
Anna Koskinen

DEVSECOPS: BUILDING SECURITY INTO THE
CORE OF DEVOPS

JYVÄSKYLÄN YLIOPISTO

INFORMAATIOTEKNOLOGIAN TIEDEKUNTA
2020

ABSTRACT

Koskinen, Anna
DevSecOps: Building Security Into the Core of DevOps
Jyväskylä: University of Jyväskylä, 2019, 64 pp.
Information Systems, Master’s Thesis
Supervisor: Costin, Andrei

The constantly growing rate of sophisticated, high-speed cyber-attacks brings
new challenges to the people working in cyber defense. How can security prevent
vulnerabilities, detect attacks in real time and respond to security incidents
effectively? At the same time further down the development pipeline, another
kind of time pressure is felt by software developers: business needs are
constantly pressing for faster software release cycles. How can security be
properly addressed in the ever-increasing pace of modern software development?
In the last decade, DevOps has grown steadily as a software development
method and its ability to deploy products constantly has made organizations
deploy applications up to hundreds of times per day. In the rapid-fire
development life cycles, the question becomes, how can security be ensured at
the same pace? This Thesis used a Systematic Literature Review to discover how
security activities can be added into the core of DevOps development process in
order to evolve the development methodology into DevSecOps, i.e., a
development methodology that encompasses not only Development (Dev) and
Operations (Ops) but also Security (Sec). The research looked at 18 different
articles to understand how security activities can be used in DevOps processes
as well as what challenges DevOps brings to security. The Building Security In
Maturity Model (BSIMM) was used as a framework to chart the activities
described in the academic research. The research literature was also reviewed
through the four principles of DevOps: Culture, Automation, Measurement and
Sharing (CAMS). As a result, it was found that the available research focuses
heavily on securing the technologies frequently used in DevOps infrastructures
(e.g., containers, development pipelines and cloud infrastructures). Looking at
the challenges of security in DevOps, the research found the biggest challenges
to be securing the deployment pipeline, balancing security with fast deliveries,
as well as combating insider threat. The research also concluded that there are
still many conflicting views on what DevOps is, which is shown by the DevOps
principles not being reflected in the current research. The research gives an
overview of the current state of research of security activities in DevOps, paves
the way for DevSecOps style software development and brings forth research
gaps for further researchers to explore.

Keywords: DevOps, DevSecOps, secure software engineering, BSIMM, SDLC

TIIVISTELMÄ

Koskinen, Anna
DevSecOps: Turvallista DevOpsia rakentamassa
Jyväskylä: Jyväskylän yliopisto, 2019, 64 s.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja: Costin, Andrei

Hienostuneiden ja nopeatahtisten kyberhyökkäysten jatkuvasti lisääntyvä määrä
aiheuttaa haasteita tietoturvallisuuden parissa työskenteleville. Miten
uudistuvassa toimintaympäristössä pystytään ehkäisemään haavoittuvuuksia,
havaitsemaan hyökkäyksiä ja reagoimaan tietoturvaongelmiin tehokkaasti?
Samaan aikaan toisenlainen aikapaine vaivaa ohjelmistojen kehittäjiä:
liiketoimintavaatimusten vuoksi ohjelmistoja halutaan julkaista yhä
nopeammalla tahdilla. Miten tietoturva varmistetaan kiivaassa kehityssyklissä?
DevOps on viime vuosina saavuttanut vankan aseman ohjelmistojen
kehittämismetodina ja sen mahdollistama jatkuva integrointi saa yritykset
työntämään uusia järjestelmäversioita tuotantoon jopa satoja kertoja päivässä.
Nopeassa kehityssyklissä tärkeäksi kysymykseksi nousee, miten voidaan
varmistaa ohjelmistojen tietoturva yhtä nopealla tahdilla. Tässä työssä
tarkasteltiin systemaattisen kirjallisuuskatsauksen kautta, miten tietoturvaa
parantavia aktiviteetteja voidaan lisätä DevOps-kehittämisprosesseihin, jotta

kehittämismenetelmässä päästäisiin todelliseen DevSecOps-malliin − malliin,
johon kehittämisen (Dev) ja ylläpidon (Ops) olisi integroitu myös tietoturva (Sec).
Työssä tutkittiin 18 eri akateemisen artikkelin näkemystä siitä, mitä tietoturva-
aktiviteetteja DevOps-prosessissa voidaan käyttää sekä mitä haasteita DevOps
asettaa tietoturvalle. Viitekehyksenä työssä käytettiin BSIMM-mallia (Building
Security In Maturity Model), jonka avulla kartoitettiin turvallisuusaktiviteettien
esiintymistä tutkimuksessa. Tutkimuskirjallisuutta tarkasteltiin myös DevOpsin
neljän periaatteen (kulttuurin, automaation, mittaamisen ja jakamisen) kautta.
Tuloksena huomattiin, että nykytutkimus keskittyy pitkälti DevOps-
infrastuktuurissa käytettyjen teknologioiden (esim. konttitekniikat, kehitysputki
ja pilvi-infrastruktuuri) turvaamiseen. DevOpsin turvallisuushaasteista
tutkimus havaitsi suurimmiksi kehitysympäristön turvaamisen, turvallisuuden
ja nopeiden toimitusten tasapainottamisen sekä niin sanotun sisäisen uhan (eli
työntekijäväärinkäytösten) lisääntymisen mahdollisuuden. Lisäksi tutkimus
havaitsi, että tutkijoiden kesken vallitsee edelleen erilaisia näkemyksiä siitä, mitä
DevOps on, sillä DevOpsin perusperiaatteet ilmenevät heikosti
nykytutkimuksesta. Tutkimus antaa yleiskuvan turvallisen DevOps-
kehittämisen nykytutkimuksesta, edesauttaa DevSecOps-tyylistä kehittämistä
sekä tuo esiin tutkimusaukkoja tulevien tutkijoiden tutkittaviksi.

Asiasanat: DevOps, DevSecOps, tietoturvallinen kehittäminen, BSIMM,
ohjelmistokehityksen elinkaari

FIGURES

FIGURE 1 The waterfall development model (Cois et al. 2014). 12
FIGURE 2 The DevOps development life cycle (Loughman 2019) 14
FIGURE 3 The five phases of the developer self-service in the SDLC 16
FIGURE 4 The three categories of security practices 19
FIGURE 5 Ways to address security practices during development.......... 19

FIGURE 6 Search term trends for DevSecOps and DevOps on Google 21
FIGURE 7 The inputs and outputs of systematic review. 26
FIGURE 8 Selection process of papers .. 30
FIGURE 9 The publishing years of the reviewed articles............................. 33
FIGURE 10 Research’s coverage of the BSIMM practices. 41
FIGURE 11 The thirteen most mentioned BSIMM security activities 42

FIGURE 12 Security activity mentions per BSIMM security domain 55

TABLES

TABLE 1 Previous literary reviews related to the research topic................ 10
TABLE 2 The four domains and twelve practices of BSIMM 23
TABLE 3 Search terms that were used to search for relevant papers 27
TABLE 4 Study selection progress. .. 29
TABLE 5 Data extraction formulation ... 31

TABLE 6 An overview of the final article selection 34
TABLE 7 The publishing venues of the articles ... 35
TABLE 8 Security challenges in DevOps .. 36

TABLE 9 Security practice and activity mentions in the primary studies . 40
TABLE 10 The four principles of DevOps in the reviewed works 50
TABLE 11 Advice on how to build security into the core of DevOps 59

TABLE OF CONTENTS

ABSTRACT ... 2

TIIVISTELMÄ .. 3

FIGURES ... 4

TABLES ... 4

TABLE OF CONTENTS ... 5

1 INTRODUCTION .. 7

2 THEORETICAL BACKGROUND ... 12
2.1 Software development and the development life cycle 12

2.2 DevOps as a development method ... 13
2.3 The four principles of DevOps .. 14

2.3.1 Culture ... 15

2.3.2 Automation ... 16
2.3.3 Measurement .. 17
2.3.4 Sharing ... 17

2.4 Security practices in software development .. 18
2.4.1 A call for DevSecOps ... 20
2.4.2 BSIMM and measuring software security 22

3 RESEARCH METHODOLOGY ... 25
3.1 Systematic literary review and the research process 25

3.2 Research questions .. 26
3.3 Search method, strategy and criteria .. 27

3.4 Study selection process ... 29
3.5 Data extraction and analysis .. 31

4 RESULTS ... 33
4.1 Demographic data ... 33
4.2 Challenges to security ... 36
4.3 Security practices/activities ... 39

4.3.1 Use application behavior monitoring and diagnostics 43
4.3.2 Perform security feature review ... 43
4.3.3 Ensure host and network security basics are in place 44
4.3.4 Use orchestration .. 45
4.3.5 Drive tests with security requirements and features 46
4.3.6 Ensure cloud security basics ... 46

4.3.7 Create policy ... 47
4.3.8 Use application containers .. 47

4.3.9 Send SW defects found in monitoring back to development 48
4.3.10 Use automated tools along with manual review 48

4.3.11 Use automated tools with tailored rules 49
4.3.12 Use application input monitoring ... 49
4.3.13 Identify gate locations, gather necessary artifacts 49

4.4 The four principles of DevOps .. 50

5 DISCUSSION .. 54
5.1 RQ1: Challenges of security in DevOps ... 54
5.2 RQ2: Security activities that are associated with DevOps 54
5.3 RQ3: CAMS principles reflected in DevOps research 56
5.4 Limitations, reliability and validity .. 59
5.5 Topics for future research ... 60

6 CONCLUSION ... 61

REFERENCES .. 63

1 INTRODUCTION

The DevOps development model has taken the software development world by
storm. With estimated adoption rates ranging from over 50 % of organizations
(Stroud 2017, Mansfield-Devine 2018) to 88 % of organizations (Ur Rahman and
Williams 2016), the popularity of DevOps is for certain. But what exactly is
DevOps? According to one definition, DevOps is a development methodology
which emphasizes communication between software developers and operations
and aims at fast delivery times through automated delivery pipelines (Jabbari et
al. 2016). However, the definitions vary and not everyone who says they are
“doing DevOps” agrees on the term’s meaning (Mansfield-Devine 2018). This can
cause confusion and lead to failed adoption initiatives, if no clear definition has
been made of what is being talked about when talking about DevOps.

The reasons for the growth of the DevOps paradigm are various. The desire
for more rapid software development cycles to satisfy customer needs has led to
automated delivery pipelines, where code written by a developer can be pushed
to production instantaneously. As DevOps maximizes the use of automation
tools in software development, communication becomes faster and more
effective, because it happens automatically through systems (Cois et al 2014).
Pushing code into production frequently has also led to a closer relationship
between the development team (Dev) and the operations team (Ops), and from
this close collaboration, the development methodology has derived its name.
More than just a development method, DevOps is also very much a cultural issue
within the organization implementing it. Automation technologies also change
the work of IT staff, as manual tasks become automated and automated tasks
require new expertise. The increased automation of software deliveries leads to
the so-called “developer self-service”, where a developer is single-handedly able
to push his code into the production environment. This autonomy is considered
to contribute to higher work satisfaction. Both Amazon and Netflix state that
increased autonomy makes developers happier (Khan 2018, Hahn 2016).

When we talk about increasing the speed of deliveries, a relevant question
to ask is how does this speed affect software quality in all its aspects. Some
scholars feel that the aim for great quality is part of DevOps’ essence, whereas

8

others talk of the speed being the only name of the game. Some feel that
developers gain a “sense of pride and ownership” through the new development
regime (Mackey 2018), whereas others (e.g., Ahmanavand et al. 2018, Ullah et al.
2017) warn of the increased insider access bringing a whole new can of security
worms to the development environment and beyond. All we can say is, when it
comes to software security, DevOps definitely antes up the game.

In this Master’s Thesis, I have set myself the task of understanding the
current state of research on how security practices fit into the DevOps
development process. The task I have set myself with this thesis is not simple. It
has been said that “There is little evidence of how to implement security practices
in the software industry, much less in an agile context” (Jaatun et al. 2017). If the
software industry in general and agile practices in particular lack guidance on
security practices, the case could be perceived to be even more severe with
DevOps, as it is a significantly younger practice. Blog posts and industry
guidance on secure DevOps practices exist, but as many writers have the agenda
of recommending their own products or services, the academical non-biased
view would be beneficial to understand the situation better. Many academic
pieces echo the need for more understanding of how security fits into DevOps
(e.g., Mansfield-Devine 2018, Tuma et al. 2018) and have recorded the interest of
established business players such as IBM (Mohan et al. 2018) of getting a better
understanding of how security can be integrated into DevOps.

To understand the current state of research, I have conducted a Systematic
Literature Review that tracks the available research on the subject and analyses
the relevant articles. The goal of the Thesis is to synthesize how the academic
world sees security practices in relation to DevOps development. It suffices to
say that DevOps’ popularity is not yet reflected in the academic research in the
field of software security – only a limited number of DevOps works concerning
security are available. In this Systematic Literature Review, 18 articles comprise
the primary studies upon which the analysis is based. As a tool for analysis I am
using two frameworks: the Building Security In Maturity Model (BSIMM)
(McGraw et al. 2019) and the CAMS-principles (Willis 2010). The BSIMM
maturity model is a framework of prevalent security practices and activities,
which have been collected from the software industry. Through surveying which
security activities practitioners actually perform, BSIMM unifies the activities
into a framework and grades the maturity of each activity. In the BSIMM model,
security activities are actions “undertaken for the purpose of building secure
software”. The different actions are organized into larger groups of security
practices, which in turn belong to security domains. (McGraw et al. 2019.) As
such, the BSIMM model offers an organized framework of security domains,
practices and activities. The framework is explained in detail in Chapter 2.4.2.
The second framework used in this research are the four principles of DevOps
which go under the acronym CAMS. The four principles are Culture, Automation,
Measurement and Sharing. The four principles are introduced in more detail in
Chapter 2.3.

9

In my research, I am answering three research questions:

• RQ1: What are the challenges of security in DevOps as reported by the
authors of primary studies?

• RQ2: Which security activities are associated with DevOps in the
literature?

• RQ3: How are the CAMS (culture, automation, measurement and
sharing) principles reflected in secure DevOps research?

The first research question investigates which challenges the authors of primary
studies link to security in DevOps. By looking at the challenges, I am hoping to
capture DevOps’ uniqueness as a development method and to understand how
that uniqueness translates to the security activities DevOps needs in particular.
The second research question charts which security activities have been thus far
linked with DevOps. Through analyzing the results, an understanding is gained
of where research efforts have been concentrated and where there might be
research gaps. Through a synthesis of the recommended security activities, an
outline of recommendable security activities for DevOps development is attained.
The third research question goes through the primary studies and looks at how
the studies speak of DevOps’ CAMS principles. By analyzing different authors’
understanding of culture, automation, measurement and sharing, it is possible to
observe whether the authors see DevOps identically or whether different
interpretations surface. Through the three research questions I get an
understanding of the current state of research, how DevOps is understood by the
security researchers and where future research efforts should be concentrated.

My results show that 42 % of the security activities mentioned in DevOps
research have a focus of securing the technological infrastructure of DevOps –
mainly container and cloud infrastructure as well as the deployment pipeline
itself. My research also confirms the view of Jabbari et al. (2016), who found that
in the research community, DevOps is understood in a number of ways that are
possibly different or even disjoint. In other words, some writers of the reviewed
articles see DevOps as a cultural movement that requires communication and
collaboration, where as some perceive it to be a means to end of achieving speedy
deliveries through automated deployment technologies. Suffice to say, for any
organization wanting to implement DevOps, having a clear definition of what
their interpretation of DevOps is, would be the first thing to establish.

Previous work on secure DevOps practices is limited. Some secondary
studies from related fields have been conducted. To my knowledge, there has not
been a study that looks at the state of research of secure DevOps practices from
the same viewpoint as I will do in this work; that is, from trying to map the
security activities that have been applied to DevOps in academic literature, the
perceived challenges of security in DevOps and how the DevOps principles are
reflected in the studies. Previous systematic literary reviews related to my
research topic are listed in Table 1.

10

TABLE 1 Previous literary reviews related to the research topic

Reference Year Title Focus No. of
reviewed
works

Jabbari et al. 2016 What is DevOps? A
Systematic Mapping

Study on Definitions
and Practices

The definitions of
DevOps and how does

DevOps differ from
other development
methods.

49

Mohammed et
al.

2017 Exploring software
security approaches in
software development

life cycle: A
systematic mapping
study

A mapping study on
the use of different
security approaches in

software development
life cycle.

118

Mohan & ben
Othmane

2016 SecDevOps – is it a
marketing buzzword

A mapping study of
the state of research in

secure DevOps: what it
is and which security
practices and tools are
used.

8

Myrbakken &

Colomo-Palacios

2017 DevSecOps: A

Multivocal Literary
Review

DevSecOps definitions,

benefits and challenges
from (mostly) non-
academic sources.

52

Jabbari et al. (2016) looked at available DevOps research and how DevOps was
defined in them. What they found was that the definitions of DevOps varied
greatly depending on the author. Security aspects of DevOps were not addressed
in their research.

Mohammed et al. (2017) did a mapping study on different security
approaches in the software and how they fit into the Software Development Life
Cycle (SDLC). They divided the development life cycle into four parts and found
that in the reviewed studies, 19 % of security practices were conducted in the
requirements phase, 29 % in the design phase and 41 % in the coding phase.
Finally, 11 % of security practices spanned the whole life cycle. The most popular
approaches to security during development were dynamic analysis and static
analysis. Mohammed et al. (2017) did not pay attention to the SDLC changing
due to new development methods and their work did not contain any mentions
of DevOps.

Mohan and ben Othmane (2016) conducted a mapping study of secure
DevOps research. During the time of their study, only five pieces of applicable
academic research where found. They used those five studies, along with three
industry pieces, to map the state of secure DevOps and to understand the
phenomenon better, and – in their words – to understand whether SecDevOps or
DevSecOps (the merging of Development, Security and Operations) were just
“marketing buzzwords”. Their study concluded that the phenomenon was not
just marketing, but rather an important subject for further studies, as the security
aspect of DevOps is a major concern for organizations considering the

11

implementation of DevOps. My research deepens the knowledge of their work,
as at the time of my writing this more academic research on secure DevOps is
now available, which enables the creation of this more in-depth Systematic
Literature Review.

Myrbakken and Colomo-Palacios did a multivocal literary review on the
definitions, benefits and challenges of DevSecOps in 2017. Their work focused on
analyzing mostly the industry’s voice, as 50 of the 52 reviewed texts were Internet
artifacts attained through the Google search engine. The focus of their work was
on gaining an understanding of what the phenomenon of DevSecOps is.
Myrbakken and Colomo-Palacios used the four principles of DevOps (CAMS) to
gain a deeper understanding of DevSecOps. My research continues their work
by looking at later academic articles to study the subject of security practices in
DevOps, though not limiting myself to works that explicitly state themselves as
belonging to the field of “DevSecOps”, as they did. The lack of available literary
reviews on secure practices in DevOps indicates that there is a research gap for
more work on the subject.

The rest of this Thesis is organized as follows. In Chapter 2 I will offer a
theoretical background to my work. I explain software development processes,
the four principles of DevOps and how security practices can be included in the
software development life cycle. Chapter 3 presents the research methodology:
the systematic literary review as a research method and how it was implemented
in this research. Chapter 4 offers results of the reviewed works and Chapter 5
offers a discussion on the subject. Chapter 6 concludes this Thesis.

12

2 THEORETICAL BACKGROUND

2.1 Software development and the development life cycle

Before software lands on our laptops or mobile devices, it undergoes a rigorous
and complex process to arrive there. Once an idea for new software is attained,
multiple phases of design and development are needed before an actual product
is available for use. As modern software are complex, abstract products with
multiple functions, preferably arriving to customers with quality and security in
check, the road from an idea to a product can be rather long. To make the
development of software rigorous and well-organized, a development method is
used. The path of a software idea coming to fruition is generally called the
Software Development Life Cycle (SDLC). In the traditional waterfall
development model, different phases of the software development follow one
another, as illustrated in Figure 1 (adapted from Cois et al. 2014).

FIGURE 1 The waterfall development model (Cois et al. 2014).

In the waterfall model, the development of requirements comes first, after which
comes the software design, implementation (coding), verification (testing) and so
on. Each phase requires the completion of the previous phase. The waterfall
model has been critiqued (e.g., Cois et al. 2014) for its challenges in adapting to
changes. As software projects often take long to finish, the time span from the
requirements phase (recording what the customer wants) to the deployment
phase (delivering the product to customer) can be months or even years. This

13

makes it difficult to accommodate evolving customer needs. In long projects, the
customer needs might change during the product’s development, which – in the
worst-case scenario – ends in delivering an already out-of-date piece of software
to the customer’s hands. To combat this, software development has moved into
a more agile development model. In agile development, the focus is on iterative
and incremental development. This development style (or styles, as there are
multiple variations) derives from the Agile Manifesto (2001), a manifesto created
by frustrated industry insiders who yearned for development that would be, as
the chosen name implies, agile and dynamic. The Agile way has gained
popularity in its almost 20 years, replacing the waterfall development style
almost entirely. Agile offers dynamic adaptability, as software is built in small
increments that enable accommodating new business needs as they surface.

2.2 DevOps as a development method

The development methodology that is the subject of this Thesis, DevOps, builds
on Agile’s legacy. Jabbari et al. (2016) noticed that the academia does not agree
on DevOps’ and Agile’s relation. Some consider DevOps to be an extension of
Agile, some that Agile methods enable DevOps practices, yet others that DevOps
and Agile answer to the need of different stakeholders as DevOps enhances the
relationship between Dev and Ops, whilst Agile does the same to business
owners and Dev (Jabbari et al. 2016). The same incongruence is apparent from
looking at what researchers state DevOps’ goal to be. The goal of DevOps has
been said to be to get the development and operations teams to work together for
the success of the software product (Cois et al 2014), to improve productivity
and waste less time (Khan 2018), to satisfy dynamic business needs (Michener &
Clager 2016), to deliver products to customers faster (Tamburri et al. 2019) and
to build more dependable products (Mansfield-Devine 2018). As can be seen
from the varied definitions of DevOps’ goals, there is not a single DevOps
paradigm that the research community agrees on. Yet, DevOps is not a spring
chicken anymore, as it has been around for over ten years, with, for instance,
Amazon having adopted it in 2009 (Khan 2018).

How DevOps differs from Agile is that it increases the collaboration
between Dev and Ops. Other important facets of the method are the use of the
deployment pipeline and increased automation, which provide the developers
with the autonomy of publishing their code into production. Operations, on the
other hand, monitor the product and use the enhanced collaboration with Dev as
a way to fix any issues quickly. Work is not done in isolated silos. Therefore, the
DevOps life cycle is often depicted as a continuous loop running from
development to operations and back again, as depicted by Figure 2.

14

FIGURE 2 The DevOps development life cycle (Loughman 2019)

The DevOps development life cycle loop shows how the planning of software
leads to coding, building, testing and releasing software, which turns to
operating and monitoring the software, and finally back to planning new
functionality. The loop structure indicates that the collaboration between Dev
and Ops continues even after deployment, and that the information gained from
operations and monitoring is used by the Dev in developing the product further.

Though DevOps has gained popularity as a development method, it can’t
be said that DevOps has been implemented with proper maturity everywhere.
Partly this might be due to the ambivalence of what DevOps is. Some say they
are “doing DevOps” when they have dabbled with continuous integration
(Mansfield-Devine 2018). According to the maturity levels set for DevOps
organizations by Puppet (2019), DevOps can be seen to be on a mature level when
the four principles of DevOps (culture, automation, measurement and sharing)
are in place and there exists a culture of collaboration and constant dialogue
between Developers and Operations. In this research, DevOps is understood as
a development methodology that is underpinned by the four DevOps principles,
which are presented next.

2.3 The four principles of DevOps

DevOps, in its simplicity, can be said to be “about aligning the incentives of
everybody involved in delivering software” (Humble & Molesky 2011, 6).
However, not everyone talking about DevOps perceives it as such an ideological
manner. Jabbari et al.’s (2016) mapping study examined 49 research pieces and
looked at their definition of DevOps. The definitions they found varied greatly,
with different authors understanding different principles to be at the core of the
development method. Some see DevOps’ focus to be highly automated deliveries,
while others perceive the main idea to be increased communication and
collaboration between stakeholders. When Jabbari et al. (2016) merged their
findings into one, they derived the following definition:

DevOps is a development methodology aimed at bridging the gap between
Development (Dev) and Operations, emphasizing communication and collaboration,

15

continuous integration, quality assurance and delivery with automated deployment
utilizing a set of development practices. (Jabbari et al. 2016, p. 6)

What can be concluded, is that DevOps is not a siloed practice. It aims at
delivering business value through speed, agility, automation and increased
communication. As these are goals most organizations would like to achieve, it
is no wonder that up to 88 % of organizations (Ur Rahman and Williams 2016),
have jumped on the DevOps bandwagon.

The DevOps mindset lies in its four principles, culture, automation,
measurement and sharing, which have been spelled out with the acronym CAMS.
These four CAMS principles were first introduced by DevOps pioneer John
Willis (2010) in a blog post discussing the core values of DevOps development.
Since then, they have been used as a theoretical framework in a number of
academic (e.g., Myrbakken & Colomo-Pacios 2017, Humble & Molesky 2011) and
industry (e.g., Puppet 2019) works. In a key industry report by Puppet (2019), the
state of DevOps is based on the state of adoption of the CAMS principles in the
surveyed companies. For example, an organization shows more maturity in its
automation when there is a high level of “self-service” for developers, as opposed
to the automation of only a select number of services. (Puppet 2019.) As the
CAMS principles have previously been used in academic works, I chose them as
a yardstick in my research to measure the primary studies’ understanding of
DevOps as an organizational phenomenon that changes culture, facilitates
sharing and expects automation and measurement. Next, the four principles are
presented in more detail.

2.3.1 Culture

In DevOps, the objective is to get the development and operations to work
together for a common goal, i.e. for a product that works as well as possible. The
first step towards DevOps is to break down silos (e.g., Khan 2018; Cois et al 2014):
in DevOps, a product is not done by a team of developers in one place and then
handed down to a team of operations somewhere else. In DevOps, the
responsibility is shared (Khan 2018) and thus a defect or a problem also becomes
a shared issue. This differs from the traditional software development model
where development has focused on developing the software and once the
software is done, the development team has figuratively “thrown it over the
fence” (Humble & Molesky 2011) over to operations. Defects or bugs in the
product which are discovered in production have not been problems of the
developers. DevOps shifts this perspective: it considers it the developers’
responsibility to aid operations in troubleshooting and solving problems
(Humble & Molesky 2011). It’s a model of co-operation and working towards a
common goal.

The importance of culture should not be underestimated: Gartner (2019)
estimates that 75 % of DevOps adoptions will fail because of organizations not
being able to learn and change – which are very much cultural issues. In other

16

words, if the organization only adopts the DevOps technologies and an
automated pipeline, problems will surface due to the people not being
sufficiently brought up to date with the culture change the technology demands.
Also, Bass (2018) points out that adopting DevOps changes the organizational
culture through the change in roles: e.g., if all tests are automated, the former
testers need to adopt new roles in the organization. What starts as a mere
adoption of faster deployment technology, can in fact become an organization-
wide change in culture.

2.3.2 Automation

The main difference that sets DevOps apart from other practices is its focus on
software release automation. This practice is done through release pipelines. For
example, Amazon has done 50 million deploys within a single year (Khan 2018).
As such, one of DevOps’ characteristics is the deployment pipeline. In the
pipeline, the build, testing and deployment have been automated (Humble &
Molesky 2011). Humble and Molesky (2011, 7) define the deployment pipeline as
“a single path to production for all changes to a given system, whether to code,
infrastructure and environments, database schemas and reference data, or
configuration.” In its essence, the deployment pipeline enables software releases
at the push of a button. It’s the key to multiple daily releases. The pipeline also
affects the organizational culture as it provides the developers with added
autonomy and responsibility: the developers are able to push the code they have
made into production at will. The pipeline can also facilitate instant feedback: if
tests have been automated, the developers are able to see if their code passes the
tests or not. This developer self-service can change the way work is done and also
the satisfaction it provides. For example, Netflix (Hahn 2016) says its main goal
in enabling continuous development is to provide developers with total freedom
of creation, where they will not be hindered by the restraints of systems. In their
case, the development infrastructures are created in a way that will allow the
developers to maximize their productivity – and in the wake of it bring a
beautiful customer experience (Hahn 2016). Figure 3 shows how developer self-
service can, sometimes with just a single push of a button, pass many
development phases in an automated deployment pipeline. When we consider
that before the deployment pipeline, the developer was responsible only for the
coding phase, we understand how much DevOps changes the actual work
processes through automation.

FIGURE 3 The five phases of the developer self-service in the SDLC

17

2.3.3 Measurement

Monitoring and measuring are fundamentals in DevOps and they can partly be
by-products of automation. In DevOps, opportunities for measurement are
plentiful. Measuring provides opportunities for quick response, as well as for
learning and growth. However, in a world where data is abundant, it is necessary
to measure the right things. Puppet (2019) recommends that organizations choose
key metrics which are aligned with business objectives. Also, as research shows
that high-level management has very different views of how far along the
DevOps adoption is and how well security has been incorporated into it, it is
beneficial to provide metrics on the true state of how far along an organization is
in the DevOps adoption process (Puppet 2019). Measuring should cover the
development phases as well as use metrics from operational monitoring. Another
important issue is to make sure that the organization not only measures but also
uses the end-results wisely. For instance, monitoring results from operations
should form a feedback loop to developers which enables the developers to
improve the product.

2.3.4 Sharing

Whilst sharing can seem like the most lightweight principle of DevOps, it is the
leg that really keeps the practice stable. Both DevOps adoption and DevOps
performance depend on sharing both successes and failures (Puppet 2019). In an
organization where failures are not shared, each team is left to stumble upon the
same obstacles. Where successes are not shared, successful practices become
secrets of the teams that have invented them. In order for the whole organization
to benefit and grow, sharing must be a strong principle that is enforced
throughout the whole organization. Furthermore, Puppet (2019) proposes that
with the high availability of automation tools, it is relatively easy for any
company to start on the DevOps journey but for genuine DevOps adoption (and
the business benefits that follow), an organization must also implement a culture
that facilitates sharing. Developers, operations and security should work
together to make the product as good as possible. With a sharing mindset,
problems are not dealt with in isolated silos – instead, there is a collaborative
effort to solve the problems. The product’s behaviour in production brings
feedback to the developers and vice versa. For example, if a security issue is
detected in development, the developers can collaborate with the information
security team members to decide how the problem is best solved, e.g., can it be
fixed with a firewall solution or does it need to be settled by a change in design
(Mansfield-Devine 2018). With DevOps, “the aim isn’t just continuous
integration and deployment but also continuous communication, collaboration
and notification” (Mansfield-Devine 2018), which all serve the common goal of
producing and operating high-quality software. When it comes to security,
sharing can be seen as a form of communication: when security teams openly
discuss their findings and consult the developers in implementing more

18

successful security controls, more progress is made. When developers and
operations share with the security team their security concerns, disasters can be
prevented.

2.4 Security practices in software development

Securing systems is nothing new. The question of system security was first being
raised in the 1960’s and according to cyber security veteran Donn B. Parker “the
mid-seventies was when it all hit the fan” (Charles Babbage Institute 2003). The
techniques used for securing systems go under various names but can be
collectively called e.g. software security practices (Williams et al. 2018), software
security activities (McGraw et al. 2019) or information systems security design methods
(Baskerville 1993). The importance of system security is constantly growing as
more of our lives and devices are connected to the web. Digital information is
valuable and therefore susceptible to cybercrime. The global nature of the
Internet makes it a playground for criminals looking for greener grass in the
digital realm. Just like a pick-pocket will steal a wallet if it’s not properly
protected, so will the cybercriminals misuse an application if it is not secured.
For this reason, security of software is a must.

There are several ways to approach software security. According to
Mohammed et al. (2017), there are currently three main approaches:

1) security is addressed as something to be added on after the deployment
of the software, by fixing found flaws,

2) security is seen as a feature/function of the operating environment (e.g.,

security is added to the network’s outer perimeters via firewalls and
intrusion detection systems) or

3) secure software engineering, where security is baked into the software

life cycle (Mohammed et al. 2017).

Williams et al. (2018) have a different approach. They divide the security
practices into three categories according to their proactiveness towards
vulnerabilities: the practices can be preventive, detective or responsive.
Preventive practices are used before deployment in order to prevent
vulnerabilities. Detective practices aim at discovering vulnerabilities that have
become exploited and responsive practices are used to mitigate exposed
vulnerabilities. (Williams et al. 2018.) By picking and choosing the right practices
from each category that suit the organization’s needs and development practices,
the organization can make its development and operations processes more secure.
Figure 4 illustrates Williams et al.’s view on the three types of security practices.

19

FIGURE 4 The three categories of security practices

The different security practices can be mapped into the software development
life cycle, to make sure security is addressed in every phase of development and
thereafter. Figure 5 shows an example by McGraw (2005) on how different
security practices can be mapped onto the development life cycle.

FIGURE 5 Ways to address security practices during development

In McGraw’s (2005) approach in Figure 5, different software security practices
are addressed during different phases of development. In the requirements phase,
security is addressed through building abuse or misuse cases and creating
security requirements. In the design phase, risks are analyzed first from the
business perspective through considering the possible impact of security issues.
After arriving at an initial design draft, risks are assessed from an architectural
risk analysis perspective, which looks at the proposed design and its possible
security issues. In creating the test plans, security tests should be included in the
test plan. These tests should ensure the functioning of the security features as
well as create some adversial tests to ensure the security of the software. After
code has been created, it should be tested with static analysis to make sure the

20

most basic bugs are eliminated. Once the build is (almost) finished, penetration
testing should be used to ensure the security. Finally, once the product has been
deployed, operational security should be configured and monitored. (McGraw
2005.)

Not all agree with the usefulness of the typical security design methods,
though. In them, Dhillon and Backhouse (2001) find an inherent flaw: they all see
the evaluated system or organization as a machine-like apparatus, that can be
inspected using a checklist or other kind of evaluation methodology. In this
aspect, the methods fail to see the organizations as social entities where the
individuals in the organization play a significant role in how the organization –

and security as its subset − is constructed. For example, they build on Mintzberg’s
(1983 cited Dhillon & Backhouse 2001, 139) work and name power as a social
concept that highly influences how influence, authority and control are expressed
in an organization. (Dhillon & Backhouse 2001.) Therefore, organizational
structure and culture can be seen as important components of also the
organization’s security landscape – security is not just about systems, intruders
and exploits. This view aligns with the DevOps principles that recognize the
cultural component as an important facet for making a development method
implementation go well. Adding security checkpoints to the SDLC as advised by
a playbook is useful, but even more so when the security activities are chosen
with an understanding of the organization’s unique circumstances.

2.4.1 A call for DevSecOps

DevOps has been criticized for its lack of consideration for security. This doubt
in DevOps’ lack of attention to security comes from its urge towards rapid release
of software which can raise suspicion of a lack of security prioritization in the
development process. Still, doing things fast does not necessarily mean doing
them badly. Worth mentioning is the fact measuring the level of a product’s
security is notoriously difficult. The conundrum of security is that it is best seen
when there is a lack of it: that is to say, a non-secure system can raise headlines
through cyber-attacks and data leakage, whereas a well-secured system stays
unnoticed. Furthermore, the level of collaboration between the organization’s
security specialist and other IT personnel can be hard to evaluate. Intrerestingly,
from the managers’ perspective, the collaboration between security and
developers can seem stronger than it really is. According to research (Puppet
2019), 64 % of upper-level management believe that the security personnel are
involved in software development, whereas only 39 % of the software developers
agree with this view. As the views on the collaboration levels and what is actually
done differ, it is hard to know the exact state of security of an organization’s
development process.

How security can be integrated in to the DevOps process is a key research
question in this paper. As a founding principle of DevOps is the culture of
collaboration, also the security teams need to be incorporated into the culture of

21

working together towards common goals. Curphey (2019) offers a good analogy
to clarify the role of the security people and tools in the development process:

Introducing security earlier in the development process creates a sort of blueprint for

teams to build within the specifications of major IT regulation and helps reduce risk
by fixing vulnerabilities before they can be exploited. Think of it like building an
apartment complex according to city codes with inspectors integrated in the
construction crew. (Curphey 2019)

Incorporating security into DevOps development in such an organized way has
been coined DevSecOps (whilst some preferring SecDevOps, or secure DevOps).
Figure 6 shows the Google Trends (2019) search results for DevSecOps and
DevOps respectively.

FIGURE 6 Search term trends for DevSecOps and DevOps on Google

Figure 6 shows the trend of the DevSecOps and DevOps search terms between
1.1.2016 and 31.5.2019. From Figure 6 we can observe how the popularity of both
terms has grown. The use of the search term DevOps has grown over 50 % during
the time period, whilst the popularity of DevSecOps remains a slight shadow by
its side. The popularity of DevSecOps grows only slightly during the time period,
but a growing interest might be on the way, as for instance Deloitte (2019) places
DevSecOps as one of the top technology trends for 2019.

Doing DevSecOps does not simply mean adding security tools to the
pipeline – instead, it requires also the Sec to be aligned and integrated with the
before-mentioned four principles of DevOps. In Deloitte’s (2019) view,
DevSecOps is a “transformational shift that incorporates secure culture, practices,
and tools into each phase of the DevOps process.” Where exactly should the
security practices shift in the faster paced delivery life cycle, is a top question
posed by the industry. With DevOps’ fast delivery cycles and the desire for
bringing customer needs to software functionalities quickly, a “shift-left
paradigm” has surfaced (Lietz 2016). Shifting security to the left means to shift

0

10

20

30

40

50

60

70

80

90

100

1/2016 5/2016 9/2016 1/2017 5/2017 9/2017 1/2018 5/2018 9/2018 1/2019 5/2019

DevSecOps

DevOps

22

security practices to the early stages of the software development. For instance,
penetration testing is an example of a security activity done typically very late in
the development life cycle and threat modeling is an example of an activity done
early in the development life cycle. To shift the security left, the focus should be
on the practices that are done early in the life cycle. The shift to the left can be
done using automated tools, such as static analysis. Automating security
activities can function well in the DevOps pipeline, as integrating the security
tools into the pipeline allows for increased developer self-service also when it
comes to checking the security of the product. Shifting to the left also has other
benefits, including making a product more secure and high-quality. The ideology
seems almost self-evident: “With developers under constant pressure to create
more software in less time, the last thing you need is for your code to fail at the
end of the development life cycle. […] The sooner a developer can identify, view
and correct a flaw, the more efficient it becomes to fix in the software
development life cycle (SDLC)” (Curphey 2019).

Despite the growing interest of automating security activities, not all
security practices should be added to DevOps from the get-go. A step-by-step
approach might be better, as DevOps is a way of working that an organization
adopts incrementally. DevOps maturity is achieved through iterations and
learning. According to seasoned industry insiders (Puppet 2019), integrating
security usually happens in the most mature stages of DevOps adoption. For
those looking for an easy start, static analysis is a practice that can be integrated
into the integrated development environments (IDE) and it is recommended as a
security automation first both by Mansfield-Devine (2018) and Curphey (2019).
By integrating security into the coding phase of the SDLC, the developer both
gains self-efficacy when it comes to security, and costs are reduced as
vulnerabilities are found early on. Later, security policies can be automated into
the pipeline, where part of the DevOps culture of shared goals becomes to
develop well-functioning software that also keeps the business assets and data
secure (Puppet 2019).

2.4.2 BSIMM and measuring software security

As said before, software security is most noticeable when there is a lack of it. In
other words, once the security measures fail and an attack is conducted and
caught, the lack of security becomes apparent. Whereas a lack of security is
noticeable, successful security is harder to measure. In order to be able to make
security measurable, security maturity models have surfaced. Two of the best-
known ones are Building Security In Maturity Model (BSIMM) and OpenSAMM
(Jaatun et al. 2015). In these two models, an organization can disclose which
software security practices it carries out and by comparing their status to others,
rate themselves for the maturity of their software security. The two models have
a different underlying philosophy: BSIMM, which learns from industry insights,
captures the software security practices of world-class companies (for example
Adobe, Cisco and PayPal) and makes the best security practices the yardstick of

23

mature software development. OpenSAMM, on the other hand, has taken the
existing best practices as the start point of their metrics and uses them to measure
organizational maturity. (Jaatun et al. 2015).

For my research, I have chosen to use the BSIMM model as a framework
against which I will plot the software security practices that my research
uncovers. I chose BSIMM as the framework of choice because it has been
developed using ”the largest set of data collected about software security
anywhere” (McGraw et al. 2019). BSIMM represents a collection of the best
practices and incorporates different facets of information security cleverly into
one single model. When using the BSIMM model to gauge security maturity, an
organization can see which security activities it currently does and determine the
concluding maturity level. To enhance security and maturity, the organization
can seek to add further security activities into its processes.

The BSIMM has 12 security practices in total, which are divided into four
domains: Governance, Intelligence, SSDL touchpoints (SSDL stands for Secure
Software Development Life cycle) and Deployment.

Governance activities are those activities that manage and organize security practices
– and also develop security further in the form of security education. These activities
are generally conducted by the management level and they form the backbone of an
organization’s security.

Intelligence collects and uses organizational information that relates to information

security(e.g., identification of assets and applicable security standards).

SSDL touchpoints are activities that deal with the software development process and
its components. They are the activities done before the product is deployed.

Deployment activities deal with network security, configuration and maintenance.

Each above-mentioned domain has three security practices allocated into it. Table
2 illustrates the security practices, of which there are 12 in total.

TABLE 2 The four domains and twelve practices of BSIMM

Governance Intelligence SSDL touchpoints Deployment

Strategy &
Metrics

Attack Models Architecture
Analysis

Penetration Testing

Compliance &
Policy

Security Features &
Design

Code Review Software
Environment

Training Standards &

Requirements

Security Testing Configuration

Management &
Vulnerability
Management

The 12 practices of Table 2 divide further into 116 BSIMM activities. Each activity
is hosted within a maturity level and can be used to assess the maturity of the
organization. (McGraw et al. 2019.) In my research I look at which software

24

security practices current DevOps research has captured and where there are still
research gaps. Therefore, I am using only the security practices as a framework
in my research and not the maturity grading scales.

25

3 RESEARCH METHODOLOGY

3.1 Systematic literary review and the research process

The goal of this Master’s Thesis is to gain an understanding of security in DevOps
through a review of academic writing on the subject. The method used for this
research will be a systematic literature review (SLR). A systematic literary review is
beneficial for getting new research findings and learning research skills
(Kitchenham & Brereton 2013, p. 2061). As such, it is a very suitable method for
conducting a Master’s Thesis, where one of the goals is to learn the art of research.
A systematic literary review aims to understand a topic based on previous
research (i.e., primary studies) that have been done on the selected research
subject.

The goal of a systematic review is to search for and identify all relevant material related
to a given topic (with the nature of this material being determined by the underlying
question and the nature of the stakeholders who have an interest in it). (Kitchenham
et al. 2016, p. 10)

In this research, the underlying questions are the research questions. The
stakeholders who I want to be able to benefit from this research, are the
practitioners of secure software engineering and the research community, who
might benefit from the research findings. Systematic literary review’s role as a
research method is indeed two-fold: 1) it provides new knowledge by analyzing
prior research and 2) it notices and presents research gaps and thus identifies
needs for new primary studies. The results of systematic reviews can both
influence practitioners and also provide input to policies and standards
(Kitchenham et al. 2016, 13).

A systematic review “aims to provide an objective and unbiased approach
to finding relevant primary studies, and for extracting, aggregating and
synthesizing data from these” (Kitchenham et al. 2016, p. xxxiii). This is done by
selecting a research topic and research questions that have not yet been studied.
The researcher uses prior studies, i.e. primary studies, to get answers to the
research questions. The new knowledge produced by the systematic literary
review is thus a synthesis and analysis of prior studies on the selected subject. A
systematic literary review needs to be both systematic and rigorous. The
researcher using the method first needs to identify a research gap and then,
without a bias, find primary studies that are relevant to the research question(s).
From the primary studies, the researcher makes an objective analysis on the
research topic. The research process is illustrated in Figure 7 (adapted from
Kitchenham et al. 2016).

26

FIGURE 7 The inputs and outputs of systematic review.

As an input, the researcher uses primary studies, which can be e.g., case studies
and lab experiments done by other researchers. The researcher uses search
criteria to make a systematic decision system, which determines whether a study
is included or excluded from the systematic literature review. From the included
studies, the researcher produces a review which aims at providing an objective
summary of the research topic – which, in this case, is the current state of research
of security activities in the context of the DevOps development method. The
systematic review can provide guidance by merging the results of previous
studies into an output that can be used as a basis for policies or standards, or to
identify needs for more primary studies.

3.2 Research questions

In this Thesis I am conducting a systematic literary review to get an
understanding of how security practices can be integrated into DevOps
according to available academic research. To understand the phenomenon, I
formulated three research questions.

• RQ1: What are the challenges of security in DevOps as reported by the
authors of primary studies?

• RQ2: Which security activities are associated with DevOps in the
literature?

• RQ3: How are the CAMS (culture, automation, measurement and
sharing) principles reflected in secure DevOps research?

The results of the research should offer a concise look at current state of security
practices in the context of DevOps development. The first research question
investigates which challenges the authors of primary studies link to security in
DevOps. By looking at the challenges, I am hoping to capture DevOps’

27

uniqueness as a development method and to understand how that uniqueness
translates to the security activities DevOps needs in particular. The second
research question charts which security activities have been linked to DevOps in
research thus far. Through analyzing the results, we gain an understanding of
where research efforts have been concentrated and where there might be research
gaps. Through a synthesis of the recommended security activities, a rough draft
of recommendable security activities for DevOps development is attained. The
third research question goes through the primary studies and looks at how the
studies speak of the four principles of DevOps. By analyzing different authors’
understanding of culture, automation, measurement and sharing, it is possible to
observe whether the authors see DevOps identically or whether different
interpretations surface, as was the result in Jabbari et a.’s (2016) research.

3.3 Search method, strategy and criteria

In a systematic review, the researcher creates a search strategy that will guide the
researcher towards finding the relevant primary studies on which she will base
her analysis. In developing a search strategy, the objective is to come up with a
relevant set of search terms that can be used to conduct a search string. The search
terms are used to find research relevant to the research questions. When
developing the search strategy, the researcher also makes strategical decisions on
what type of input (e.g., journal articles, magazine articles) will be used for the
research and from which databases the primary studies will be acquired. The
researcher also determines the inclusion and exclusion criteria that will decide
whether a certain study will be included in the final selection of the systematic
review. The goal of the criteria is to make the research process systematic, non-
biased and manageable.

In my research, the search terms were chosen as advised by Kitchenham et
al. (2016). I wanted to find a set of search terms that would give me all the relevant
results but not exhaust me with heaps of irrelevant research not related to the
research topic. To come up with such a set, I did trial searches from digital
databases with terms related to my research topic. Searching only with the
term ”DevOps” without adding other terms to it, would have resulted in an
amount of search results unmanageable within the scope of a Thesis done by a
solo researcher. Thus, through experimentation, I chose to add the term ”secur*”
with DevOps, to get results where DevOps is used in conjunction with terms such
as secure or security. Also, to capture papers where secure DevOps is talked of
using other terms, I added the terms “devsecops”, “secdevops” and “devopssec”
to my set of search terms. The search terms are listed in Table 3.

TABLE 3 Search terms that were used to search for relevant papers

Main research topic devops & secur*

Topics Search terms derived from topics

28

Variations devsecops, secdevops, devopssec

The search terms were used to search for articles in four digital libraries, which
were:

- Science Direct
- ACM Digital Library
- IEEE Xplore
- Springer Link.

These four databases were selected as they provide a good coverage of articles
and have been used in other literary reviews on the field (e.g., Felderer &
Fourneret 2015 and Souza et al. 2019). To have a system of including or excluding
the search results from the final selection of the systematic literary review, an
inclusion and exclusion criteria was developed.

The inclusion criteria of the articles selected for the study are:

- The article discusses security in relation to DevOps practices or technologies.
- The article has been published in a journal or it is a conference paper.
- The article is written in English.
- The article is accessible with the University of Jyväskylä rights.

The first of the inclusion criterion makes sure that the article happens in a
DevOps context and is thus relevant to the research questions. The second
inclusion criterion determines that the scope of this systematic literary review
stays in academic research. In this research, I am interested purely in the current
state of academic research on DevOps and therefore a criterion defining the
academic nature of the research is a must. The third criterion marks off articles
that are written in another language than English. Finally, the last criterion is a
practical matter: the article has to be accessible with the University of Jyväskylä
rights. To make the inclusion and exclusion even more precise, I also determined
additional exclusion criteria.

The exclusion criteria are:

- The article is not relevant to the research questions.
- The text is an opinion piece.
- It is a duplicate article.

The exclusion criteria mark off articles that are not relevant to the research
questions, i.e., if an article would seem suitable for the research based on the
inclusion criteria but upon closer inspection offers no answers to the research
questions, it is excluded from the study. The same applies, if the article is purely
an opinion piece (for instance a column discussing security). Also, duplicate
articles are excluded from the study.

29

3.4 Study selection process

The search was conducted in April 2019. The search string was constructed
according to each of the digital libraries’ search fields. Where it was possible, the
search was narrowed down to yield only conference and research papers and for
the search terms to be present in the title and/or the abstract of the article. The
searches were conducted without limiting the year of publication, which resulted
in works from the current year were also being included in the search results.

The automated searches using the search string yielded a total of 292 search
results. The highest number of results came from Springer Link (236 results)
where it was not possible to narrow the result list down based on whether the
search terms were found in the abstract. Thus, the search yielded works where
security and DevOps were mentioned even once in the whole text, and not
surprisingly, many of these works were not relevant to my research.

From the initial search result of 292 articles from the four databases, I
narrowed down the search results in two rounds. I did the initial round of
discarding based on reading the article’s title and abstract. Through this round I
was able to discard 254 articles, leaving me with 38 articles left for closer
inspection. In the second round, I read all 38 articles and used the inclusion and
exclusion criteria to determine whether the article should be included in the final
selection. Many literary reviews are done by research teams, where the
inclusion/exclusion criteria are exerted as a team effort. When a team member is
in doubt of whether to include or exclude an article, he/she consults another
member of the research team and the matter is discussed until an agreement is
reached. The hardest thing for me, as a solo researcher, was making the decision
whether to include some article that was on the borderline of inclusion and
exclusion. In such cases, I consulted my research questions and made the
inclusion/exclusion based on the question: “Does this article feature any security
activities of BSIMM and are they practiced in a DevOps context?” If the answer
was yes to both, I included the article the study. Table 4 clarifies the study
selection process per database and shows that in the final selection, two to five
articles per database were chosen for the

TABLE 4 Study selection progress.

After narrowing down the search results to the final selection of 16 results, I
conducted a backward and forward snowballing as per the guidelines of Wohlin

Database Initial results After reading title +
abstract

Final selection

IEEE Explore 34 results 9 results 5 results
ScienceDirect 7 results 4 results 2 results

ACM Digital
Library

15 results 8 results 5 results

Springer Link 236 results 17 results 4 results
Total 292 results 38 results 16 results

30

(2014). The snowballing practices are used to arrive at better coverage of the
articles to review. The 16 chosen articles were used as a start set for the
snowballing. In backward snowballing, the researcher looks at the references
used by the start set articles with the aim of finding additional articles that would
be relevant for the research. Through backward snowballing, I was able to find
two more articles for the final selection. In forward snowballing, the researcher
looks at articles that have cited the articles of the start set. For forward
snowballing, I used Google Scholar to identify works, which have used the
articles from my final selection as a reference. Forward snowballing yielded no
positive results: most articles were already included in my final selection. Also,
as the selected articles are on the newer side (with over 40 % published the year
before the publication of this Thesis), the shortage of new articles from forward
snowballing was understandable. By conducting both backward and forward
snowballing, I was able to be confident that my final article selection of 18 articles
offers a good coverage of the current research. Figure 8 (modelled after Felderer
& Fourneret 2015) illustrates the paper selection process.

FIGURE 8 Selection process of papers

In the paper selection process the search string guides the search results of the
four databases and through the filtering process, 16 papers a selected. Finally,

31

two more papers are added through the practice of snowballing, arriving at a
final selection of 18 papers.

3.5 Data extraction and analysis

To answer the research questions, I extracted data from the selected studies that
fit my search criteria. To make the data extraction process rigorous and
systematic, I formulated a data extraction spreadsheet. In the spreadsheet, I
logged data items relevant to the research questions, as well as demographic data.
The data extraction formulation follows Shahin et al.’s (2017) example and is
showed in Table 5.

TABLE 5 Data extraction formulation

Data item Description Data needed for

Author(s) The name(s) of the author(s) Demographic data
Year When was the work published Demographic data
Title The name of the article Demographic data

Venue The name of the publication venue Demographic data
Summary A summary of the article Research questions 1-3
Challenges Did the article mention challenges in

security of DevOps?
Research question 1

Mentioned security

activities

Which security activities were

mentioned in the article and what was
said about them?

Research question 2

Culture Was culture discussed in the article? Research question 3
Automation Was automation discussed in the

article?
Research question 3

Measurement Was measurement discussed in the
article?

Research question 3

Sharing Was sharing discussed in the article? Research question 3

For logging the BSIMM security activities, I created a separate spreadsheet where
I entered all the BSIMM security domains with their correlating security practices
and activities. For each reviewed article, I logged which security activities were
mentioned. After logging the data for all articles, I had a spreadsheet which
showed me the coverage of the BSIMM domains and enabled me to analyze the
data further. The analysis of the data was done using qualitative methods.

The challenges to security perceived by the authors were extracted from the
data using typification. I first recorded the different challenges, of which there
was a total of 27, into the data extraction spreadsheet as they were explained by
the authors. Through a process of analyzing the different challenges, I typified
them into nine different types. The final results of the typification as well as an
analysis of the results is offered in chapter 4.2. To find answers to the last two
research questions, content analysis was used. First, to chart the different security
activities mentioned in the reviewed works, content analysis was used to

32

interpret the correspondence between the security activities mentioned in the
articles and the BSIMM framework. Secondly, the articles were analyzed for
mentions of the four principles of DevOps. The answers to the second and third
research questions are presented in chapters 4.3 and 4.4 respectively.

33

4 RESULTS

4.1 Demographic data

The 18 articles included in this systematic literary review have a wide scope in
the topics they handle. With topics ranging from insider threat to added IoT
security, the researchers in the field have a wide variety of interests. As for the
publishing years, the discourse on the topic of security DevOps practice seems to
have risen over the past few years, as shown in Figure 9. The first academic work
included in the review has been published in 2015 and the latest were published
in the same year as this Thesis. So far, year 2018 has been the most active year on
the field. The number of works in total that discuss security in DevOps is still
relatively small and presents more research opportunities for future researchers.

FIGURE 9 The publishing years of the reviewed articles.

There were no especially active authors in the field of the study, as only one
author, Martin Gilje Jaatun, was the author of two articles [7 and 8]. Other authors
were responsible for a single paper in the final selection only. Table 6 presents an
overview of the final article selection. In my analysis of the results, I will refer to
the articles by their ID number, which is shown in the first column. The full
references of the articles are available in the Reference section of this Thesis.

34

TABLE 6 An overview of the final article selection
ID Authors Year Description

[1] Ahmanavand et
al.

2018 Ahmanavand et al. take note of the security implications of
using microservice-based architectures.

[2] Bass et al. 2015 Bass et al. describe the process of hardening the deployment
pipeline.

[3] Beigi-
Mohammadi et
al.

2018 Beigi-Mohammedi et al. propose a self-protecting framework
for DevOps environments. Their solution uses static analysis
during development and dynamic analysis once the system is
deployed.

[4] Diekmann et al. 2019 Diekmann et al. explore enhanced network access control
management in the container age.

[5] Dullmann et al. 2018 Dullman et al. bring forth the importance of securing the
development pipeline itself.

[6] Ferry et al. 2019 Ferry et al. explore how the DevOps development method
could be leveraged to serve the needs of development of
trustworthy (e.g., secure, resilient and robust) smart IoT
systems.

[7] Jaatun 2018 Jaatun proposes that in the DevOps- era, incident
management should be more closely connected to
developers.

[8] Jaatun et al. 2017 Jaatun et al. suggest a risk-based process for enhancing
security in cloud-based solutions. They suggest a continuous
process, where throughout the development life cycle risks
are identified and assessed, then treated and controlled.

[9] Mackey 2018 Mackey explores the use of open source components in
software and how to ensure their security.

[10] Mansfield-
Devine

2018 Mansfield-Devine explores the current state of security
practice usage in DevOps organizations and explores what
are the best ways to implement security in DevOps.

[11] Michener &
Clager

2016 Michener and Clager have considered how organizations
with "little tolerance for failure" can hold on to their
compliance while adopting DevOps practices.

[12] Ur Rahman &
Williams

2016 Ur Rahman and Williams researched practitioners’ views and
experiences on DevOps security.

[13] Raj et al. 2016 Raj et al. suggest multiple different ways to harden Docker,
which is often used in DevOps environments.

[14] Rios et al. 2017 Rios et al. offer a security solution to multi-cloud
environments, with an emphasis on continuous monitoring.

[15] Schoenen et al. 2018 Schoenen et al. observe the complexity of cloud
infrastructures that are comprised of multiple stakeholders
and systems.

[16] Thanh et al. 2016 Thanh et al. explore how microservices, which are frequently
used in DevOps environments, can be made more secure by
design.

[17] Torkura et al. 2018 Torkura et al. conclude that technologies used frequently in
DevOps can contain vulnerabilities and that these can be
hard to identify.

[18] Ullah et al. 2017 Ullah et al. propose a method for hardening a continuous
deployment pipeline.

35

The inclusion criteria presented in chapter 3.3 determined that only articles that
were published in journals or as conference papers were included in the study.
Of the 18 articles in the final selection, only three (papers [4], [9] and [10]) were
journal articles and the rest were conference papers. The papers were from
distinct conferences. Only papers [7] and [8] were from the same conference
venue, International Conference on Availability, Reliability and Security (ARES),
though they were from separate years. Of the journal articles, two (articles [9]
and [10]) were from the same journal, Network security. Table 7 shows the
publishing venues of all of the articles of this systematic literary review.

TABLE 7 The publishing venues of the articles

ID Published in Year Journal or
conference

[1] Software Technologies: Applications and Foundations
(STAF)

2018 Conference

[2] IEEE/ACM International Workshop on Release
Engineering

2015 Conference

[3] Annual International Conference on Computer Science

and Software Engineering (CASCON)

2018 Conference

[4] IEEE Transactions on Network and Service Management 2019 Journal

[5] International Workshop on Rapid Continuous Software
Engineering (RCoSE)

2018 Conference

[6] Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production

and Deployment (DEVOPS)

2019 Conference

[7] International Conference on Availability, Reliability and
Security (ARES)

2018 Conference

[8] International Conference on Availability, Reliability and
Security (ARES)

2017 Conference

[9] Network Security 2018 Journal

[10] Network Security 2018 Journal

[11] Annual Computer Software and Applications Conference
(COMPSAC)

2016 Conference

[12] IEEE/ACM International Workshop on Continuous
Software Evolution and Delivery (CSED)

2016 Conference

[13] International Conference on Applied and Theoretical

Computing and Communication Technology (iCATccT)

2016 Conference

[14] IEEE Conference on Communications and Network
Security (CNS)

2017 Conference

[15] International Conference on Service-Oriented Computing
(ICSOC)

2018 Conference

[16] International Telecommunications Network Strategy and

Planning Symposium (Networks)

2016 Conference

[17] International Conference on Security and Privacy in
Communication Networks (SecureComm)

2018 Conference

[18] International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE)

2017 Conference

36

4.2 Challenges to security

To answer the first research question of What are the challenges to security in
DevOps as reported by the authors of primary studies? I reviewed the articles to
uncover security challenges. My research found nine different challenges from
the reviewed articles that showcase the typical security challenges of DevOps
development as perceived by the authors of the reviewed works. The challenges
are listed in Table 8.

TABLE 8 Security challenges in DevOps

Security challenges in DevOps Mentioned in [article ID]

Ensuring pipeline security [1], [2], [4], [5], [13], [18]

Balancing security and fast deliveries [3], [16], [17], [10]

Increased insider access [1], [4], [12], [18]

Balancing automated security activities with manual
activities

[8], [9], [10]

Getting the security requirements right [4], [5], [11]

Getting developers' security knowledge to the required
level

[6], [10]

Finding the right security activities and tools that fit
DevOps development style and technologies

[7], [12]

Faster deliveries require constant monitoring and faster
bug-fix processes

[14], [15]

Including the security team in the development life cycle [12]

The most frequently mentioned security challenge in the reviewed works was
ensuring the deployment pipeline’s security. This challenge was mentioned in
six of the 18 reviewed articles which makes it the most prominent of all
challenges. The literature consistently states that in DevOps environments, the
existence and importance of the deployment pipeline and the microservice as
well as cloud infrastructure brings a new level of security challenges to the users.
Article [15] describes this new situation best:

Cloud services and cloud infrastructures become increasingly complex and dynamic:
many different physical and virtual machines, applications and their components
interact and all of these entities may be differently reconfigured, deployed, and
migrated during run time. (Schoenen et al. 2018, p. 296)

The challenge thus becomes, how do you keep a desired level of security in an
environment that is constantly changing? The reviewed works make it clear that
any organization wanting to adopt the DevOps development style and

37

technologies (e.g., microservices, containers, cloud-based solutions) should take
the time fully consider how to ensure the security of each and every component.
For instance, the authors of [17] identified several possible security issues arising
from the use of application containers: container misconfigurations, image
vulnerabilities (due to no automatic updates), image configuration
vulnerabilities (e.g., an image might contain default credentials and thus need
security hardening before use), downloading images from untrusted sources and
not validating them properly. Article [18] stressed the importance of assessing
the security risks of each component (e.g. repository, CI server, main server) in
the pipeline. To enhance the security of the technologies, article [17] suggested
creating security policies for each used technology and a schedule for their
periodic security assessments. The technology-based security policies could be
used to create a baseline, which would then be ensured in pre-deployment
security tests, according to [17].

The second most frequently mentioned challenge has to do with balancing
DevOps’ fast deliveries with security. In DevOps development, there is on the
one hand a desire towards making deliveries as fast as possible, but on the other
hand the will to deliver high quality and customer value. Balancing these two
aspects creates a challenge for security. To make fast deliveries and security a
trouble-free pair, security activities should be fitted into the development process
in a way that does not slow the deployment down unnecessarily, as stated by
[10]. If the goal of DevOps development is to deliver software changes fast
through automation, the only way security can be incorporated into the rapid-
rate development is through automating many of the security activities as well.
According to [12], automating security can have both negative and positive
effects on security. This conundrum is explained by the fact that when security is
automated, it relies on tools. If those tools are chosen poorly or do not actually
match the technologies used, the desired security effects are not achieved, as
recorded by [10] and [12]. A tool also seldomly works completely on its own: in
case security issues are found, the output of security tests most often needs
manual attention. Therefore, an important matter registered by [10] is to make
sure that the process in the organization is clear on what to do with the findings
of the automated tools: defining who is responsible for fixing the issues found by
static analysis and within what time frame, when should the security team be
called in, when should the build fail etc. A key issue in this process becomes the
collaboration between the Dev, the Ops and the security team, where all members
are working towards the same goal with the desire to enforce the organization’s
vision – whether that is security-oriented, delivery-oriented or quality-oriented.
According to [10], in most organizations practicing DevOps, there are still
difficulties in this process, as security is often only moderately involved with
development and operations. To be able to fix surfaced security issues as fast as
possible, good collaboration and communication with the security team is
needed. When the security team is included in the development process, security
issues identified during development can be solved together.

38

The third most common security challenge was the increased insider access
that comes from allowing the “Dev” access to the “Ops” environment and vice
versa. Though this increased access makes the development flow more easily and
is in the heart of DevOps, articles [1] and [18] highlight the security implications
this raises. The DevOps principle of sharing and the culture of collaboration are
great and noble philosophies to admire, but in practice, they raise a conundrum
for the security experts. If the Dev can also do Ops and the Ops can also do Dev,
the bottom line is that there is much wider access to systems by insiders than
before. As a consequence, new security controls that take this insider threat into
consideration are needed. Article [1] states that it is important to know who has
access where and to have proper logging measures to make sure also insider non-
repudiation is achieved. Logs must also be tamper-proof. In a continuous
integration/deployment environment, logs must be able to provide information
on who is responsible for the deployed changes. As a practical bad example,
article [11] pointed out a severe vulnerability in a popular firewall system, of
which the developer company of the firewall could not explain “how the code
got there or how long as it has been there”. An organization should make sure
that they do not end up in such a situation but always have the means to log the
activities of the developers and be able to track any changes that have been made
to the system. It is also good to keep in mind that compliance requirements can
pose demands on separating who can do what in which environment, as stated
by [11]. In other words, compliance-heavy organizations might have to limit the
access of Dev and Ops to each other’s environments to make sure compliance
requirements are met.

Another security challenge noticed by three articles ([8], [9], [10]) had to do
with balancing automated security activities with manual activities. That is to say,
any organization implementing automated security activities needs to
understand that not everything can be automated. For example, automated tools
can easily be used to analyze code for vulnerabilities but making sure the design
is secure usually needs manual review by security experts. Many automated
tools supervise the adherence to the policies created by the organization – and in
order to do this, a policy has to be created manually. For this exact reason,
another set of articles ([4], [5], [11]) highlighted the need to get the security
requirements right. Without having the correct security requirements, it’s very
hard to keep a check on having the security at the correct level. Especially, if using
monitoring solutions, one has to know which metrics should be monitored and
what are the acceptable levels for those metrics. As said before, there also needs
to be a clear process in place as to what to do when the monitoring shows
undesired results.

The rest of the security challenges recorded in the reviewed works got only
a few mentions. Two works ([6] and [10]) noted that the fast pace of DevOps
might pose additional requirements for developers’ security skills. For instance,
if it is part of a developer’s job to know which parts of code should be tested for
security more rigorously or to fix the findings of security tests, additional security
training is needed. Another set of works ([7] and [12]) talked of the lack of

39

resources available for understanding which security activities align with the
DevOps development style and technologies. Authors of [14] and [15] saw it as a
challenge that the rapid delivery cycles require new types of security activities
and increase the need for their speed as well. For instance, bug-fix processes
during runtime need to be sped up in order to keep the deployed product secure.
Finally, article [12] concluded that if the security team is not closely involved with
the development and operations, there is the risk of possibly releasing software
that contains vulnerabilities.

4.3 Security practices/activities

For the second research question, I analyzed the articles for mentions of security
activities that relate to the activities in the BSIMM framework. Some of the
security activities were easy to map, where as other required a bit more thought:
does a certain activity described in an article match the activity described in the
BSIMM framework. When in doubt, I read the BSIMM descriptions of the
security activities carefully and compared them to the security activities
described in the text. In paper [7] the BSIMM activities were suggested directly
by the author who used the BSIMM framework as a reference point for security
activities that could benefit incident management. In other papers, I analyzed the
solutions of the authors and mapped which BSIMM activities they would be
equivalent to.

The BSIMM framework comprises of four security domains, which are
divided into twelve practices, which in turn comprise of a total of 116 security
activities. The results from the research showed security activities from each
security domain and practice. The reviewed works mentioned 47 different
security activities. When analyzing the results, I counted mentions of a security
activity by different articles as separate mentions. Thus, counting all of the
mentions together, there was a total of 139 distinct mentions of security activities.
I plotted the security activities mentioned in the reviewed works against the
BSIMM framework and the results can be viewed in Table 9.

40

TABLE 9 Security practice and activity mentions in the primary studies

Governance (23) Intelligence (21) SSDL touchpoints
(36)

Deployment (59)

Strategy & Metrics (8) Attack Models (10)

Architecture Analysis
(13)

Penetration Testing (4)

Identify gate locations, gather

necessary artifacts. [6] [10] [11]
[17]
Enforce gates with

measurements and track
exceptions [11]
Create or grow a satellite. [7] [8]

Require a security sign-off [11]

Create a data classification

scheme. [1] [15]
Identify potential attackers. [1]
[10]

Gather and use attack
intelligence. [9] [10]
Build attack patterns and abuse

cases. [1] [15]
Create technology specific attack
patterns. [2]
Build an internal forum to

discuss attacks. [1]

Perform security feature review.

[1] [2] [5] [10] [11] [12] [14] [15]
[17]
Define and use AA process. [11]

[12] [15]
Make the SSG available as an
AA resource or mentor. [11]

Feed results to defect

management and mitigation
system. [3]
Use penetration testing tools

internally. [3] [10] [11]

Compliance & Policy
(13)

Security Features &
Design (2)

Code Review (12) Software Environment
(43)

Unify regulatory pressures [11]
[12]
Create policy. [3] [4] [12] [16]

[17] [18]
Identify PII data inventory. [7]
Implement and track controls for

compliance. [11] [12]
Include software security SLA in
all vendor contracts. [14]
Impose policy on vendors. [14]

Build and publish security
features. [16]
Build secure-by-design

middleware frameworks and
common libraries. [16]

Use automated tools along with
manual review. [2] [10] [11] [12]
Make code review mandatory

for all projects. [10] [11]
Use centralized reporting to
close the knowledge loop and

drive training. [10]
Use automated tools with
tailored rules. [3] [9] [10] [17]
Use a top N bugs list. [2]

Use application input
monitoring. [7] [12] [14] [16]
Ensure host and network

security. [1] [2] [3] [4] [5] [13]
[14] [16] [17]
Use application behavior

monitoring and diagnostics. [3]
[5] [6] [7] [8] [12] [14] [15] [16]
[17]
Use application containers. [1]

[4] [13] [16] [17]
Use orchestration for containers
and virtualized environments.

[4] [6] [13] [14] [16] [17] [18]
Enhance application inventory
with operations BOM. [2] [9]

Ensure cloud security basics. [8]
[14] [15] [16] [17] [18]

Training (2)

Standards &
Requirements (9)

Security Testing (11)

Configuration
Management &
Vulnerability
Management (12)

Provide awareness training. [12]
Establish SSG office hours. [7]

Translate compliance constraints
to requirements. [4] [12] [15]

Identify open source. [9] [10] [12]
Control open source risk. [7] [9]
[12]

Drive tests with security
requirements. [2] [3] [5] [6] [12]

[17]
Share security results with QA.
[10]

Include security tests in QA
automation. [6] [10]
Drive tests with risk analysis

results. [15]
Begin to build and apply
adversial security tests (abuse

cases). [6]

Create or interface with incident
response. [7]

Identify software defects found
in operations monitoring and
feed them back to development.

[7] [8] [10] [14]
Have emergency codebase
response. [7]

Track software bugs found in
operations through the fix
process. [8] [10]

Develop an operations inventory
of applications. [7] [9]
Simulate software crises. [5] [7]

Table 9 is divided according to the logic of the BSIMM framework. The columns
show the four different domains: Governance, Intelligence, SSDL touchpoints
and Deployment. Each domain consists of three practice categories, so there are
twelve practice categories in total. The practices are comprised of activities,
which are smaller security-related actions or processes. For example, in the top
left corner, Governance is a domain, Strategy and metrics is a practice and Identify
gate locations, gather necessary artifacts is an activity. Table 8 shows which activities
were mentioned in the reviewed works. The numbers in brackets () show the
total of mentions per practice or domain and the numbers in square brackets []

41

refer to the article ID. For example, the security activity Identify gate locations,
gather necessary artifacts got four mentions, as there were four distinct articles ([6],
[10], [11], [17]) that mentioned it. From Table 9 we can see that the domain with
most mentions is Deployment (59 mentions out of the 139 mentions in total). The
second most popular domain, SSDL touchpoints, is far behind with only 36
mentions of activities. As for the lower-level practice categories, the most popular
is Software Environment with 43 mentions of the security activities in that
category. The most often mentioned activity was Use application behavior
monitoring and diagnostics, which was mentioned in ten of the reviewed articles.
This observation goes well together with DevOps’ principle of Measuring. In
other words, in the heavily automated pipelines, the usefulness of monitoring
and using data from deployed applications is heavily appreciated. Figure 10
illustrates how the mentioned security activities are divided into different
categories of the BSIMM framework.

FIGURE 10 Research’s coverage of the BSIMM practices.

When the security activities from the reviewed works are plotted against the
BSIMM framework we notice that the current research focuses heavily on
deployment activities and in particular, securing the software environment and

Strategy and Metrics (8)

Compliance & Policy (13)

Training (2)

Attack M
odels (10)

Secu
rity Featu

res &
 D

esi gn
 (2

)

Stan
d

ard
s &

 R
eq

u
irem

en
ts (9)

Ar
ch

ite
ct

ur
e

An
al

ys
is

 (1
3)

C
o

d
e

 R
eview

 (1
2

)

Security
 Testin

g (1
1)

Penetration Testing (4)

Softw
are Enviro

nment (4
3)

Configuration M
anagem

ent &

Vulnerability M
anagem

ent (12)

Governance (23)

Intelligence (21)

SS
D

L
to

uc
hp

oi
nt

s
(3

6)

Deployment (59)

42

configuration management. All and all, 42 % of the security practices that are
mentioned in current research on DevOps security, deal with deployment
activities. As is evident from Figure 10, the intelligence and governance domains
have gotten the least attention in current research on secure DevOps. In
particular, the security practice categories of training, security features & design
as well as penetration testing got only a few mentions each. As DevOps is a
development method (Jabbari et al. 2016), one could presume that research on
secure DevOps would focus on the domain that deals with software development,
SSDL touchpoints. However, my research points out that this is not the case.
Based on the current research, researchers focus on the securing the DevOps
environment as well as its key technologies. Security activities that influence the
security governance and secure development are left far behind in popularity.

To delve a little bit deeper into the security activities that were
recommended in the reviewed works, I will next talk about them in more detail.
I will explain the authors’ view on the thirteen most recommended security
activities here, as each of those activities received four or more mentions in the
reviewed works. Thus, they give an overview of the activities that over 20 % of
the reviewed works recommend. The security activities that got less than four
mentions are not presented here in detail, and for the curious reader I
recommend the BSIMM report (McGraw et al. 2019) for a more comprehensive
look at them. The thirteen most recommended activities are listed in Figure 11.

FIGURE 11 The thirteen most mentioned BSIMM security activities

Out of the top-13 activities listed in Figure 11, six activities were from the BSIMM
practice group Software Environment:

• Use application behavior monitoring and diagnostics,

4

4

4

4

4

5

6

6

6

7

9

9

10

Identify gate locations, gather necessary artifacts.

Use application input monitoring.

Use automated tools along with manual review.

Use automated tools with tailored rules.

Identify software defects found in operations monitoring and feed them back to development.

Use application containers.

Create policy.

Ensure cloud security basics.

Drive tests with security requirements and security features.

Use orchestration for containers and virtualized environments.

Ensure host and network security basics are in place.

Perform security feature review.

Use application behavior monitoring and diagnostics.

43

• Ensure host and network security basics are in place

• Use application containers

• Ensure cloud security basics

• Use orchestration for containers and virtualized environments and

• Use application input monitoring.

The practice group Code review contains two highly recommended practices, Use
automated tools with tailored rules and Use automated tools along with manual review,
which both received four mentions. The five remaining security activities that got
four or more mentions were from miscellaneous security practice groups
(Strategy & Metrics, Compliance & Policy, Architecture Analysis, Security
Testing, and Configuration Management & Vulnerability Management). This
shows that while the majority of current research is focused on security activities
that deal with the software environment, also other security practices are getting
attention from the authors, though to a lesser degree. Next, I will present the 13
most mentioned security activities and the authors’ discourse on them.

4.3.1 Use application behavior monitoring and diagnostics

Over half of the reviewed works ([3], [5], [6], [7] ,[8], [12], [14], [15], [16], [17])
recommended monitoring the application during runtime, which is in alignment
with the BSIMM activity SE3.3 Use application behavior monitoring and diagnostics.
In [3, 6 and 15], monitoring during runtime provides information upon which
the system can self-diagnose and self-correct. In [3], the system is even made
aware of the trade-offs between quality and security and can determine which
actions it should take. In [5], the application being monitored is the pipeline itself.
By analyzing the behavior and performance of the pipeline, possible security
issues can be catched early. In [7], the author perceives the ability to fix issues
fast as DevOps’ strength and therefore he views well-performed incident
management a key component of DevOps security. To arrive at great incident
management, one needs proper monitoring and diagnostics that catch the issues
as soon as they arise. In [8], the monitoring is turned towards cloud service
providers and making sure that the service is up to par with the requirements set
for them. Paper [12] analyzed DevOps practitioners’ views on beneficial security
practices and noted automated monitoring as one of the most highly
recommended ones. In [17], a monitoring system is used to monitor the health
and security of microservices.

4.3.2 Perform security feature review

The BSIMM activity AA1.1 Perform security feature review, which belongs to the
Architecture Analysis practice group and was mentioned in eight works ([1], [2],
[5], [10], [11], [12], [14], [15], [17]). This security activity, which is also known as
threat modeling, is one of the basic “traditional” security activities. In DevOps,
threat modeling’s role has been debated, as incorporating an activity that is based

44

on the design of the system is difficult in processes where the design unfolds
incrementally. BSIMM (McGraw et al. 2019) defines this activity of reviewing
security features as looking at the most security-heavy features of the application
(encryption, authentication and authorization etc.), and after identifying
potential threat situations, analyzing whether the security is sufficient. In the
works reviewed for this systematic literature, the authors had varying views on
how a security feature review can be accomplished in DevOps. The most heavy-
handed approach was in [11], where solely the threat model determines whether
a piece of code will be accepted by developers via self-service, or whether it
requires approval from the security team as well. In [1] the focus was on
understanding what security features are needed to arrive at sufficient protection
from insider threat in DevOps environments. This was done through analyzing
potential attackers, the system’s assets, possible threats and then finally by
conducting a security analysis that was based on all of the aforementioned factors.
In [2], the authors wanted to secure a deployment pipeline and in order to do so,
first used threat modeling to understand the threats to the pipeline. Securing the
pipeline was also the focus on [5], where the authors used the STRIDE threat
modeling method to find out the possible threats to their system. A similar
approach, though without a specific threat modeling method, was used in [17],
to first document the biggest threats to application containers and then
developing ways to prevent those. In [15] security features were reviewed from
another angle: from figuring out which combinations of cloud service features
would lead to security or privacy violations. Then monitoring was used to ensure
that this combination is avoided (and if it is not, the system self-adapts
accordingly). Article [10] reminds us that in the agile world of DevOps, a heavily
documented threat model is not what is needed, but instead communicating the
threat model’s practical implications to the developers – what are the things that
they need to understand and to consider as they work. Another thought from the
same article is that in DevOps security work can happen at two levels: one
dynamically in the pipeline and another out of band in securing the whole
process through threat models, risk management etc. Where these two levels
meet though, is when a change in development introduces a new asset, which
should then be reflected back to the out of band security work in the form of
threat modeling. Article [12] which drew its wisdom from DevOps practitioners,
was also specific on the need for both automated and non-automated activities
in secure software development – with threat modeling being a key component
of the latter group. Threat modeling was conducted as part of the development
process in six of the interviewed nine top-level DevOps organizations. In [14]
security features were modelled for risk assessment purposes.

4.3.3 Ensure host and network security basics are in place

As stated before, many of the reviewed works focused on securing the DevOps
environments, which is in alignment with BSIMM activity SE1.2 Ensure host and
network security basics are in place. BSIMM (McGraw et al. 2019) includes in this

45

activity e.g. patching, firewall configurations and cloud service security. In the
reviewed articles, the host and network security spanned quite a wide area. In [1]
the development environment is secured against insider threats using several
security practices (e.g., access control, hardening, logging). In [2] the focus was
also on the deployment pipeline and in identifying all its untrustworthy
components and undertaking security activities to make sure the desired level of
security is achieved. In [3] runtime security was achieved through monitoring
security metrics, identifying vulnerabilities and using adaptive self-defense
mechanisms to protect the system (e.g., automatic patching and firewall actions).
Article [4] used a firewall setting within a container infrastructure to make sure
the security requirements set by the organization are followed also on “low-level
network access control lists”. As access lists are prone to misconfigurations by
the administrators, the authors’ solution offered a visual representation of the
applied firewall rules to enhance correctness of the configuration. In [5], the
availability of the pipeline is seen to be of utmost value to the business and to
ensure it, four security practices were suggested: 1) canary testing, where releases
are tested on small fragments of the environment and their behavior is monitored,
and in case of errors, a rollback is easy to do, 2) A/B testing, that, in this case, could
be used to monitor the performance of different pipeline configurations, 3) fault
injection, that would test the resilience of the system by choosing to put it under
strain and 4) monitoring, to constantly identify possible security and/or
performance issues. Article [13] focuses on hardening the development
environment and in [16] the attention is turned towards ensuring cloud security
and for instance a Firewall as a Service extension is used. In [14], the multi-cloud
environment is secured through a network monitoring agent. Article [17] aims at
ensuring that security is achieved in the pipeline, all the way to the deployment
and during runtime as well.

4.3.4 Use orchestration

The BSIMM activity SE3.5 Use orchestration for containers and virtualized
environments is explained by BSIMM (McGraw et al. 2019) to mean that
automation is used “to scale container and virtual machine deployments in a
disciplined way. Orchestration processes take advantage of built-in and add-on
security controls to ensure each deployed container and virtual machine meets
predetermined security requirements.” In this systematic literary review,
orchestration was mentioned in seven works ([4], [6], [13], [14], [16], [17], [18]).
Article [4] wanted to draw attention to the need to secure containers and to
ensure network access control within the development environments. In [18], the
focus was also on the deployment pipeline and in how that environment can be
orchestrated into a more secure one through use of virtual machines in the CI
server. In [6], the goal of the authors was to provide a domain-specific modelling
language that enables orchestration in smart IoT development in a ”secure and
context-aware” manner. Article [13] promotes security hardening of Docker,
which can be used in secure cloud orchestration. In [14], the authors discussed

46

the security implications of a multi-cloud situation, i.e., of using more than one
cloud service provider (CSP), which requires security orchestration to enable
changing the CSP dynamically. Microservice management and orchestration was
a key topic in [16]. In that article, orchestration was policy-driven, which means
that security requirements were translated into policies, which, in effect, are
translated into rules that the framework obeys. Article [17] leverages security
policies to dynamically allocate resources as well as assess vulnerabilities that
might potentially be harmful to the application.

4.3.5 Drive tests with security requirements and features

In the BSIMM activity ST1.3 Drive tests with security requirements and security
features, security testing is driven by the security requirements and features with
the goal of verifying that the requirements are met and the features function as
expected. A similar approach was mentioned in six of the reviewed works ([2],
[3], [5], [6], [12], [17]). In [2], securing the pipeline starts with identifying its
security requirements and then fixing found problems until the requirements are
satisfied. In [5], the pipeline’s resilience is tested via fault injection – deliberately
testing how much failure it withstands. In [3], the self-adaptive monitoring
system worked based on the security requirements – it constantly monitors that
the requirements are met and uses self-adaption in case of violations. The
framework described in [6] contains a system that simulates and tests the security
requirements of IoT systems before they are released. In [12], eight out of nine
DevOps practitioners state that manual security testing is part of their
organization’s development routine to “ensure that the software’s functionality
is properly implemented.” In [17], automated tests were based on the security
requirements.

4.3.6 Ensure cloud security basics

The BSIMM activity SE3.7 Ensure cloud security basics deals with making sure that
also cloud deployments are done in a secure manner. This was a security activity
mentioned in six of the reviewed articles ([8], [14], [15], [16], [17], [18]). Articles
[8 and 14] were focused on enhancing cloud security, the latter concentrating
especially in multi-cloud environments. The authors of [15] wanted to ensure
especially privacy requirements in cloud environments and in [16] both the
privacy and the security of cloud services was in focus. In [17] the cloud’s security
surveillance was done in a dynamic fashion to keep an eye out on potential
vulnerabilities of applications and containers. In [18], the focus was on enhancing
the security of the pipeline in a setting where the repository was in GitHub and
the main server was hosted by Amazon Web Services (AWS). With both services,
the authors considered uncontrolled access as a key security risk that needs to be
mitigated to ensure security of the pipeline. Rounding up, all of the
aforementioned six articles help DevOps security to consider different facets of

47

the environment and to understand how security should be addressed in the
cloud.

4.3.7 Create policy

With the security activity CP1.3 Create policy, BSIMM (McGraw et al. 2019)
recommends that the organization creates software policies centrally, so that each
project in the organization does not have to go through internal, external and
compliance requirements on their own. Six of the reviewed articles ([3], [4], [12],
[16], [17], [18]) referred to policy as a noteworthy security activity. In [3], the
security policy is the underlying component that drives security requirements
and enables them to be monitored automatically. In [4], the focus was on
configuring network access policies correctly, which was done by first creating
security goals, then deriving a policy out of those goals, and finally, enforcing the
policy through access control configurations. In [12], policies were enforced both
in an automated and non-automated fashion: in automation, an automated
software defined firewall makes sure access is done according to policies. In the
non-automated security activity, security policies are performed, i.e., a review
process ensures that the policies are adhered to. In [12], all of the surveyed
DevOps organizations conceded to performing policies in a non-automated
fashion, whereas only six of the nine organizations claimed to use an automated
software defined firewall for policy surveillance. In [16], such a firewall acts
precisely in a policy-driven fashion and in [17], a security gateway is used to
enforce policy requirements in microservice architectures.

4.3.8 Use application containers

BSIMM activity SE3.4 Use application containers was mentioned in five articles ([1],
[4], [13], [16], [17]). In most of these, containers were not mentioned to be used
explicitly for security purposes, but rather presented from the perspective of
containers being a typical technology used in DevOps practices. The authors of
these articles wanted to present their views on how to enhance the security of the
DevOps-typical technologies. In [1], container security is leveraged through
enhanced access control to suppress the threat of insider violations. In [4], the
idea is similar but the access control policies are presented visually to limit the
possibility of unintentional misconfigurations. In [13], hardening techniques are
used to enhance the security of container technologies and in [16] container
security is considered throughout the application life cycle in a policy-driven
fashion. In [17], the focus is on identifying vulnerabilities in containers
dynamically.

48

4.3.9 Send SW defects found in monitoring back to development

DevOps culture should be all about sharing issues and learning from them
collectively. A good example of such an activity is the BSIMM activity CMVM1.2
Identify software defects found in operations monitoring and feed them back to
development. This type of security activity was mentioned in four articles ([7], [8],
[10], [14]). In [7] the focus of the article was incident management and naturally,
in order to learn from mistakes and to grow, feedback from incidents should be
fed back to development to deepen the understanding of how such events could
be prevented in the future. In [8], the idea was that the rapidness of the DevOps
development cycle can be leveraged for dealing with security issues found in
operations: security bugs are fed back to development and fixed quickly. Article
[10] offers another piece of advice: the security team’s findings (e.g., via threat
intelligence), should be communicated to the development, who can then use
that information for building more robust products. In [14], the idea was that
operations monitoring can find flaws in the (multi-)cloud infrastructure, and in
some cases these findings can lead to a re-design of the application or changing
the components to ensure security is achieved again.

4.3.10 Use automated tools along with manual review

In the BSIMM activity CR1.4 Use automated tools along with manual review, the goal
of the organization is to leverage the code review process through automating
parts of it. Such a view towards code review was found in four of the reviewed
articles ([2], [10], [11], [12]). Static analysis was mentioned in [2] as one of the
ways of making an application trustworthy. Article [10] emphasized that more
important than running a static analysis tool, is what is done with its output. In
the worst-case scenario, a static analysis tool produces a CSV file that no one
looks at. In other words, the analysis is done in vain, just for the sake of being
able to say that static analysis is part of the development process. According to
[10], it is important to use the right tool for the right development technologies
and to have a clear process as to what to do with the results – to have a policy
that states with which results is the build allowed to continue and when should
the build fail. In article [11], which focused on doing DevOps in compliance-
heavy organizations, the threat model of the software being built decides which
parts of the code can be done by developers only and when should the design
and code be reviewed by security experts. If the changes that are being made
affect the threat model, a manual review by a security expert is always in order.
The article also recommended that code should be peer reviewed by someone
with an understanding of secure coding practices. In [12], the opinion of the
DevOps practitioners is, that in DevOps, security is best built through a potent
combination of automated and non-automated security practices. Automated
code review was used in seven of the nine surveyed DevOps organizations,
which makes it the third most popular automated security practice after
automated monitoring and testing according to [12].

49

4.3.11 Use automated tools with tailored rules

The BSIMM activity CR2.6 Use automated tools with tailored rules got four mentions
([3], [9], [10], [17]). Using automated tools with tailored rules, in BSIMM’s
(McGraw et al. 2019) view, means customizing static analysis in a way makes it
more efficient. One of the goals for doing so is reducing the number of false
positives. This is an important matter, as according to [10], precisely the idea of
security slowing development down (e.g., through a large number of false
positives) reduces developers’ enthusiasm towards security initiatives.
According to BSIMM (McGraw et al. 2019), the tailored rules can be made specific
to the organization’s needs and this is the case in [3], where the static analysis
during the development phase checks that the code is compliant with the
organization’s policy. Article [9] highlights the fact that static analysis is “not
designed to identify open source software vulnerabilities”, and in order to catch
those, other security tools (such as software composition analysis tools) are
needed. In [10 and in 17], the authors discussed the importance of using the right
analysis methods for the used development technologies in order to gain a
trustworthy outcome.

4.3.12 Use application input monitoring

The BSIMM activity SE1.1 Use application input monitoring is used to signify that
an organization monitors the input to a system it has deployed, i.e., via a firewall
or another monitoring solution. This was mentioned in four of the reviewed
articles([7], [12], [14], [16]). In [7], the focus was on high-speed incident
management process and in order to achieve that, incidents must be identified
rapidly. Therefore, monitoring the input to an application is critical. In [12],
DevOps practitioners swore by the name of automated monitoring and
automated firewalls, as they increased security in DevOps. The multi-cloud
security framework suggested by [14] contains a network monitoring agent, that
captures packets and detects security issues and a similar approach is in use in
[16] as well.

4.3.13 Identify gate locations, gather necessary artifacts

The BSIMM activity SM1.4 Identify gate locations, gather necessary artifacts belongs
to the framework’s Governance domain, and the Strategy and metrics practices
specifically. This security activity deals with having checkpoints within a
software development life cycle. These checkpoints can go under names like
gates or milestones, and their purpose is to provide the development process
with defined places where security is analyzed in a pre-defined manner. In these
checkpoints, an artifact that meets the pre-defined security criteria is allowed to
pass, and an artifact with less than satisfactory security is considered to need
further work. This type of a security practice was mentioned in four of the
reviewed articles ([6], [10], [11], [17]). In [6] a checkpoint was located before

50

deployment: artifacts are tested based on security requirements and tested for
resilience against basic attacks. Article [10] talks of the need for clear rules in
DevOps development when it comes to security: if security is assessed e.g.
through static analysis, the security criteria under which the build is allowed to
progress needs to be established and communicated. For creating security
checkpoints, the article suggested Sec, Dev and Ops to discuss together the best
places where security could be assessed without slowing down the development
and operations unnecessarily. In [11], the focus was on compliance driven by the
threat model – if changes affecting the threat model were made, it automatically
created a checkpoint beyond which development couldn’t pass the code without
getting the security checked by the security team. In [17], there were pre-
deployment security checks that could result in a no-go result.

4.4 The four principles of DevOps

My third research question dealt with how the four principles of DevOps, culture,
automation, measurement and sharing (CAMS) are represented in the reviewed
works. I wanted to know first of all, if the DevOps principles were reflected in
the articles and second of all, whether the researchers saw these principles as
something worth mentioning in relation to security. The further I got in my
research, the more I realized that the way the researchers acknowledged these
principles or not seemed to reflect how they understood DevOps. As said before,
some see DevOps as a heavily automated process, while others as a management
style encouraging autonomy. These divergent views come to light through
analysis of the interpretation of the DevOps principles. Table 10 illustrates the
aspects of the four principles that emerged from the reviewed works.

TABLE 10 The four principles of DevOps in the reviewed works

C
U

L
T

U
R

E

Shared/wider responsibilities [1], [7], [8],
[9]
Culture of collaboration [3], [12], [14]
Security and quality-oriented culture [6],
[7], [8]
DevOps culture needs the support of
management to flourish [7], [10], [11]
Culture of innovative practices [5]
Culture of “pride and ownership” [9]

Automation of security activities [all
articles]
Pipeline automation creates challenges for
security [1], [2], [5], [13], [18]
Pipeline automation creates opportunities
for security [7], [14], [15]
Manual activities are needed alongside
automated activities [10], [11], [17]
Self-correcting security systems [6], [15]

A
U

T
O

M
A

T
IO

N

51

M
E

A
S

U
R

E
M

E
N

T

Monitoring during runtime [3], [6], [7], [8],
[12], [13], [15], [16]
Feedback loop from runtime monitoring
back to developers [14], [16]
Monitoring should trigger self-correction in
systems [6], [15]
Logging [1]
Monitoring during development [5]
Tracking and measuring defects [10]

Sec, Dev and Ops should work together [3],
[8], [10], [11], [12], [14], [15]
Shared responsibilities create security
challenges [1], [12], [18]
Communication is needed for succeeding
[7], [8], [10]
The importance of having shared goals [9]

S
H

A
R

IN
G

Next, I will explain the aspects presented in Table 10.

Culture

When it comes to culture, the reviewed works had very different views on it.
Some ([3], [12], [14]) took as a given that DevOps is all about Dev and Ops (and
oftentimes also Sec) working together. Four works ([1], [7], [8], [9]) talked of the
many implications of shared and wider responsibilities: how they change the
employees’ responsibilities and require an increase in communication. Some ([6],
[7], [8]), interpreted the DevOps culture to be naturally oriented towards high
quality and security, with [9] believing that the culture of DevOps gives workers
freedom and a “sense of pride and ownership” that translates to motivation and
high achievement. Three works ([7], [10], [11]) acknowledged that culture is a
management issue and the emphasis towards security should be created at the
management level from where it can be submerged into company culture. One
article ([5]) interpreted that innovative practices were natural in DevOps culture
and this cultural facet could be used to create more innovative security solutions
as well.

Automation

All the reviewed works mentioned the automation of security practices in one
way or another. None of them claimed that security should be fully automated,
though. For example, in securing the development environment, the security
expert has a key role. The automated practices varied a great deal, with many
focusing on securing the pipeline itself or on how fast deliveries can be made
more secure. Five works ([1], [2], [5], [13], [18]) talked of the new security
challenges that come from the deployment pipeline: the increased insider threat,
the increased attack surface as well as the complexity of the infrastructure that
complicates security. Also, the issue of the pipeline becoming a hugely important
business asset was raised by [5]: as the business is dependent on the pipeline, its
security controls should match the risk. Some authors ([7], [14], [15]) took on a
more positive outlook and shone the light on how the pipeline can increase
security: the fast deployment times mean that bug fixes can be almost
instantaneous, incident management is easier and feedback loops are able to
provide a heightened understanding of security to developers. Two authors ([6],

52

[15]) took automation even a nudge further by providing insights of systems that
could not only detect security issues, but also self-correct upon encountering
them. Some works ([10], [11], [17]) stressed that even though many security
activities can and should be automated, one needs to develop an understanding
of where not to automate. Also, the importance of having a policy regarding
security related findings is in order: if an automated code review reveals an error,
there should be a protocol in place that decides whether to continue with the
build or not. The data also revealed that a security policy is often needed before
security activities are automated: the automation simply enforces the policy.

Measurement

DevOps is said to thrive on metrics and monitoring. It was no surprise, that many
([3], [6], [7], [8], [12], [13], [15], [16]), of the reviewed works highlighted
monitoring during runtime and its importance towards security. A feedback loop
from monitoring to developers was suggested in [14] and [16], to provide them
with better understanding of security and in [7] the developers were made
responsible for rapidly fixing any security issues that arose from monitoring.
Logging was stressed in article [1] which emphasized that non-repudiation needs
to be achieved in the development environment as well as in production to
combat insider threat. Also, article [5] recommended monitoring during
development, but due to a different reason: they accentuated that as the pipeline
is a very important business asset, its performance and security need constant
monitoring. Finally, article [10] noted that it is not only important to detect
problems through monitoring, but also to track the trajectory of those defects, to
make sure that detected problems are dealt with.

Sharing

Many works ([3], [8], [10], [11], [12], [14], [15]) acknowledged that the security
team should be included in the DevOps work to some degree. In [8] the idea is
that the security collaborates and communicates with Dev and Ops frequently,
and that the organizational culture is made security-oriented. In [10], security is
achieved by the security team having a service mindset which they use to aid the
developers in creating secure software, taking care not to slow them down
unnecessarily. In other words, security should be a shared goal, where
developers acknowledge the importance of security and the security team
acknowledges the importance of fast deliveries – and together they make a
process which serves both needs. In [11] the security team is involved in the start
of the project to create a threat model and then later step in only if changes
affecting the threat model are made. Article [12] saw the inclusion of the security
team in development from a practical standpoint: by including the security team
in the development, more vulnerabilities can be avoided. In the spirit of sharing,
communication was mentioned in three works ([7], [8], [9]) as a necessity for
DevOps success. Also the importance of having shared goals was mentioned by

53

[9] – unnecessary tug of war is avoided when there is a shared understanding of
what the organization is working towards.

54

5 DISCUSSION

In this chapter I will provide answers to the research questions based on the
findings from the previous chapter. I will also provide further insights revealed
by the analysis of the reviewed works.

5.1 RQ1: Challenges of security in DevOps

The answer to the first research question was gained through carefully reading
the articles of the systematic literature review and analyzing them for any
mentions on challenges with security in DevOps. These challenges were recorded
in a data extraction spreadsheet and analyzed through using typification. A total
of nine major challenges were found. The challenges with the most mentions
were: ensuring pipeline security (mentioned in six articles), balancing security
with fast deliveries (mentioned in four articles), and increased insider threat
(mentioned in four articles). Other challenges had less than four mentions each.
The challenges highlight DevOps’ position as a relatively new development
method that is still finding its foothold. The development environment is not yet
stable and securing it has captured the interest of many researchers. DevOps’
desire for fast deliveries and the possibility of multiple daily deployments can
raise concerns by those with an interest in security. Also, the sharing
responsibilities between Dev and Ops leads to a nicely flowing model of
collaboration, but from a security point of view, having insiders with access to
more systems can mean the possibility of insider threat.

5.2 RQ2: Security activities that are associated with DevOps

To answer the second research question of security activities that are associated
with DevOps in the research literature, the selected studies were carefully read
and analyzed using content analysis. References to security activities in the
reviewed works were marked down in the data extraction formulation. Based on
these actions, a total of 139 mentions of security activities were found from the
18 articles. These activities included 47 different activities. Figure 12 illustrates
the BSIMM domains and practices that the current research literature mentions.

55

FIGURE 12 Security activity mentions per BSIMM security domain

Figure 12 shows the twelve security practice groups of the BSIMM framework.
The four different domains have each gotten a distinct pattern to separate them
from each other. From Figure 12 we can observe that the domain of Deployment
is the domain the current literature focuses on. The security activities from the
Deployment domain make up for 42 % of all security practice mentions. That
means that there is significantly less research on the other three domains of
BSIMM: governance, intelligence and SSDL touchpoints. Analyzing the different
security activities in DevOps research and mapping them to the BSIMM
framework has proven to be a concrete way to showcase in which security
domains research has been done and where there is room for more research. In
the BSIMM framework, security is built in throughout the whole organization,
ranging from the strategical security decisions to the operational processes.
Security maturity is achieved when security activities from all twelve practice
categories of the BSIMM framework are carried out by the organization (McGraw
et al. 2019). The current research does not reflect this diversity of security
activities, as the literature heavily focuses on securing the DevOps environment
and technologies, forgoing the governance and intelligence domains and
portraying a lack of practical guidance of how security activities should be added
to the development process.

In the reviewed articles, there was a shortage of literature discussing the
placement of security activities in distinct phases of the software development
life cycle (with article [10] being the only exception). DevOps literature from the
industry talks of shifting security left, i.e., of incorporating security practices as
early on in the product life cycle as possible. This can be done for example

56

through code review, which was recommended in several of the reviewed
articles. The findings of this thesis also spotted a trend towards shifting security
right: e.g., to make security a dynamic and flexible process that happens during
run time. For example, article [15] talked of software engineers needing to design
systems with decision logic that afflicts the product’s security behavior during
runtime. E.g., the system will be able to make decisions based on its environment
and the challenges it perceives to its security. Article [7] on the other hand, shifted
security even further to the right, and emphasized the benefits and opportunities
provided by efficient incident management practices. The reasoning behind this
was that the dynamicity of DevOps allows for faster incident response and fixing
problems as soon as they appear. Furthermore, according to [7], all
vulnerabilities can never be prevented, so efficient detection response
mechanisms are a good insurance policy. In other words, the speed of the
pipeline and continuous deliveries work to the organization’s advantage also in
times of security incidents: issues found by Ops are fed to the Dev, which can fix
them immediately and deploy them instantly as well. Needless to say, such a
well-oiled incident response process does demand a lot from the organization’s
capabilities, as well as the communication and collaboration culture. That being
said, an organization that has nailed the DevOps culture of shared
responsibilities, could use it to leverage their incident response game as well. The
authors of [3] agree with this: “Investing resources on addressing some security
vulnerabilities at development time may prove futile, either because at runtime
a new vulnerability may appear under an unforeseen usage scenario or because
we failed to properly rank vulnerabilities and we addressed the wrong one.”
Considering moving security to the left or right, it is still wise to remember the
words of wisdom from BSIMM creators (McGraw et al. 2019): “DevOps is a
cultural change that can’t be solved with any amount of incremental procedural
alteration.” Therefore, in addition to the technical security activities, a closer look
at the culture and the other three DevOps principles is in order.

5.3 RQ3: CAMS principles reflected in DevOps research

To answer the final research question, the articles were read and content analysis
was used to analyze the references to any of the four principles of DevOps, culture,
automation, measurement and sharing were recorded in the data extraction
spreadsheet. The reviewed literature contained mentions of all of the four
principles of DevOps. However, the wide variety of references made to these
principles seem to indicate that not all researchers understand DevOps in the
same way. This finding aligns with a previous systematic literature review by
Jabbari et al. (2016), who found that DevOps is understood by different authors
to signify different things. In Jabbari et al.’s (2016) study, 31 % of the articles
interpreted the core of DevOps to be collaboration and communication, and 24 %
considered its focus to be on delivering software using automated delivery

57

pipelines. The same great divide was also seen in my research. As stated in an
interview in [10]:

“…many companies have no clear definition of what it means to do DevOps. A lot of

organizations that are doing a bit of continuous integration or static analysis think
they’re doing DevOps. They don’t realize that the whole thing – whether you’re
talking about continuous integration or delivery or deployment – is completely
different from what DevOps actually focuses on. The culture, the role, the emphasis
on responsiveness are all lacking. The operations team doesn’t even talk to the

development team. But people just love the word ‘DevOps’. (Mansfield-Devine 2018,
p. 15)

A total of seven articles ([1], [3], [7], [8], [10], [12], [14]) mentioned all of the four
principles. Their viewpoint on these principles varied, though. For instance, [1]
perceived the culture of DevOps to mean shared responsibilities, automation to
create security challenges, referred to measurement in increased need for logging
and sharing as another facilitator of security challenges through increased insider
threat. Then again, [12] talked of culture as one of collaboration, automation as a
security enhancing technology, measurement as the importance of runtime
monitoring and sharing as increased cooperation between Dev, Ops and Sec. The
lack of clear definition of the practice of DevOps became evident in the research:
DevOps was seen by different authors to signify a culture of quality-orientation,
a culture of innovation, technology-only, developer self-service and customer
value – all under the name of DevOps.

An important discovery from the research is that an organization wanting
to undertake DevOps first needs to establish what it actually means by DevOps.
How does the organization interpret the four DevOps principles of culture,
automation, measurement and sharing? All four aspects need management
support and organization in order to be executed in a good manner. Security-
oriented culture cannot be born without a clear orientation towards it. The same
goes for emphasis on quality. Without clear direction, the risk with DevOps is
doing fast deliveries without paying attention to security. Security needs to be
baked into the organizational culture in order to become a mindset for the
DevOps team. As a matter of fact, a recent Gartner (2019) survey revealed, that
neglecting to see DevOps as a cultural phenomenon highly affected the ability to
scale DevOps and that organizational aspects are the biggest cause of DevOps
adoption failure.

When it comes to automation, DevOps usually means a high adaptation
rate of automation technologies. These technologies demand the organization to
pay attention to any new security issues that they might bring along: securing
the pipeline is important, as said before, and paying attention to the possibility
of insider threat. Automation brings many possibilities to security activities, but
manual activities still are needed. Automating security also does not eliminate
the need for security professionals, as many automated tools are configured
based on security policies (which are created by the security professionals) and
the output of those tools oftentimes requires manual work and security expertise.
The reviewed articles also stressed the importance of choosing the right tools, if

58

security is left to the hands of automation. As a cautionary tale, one article [10]
talked of a company that was proud of their use of a static analysis tool – yet
failing to understand that the tool was not equipped for their environment and
was not catching the coding errors at all. A second common mistake mentioned
in the same article [10], is using a tool to catch errors, but not having a process
that demands a developer to fix the problematic issues.

Measuring is another DevOps principle and in the sense of security, it is
usually achieved through monitoring. In monitoring, the security policies and
requirements set the tone for what is being monitored and how that information
is processed further. As such, having a solid foundation for how security is
managed and valued in the organization is necessary for measuring the right
things. Eight of the reviewed articles mentioned monitoring the software at
runtime to catch security issues, and one during development, to ensure correct
performance. Logging is needed for obvious security purposes but also to make
sure non-repudiation is achieved within the deployment pipeline as well. The
worst-case scenario is deploying harmful code and not having any idea how it
got there, by whom and when.

Sharing is a big component of DevOps, as even the name of the
development method points to the merging of development with operations.
What emerged from the data is yet again the need to clearly establish roles in the
organization: who does what and how is information between these stakeholders
shared. One article [9] highlighted the need for a common goal and I think from
analyzing the research this becomes apparent. If an organization wants to create
a culture where tasks are shared and people work together, those people need to
know what values they are working towards. If the importance of security is not
established, implementing security activities easily becomes a tug of war
between the security team and the developers and operations. If the importance
of security is not communicated to developers, the developers will feel that
security activities are unnecessary and only slow them down. If, on the other
hand, the importance of security is established, the Sec, Dev and Ops can work
together to strike a balance that fits the organization’s values.

As many industry publications (e.g., Puppet 2019, Gartner 2019) talk of the
importance of culture and understanding DevOps as a cultural phenomenon, the
CAMS principles should be taken into consideration by organizations wanting
to implement DevOps. Through analyzing the articles for their mentions of the
DevOps principles in relation to security, I have fused together their messages to
palatable practical advice that is presented in Table 11. Through embracing all
four DevOps principles and weaving security into each one, security can be built
into the core of DevOps.

59

TABLE 11 Advice on how to build security into the core of DevOps

DevOps principle Practical advice

Culture • Develop a security-oriented culture with strong security awareness.

• Create a culture with a sense of shared responsibilities, where Dev,
Ops and security work together for a common goal.

• Prioritize fixing of security defects.
Automation • Automate security as much as possible but make sure the chosen

tools are applicable to the environment and the technology.

• Ensure pipeline security.

• Acknowledge that automation enhances manual security activities,
it does not replace them.

Measurement • Develop security metrics.

• Measure and monitor security constantly.

• Provide a feedback loop to developers and operations on security
issues and intelligence.

Sharing • Share knowledge on security principles.

• Develop incident management and involve developers in fixing
security problems.

5.4 Limitations, reliability and validity

A piece of research is considered reliable, if another researcher conducting the
same exact research would get the same exact results. The reliability of an SLR
comes from making the systematic review process as systematic and transparent
as possible. In Chapter 3 I have presented my search strategy as well as the search
criteria and have done my best to adhere to those policies I have presented.
However, as a solo researcher interpreting others’ research from my own point
of view, there is the possibility of another human being interpreting those same
research articles in another fashion. Thus, I have done my best to conduct the
research as reliably as possible, but due to the qualitative nature of the study and
the research process needing a heavy amount of interpretation, I assume another
researcher conducting the same research might have slightly differing results.

The validity of the results is influenced by the study selection process as
well as the interpretation of the selected studies. In applying the search criteria, I
did my best to find all studies that were relevant to the research questions and
not exclude any works that would contribute to the research. To make sure my
searches were complete, I performed additional manual searches into the
selected databases to make sure my search strings had been successful. These
manual searches proved that the searches using the search strings had been
completed properly and no relevant research from the selected databases had
been lost in the process.

The limited number of research available on the research subject has
naturally influenced the answers to the research questions. However, as the

60

subject of this Thesis has been to chart the current status of secure DevOps
research, the number of studies only proves that there is room for more research
on the subject.

5.5 Topics for future research

This literature on the current state of research on DevOps security practices has
shown that there is much room for more research on the subject. The current
research focuses on securing the technologies typically used in DevOps
development, and very little material is available on how more traditional
security practices should be affixed to the DevOps development life cycles. I echo
the words of Tuma et al. (2018) who said that there is “immaturity of research in
integrating security into DevOps”. More research on practical aspects of adding
security to DevOps is needed as the industry perceives the trend of DevSecOps
to grow in the future. According to Deloitte (2019): “As the DevSecOps trend
gains momentum, more companies will likely make threat modeling, risk
assessment, and security-task automation foundational components of product
development initiatives, from ideation to iteration to launch to operations.” To
understand how these security activities should be incorporated into the
development life cycle, more academic research is needed. The focus should not
only be on automation, though, but on the integration and interaction of the
automated and non-automated activities. How to incorporate the slower and
non-automated security practices into rapid DevOps development, was a
question that was not answered by the reviewed works, and as such it remains a
good question to answer by future research.

61

6 CONCLUSION

In this Thesis a systematic literature review was conducted, with the goal of
understanding the current state of research of security in the context of the
DevOps development method. The research answered three research questions:

• RQ1: What are the challenges of security in DevOps as reported by the
authors of primary studies?

• RQ2: Which security activities are associated with DevOps in the
literature?

• RQ3: How are the CAMS (culture, automation, measurement and
sharing) principles reflected in secure DevOps research?

In the systematic literature review a search from four electronic databases was
done in April 2019 using a search string developed for the purpose of finding
relevant research. The initial search results from the databases yielded 292 results.
After two rounds of filtering the papers relevant to the research questions, the
number of selected papers was narrowed down to 16. Backward and forward
snowballing was conducted to find any potentially relevant works. Through this
step in the research process, two more articles were found. The final selection of
articles for this research thus became a set of 18 articles. The reviewed articles
were analyzed using typification and content analysis.

The results of the research revealed a total of nine challenges with security
in the context of DevOps. The biggest challenge came from the technologies used
in DevOps development, with the deployment pipeline in particular garnering a
lot of mentions. Also, DevOps’ goal of rapid deployments was seen as a security
challenge by four articles. Striking the balance between security and fast
deliveries was a cause of concern for the authors. The reviewed works recognized
the importance of having a shared goal of security, set by the management level
of the company, as the guiding post directing development towards security-
inducing activities. Another challenge mentioned by four authors was the
potential increase of insider threat. If the Dev can do Ops’ work and vice versa,
many employees suddenly have a much wider access to the organization’s
systems than before. Thus, security activities that especially fit the challenges of
the automated pipeline, the faster delivery cycles and increased insider threat are
needed to make the DevOps development process more secure.

To understand where the current security research is focused, the security
activities mentioned in the reviewed works were mapped to the BSIMM
framework. The results showed that the security activities mentioned by the
reviewed articles focused heavily on securing the DevOps technologies and
environments. Thus, in current research, security activities belonging to the
domains of governance, intelligence and software development have not gotten
much attention and offer many possibilities for future research.

62

The research also seeked to understand the authors’ views on what DevOps
is. This was done by analyzing the articles for mentions of the four principles of
DevOps, which are culture, automation, measurement and sharing. The research
found that the reviewed articles interpret DevOps to signify various things and
do not have a single definition of its essence. According to the DevOps principles,
culture and sharing are counted amongst the development method’s key issues,
yet the security activities reflecting these principles are sorely missing in the
current research (e.g., creating a security culture, security awareness training,
clear security roles in organization). According to the principles, in DevSecOps,
the focus should very much be on creating a flourishing security culture that
facilitates communication and sharing between the three key players: Dev, Sec
and Ops. To achieve a better picture of this, more research in the less technology-
oriented side of DevSecOps would be needed.

63

REFERENCES

Agile Manifesto. (2001). Agile Manifesto. Accessed online 15.5.2019 at
https://agilemanifesto.org/.

Ahmanavand, M., Pretschner, A., Ball, K. & Eyring, D. (2018). Integrity Protection
Against Insiders in Microservice-Based Infrastructures: From Threats to a
Security Framework. In: Mazzara M., Ober I., Salaün G. (eds) Software
Technologies: Applications and Foundations, STAF 2018. Lecture Notes in
Computer Science, vol 11176.

Baskerville, R. (1993). Information systems security design methods: Implications
for information systems development. ACM Computing Surveys (CSUR),

25(4), pp. 375−414.

Bass, L., Holz, R., Rimba, P., Tran, A. B. & Zhu,L. (2015). Securing a Deployment
Pipeline. 2015 IEEE/ACM 3rd International Workshop on Release Engineering

(4−7). Florence, Italy, 2015.

Beigi-Mohammadi, N., Litoiu, M., Emami-Taba, M., Tahvildari, L., Fokaefs, M.,
Merlo, E. & Onut, I. V. (2018). A DevOps framework for quality-driven self-
protection in web software systems. In Andrew Jaramillo and Guy-Vincent
Jourdan (Eds.), Proceedings of the 28th Annual International Conference on

Computer Science and Software Engineering, CASCON '18 (270−274). IBM
Corp., Riverton, NJ, USA.

Charles Babbage Institute. (2003). An interview with Donn B. Parker. Conducted
by Jeffrey R. Yost on 14 May 2003 in Los Altos, California. Accessed online
21.2.2019 at:
https://conservancy.umn.edu/bitstream/handle/11299/107592/oh347d
p.pdf?sequence=1&isAllowed=y

Cois, C. A., Yankel, J. & Connell, A. (2014). Modern DevOps: Optimizing
Software Development Through Effective System Interactions. 2014 IEEE

International Professional Communication Conference, IPCC (1−7). Pittsburgh,
PA, USA, 2014.

Curphey, M. (2019). Fail Fast: How Shifting Security Left Speeds Development.
A DevOps.com blog, 8.2.2019. Accessed online 9.7.2019 at
https://devops.com/fail-fast-how-shifting-security-left-speeds-
development/.

Deloitte. (2019). Tech Trends 2019. Beyond the digital frontier. Deloitte Insights 10th
Anniversary Edition. Accessed online 25.5.2019 at
https://www2.deloitte.com/content/dam/insights/us/articles/Tech-
Trends-2019/DI_TechTrends2019.pdf.

64

Dhillon, G. & Backhouse, J. (2001). Current directions in IS security research:

Towards socio‐organizational perspectives. Information Systems Journal,

11(2), pp. 127−153.

Diekmann, C., Naab, J., Korsten, A. & Carle, G. (2019). Agile Network Access
Control in the Container Age. IEEE Transactions on Network and Service
Management, 16(1), pp. 41-55.

Düllmann, T. F., Paule, C. and van Hoorn, A. (2018). Exploiting devops practices
for dependable and secure continuous delivery pipelines. Proceedings of the
4th International Workshop on Rapid Continuous Software Engineering, RCoSE

'18 (27−30). ACM, New York, NY, USA.

Felderer, M. & Fourneret, E. (2015). A systematic classification of security
regression testing approaches. International Journal on Software Tools for

Technology Transfer, 17(3), pp. 305−319.

Ferry, N., Solberg, A., Song, H., Lavirotte, S., Tigli, J., Winter, T., Muntés-Mulero,
V., Metzger, A., Rios Velasco, E. & Aguirre, A. C. (2019). ENACT:
Development, Operation, and Quality Assurance of Trustworthy Smart IoT
Systems. In: Bruel JM., Mazzara M., Meyer B. (eds), Software Engineering
Aspects of Continuous Development and New Paradigms of Software Production

and Deployment (112-127). Chateau de Villebrumier, France, March 5−6, 2018.

Gartner. (2019). The Secret to DevOps Success. April 11th 2019. Accessed online
22.5.2019 at https://www.gartner.com/smarterwithgartner/the-secret-to-
devops-success/.

Google Trends. (2019). DevOps and DevSecOps comparison in the time period
1.1.2016-31.5.2019. Accessed online 9.7.2019 at
https://trends.google.com/trends/explore?date=2016-01-01%202019-05-
31&geo=US&q=devops,devsecops.

Hahn, D. (2016). How Netflix Thinks of DevOps. Accessed online 9.5.2019 at
https://www.youtube.com/watch?v=UTKIT6STSVM.

Humble, J. & Molesky, J. (2011). Why Enterprises Must Adopt DevOps to Enable
Continuous Delivery. The Journal of Information Technology Management 24(8),

pp. 6−12. Accessed online 9.5.2019 at
https://www.cutter.com/sites/default/files/itjournal/fulltext/2011/08/
itj1108.pdf.

Jaatun, M. G., Cruzes, D. S., Bernsmed, K., Tondel, I. A. & Rostad, L. (2015).
Software Security Maturity in Public Organizations. In: Lopez J., Mitchell C.
(eds), Information Security (ISC 2015). Lecture Notes in Computer Science,
vol 9290.

65

Jaatun, M.G., Cruzes, D. S. and Luna, J. (2017). DevOps for Better Software
Security in the Cloud Invited Paper. In: Proceedings of the 12th International
Conference on Availability, Reliability and Security (ARES '17). Reggio Calabria,

Italy, August 29−September 1 2017.

Jaatun, M. G. (2018). Software Security Activities that Support Incident
Management in Secure DevOps. In: Proceedings of the 13th International
Conference on Availability, Reliability and Security, ARES 2018. Berlin,
Germany, 27-30 August 2018.

Jabbari, R., Bin Ali, N., Petersen, K. & Tanveer, B. (2016). What is DevOps? A
Systematic Mapping Study on Definitions and Practices. In: Proceedings of
the XP2016 (XP '16 Workshops). ACM, New York, NY, USA, Article 12, 11
pages.

Khan, A. (2018). DevOps Culture at Amazon. Accessed online 9.5.2019 at
https://www.youtube.com/watch?v=mBU3AJ3j1rg.

Kitchenham, B. & Brereton, P. (2013). A systematic review of systematic review
process research in software engineering. Information and Software
Technology, 55(12), pp. 2049-2075.

Kitchenham, B. A., Budgen, D. & Brereton, P. (2016). Evidence-based software
engineering and systematic reviews. Boca Raton: CRC Press.

Lietz, S. (2016). Shifting Security to the Left. A DevSecOps blog, June 5 2016.
Accessed online 9.7.2019 at
https://www.devsecops.org/blog/2016/5/20/-security.

Loughman, K. (2019). The DevOps Model: Rapid Software Delivery and Incident
Management. Accessed online 24.11.2019 at
https://victorops.com/blog/the-devops-model-rapid-software-delivery-
and-incident-management.

MacDonald, N. & Head, I. (2017). 10 Things to get Right for Successful
DevSecOps. Gartner Research, 3 October 2017. Accessed online 9.7.2019 at
https://emtemp.gcom.cloud/ngw/eventassets/en/conferences/lsce14/d
ocuments/gartner-io-cloud-uk-research-note-successful-devsecops-
2018.pdf.

Mackey, T. (2018). Building open source security into agile application builds.

Network Security, 2018(4), pp. 5−8.

Mansfield-Devine, S. (2018). DevOps: Finding Room for Security. Network

Security, 2018(7), pp. 15−20.

McGraw, G. (2005). Bridging the Gap between Software Development and

Information Security. IEEE Security & Privacy, 3(5), pp. 75−79.

66

McGraw, G., Migues, S. & West, J. (2019). BSIMM9. Downloaded 20.5.2019 from
https://www.bsimm.com/.

Michener, J. R. & Clager, A. T. (2016). Mitigating an Oxymoron: Compliance in a
DevOps environment. 2016 IEEE 40th Annual Computer Software and

Applications Conference, COMPSAC (396−398). Atlanta, GA, 2016.

Mohammed, N. M., Niazi, M., Alshayeb, M. & Mahmood, S. (2017). Exploring
software security approaches in software development lifecycle: A
systematic mapping study. Computer Standards & Interfaces, 50(2017), pp.

107−115.

Mohan, V. and ben Othmane, L. (2016). SecDevOps: Is it a marketing buzzword?
mapping research on security in devops. In: Proceedings of the 11th
International Conference on Availability, Reliability and Security, ARES

(542−547). Salzburg, Austria, Sep. 2016.

Myrbakken, H. & Colomo-Palacios, R. (2017). DevSecOps: A Multivocal
Literature Review. International Conference on Software Process Improvement

and Capability Determination, (17−29). September 2017.

Puppet. (2019). 2018 State of DevOps Report. Accessed online 9.5.2019 at
https://puppet.com/resources/whitepaper/state-of-devops-report.

Raj, A., Kumar, A., Pai, S. J. & Gopal, A. (2016). Enhancing Security of Docker
using Linux Hardening Techniques. 2016 2nd International Conference on
Applied and Theoretical Computing and Communication Technology, iCATccT,

(94−99). Bangalore, India, 2016.

Rios, E., Iturbe, E., Mallouli, W. & Rak, M. (2017). Dynamic security assurance in
multi-cloud DevOps. 2017 IEEE Conference on Communications and Network

Security, CNS (467−475). Las Vegas, NV, USA.

Schoenen, S., Mann, Z. & Metzger, A. (2018). Using Risk Patterns to Identify
Violations of Data Protection Policies in Cloud Systems. In: Service-Oriented

Computing, ICSOC 2017 (296−307).

Shahin, M., Babar, M. A. & Zhu, L. (2017). Continuous Integration, Delivery and
Deployment: A Systematic Review on Approaches, Tools, Challenges and

Practices. IEEE Access, 2017(5), pp. 3909−3536.

Souza, E., Moreira, A. & Goulao, M. (2019). Deriving architectural models from
requirements specifications: A systematic mapping study. Information and

Software Technology, 2019(109), pp. 26−39.

67

Stroud, R. (2017). 2018: The Year of the Enterprise DevOps. Forrester. October 17,
2017. Accessed online 20.6.2019 at https://go.forrester.com/blogs/2018-
the-year-of-enterprise-devops/.

Tamburri, D. A., Di Nucci, D., Di Giacomo, L. & Palomba, F. (2019). Omniscient
DevOps analytics. Software Engineering Aspects of Continuous Development

and New Paradigms of Software Production and Deployment, pp. 48−59.

Thanh, T. Q., Covaci, S., Magedanz, T., Gouvas, P. & Zafeiropoulos, A. (2016).
Embedding Security and Pricacy into the Development and Operation of
Cloud Applications and Services. 2016 17th International Telecommunications

Network Strategy and Planning Symposium, Networks (31−36). Montreal, QC,
Canada.

Torkura, K.A., Sukmana, M. I. H., Cheng, F. & Meinel, C. (2018). CAVAS:
Neutralizing Application and Container Security Vulnerabilities in the
Cloud Native Era. In: Beyah R., Chang B., Li Y., Zhu S. (eds), Security and

Privacy in Communication Networks, SecureComm 2018 (470−490). Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol 254.

Tuma, K., Calikli, G. & Scandariato, R. (2018). Threat analysis of software systems:
A systematic literature review. The Journal of Systems & Software, 144(2018),

pp. 275−294.

Ullah, F., Adam J. R., Shahin, M, Zahedi, M. & Babar, M. A. (2017). Security
Support in Continuous Deployment Pipeline. International Conference on
Evaluation of Novel Approaches to Software Engineering, ENASE.

Ur Rahman, A. A. and Williams, L. (2016). Software Security in DevOps:
Synthesizing Practitioners’ Perceptions and Practices. 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery, CSED

(70−76). Austin, TX, USA.

Williams, L., McGraw, G. & Migues, S. (2018). Engineering Security Vulnerability

Prevention, Detection, and Response. IEEE Software, 35(5), pp. 76−80.

Willis, J. (2010). What DevOps Means To Me. Chef.io 16 July 2010. Accessed
online 10.5.2019 at https://blog.chef.io/2010/07/16/what-devops-means-
to-me.

Wohlin, C. (2014). Guidelines for Snowballing in Systematic Literature Studies
and a Replication in Software Engineering. EASE '14 Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering,

(1−10).

	1 INTRODUCTION
	2 THEORETICAL BACKGROUND
	2.1 Software development and the development life cycle
	2.2 DevOps as a development method
	2.3 The four principles of DevOps
	2.3.1 Culture
	2.3.2 Automation
	2.3.3 Measurement
	2.3.4 Sharing

	2.4 Security practices in software development
	2.4.1 A call for DevSecOps
	2.4.2 BSIMM and measuring software security

	3 RESEARCH METHODOLOGY
	3.1 Systematic literary review and the research process
	3.2 Research questions
	3.3 Search method, strategy and criteria
	3.4 Study selection process
	3.5 Data extraction and analysis

	4 RESULTS
	4.1 Demographic data
	4.2 Challenges to security
	4.3 Security practices/activities
	4.3.1 Use application behavior monitoring and diagnostics
	4.3.2 Perform security feature review
	4.3.3 Ensure host and network security basics are in place
	4.3.4 Use orchestration
	4.3.5 Drive tests with security requirements and features
	4.3.6 Ensure cloud security basics
	4.3.7 Create policy
	4.3.8 Use application containers
	4.3.9 Send SW defects found in monitoring back to development
	4.3.10 Use automated tools along with manual review
	4.3.11 Use automated tools with tailored rules
	4.3.12 Use application input monitoring
	4.3.13 Identify gate locations, gather necessary artifacts

	4.4 The four principles of DevOps

	5 DISCUSSION
	5.1 RQ1: Challenges of security in DevOps
	5.2 RQ2: Security activities that are associated with DevOps
	5.3 RQ3: CAMS principles reflected in DevOps research
	5.4 Limitations, reliability and validity
	5.5 Topics for future research

	6 CONCLUSION

