̇ → 0. Comparing with Eq. (5.11), we
can find that the domain wall velocity is decreased by an amount which depends on
time and Ẋ → 0 for t → ∞. We can also determine the out-of-plane angle from
Eq. (5.10b) as

φ =
1

2
arcsin

[
f0ls
k⊥

e−X(0)/ls

lsα0 + f0λt

]
. (5.15)

Namely, φ is positive and approaches to 0 for t→∞. In the opposite case, f0 > α0k⊥,
the Walker breakdown takes place. However, as the force decays and thus smaller
than α0k⊥ after some time T , the domain wall motion for t > T is again governed by
Eq. (5.14). This can be seen from Fig. 5.3(a,d).

In the case of the torque much larger than the force, the intrinsic pinning always takes
place since as the torque decays there is always a time τz(T ) < k⊥λ. Then for t→∞,
we always have

Ẋ = 0.

From the numerical result in Fig. 5.3(e), we can see that φ is negative in this case.

For comparable both force and torque, the intrinsic pinning is destroyed and the
domain wall motion is again governed by Eq. (5.14). We can also determine

φ =
1

2
arcsin

[
1

k⊥

(
f0

α0

− τ 0
z

λ

)
α0ls

lsα0 + f0λt
e−X(0)/ls

]
. (5.16)

The numerical solutions of the equations of motion in this case can be seen from
Fig. 5.3(c,f).



6 Summary & Outlook

This thesis studies novel effects in new forms of superconductivity. The new forms
are rather distinct due to the different aim in their research. The research in flat
band superconductivity aims to find materials or systems with higher critical temper-
ature, while the research in superconductors with a spin-splitting field concentrates
on transport properties at a low temperature.

Notwithstanding the objectives, the density of states plays important role in under-
standing the effects in both aspects. Benefited from the diverging density of states
representing flat energy bands in the normal state, flat band systems form high tem-
perature superconducting state below the critical temperature. The lifted spin de-
generacy reveals in the superconducting density of states by the spin-splitting field
leads to the novel features which do not exist or very small in usual (non spin-split)
superconductors.

The thesis focuses on the strained Dirac materials for the flat band superconductiv-
ity, and various equilibrium and nonequilibrium properties of superconductors with
homogeneous and inhomogeneous spin-splitting fields. The main results of the thesis
and some unsolved problems are outlined below.

Flat-band superconductivity

In article I, we study superconductivity in Dirac materials with flat energy bands
induced by a strain field. We discuss several properties of such systems in the su-
perconducting state, including inhomogeneous superconducting pair potential, highly
increased critical temperature compared to the case without the strain, peculiar two-
peak shaped density of states, and a finite supercurrent.

The strain field considered in article I acts as a pseudo magnetic field, and it preserves
the time reversal symmetry [42]. Hence it would be interesting to see the magnetic
properties of the model in article I. Especially, for example in a strained graphene as a
one atomic layer thickness system, a perpendicular magnetic field creates a magnetic
vortex in the system. Moreover, the screening effects in the strain induced flat band
is another unsolved problem. The screening properties of electrons is described by the
dielectric constant, and the dielectric constant is related to the density of states [21].
The diverging density of states in the strained Dirac materials may lead to unexpected
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effects.

The research in flat band superconductivity could be extended to other systems.
Recently discovered superconductivity in twisted bilayer graphene with a twist angle
(magic angle) about 1◦ [133] could be explained by flat band superconductivity [134],
since the effect of the twist is to suppress the Fermi velocity and the flat bands are
formed around the magic angle [135].

Equilibrium effects in superconductors with a spin-splitting field

The equilibrium effects in FI/S structures considered in this thesis include both the
cases of homogeneous and inhomogeneous magnetization.

In the case of homogeneous magnetization, various equilibrium properties are reviewed
in Refs. [83, 84], including FFLO state, static susceptibility, Fermi liquid effects,
and cryptoferromagnetic state. In Article II, we studied the transport properties of
junctions between two FI/S structure. We show that the noncollinearity of the spin-
splitting fields between the two FI/S structures creates new features in the tunnelling
conductance (eight-peak structure) and Josephson current (nonzero current in the
absence of the external voltage). However, these effects are not shown in the experi-
ment in Article II. This is due to the fact that the spin-splitting field induced in the
superconductor is inhomogeneous, and the measured tunnelling current is determined
by taking the average over the inhomogeneity in space.

Indeed, the inhomogeneous exchange field in a FI/S structure is more often encoun-
tered, especially in large samples. There are also many interesting effects in the case
of inhomogeneous exchange field. For example in Ref. [85], the inhomogeneity of the
FI is described by a multi domain structure, and it brings changes to the density
of states and the tunnelling conductance. In Article IV, we consider a single domain
wall separating two domains with opposite magnetization directions. We study several
physical quantities altered due to the domain wall structure, such as domain wall size,
equilibrium spin current, density of states, and the tunnelling conductance.

As we have shown in Article IV, superconductivity reduces the induced domain wall
size. However, we restricted ourselves to a case of positive total free energy of the
system. This remains the situation unsolved for when the total free energy is negative,
and which leads to a dense multi domain structure [136]. Moreover, another unsolved
problem is the effect of the supercurrent to the properties of a FI/S structure with
a fixed domain wall, this would lead to an equilibrium spin supercurrent and further
influence the domain wall size.
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Nonequilibrium effects in superconductors with a spin-splitting field

Various nonequilibrium effects in superconductors with a homogeneous spin-splitting
field are studied in recent years, and are reviewed in Refs. [83, 84]. The correspond-
ing effects are rather small or absent in non spin-split superconductors, for example,
thermoelectric effects and long-range spin accumulation. The work in Article III fills
the gap of these effects in the presence of a supercurrent. We show that in a super-
conductor with a spin-splitting field, a supercurrent can convert charge imbalance to
long-range spin accumulation, and this can be detected by studying different symme-
try components in the nonlocal conductance.

A number of future research problems in the superconductors with a spin-splitting
field are outlined in Refs. [83, 84]. These research directions contribute to the future
applications in technology, for example, the thermoelectric radiation detector [137]
based on the very large thermoelectric effects [72, 73].

Besides these effects, the untouched and also challenging problems out of equilibrium
are in the case of inhomogenous spin-splitting field, for example, domain wall motion.
As a precursor, we study the domain wall motion in a weak ferromagnet induced by
a spin current as a result of spin accumulation in Article V. We evaluate the force
and torque acting on the domain wall, and show that the domain wall motion in this
case has its characteristic features, for example, time dependent domain wall velocity
in the case of force much large than the torque, and achieving the intrinsic pinning
in all cases in the case of the torque much larger than the force. The domain wall
motion in the superconducting state is left for future work. Moreover, the equilibrium
supercurrent may also induce the domain wall motion, and finally, the extension of
these works in the presence of both supercurrent and spin accumulation.

To summarize, the new forms of superconductivity studied in this thesis contributed
to the research community in the field of superconductivity. Strain induced flat band
provides new ways of studying flat band superconductivity, and it has certain advan-
tages to other suggesitons, for example, larger flat band areas in the momentum space
compared to the twisted bilayer graphene [138].

The research in superconductivity with a spin-splitting field filled many gaps in this
field. The research also going towards the directions have not yet been explored,
such as the domain wall motion. It has also been used in other aspects of the super-
conductivity, like Majorana based quantum computing [139–141]. Very exciting and
interesting problems are left to the future. The author sincerely hopes the research in
this field to be continued by others.



Appendix A:
Kinetic Coefficients

The kinetic coefficients in Eq. (4.38) are defined in Eq. (4.20a) for a homogeneous
magnetization. With the parameterization in Eq. (4.26), they can be written as

DL =
D

8
Tr
(
1̂− ĝRĝA

)
=
D

2
(1− |g01|2 − |g31|2 + |g03|2 + |g33|2)

DT3 = −D
8

Tr
(
ĝRσ3ĝ

A
)

= DRe(g03g
∗
33 − g01g

∗
31)

DT =
D

8
Tr
(
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Aτ3

)
=
D

2
(1 + |g01|2 + |g31|2 + |g03|2 + |g33|2)

DL3 = −D
8

Tr
(
ĝRτ3σ3ĝ

Aτ3σ3

)
= DRe(g01g

∗
31 + g03g

∗
33)

jE =
D

8
Tr
[(
ĝR∂xĝ

R − ĝA∂xĝA
)
τ3

]
= D

[
Im(g2

01) + Im(g2
31)
]

jEs =
D

8
Tr
[(
ĝR∂xĝ

R − ĝA∂xĝA
)
τ3σ3

]
= 2DIm(g01g31)

The kinetic coefficients on the right hand side of Eq. (4.37) can also be written in
terms of the components of the Green’s function in Eq. (4.26)

RT =
|∆|
8

Tr
[(
ĝR + ĝA

)
τ1

]
= Re(g01)|∆|

RL3 =
|∆|
8

Tr
[(
ĝR + ĝA

)
τ1σ3

]
= Re(g31)|∆|

ST3 =
1

τsn

{
Re(g03)2 − Re(g33)2 + β

[
Im(g01)2 − Im(g31)2

]}
SL3 =

1

τsn

{
Re(g03)2 − Re(g33)2 − β

[
Re(g01)2 − Re(g31)2

]}
where

τ−1
sn = τ−1

sf + τ−1
so

β =
τ−1
sf − τ−1

so

τ−1
sf + τ−1

so

.

The energy dependence of these kinetic coefficients are shown in Fig. A.1.
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Figure A.1: Energy dependence of the kinetic coefficients with spin-flip , spin-orbit, and orbital
depairing rates in left, center, and right columns, separately. The depairing rates are τ−1sf = 0.1∆0,
τ−1so = 0.5∆0, and τ−1orb = 0.1∆0, respectively. The dashed curves show the energy dependence of
the kinetic coefficients in the absence of the spin-relaxation processes with Γ = 0.01∆0, except for
ST3/L3 with τ−1sf = 0.1∆0 and τ−1so = 0.5∆0.



Appendix B:
Numerical methods

The numerical calculations in this thesis are carried out in MATLAB. Various numeri-
cal solvers in MATLAB are very convenient and efficient for the problems encountered
in this thesis. For example, self-consistent calculations, diagonalizing matrices, solving
nonlinear algebraic equations, solving differential equations, and integration of array
functions. Here, we summarize the numerical methods regarding these problems.

B.1 Self-consistent calculations

The self-consistent calculations in this thesis is considered for determining the super-
conducting pair potential. We use the MATLAB solver package nsola to do these
calculations. This solver is based on the Newton-Krylov iterative method to solve
linear and nonlinear equations.

In order to use nsola to perform self-consistent calculations for the superconducting
pair potential, one needs to provide the an error function, an initial guess, and error
tolerances (both relative and absolute). The error function is defined as

erf = ∆new −∆old,

where ∆new is the obtained superconducting pair potential in each iteration, and ∆old

is the one in the previous iteration, in the first iteration ∆old is then the initial guess
∆(0).

For flat band superconductivity in strained Dirac materials in Chapter 3, the super-
conducting pair potential is determined from Eq. (3.6). The initial guess is chosen as
the superconducting pair potential for pure flat bands ξk = 0 in Eq. (3.1) at T = 0.
Since the energy spectrum is periodic in kx in the first Brillouin zone and flat bands
are formed between ky ∈ [−β/(2L), β/(2L)], we can write Vd=2 = 2πβ/L2, and con-
sidering the valley and pseudo spin degeneracies, Eq. (3.1) becomes

∆(0) =
gβ

πL2
.
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For the superconductors with a spin-splitting field in Chapter 4, the superconducting
pair potential is determined from (depending on the parameterization) Eq. (4.29) and
Eq. (4.51). The superconducting pair potential at zero temperature and spin-splitting
field ∆0 is chosen as the initial guess in these cases.

B.2 Boundary value problem

The kinetic equations in Eq. (4.37), and the Usadel equation in Eq. (4.44) [and hence
Eq. (5.5)] are linear and nonlinear ordinary differential equations, respectively. The
MATLAB built-in functions bvp4c and bvp5c, based on the most commonly used
shooting method, are very efficient for solving these equations for a boundary value
problem. The small price to be paid is that, one has to reduce the differential equations
to the first order. For a set of differential equations, the reducing order leads to a first
order matrix differential equations as

∂xf = Mf , (B.1)

where f is a vector of the solutions to be determined and M is a matrix. For non-
linear differential equations M is also a functional of f . For the kinetic equations in
Eq. (4.37), we can write

f = (fL, fT3, fT , fL3, ∂xfL, ∂xfT3, ∂xfT , ∂xfL3),

and for the Usadel equation in Eq. (4.44), we can write

f = (θ,M0,M1,M3, ∂xθ, ∂xM0, ∂xM1, ∂xM3). (B.2)

For the spin-diffusion equation in Eq. (5.5), we can write

f = (s0
1, s

0
2, s

0
3, ∂xs

0
1, ∂xs

0
2, ∂xs

0
3). (B.3)

However, the examples of bvp4c and bvp5c for the matrix differential equations and
the boundary conditions for a multiboundary problem is not easy to find. An example
code is listed below. Note that, the user defined functions for bvp4c and bvp5c can
only be defined for three variables, x (coordinate mesh of the superconducting or
ferromagnetic wire), y (solutions to be determined), and region (representing the
multiboundary). The other variables have dependence on the differential equations
and boundary conditions have to be set as global variables.

The structure of the differential equations with eight solutions and four boundaries



B.2 Boundary value problem 75

(three regions) are written as follows [regarding Eq. (4.37) and Eq. (4.44)]

function[dxdy]=odefun(x,y,region)
global a b c d
switch region

case 1
dxdy=[eqn1_1(a,b,c,d); eqn2_1(a,b,c,d); ...; eqn8_1(a,b,c,d)];

case 2
dxdy=[eqn1_2(a,b,c,d); eqn2_2(a,b,c,d); ...; eqn8_2(a,b,c,d)];

case 3
dxdy=[eqn1_3(a,b,c,d); eqn2_3(a,b,c,d); ...; eqn8_3(a,b,c,d)];

end

Here dxdy represents the derivative of f in Eq. (B.1). The equations on the right-
hand-side of dxdy represents the right-hand-side of the matrix differential equation
in Eq. (B.1). For the kinetic equations in Eq. (4.37), these equations are the same
for three regions, but for the Usadel equation in Eq. (4.44) [and hence Eq. (5.5)] the
equations in region 2 is different form region 1 and region 3.

The structure of the boundary conditions for the differential equations with the above
form are written as follows

function[res]=odebc(yL,yR)
global a b c d
res=[cond1(a,b,c,d,yL,yR),cond2(a,b,c,d,yL,yR),...,

cond32(a,b,c,d,yL,yR)];

Here yL (yR) represents the value of the solutions at the left (right) boundary in each
region. For the above differential equations with eight solutions and four boundaries,
it is a 8 × 3 matrix. The boundary conditions in res include all the relevant bound-
ary conditions. For example, for the kinetic equations in Eq. (4.37), the boundary
conditions not only include the injection of the quasiparticles in Eq. (4.40). One also
needs to consider the superconductor is in equilibrium far from the injector. This
means fL = n0, where n0 is the equilibrium distribution function in Eq. (4.16), and
other nonequilibrium modes are zero. This mimics the situations in experiments that
the ends of the superconducting wires are connected with wide electrodes within the
inelastic scattering length. Similar consideration for the Usadel equation in Eq. (4.44)
requires solving the Usadel equation in equilibrium in Eq. (4.25) for the parameteri-
zation in Eq. (4.48) in the Matsubara representation.

In order to increase the efficiency and accuracy of bvp4c and bvp5c for a nonlinear
differential equation, one can also provide the analytical partial derivative of the right-
hand-side the matrix differential equation in Eq. (B.1) as a Jacobian matrix as

J =
(
∂f1(Mf), ∂f2(Mf), ..., ∂fn(Mf)

)
,
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where the components of fi are the components of the vectors in Eq. (B.2) and
Eq. (B.3).

Note also that for the Usadel equation in Eq. (4.44) in the real-time representation,
one has to separate the real and imaginary parts to solve the differential equations.
This doubles the number of variables in the numerical solutions.

B.3 Other numerical methods

For the diagonalization of the BdG Hamiltonian in Eq. (3.5), the MATLAB built-in
function eig is used, which returns both eigenvalues and eigenvectors of the matrix.
This allows one to calculate all the relevant physical quantities in Chapter 3.

The solutions of the Green’s function in homogeneous magnetization in Eq. (4.25),
in principle, can be solved using the nonlinear equation solver nsola. However, the
MATLAB built-in function fsolve is also very efficient. We can write Eq. (4.25) in
detailed form, write a set of nonlinear algebraic equations for the components of ĝR in
Eq. (4.26) or in Eq. (4.48). Moreover, the normalization condition (ĝR)2 = 1̂ adds two
constraints to these equations. The user defined function for these equations can only
be defined for the components of ĝR. The other variables relevant for the solutions of
the Usadel equation, like the exchange field and temperature, have to be set as global
variables. The analytical solutions of ĝR in Eq. (4.28) can be used as the initial guess
for fsolve.

The numerical integration in MATLAB is also very convenient, especially for array
functions. For example, the integrand of the spin accumulation in Eq. (4.42) is an
array of position numerically. Using the MATLAB built-in function integral, the
energy integral can be directly evaluated, by specifying the Name-Value argument as
ArrayValued. Moreover, the BCS divergence in the integrand (numerically cured by
the Dynes parameter Γ) can be evaluated more accurately by providing integration
Waypoints in the Name-Value argument.

Finally, the initial value problem in Chapter 5. Since the spin current decays smoothly,
the domain wall moves smoothly in time. This makes the dynamic equations of the
domain wall motion in Eq. (5.1) are nonstiff differential equations. Then one can use
the MATLAB built-in differential equation solver ode45 to solve these differential
equations.
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We consider superconducting properties of a two-dimensional Dirac material such as graphene under strain that
produces a flat-band spectrum in the normal state. We show that in the superconducting state, such a model results
in a highly increased critical temperature compared to the case without the strain, inhomogeneous order parameter
with two-peak shaped local density of states and yet a large and almost uniform and isotropic supercurrent. This
model could be realized in strained graphene or ultracold atom systems and could be responsible for unusually
strong superconductivity observed in some graphite interfaces and certain IV-VI semiconductor heterostructures.

DOI: 10.1103/PhysRevB.93.214505

In conventional superconductors, the superconducting crit-
ical temperature Tc depends exponentially on the electronic
density of states ν at the Fermi level, Tc ∼ e−1/(gν), where
g describes the strength of attractive interaction. Thus, when
engineering materials for higher critical temperatures, it is
natural to aim to increase the density of states. In two-
dimensional systems such as graphene, a traditional approach
for this is to utilize doping [1], which recently lead to a
breakthrough as strongly doped graphene was found to be
superconducting with Tc of a few Kelvin [2]. An extreme
case of increased density of states is the flat-band state, where
the electrons within some momentum regime are completely
dispersionless, leading to diverging density of states at the
corresponding energy. In various different models, this has
been shown to result in a parametrically enhanced critical
temperature that is linear in the electron-phonon coupling
constant, Tc ∼ g [3,4]. It has also been shown that this type
of an approximate flat-band state is realized in graphene and
other Dirac materials under periodic strain [5,6].
Besides straining Dirac electrons, there have been several

propositions for realizing systemswith a flat band and possibly
promoting superconductivity [7]. Such models include surface
states of topological semimetals with an approximate chiral
symmetry [8]. If the energy scale characterizing the deviation
from the exact symmetry is weaker than that characterizing
superconductivity, the mean field theory predicts flat-band
superconductivity [9]. An example system belonging to
this class is rhombohedral graphite. However, this type of
superconductor is prone to fluctuations [10].
The most often encountered models leading to flat bands

result from large magnetic fields and the associated Landau
levels [11]. However, magnetic fields also break the time
reversal symmetry and typically suppress (singlet) supercon-
ducting order, so they cannot directly be utilized. A recent
approach was hence to study superconductivity in a time-
reversal invariant attractive Harper-Hubbard model defined on
a two-dimensional square lattice [12], with the most direct
realization in ultracold gases.
Here we present a BCS-like model for superconductivity

of Dirac electrons under the type of strain that produces a

*ville.kauppila@aalto.fi

flat-band normal state. This model has quite possibly been
already realized in interfaces between IV-VI semiconductor
heterostructures where the strain is naturally created between
a topological insulator and a trivial insulator due to lattice mis-
match [5,13,14]. Another possible realization for this model is
in graphenewith a strain field, created either artificially or at an
interface inside graphite [15]. The latter suggestion also builds
on the recent experimental evidence that graphene can become
superconducting under heavy doping [1,2]. Our proposal could
potentially be used to increase the superconducting critical
temperature much higher in the absence of external doping.
Besides, our model can be studied in ultracold gases in optical
lattices where transforming Dirac points with adjustable
geometry has already been demonstrated [16] and where the
interaction between the electrons can be tuned via Feshbach
resonances [17,18].
To achieve the flat-band state, the strain field experienced by

the Dirac electrons should be such that the resulting effective
vector potential is of the form A ∝ (0,Ay(x),0), where Ay(x),
the vector potential in the y direction in the 2D lattice,
changes sign periodically in x, the direction perpendicular
to the vector potential. A strict periodical variation is not
entirely necessary for this effect, but it allows for a more direct
theoretical description of the effect. Here we follow Ref. [5]
and use Ay(x) = β

L
cos(2πx/L), where β is a dimensionless

parameter describing the strength of the strain and L is
the strain period. In graphene, this vector potential could
be produced for example by an in-plane strain field of the
form uy(x) = aβ

4π sin(2πx/L) (assuming graphene Grüneisen
parameter = 2 [6], see Fig. 1(a)) or out-of-plane strain field
of the form h(x,y) = y + aβ

4π sin(2πx/L), where a = 1.42 Å
is the graphene lattice constant. As a result, the low-energy
Hamiltonian describing the Dirac electrons is given by

Ĥ0 = �vF p̂xσx + �vF (p̂y + Ay(x))σy, (1)

where vF is the Fermi velocity of the Dirac material.
In condensed-matter systems, Dirac points appear in pairs
(valleys in graphene physics). Equation (1) describes the
physics at one valley, sayK, whereas the sign ofAy is reversed
for the partner valley (K′). The dispersion relation of this
model has an approximate flat band forpx ∈ [−π/L,π/L] and
py ∈ [−β/(2L),β/(2L)]. Inside the flat band, it has a weak
dispersion of the form Ep = �c|p|, where c = vF /I0(β/π )

2469-9950/2016/93(21)/214505(5) 214505-1 ©2016 American Physical Society
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FIG. 1. (a) Schematic, highly exaggerated picture of a honey-
comb lattice in strain field of the form uy(x) = aβ

4π sin(2πx/L), L

being the strain period. (b) The profile of �(x) for β = 20 (blue),
β = 30 (green), and β = 40 (red) and g/(�vF L) = 0.01.

and In(x) is the modified Bessel function of the first kind [19].
For β � π , the speed becomes exponentially small, and the
bands become asymptotically flat. This dispersion, along with
the width of the flat band, determines the energy scale above
which the model can be considered to have a flat band. The
eigenstates of this Hamiltonian are localized at the points
where the potential changes sign so that one sublattice is
occupied at one sign change and the other sublattice at the
opposite sign change. This can be seen in the density of states
of the normal state shown in Fig. 2(a).
The Hamiltonian (1) is closely related to the Su-Schrieffer-

Heeger (SSH) model for polyacetylene chains [20]. When
the y-directional momentum py in (1) is zero, the model is
exactly the SSH model with a domain wall and the associated
topological zero energy state at each point where the potential
changes sign. For finite py the domain walls move closer to
each other and the zero energy states start to overlap until they
are effectively destroyed at py ≈ β/(2L).
When we add an attractive interaction of coupling strength

g to the model (1) (we assume here s-wave type coupling
for simplicity [21]), the material has the possibility to enter a
superconducting state described by the Bogoliubov-de Gennes

FIG. 2. Spectral properties of Dirac electrons in a periodic strain
in normal and superconducting states with β = 40 and g/(�vF L) =
0.005. (a) Local density of states in the normal state. (b) Local density
of states in the superconducting state. (c) Total density of states for
the normal (green) and superconducting (blue) states. (d) The energy
spectrum in both states.

equation (
H0 �(x)

�∗(x) −H0

)(
un(r)
vn(r)

)
= En

(
un(r)
vn(r)

)
. (2)

The two degrees of freedom in the matrix are the Dirac
particles, described by H0 given in (1) with spinor wave
functions un(r), and Dirac holes, described by the Hamiltonian
for holes, −H0 with spinor wave functions vn(r). The form of
the hole Hamiltonian follows from the fact that the hole partner
for a particle in valleyK is a conjugated particle at valley−K so
thatH holes

0 (K) = H ∗
0 (−K) = −H0(K). Belowwe suppress the

subvalley indices and consider only K subvalley except when
otherwise mentioned. The coupling between the particles and
holes is described by a superconducting order parameter�(x),
which, because of the periodic potential in the Hamiltonian,
has a periodic dependence on the x coordinate. It can be found
by solving the self-consistency equation

�(x) = gL2

4π2

∫ 2π/L

0
dpx

∫ pc

0
dpy

∑
i

∑
n

×v∗
i,n,p(x)ui,np(x) tanh

[
En(p)
2kBT

]
, (3)

where we have summed over the two valleys which leads to
both sublattices, labeled by i, contributing to the same�. The
sum over the band index n can be restricted to those bands
with energy below some cutoff energy, say the Debye energy
due to the electron-phonon interaction.
With qualitative analysis of the energy scales of the model,

we find three different regimes: (i) When g 	 �cL, the small
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(a) (b)

FIG. 3. (a) Dependence of �ave on superconducting coupling
with β = 20 (blue), β = 30 (green), and β = 40 (red). (b) �ave as a
function of temperature for g/(�vF L) = 0.02.

linear slope of the spectrum is visible and superconductivity is
of the type found in pure Dirac materials [22,23] (for example,
graphene). In particular, there is a quantum critical point at g =
π2�cL/β below which superconductivity does not take place.
(ii) When �cL 	 g 	 �vF L/β, the system is in the pure flat-
band superconductivity regime, only the lowest energy band
contributing to the superconductivity. The critical temperature
is enhanced and � is localized. This is the interesting regime
where we focus below. (iii) When g � �vF L/β, also higher
(nonflat) bands contribute to superconductivity. A model
resembling the one here in this third limit was considered
in Ref. [24] in strained graphene where an inhomogeneous
superconducting state was also found.
Because the density of states is peaked at the locations

of the vector potential sign change, we expect that the
superconducting order parameter is also localized close to
these points. To demonstrate this, we calculate �(x) in the
model (2) from the self-consistency calculation [19]. The
resulting profile of �(x) is shown in Fig. 1(b).
In Fig. 3(b) we also plot the average of �(x) as a function

of the coupling constant. For small couplings, where � is
small and can “see” the small linear slope of the spectrum,
there is a quantum critical point at g ≈ π2�cL/β below
which there is no superconductivity. In the figure, this point
is only visible for β = 20 because for larger β the linear
regime of the spectrum becomes exponentially smaller. For
larger g, the system enters the flat-band regime. A simple
constant� estimate yields for the order of magnitude estimate
� ≈ βg/(2L2). This expression also shows the strong linear
relationship between� and g that is apparent in the numerical
calculation. From the numerics, we can also find that the
critical temperature Tc is approximately given by the average
value of �, i.e., kBTc ≈ (1/L)

∫ L

0 dx�(x). This behavior is
shown in Fig. 3(b). Due to the linear dependence between Tc

and g we can therefore expect a high critical temperature in
this parameter regime.
We also calculate the spectrum and local density of states in

the superconducting state. At zero momentum, the spectrum

has a gap of magnitude |Ep=0| ≈ 2�max which is the expected
result for any superconductor. However, for small momenta,
the slope of the spectrum is negative for excitations with
positive momentum and energy, leading to a local minimum at
ky = kmin ∼ β/(2L). Themomentum dependence results from
the localized �(x). In the density of states, the two local min-
ima of the spectrum lead to a peculiar two-peaked shape shown
in Fig. 2(a). This feature could act as a possible experimental
signature for superconductivity described by this model.
For a flat band, the group velocity c of the electrons

becomes very small for both normal and superconducting
state [see Fig. 2(d)]. It would hence be natural to think of the
paired electrons to be localized, unable to carry supercurrent.
However, there are also other contributions to supercurrent
besides those proportional to the group velocity [12]. We
calculate the supercurrent by adding a phase gradient to
the order parameter as �(x) → �(x)eiksx in which case the
supercurrent is given by

J(x) = evF

L

∑
p,n

(fp,nu
†
p,nσup,n + (fp,n − 1)v†

p,nσvp,n), (4)

where fp,n is the number of quasiparticles occupying the nth
band at momentum p. At T = 0, f [En(p)] = 1 for En(p) < 0
and 0 otherwise.
For |ksL| 	 1, we find that the supercurrent is approxi-

mately of the form Ji(x) ≈ ai�maxks,i , where i ∈ {x,y} and
ax = 0.17, ay = 0.19 are fitted constants that describe the
weak anisotropy of the current. This result is shown in Fig. 4.
While current in the x direction must be independent of y

due to translational invariance, it can be inhomogeneous in
the y direction. In the inset of Fig. 4 we show the profile
of current flowing in the y direction. Interestingly, it is
only weakly inhomogeneous even though the superconducting
order parameter varies strongly in space. The reason for
this is that the current is proportional to the overlap of the
wave functions of the two sublattices and the overlap is

FIG. 4. Supercurrent in x and y directions (solid and dashed lines,
respectively) as a function of the superconducting coupling for β =
25 (blue), β = 30 (green), and β = 35 (red). Inset: profile of the
supercurrent in y direction forβ = 25 (solid line) andβ = 30 (dashed
line) for ksL = 0.01,0.05,0.1.
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almost position independent. This behavior is analogous to
what happens in a model for superconducting rhombohedral
graphite [25].
Let us discuss the possible physical realizations of peri-

odically strained Dirac fermions. So far, graphene has been
shown to be superconducting when doped with calcium and
possibly also with other elements [1,2,26]. In that case doping
of the pure Dirac material is required to increase the density of
states so that the quantum critical point disappears. If this is the
main effect, then the scheme of a periodic strain discussed here
should also make even undoped graphene superconducting
because the flattening of the spectrum greatly lowers the
superconducting coupling required to overcome the quantum
critical point (by the factor c/vF = 1/I0(β/π )). Contrary to
the pristine graphene (or other Dirac material), doping the
strained graphene to move the chemical potential out of the
flat-band regime would act to reduce the critical temperature.
Strain superlattice could explain the observations of the

superconducting-type behavior at interfaces between graphite
regionswith different lattice orientations [27–29]. It is possible
that such interfaces stabilize an array of screw dislocations,
which would lead to the presence of periodically strained
graphene at the interfaces.
We can estimate the value of the critical temperature in

periodically strained graphene using the coupling constant
obtained from experiments [2,26]. As shown in Ref. [19], we
would get Tc as large as 420 K for β = 30 and L = 10 nm. In
this estimate, we neglect the effects from the strain superlattice
or the doping in the experiments on g, and therefore it should

be taken only as indicative. Such effects are left for further
work.
Another class of materials where flat-band superconductiv-

ity due to straining has already been suggested is layered struc-
tures made out of IV-VI semiconductors such as PbTe/SnTe,
PbSe, PbS, PbTe/PbSe, PbS/YbS, andPbTe/YbS [13,14].Our
results here could be used to verify whether models previously
suggested [5] indeed are valid in these materials.
Besides superconductivity, flat bands can promote also

other types of states, such as magnetism [30], depending
on the dominant interaction channel. Moreover, in such
two-dimensional systems the long-range correlations are most
likely suppressed by some mechanism, which would limit the
observation of superconductivity in large samples. Besides
the phase fluctuations leading to Kosterlitz-Thouless physics,
another mechanism for suppressing correlations would be
those affecting the strain lattice. Therefore, on length scales
long compared to such elastic correlation length, the system
would most likely be described by a set of Josephson coupled
superconducting islands. The exact elastic correlation lengths
are materials dependent and therefore out of the scope of
the present work. We also note that in the case of strained
graphene, other pairing symmetries have been considered [31].

We thank Grigori Volovik and Pablo Esquinazi for fruitful
discussions. This work was supported by the Academy of
Finland through its Center of Excellence program Project No.
284594, and by the European Research Council (Grant No.
240362-Heattronics).
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We investigate transport properties of junctions between two spin-split superconductors linked by a spin-
polarized tunneling barrier. The spin-splitting fields in the superconductors (S) are induced by adjacent
ferromagnetic insulating (FI) layers with arbitrary magnetization. The aim of this study is twofold. On the one
hand, we present a theoretical framework based on the quasiclassical Green’s functions to calculate the Josephson
and quasiparticle current through the junctions in terms of the different parameters characterizing it. Our theory
predicts qualitative new results for the tunneling differential conductance, dI/dV , when the spin-splitting fields
of the two superconductors are noncollinear. We also discuss how junctions based on FI/S can be used to realize
anomalous Josephson junctions with a constant geometric phase shift in the current-phase relation. As a result,
they may exhibit spontaneous triplet supercurrents in the absence of a phase difference between the S electrodes.
On the other hand, we show results of planar tunneling spectroscopy of a EuS/Al/AlOx/EuS/Al junction and
use our theoretical model to reproduce the obtained dI/dV curves. Comparison between theory and experiment
reveals information about the intrinsic parameters of the junction, such as the size of the superconducting order
parameter, spin-splitting fields and spin relaxation, and also about properties of the two EuS films, such as their
morphology, domain structure, and magnetic anisotropy.

DOI: 10.1103/PhysRevB.100.184501

I. INTRODUCTION

Superconducting films with spin-split density of states
have been used for a long time to determine the spin polar-
ization of ferromagnetic metals tunnel-coupled to the super-
conductor (S) [1–7]. Originally, the spin splitting was induced
by applying in-plane magnetic fields to thin superconducting
films. These fields had to be large, of the order of few tesla,
in order to obtain sizable splittings. Interestingly, as shown
in the late 1980s, such spin splitting can also be observed at
rather small, or even zero, magnetic fields in superconducting
Al layers adjacent to ferromagnetic insulators (FI) [8,9]. In
this case, the splitting is attributed to the exchange interaction
at the FI/S interface [10]. Additionally, those first works on
FI/S structures showed that thin FI layers can also be used as
very efficient spin filters, with potential application as sources
for highly spin-polarized spin currents [11].

More recently, nonequilibrium properties of superconduc-
tors with a spin-split density of states have attracted a re-

*mikel.rouco@ehu.eus
†schrkmv@gmail.com
‡francesco.giazotto@sns.it
§tero.t.heikkila@jyu.fi
‖fs.bergeret@csic.es

newed attention [12–18]. In such systems, two additional
spin-dependent modes appear and couple to the widely stud-
ied nonequilibrium energy and charge modes [16,19]. FI/S
structures have also been suggested for several applications, as
highly efficient thermoelectric elements [20,21], bolometers
[22], thermometers [23], cryogenic RAM memories [24], and
different caloritronic devices to access the electronic heat
current in nanostructures [25–29].

Most of these applications require both superconductors
with spin-split density of states and highly polarized spin-
filter interfaces. This motivates the present work, in which
we explore both theoretically and experimentally FI/S junc-
tions. Theoretically, we develop a general model to describe
the coupling of two spin-split superconductors through an
additional spin-filter barrier. Our model takes into account
self-consistently magnetic disorder, spin-orbit coupling, and
orbital effects of the magnetic field, as well as noncollinear
spin-splitting fields. On the one hand, our model predicts new
features in FI/S-based junctions: Additional coherent peaks
in the differential conductance when the FI layers are mon-
odomain with noncollinear magnetization, and the possible
realization of an anomalous Josephson junction with pure
triplet supercurrents at zero phase bias. On the other hand,
our model provides a tool to interpret transport experiments
on tunneling junctions with FI/S electrodes.

2469-9950/2019/100(18)/184501(10) 184501-1 ©2019 American Physical Society
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Experimentally, we measure the tunneling conductance
of an EuS/Al/AlOx/EuS/Al junction as a function of the
applied voltage and magnetic field. The differential tunneling
conductance, dI/dV , shows sharp peaks whose heights de-
pend on the effective spin splitting induced in both Al layers
and the spin filtering of the barrier. Below, we perform a
self-consistent calculation that allows us to determine unam-
biguously the main parameters governing the transport of the
junction

The work is organized as follows. In the next section, we
present the measurements of the tunneling conductance of the
junction under consideration as a function of the magnetic
field. In Sec. III, we present a theoretical model based on
the quasiclassical Green’s functions for the description of the
transport properties of a generic FI/S/I/FI/I/S/FI junction.
In Sec. IV, we discuss the Josephson current through such
junctions with emphasis on the anomalous behavior when the
FI magnetizations are noncollinear. In Sec. V, we focus on
the quasiparticle current and the tunneling differential con-
ductance. The latter is compared to the experimental data, and
a discussion of the results follows. We present our conclusions
in Sec. VI.

II. TUNNELING CONDUCTANCE OF
A EuS/Al/AlOx/EuS/Al JUNCTION

In this section, we present our measurements
of the current-voltage (I-V ) characteristic of a
EuS(4)/Al(4)/AlOx/EuS(1.2)/Al(4.3)1 junction (thickness
in nanometers), see inset in Fig. 1(a). The samples consist
of cross bars fabricated by electron-beam evaporation on an
in situ metallic shadow mask with a typical junction area of
290 × 290 μm2 [30].

The tunneling spectroscopy is obtained by measuring the
I-V characteristic in a dc two-wire setup, as sketched in the
inset of Fig. 1(a). From this measurement we determine the
differential conductance, dI/dV , via numerical differentia-
tion. The measurements are done at cryogenic temperatures in
a filtered cryogen-free dilution refrigerator. We first cool down
the sample from room temperature to 25mK in a nonmagnetic
environment. Before applying any external magnetic field,
we measure the I-V characteristic [Fig. 1(a)] and extract the
dI/dV shown by the solid line in Fig. 1(b). We then apply an
in-plane magnetic field (up to 160 mT) strong enough to align
the magnetization of both EuS layers, and start decreasing
it. During this process, we measure the I-V characteristic
and determine the tunneling conductance at each value of the
applied magnetic field. The full dependence is shown in the
color plot of Fig. 2(d). Panels (a)–(c) in Fig. 2 correspond to
different vertical cuts of Fig. 2(d) at the positions indicated by
the arrows placed at the bottom of the figure.

The obtained tunneling conductance clearly shows the
four-peak structure expected from the spin-split superconduct-
ing density of states (DOS) [9]. Notice that these peaks are

1During growth, the oxidation of the aluminum layer was not
controlled. Therefore it does not necessarily have the stoichometry
of Al2O3.
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FIG. 1. Tunneling spectroscopy of a FI/S/I/FI/S junction be-
fore applying an external magnetic field. (a) Typical current (I)
vs voltage (V ) characteristic of the junction measured at 25 mK.
(b) Numerical derivative of the I-V characteristic extracted from
the data in (a) (black line). The blue dashed line is obtained from
our theoretical model presented in Sec. III. The parameters used for
the fitting are: GT = 6 μS, �0 = 320 μeV, hL = 0, hR = 100 μeV,
τ−1
sf = 0.08�0, and τ−1

so = τ−1
orb = 0. In the demagnetized regime, the

effective spin splitting in the upper Al layer is negligibly small.
The spin splitting arises from the very large domain structure of the
bottom EuS layer, with size much larger than the superconducting
coherence length ξ0. The measured peak structure resembles the one
measured in Ref. [30] without the spin-filtering effect at work [see
discussion after Eq. (37) for more details].

also observed before applying any magnetic field, Fig. 1(b).
The position of the peaks in Figs. 2(a)–2(c) is always sym-
metric with respect to the sign of the applied voltage, however,
after the first magnetization of the junction, their heights are
not. This behavior contrasts with the one shown in Fig. 1(b)
for the demagnetized sample. The asymmetry is a fingerprint
of spin-polarized tunneling through the middle EuS thin layer
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FIG. 2. Magnetic-field dependence of the tunneling conductance
of the spin-polarized junction. Before the measurement, the system
is polarized with a positive magnetic field (B = 160 mT). The differ-
ential conductance is then measured at different values of magnetic
fields from 0 to −160 mT. (a), (b), and (c) show three different
curves measured at 0, −20, and −160 mT, respectively. (d) shows
the full measured B dependence. (e) is the fitting resulting from the
theoretical model.
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[7–9], which only after magnetization turns out to be apparent.
In contrast, and according to the physical picture provided in
Sec. V, when the sample is demagnetized, the thin EuS barrier
layer consists of magnetic domains smaller than the coherence
length with random polarization directions. This leads to a
negligibly small value of the induced spin-splitting field on
the upper superconductor and no spin-filtering effect on the
current after averaging over the junction area.

The separation between the peaks at positive (or negative)
voltage, Figs. 1(b) and 2(a)–2(c), provides information about
the size of the spin-splitting energy induced in the Al layers.
This splitting is proportional to the effective exchange energy
between the spins localized at the EuS/Al interface and the Al
conduction electrons [31].

We observe a sudden increase of the spin-splitting en-
ergy at −20 mT [Fig. 2(d)], which occurs when the system
switches to the antiparallel configuration. As it turns out from
our theoretical discussion in Sec. V, it is the bottom EuS layer
that switches first and abruptly. By further increasing the mag-
netic field B the parallel configuration is recovered gradually
with a smooth switching of the middle EuS magnetization.
The two rather different switching behaviors of the EuS films
can be attributed to a different magnetic configuration and
anisotropy of the two films due to different deposition con-
ditions, which crucially depends on the growth morphology
[24,32].

Whereas the peak positions can be explained by using a
simple tunneling model [7], detailed features such as the width
and height of the peaks can only be understood by taking
into account different scattering and depairing mechanisms
and performing a self-consistent calculation of the supercon-
ducting order parameter. With this aim, in the next sections
we present a theoretical model that allows us to describe the
dI/dV curves, extract the values of the different parameters,
and provide a physical picture that explains the full behavior
shown in Fig. 2(d).

III. THE MODEL

In this section, we present a theoretical model to describe
the electronic transport in junctions with spin-split supercon-
ductors and spin-filtering barriers. The goal of this section is
twofold. On the one hand, to obtain general results for the
current in tunnel junctions between two spin-split supercon-
ductors in the presence of a spin-filtering barrier. On the other
hand, we provide a complete description of the experimental
results presented in the previous section.

We consider a generic junction, sketched in Fig. 3. It
consists of two spin-split superconductors separated by a spin-
polarized tunneling barrier. The spin-split superconductors
correspond to two S/FI bilayers, whereas the tunneling barrier
is an additional FI layer with adjacent thin insulating layers to
decouple it magnetically from the superconductors.

To describe the current through the junction below, we use
the tunneling Hamiltonian approach, such that the system is
described by

H = HL + HR + HT . (1)

FIG. 3. Schematic of a tunnel junction between two spin-split
superconductors with a spin polarized tunneling barrier and biased
at a voltage V . The left (right) superconductor SL (SR) experiences
a spin-splitting field hL (hR) by an attached ferromagnetic insu-
lator layer FIL (FIR). The spin polarized tunneling barrier, with
polarization P, is another ferromagnetic insulator (FI). To avoid the
magnetic proximity effect, the superconductors are separated from
the spin-polarized tunneling barrier by insulating layers (I). The
superconductor SL (SR) is at temperature TL (TR).

Here,HL(R) describes the left(right) superconducting electrode
attached to a FI and HT the tunneling of electrons between the
superconductors [33].

In order to compute the current one needs to determine
the spectral properties of the decoupled FI-S electrodes. We
model them by assuming that the interaction between the
localized magnetic moments in the FI and the conduction
electrons in the S layer creates an effective exchange field
in the latter [18,31,34,35]. If the superconducting films are
thinner than the coherence length such exchange field can
be assumed to be homogeneous in the S and, hence, the S
electrodes are described by

HL(R) = HBCS + hL(R) · σ̂ , (2)

where hL(R) = hL(R)nL(R) is the exchange field pointing in the
direction of the unit vector nL(R), σ̂ is the vector of Pauli
matrices and HBCS is the BCS Hamiltonian that also includes
random impurities, magnetic, nonmagnetic, and those with
spin-orbit coupling [36].

For the tunneling Hamiltonian [the last term of Eq. (1)] we
assume that the tunneling through the barrier is spin depen-
dent; in other words, that the electron tunneling probability
depends on whether its spin is oriented parallel or antiparallel
with respect to the barrier magnetization [37].

We consider a general case where the directions of the
magnetization in each of the three FIs are independent of
each other. A voltage V is applied across the junction and,
in principle, the temperatures of the two FI/S electrodes are
different TL �= TR. Here, the indices L and R denote the left
and right electrodes, respectively.

The effective splitting of the left and right superconductors
in Fig. 3 is given by the induced exchange fields hL = hLnL

and hR = hRnR, respectively, whereas the spin filtering is
described by the polarization vector P = PnP with P ≡ G↑−G↓

G↑+G↓
and 0 � P � 1. The vectors n are unit vectors pointing in the
respective directions, the magnitude of the exchange fields
hL/R has energy units and G↑(↓) stands for the tunneling
conductance through the junction for carriers with up (down)
spin along the direction of nP.

Without loss of generality, we set the barrier magnetization
along the z axis, nP = (0, 0, 1), such that the magnetization
orientations of the adjacent S/FI bilayers can be parametrized
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by three angles, θL,R and γ :

nL = (sin θL, 0, cos θL ) (3)

and

nR = (sin θR cos γ , sin θR sin γ , cos θR). (4)

In a collinear configuration, i.e., θL = θR = 0, the current
through the junction can be straightforwardly calculated from
the well-known tunneling expression [7]. We next generalize
the latter for noncollinear magnetizations. Moreover, in order
to include the effects of spin relaxation and depairing, we
use the quasiclassical Green’s functions (GFs) for an accurate
description of the spectrum of the S/FI electrodes.

A. Quasiclassical Green’s functions
for spin-split superconductors

In this section, we present the quasiclassical Green’s func-
tions and the expression for the current as a function of the
applied voltage and temperature bias (see also Ref. [18]) for
an arbitrary magnetic configuration of the junction shown in
Fig. 3. We restrict our analysis to the tunneling limit, which
corresponds to the experimental situation when a FI is used
as a barrier. In such case, one can treat each FI/S electrode
in Fig. 3 independently. In other words, we can calculate the
GFs, ğL(ε) and ğR(ε), for each electrode. Moreover, one can
first consider the case in which V = 0 and ϕ = 0, where ϕ

is the phase difference between the superconductors. Finite ϕ

and V can then be added as gauge factors.
We use the Green’s functions defined in the

Keldysh⊗Nambu⊗spin space.2 These are are 8 × 8 matrices
that satisfy the normalization condition

ğ2s = 1 . (5)

In the Keldysh space, they can be written as [38]

ğs =
(
ǧRs ǧKs
0 ǧAs

)
, (6)

where s = {L,R} labels left and right sides of the junction, ǧRs
stands for the retarded component of the GFs, ǧAs = −τ̂3ǧR

†

S τ̂3
is the advanced component, and due to the normalization
condition, the Keldysh component can be written as

ǧKs = ǧRs f̌s − f̌sǧ
A
s . (7)

In these expressions, the “checks” ·̆ indicate the full 8 × 8
matrices, whereas ·̌ are used for 4 × 4 matrices in Nambu spin
space, and ·̂ for 2 × 2 matrices. τ̂i is the ith Pauli matrix in
Nambu space and f̂s stands for the electron distribution func-
tion in electrode s. In equilibrium, the latter is proportional to
the unit matrix in Nambu and spin space and reads

f̌s(ε) ≡ f0(ε,Ts) = tanh
ε

2kBTs
, (8)

where kB is the Boltzmann’s constant and Ts is the temperature
on the s side of the junction. In our notation, whenever we

2To simplify the notation we skip throughout the text the direct
product symbol ⊗.

do not specify any matrix structure via Pauli matrices, it is
implied that the matrix is proportional to the unit matrix in the
corresponding space.

We now calculate the GFs in the electrodes, which we as-
sume in thermal equilibrium. In the diffusive limit, they obey
the Usadel equation [39] with a local spin splitting pointing in
z direction and, as it was indicated after Eq. (6) and in Eq. (7),
we only need to compute their retarded component. Then, to
calculate the current through the junction with noncollinear
magnetizations we will have to transform the GFs by using
spin-rotation operators.

The Usadel equation for the retarded component of a
homogeneous S/FI electrode in the spin local frame reads

[
iετ̂3 − ihsτ̂3σ̂3 − �sτ̂1 − 
̌s, ǧRs

] = 0, (9)

where σ̂i is the ith Pauli matrix in the spin space and �s

is the self-consistent superconducting order parameter (see
Appendix A for details). The self-energy 
̌s consists of three
contributions:


̌s = 
̌so
s + 
̌sf

s + 
̌orb
s , (10)

the spin relaxation due to spin-orbit coupling, 
̌so
s , and spin-

flip relaxation, 
̌sf
s , and the orbital depairing, 
̌orb

s , due to the
external magnetic fields. Explicitly, each contribution within
the relaxation time approximation reads


̌so
s = σ̂ · ǧRs · σ̂

8τ so
s

, (11)


̌sf
s = σ̂ · τ̂3ǧRs τ̂3 · σ̂

8τ sf
s

, (12)


̌orb
s = τ̂3ǧRs τ̂3

τ orb
s

, (13)

where τ so
s , τ sf

s , and τ orb
s stand for spin-orbit, spin-flip, and

orbital depairing relaxation times, respectively, and we use the
notation σ̂ · Ǎ · σ̂ = ∑3

i=1 σ̂iǍσ̂i.
The general solution of the Usadel equation (9), is then

given by four components in the Nambu spin space:

ǧRs = (F0s + F3sσ̂3)τ̂1 + (G0s + G3sσ̂3)τ̂3. (14)

The components proportional to τ3 are the normal compo-
nents. They determine the quasiparticle spectrum and enter
the expression for the quasiparticle current. The off-diagonal
terms in Nambu space, here proportional to τ1, are the
anomalous GFs and describe the superconducting condensate.
They determine the Josephson current through the junction
of Fig. 3. The anomalous GFs have two components: F0s
describes the singlet condensate, whereas the component F3s
describes the triplet component with zero total spin pro-
jection. Because we are considering diffusive systems, both
components have s-wave symmetry. This implies that the
triplet component is odd in frequency [40]. In Sec. V, we
numerically solve the Usadel equation, Eq. (9), together with
the normalization condition, Eq. (5), and the self-consistent
expression for �s (see Appendix A).

We next derive the expression for the tunneling current in
terms of the above GFs.
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B. Tunneling current

In the previous section, we present the quasiclassical GFs,
ğs(ε), in a local reference frame where V = 0, ϕ = 0 and the
exchange field is parallel to the z axis. We now use these
results to calculate the total electric current across the Joseph-
son junction, sketched in Fig. 3, in the presence of a finite
voltage and phase difference, and a noncollinear magnetic
configuration. This can be done by a gauge transformation and
a spin-rotation of the GFs.

In the presence of a voltage, the phase of a superconductor
evolves in time as

ϕ(t ) = ϕ + 2eV

h̄
t , (15)

where ϕ is the dc phase. We define the corresponding gauge
matrix

Û (t ) = exp(−iϕ(t )τ̂3) . (16)

If we assume that the voltage is applied on the left super-
conductor and the magnetizations of the two S/FI and the
spin-filter barrier are noncollinear [see Eqs. (3) and (4)], we
can obtain the GFs ˘̃g from those obtained in in Sec III A via
the following transformations:

˘̃gL(t − t ′) = R̂L Û (t ) ğL(t − t ′) Û (t ′)† R̂†
L, (17)

˘̃gR(t − t ′) = R̂R ğR(t − t ′) R̂†
R. (18)

Here, the operators R̂s describe spin rotations in the left and
right electrodes:

R̂L = exp(−iθLσ̂y/2), (19)

R̂R = exp(−iγ σ̂z/2) exp(−iθRσ̂y/2) , (20)

and the time-dependent Green’s functions in Eqs. (19) and
(20) are obtained from the GFs in frequency space:

ğs(t − t ′) = 1

2π

∫ ∞

−∞
dε ğs(ε) e

iε(t−t ) . (21)

From Eqs. (17) and (18), we can now write the full expres-
sion for the time-dependent electric current across the junction
shown in Fig. 3 [41]:

Ic(t ) = GTπ

16e
Tr(τ̂3[ ˘̃gL ◦, �̌ ˘̃gR�̌]K ), (22)

where GT is the normal state conductance of the junction,
[· ◦, ·] is a commutator of convolutions,3the superscript K
stands for the Keldysh component of the commutator, and Tr
stands for the trace over the Nambu×spin spaces.

3When the operators depend only on the difference of times the
convolution is defined as

(A ◦ B)(t ) =
∫ ∞

−∞
dt ′A(t − t ′)B(t ′ − t ).

Consequently, the commutator reads

[A ;B] = (A ◦ B)(t ) − (B ◦ A)(t ).

Equation (22) is valid in the tunneling limit. The matrix �̌

describes the effect of the spin-filtering layer and is defined as

�̌ = u + vσ̂3τ̂3 , (23)

where the parameters u and v depend on the polarization of
the barrier P as follows:

u =
√

1 + √
1 − P2

2
, (24)

v =
√

1 − √
1 − P2

2
. (25)

One can easily check from these expressions that u2 + v2 = 1,
2uv = P, and u2 − v2 = √

1 − P2.
After a lengthy but straightforward algebra, we obtain from

Eq. (22) the charge current through the junction which can be
written as the sum of three components:

Ic(t ) = I + J1 sin

(
ϕ + 2eV t

h̄

)
+ J2 cos

(
ϕ + 2eV t

h̄

)
.

(26)
Here, I is the quasiparticle tunneling current and the re-

maining part is the Josephson current. Specifically, J1 is the
usual Josephson critical current. The third term is proportional
to the cosine of ϕ(t ). In a nonmagnetic Josephson junction,
this term is finite only at nonzero bias. In the literature, it
is known as the cosϕ term and has been widely studied
[42–44]. Interestingly, in a magnetic junction, this term can be
nonzero even when V = 0. In this case, this term leads to the
so-called anomalous Josephson current that appears in certain
magnetic system with spin-orbit coupling or inhomogeneous
magnetization [45–55] and is discussed in more detail in
Sec. IV.

From Eq. (22), we derive the expressions for the three
components of the current in terms of the GFs. For the quasi-
particle tunneling current, first term in Eq. (26), we obtain

I = GT

2e

∫ ∞

−∞
dε[ f0(ε + eV,TL ) − f0(ε,TR)]

× {P[N0L(ε + eV )N3R(ε)nR · nP

+ N3L(ε + eV )N0R(ε)nL · nP]

+ N0L(ε + eV )N0R(ε) + N3L(ε + eV )N3R(ε)

× [n‖
L · n‖

R +
√
1 − P2 n⊥

L · n⊥
R ]}, (27)

whereNis(ε) ≡ Re[Gis(ε)] is the semisum (i = 0) and semid-
ifference (i = 3) of the spin-up/spin-down densities of states
(DOS). In deriving this expression we have used the vector
equalities presented in Appendix B.

For the second and third terms in Eq. (26), we obtain

J1 = A0

√
1 − P2 + A3[

√
1 − P2 n‖

L · n‖
R

+ n⊥
L · n⊥

R ] − B3 PnP · (nL × nR) (28)

and

J2 = B0

√
1 − P2 + B3[

√
1 − P2 n‖

L · n‖
R

+ n⊥
L · n⊥

R ] + A3 PnP · (nL × nR), (29)
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where Ai and Bi (i = 1, 3) are expressed in terms of the real
and imaginary parts of the anomalous GFs Fis(ε):

Ai = GT

2e

∫ ∞

−∞
dε[ f0(ε,TR)Re[FiL(ε + eV )]Im[FiR(ε)]

+ f0(ε + eV,TL )Im[FiL(ε + eV )]Re[FiR(ε)]], (30)

Bi = GT

2e

∫ ∞

−∞
dε[ f0(ε + eV,TL ) − f0(ε,TR)]

× Im[FiL(ε + eV )]Im[FiR(ε)]. (31)

Equations (26)–(31) determine the total current through
the junction and are used in the next sections. We start by
analyzing the Josephson current in magnetic junctions.

IV. ANOMALOUS JOSEPHSON CURRENT

An interesting situation occurs when V = 0, ϕ = 0, TL =
TR and the magnetization vectors of the three FI layers are not
in the same plane. In this case, I = 0, B0 = B3 = 0 and the
only term contributing to the current J2 is the one proportional
to A3 in Eq. (29). The latter is finite when nP · (nL × nR) �= 0,
i.e., when three vectors are not coplanar. In this case a finite
Josephson current may flow through the junction even if the
dc phase difference ϕ is zero. This is the so-called anomalous
Josephson current and the junction is referred as a ϕ0 junction.
The latter has been widely studied in magnetic junctions
with spin-orbit coupling [45,50,51,53,56–58] or multilayer
metallic ferromagnets [54,55,59–64].

In this section, we discuss the possible observation of the
anomalous Josephson junction in FI/S-based junctions. This
effect was not yet seen in the samples discussed here, because
the large value of the normal-state resistance made it impos-
sible to measure any Josephson current at the temperature
of the experiments. However, similar type of samples with
increased junction transparency would be good candidates for
measuring the anomalous ϕ0 effect.

Because we assume a unique temperature, TL = TR = T ,
and the junction is in equilibrium (V = 0), quasiparticle cur-
rent is zero and one can write the expression for the Josephson
current in terms of a sum over Matsubara frequencies. The
anomalous functions proportional to the Pauli matrix σ3 corre-
spond to the odd-in-frequency triplet components of the con-
densate, F3(iωn) = −F3(−iωn), whereas those proportional
to σ0 arise from the singlet components F0(iωn) = F0(−iωn)
[65]. The total current, Eq. (26), can then be written as

J1 = πT
πGT

2e

∑
ω

[√
1 − P2

(
F 2
0 + F 2

3 n‖
L · n‖

R

)

+ F 2
3 n⊥

L · n⊥
R

]
, (32)

J2 = πT
πGT

2e
PnP · (nL × nR)

∑
ω

F 2
3 . (33)

The contribution proportional to sin ϕ contains the conven-
tional singlet Josephson current that vanishes when the barrier
is fully polarized P = 1. If the magnetizations and the barrier
magnetization are noncollinear, there is an additional contri-
bution stemming entirely from the interference of the triplet
component of the condensate, as discussed in Refs. [37,41].

The anomalous current in Eq. (33) is also a pure triplet
current which requires noncoplanar vectors, i.e., a finite triple
product nP · (nL × nR), and it is proportional to the polar-
ization of the barrier. The well-defined splitting and strong
barrier polarization make the EuS/Al material combination
suitable for the realization of such magnetic anomalous junc-
tions.

In the limit T → 0, we obtain analytic results for the
Josephson current by assuming equal amplitudes of the ex-
change fields, hL = hR ≡ h, and neglecting all relaxation pro-
cesses, τ−1

so = τ−1
sf = τ−1

orb = 0:

J1 = πGT�

2e
[
√
1 − P2η

+ (
√
1 − P2n‖

L · n‖
R + n⊥

L · n⊥
R )(η − 1)], (34)

J2 = πGT�

2e
P(η − 1)nP · (nL × nR), (35)

where � is the real self-consistent superconducting order
parameter at zero temperature and exchange field h and

η ≡ 32�2(256�4 − 32�2h2 + 9h4)

(16�2 − h2)3
− 1. (36)

In the case where h = 0 (and, therefore, nL = nR = 0),
the coefficient η = 1 and Eq. (34) yields the well-known
Ambegaokar-Baratoff [66] formula for the Josephson current
with a prefactor

√
1 − P2 due to the barrier polarization.

V. QUASIPARTICLE CURRENT AND
DIFFERENTIAL CONDUCTANCE

In this section, we discuss the quasiparticle current,
Eq. (27), and use our theoretical framework to describe the
experimental data shown in Figs. 1 and 2. In the following
discussion, we identify the layer at the bottom (top) in the
experimental setup, Fig. 1, with the left (right) electrode of
the model in Fig. 3.

The experimental setup corresponds to a situation in which
the EuS barrier serves two purposes: On the one hand, it acts
as a spin-filtering barrier and, on the other hand, it causes the
spin splitting in one of the superconductors (the right one in
Fig. 3). This means that the orientation of barrier magneti-
zation coincides with the direction of the exchange field in
the right superconductor, nP = nR, while the magnetization
nL is, in principle, independent of the magnetization of the
barrier. The left superconductor (SL) is in a good contact
with the outer EuS, which induces a finite hL. At the other
interface between SL and the tunneling barrier, a thin oxide
layer is formed, preventing the exchange coupling [9]. Thus,
for our specific sample, the thinnest FI layer in the middle is
a tunneling barrier (1.2 nm) which induces the spin splitting
only on the right superconductor and polarizes the current,
whereas the thicker EuS layer (4 nm) causes the spin splitting
in the left Al film.

Because the two EuS layers are of different thicknesses and
they were grown on two different substrates, it is expected
that the magnetization switching is different, as well as the
strength of the induced exchange splittings in the supercon-
ductors, hR �= hL. We assume the same superconducting order
parameter, spin orbit and spin flip relaxation times for both
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Al films. Moreover, the temperatures are assumed to be equal,
TL = TR = T .

Because of the high normal-state resistance of the tun-
neling barrier (∼160 k�), no Josephson current through the
junction could be measured, as shown in the left panel of
Fig. 1. In particular, the Josephson energy EJ = h̄J1/(2e) was
of the order of the temperature and, therefore, the thermal
fluctuations of the phase smeared out the Josephson effect.
The current shown in that figure corresponds only to the
quasiparticle contribution and it can be determined from
Eq. (27) for nR · nP = 1 and n⊥

R = 0. We can parametrize the
magnetic configuration of the junction by a single angle θ

between the splitting field in the left and right superconductor:
nR · nL = nP · nL = cos θ .

From Eq. (27), we compute the current and, after differen-
tiation with respect to V , we obtain the differential tunneling
conductance dI/dV . In Fig. 4, we show its dependence on
the voltage for different values of the angle θ and certain
values of spin splitting fields and spin relaxation times. For
a collinear configuration of magnetizations, cos θ = ±1, the
differential conductance shows the four-peak structure, ob-
served in most of experiments on EuS/Al based structures
[7–9,30,67]. These peaks appear at voltages eV = ±(�L +
�R) ± (hL − cos θhR).

However, if the magnetizations of the FIs are noncollinear,
we find a qualitatively new result (see the solid black line in
Fig. 4). Instead of four peaks, the differential conductance
shows eight peaks for any value of θ between 0 and π .
These two different behaviors can be understood as follows:

FIG. 4. Normalized differential conductance spectrum of the
FIL/SL/I/FIR/SR junction calculated from our theoretical model.
Both superconductors are assumed to have the same order parameter,
�0. The polarization of the barrier is parallel to the exchange field
induced in the right superconductor, nP ‖ nR, while the exchange
field of the left superconductor forms an angle θ with nR. The
dashed lines correspond to collinear situations, (blue) θ = 0 and
(red) θ = π , while the solid black line corresponds to a noncollinear
one, θ = π/2. The remaining parameters used in the calculation
are τ−1

so = τ−1
orb = 0 and τ−1

sf = 0.08�0 for the relaxation times in
both superconductors, Zeeman splitting values of hL = 0.35�0 and
hR = 0.10�0, a polarization of P = 0.25 and a global temperature of
kBT = 0.01�0.

In the collinear case, the spin component along the single
direction of magnetization is globally conserved and the two
spin species tunnel independently. When the polarization of
the tunneling barrier is noncollinear with the magnetization
of one of the electrodes, tunneling does not conserve spin.
The additional peaks in the dI/dV stem from the projection
of the electron spin of one of the electrodes onto the local spin
basis in the other electrode. The peaks in dI/dV then appear
at eV = ±(�L + �R) ± (hL ± hR)

This unusual situation occurs when the induced exchange
field, and hence the magnetization of the EuS films, is spa-
tially homogeneous, so that the eight-peak structure of dI/dV
shown in Fig. 4 can only be observed if the EuS are mon-
odomain magnets with noncollinear magnetizations. In our
EuS/Al samples the situation is rather different. As discussed
in Ref. [30], EuS films consist of an ensemble of crystallites
with intrinsic magnetization [68]. Therefore, before applying
any external magnetic field, the magnetic configuration of the
EuS layers consists of randomly oriented magnetic domains.
Typically the size of EuS/Al tunnel junctions (here ∼290 ×
290 μm2) is much larger than the size of these domains and,
therefore, the measured tunneling current is determined by an
average over the angle θ , 〈I〉θ ≡ ∫ π

0
dθ
π

I , which reads

〈I〉θ = GT

2e

∫ ∞

−∞
dε[ f0(ε + eV,TL ) − f0(ε,TR)]

× [N0L(ε + eV )N0R(ε) + PN0L(ε + eV )N3R(ε)].
(37)

We use this averaging procedure to fit the experimental
data shown in Fig. 1, which corresponds to the situation before
any magnetic field has been applied. As discussed above, the
finite spin-filtering coefficient P results in an asymmetry in
the dI/dV curve with respect to the sign of V . However,
Fig. 1 shows a quite symmetric curve. This can be explained
by assuming that the domain size in the upper thin EuS layer
is smaller than ξ0 and, therefore, the possible splitting in the
corresponding superconductor (R in our case) averages out.
The absence of a Zeeman field in the right superconductor
leads to an equal density of states for up and down electrons
and, hence, N3R(ε) = 0. Consequently, the second term on
the second line of Eq. (37) does not contribute to the current,
which now does not depend on the spin polarization of the
tunneling barrier.

The theory curve in Fig. 1(b) (blue line), is obtained for
GT = 6μS, which is the value of the conductance measured
at sufficiently large voltages (see the right panel of Fig. 1). The
superconducting gap at zero field and zero temperature is set
to �0 = 320 μeV in both Al layers. According to previous
studies on the spin relaxation processes in aluminum layers
[17,69,70], we set the spin-orbit relaxation time to τ−1

so =
0.005�0. The spin-flip relaxation is however enhanced due
to the magnetic disorder caused by the adjacent EuS layer
and we chose τ−1

sf = 0.08�0 in both Al layers. Since the
measurements in Fig. 1 are for zero field then τ−1

orb = 0. The
best fitting is obtained for hL = 100 μeV (bottom layer in the
experiment), whereas hR = 0 as explained above. The EuS
at the bottom is a thicker film and its magnetic domain size
is of the order of, or even larger than, the superconducting
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coherence length ξ0 [30]. Therefore it induces a sizable ex-
change splitting in the bottom Al layer.

We now focus on the results of Fig. 2 when an external field
is applied. These measurements are done after the first magne-
tization of EuS, i.e., after a strong enough in-plane magnetic
field is applied (B = 160 mT). After this, we switched off
the B-field and measured the I-V characteristic varying the
magnetic field from B = 0 to B ≈ −160 mT. The differential
conductance obtained by a numerical differentiation is shown
with solid lines in panels (a)–(c) of Fig. 2 for B = 0, B =
−30 mT and B = −160 mT, respectively. A full overview of
the dI/dV is presented as a color map in panel Fig. 2(d).

From the four-peak structure of dI/dV and the theoreti-
cal prediction in Fig. 4, we can conclude that the average
induced exchange fields in the left and right superconduc-
tors are collinear. After the application of the initial strong
magnetic field, the magnetizations of both EuS are aligned in
the direction of B. By decreasing the field until it switches
its direction, the magnetization of the FIs may also switch
at their corresponding coercive fields leading to the usual
ferromagnetic hysteresis loop. Such switching events can be
seen from the evolution of the peak positions in the dI/dV
map in Fig. 2(d).

We calculate the current using Eq. (27) and fit the data
shown in Fig. 2. We use for the values of the spin-splitting
fields for large magnetic fields (saturation of the magnetiza-
tion of the EuS films) hsatL = 120 μeV and hsatR = 30 μeV.
The difference between the values of the exchange fields
after and before the first magnetization of the EuS layers is
consistent with the result in Ref. [30]. In order to describe the
evolution of the conductance peaks with the magnetic field,
we assume that the exchange field follows the evolution of
the local magnetization. In particular, for the color plot in
Fig. 2(e), we assume that hL(B) = hsatL yL(B) and hR(B) =
hsatR yR(B), whereas spin polarization of the barrier is chosen
to be P(B) = 0.25 yR(B). Here, yL(B) = 1 − 2θ (B + 20) and
yR(B) = tanh B+70

40 are two empirical functions that describe
the evolution of the magnetization in the bottom and top EuS
layers as a function of the magnetic field B given in mT, where
θ (x) is the step function.

We also take into account the orbital depairing in the
superconducting layers due to the applied magnetic field,
determined by [71,72]

τ−1
orb =

(
πdξ0B√

6�0

)2

�0, (38)

where �0 is the magnetic flux quantum, d ≈ 4 nm is the
width of the Al layers and ξ0 ≈ 200 nm is the superconducting
coherence length.

The results of our fitting procedure are the dashed lines in
panels (a), (b), and (c) of Fig. 2 and the color map in panel (e).
All in a good agreement with the experimental data.

At first glance our fitting suggests an unexpected behavior:
The thin EuS layer switches its magnetization slower than the
thicker one. Here we provide a plausible explanation for this
behavior, which can be caused by the different polycrystalline
structures of EuS layers grown under different conditions. The
4-nm-thick EuS (bottom layer in Fig. 2) is grown on an Al2O3

substrate, while the 1.2-nm barrier is grown directly on the

previously oxidized underlying Al layer. As the oxidation of
this layer is not controlled, its stoichiometry is completely
different to the one on top of the substrate. Most likely, the
thin layer consists of a more disordered set of crystallites and
islands, resembling a superparamagnet. Such a large structural
roughness could also arise from the propagation of defects
created during growth in the bottom EuS and Al layers. If the
RMS roughness is larger than half thickness of the top EuS
layer, the layer would become discontinuous. Thus, the differ-
ent thicknesses of the two EuS layers plays an important role
in determining their magnetic properties as well. Presumably,
the crystallites in the thick EuS layer are magnetically well
coupled, while in the thin magnetic layer they form decoupled
magnetic islands. Consequently, the EuS in the bottom would
form magnetic domains on a scale much larger than the
crystallite size, which leads to the sharp switching of the
magnetization observed around B = −20 mT in Fig. 2(d). In
the thin EuS layer, by contrast, the macroscopic magnetization
is an average over the magnetization of the crystallites. Due to
disorder, the anisotropy is also random and such crystallites
would not switch simultaneously, resulting into the gradual
magnetization reversal that we observe from B ≈ −60 mT
to ≈ − 100 mT in Fig. 2(d). Moreover, the assumption of
an island-like structure due to the growth morphology [32]
can also explain the low polarization of the FI layer (25%) in
comparison with previous results of near to 80% polarization
[8,67]. Indeed, it seems that the coverage of the EuS barrier
is not complete and, in addition to the spin polarized cur-
rent, there is a parallel direct tunneling current through the
AlOx layer.

VI. CONCLUSIONS

We present an exhaustive analysis of tunnel junctions be-
tween spin-split superconductors coupled via a spin-polarized
barrier. With the help of a theoretical model, we compute
the spectral properties of the S/FI electrodes and determine
the current through a FI/S/I/FI/I/S/FI junction, where the
middle FI layer serves as a spin filter. Our theory predicts
a previously unknown behavior of the differential tunneling
conductance when the FI layers are noncollinear. Moreover,
we suggest how to use these structures for the realization
of so-called ϕ0 junctions. In addition, our theory provides
an accurate description of the differential conductance mea-
surements of an EuS/Al/AlOx/EuS/Al tunnel junction. We
obtain diverse information from the comparison between
theory and experiment. On the one hand we can determine
the values for the induced spin-splitting fields, spin-filter
efficiency, magnetic disorder, spin-orbit coupling, and orbital
effects in the superconductors. On the other hand, from the
magnetic field dependence of the dI/dV (V ) curves, we can
extract information about the magnetic structure of the two
EuS layers, which turns out to be very different due to the
rather different growth morphology of each layer.
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APPENDIX A: SELF-CONSISTENCY EQUATION

The superconducting gap for each superconductor in the
paper is obtained self-consistently. In the quasiclassical the-
ory, the self-consistency equation is given by

�s = λ

16i

∫ �D

−�D

dεTr
[
(τ1 − iτ2)ǧ

K
s (ε)

]
, (A1)

where s = {L,R} labels the superconductor, λ is the cou-
pling constant and �D is the Debye cutoff energy. Using the
expression for the Keldysh component in Eq. (7) and the
parametrization of the Green’s functions shown in Eq. (14),
we can rewrite the self-consistency equation of the supercon-
ducting gap as

�s = λ

2

∫ �D

−�D

dε Im[F0s(ε)] tanh

(
ε

2kBT

)
, (A2)

We use this self-consistent superconducting gap, together
with the Usadel equation in Eq. (9) to calculate the Green’s
functions used in current calculations.

APPENDIX B: RELATIONS BETWEEN UNIT VECTORS

In order to derive the expressions for the quasiparticle cur-
rent and supercurrents in Sec. III, we made use of following
relations between the unit vectors pointing in the direction of
the polarization of the barrier, nP, and induced the exchange
fields in the left, nL, and right, nR, electrodes. We define the
parallel and perpendicular components of the exchange fields
with respect to the polarization vector:

n‖
s ≡ (ns · nP )nP = cos θsnP, (B1)

n⊥
s ≡ ns − n‖

s , (B2)

where s = {L,R} labels the position of the electrode. Ac-
cording to these definitions and the expressions for the unit
vectors of the Zeeman fields in Eqs. (3) and (4), we obtain the
following useful relations:

nL · nR = n‖
L · n‖

R + n⊥
L · n⊥

R , (B3)

n‖
L · n‖

R = cos θL cos θR, (B4)

n⊥
L · n⊥

R = sin θL sin θR cos γ , (B5)

nP · (nL × nR) = sin θL sin θR sin γ . (B6)
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We study spin-polarized quasiparticle transport in a mesoscopic superconductor with a spin-splitting field in
the presence of coflowing supercurrent. In such a system, the nonequilibrium state is characterized by charge,
spin, energy, and spin-energy modes. Here we show that in the presence of both spin splitting and supercurrent,
all these modes are mutually coupled. As a result, the supercurrent can convert charge imbalance, which in the
presence of spin splitting decays on a relatively short scale, to a long-range spin accumulation decaying only via
inelastic scattering. This effect enables coherent charge-spin conversion controllable by a magnetic flux, and it
can be detected by studying different symmetry components of the nonlocal conductance signal.

DOI: 10.1103/PhysRevB.98.024516

I. INTRODUCTION

The nonequilibrium states in superconductors can be classi-
fied in terms of energy and chargemodes [1,2] as a direct result
of the particle-hole formalism in BCS theory. In magnetic
systems the relevant nonequilibrium modes are related to
the quasiparticle spin. In spin-split superconductors all these
modes need to be considered, and the quasiparticle diffusion
couples pairs of modes [3–5]. The earlier description of such
spin-resolved modes includes only the direct quasiparticle
transport, whereas the effect of supercurrent was not consid-
ered. However, a supercurrent flowing along a temperature
gradient is known to induce a charge imbalance [6–9]. Here
we combine these two effects and show how supercurrent
couples all nonequilibrium modes. We show how this leads to
a large coherently controllable charge-spin conversion induced
by supercurrent. In particular,we use the theoretical framework
[3] based on the quasiclassical Keldysh-Usadel formalism for
superconductors with a spin-splitting field h and consider the
presence of a constant phase gradient ∇ϕ in the superconduct-
ing order parameter. This leads to supercurrent and shows up in
the kinetic equations as spectral charge and spin supercurrents.
These coherent supercurrent terms couple spin and charge
transport, generating spin from charge injection. The effect
is long ranged compared to the spin-relaxation length in the
normal state and becomes very large at the critical temperature
and exchange field. It can be detected by studying the different
symmetry components of the nonlocal conductance.

The spin-charge conversion studied here occurs only under
nonequilibrium conditions and does not require spin-orbit
interaction. Therefore it is qualitatively different from the
direct [10–12] and inverse [13–16] equilibrium magneto-
electric effects proposed for noncentrosymmetric supercon-
ductors, Josephson junctions [17–19], and superconducting
hybrid systems [20] with spin-orbit coupling. Experimental

*faluke.aikebaier@jyu.fi
†mikesilaev@gmail.com
‡tero.t.heikkila@jyu.fi

verification of these spin-orbit-induced effects is limited to
recent observations of the anomalous Josephson effect through
a quantum dot [21] and Bi2Se3 interlayer [22,23]. To our
knowledge, the direct magnetoelectric effect, also known as
the Edelstein effect, in noncentrosymmetric superconductors
has not been observed to date. In normal conductors, such as
GaAs semiconductors, this effect is known as the inverse spin-
galvanic effect and has been detected using Faraday rotation
[24]. In contrast, the charge-spin conversion predicted in this
work can be measured by purely electrical probes. Moreover,
it is specific to superconducting metallic systems and does not
rely on the combination of inversion symmetry breaking and
spin-orbit coupling, which usually has a tiny effect in such
materials.

II. QUALITATIVE DESCRIPTION OF
THE CHARGE-SPIN CONVERSION

The supercurrent-generated coupling between different
nonequilibrium states can be understood with the schematic in
Fig. 1, showing the spin-split BCS spectrum Ep + σh ± pF vs

(where σ = ±1 for spin ↑ and ↓) for left- and right-moving
quasiparticles with respect to the condensate velocity vs . The
left- and right-moving states are defined according to their
velocities vg ≡ ∂Ep/∂ p ≷ 0. The balance between the two
can be broken either by position-dependent nonequilibrium
modes or by the presence of a supercurrent that induces an
energy difference (Doppler shift) ∼2pF vs between the states
with p ≈ ±pF , where pF is the Fermi momentum.

In the absence of spin splitting, h = 0, the combination of
these two effects allows for the creation of charge imbalance
proportional to vs∇T [6–9] where T is the temperature.
This mechanism is illustrated qualitatively in Fig. 1(a). Due
to the temperature gradient, left-moving quasiparticles [both
electrons (el) and holes (hl)] with velocities ve = vh = −vg =
−vF

√
E2

p − �2/Ep have an excess temperature TL compared
to that of the right-moving particles TR . From Fig. 1(a) one can
see that due to the Doppler shift there are more occupied states
in the electron branch. This results in the charge imbalance μ

controlled by the Doppler shift pF vs .

2469-9950/2018/98(2)/024516(10) 024516-1 ©2018 American Physical Society
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FIG. 1. Schematic pictures illustrating the couplings between
different types of nonequilibrium states in a superconductor in the
presence of the phase gradient driving the condensate to the velocity
vs . (a) Generation of charge imbalance by the temperature gradient.
(b) Generation of spin accumulation by the charge imbalance gradient
∇μ under the restriction that energy current is absent Ie = 0. Shown
in the plots are the quasiparticle electronlike (el) and holelike (hl)
spectral branches in the superconductor in the presence of Doppler
shifted energy ±pF vs . The solid and open circles show the extra
occupied and empty states compared to the equilibrium distribution,
respectively, and the circles with crosses show the states which
become depopulated due to the Doppler shift.

Now, let us turn to the system in the presence of velocity
vs and Zeeman splitting h �= 0, shown in Fig. 1(b). Spin
splitting the spectrum provides the possibility for a popula-
tion difference between spin-↑ and -↓ branches. Therefore
the supercurrent can couple charge and spin (μz ∝ vs∇μ

or μ ∝ vs∇μz) as well as excess energy and spin energy
(Ts ∝ vs∇T or T ∝ vs∇Ts). Hereμz is the spin accumulation,
and Ts is the spin energy accumulation [3]. Under general
nonequilibrium conditions all these couplings are present. To
separate the particular charge-spin conversion effect we must
impose certain constraints on the distribution function changes
due to the supercurrent-induced Doppler shift as in Fig. 1(b).
As shownbelow [Eq. (18)], these constraints determine the par-
ticular symmetry components of the nonlocal conductance as
functions of the injector voltage and polarization of the detector
electrode. For example, let us assume a charge imbalance
gradient ∇μ �= 0 resulting in a larger (smaller) number of left-
moving electrons (holes) in the absence of energy current Ie, so
that the energies of left-moving (right-moving) quasiparticles
are the same. In the absence of supercurrent these states
occupy spin-up and -down branches symmetrically, yielding
no spin accumulation. The Doppler shift results in qualitative
changes in quasiparticle distributions. From Fig. 1(b) one can
see that in order to have Ie = 0 without affecting the charge
imbalance, the extra energy gained by placing electrons on
the Doppler-shifted energy branch can be compensated only

by utilizing the Zeeman energy and shifting some occupied
states on the spin-down electron branch to the spin-up one
(dashed arrows in Fig. 1). Together with compensating the
energy difference between left- and right-moving states this
shift produces a net spin polarization.

III. KINETIC THEORY IN THE PRESENCE
OF SUPERCURRENT AND SPIN SPLITTING

Below, we quantify the physics described above using the
kinetic equations [3] based on the quasiclassical Keldysh-
Usadel formalism for superconductors with a spin-splitting
field h to study the spin accumulation generated by the
charge imbalance gradients. For concreteness, we consider
the structure shown in Fig. 3(a) below. A superconducting
wire with length L is placed between two superconducting
reservoirs. We assume the presence of a Zeeman splitting
along the wire due to either a magnetic proximity effect from
a ferromagnetic insulator or an in-plane magnetic field. A
current is injected in the wire from a normal-metal injector.
A ferromagnetic detector with normal-state conductance Gdet

and spin polarization Pdet is placed at distance Ldet from the
injector. Variants of this setup were realized, for example, in
Refs. [25–27]. Here we assume that, in addition, a homoge-
neous supercurrent Is flows along the wire. Either this current
can be driven externally, or it can be induced by a magnetic
field in a superconducting loop.

To study the properties of a mesoscopic superconductor
with Zeeman splitting, we start from the Usadel equation [28]
(h̄ = kB = 1)

D∇̂(ǧ∇̂ǧ) + [�̌ − �̌so − �̌sf − �̌orb,ǧ] = 0, (1)

where D is the diffusion constant, ǧ is the quasiclassical
Green’s function, and the covariant gradient operator is ∇̂ =
∇ − i A[τ3,·]. In the commutator �̌ = iετ3 − i(h · S)τ3 − �̌,
ε is the quasiparticle energy, h is the spin-splitting field,
S = (σ1,σ2,σ3), and the Pauli matrix τj (σj ) is in Nambu (spin)
space. The exact form of the spin-splitting field term, as well as
of the pair potential �̂, depends on the chosen Nambu spinor.
We choose it to be


 = (ψ↑(x), ψ↓(x), − ψ
†
↓(x), ψ

†
↑(x))

T , (2)

where T denotes a transpose. The advantage of using this
spinor is that the Nambu structure has the same form for
each spin component. The superconducting pair potential �̌ =
�̂σ0 should be obtained self-consistently (see Appendix A
for details). We denote the Nambu-space matrix �̂(x) =
|�|eiϕ(x)τ3τ1, where x is the coordinate along the wire. Due
to supercurrent, the phase ϕ becomes position dependent.
We assume that the quasiparticle currents within the wire
are so small that we can disregard the ensuing position
dependence of |�|. The last three terms in the commutator are
�̌so = (8τso)−1(SǧS), �̌sf = (8τsf )−1(Sτ3ǧτ3S), and �̌orb =
τ−1
orb τ3ǧτ3, representing spin and charge imbalance relaxation
due to the spin-orbit scattering, exchange interactionwithmag-
netic impurities, and orbital magnetic depairing, respectively.
The corresponding relaxation rates are τ−1

so , τ−1
sf , and τ−1

orb .
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We use the real-time Keldysh formalism and describe the
quasiclassical Green’s function as

ǧ =
(

ĝR ĝK

0̂ ĝA

)
, (3)

where each component is a 4×4 matrix in the Nambu ⊗ spin
space, ĝR(A) is the retarded (advanced) Green’s function, and
ĝK is the Keldysh Green’s function describing the nonequi-
librium properties. This function can be parameterized in the
case of collinear magnetizations by ĝK = ĝRf̂ − f̂ ĝA, where
the distribution matrix f̂ = fL + fT τ3 + fT 3σ3 + fL3σ3τ3.

We consider Eq. (1) in the presence of the superconducting
current along the wire. Removing the phase of the order
parameter by gauge transformation allows us to write Eq. (1)
in the gauge-invariant form, replacing the vector potential by
the condensate momentum qs = ∇ϕ − 2A. The gradient term
in Eq. (1) can be written in the form

∇̂ · (ǧ∇̂ǧ) = ∇ · Î + i

2
[τ3,qs Î], (4)

Î = ǧ∇ǧ + iqs

2
(ǧτ3ǧ − iτ3), (5)

where Î is the matrix spectral current. We formulate the
Keldysh part of this equation in terms of spectral currents:
charge jc = Tr(τ3Î ), energy je = Tr(τ0Î ), spin js = Tr(σ3Î ),
and spin energy jse = Tr(σ3τ3Î ).

Kinetic equations derived from Eqs. (4) and (5) for these
currents can be written in a matrix form:

∇ ·

⎛
⎜⎜⎜⎝

je

js

jc

jse

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
0 0 0 0

0 ST 3 0 0

0 0 RT RL3

0 0 RL3 RT + SL3

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

fL

fT 3

fT

fL3

⎞
⎟⎟⎟⎠, (6)

where⎛
⎜⎜⎜⎝

je

js

jc

jse

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

DL∇ DT 3∇ jEqs jEsqs

DT 3∇ DL∇ jEsqs jEqs

jEqs jEsqs DT ∇ DL3∇
jEsqs jEqs DL3∇ DT ∇

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

fL

fT 3

fT

fL3

⎞
⎟⎟⎟⎠.

(7)
The kinetic coefficients DL/T/T 3/L3, RT/L3, and ST 3/L3 are de-
fined in terms of the components of ĝR and ĝA (seeAppendixB
andmore details in Ref. [3]). The terms ST 3/L3 are proportional
to the total spin-relaxation rate in the normal state, τ−1

sn =
τ−1
so + τ−1

sf . The phase gradient provides two additional terms
in Eq. (7): spectral supercurrent jE [29] and spin supercurrent
jEs = D Tr[(ĝR∇ĝR − ĝA∇ĝA)σ3τ3]/(8qs). Further we use
the gauge with A = 0, so that qs = ∇ϕ.

In equilibrium fL = tanh(ε/2T ) ≡ n0, and othermodes are
absent. Then the spectral current terms yield nonzero charge
supercurrent Is and spin-energy current Ise as

Is = Gξ0ξ0qs

∫ ∞

−∞
dεjE tanh

(
ε

2T

)
, (8)

Ise = Gξ0ξ0qs

∫ ∞

−∞
dεεjEs tanh

(
ε

2T

)
, (9)

where Gξ0 = e2DνF A/ξ0 is the normal-state conductance
of the wire of one superconducting coherence length

FIG. 2. Schematic picture illustrating the nonzero spin energy in
the ground state of a spin-singlet superconductor with spin splitting.
N↑,↓(ε) are the spin-up and -down densities of states as functions of
the energy ε. The relative Zeeman shift of the electronic bands is 2h.
The case of T = 0 is shown, so that all states below the Fermi level
εF are occupied.

ξ0 = √
D/�, with normal-state density of states νF and cross

section A. We assume that the phase gradient is small, so that
Is is much below the critical current of the wire.

The equilibrium spin-energy current, Eq. (9), arises due to
the modification of the superconducting ground state in the
presence of an exchange field. This is illustrated schematically
inFig. 2,which shows the occupied energy states in spin-up and
spin-down subbands in a superconductor with a spin-splitting
field. Here one can see that there is a relative energy shift
between the spin-up and -down subbands. The overall energy
difference between these states yields the nonvanishing spin
energy density ε↑ − ε↓ = hN0, where N0 is the total electron
density. Since all these particles are in the condensed state, the
collectivemotion of the condensate results in the coherent spin-
energy flow Ise = vsN0h. However, such an equilibrium spin-
energy current is not directly observable and can be revealed
through its coupling to the superconducting current and charge
imbalance, as discussed below.

Out of equilibrium, the matrix in Eq. (7) couples the four
modes together. The diffusion coefficients DT 3/L3 �= 0 for
h �= 0 combine pairwise fT and fL3 (charge and spin energy)
modes as well as fL and fT 3 (energy and spin) modes [4,5]. An
additional coupling between fL and fT modes is introduced by
jE , mixing charge imbalance with energy. This coupling leads
to the supercurrent-induced charge imbalance in the presence
of a temperature gradient [7–9]. The presence of h and jE

combines these twoeffects together inEq. (7) and allows for the
conversion between charge imbalance and spin accumulation.
In the next section we study the observable consequences of
this conversion.

IV. SPIN-CHARGE CONVERSION IN
A NONLOCAL SPIN VALVE

Kinetic theory developed in the previous section can be
applied to predict the experimentally measurable consequence
of the charge-spin conversion effect in the nonlocal spin-valve
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FIG. 3. (a) Schematic view of the setup. Here the spin-splitting
field is induced from either the ferromagnetic insulator or external
magnetic field B. (b)–(d) Spin accumulation as a function of pa-
rameters μz = μz(h,T ,τsn) at the detector position Ldet = L/8 in the
linear-response regime (small Vinj). (b) The dependence on the spin-
relaxation rate for kBT = 0.15�0 and h = 0.3�0. (c) Temperature
and (d) spin-splitting field dependence. The orbital depairing rate is
τ−1
orb = 0.176h2/�0. Here we normalize the induced spin signal by the
supercurrent amplitude Is .

setup shown in Fig. 3(a). It consists of a superconducting
wirewith externally induced supercurrent, an injector electrode
attached at x = 0, and a ferromagnetic detector electrode at-
tached at some distance x = LD . The overall length of the wire
L is fixed by the boundary conditions which require all
nonequilibrium modes to vanish at x = ±L/2.

Consider a nonferromagnetic injector electrode attached at
x = 0.Wedescribe the injection ofmatrix quasiparticle current
using the boundary conditions at the tunneling interface [30]
extended to the spin-dependent case [31]:

⎛
⎜⎜⎜⎝

[jc]

[je]

[js]

[jse]

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

N+ PN− PN+ N−
PN− N+ N− PN+
PN+ N− N+ PN−
N− PN+ PN− N+

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

[fT ]

[fL]

[fT 3]

[fL3]

⎞
⎟⎟⎟⎠ .

(10)
Here the left-hand side of Eq. (10) contains the differences
between currents in the superconducting wire on the left and
on the right from the injector, [jk] = [jk(x = +0) − jk(x =
−0)]/κI , where k = T ,L,T 3,L3 and κI = Ginj/(GLL) is the
injector transparency defined by the ratio of the normal-state
conductance Ginj of the injector and the conductance GLL of
the wire per unit length.

The right-hand side of Eq. (10) contains the differences
of the distribution function components [f ]k = f

(S)
k − f

(N)
k

between the superconductor and normal-metal electrodes.
The response matrix is here described by the spin polariza-
tion P and the energy-symmetric and energy-antisymmetric
parts of the density of states, N+ = Tr Re(τ3ĝR) and N− =
Tr Re(σ3τ3ĝ

R). In our particular case the normal-metal injector
is characterized by the Fermi distribution function shifted
by the applied bias voltage Vinj. Therefore we have [fL] =

fL − n+, [fT ] = (fT − n−), [fT 3] = fT 3, and [fL3] = fL3,
where n± = [n0(ε + Vinj) ± n0(ε − Vinj)]/2.

The solutions of Eqs. (6) and (10) can be used to calculate
the tunneling current Idet measured by a spin-polarized detector
[4] with spin-filtering efficiency Pdet:

Idet = Gdet(μ + Pdetμz), (11)

μ = 1

2

∫ ∞

−∞
dε(N+fT + N−fL3), (12)

μz = 1

2

∫ ∞

−∞
dε[N+fT 3 + N−(fL − feq)]. (13)

The contributions from the different nonequilibrium modes
to μ and μz can be read off from the different symmetry
components of Idet with respect to the injection voltage Vinj

and the detector polarization Pdet. The non-spin-polarized
injector generates charge fT and energy fL modes [32], which
are odd and even in the injection voltage, respectively. In
spin-split superconductors the energy mode is coupled to the
spin accumulation, producing a long-range spin signal with the
symmetry [4]μz(Vinj) = μz(−Vinj). The supercurrent converts
part of the charge imbalance to long-range spin accumulation
with the opposite symmetryμz(Vinj) = −μz(−Vinj). Belowwe
concentrate on the details of this mechanism.

First, we solve the kinetic equations using a perturbation
expansion in the small parameter ξ0qs , where ξ0 = √

D/� is
the coherence length. For simplicity, we disregard inelastic
scattering that would add an energy-nonlocal term in Eq. (6)
and rather assume that fL = n0 at the ends of the wire. This
mimics the typical experimental situation where the wire ends
in wide electrodes, often at a distance that is small compared
to the inelastic scattering length. In this case the solution of fL

includes a linear component. The solution of fT 3, however, is
determined by the strength of spin relaxation. This calculation
is detailed in Appendix C.

When qs = 0, we find fT and fL3 modes generating the
charge imbalance μ. For qs �= 0 [see Eq. (7)] these solutions
provide sources for the fL and fT 3 modes generating the spin
accumulationμz in accordancewith the qualitativemechanism
illustrated in Fig. 1(b). This generation takes place close to
the injectors before the charge imbalance relaxes due to the
presence of an exchange field and depairing [3,33] [blue lines
in Fig. 4(a)].

However, μz has a long-range part associated with the
contribution offL, which consists of two qualitatively different
parts. First, even in the absence of the supercurrent, there exists
a long-range contribution related to the already known heating
effect [4] given by

f heat
L (x) = αheat(|x| − L), (14)

where αheat = N+n+/DL. Second, the long-range contribution
excited due to the supercurrent is given approximatively by

f
super
L = αsuper[sgn(x) − x/L]. (15)

The amplitude αsuper depends on the strength of relaxation
described by RT/L3 and ST 3/L3 in Eq. (6).

Note that the spatial structures of (14) and (15) are different
because f heat

L (x) is an even function and f
super
L (x) is an odd

function of x [see Fig. 4(a)]. In addition, the amplitude of
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FIG. 4. Spin accumulation andnonlocal conductance. (a) Position
dependence of heat-induced (red) and supercurrent-induced (blue)
charge and spin imbalances. Here the results are calculated for
T = 0.15�0, h = 0.3�0 at Vinj = 0.1�0. The solid curves are odd
in injection voltage, and dashed curves are even. (b) Injection voltage
dependence on spin accumulation for T = 0.25�0. (c) Nonlocal
conductance as a function of injection voltage in separate scales
for heat- and supercurrent-induced effects (with ξ0∂xϕ = 0.1) for
T = 0.02�0. (d) Heat-induced and total conductance as a function of
injection voltage for T = 0.25�0 (with ξ0∂xϕ = 0.5). The parameters
τ−1
so = 0.0475�0, τ−1

sf = 0.0025�0, h = 0.05�0, and L = 20ξ0 are
the same in (b)–(d).

the supercurrent-induced part is an odd function of the in-
jector voltage αsuper(Vinj) = −αsuper(−Vinj). Therefore it exists
already in the linear regime, whereas the heating (14) is a
nonlinear effect sinceαheat(Vinj) = αheat(−Vinj). Further, as one
can see from Eq. (14), the heating contribution grows linearly
with the wire lengthL, while the supercurrent-related part (15)
does not depend on the length L at distances |x| � L.

To gain further insight, we first study the spin accumu-
lation using a numerical solution of the kinetic equations.
In Figs. 3(b)–3(d), 4(a), and 4(b), we show the dependen-
cies of the spin accumulation on various parameters μz =
μz(h,T ,τsn,Vinj,x) obtained from the numerical solutions of
Eqs. (6) and (7). Note that from this plot it is clear that the
effect exists entirely due to themodification of the quasiparticle
spectrum by the spin splitting: As shown in Figs. 3(c) and 3(d),
the spin signal μz disappears both for h → 0 when there is no
spin splitting and for T → 0 when there are no quasiparticles.
At the same time, Fig. 3(b) shows that the effect survives
in the absence of spin-orbit or spin-flip scattering, i.e., for
τsn → ∞. Below we study in more detail the influence of spin
relaxation on the behavior of different contributions to the spin
accumulation.

A. Case without spin relaxation (ST3,L3 = 0)

The discussed mechanism of spin-charge conversion does
not require any nonconservation of spin. This is qualita-
tive distinction from previously discussed direct and inverse
Edelstein effects which rely on the spin-orbit interaction [10–
16]. In the absence of spin relaxation, fT 3 ∝ x is also a

long-range mode similar to the longitudinal one which in the
absence of inelastic scattering is long range [see Eqs. (14) and
(15)]. The combination of fT 3 and fL then yields (see details in
Appendix C)

μz = ξ0∂xϕ
Ginj

Gξ0

∫ ∞

0
dεn−(ε;Vinj)

∑
σ=↑,↓

σN2
σ jσ

s

4Dσ
LRσ

T

u0(x).

(16)

Here u0(x) = −u0(−x) is a function that decays linearly from
unity close to the injector (x = 0) to zero at the reservoirs, and
n− = [n0(ε + Vinj) − n0(ε − Vinj)]/2. Equation (16) describes
the region |x| > λcr, where λcr is the charge relaxation length.
Here N↑/↓ = N+ ± N− are spin-up and -down densities of
states, D

↑/↓
L = DL ± DT 3, R

↑/↓
T = RT ± RL3, and j

↑/↓
s =

jE ± jEs . Moreover,Ginj andGξ0 are the normal-state conduc-
tances of the injector and of a wire with length ξ0, respectively.
The integrand in Eq. (16) is peaked at ε ≈ � ± h due to the
BCS divergence in Nσ , jσ

s , and Rσ
T . This divergence can be

cut off by the depairing parameter [34] �. Then taking ε =
� + h for spin-up σ =↑ and ε = � − h for spin-down σ =↓
we obtain, Nσ ≈ γ

−1/2
σ /

√
2, jσ

S ≈ γ −1
σ /2, and Rσ ≈ γ

−1/2
σ /2,

with γσ = �/(� + σh). Therefore the integrand scales as
(8γσ )−3/2, whereas the width of the peak is ∝ �. Overall,
this means a diverging integral scaling like ∼�−1/2. Similar
divergence was found in Ref. [6] for the supercurrent-induced
charge imbalance in the absence of spin splitting.

In practice, the relevant depairing mechanism in the pres-
ence of spin splitting and supercurrent is the orbital depairing
due to the combined effect of the supercurrent itself and of an
in-plane magnetic field B on the spectrum of the superconduc-
tor [35–37], with rate τ−1

orb = D�(∂xϕ)2/(2) + De2B2d2/6 for
a film with thickness d. It does not relax the spin but affects
the spectral properties of the superconductor by reshaping the
singularities in the spectral quantities [3]. We can hence use
τ−1
orb instead of � to cut the divergence and see that for very
large phase gradients, μz becomes independent of ∂xϕ.

According to Eq. (16) the difference in the quantity
N2

σ jσ
s /(Dσ

LRσ
T ) for spin-up and -down species describes the

charge-spin conversion. We find that the charge imbalance
in each spin subband is proportional to the energy integral
of N2

σ /Rσ
T . The charge in each subband is then converted

to spin at a rate ∝ jσ
s /Dσ

L. The temperature and exchange
field dependence of μz are given in Figs. 3(c) and 3(d),
respectively. We can see that the linear response μz → 0 as
T → 0, which reflects the freezing out of the quasiparticle
population [Fig. 3(c)]. However, this can be circumvented by
considering the response at Vinj ∼ �, as shown below. At the
superconducting critical temperature Tc, the ratio μz/Is di-
verges similarly to the supercurrent-induced charge imbalance
in the presenceof a temperature gradient [7,8]. SinceTc is lower
for a higher exchange field, this divergence happens at a lower
temperature in a higher exchange field. For a fixed temperature,
the divergence of μz also happens at a critical exchange field
[Fig. 3(d)] where superconductivity is suppressed [38,39].

B. Effect of spin relaxation

Spin-flip and spin-orbit relaxation affect both spectral and
nonequilibrium properties of the superconductor. For the
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spectral properties, spin-flip relaxation breaks the time-
reversal symmetry and suppresses the superconducting pair
potential and critical temperature, while spin-orbit scattering
reduces the effect of the exchange field without suppressing
the pair potential [3]. Both spin-flip and spin-orbit scattering
also lead to the relaxation of fT 3 [ST 3/L3 terms in Eq. (6)]. For
strong spin relaxation, the contribution to μz thus results only
from fL and decays only via inelastic scattering. In this case
(see details in Appendix C)

μz = ξ0∂xϕ0
Ginj

Gξ0

∫ ∞

0
dεn−(ε;Vinj)

(N2
↑ − N2

↓)jE

4RT DL

u1(x).

(17)
Here the linear function u1(x) = −u1(−x) ≈ u0(x) for |x| >

λcr. However, the effects of spin-flip/spin-orbit scattering on
the spectral functions also affect the resulting μz. The effect
depends strongly on the type of scattering.

For pure spin-flip relaxation, contribution of fL increases
as a function of the spin-relaxation rate and diverges when the
strong relaxation completely kills superconductivity. This can
be seen in the relaxation rate dependence of μz in the linear-
response regime in Fig. 3(b). For pure spin-orbit relaxation,
the effect of the exchange field is suppressed, and thereby so
is the charge-spin conversion.

V. SPIN ACCUMULATION AND NONLOCAL
CONDUCTANCE

The charge-spin conversion can be detected by inspecting
the nonlocal conductance gnl = dIdet/dVinj in the presence of
the supercurrent Is driven across the wire. Without supercur-
rent, this quantity was measured in Refs. [25–27]. We show
an example of gnl in Figs. 4(c) and 4(d). We separate it into
different symmetry components vs Vinj and Pdet as

gnl = gee + geo + (goe + goo)Pdet, (18)

where gαe/o(Vinj) = ±gαe/o(−Vinj) and α = e/o describe the
symmetry vs Pdet. Since the derivative of the detector current
with respect toVinj flips the parity of the terms, the conductance
due to the pure charge imbalance is even in both Vinj and Pdet

and hence is described by gee. The term goo = gheat is the long-
range spin accumulation due to the heat injection [4,5]. The
supercurrent induces the term geo that describes the conversion
of temperature gradients to charge [6–8], whereas goe = gsuper

results from the supercurrent-induced charge-spin conversion.
The symmetry of gsuper results from the fact that it is related
to spin imbalance (and therefore antisymmetric in Pdet) and
originates from induced charge imbalance. In normal-metal
spin injection experiments [40] only the term goe is nonzero,
but it requires nonzero spin polarization Pinj of the injector.
Here Pinj = 0.

The term gsuper should be compared to the contribution
determined by effective heating [4] (14),

gheat = Ginj

Gξ0

L

2ξ0
u3(x)

∫ ∞

0
dε

∂n+
∂Vinj

N2
↑ − N2

↓
DL

, (19)

where u3(x) = u3(−x) is a function that changes linearly
from unity at the injector to zero at the reservoirs and n+ =
(n0(ε + eV ) + n0(ε − eV ) − 2n0)/2. For T → 0, ∂n±/∂Vinj

approaches a δ function at ε = ±eV , and we can esti-

mate the integrals by the values of the kinetic coefficients
at those energies. For eV ≈ � ± h where the main signal
resides, gsuper ≈ 2ξ0gheat/L for ξ0∇ϕ ≈ τ−1

orb� + τ−1
sf + τ−1

so ,
i.e., when the supercurrent starts affecting the density of states.
At higher temperatures and lower voltages eV � kBT , where
quasiparticle effects are visible even at linear response, gsuper

can dominate over gheat.

VI. CONCLUSION

In conclusion, we have shown how the nonequilibrium
supercurrent in a spin-split superconductor can partially con-
vert charge imbalance to spin imbalance. The resulting spin
imbalance is long range, decaying only due to inelastic scat-
tering. Here we have concentrated on a setup with collinear
magnetizations. We expect that the generalization of our
theory to the case with inhomogeneous magnetization would
shed light on the possible coherently controllable nonequilib-
rium spin torques. We also expect to find analogous effects
in superconducting proximity structures in the presence of
spin splitting, i.e., combining the phenomena discussed in
Refs. [41,42].
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APPENDIX A: SELF-CONSISTENCY EQUATION FOR �

The pair potential � should be obtained self-consistently
from

� = λ

16

∫ �D

−�D

dε Tr[(τ1 − iτ2)ĝ
K (ε)], (A1)

whereλ is the coupling constant and�D is theDebye cutoff en-
ergy. In the presence of both spin splitting and nonequilibrium
distribution functions, this goes to the form [3]

� = λ

2

∫ �D

−�D

dε
[
ImgR

01fL + ImgR
31fT 3

+ i
(
RegR

01fT + RegR
31fL3

)]
, (A2)

where gR
ij is the part of the retarded Green’s function pro-

portional to σiτj . The results obtained in the main text use
the self-consistent equilibrium gap but do not include the
nonequilibrium corrections. For the gap amplitude |�| this ap-
proximation is justified in the case of low injection conductance
Ginj. However, with such a choice the charge current is, strictly
speaking, not conserved in the presence of a constant phase
gradient. This is because the quasiparticle injection modifies
the phase of � [the last two terms in Eq. (A2)], and the
true phase gradient corresponding to a constant charge current
becomes position dependent. Such an effect is of a higher order
in the phase gradient and within a perturbation approach can
therefore be disregarded. We leave such higher-order effects
for further work.
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APPENDIX B: KINETIC COEFFICIENTS

The Green’s function in Eq. (2) satisfies the normal-
ization condition ǧ2 = 1, which allows us to parametrize
the Keldysh Green’s function as ǧK = ǧRf̌ − f̌ ǧA, where
the distribution matrix f̌ = fL + fT τ3 + fT 3σ3 + fL3σ3τ3.
We also can parametrize the retarded Green’s func-
tion as ǧR = g01τ1 + g02τ2 + g03τ3 + g31σ3τ1 + g32σ3τ2 +
g33σ3τ3, and ǧA = −τ3ǧ

R†τ3. Here gi are complex scalar
functions. From these, we identify N+ = Re(g03) and N− =
Re(g33).

The kinetic coefficients Di , Ri , and Si in Eqs. (3) and (4)
can be expressed in terms of the parameterized functions ǧR

and ǧA. Di are

DL = D

2
(1 − |g01|2 − |g02|2 + |g03|2 − |g31|2

− |g32|2 + |g33|2),
DT 3 = − D[Re(g01g

∗
31) + Re(g02g

∗
32) − Re(g03g

∗
33)],

DT = D

2
(1 + |g01|2 + |g02|2 + |g03|2 + |g31|2

+ |g32|2 + |g33|2),
DL3 = D[Re(g01g

∗
31) + Re(g02g

∗
32) + Re(g03g

∗
33)].

Ri are

RT = Re(g01)� cosϕ − Re(g02)� sin ϕ,

RL3 = Re(g31)� cosϕ − Re(g32)� sin ϕ.

Si are

SL3 = τ−1
sn {Re(g03)

2 − Re(g33)
2

+ β[Im(g01)
2 − Im(g31)

2 + Im(g02)
2 − Im(g32)

2]},
ST 3 = τ−1

sn {Re(g03)
2 − Re(g33)

2

+ β[Re(g31)
2 − Re(g01)

2 + Re(g32)
2 − Re(g02)

2]},
where τ−1

sn = τ−1
so + τ−1

sf and the parameter β = (τso −
τsf )/(τso + τsf ) describes the relative strength of the spin-
orbit and spin-flip scattering. For β > 0, spin-flip scattering
dominates the spin-orbit scattering and vice versa for β < 0.
These coefficients are independent of ϕ (the dependence of ϕ

in Ri terms is canceled by the corresponding terms in gi).
There are also two more coefficients in Eqs. (3) and (4),

spectral supercurrent and spectral spin supercurrent, which

depend on the phase gradient ∂xϕ:

jE∂xϕ = 1
8D Tr[(ǧR∂xǧ

R − ǧA∂xǧ
A)τ3],

jEs∂xϕ = 1
8D Tr[(ǧR∂xǧ

R − ǧA∂xǧ
A)σ3τ3].

These two terms are related to the nonzero charge supercurrrent
and spin-energy current. Here and below we assume that the
wire is in the x direction and all changes in the phase ϕ and
the distribution functions take place in that direction.

APPENDIX C: PERTURBATION THEORY SOLUTIONS OF
KINETIC EQUATIONS IN THE LINEAR ORDER BY ξ0∇ϕ

The general solution of the kinetic equations in Eq. (3) can
be written as

(fL,fT 3,fT ,fL3)
T

= (C01 + C02x)vT
0 + C1e

kLxvT
1 + C2e

−kLxvT
2 + C3e

kT 1xvT
3

+C4e
−kT 1xvT

4 + C5e
kT 2xvT

5 + C6e
−kT 2xvT

6 , (C1)

where vT
0 = (1,0,0,0)T ; kL, kT 1, and kT 2 are the energy-

dependent inverse length scales; the othervT
i canbe determined

numerically; andCi can be determined from the boundary con-
ditions (10). For a small phase gradient, we can determine these
coefficients analytically. Belowwe concentrate in particular on
the solutions of the modes related to the supercurrent-induced
spin imbalance and treat the supercurrent as a perturbation
in the kinetic equations. At zeroth order Eq. (3) decouples
into two sets of kinetic equations. First, we concentrate on
the part that is odd in the injection voltage, describing charge
imbalance. In this case, for a vanishing supercurrent the
relevant distribution function components are fT and fL3. We
denote their values in the absence of supercurrent by f 0

T and
f 0

L3. On the other hand, the supercurrent couples them to the
other two functions fL and fT 3 and induces the change δfL and
δfT 3, which we calculate to linear order in the phase gradient.
For fT and fL3, we get the first set of kinetic equations,(

DT DL3

DL3 DT

)(
∂2
x f 0

T

∂2
x f 0

L3

)
=

(
RT RL3

RL3 RT + SL3

)(
f 0

T

f 0
L3

)
.

(C2)
Inwhat follows, we choose�0 to be the reference energy scale,
and therefore the coherence length ξ0 = √

h̄D/�0 becomes
the reference length scale. That means, for example, that the
dimensionless quantities describing spin relaxation are of the
form τsf�0 and τso�0.

Using the boundary conditions (10), we obtain for κIL � 1
(

f 0
T

f 0
L3

)
= κI ξ0n−(ε,Vinj)

∑
i=1,2

Aie
−kT ix/ξ0

(
kRi

−1

)
, 0 � x � L

2
, (C3)

where the inverse length scales

k2
T 1/2 =

DT (2RT − SL3) − 2DL3RL3±
√
4(DT RL3 − DL3RT )2 + 4DL3(−DT RL3 + DL3RT )SL3 + D2

T S2
L3

2
(
D2

T − D2
L3

) ,

and the coefficients

Ai =
[
N−

(
DL3 − DT kRi ′

) − N+
(
DT − DL3kRi ′

)]
4
(
D2

L3 − D2
T

)(
kRi − kRi ′

)
kT i

,
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kR1/2 =
DT SL3∓

√
4D2

L3RT (RT + SL3) − 4DL3DT RL3(2RT + SL3) + D2
T

(
4R2

L3 + S2
L3

)
2(DT RL3 − DL3RT )

.

For the perturbed terms of fL and fT 3, we get another set of kinetic equations,

(
DL DT 3

DT 3 DL

)(
∂2
x δfL

∂2
x δfT 3

)
+

(
jE∂xϕ jEs∂xϕ

jEs∂xϕ jE∂xϕ

)(
∂xf

0
T

∂xf
0
L3

)
=

(
0 0
0 ST 3

)(
∂2
x δfL

∂2
x δfT 3

)
. (C4)

Using the solution in Eq. (C3), we obtain(
δfL

δfT 3

)
= κI ξ

2
0 ∂xϕn−(ε,Vinj)

∑
i=1,2

[
αi

k2
L − k2

T i

(e−kT ix/ξ0 − e−kLx/ξ0 )

(−DT 3/DL

1

)

+ βi

k2
T i

(
2x

L
− 1 + e−kT ix/ξ0

)(
1
0

)]
, 0 � x � L

2
, (C5)

where the inverse length scale

k2
L = ST 3DL

D2
L − D2

T 3

and the coefficients

αi = [jEs(DT 3 + DLkRi) − jE(DL + DT 3kRi)][N−(DL3 − DT kRi ′) − N+(DT − DL3kRi ′)]

2
(
D2

T − D2
L3

)(
D2

L − D2
T 3

)
(kRi − kRi ′)

,

βi = (jEkRi − jEs)[N+(DT − DL3kRi ′) − N−(DL3 − DT kRi ′)]

2DL

(
D2

T − D2
L3

)
(kRi − kRi ′)

.

The spin accumulation generated from the supercurrent is

μz = 1

2

∫ ∞

0
dε(N+δfT 3 + N−δfL)

= 1

2
κI ξ

2
0 ∂xϕ

∫ ∞

0
dε n−(ε,Vinj)

∑
i=1,2

[(
N+ − N−

DT 3

DL

)
αi

k2
L − k2

T i

(e−kT ix/ξ0 − e−kLx/ξ0 )

+N−
βi

k2
T i

(
2x

L
− 1 + e−kT ix/ξ0

)]
, 0 � x � L

2
. (C6)

In the extreme limit of τ−1
sn → 0, this result can be reduced to a simpler form. In this case, ST 3 and SL3 terms in the kinetic equations

are zero; therefore the e−kLx/ξ0 term is replaced by a linear termwith the same coefficients with δfL. For the linear-response regime
n−(ε,Vinj) = Vinj∂n0/∂ε, we get

μz = VinjκI ξ
2
0 ∂xϕ

∫ ∞

0
dε

∂n0

∂ε

[
N2

↑j
↑
s

4D↑
LR

↑
T

(
2x

L
− 1 + e−

√
R

↑
T /D

↑
T x/ξ0

)

− N2
↓j

↓
s

4D↓
LR

↓
T

(
2x

L
− 1 + e−

√
R

↓
T /D

↓
T x/ξ0

)]
, 0 � x � L

2
, (C7)

where the ↑ and ↓ quantities are the addition and subtraction of the singlet and triplet components of the spectral quantities,
j

↑/↓
s = jE ± jEs , N↑/↓ = N+ ± N−, D

↑/↓
L = DL ± DT 3, and R↑/↓ = RT ± RL3.

It is straightforward to see that μz = 0 for h = 0 since the
quantity N2js/(DLRT ) is equal for both spin species. For
nonzero h the difference in this quantity for different spin
species gives the spin accumulation. However, without relax-

ation, this quantity is proportional to 1/
√

�, which describes
the broadening of the spectral quantities.

In practice, the relevant broadening renormalizingμz comes
from the orbital effect due to either a magnetic field or
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FIG. 5. Spin accumulation with and without relaxation in the linear-response regime. (a) The dependence on orbital depairing rate in the
case without spin relaxation. Position dependence in the case of (b) pure spin-flip relaxation and (c) pure spin-orbit relaxation. An exchange
field h = 0.3�0 is the same for all panels, and a temperature T = 0.15�0 is used in (b) and (c). The red curves describe the charge imbalance.
The spin-relaxation length is defined as λsn = √

τsnD.

the phase gradient itself [35–37] or due to terms contribut-
ing to the spin relaxation [3]. The two first effects can be
described by an orbital relaxation rate τ−1

orb = (ξ0∂xϕ)2/2 +
(De2B2d2/6) [37], where B is the magnetic field and d is
the film thickness. In the presence of spin relaxation de-
scribed by the rate τ−1

sn , an estimate for the overall broad-
ening comes from � �→ τ−1

orb + τ−1
sn , but the exact amount

depends on the relaxation mechanism and the size of the
exchange field. As an example, we show the supercurrent-
induced μz vs τ−1

orb in Fig. 5(a). Since μz ∝ (ξ0∂xϕ)�−1/2,
for large phase gradients satisfying ξ0∂xϕ �

√
De2B2d2/6 +

τ−1
sn , the spin accumulation becomes independent of

∂xϕ.
However, spin relaxation also affects the decay of the

nonequilbrium components of the distribution function via the
relaxation terms ∼ST/L3. In another extreme limit τsn → ∞,
we can also have a simpler form of Eq. (C7). In this case

4DL3(DT RL3 − DL3RT )/D2
T � SL3, and

μz = VinjκI ξ
2
0 ∂xϕ

∫ ∞

0
dε

∂n0

∂ε

(N2
↑ − N2

↓)jE

4RT DL

×
(
2x

L
− 1 + 2e−kT 2x/ξ0 − e−kLx/ξ0

)
, 0 � x � L

2
.

(C8)

Here, except for the density of states, the triplet component of
other spectral quantities do not contribute to the spin accumula-
tion. The difference in the density of states for two spin species
behaves differently for spin-orbit and spin-flip relaxations.
Spin-orbit relaxation does not affect the pair potential but
tries to lift the effect of the spin-splitting field. Therefore μz

approaches zero for very strong relaxation [Fig. 5(c)]. In the
case of spin-flip relaxation, it suppresses the pair potential;
therefore spin accumulation diverges [Fig. 5(b)].
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We study the equilibrium properties of a ferromagnetic insulator/superconductor structure near a magnetic
domain wall. We show how the domain wall size is affected by the superconductivity in such structures.
Moreover, we calculate several physical quantities altered due to the magnetic domain wall, such as the spin
current density and local density of states, as well as the resulting tunneling conductance into a structure with a
magnetic domain wall.

DOI: 10.1103/PhysRevB.99.104504

I. INTRODUCTION

One of the hallmarks of superconductivity is the Meissner
effect, where a superconductor expels an external magnetic
field from its interior [1]. Increasing the magnetic field, su-
perconductivity gets suppressed and eventually destroyed by
fields exceeding a critical field. However, the critical field
of thin films in parallel magnetic field is greatly increased
than that of the bulk superconductors, since the Meissner
effect is negligibly small in this case [2]. Rather, the critical
field is determined by the paramagnetic effect [3,4]. This
effect suppresses superconductivity by aligning the electrons
of Cooper pairs to be separated in energy. The magnetic field
in this case then leads to a Zeeman effect.

One important consequence of the Zeeman field is the
splitting of the density of states (DoS) in energy [5–9]. In the
absence of the Zeeman field, the DoS of a superconductor
shows a singularity at the energy which is equal to the
superconducting pair potential. This singularity is separated
by the Zeeman field for each spin species. The spin splitting
can also be induced by making contact of a superconductor (S)
with a ferromagnetic insulator (FI) [10–15]. In this case, the
ferromagnetic insulator induces a strong exchange field with
a small external magnetic field or even in its absence.

Various properties of superconductors with a spin-splitting
density of states have been studied in recent years. An ex-
ample is the strong thermoelectric effect with a thermopower
predicted to exceed kB/e and a possibility of obtaining
large values of the figure of merit ZT � 1 at low temper-
atures [16–18]. Indications of this effect were also recently
detected [19,20]. A spin accumulation in such a structure was
detected at much longer distances than the relaxation lengths
at the normal state [21–24]. Such effects are reviewed in
Refs. [25,26].

In the above studies, the spin-splitting field induced in the
superconductors is considered to be homogeneous. However,
this is not always the case in a FI/S structure due to the
nonuniformity of the ferromagnets. The nonuniformity can

*faluke.aikebaier@jyu.fi

be described by a domain structure. Since the typical domain
size in ferromagnets is much longer than the superconduct-
ing coherence length, the uniform magnetization is a good
assumption in many cases. Here we relax this assumption and
study the effects of inhomogeneity, especially domain walls.

The inhomogeneous exchange field also brings interesting
effects to superconductivity. The existence of spin-singlet
superconductivity in a magnetic domain wall in a ferromagnet
(F) was studied several decades ago [27]. This effect also has
been studied in S/F bilayers [28,29], where a superconducting
material is placed on top of a ferromagnet with a domain
structure. Decreasing the temperature, superconductivity first
appears just above the domain wall. The experimental realiza-
tion of such domain wall superconductivity was reported in
Ref. [30]. The generation of a spin supercurrent in Josephson
contacts with a domain wall is discussed in Ref. [31]. The
reconstructed density of states at the end of the superconduc-
tor [32] and the magnetoelectric effects [33] in S/F bilayers
with a magnetic texture were also studied recently. In the case
of FI/S structures, a peculiar tunneling conductance was ob-
served in a recent experiment and the magnetic domains in the
ferromagnet were considered responsible for the experimental
result [34].

Usually, the inhomogeneity of the exchange field induced
by the ferromagnetic insulator in the superconductor can be
represented by a multidomain structure, namely, alternating
domains with opposite magnetization directions connected
via domain walls. The theoretical model of the tunneling
conductance in Ref. [34] concentrates on this case. Since
the size of the domains is often much longer than the su-
perconducting coherence length, whereas here we consider
a single domain wall structure separating two domains with
opposite magnetization directions. Moreover, the size of the
domain wall in Ref. [34] was considered much smaller than
the superconducting coherence length, here we also consider
larger domain walls and study several physical quantities
altered due to the inhomogeneity, such as the spin current
density and the local density of states.

This paper is organized as follows. We introduce the
FI/S structure containing a magnetic domain wall in
Sec. II and solve the Usadel equation with an extended θ

2469-9950/2019/99(10)/104504(11) 104504-1 ©2019 American Physical Society
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parameterization. Equilibrium spin current density, as a direct
consequence of the inhomogeneous exchange field, and its
various properties are discussed in Sec. III. In Sec. IV we
discuss the effect of superconductivity on the domain wall
size, by considering the contribution of the superconducting
free energy to the domain wall energy, and show that the
maximal relative effect happens when the domain wall size
is of the order of ξ0, the superconducting coherence length
(here defined at zero temperature and exchange field). For the
possible measurement accessing this physics, we discuss the
local density of states in Sec. V and the tunneling conductance
across a nearby tunneling barrier in Sec. VI.

II. MODEL AND METHOD

A. Model

We study the properties of the structure in Fig. 1 in
equilibrium. A superconducting wire is placed on top of a
FI wire containing a magnetic domain wall. In many thin
ferromagnets the domain wall structure energetically prefers a
Néel type, in which the rotation of the magnetization happens
in the plane of the domain wall. Therefore we consider a Néel
domain wall with size λ. We make a variational ansatz and
define the magnetization rotation angle as

α(x) = π

λ

(
x + λ

2

)
�

(
x + λ

2

)
�

(
λ

2
− x

)
+ π�

(
x − λ

2

)
,

(1)

where � is the heaviside step function. The choice of α(x) in
Eq. (1) as a linear function of x instead of the typically used
hyperbolic functions that lead to a somewhat lower energy
brings certain technical advantages. Its derivative is a constant
inside the domain wall. This simplifies the Usadel equation,
which describes the properties of the superconductor (see
Sec. II B). The nonanalytic derivative of α(x) at the boundary
of the domain wall can be transferred to the boundary con-
ditions of the Usadel equation (see Sec. II C). Besides, the
domain wall energy introduced by this choice of α(x) gives
only slightly larger energy than the rotation angle constructed
with hyperbolic functions (see Sec. IV).

The properties of a superconductor in the diffusive limit,
namely, in the case when the elastic relaxation rate is much

FIG. 1. Schematic view of the structure considered in this paper.
A superconducting wire is placed on top of a FI wire containing a
magnetic domain wall. The center of the domain wall is located at
x = 0.

larger than any other energy scales in the problem, are de-
scribed by the Usadel equation. In equilibrium, it is convenient
to use the Usadel equation in the Matsubara representation
(h̄ = kB = 1)

D∇ · (ǧ∇ǧ) − [ωnτ̂3 + ih · στ̂3 + 
̌ + �̌, ǧ] = 0, (2)

where D is the diffusion constant, and ǧ is the quasiclassical
Green’s function satisfying the normalization condition ǧ2 =
1̌. In the commutator, ωn = (2n + 1)πT is the Matsubara
frequency, T is the temperature and n is an integer, h is the
exchange field, σ = (σ̂1, σ̂2, σ̂3) is a vector of Pauli spin ma-
trices, and 
̌ = 
τ̂1 is the superconducting pair potential. The
self-energy �̌ = �̌so + �̌s f , where �̌so = σ · ǧσ/(8τso) and
�̌s f = σ · τ̂3ǧτ̂3σ/(8τs f ) describe spin and charge imbalance
relaxation due to the spin-orbit scattering and exchange inter-
action with magnetic impurities with corresponding relaxation
times τso and τs f , and the Pauli matrices τ̂ j (σ̂ j ) are in the
Nambu (spin) space. We choose the Nambu spinor as


 = (ψ↑(x) ψ↓(x) −ψ
†
↓(x) ψ

†
↑(x))

�
,

where � denotes a transpose.
With the rotation angle described in Eq. (1), the exchange

field can be written as

h = h(cosα(x), 0, sin α(x)),

where h is the exchange field strength. With this choice, the
exchange field depends only on x, and rotates in the xz plane,
namely, hy = 0 everywhere. Correspondingly, the gradient in
Eq. (2) becomes a derivative in the x direction.

The Usadel equation we apply here is based on a lowest-
order spherical harmonics expansion of the Green’s function
in terms of the momentum direction. Hence it cannot describe
the domain wall superconductivity in a d-wave supercon-
ductor/ferromagnetic insulator multilayers [35]. The physics
studied in Ref. [35] is hence outside the scope of the present
work.

B. Rotation matrix

By introducing a position dependent rotation matrix, we
can rotate the spin axis parallel to the local magnetization
direction, so that the inhomogeneous exchange field in Eq. (2)
can be treated as homogeneous. We define the rotation matrix
as

Ř = eiσ̂2α(x)/2,

where α(x) is the rotation angle in Eq. (1), and σ̂2 is the second
Pauli matrix. Considering this rotation matrix, we define a
new quasiclassical Green’s function ǧ0

ǧ = Ř†ǧ0Ř, (3)

so that ǧ0 satisfies

D∂̌A
x · (

ǧ0∂̌
A
x ǧ0

) − [ωnτ̂3 + ihσ̂3τ̂3 + 
̌ + �̌, ǧ0] = 0, (4)

where

∂̌A
x X = ∂xX − [A,X ], (5)

A = iσ̂2α
′(x)/2.
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Thus the problem reduces to solving the Green’s function ǧ0
for a homogeneous exchange field h, but with a redefined
gradient with an SU(2) type vector potential A. Moreover, it is
also straightforward to show that ǧ0 satisfies the normalization
condition ǧ20 = ǧ2 = 1̌.

The long derivative in Eq. (4) with the form in Eq. (5) in-
troduces some extra terms with respect to the usual derivative
and commutator terms in the Usadel equation. One of them is
of the form

D[A, ǧ0Aǧ0] = − 1
2α

′(x)2D[σ̂2ǧ0σ̂2, ǧ0]. (6)

This term has a similar form as the spin-orbit relaxation with
a relaxation rate α′(x)2D/2, but only in one spin direction.
It is hence similar to the intrinsic (Rashba or Dresselhaus)
spin-orbit coupling [36–38]. Since α′(x) �= 0 inside the do-
main wall, this term is a direct outcome of the existence
of the inhomogeneous exchange field. In other words, inho-
mogeneous exchange field acts like a spin-orbit relaxation,
reducing the effect of the exchange field without affecting
the superconducting pair potential. This is shown on some
physical quantities in the following sections.

C. Boundary condition

The long derivative ∂A
x g in the Usadel equation in Eq. (4)

has to be continuous, so that a discontinuity in the derivative

of α(x) implies a discontinuity in the derivative of ǧ at x =
±λ/2. In order to describe this discontinuity, we integrate
Eq. (4) at the boundary, obtaining

ǧ0∂xǧ0|x±
b

− ǧ0∂xǧ0|x∓
b

= 1
2α

′(x)[ǧ0iσ̂2, ǧ0]|x±
b
, (7)

where xb = ±λ/2 and ± refers to the right and left side of
the boundary. These boundary conditions together with the
solutions in the case of a homogeneous exchange field far
from the domain wall form the boundary conditions to the
solutions of the Usadel equation in Eq. (4).

D. Parameterization

The quasiclassical Green’s function ǧ and ǧ0 are 4 × 4
matrices in the Nambu ⊗ spin space. Since ǧ represents the
Green’s function for the inhomogeneous exchange field, we
parametrize ǧ0 following the parametrization of the quasiclas-
sical Green’s function for inhomogeneous exchange field in
Ref. [39],

ǧ0 = cos θ τ̂3(M0 + i tan θM · σ )

+ sin θ τ̂1(M0 − i cot θM · σ ). (8)

The advantage of using this parametrization is that θ and M0

are real scalars and M = (M1,M2,M3) is a real vector in the
Matsubara representation. The normalization condition ǧ20 =
1 adds the constraint

M2
0 − |M|2 = 1. (9)

With the parametrization in Eq. (8), we get a set of differential equations from Eq. (4)

D∂2
x θ + 2M0(
 cos θ − ωn sin θ ) − 2hM3 cos θ − 1

4τs f

(
2M2

0 + 1
)
sin(2θ ) = 0, (10)

D
(
M∂2

x M0 − M0∂
2
x M

) + 2DM0α
′(x)

⎛
⎜⎝

−∂xM3

0

∂xM1

⎞
⎟⎠ + DM0α

′(x)2

⎛
⎜⎝
M1

0

M3

⎞
⎟⎠ + 2M(
 sin θ + ωn cos θ )

− 2hM0 sin θ

⎛
⎜⎝
0

0

1

⎞
⎟⎠ +

[
1

τso
+ 1

2τs f
cos (2θ )

]
M0M = 0. (11)

We can see directly from the vector differential equation (11)
that the parameter M2 does not have a source term from the
domain wall structure, and thereforeM2 = 0 everywhere. Fur-
thermore, one cannot directly solve these equations without
the help of the constraint in Eq. (9). Therefore, it is more con-

venient to use this constraint to transform Eq. (11) to another
set of differential equations for each of the components of Mi

as in Ref. [40].
Taking the second derivative of the constraint in Eq. (9),

we obtain

(∂xM0)
2 − (∂xM1)

2 − (∂xM3)
2 + M0∂

2
x M0 − M1∂

2
x M1 − M3∂

2
x M3 = 0. (12)

Substituting Eq. (12) to each component of Eq. (11) yields

D∂2
x Mj − 2α′(x)DMj (M3∂xM1 − M1∂xM3) + DMj

∑
k=0,1,3

(−1)k (∂xMk )
2 − α′(x)2DMj

(
M2

1 + M2
3

)

− 2MjM0(ωn cos θ + 
 sin θ ) + 2hMjM3 sin θ −
[

1

τso
+ 1

2τs f
cos (2θ )

]
Mj

(
M2

0 − δ j0
) = S j,

(13)
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where j = 0, 1, 3, and

S j =

⎧⎪⎨
⎪⎩

−2(ωn cos θ + 
 sin θ ) j = 0

−2α′(x)D∂xM3 + α′(x)2DM1 j = 1

2α′(x)D∂xM1 + α′(x)2DM3 − 2h sin θ j = 3

.

The differential equations in (10) and (13) have to be
supplemented by the boundary conditions in Eq. (7) and the
solutions at the regions far from the domain wall. With the
parametrization in Eq. (8), Eq. (7) becomes

∂xθ |x±
b

= ∂xθ |x∓
b

(Mi∂xM0 − M0∂xMi )|x±
b

− α′(x)M0M
′
i |x±

b

= (Mi∂xM0 − M0∂xMi )|x∓
b
, i = 1, 3, (14)

where Mi′ = M3 for i = 1, and Mi′ = −M1 for i = 3.

E. Solutions of the Usadel equation

Without the exchange field h = 0, the solutions of the
differential equations (10) and (13) give the regular results of
the θ parametrization with M0 = 1 and Mi = 0. In the case
of a homogeneous exchange field h = hẑ, the values of θ and
M0 are changed, and M3 �= 0, due to the odd-frequency spin
triplet superconductivity (with zero spin projection on the spin
z axis) is induced. In the absence of spin relaxation terms

tan θ =
√
4ω2

n

2 + (

h2 + ω2
n − 
2

)2 − h2 − ω2
n + 
2

2ωn


M0 = ωn + 
 tan θ√
ω2
n + (
2 − h2) tan2 θ + 2ωn
 tan θ

M3 = h tan θ√
ω2
n + (
2 − h2) tan2 θ + 2ωn
 tan θ

M1 = 0.

These results can be used to describe the solution of the
differential equations far from the domain wall structure.
For the inhomogeneous exchange field with a domain wall
structure, however, the differential equations (10) and (13)
cannot be solved analytically, but the numerical solutions are
plotted in Fig. 2.

We can see that the domain wall structure brings certain
changes to the homogeneous solutions. For θ , M0, and M3,
the effect of the exchange field around the domain wall is
reduced. This introduces a Gaussian functionlike structure for
the solutions of these parameters as a function of position. At
the center of the domain wall, the effect of the exchange field
is reduced the most and the values of these parameters reach
their homogeneous solutions gradually away from the domain
wall. For a smaller domain wall, the reduction of the effect
of the exchange field is more obvious, until for λ → 0, the
effect of the exchange field is completely lifted at the center of
the domain wall. This is due to the existence of the spin-orbit
relaxationlike term in Eq. (6) in the rotated Usadel equation
with a relaxation rate α′(x)2D/2 and α′(x) ∝ λ−1.

The domain wall structure also introduces a nonzero solu-
tion of M1 around the domain wall, due to the odd-frequency

spin triplet superconductivity (with nonzero spin projection on
the spin z axis) induced by the inhomogeneous exchange field.
The maximum of M1 appears at the boundary of the domain
wall and gradually goes to zero away from it. It also changes
sign at the two sides of the domain wall center. The amplitude
of M1 first increases and then decreases with increasing λ, the
maximum taking place at λ ≈ 2ξ0.

Spin relaxation also brings many changes to the solutions
of the differential equations. For the regions far from the
domain wall, the consequence of spin relaxation is the same as
with the case of homogeneous exchange field. The spin-orbit
relaxation reduces the effect of the exchange field, therefore,
the solutions in these regions approach the ones in the domain
wall center. The spin-flip relaxation reduces the superconduct-
ing pair potential 
, and therefore θ in these regions becomes
smaller, and M0/3 becomes larger with spin-flip relaxation.
These can be seen from Figs. 3(a), 3(b) and 3(d).

For the regions around the domain wall, the spin relaxation
brings minor changes. This is due to the fact that at the
center of the domain wall, the effect of the exchange field is
already reduced, and spin relaxation affects superconductivity
similarly to the case without exchange field. This can be seen
in Figs. 3(b) and 3(d). These behaviors can also be revealed in
the physical quantities as discussed below.

-10 -5 0 5 10
-0.08

-0.04

0

0.04

0.08

-10 -5 0 5 10
1.4

1.402

1.404

1.406

-10 -5 0 5 10
0

0.1

0.2

0.3

-10 -5 0 5 10
1

1.01

1.02

1.03

1.04

1.05

(c)

(a) (b)

(d)

FIG. 2. Solutions of the differential equations in Eqs. (10)
and (13) for different sizes of the domain wall. Here h =
h(cosα(x), 0, sin α(x)), h = 0.3
0, ωn = πT , T = 0.05
0, τ−1

so/s f =
0, 
0 is the superconducting pair potential at zero temperature and
exchange field, and ξ0 = √

D/
0 is the superconducting coherence
length.
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FIG. 3. Effect of spin relaxation on the solutions of the Usadel
equation. Here h = h(cosα(x), 0, sin α(x)), h = 0.3
0, ωn = πT ,
T = 0.05
0, and λ = 1.0ξ0.

With these solutions, and using Eq. (3), the unrotated
Green’s function is

ǧ = cos θ τ̂3[M0 + i tan θ cosα(x)M · σ

+ i tan θ sin α(x)(M3σ̂1 − M1σ̂3)]

+ sin θ τ̂1[M0 − i cot θ cosα(x)M · σ

− i cot θ sin α(x)(M3σ̂1 − M1σ̂3)]. (15)

In the rest of the paper, we use this Green’s function to
calculate various physical quantities.

F. Self-consistent calculations

The superconducting pair potential in Eq. (4) has to be
determined self-consistently. In the Matsubara representation,
we have


 = 1

2
πT γ

ωD∑
ωn>0

Tr(τ̂1ǧ) = 2πT γ

ωD∑
ωn>0

M0 sin θ, (16)

where ǧ is given by Eq. (15), γ is the coupling constant,
and ωD is the BCS cutoff energy. The latter gives a temper-
ature dependent cutoff ND = ωD/(2πT ) to the sum over n.
Considering the relations

2πT
ND (T )∑
n=0

1

ωn
= 2πT

⎛
⎝ND (Tc )∑

n=0

+
ND (T )∑
ND (Tc )

⎞
⎠ 1

ωn

= 1

γ
+ log

(
Tc
T

) (17)

we can rewrite the self-consistency equation as


 log

(
T

Tc

)
= 2πT

∑
ωn>0

(
M0 sin θ − 


ωn

)
. (18)

We can see that 
 does not explicitly depend on the ro-
tation angle α(x). Its position dependence comes from the
parameters M0 and θ , whose solutions depend on α(x). This

is because we only consider spin-singlet pairing in the self-
consistent calculations.

The self-consistent pair potential in Eq. (18) is position
dependent, 
 = 
(x). At the regions far from the domain
wall, 
(x = ±∞) is the same as in the case of homogeneous
exchange field. A homogeneous exchange field brings many
interesting effects on 
. It suppresses 
 at a finite temperature
and for T → 0, 
 → 0 for a field h > hc. Here hc = 
0/

√
2

when T = 0, called the Chandrasekhar-Clogston limit [3,4].
The superconducting pair potential is reduced by spin relax-
ation, and hc is enhanced by the spin-orbit relaxation and
suppressed by the spin-flip relaxation [25,26].

In the case of an inhomogeneous exchange field, the above
properties are similar. However, in the domain wall region, the
weak effect of the spin relaxation (Fig. 3) brings less changes
to 
, compared to the homogeneous case.

III. EQUILIBRIUM SPIN CURRENT DENSITY

One important consequence of the inhomogeneous ex-
change field is the equilibrium spin current density. Due to the
inhomogeneity of the magnetization, the spin of the quasipar-
ticles rotates following the local magnetization, which creates
a flow of spin [41].

In the quasiclassical theory, the spin current can be
calculated from

jk,i = σN

2e2
πTi

∑
ωn>0

Tr[τ̂0σ̂i(ǧ∇kǧ)],

where σN = 2e2N0D is the normal state conductivity and N0

is the density of states at the Fermi level. The spin current
density jk,i is a tensor, the index k represents the transport
direction of spin, and i represents the spin component. With
the parametrization in Eq. (15), we get the three components
of the spin current density in the x direction,

jx,2 = 2σN

e2
πT

∑
ωn>0

[
α′(x)

(
M2

1 + M2
3

) + M3∂xM1 − M1∂xM3
]

jx,1/3 = 0, (19)

where α(x) is the rotation angle in Eq. (1). Since the rotation
of the magnetization happens in the xz plane, the x and z spin
components of the spin current density are absent, jx,1/3 = 0.
The only nonzero spin component of the spin current density
is in the y spin direction.

The spatial dependence of jx,2 is shown in Fig. 4(a) for a
domain wall size λ = 0.5ξ0. We can see that a nonzero spin
current density is created around the domain wall structure.
Inside the domain wall, the maximum spin current density
jx,2(0) is constant and smoothly goes to zero outside the
domain wall. Both spin-orbit and spin-flip relaxations reduce
the spin current density.

The constant spin current density jx,2(0) in the domain
wall region is determined from the adiabatic solution of the
parameter M3 and the domain wall size λ. From Fig. 2(d)
we know that M3 describes the effect of the exchange field
on superconductivity, and at the center of the domain wall
M3 → 0 for a small domain wall size. Therefore, jx,2(0) → 0
for λ → 0 and becomes large for a stronger exchange field.
These are shown in Figs. 4(b) and 4(c). We can also see
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FIG. 4. Dependence of spin current density on (a) position, and
the maximum spin current density jx,2(0) on (b) domain wall size, (c)
exchange field, and (d) temperature. Here λ = 0.5ξ0, T = 0.05
0,
and h = 0.3
0 unless specified otherwise.

that for a small domain wall, both spin-orbit and spin-flip
relaxation reduce jx,2(0). However, for large domain walls,
spin-flip relaxation increases jx,2(0) for a fixed domain wall
size, but it kills jx,2(0) at the Chandrasekhar-Clogston limit,
where the superconductivity is suppressed [25,26].

The temperature dependence of jx,2(0) is shown in
Fig. 4(d). It resembles the temperature dependence of the
self-consistent pair potential 
. This means jx,2(0) ∼ 
 for
a fixed domain wall size and exchange field h. The effect of
spin relaxation also resembles the temperature dependence of

.

From the spatial dependence of jx,2 we can see that, strictly
speaking, the spin current density is not conserved. The posi-
tion dependence is related to the appearance of a spin-transfer
torque [41]. It is exerted on the spins in order to reorient spin
flow to follow the direction of local magnetization, namely,
it represents the rotation of spins through the domain wall
structure. Then in the continuity equation for spin density ns,
we have [42]

dns

dt
+ ∇ · jk,i = T ,

where T is the spin-transfer torque and it is nonzero in the
case of an inhomogeneous exchange field and spin relaxation.

In the static case ∇ · jk,i = T . With the parametrization in
Eq. (15),

T = ∂x jx,2 = 4σN

e2D
πTh

∑
ωn>0

sin θM1. (20)

It is nothing but the Matsubara sum of M1 but constrained by
superconductivity (sin θ ). In the normal state θ → 0, then the
torque is zero in equilibrium.

The expression of T in Eq. (20) also helps us to understand
the properties of the spin current density. The spatial depen-
dence follows Fig. 2(c), but the amplitude is constrained by
sin θ ∼ 
. That is why the temperature dependence of the

spin current density is similar to that of the self-consistent
pair potential [Fig. 4(d)]. The dependence on h explains the
monotonous dependence on h of the spin current density
[Fig. 4(c)].

The equilibrium spin-transfer torque T is related to the
superconducting free energy by

T = 1

V
h × δFsn

δh
, (21)

where V is the volume of the superconductor, h is the ex-
change field induced in the superconductor, and Fsn is given
by

Fsn = W
∫ ∞

−∞
fsndx, (22)

whereW is the cross sectional area of the superconductor and
the superconducting free energy density [43–47] compared to
its normal state fsn is given by (see Appendix)

fsn = fs − fn = πTN0

∑
ωn>0

Tr

{
(ωn + ih · σ )(1̌ − τ̂3ǧ)

− 1

2
(
τ̂+ + 
∗τ̂−)ǧ+ D

4
(∇ǧ)2

+ 1

16τso
[3 − (σǧ) · (σǧ)]

+ 1

16τs f
[3 − (στ̂3ǧ) · (στ̂3ǧ)]

}
. (23)

In the absence of spin relaxation and exchange field, this
agrees with the result in Ref. [47]. Here fsn = fsn[h], and 


and ǧ are the self-consistent values of the order parameter and
the Green function. With the parametrization in Eq. (15), it
becomes

fsn = πTN0

∑
ωn>0

{
4ωn − 2M0(2ωn cos θ + 
 sin θ )

+ 4hM3 sin θ − D
(
M2

1 + M2
3

)
α′(x)2

+D[(∂xM0)
2 − (∂xM1)

2 − (∂xM3)
2 + (∂xθ )

2]

− 2D(M3∂xM1 − M1∂xM3)α
′(x)

+ 1
4

[
3
(
τ−1
so + τ−1

s f

) − 3
(
τ−1
so + τ−1

s f cos 2θ
)
M2

0

− (
τ−1
so − τ−1

s f cos 2θ
)(
M2

1 + M2
3

)]}
. (24)

From the relation in Eqs. (19) and (21), we obtain

fsn = f 0sn − 1

2
α′(x) jx,2 + 1

4
α′(x)2

δ jx,2
δα′(x)

, (25)

where f 0sn is the free-energy density in Eq. (24) with terms that
do not directly depend on α′(x), and fsn − f 0sn is nonzero only
in the domain wall region. We can see that the spin current
density contributes to the energetics of the system, which in
turn influences the formation of the domain wall.

In nonequilibrium spin transport, spin-transfer torque leads
to the domain wall motion and influences the orientation of
the magnetization [41]. In our model, the equilibrium spin-
transfer torque in Eq. (20) does not make the domain wall
move, but it contributes to the superconducting free energy via
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the spin current density [as in Eq. (25)], which in turn affects
the domain wall size, as we discuss in the next section.

IV. EFFECT OF SUPERCONDUCTIVITY ON THE DOMAIN
WALL SIZE

In the absence of the external magnetic field, the domain
wall size in a ferromagnet is dictated by the competition
between exchange and anisotropy energies [48]. Exchange
energy tries to maintain the direction of the magnetization,
while the anisotropy energy tends to align the magnetization
to a particular direction.

The exchange energy density can be expressed by

Uex = Q
3∑

i=1

(
∂mi

∂x

)2

,

where mi is the component of the magnetization unit vec-
tor, and Q is the exchange stiffness constant. Here m =
(cosα, 0, sin α), where α is the rotation angle in Eq. (1).
Substituting Eq. (1) toUex we get

Uex = Qπ2

λ2
�

(
x + λ

2

)
�

(
λ

2
− x

)
. (26)

The anisotropy energy density depends on the crystal
structure of the system. Most of the ferromagnetic insulators
have face centered cubic crystal structure [49]. The anisotropy
energy density in this case is given by

Uaniso = Kc1
(
m2

1m
2
2 + m2

1m
2
3 + m2

2m
2
3

) + Kc2m
2
1m

2
2m

2
3,

where Kc1,Kc2 < 0 for many ferromagnetic insulators, which
makes the magnetization lie in one of the easy planes. In the
case of thin films, the symmetry is broken in the direction
perpendicular to the film plane and this energy density can
be expressed by a uniaxial crystal structure as [50]

Uaniso =
(
K1 + Ks

t

)
sin2 α + K2 sin

4 α, (27)

where K1 = Kc1, K2 = −7Kc1/8 + Kc2/8, and Ks is the sur-
face anisotropy constant representing the rotation of the easy
plane towards an easy axis magnetization with film thickness
t .

Together with Eqs. (26) and (27), the domain wall energy
is given by

F1 =
∫ ∞

−∞
(Uex +Uaniso)dx = Qπ2

λ
+ 1

2
Keffλ, (28)

where Keff = K1 + Ks/t + 3K2/4. Minimization of this en-
ergy with respect to λ gives the domain wall size of the
inhomogeneous exchange field in the ferromagnet

λ0 =
√

2Q

Keff
π. (29)

Then the minimized domain wall energy is

Fmin
1 =

√
2KeffQπ. (30)
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FIG. 5. (a) Superconducting free energy contribution F2 to the
domain wall energy at T = 0.05
0 for different exchange field
strengths. The blue circles in (a) are the results of the fitted formula
in Eq. (31). (b) Effect of spin relaxation on F2 for h = 0.3
0 at
T = 0.05
0. (c) Effect of superconductivity on the domain wall
size for h = 0.3
0 with different domain wall energies F1 in the
ferromagnet. (d) The effect of spin relaxation on the same quantity
as in (c) for F1 = 0.12N0


2
0W ξ0.

In many studies, the domain wall structure is represented
by the hyperbolic functions with [48]

α(x) = cos−1

[
− tanh

(
x − x0

λ′

)]
,

where λ′ = √
Q/K ′

eff and K ′
eff = K1 + Ks/t + 2K2/3. The

minimized energy is then given by 4
√
K ′

effQ. SinceK ′
eff ≈ Keff,

this is very close to Fmin
1 in Eq. (30). In other words, the

domain wall structure in Eq. (1) gives the minimum energy
which is only slightly larger than that of more complicated
domain wall structures.

The contribution of superconductivity to the domain wall
energy is given by the difference of the free energy in the cases
of inhomogeneous and homogeneous magnetization

F2 = Fsn(h) − Fsn(h = hẑ),

where Fsn is given by Eq. (22). This energy cannot be ex-
pressed analytically, but the numerical result is plotted in
Fig. 5(a). We can see that F2 is negative. This is due to the
fact that the existence of the domain wall structure enhances
the superconducting condensation energy near the domain
wall. This contribution is stronger for a smaller domain wall,
since smaller domain wall reduces the effect of the exchange
field more in the domain wall region. The effect of spin
relaxation is plotted in Fig. 5(b). We can see that spin-orbit
relaxation makes |F2| smaller. This is because spin-orbit re-
laxation reduces the effect of the exchange field, but it has less
effect in the domain wall region. This makes the free energy
difference |Fsn(h) − Fsn(h = hẑ)| smaller. Spin-flip relaxation
on the other hand, makes |F2| larger.
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From Fig. 5(a) we can approximate F2 as

F2 = − a

λ + 2ξ0
+ be−λ/ξ0 , (31)

where a, b are functions of temperature and exchange field
strength and can be determined numerically. For example, for
h = 0.3
0, a = 0.4N0


2
0W ξ 2

0 and b = 0.085N0

2
0W ξ0.

Minimizing the total energy F1 + F2 with respect to λ, we
get a compact analytical expression for two extreme limits

(i) λ � ξ0

λ =
√

2Q

Keff + (
a

2ξ 2
0

− 2b
ξ0

)π.

(ii) λ � ξ0

λ =
√

2(Q − a/π2)

Keff
π, for Qπ2 > a (32)

λ = 4aξ0
a − π2Q

, for Qπ2 < a.

In both limits superconductivity reduces the domain wall size.
(i) For a small domain wall λ � ξ0, superconductivity reduces
the domain wall size by effectively increasing the anisotropy
constant Keff. (From the numerical results a/(2ξ 2

0 ) > 2b/ξ0
holds for all h.) (ii) For the case of a large domain wall, the
situation is more complicated. For a ferromagnet with strong
stiffnessQπ2 > a, superconductivity reduces the domain wall
size by effectively reducing the exchange stiffness constant
Q. For a ferromagnet with weak stiffness Qπ2 < a, which
also refers to the case of Keff � 1.0N0


2
0W , the domain wall

size is also reduced. However, in this case superconductivity
dominates the domain wall energy and leads to a negative
total energy F1 + F2, which introduces a dense domain struc-
ture with a domain length comparable with the domain wall
size [51]. Since we are considering a single domain structure,
here we only consider domain walls with positive domain wall
energy.

In Fig. 5(c), we numerically minimize the domain wall
energy F = F1 + F2 with respect to the domain wall size for
the case of h = 0.3
0 and T = 0.05
0 and calculate the
relative change of the domain wall size. To avoid a negative
domain wall energy leading to a transition to a system with
many domain walls, we set in each figure a constant F1 �
0.12N0


2
0W ξ0 so that F > 0 for each case considered. In

other words, instead of varying Keff and Q, we fix F1 and
vary λ0 in the figures. The effect of superconductivity on the
domain wall size is strongest for the lowest F1. If we consider
larger values of F1, namely, a stronger ferromagnet, the effect
of superconductivity on the domain wall size is smaller.

The effect of spin relaxation on the domain wall size is
shown in Fig. 5(d). We see that for small domain walls, the
spin relaxation brings very little effects on the domain wall
size compared to the case without spin relaxation. However,
for larger domain walls, the two types of spin-relaxation
mechanisms lead to different effects on the domain wall size.
Spin-orbit relaxation makes the effect smaller since it reduces
the effect of the exchange field and makes |F2| smaller. Spin-
flip relaxation makes the effect stronger, since |F2| is larger.

As we can see, the effect of superconductivity on the
domain wall size is pronounced for weak ferromagnets with
large domain walls. Domain wall sizes in ferromagnetic insu-
lators are rarely reported, but with Eq. (29) we can evaluate a
typical size. For materials with a face centered cubic structure,
the exchange stiffness constant Q is related to the exchange
integral J by Q = 4S2J/a0, where S is spin and a0 is the
lattice constant [52]. With the values of the parameters for
Q in Ref. [53] and for Keff in Ref. [50], we get the domain
wall size for a EuS thin film as 50 nm. Considering a typical
coherence length of a conventional superconductor in the
diffusive superconductors at zero temperature and exchange
field between 15 nm and a few hundred nm, we can estimate
in this case λ0 ∼ 0.1 . . . 5ξ0. Therefore, although perhaps in
most cases λ0 < ξ0 is the most relevant limit, nothing as such
seems to exclude the possibility of the opposite limit as well.

V. DENSITY OF STATES

The inhomogeneous exchange field also makes the lo-
cal density of states (DoS) peculiar. Since the domain wall
structure reduces the effect of the exchange field, the local
DoS in the domain wall region is different from the one for
homogeneous magnetization.

In the quasiclassical theory, the local DoS for each spin
species is given by

Ns = 1
8N0Re[Tr(τ̂3 ± σ̂3τ̂3)ǧ|ωn=−iε+ ],

where ± is for spin ↑ / ↓. With the parametrization in
Eq. (15), it becomes

Ns = 1
2N0Re[cos θM0 ± (cosαM3 − sin αM1)i sin θ ]. (33)
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FIG. 6. (a) Local DoS at the center of the domain wall for
different domain wall sizes. (b) Local DoS for spin ↑ at different
positions for a domain wall size λ = 0.1ξ0. (c) Local DoS in the
presence of spin relaxation in the homogeneous exchange field (at
x = −∞) and (d) at the center of the domain wall (x = 0) for a
domain wall size λ = 0.1ξ0. The temperature and exchange field
used in the calculations are T = 0.05
0, h = 0.3
0.
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In Fig. 6(a) we show the local DoS N+ = N↑ + N↓ at the
center of the domain wall for different domain wall sizes in the
absence of spin relaxation. At the center of the domain wall
α = π/2 and M1 = 0, then N↑ = N↓ and N− = N↑ − N↓ = 0
due to the symmetry of the model. For λ → ∞, N+ has two
BCS peaks at 
 ± h. As the domain wall becomes smaller, the
inner peak is shifted towards the outer one and forms a shark-
fin structure for a very small domain wall size [λ = 0.1ξ0
in Fig. 6(a)]. In this case, although N− = 0, N+ is different
from the case with zero exchange field. Due to the spin-orbit
relaxationlike effect of the inhomogeneous exchange field,
the peaks are wider and the superconducting gap is smaller
compared to the case of h = 0.

Since the magnetization direction is opposite on the two
sides of the domain wall, Ns behaves differently in these two
regions, such that N+(x) = N+(−x) and N−(x) = −N−(−x).
In Fig. 6(b) we show N↑ at different location along the
superconducting wire with a small domain wall λ = 0.1ξ0, in
the absence of spin relaxation. These results in are similar to
those in Ref. [34], which concentrates on the limit λ � ξ0.
Here we further study the effect of spin relaxation on the local
DoS in Figs. 6(c) and 6(d). The DoS in the presence of the two
kinds of spin relaxation is plotted in Fig. 6(d) at the center of a
domain wall with a size λ = 0.1ξ0. For comparison, the DoS
at x = −∞, which also refers to the homogeneous exchange
field, is plotted for the same parameters in Fig. 6(c). In both
cases, spin-orbit relaxation broadens the peaks but keeps 
(x)
unchanged. Spin-flip relaxation also broadens the peaks, but
it suppresses 
(x). These properties of the local DoS are
caused by the inhomogeneous magnetization and are needed
for understanding the tunneling conductance as discussed in
the next section.

VI. TUNNELING CONDUCTANCE

The local density of states is visible in measurements of
a tunneling conductance through a barrier in contact with
the FI/S bilayer. However, the results depend on whether the
barrier itself is magnetic or not. Therefore, we consider either
a nonmagnetic tunnel contact (NISFI) or tunneling through
the FI containing the domain wall (SFIN). In either system
the tunneling current can be written as

I = GT

e

∫ ∞

−∞
dεN̄ (ε)[ f (ε − eV ) − f (ε)],

where GT is the normal-state conductance, V is the applied
voltage, and f = [1 + exp(ε/kBT )]−1 is the Fermi function.
Here the averaged density of states N̄ (ε) over the tunneling
area is given by [54]

N̄ (ε) = 1

L

∫ xb

xa

dx
∑
s=↑,↓

[1 + sP(x)]Ns(ε, x),

where P(x) is the spin polarization of the junction, L = xb −
xa is the size of the tunneling barrier, and Ns is given in
Eq. (33). Using the definition of N± = N↑ ± N↓, we can also
write

N̄ (ε) = 1

L

∫ xb

xa

dx[N+ + P(x)N−]. (34)

xa

xb
L

xa
xb

L

-2 0 2
0

0.5

1

1.5

-2 0 2
0

0.5

1

1.5

2

(a) (b)

(d)(c)

I

V

I

V

FIG. 7. Tunneling conductance for different sizes of the tun-
neling barriers for NISFI and NISFI contacts, respectively. Here
the center of the tunneling barrier is located at the center of the
domain wall, xb = −xa = L/2. The calculations are carried out for
a domain wall size λ = 0.1ξ0 at T = 0.05
0 and h = 0.3
0. In (d)
the polarization is P(x) = P0 cosα, where α is the rotation angle, and
P0 = 0.5.

The tunneling conductance is given by

dI

dV
(V ) = GT

e

d

dV

∫ ∞

−∞
dεN̄ (ε)[ f (ε − eV ) − f (ε)]. (35)

In the case of a scanning tunneling microscope measure-
ment with a small normal metal tip (xb − xa � ξ0 and P(x) =
0), N̄ = N+. In this case the tunneling conductance at T → 0
gives the local DoS N+ shown in Fig. 6.

For a planar tunneling spectroscopy measurement with a
normal metal electrode having size xb − xa � ξ0, N̄ is the
averaged N+ since P(x) = 0. The tunneling conductance in
this case is given in Fig. 7(c). We show the comparison of
different sizes of tunneling barriers (centered at x = 0). Since
we are considering a single domain wall structure, a large
tunneling barrier produces tunneling conductance identical
with the case of homogeneous magnetization (green curve). If
we choose a smaller tunneling barrier, the effect of the domain
wall is more obvious. It reduces the effect of the exchange
field, becomes similar to the case for a small homogeneous
exchange field strength h, and reshapes the peaks in the
tunneling conductance (red and blue curves).

If the tunneling is through the ferromagnetic insulator, we
need to include the effect of finite spin polarization. Assuming
the polarization of the transmission to follow the local magne-
tization, the position dependent polarization P is related to the
rotation angle of the magnetization as P(x) = P0 cosα. The
tunneling conductance is plotted in Fig. 7(d). The asymmetric
dependence in the injection voltage in the conductance is a
direct result of the polarization of the ferromagnet. Similar to
Fig. 7(c), for a large tunneling barrier the tunneling conduc-
tance is the same for the case of a homogeneous exchange
field h with a finite spin polarization P0. The effect of the
domain wall is again obvious for smaller tunneling barriers,
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and the spin-orbit relaxationlike effect of the domain wall
structure reduces the effect of the exchange field.

VII. CONCLUSION

In conclusion, we have studied various properties of a
superconductor in contact to a ferromagnet with a domain
wall. We have studied the equilibrium spin current density,
which exists due to the inhomogeneity of the exchange field.
It also contributes to the superconducting free energy, which
in turn affects the domain wall size. We show that the domain
wall size is reduced by the contribution of the superconducting
free energy to the domain wall energy. We have also studied
the peculiar density of states around the domain wall and the
tunneling conductance. Our work can be a precursor to the
study of the nonequilibrium effects, in particular domain wall
motion.
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APPENDIX: EXPRESSION FOR THE FREE ENERGY

For completeness, we give now a brief argument for the
form of the free energy in the superconducting state. There
are several ways to arrive at such results, and below we follow
a similar procedure as in Ref. [43]. The free energy density
difference between superconducting and normal states can be
written as [we set N (0) = 1 in the following] [55,56]

fsn = −
∫ γ

0
dγ ′ 
|2γ ′

(γ ′)2
=

∫ 1/γ

∞
dq
|2γ=1/q . (A1)

The integral could now in principle be computed numerically
from Usadel equations, solving 
 self-consistently as a func-
tion of the coupling constant γ in the geometry considered.
This is cumbersome, and also unnecessary, as the integral can
be evaluated analytically as follows.

Suppose there exists a functional R = ∫
d3x r,

r[q,
,�z] = q
2 + p[
,�z] , (A2)

whose saddle point vs �z and 
 defines 
(q). In other words,
the self-consistency (16) and Usadel equations (2) are defined
by variations

δR

δ

|∗ = 0 ,

δR

δz j
|∗ = 0 , (A3)

and�z is some parametrization of ĝ under the constraint ĝ2 = 1
of the Usadel equation. Now,

d

dq
R|∗ = ∂qR|∗ + δR

δ

|∗ ∗ d
∗

dq
+ δR

δ�z
|∗ ∗ d�z∗

dq
= 
2

∗ , (A4)

where the last two terms vanish due to the saddle point
conditions. Therefore,

fsn = r[1/γ ,
∗,�z∗] − r[∞, 0,�z∗,n] . (A5)
This assumes there is a continuous solution branch connecting
the normal and the superconducting states as the coupling
constant γ (i.e., q) is changed.

The next step is to find a suitable R that satisfies Eqs. (A3).
Its form can be guessed (or derived) based on σ -model
results [45,46,57]:

r = q|
|2 − 2πT
∑
ωn>0

1

2
tr

{
− D

4
(∇ǧ)2 + (ωn + ih · σ)τ̂3ǧ

+ (
τ̂+ + 
∗τ̂−)ǧ+ 1

16τso
(σǧ) · (σǧ)

+ 1

16τs f
(στ̂3ǧ) · (στ̂3ǧ)

}
. (A6)

First, we can note that variation vs 
∗ (or 
) gives the
self-consistency relation (16). For variations with ĝ, we
parametrize δĝ = eδŴ ĝe−δŴ − ĝ � δWĝ− ĝδŴ to retain the
normalization condition. Requiring variation vs Ŵ to vanish
we find Eq. (2). Hence, the result has the property (A3).

The sum defining R is not convergent, and only the dif-
ference in Eq. (A5) is well defined. There’s also an implicit
Matsubara frequency cutoff in the term that appears in the
self-consistency equation. We can eliminate this issue by
substituting the self-consistency equation back into the |
|2
term in Eq. (A6). This results in Eq. (23) in the main text.
Variation vs h still gives the correct quasiclassical expression
for the magnetization, but 
 and ĝ can no longer be varied and
have to be taken at their saddle-point values.
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Domain wall motion in a diffusive weak ferromagnet
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We study the domain wall motion in a disordered weak ferromagnet, induced by injecting a spin
current from a strong ferromagnet. Starting from the spin diffusion equation describing the spin
accumulation in the weak ferromagnet, we calculate the force and torque acting on the domain wall.
We also study the ensuing domain wall dynamics, and suggest a possible measurement method for
detecting the domain wall motion via measuring the additional resistance.

I. INTRODUCTION

Current-driven domain wall motion has been an active
field of research due to its applications in memory-storage
devices1. Following a series of phenomenological theoret-
ical works2–5 and experimental confirmations,6–10 a mi-
croscopic theory of domain wall motion was presented
more than a decade ago.11 The essential mechanism of
such effects is the transfer of momentum and spin to the
local magnetization due to a force and a (spin) torque,
respectively, exerted by a spin polarized current pass-
ing through the domain wall.12 However, spin-polarized
currents may reduce the spin torque efficiency with an
increasing temperature due to Joule heating.13,14

One suggestion to reduce the Joule heating is to replace
the spin-polarized charge current with the pure spin cur-
rent to induce the domain wall motion. Such pure spin
currents have been realized in a lateral spin valve geome-
try,15–17 see for example Fig. 1. The scenario in this case
is as follows. A spin polarized current is injected from a
ferromagnet to a nonmagnetic material, transported and
absorbed by the second ferromagnet containing a domain
wall. The absorbed pure spin current then induces a do-
main wall motion. It was shown that the domain wall
motion in this case is also very efficient, in terms of the
change of the magnetization at the interface of the fer-
romagnet where the spin current is absorbed. The force
and torque in this structure have also been calculated
for a case of weak impurity scattering,18 but the ensuing
domain wall dynamics have not yet been studied theo-
retically.

One important feature of the pure spin current com-
pared to the spin-polarized current is that it decays
within a length scale called spin-relaxation length, due
to the spin-relaxation processes. In fact, spin relaxation
significantly affects the current-driven domain wall mo-
tion.12 For example, the spin relaxation of conduction
electrons is one of the most relevant mechanisms for
the damping of the domain wall motion. Moreover, it
enhances the nonadiabaticity parameter of the domain
walls close to the adiabatic limit.19,20 In disordered fer-
romagnets, it has also been shown that the domain wall
motion is very efficient even in the case of weak ferromag-
netism with low spin polarization.21 Therefore, studying
the domain wall dynamics in the presence of pure spin

current without the accompanied charge current may give
rise to interesting new features.

Here we consider a similar structure with the one in
Ref. 18, except that the nonmagnetic metal is replaced
by a weak ferromagnet containing a domain wall, and
a spin polarized current is injected from a strong ferro-
magnetic electrode. We define the concepts of the ”weak”
and ”strong” ferromagnets based on the size of the spin
polarization and the possibility of using the spin diffu-
sion equation to describe the two systems. In particu-
lar, in the strong ferromagnet we assume a spin-polarized
Fermi surface, described by spin-dependent densities of
states Nσ, diffusion constants Dσ and conductivities
σσ = e2NσDσ.

22 In this case, we can study the spin
polarized current in a homogeneous ferromagnet by writ-
ing diffusion equations separately for the two spin bands.
On the other hand, the weak ferromagnet has a weakly
spin-split Fermi surface (small exchange field) for which
σ↑ = σ↓. In this case we can include the Hanle precession
term into the kinetic equations and therefore rigorously
describe spin accumulation in the case of an inhomoge-
neous magnetization.

The spin polarized current injected from the strong fer-
romagnetic electrode creates a spin accumulation in the
weak ferromagnet which decays exponentially due to the
spin relaxation processes. This spin accumulation can
be described by a spin diffusion equation with spin in-
dependent parameters, and it describes a spin current in
a disordered wire. The solutions for the position depen-
dent spin accumulation around the domain wall allows us
to compute the force f and torque τz on the domain wall
residing at a distance X from the injector. We show that
they are characterized by three length scales: domain
wall size λ, spin relaxation length �s, and the magnetic
length �h. These length scales can in principle show up in
any order, and we find how the force and torque depend
on the order of those scales. In particular, due to the
spin relaxation both the force and torque are exponen-
tially decaying as functions of the distance of the domain
wall from the injector, similar to the case in Ref. 18. We
also study the resulting domain wall dynamics, and show
that the domain wall motion with decaying force and
torque has its characteristic features. In particular, the
dynamics can cross between different dynamic regimes
depending on the position of the domain wall, and de-
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pending on the hierarchy of the length scales affecting
the relative size of force and torque: In the case of a
large torque and weak force, the domain wall motion can
cross over from the unpinned motion for τz(X) > k⊥α0

to the limit of intrinsic pinning with τz(X) < k⊥λ, even-
tually stopping the domain wall. Here k⊥ is a quantity
characterizing the hard-axis anisotropy. On the other
hand, if the force dominates and is large enough close to
the injector, there is a crossover between oscillatory dy-
namics for f(X) > α0k⊥ and linearly (in time) decaying
dynamics for f(X) < α0k⊥. Here α0 describes damping.

We also suggest a possible measurement of the domain
wall motion via the changes in the injection resistance,
linked to the dependence of the injection resistance on
the local spin accumulation at the position of the contact.
Since the latter depends on the position of the domain
wall, so does the injection resistance.

The outline of the paper is as follows. We first in-
troduce the model, a weak ferromagnet containing a do-
main wall in contact with a spin-polarized ferromagnetic
injector, in Sec. II. We also solve the spin diffusion equa-
tion with proper boundary conditions which describes the
spin accumulation in this model. The force and torque
due to the spin current are calculated in Sec. III. We
study the domain wall dynamics in Sec. IV, and the
possible measurement method accessing this dynamics
in Sec. V before the conclusions in Sec. VI.

II. MODEL AND METHOD

We study the domain wall motion in the structure in
Fig. 1. A spin polarized current is injected from a strong
ferromagnet to a diffusive weak ferromagnet containing a
domain wall. The injected current circulates on the left
side of the injector, and a spin accumulation is induced in
the weak ferromagnet. The decaying spin accumulation
results in a spin current in both directions, capable of
inducing a force and a torque on the domain wall.

On the right side of the injector, the weak ferromagnet
contains a domain wall, and the magnetization is inho-
mogeneous. The inhomogeneity is shown in the exchange
field as

h = h(sin θ cosφ, sin θ sinφ, cos θ), (1)

where h is the strength of the exchange splitting. Here
θ and φ are the in-plane and out-of-plane components of
the magnetization angle. For domain wall motion, φ is
only a function of time,11 and the rotation is described by
the angle θ. A Néel domain wall is energetically favoured
in thin films, namely, the rotation of the magnetization
happens in the plane of the domain wall (φ = 0). Then

zX

λ

Weak ferromagnetic metal
0

V

I I = 0
⃗PI

Charge  
Current

Spin  
Current

FIG. 1. Schematic view of the structure considered in this
paper. A spin polarized current is injected from a strong ferro-
magnet to a diffusive weak ferromagnet containing a domain
wall.

θ can be expressed by a variational ansatz23

θ(z) = πΘ

(
z −X − λ

2

)

+
π

λ

(
z −X +

λ

2

)
Θ

(
z −X +

λ

2

)
Θ

(
X +

λ

2
− z

)
,

(2)

where Θ(z) is the Heaviside step function, X is the posi-
tion of the domain wall center, and λ is the domain wall
size. The variational ansatz to the rotation angle, instead
of the typically used hyperbolic functions12 with slightly
lower domain wall energy, brings certain conveniences to
the analytical treatment of the problem while capturing
the essential physics of the domain wall. Since the deriva-
tive of θ(x) is a constant inside the domain wall, the spin
diffusion equation, which describes the nonequilibrium
spin accumulation, can be simplified [see Eq. (4)]. The
nonanalyticity of the derivative of θ(x) at the domain wall
boundary can be transformed into boundary conditions
of the spin diffusion equation [see Eq. (5) to Eq. (7)].
The spin accumulation in the weak ferromagnet is de-

scribed by a spin diffusion equation in Eq. (A2). With
the domain wall structure in Eq. (2), it can be written as

�D∂2
zs =

�

τs
s− 2h× s,

where D is the diffusion constant, τs is the spin-flip re-
laxation time, and s = (s1, s2, s3) is a spin accumu-
lation vector. The spin-relaxation length is defined as
�s =

√
Dτs.

We can use an SU(2) gauge transformation to treat
the exchange field as homogeneous. We define a rotation
matrix as

R̂ = eiσ2θ/2eiσ3φ/2,

so that we can write the spin accumulation as

s = R̂†s0R̂. (3)

Here the rotated spin accumulation s0 = (s01, s
0
2, s

0
3) sat-

isfies the following spin diffusion equation

�D∂̂2
zs0 =

�

τs
s0 − 2hẑ × s0, (4)



3

where ẑ = (0, 0, 1), ∂̂z· = ∂z ·−[A, ·], and A = iσ2∂zθ(z)/2
is an SU(2) type vector potential. The derivative of θ(z)
devides the weak ferromagnet into three regions. In the
domain wall region it is a constant, and to the left and the
right sides of the domain wall region, θ′(z) = 0. However,
θ′(z) is discontinuous at the boundary of the domain wall.
Therefore, we need a boundary condition to describe a
continuous spin accumulation.
We can integrate Eq. (4) at the boundary of the do-

main wall, and obtain the boundary conditions

∂zs
0
1|z±

b
− ∂zs

0
1|z∓

b
= −π

λ
s03|z±

b
, (5)

∂zs
0
2|z±

b
− ∂zs

0
2|z∓

b
= 0, (6)

∂zs
0
3|z±

b
− ∂zs

0
3|z∓

b
=

π

λ
s01|z±

b
. (7)

At the domain wall edges z = zb = ±(X ± λ/2), and
± refers to the right and left sides of the domain wall
boundary.
The second group of boundary conditions represent the

injection of the spin polarized current. As we show in
Appendix C, the spin injection from a contact with a
strong ferromagnet with magnetization oriented in the z
direction and biased with potential V can be described
with the spin currents at the injection point,

�D∂zs
0
1 = 0 (8)

�D∂zs
0
2 = 0 (9)

�D∂zs
0
3 = kI�D(s03 − PIγV N0), (10)

where kI is an injector transparency, PI is an injector po-
larization (see Appendix C for precise definitions of these
quantities in terms of the properties of a ferromagnetic
injector wire), V is the voltage at the injector, and N0

is the density of states at the Fermi level. The voltage
is rescaled by a factor γ, due to fact that the spin accu-
mulation in the weak ferromagnet is affected by the spin
accumulation in the injector, see the details in Appendix
C.
Making the equations dimensionless, we find that the

domain wall physics is here described by three length
scales: (i) domain wall size λ, (ii) spin relaxation length

�s, and (iii) the magnetic length lh =
√

�D/h. The latter
indicates the length within which a non-collinear compo-
nent of the spin accumulation rotates a full period around
the local magnetization direction. This is an important
scale since both the force and the torque depend on such
non-collinear components, as shown in Eqs. (16,17).
The ”phase diagram” of different dynamical regimes

depends on two dimensionless parameters corresponding
to the ratios of these scales. In addition, the injector spin
polarization PI describes the efficiency of spin injection

(the size of spin current for a given amount of charge
current), whereas the interface transparency parameter
kI determines how strongly the resistance of the injector
depends on the domain wall position.

In many strong ferromagnetic metals like iron and
cobalt, the exchange splitting h is of the order of 1 eV.24

This then leads to a very small lh, of the order of the
atomic lattice spacing. For a weak ferromagnet, for ex-
ample CuNi, it is around 0.05 eV.25 This leads to a
magnetic length lh between 10 to 25 nm.25,26 On the
other hand, depending on the exact materials or sam-
ple properties (e.g. thickness and concentration of Ni),
the domain wall size λ and the spin-relaxation lengths
�s of CuNi range from 15 to 25 nm27 (estimated from
measured anisotropy energy and exchange stiffness con-
stants) and from 7 to 25 nm28, respectively. This yields
λ/lh ∼ 0.5...1.5 and lh/�s ∼ 0.4...3.6. As there are also
other materials with weak ferromagnetism, we also can-
not exclude the other possibilities. In order to under-
stand various properties of the domain wall motion in-
duced from a spin current, we also consider these ratios
outside of these ranges in the following discussions.

With the boundary conditions in Eq. (5) to Eq. (7)
and in Eq. (8) to Eq. (10), we can solve the rotated spin
diffusion equation in Eq. (4). They can be solved analyt-
ically (see Appendix B), but the solutions are in general
quite lengthy. Rather, we plot the components of the
spin accumulation for an example set of parameters as a
function of position in Fig. 2(a,b). We can see that s01 is
a monotonously increasing (decreasing) function of posi-
tion in region to the left (right) side of the domain wall,
and reaches a minimum in the domain wall center. The
second component of spin accumulation s02 smoothly goes
to zero away from the domain wall center. Compared to
the spin accumulation in the case without the domain
wall, s03 changes sign in the domain wall region and ex-
ponentially decreases in region to the right of the domain
wall.

The unrotated spin accumulation is given by Eq. (3).
More specifically, we can write

s1 = cosφ(s01 cos θ + s03 sin θ)− s02 sinφ (11)

s2 = s02 cosφ+ sinφ(s01 cos θ + s03 sin θ) (12)

s3 = s03 cos θ − s01 sin θ. (13)

The unrotated components of the spin accumulation are
plotted for φ = 0 in Fig. 2(c,d). Compared to the rotated
solution, s2 remains the same but s1 changes sign on the
two sides of the domain wall center, and s3 also makes a
difference compared to the case without the domain wall.
In the next section, we use these spin accumulations to
calculate the force and torque.
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FIG. 2. Solutions of the spin diffusion equation. The solu-
tions in the rotated space are shown in (a) and (b), and in the
unrotated space are shown in (c) and (d). We also compare
s03 and s3 with the spin accumulation in the case of homoge-
neous magnetization (no domain wall). Here the results are
plotted for �s = 3.2lh, PI = 0.5, kI lh = 0.5, and λ = lh. The
injector is placed at x = 0, whereas the domain wall center is
at X = 0.5λ marked in the figure.

III. FORCE AND TORQUE

The force and torque acting on the domain wall are
given by11,12

F = −
∫

d3z∇h · s (14)

Tz = −
∫

d3z(h× s)z, (15)

where exchange field h is given in Eq. (1), and the compo-
nents of the spin accumulation s = (s1, s2, s3) are shown
in Eq. (11) to Eq. (13). Substituting these to the force
and torque in Eq. (14) and Eq. (15), we obtain

F = −hπW

λ

∫
dzs01 (16)

Tz = −hW

∫
dzs02 sin θ, (17)

where W is the cross sectional area of the weak ferro-
magnet.
The force and torque as a function of the domain wall

position X are plotted in Fig. 3 for a few sets of param-
eters. The common feature of all the cases are that both
decay exponentially as a function of X. This is due to
the fact that the spin accumulation and the resulting spin
current, which induces the domain wall motion, decays
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FIG. 3. Force and torque for smaller domain walls in (a,b),
and for larger domain walls in (c,d), as a function of domain
wall center position X −X0, where X0 = λ/2 is the shortest
distance of the domain wall center to the right of the injector.
Here the results are plotted for �s = 3.2lh, PI = 0.5, and
kI lh = 0.5.

exponentially within the spin-relaxation length �s. These
features are also very similar to the ones in Ref. 18. From
Fig. 3(a,c), we can see that the force is independent of the
domain wall size for small domain walls, and it is smaller
for larger domain walls. On the other hand, the torque
has a nonmonotonic dependence on the domain wall size
λ, as shown in Fig. 3(b,d). It first increases as λ increases
up to of the order of lh, and then becomes smaller for
larger domain walls. This is not the same with the case
of current driven domain wall motion, where the torque
is much larger than the force for larger domain walls.12

This is due to the fact that when a spin relaxation length
�s is smaller than the domain wall size λ (�s < λ), due
to the decaying spin current, less spins are transferred to
the domain wall. This results in the smaller torque for
larger domain wall sizes in Fig. 3(d).

The dependence of the force and the torque on the spin
relaxation length are shown in Fig. 4. We can see that the
torque is a monotonously decreasing function of the in-
verse relaxation length, i.e., decreasing spin relaxation in-
creases the torque, as expected from the fact that torque
results from spin transfer. On the other hand, the force
is a non-monotonic function of lh/�s. It also decays if the
spin relaxation becomes strong (i.e., lh � �s). However,
it also becomes small for a small magnetic length lh � ls.
This is due to the fact that contrary to the torque, which
within our model only comes from the domain wall region
(that is where θ �= 0 in Eq. (17)), the force depends on the
spin accumulation component s01 also around the domain
wall. However, for small lh, this component oscillates
rapidly, and thus the average force becomes small. Anal-
ogously, both the force and the torque become smaller
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FIG. 4. Force and torque for smaller domain walls in (a,b),
and for larger domain walls in (c,d), as a function of inverse
spin relaxation length �s. Here the force and the torque are
plotted for the domain wall position X0 = λ/2. The parame-
ters used in the calculations are PI = 0.5 and kI lh = 0.5.

for larger λ/lh. This is due to the oscillations of the spin
accumulation inside the domain wall region.

In order to get a further insight on the relative mag-
nitudes of the force and torque, we examine the adia-
baticity parameter βs = λF/Tz as a function of lh/�s for
different λ in Fig. 5. Since F and Tz both decay in the
same manner, βs is independent of the distance X from
the injector. Comparing the values of βs in Fig. 5(a)
and (b), we can see that βs is indeed smaller for larger
domain walls, but the spin relaxation also plays an im-
portant role. We can see that βs � 1 for strong spin
relaxation, i.e., force is much larger than the torque. On
the other hand, the torque is much larger than the force
for large domain walls λ � lh, provided the spin relax-
ation length is also longer than lh [Fig. 5(b)]. For small
domain walls λ � lh, βs is proportional to λ−1. We can
estimate βs in this limit for lh < �s by

βs =
8

π

lh
λ

l2h
�2s
. (18)

This is plotted in Fig. 5(a) as the black dashed curve.

This behavior can be compared to the case of strong
ferromagnets in the ballistic limit11. There the only
non-adiabaticity (non-vanishing βs) comes from the fi-
nite λF /λ. The spin diffusion equation employed here
assumes that the Fermi wavelength λF is much smaller
than any other length scale. However, we see that in
this case other length scales, such as lh and �s govern the
behavior of the adiabaticity parameter.
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FIG. 5. Adiabaticity parameter βs as a function of the in-
verse spin-relaxation length �s for different domain wall sizes.
The results are plotted for PI = 0.5 and kI lh = 0.5. The
anlaytical estimate for βs in Eq. (18) is shown as the black
dashed curve in (a).

IV. DOMAIN WALL DYNAMICS

In the absence of an external pinning and a negligible
domain wall mass,29 the dynamic equations of domain
wall motion are11,12

φ̇+ α0
Ẋ

λ
=

λ

�NS
F (19)

Ẋ − α0λφ̇ =
K⊥λ
2�

S sin(2φ) +
λ

�NS
Tz, (20)

where φ is the out-of-plane angle in Eq. (1), α0 is the
Gilbert damping parameter of the local magnetization,
K⊥ is the perpendicular anisotropy energy, and S is the
size of the localized spin. Also, N = 2λW/a30 is the
number of spins in the domain wall, and a0 is the lattice
constant. The force and torque are given in Eq. (14) and
in Eq. (15), respectively.
The unit of F and Tz/λ is hγV N0W . In order to make

the dynamic equations dimensionless, we multiply

t0 =
�NS

λhγV N0W
=

2�S

a30N0hγV

to both sides of Eq. (19) and Eq. (20), and after reorga-
nizing the terms, write

Ẋ

λ
=

1

1 + α2
0

[
α0f +

τz
λ

+ k⊥ sin(2φ)
]

(21)

φ̇ =
1

1 + α2
0

[
f − α0

τz
λ

− α0k⊥ sin(2φ)
]
. (22)

Here we defined

f = − π

λγV N0

∫
dxs01

τz = − 1

γV N0

∫
dxs02 sin θ
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k⊥ =
K⊥S2

a30N0hγV
.

We first discuss the case where the force is much larger
than the torque (βs � 1). We can see from Fig. 5 that this
is the case for small domain walls and large domain walls
with strong spin relaxation lh � �s. For convenience we
consider a small domain wall λ � lh. The full numerical
solutions of the dynamic equations of domain wall motion
in Eq. (21) and Eq. (22) are shown in Fig. 6.
If the force is a constant f = f0 in the absence of

the torque, Eq. (22) yields φ̇ = 0 for f0 < α0k⊥. Then
the domain wall moves with a constant velocity and a
constant out-of-plane angle

Ẋ =
λf0
α0

, (23)

φ =
1

2
arcsin

(
f0

α0k⊥

)
. (24)

In the spin current induced domain wall motion, the force
decays as a function of the domain wall position X. If we
write the force as f = f0e

−X/�s , then φ̇ → 0 for t → ∞,
and this yields

Ẋ =
λf0
α0

e−X/�s . (25)

This equation can be solved as

X = X(0) + �s log

[
1 +

f0λt

�sα0

]
,

and

Ẋ =
f0�sλ

�sα0 + f0λt
,

where X(0) is the domain wall position where φ̇ → 0.
This is exemplified by the curves in Fig. 6(a,b). There,
the blue curve shows the behavior in the case where the
force is everywhere below α0k⊥, and where φ̇ → 0 at
around t ≈ 200t0. From Eq. (22), we can also determine

φ =
1

2
arcsin

[
f0�s
k⊥

e−X(0)/�s

�sα0 + f0λt

]
. (26)

If f0 > α0k⊥, the constant force leads to an oscillatory
domain wall velocity. This is known as the Walker break-
down.30 The red dash-dotted curve in Fig. 6 shows the
situation where the force is initially above this threshold,
and only as the domain wall has moved further from the
injector f gets below this threshold (around t � 1000t0).
After that the domain wall motion follows Eq. (25).
From Fig. 5, we can see that the torque is much larger

than the force for large domain walls and weak spin re-
laxation. In the case of a constant torque in the absence
of the force, the domain wall does not move if τ0z < k⊥λ.
The reason is that the perpendicular anisotropy energy
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FIG. 6. Full numerical solutions of the dynamic equations of
domain wall motion in Eq. (21) and Eq. (22). The case where
the force is much larger than the torque is shown in (a,b),
and the one where the torque is much larger than the force
is shown in (c,d). In (a,b) we use λ = 0.01lh and �s = 3.2lh.
In (c,d) λ = 20lh and �s = 14lh. The other parameters used
in the calculations are PI = 0.5, kI lh = 0.5, X0 = λ/2, and
α0 = 0.2. In the inset of (c,d), the results are shown for a
smaller time scale.

described by the coefficient k⊥ absorbs the torque com-
pletely. This is known as intrinsic pinning.11 Other-
wise, if τ0z > k⊥λ, the domain wall moves with a fi-
nite velocity. Similar to the force, we can write the
torque as τz = τ0z e

−X/�s . When the torque decays until

τz(X(t)) < k⊥λ so that φ̇ → 0, the domain wall stops
moving. It takes a longer time for a smaller k⊥ to absorb
the torque completely. The domain wall position and the
out-of-plane angle φ as a function of time for a decaying
torque are plotted in Fig. 6(c,d).
We next examine the domain wall motion in the pres-

ence of both force and torque (βs ≈ 1). In the case of
constant force and torque, a small force is enough to de-
stroy the intrinsic pinning. The domain wall moves with
a constant velocity, see Eq. (23). This is also the case
with decaying force and torque with f0/α0 > τ0z /λ, and
the domain wall motion follows Eq. (25). We can use

Eq. (22) to obtain φ for φ̇ → 0 as

φ =
1

2
arcsin

[
1

k⊥

(
f0
α0

− τ0z
λ

)
α0�s

�sα0 + f0λt
e−X(0)/�s

]
.

(27)
For f0/α0 < τ0z /λ, however, the dynamic equations result

a negative φ, and this leads to Ẋ → 0. The numerical
solutions of the dynamic equations of the domain wall
motion in Eq. (21) and Eq. (22) in the presence of both
force and torque are plotted in Fig. 7(a,b)
In the above discussions, the voltage at the injector is

considered to be positive V > 0. If the voltage changes
sign at some instant of time, then the sign of the force
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FIG. 7. Domain wall dynamics in the presence of both force
and torque for different spin relaxation rates in (a,b). Forward
and backward moving domain walls for different domain wall
sizes in (c,d). In (a,b) we use λ = lh. In (c) �s = 3.2lh, and in
(d) �s = 14lh. The other parameters used in the calculations
are PI = 0.5, kI lh = 0.5, X0 = λ/2, and α0 = 0.2. In the
calculations we use k⊥ = 1.2|f0/α0 − τ0

z /λ|. In (c,d) we use
a small arrow to denote when the voltage changes sign.

and torque also changes, and they start pulling the do-
main wall instead of pushing it. This leads to the re-
versed motion of the domain wall. The reversed domain
wall motion for small domain walls λ < lh are shown in
Fig. 7(c). In this case, the domain wall reverses back to
its original position X = 0 at an equal amount of time as
the one needed to push it further. The reversed domain
wall motion for large domain walls with weak spin relax-
ation is shown in Fig. 7(d). In this case the domain wall
had stopped before the sign change of the injected spin
current.

The above analysis is based on the dynamics described
by Eqs. (19) and (20), with force and torque obtained
from the solutions of the spin diffusion equations. Those
equations were derived12 by assuming a clean ferromag-
net and an instant electronic response to the domain
wall motion. It was recently shown29 that taking into
account the delayed electron dynamics, extra ”inertial”
terms proportional to φ̈ and Ẍ can also appear, lead-
ing for example to a hysteretic dynamics of the domain
wall. The prefactor of those terms, an effective mass of
the domain wall, is proportional to the time it takes for
the electrons to traverse the domain wall width λ. If λ is
large compared to the elastic mean free path, as assumed
in the present manuscript, this effective mass is also likely
to change from the ballistic limit considered in Ref. 29.
This is why we did not yet consider its possible effect on
the dynamics in the present manuscript.

V. DOMAIN WALL RESISTANCE

The current induced from the injector electrode is
given by [see Appendix C, Eq. (C8)]

I = G[−γV + PIs3(0)/N0],

where G is the conductance of the injector. We can see
from Appendix B that the spin accumulation is linear in
the injection voltage V . Taking that into account allows
us to include an extra resistance that depends on the
relaxation of s0 along the wire. In particular, we may
study this extra resistance in the presence of the domain
wall at position X, and without it (formally X → ∞).
This domain wall resistance provides a direct method to
detect the domain wall motion.
If we denote the spin accumulation at the position

of the injector as s3(0) = μzPIγV N0, where μz =
μz(X, lh, �s, kI , λ) is a dimensionless quantity, then the
current through the contact can be written as I =
G(−1 + μzP

2
I )γV . The spin accumulation thus adds a

”spin resistance”

Rs =
1

GμzP 2
I

. (28)

The contribution of the domain wall to the spin resistance
in Eq. (28) can be found by taking the difference of Rs

with the resistance in the absence of the domain wall R0
s

as Rdw = Rs −R0
s. Here

R0
s =

1

Gμz(X → ∞)P 2
I

=
2 + kI�s
GP 2

I kI�s
,

where μz(X → ∞) is determined from Eq. (B1), and kI is
the injector transparency. Again the analytic formula for
Rdw is long, but we show its behavior for some selected
parameters in Fig. 8.
We can see that the domain wall contribution to the

resistance Rdw reduces exponentially as the domain wall
moves away from the injector, as is natural due to the fact
that Rdw depends on the size of the spin accumulation
around the domain wall. Close to the injector X = λ/2
[Fig. 8(c)], the domain wall contribution is maximal for
lh � �s and for λ ≈ lh.

VI. CONCLUSION

In conclusion, we have studied the domain wall motion
in weak ferromagnets in a non-local spin-injection setup.
We have used a spin-diffusion equation to calculate the
spin accumulation and evaluated the force and torque
acting on the domain wall. Both decay exponentially as
a function of domain wall position. We have studied the
domain wall dynamics and have showed that the domain
wall motion exhibits interesting features due to the de-
caying force and torque. For example, if the force close
to the injector is larger than the torque and a threshold
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FIG. 8. The additional resistance Rdw introduced from
the domain wall plotted as a function of the domain wall
position in (a,b), and the dependence of the maximum Rdw

at X0 plotted as a function of λ and �−1
s in (c). In (a) Rdw is

plotted for different domain wall sizes and �s = 3.2lh, and in
(b) for different spin relaxation lengths for λ = 2lh. The other
parameters used in the calculations are kI lh = 0.5, PI = 0.5,
and X0 = λ/2.

for Walker breakdown, the domain wall exhibits first an
oscillatory dynamics, but further from the injector spin
relaxation necessarily takes the force below that thresh-
old value, resulting into an algebraically decaying domain
wall speed. On the other hand, for a large torque close
to the injector, compared to both the force and an intrin-
sic pinning value due to anisotropy, the relatively steady
initial motion ceases when the torque becomes smaller
than the intrinsic pinning value, and the domain wall
essentially stops. Since the sign of both the force and
the torque depend on the sign of the injection current,
the domain wall motion can be reversed by reversing the
sign of the current. This is why the pure spin current
can also be used to pull the domain wall back towards
the injector. Besides the analysis of the force and torque
and their result on the dynamics, we have also described
a means to detect the domain wall position via monitor-
ing the injection resistance that depends on the domain
wall position.

Our model is an alternative description of domain wall
motion compared to majority of the models12 dealing
with essentially ballistic electron systems. In those cases
the only relevant length scales are the domain wall size
and the Fermi wavelength. We show how in disordered

systems and weak ferromagnets there may be also other
essential length scales governing the domain wall dynam-
ics, especially the magnetic length lh and the spin relax-
ation length �s. Our approach is made possible by the
use of the spin diffusion equation also in the presence of
inhomogeneous magnetism, which would not be straight-
forward when the spin polarization in the ferromagnet is
large. To be able to use this equation, we hence need
to assume weak ferromagnetism, which limits the appli-
cability range of our approach. On the other hand, it
provides hints on the types of effects expected also in the
case of strong ferromagnets for which, to our knowledge,
an analogous theory does not exist.
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Appendix A: Spin diffusion equation

As a useful tool in describing the electronic transport
properties of magnetic materials, we start by the spin
dependent Boltzmann equation in the diffusive limit22,31

(∂t −D∇2)fz(r, ε, t) = − 1

τs
fz(r, ε, t), (A1)

where D is the diffusion constant (in a weak ferromagnet
assumed independent of the spin index), fz = f↑ − f↓
and fσ is the distribution function of electrons with spin
σ = ↑ / ↓, and τs is the spin-flip relaxation time. This
equation has been widely used in spintronics, for example
in the description of the spin accumulation at an interface
between a ferromagnet and a nonmagnetic metal.32

In the case of an inhomogeneous exchange field, other
spin components should be taken into account, and we
can replace fs by f · σ = (fx, fy, fz) · σ, where σ =
(σ1, σ2, σ3) is a vector of Pauli spin matrices. Consider-
ing the Heisenberg equation of motion for f ·σ, and sub-
stituting back to the Boltzmann equation (see a similar
derivation in Refs. 33 and 34, except that those articles
write an opposite sign of the Zeeman energy term) we
obtain for a steady state

D∇2f =
1

τs
f +

i

�

[gμB

2
B · σ,f · σ

]
,

where the other component of the commutator is the Zee-
man energy. There, g = 2 is the g-factor, μB is the Bohr
magneton, and B is the magnetic field. By denoting
h = gμBB/2 and reorganizing the terms, we obtain

�D∇2f =
�

τs
f − 2h× f ,

where we used the relation (a · σ)(b · σ) = 2i(a × b).
This equation is an extension of Eq. (A1) to the case with
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inhomogeneous magnetization, as it reduces to Eq. (A1)
for the case of homogeneous magnetization in the steady
state.

Integrating over energy on the two sides, we finally
obtain the spin-diffusion equation

�D∇2s =
�

τs
s− 2h× s, (A2)

where

s(r) = N0

∫
dεf(r, ε)

is the spin accumulation at position r. The spin diffusion
equation was used to describe the spin Hanle effect in
ferromagnet-normal metal-ferromagnet systems.33,35,36

Here we use it to calculate the spin accumulation in a

weak ferromagnet, including the Hanle effect from the
inhomogeneous exchange field.
The spin current is given by the derivative of the spin

accumulation

j(r) = �D∇s(r).

The spin current is a tensor, as it depends on position
for all three spin components. This spin current plays an
important role in the domain wall motion.

Appendix B: Spin accumulation with inhomogenous
magnetization

Since the rotation angle in Eq. (2) is a step function,
the spin diffusion equation in Eq. (4) is separated into
three regions. On the left and right side of the domain
wall, the general solution of Eq. (4) is given by

s01 =
1

η
{cosh(zην) [ηC1i cos(zημ) + (μC2i + νC4i) sin(zημ)] + [(νC2i − μC4i) cos(zημ) + ηC3i sin(zημ)] sinh(zην)}

s02 =
1

η
{cosh(zην) [ηC3i cos(zημ) + (−νC2i + μC4i) sin(zημ)] + [(μC2i + νC4i) cos(zημ)− ηC1i sin(zημ)] sinh(zην)}

s03 = ez/�sC5i + e−z/�sC6i,

where i = 1, 3 refers to the left and right side of the domain wall, and Cni are constants which are determined from
the boundary conditions. Here we also defined

η =

[
4

l4h
+

1

�4s

]1/4

μ = sin

[
1

2
arctan

(
2�2s
l2h

)]

ν = cos

[
1

2
arctan

(
2�2s
l2h

)]
.

In the domain wall region the solutions are given by

s01 =− C12e
zk1 [α2 + �−2

s − k21]

2α
√
N1k1

+
C22e

−zk1 [α2 + �−2
s − k21]

2α
√
N1k1

− C32e
zk2 [α2 + �−2

s − k22]

2α
√
N2k2

+
C42e

−zk2 [α2 + �−2
s − k22]

2α
√
N2k2

− C52e
zk∗

2 [α2 + �−2
s − k∗22 ]

2α
√
N2k∗2

+
C62e

−zk∗
2 [α2 + �−2

s − k∗22 ]

2α
√
N2k∗2

s02 =
C12e

zk1al2h
36αβ2

√
N1k1

− C22e
−zk1al2h

36αβ2
√
N1k1

+
C32e

zk2bl2h
72αβ2

√
N2k2

− C42e
−zk2bl2h

72αβ2
√
N2k2

+
C52e

zk∗
2 b∗l2h

72αβ2
√
N2k∗2

− C62e
−zk∗

2 b∗l2h
72αβ2

√
N2k∗2

s03 =
C12e

zk1

√
N1

+
C22e

−zk1

√
N1

+
C32e

zk2

√
N2

+
C42e

−zk2

√
N2

+
C52e

zk∗
2√

N2

+
C62e

−zk∗
2√

N2

,
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where

α =
π

λ

β =

⎡
⎣α6 +

90α2

l4h
+

36α4

�2s
+

1

2

√
−4

(
α4 − 12

l4h
− 12α2

�2s

)3

+ 4

(
α6 +

90α2

l4h
+

36α4

�2s

)2
⎤
⎦
1/3

and

k1 =

√
1

3

[
−2α2 + β +

3

�2s
+

α4 − 12/l4h − 12α2/�2s
β

]

k2 =

√√√√ 1

12

[
−8α2 + 2i(i+

√
3)β +

12

�2s
+

2(1 + i
√
3)(−α4 + 12/l4h + 12α2/�2s)

β

]

are the solutions of the following characteristic equation

α4

(
k2 − 1

�2s

)
+

[
4

l4h
+

(
k2 − 1

�2s

)2
](

k2 − 1

�2s

)
− 2α2

[
2

l4h
− k4 +

1

�4s

]
= 0.

The other coefficients are

a =

[
α4 + α2β + β2 − 12

l4h

]2
+

12α2

�2s

[
−2α4 − 2α2β + β2 +

24

l4h

]
+

144α4

�4s

b =− (1− i
√
3)α8 − (1 + i

√
3)β4 − 48β2

l4h
− 144(1− i

√
3)

l8h
+ α6

[
−2
(
1 + i

√
3
)
β +

24

�2s

(
1− i

√
3
)]

+ 2α2

[
−(1− i

√
3)β3 +

12(1 + i
√
3)β

l4h
+

12β2

�2s
− 144(1− i

√
3)

l4h�
2
s

]

+ 6α4

[
β2 +

4(1 + i
√
3)β

�2s
+ 4(1− i

√
3)

(
1

l4h
− 6

�4s

)]

N1 =
(1 + l2hk

2
1)
{
a2l4h + 324β4

[
α4 − (k21 − �−2

s )2 + 2α2(k21 + �−2
s )
]}

1296α2β4k21

N2 =
(1 + l2h|k2|2)

{|b|2l4h + 1296β4
[
α4 + |k22|2 − �−4

s − 2�−2
s Re(k22) + α2(2�−2

s − 2Re(k22) + 4|k2|2)
]}

5184α2β4|k2|2 .

The unknown coefficients are determined from the boundary conditions. Although one can determine C51 =
C53 = 0 straightforwardly, since s03 only decays as a function of domain wall position, other components have too
long expressions to be printed here and rather have to be shown numerically.37 We plot some of the coefficients for
different values of the domain wall size λ in Fig. 9.
The solutions also yield C52 = C∗

32 and C62 = C∗
42, which also imply real-valued spin accumulation. Moreover, the

coefficients in region i = 3 are very similar with those in region i = 1, but with opposite signs (C13, C33 and C63).
For X � �s, we also find

C61 = −C63 =
kI�sPIV N0

2 + kI�s
, (B1)

but in general the expression is more complicated.
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FIG. 9. Coefficients in the general solutions of the spin diffusion equation. Here the results are plotted for �s = 3.2lh, PI = 0.5,
kI lh = 0.5, and X0 = λ/2.

The solutions in the domain wall region can hence be written as

s01 = −α2 + �−2
s − k21

2α
√
N1k1

(
C12e

zk1 − C22e
−zk1

)− Re

[
α2 + �−2

s − k22
α
√
N2k2

(
C32e

zk2 − C42e
−zk2

)]
(B2)

s02 =
al2h

36αβ2
√
N1k1

(
C12e

zk1 − C22e
−zk1

)
+Re

[
bl2h

36αβ2
√
N2k2

(
C32e

zk2 − C42e
−zk2

)]
(B3)

s03 =
1√
N1

(
C12e

zk1 + C22e
−zk1

)
+

2√
N2

Re
(
C32e

zk2 + C42e
−zk2

)
. (B4)

The unrotated spin accumulation is given by the transformation in Eq. (3). We use these results to calculate the
force and torque in the equations of domain wall motion.

Appendix C: Description of the injector

We consider the case where the spin polarized current
is injected to the weak ferromagnet from a strong ferro-
magnet attached to it a position z = 0. Since we assume
the injector magnetization to be homogeneous, we can
write the spin diffusion equation separately in the two
spin directions collinear with the magnetization of the
strong ferromagnet. If we assume that the current is in-

jected into the weak ferromagnet from a wire placed in
the y direction, the spin-diffusion equation in the injector
becomes34

∂2
ys

I
σ =

sIσ − sIσ̄
2l2σ

,

where σ̄ is the opposite spin to σ =↑ / ↓ and lσ =
√
Dστσ

is the spin-dependent spin relaxation length. The general
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solution of this equation can be written as

sI↑/↓ =
l2↓(C1 + C2y) + l2↑(C3 + C4y)

l2tot

±
l2↓/↑
l2tot

[
(C3 − C1) cosh

(y
l

)
+ l(C4 − C2) sinh

(y
l

)]
,

where l2tot = l2↑ + l2↓ and l =
√
2l↑l↓/ltot. The unknown

coefficients can be determined from the boundary condi-
tion31

σI
↑/↓AT∂ys

I
↑/↓(0) =

1

RI

[
sw↑/↓(0)− sI↑/↓(0)

]
, (C1)

where σI
σ = e2NσDσ is the spin dependent conductiv-

ity in the injector, Nσ is the density of states of spin σ
at the Fermi level, AT is the cross-sectional area of the
tunnelling junction, RI is the resistance of the contact
between the injector and the wire, and swσ is the spin
density for spin σ created at the weak ferromagnet. If
the voltage is applied at a distance L away from the con-
tact, then we have two more boundary conditions

sI↑(−L) + sI↓(−L) = V N0

sI↑(−L)− sI↓(−L) = 0,

where the upper equation states that the average poten-
tial of the electrons at the distance L is V (e = 1), and
the lower indicates the vanishing of the spin accumula-
tion in the electrode where the voltage is applied.

With the determined coefficients, we can write the chemical potential and the spin accumulation at the position of
injection by assuming tanh (L/l) → 1, valid when L � l

μI(0)N0 = sI↑(0) + sI↓(0)

=
aI ll

2
tot

[
V σI

↓ + 2aILμw(0)
]
N0 + 2aI(2Ll

2
↑ − ll2min)σ

I
↓s

w
↑ (0) + σI

↑
[
l2totV N0

(
aI l + 2σI

↓
)
+ 2aI

(
2Ll2↓ + ll2min

)
sw↓ (0)

]
2aI

[
aI lLl2tot +

(
Ll2↑ + ll2↓

)
σI
↓
]
+ 2σI

↑
[
aI

(
Ll2↓ + ll2↑

)
+ l2totσ

I
↓
]

(C2)

sI3(0) = sI↑(0)− sI↓(0) =
aI ll

2
tot

{
σI
↑
[
V N0 − 2sw↓ (0)

]
− σI

↓
[
V N0 − 2sw↑ (0)

]
+ 2aILs

w
3 (0)

}
2aI

[
aI lLl2tot +

(
Ll2↑ + ll2↓

)
σI
↓
]
+ 2σI

↑
[
aI

(
Ll2↓ + ll2↑

)
+ l2totσ

I
↓
] , (C3)

where aI = 1/(RIAT ) and l2min = l2↑ − l2↓. Here we also defined the chemical potential and the spin accumulation in

the weak ferromagnet as μw(0)N0 = sw↑ (0) + sw↓ (0) and sw3 (0) = sw↑ (0)− sw↓ (0).
We assume for simplicity that the injector and the weak ferromagnetic wire cross sections are equal. Defining the

injector transparency κI = 1/(σwRIAT ), we can write the boundary condition analogous to Eq. (C1) for the weak
ferromagnet wire as

∂zs
w
↑/↓(0) = κI

[
sw↑/↓(0)− sI↑/↓(0)

]
,

where σw is the conductivity in the weak ferromagnet. We then write this boundary condition in terms of μw(0) and
sw3 (0), and choose the zero point of potential so that μw(0) = 0. By substituting sI↑/↓(0) in Eq. (C2) and Eq. (C3),

we obtain for l↑ = l↓

(
∂zμw(0)N0

∂zs
w
3 (0)

)
= κI

⎛
⎝ aI lσ

I
F

δ

aILσI
F+σI

↑σ
I
↓

δ

σI
↑−σI

↓
σI
↑+σI

↓
aI lσ

I
F

δ

σI
↑−σI

↓
σI
↑+σI

↓

aILσI
F+σI

↑σ
I
↓

δ

⎞
⎠(−V N0

sw3 (0)

)
,

where σI
F = (σI

↑ + σI
↓)/2, and δ = a2ILl + aI(L+ l)σI

F + σI
↑σ

I
↓ .

This equation leads to an Onsager relation for the cur- rent through the contact

(
∂zμw(0)N0

∂zs
w
3 (0)

)
=

(
kI PIkI

PIkI kI

)(−γV N0

sw3 (0)

)
, (C4)
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where the injector polarization and transparency are de-
fined as

PI =
σI
↑ − σI

↓
σI
↑ + σI

↓
(C5)

kI = κI
aILσ

I
F + (σI

F )
2(1− P 2

I )

δ

=
1

σw

LσI
F + (σI

F )
2(1− P 2

I )RIAT

Ll + (L+ l)σI
FRIAT + (σI

F )
2(1− P 2

I )R
2
IA

2
T

RI�lσI
↑/↓/AT−−−−−−−−−→ σI

F

σwl
(C6)

γ =
aI l

aIL+ σI
F (1− P 2

I )
=

l

L+ σI
FRIAT (1− P 2

I )
.

(C7)

The second row of Eq. (C4) yields the boundary condi-

tion for the spin-diffusion equation, whereas the first row
in the Onsager relation yields the current through the
contact. Multiplying the first row by σwW/N0, where W
is the cross-sectional area of the weak ferromagnet, we
obtain

I = G[−γV + PIs
w
3 (0)/N0], (C8)

where

I = σwW∂zμw(0)

and

G = kIσ
wW.

Since sw3 (0) is linear in V N0 as shown in Eq. (B1), the
spin accumulation contributes an additional resistance to
the total resistance.
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