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Abstract—This paper describes an efficient system for
ensuring code integrity of an OS, including its own-code and
applications. We claim that the proposed system can protect
from an attacker that has full control over the OS kernel. An
evaluation of the system’s performance suggests that the induced
overhead is negligible.

Index Terms—Security, application whitelisting, authorized
execution, virtual machine monitors, secure boot, hypervisors

I. INTRODUCTION

THE problem of unauthorized software execution is well
known. Malicious programs can corrupt or steal sensitive

user data or sabotage the normal course of execution. Current
methods of preventing unauthorized execution can be divided
into three categories [1]:

1) Behavioral: these systems analyze the behavior (e.g.,
network or hard-drive activity) of the system and compare
the current with a predefined behavior. If these behaviors
differ, the environment is considered breached.
2) Signature-oriented: these systems contain a database
of code samples that are known to be malicious. Every
loaded executable is scanned and if it contains a code
sample that is present in the database, then the environ-
ment is considered breached. Most anti-virus programs
can be categorized as signature-oriented.
3) Whitelist-oriented: these systems contain a database of
allowed executables. The criteria used for whitelisting is
frequently based on one or more file attributes (e.g., file-
path or cryptographic hash) [2]. Unlike signature-based
systems, only these executables are allowed to run. These

systems typically intercept every loaded executable and
check whether it is contained within the database. If not,
then the environment is considered breached.

The strength of behavioral systems is difficult to evaluate
because these systems are based on heuristics[4]. Signature-
based systems can protect only against attacks that were previ-
ously discovered and analyzed, and are, therefore, ineffective
against zero-day attacks [3]. Whitelist-based systems provide
the strongest protection guarantees [5] but are also the most
restricting. For example, in order to install a new program, the
system administrator must allow this program to be installed
by inserting it into the whitelist database. Typically, whitelist
enforcement is performed by intercepting executable images
at their load time (e.g., by intercepting system-calls) [6]. In
the event that there is a vulnerability, exploitation becomes
possible in runtime [7][8]. Nonetheless, in environments that
do not tend to change frequently, the preferred option is a
whitelist-based system.

Protection systems differ not only in their modus operandi,
but also in their mechanisms for self-protection. The system
must protect its whitelist database and also itself. Some
systems use agent-network verifiers that periodically checksum
different portions of the system [9]. Others store their criti-
cal code in kernel mode (the OS privilege-level), assuming,
reasonably, that the OS is less vulnerable to attacks than
regular programs [10]. Due to their relatively large attack
surface, OSes with monolithic/hybrid kernels, such as Linux
and Windows, require additional protection mechanisms [9].

Our method can be categorized as whitelist-based as it
permits the creation of a whitelist database of allowed exe-



cutables that will be used by the system to enforce authorized
execution. However, our method does not suffer from two main
deficiencies present in current methods:

1) In our method, the execution of a given executable
image (both in user mode and kernel mode) is enforced
during its entire lifetime.
2) In our method, the system can prevent execution of
unauthorized code even in case an attacker has full control
over the OS kernel.

We consider an attacker that has (1) remote access to the ma-
chine and (2) full control over the OS kernel and peripherals.
In addition, we assume that the UEFI firmware is trusted.
We argue that given the described attacker and the given
assumption, the described system can withstand (1) malicious
code execution in user mode or kernel mode, and (2) attacks
that involve malicious DMA memory writes using peripherals.

To provide such strong security guarantees, our system uses
a hypervisor. We show that the performance degradation of the
proposed system is negligible.

A hypervisor is a software module that is able to monitor
and control the execution of an OS. These capabilities are
provided by an extension to the original processor’s instruction
set, called "virtualization extensions". Virtualization exten-
sions are available on processors designed by Intel (VT-x) [11],
AMD (AMD-V), and ARM (Virtualization Extensions). Our
method is implemented on Intel processors but can be easily
ported to AMD and ARM. In section VI we discuss how our
method can be ported to the ARM architecture.

Throughout this paper, we refer to the entity that wants to
protect the system as the system administrator.

A. VMX

Many modern processors are equipped with a set of exten-
sions to their basic instruction set architecture that enables
them to execute multiple OSes simultaneously. This paper
discusses Intel’s implementation of these extensions, which
they call Virtual Machine Extensions (VMX). The software
that governs the execution of the operating systems is called
a "hypervisor" and each OS (with the processes it executes)
is called a "guest". Transitions from the hypervisor to the
guest are called "vm-entries" and transitions from the guest to
the hypervisor are called "vm-exits". While vm-entries occur
voluntarily by the hypervisor, vm-exits are caused by some
event that occurs during the guest’s execution. The events may
be synchronous, e.g., execution of an INVLPG instruction, or
asynchronous, e.g., page-fault or general-protection exception.
The event that causes a vm-exit is recorded for future use
by the hypervisor. A special data structure called the Virtual
Machine Control Structure (VMCS) allows the hypervisor to
specify the events that should trigger a vm-exit as well as
many other settings of the guest.

Intel’s Extended Page Table (EPT), a technology generally
called Secondary Level Address Translation (SLAT) allows
the hypervisor to configure a mapping between the physical
address space, (as it is perceived by a guest) and the real
physical address space. Similarly to the virtual page table,

EPT allows the hypervisor to specify the access rights for each
guest’s physical page. When a guest attempts to access a page
that is either not mapped or has inappropriate access rights,
an event called EPT-violation occurs, triggering a vm-exit.

Input-Output Memory Management Unit (IOMMU) speci-
fies the mapping of the physical address space as perceived
by the hardware devices to the real physical address space.
It is a complementary technology to the EPT that allows the
hypervisor to construct a coherent guest physical address space
for both the OS and the devices.

B. System description
The system described in this paper consists of a UEFI [12]

application and an executable scanner. The executable scanner
creates a whitelist database that stores hashes of executable
images’ pages within an initially trusted system. The UEFI
application initializes a hypervisor that monitors the execution
of the system by running the OS as a guest. Whenever the
guest attempts to execute a page that was not previously
approved, a vm-exit occurs. The hypervisor computes the
hash of the page to be executed and compares it against the
appropriate record in the database. If a match is found, then
the page is given execution rights and the hypervisor performs
a vm-entry to continue the normal execution of the system.

We use the UEFI secure boot feature to guarantee the
integrity of the UEFI application before it is executed by
the UEFI firmware. The UEFI application reads the whitelist
database from the disk into the main memory and then
initializes a hypervisor. The hypervisor configures the EPT
and the IOMMU such that the whitelist database and the
hypervisor’s code and data are not accessible either from the
guest or from a hardware device.

II. PREPARATIONS

The system administrator needs to scan an initially trusted
system and install the necessary files on a target machine.
Afterwards, he needs to configure secure boot. These processes
are described in the following paragraphs.

A. User mode scanning
The executable scanner runs on an initially trusted system.

It recursively looks for all executable images; specifically,
executables and shared-objects. In x86-64, memory accesses
are RIP-relative. That is, the access offset to local symbols
can be computed in advance by the static linker. Therefore,
modifications to code that reference local symbols will not be
needed in runtime.

An executable image may have many runtime dependencies.
The runtime dependencies of an executable image are handled
by the dynamic linker. Fortunately, in Linux, the dynamic
linker performs modifications only to the data segment of the
executable image. Therefore, the executable scanner simply
hashes the executable segment of every executable/shared-
object, in a page granularity, and stores the results consec-
utively in the database. Fig. 1 depicts the process. After
all executable images are scanned, the executable scanner
lexicographically sorts the hashes.
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Fig. 1. The user mode executable image to be signed (left) is composed of
one code segment, divided to virtual-pages. Each page is signed using SHA1
and the result is stored in the whitelist database (right).

B. Kernel mode scanning

The Linux kernel is composed of a statically linked exe-
cutable image (vmlinux) and potentially loaded kernel mod-
ules. Kernel modules are different in their nature of execution
than executable and shared-object files. This difference is
reflected in two ways:

• Kernel modules are linked into the running kernel upon
loading. That is, resolving of internal/external used sym-
bols is undertaken solely by the kernel. These modifi-
cations vary between resets as kernel modules are not
loaded to fixed addresses.

• The Linux kernel performs various static/dynamic modi-
fications to the loaded code. For example, when compiled
with ftrace, the first 5 bytes of each function are reserved
for the Linux kernel internal tracer. These bytes are
patched to no-ops at load time. Other possible modifica-
tions, that can be disabled/enabled in compilation time,
are jump-labels, paravirt-operations (x86 specific) and
alternatives. Fortunately, most of these modifications take
place only at load time.

The user mode executable images scanning process has
many advantages: (a) a simple whitelist database structure, (b)
reduced runtime monitoring complexity, and (c) reduced run-
time monitoring performance overhead. The whitelist database
is simply composed of lexicographically sorted hashes. The
latter allows the hypervisor to quickly look for a match. In
addition, its code can be kept to a minimum. Similarly to user
mode, the Linux kernel, by default, aligns code sections on
page boundaries to ensure complete separation of the code
and the data. In addition, as explained, most of the modifi-
cations take place only at load time. To retain the executable

scanner user mode modus-operandi for kernel modules, we
have performed the following steps:

1) During its initialization, the Linux kernel may op-
tionally mount an initial ramdisk (initramfs), if found.
The purpose of the initial ramdisk is to mount the root
file system. In many Linux distributions (mainly general
distributions), the initramfs also includes kernel modules
because the machine on which the kernel will run is
not known in advance. We built the latest stable Linux
kernel to date (4.15.10, 19.03.2018) on a random ma-
chine, having all the necessary kernel modules statically
compiled into the kernel. The latter can be achieved
using ’localyesconfig’ make target. Because the necessary
kernel modules are statically compiled into the kernel,
it was not necessary to boot the system with an initial
ramdisk.
2) We booted up the system (Ubuntu 16.04.4 LTS)
with the just-built kernel and disabled kaslr. Afterwards,
we scanned the kernel directly from the main memory.
Because the executable scanner cannot directly access
kernel space memory (as it executes in user mode), the
hypervisor provides a hypercall service that can be used
to compute a hash of a given kernel page. The executable
scanner uses the latter service to generate hashes of all
active kernel-pages. These hashes are written directly into
the whitelist database consecutively (just as in user mode
applications).

It is worth noting that all the information regarding possible
kernel-code modifications, both in kernel modules and the
kernel image, is located within the corresponding images.
In addition, the initial ramdisk can be mounted and scanned
by the executable scanner. However, we chose to omit these
capabilities from the executable scanner and the hypervisor
due to the induced overhead and complexity.

C. Configuring secure boot

"Secure boot" is a feature provided by UEFI that allows
a computer system owner to authenticate UEFI applications
prior to their execution, thereby protecting the executable
image from malicious modifications.

The UEFI specification defines four non-volatile variables
used to control secure boot:
• platform key (pk)
• key exchange key (kek)
• signature database (db)
• forbidden signature database (dbx)

The most prominent variables are the platform key and the key
exchange key. The platform key can contain one entry at most;
typically, an x509 public key that belongs to the hardware
vendor. The platform key can be used to sign kek keys. The
kek variable may contain more than one entry. Each of the kek
keys can be used to sign trusted executable images. Typically,
the kek variable contains one or more keys that belong to
the OS vendor. The db variable holds a whitelist database
of executable images while the dbx variable holds a blacklist



database of executable images. Updates to the db and dbx
variables need to be signed using one of the keys within the
kek variable.

Obviously, without knowing the private keys of the OS ven-
dor, it is not possible to manipulate the secure boot variables.
However, it is possible to rewrite all the keys. This process is
referred to as taking control over the platform. Alternatively, it
is possible to use an application called SHIM, which is signed
by Microsoft. SHIM validates and loads another application.
The validation is performed against a special boot service only
(i.e., can be manipulated only during boot) UEFI variable,
MokList. Unlike the secure boot variables, MokList can be
modified without providing the private key of the OS vendor.
Typically, SHIM launches a MokList management application
that allows modifying the MokList variable in case the boot
validation process failed. At this point, it is possible to add
the signature of the desired UEFI application to the MokList.

To utilize secure boot, for the sake of our UEFI application
verification, the system administrator has two options. Steps
for option 1:

1) Reset the platform key. This can be done by entering
UEFI setup mode.
2) Create key-pairs for KEK, DB, and PK.
3) Write the just-created keys to the corresponding UEFI
variables in the specified order.
4) Sign our UEFI application using the created KEK or
DB keys.
5) Copy the resultant signed UEFI application to the ESP
partition.
6) Reboot the system.

Steps for option 2:
1) Copy the SHIM and the MokList management appli-
cations into the ESP partition.
2) Reboot the system.
3) Add our UEFI application signature to the MokList
using the MokList management application.
4) Reboot the system.

D. Target installation
When the system’s boot mode is configured to UEFI after a

successfull startup, the UEFI boot manager loads a sequence
of executable images, called UEFI applications. The UEFI
firmware stores the location at which these images reside in
a non-volatile storage. The boot-sequence can be configured
using the firmware setup screen. The UEFI boot manager loads
an executable image into the main memory, undertakes the
necessary fixups, and executes its main routine. In case the
entry routine returns, the UEFI boot manager proceeds to the
next executable image, if there is one. The UEFI application’s
entry routine may also not return. A typical example for the
latter is an OS loader implemented as a UEFI application.

The system described in this paper is implemented as a
UEFI application. A system administrator interested in in-
stalling the system needs to perform the following steps:

1) Configure secure boot (as described in the previous
subsection)

2) Install the UEFI application into a location accessible
by the firmware. (e.g., a USB stick or a TFTP server.)
3) Install the whitelist database file into a storage device
that is accessible by the firmware. For example, we
recommend it is placed within the ESP partition on which
the UEFI application resides.

III. OPERATION

The UEFI application, during its execution, obtains the
whitelist database file from the disk, initializes a hypervisor,
and returns to UEFI firmware. The UEFI firmware then
proceeds to the next boot option which is typically the OS
bootloader. The hypervisor remains in the main memory and
continues its operation even after the application terminates.
The hypervisor is set to detect code execution attempts both in
user mode and kernel mode. When such an attempt is detected,
the hypervisor verifies the page to be executed using its
whitelist database. In the case of a valid hash, the hypervisor
resumes the execution of the guest. The rest of this section
provides a detailed explanation about the initialization and the
operation of the system.

A. Initialization

The UEFI application starts by allocating a persistent mem-
ory block (i.e., the memory block can be used even after
the application terminates) using UEFI boot services. The
UEFI application loads the whitelist database into the allocated
memory block using UEFI’s file I/O services.

Afterwards, the UEFI application verifies the authenticity of
the whitelist database using our built-in hardcoded certificate.
Next, the UEFI application allocates another persistent mem-
ory block and initializes a hypervisor. During the hypervisor
initialization, the EPT and the IOMMU are set up. Both the
EPT and the IOMMU define not only the mapping of the
perceived page but also its access rights. The hypervisor sets
the EPT and IOMMU mappings by performing the following
steps:

1) The hypervisor sets an identity mapping between the
real physical address space and the guest physical address
space. The latter is done by configuring the EPT such that
guest physical page X translates to host physical page X.
Fortunately, setting up identity mapping between the real
physical address space and the I/O peripherals physical
address space is trivial as the page-table hierarchy used
by the EPT can also be used by the IOMMU.
2) The hypervisor sets the access rights of the hypervi-
sor’s code and data to read-only. This step ensures that
malicious code, even if it executes in kernel mode, cannot
modify the hypervisor’s code and data.
3) The hypervisor sets the access rights of the remaining
physical address space to write-only. This step ensures
that any execution attempt will trigger a vm-exit, thus
allowing the hypervisor to validate the faulting page.

Fig. 2 depicts the physical address space as it is perceived by
the guest and I/O peripherals.
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Fig. 2. Physical address space as perceived by the guest and I/O peripherals
(right). Physical page A contains code that was previously authenticated by
the hypervisor. Therefore, it has read/execute rights. Physical page B has yet
to be executed. Therefore, it has read/write rights. Physical page C contains
the hypervisor’s code/data. Therefore, it has read only rights.

B. System monitoring

The hypervisor waits for an EPT violation to occur. When a
vm-exit occurs, the processor saves the guest’s state to VMCS,
loads the hypervisor’s state from VMCS, and begins execution
of the hypervisor’s predefined vm-exit handler. The handler
checks whether the vm-exit was due to an EPT violation.
Among the information stored in VMCS are the EPT violation
reason and the guest physical address that caused the EPT
violation. Due to the nature of our method, a page can either
be executable or writable, but not both. Therefore, all the EPT
violations are attributed to an attempt to write or to execute.
• If the violation was due to a write attempt, the hypervisor

then removes the execute rights from the violating page,
grants it write rights, and performs a vm-entry.

• If the violation was due to an execution attempt, the
hypervisor then computes the hash of the violating phys-
ical page and looks for the resultant hash in its whitelist
database. If a match is found, the hypervisor then re-
moves the write rights from the violating page, grants it
execute rights, and performs a vm-entry. If a match is not
found, in case the violation occurred in user mode, the
hypervisor injects a general-protection fault to the guest
OS. Otherwise, if the violation occurred in kernel mode,
the hypervisor then freezes up the system. Typically, the
OS reacts to general-protection in user mode by stopping
the running process.

C. OS kernel monitoring

When it comes to kernel mode, enforcing an unauthorized
execution cannot always be done lazily (i.e., only at the time
of a violation). In kernel mode, some actions are time critical.
For example, acknowledging an interrupt to the PIC cannot
cause an EPT violation as interrupt requests of equal or lower
priority will not be generated until the page is given execution
rights and an acknowledgement is sent to the PIC. Recall that

the hypervisor initializes the EPT such that the entire guest
physical address space has write-only access rights. That is to
say, potentially time-critical kernel code will trigger a vm-exit
due to an EPT violation upon execution attempt. To overcome
this issue, the hypervisor verifies the kernel code pages and
grants these pages execution rights.

Because we compiled the needed kernel modules statically
into the kernel, there should be no more EPT violations due
to kernel execution attempts. Nevertheless, if such an attempt
is encountered, the hypervisor simply freezes up the machine.

IV. SECURITY

We consider an attacker that has (1) remote access to
the machine and (2) full control over the OS kernel and
peripherals. In addition, we assume that the UEFI firmware
is trusted. We argue that given the described attacker and
the given assumption, the described system can withstand (1)
malicious code execution in user mode or kernel mode, and
(2) attacks that involve malicious DMA memory writes using
peripherals.

In this paper, we assume that the UEFI firmware is trusted.
This assumption can be relaxed by integrating a hardware root
of trust method into our system. An Example of such method
is the Intel Boot Guard technology, which allows verification
of the boot process by flashing a public key into an OTP
memory. In this way, the firmware code is verified on each
subsequent boot. Obviously, once enabled, Intel Boot Guard
cannot be disabled. We argue that the described system will
prevent any unknown malicious code in user mode or kernel
mode from executing.

Our method, being a whitelist system, prevents execution
of unauthorized code. However, attacks in which the attacker
manipulates the control flow of a program (e.g., by causing a
return instruction to pass control to an existing code of his
choosing) are possible. In Section VI we discuss how our
system can be further extended to provide protection from
such attacks.

A. HV memory protection

Secondary Level Address Translation (SLAT) is a mecha-
nism implemented as part of hardware-assisted virtualization
technology to reduce the overhead of managing the hypervi-
sor’s guest page-tables. SLAT is supported by Intel (EPT),
AMD (RVI), and ARM (Stage-2 page-tables). Simply put,
SLAT allows the hypervisor to control the mapping of physical
pages addresses as they are perceived by the guest (known
as guest-physical-address) to real physical pages addresses
(known as host-physical-address). An analogy to SLAT usage
in a virtualized environment (i.e., controlled by a hypervisor),
is virtual page-tables usage in a process context in a non-
virtualized environment (i.e., controlled by an OS). Fig. 3
depicts the guest’s address translation process.

The Input Output Memory Management Unit (IOMMU)
is a memory management unit that stands between DMA-
capable peripherals and the main memory. In this sense,
it functions as a virtual page-table for devices. DMA is a
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hardware mechanism that allows peripherals to access the
main memory directly without going through the processor.
The IOMMU allows the OS or hypervisor to set paging-
structures for the peripherals. That is, the peripherals will
access a virtual-address (also known as I/O address) that will
be translated by the IOMMU.

To protect itself against malicious modifications, the
hypervisor configures both the EPT and the IOMMU in such
a way that all of its sensitive memory regions are not mapped
and, therefore, are not accessible either from the guest or
from a hardware device.

B. Secure boot

"Secure boot" is a feature provided by UEFI that allows
a computer system owner to authenticate UEFI applications
prior to their execution, thereby protecting the executable
image from malicious modifications.

The first phase in the UEFI boot process is the firmware
initialization phase. The firmware initialization phase is also
called the security (SEC) phase because it serves as the basis
for the root of trust. After the completion of the SEC phase,
the trust is maintained via public key cryptography.

The UEFI secure boot feature is essential for the security
of our system. Consider, for example, an attacker that has a
remote root access to a machine. In addition, the media that
contains the UEFI application is plugged into the computer.
The attacker can mount the partition on which the UEFI ap-
plication resides and modify the executable image as required.
As a result, during the next boot, the UEFI firmware will load
the malicious executable image.

V. PERFORMANCE

The proposed system goes into action when an EPT vio-
lation occurs. Recall that due to the nature of our method,
a page can either be executable or writable but not both.
Therefore, all EPT violations are due to an attempt to write
or to execute. Whenever a page requires execution rights, the
hypervisor computes its hash and searches for a match within
the whitelist database. When a page requests write rights, the
hypervisor simply removes its execution rights and grants it
write rights instead.

In the first experiment, we tried to estimate the induced
overhead due to the aforementioned by forcing the OS to page-
out a code page every time it is accessed. Therefore, it has to
be brought up from the disk and written to memory before it

can be executed. The results show that the extra overhead is
negligible compared with the time it takes to read the page
from the disk and write it to memory.

In the second experiment, we performed an empirical evalu-
ation of the system. We picked an open-source benchmarking
software and ran several types of benchmarks to assess the
impact of our system on a randomly selected computer. The
results show that the induced overhead is negligible.

All experiments were performed in the following environ-
ment:
• CPU: Intel Core i5-4570 CPU @ 3.20GHz (4 physical

cores - only 1 core was enabled)
• RAM: 8GB
• OS: Ubuntu 16.04.4 LTS - customized kernel 4.15.10 as

described in section II.

A. Page verification forcing experiment

In this experiment, we took a large executable file (10MB)
and modified one of its code pages such that the first byte of
the page was 0xc3 (return-from-procedure opcode in x86). We
wrote an application that requests a mapping of the aforemen-
tioned file into its virtual address space with full access rights
(read, write, and execute). Next, using the fadvise64 system
call, we instructed the OS not to keep the file in memory. The
size of the file, along with the advise caused the access to
any page within the mapped file to always generate a major
page fault (i.e., it forced the OS to access the disk). Then,
using rdtsc, we measured the number of cycles it takes to
perform the call to our modified page and return, with and
without active page verification. We ran the application a total
of 100,000 times. As can be seen by the results presented in
Fig. 4, the performance penalty of the active page verification
is less than one percent.

1929.91With active page verification

1911.25Without active page verification

0 2000

Fig. 4. Thousands of cycles (less is better) for a single call and return.

B. Empirical evaluation

In this experiment, we tested the system in three scenarios:
• without hypervisor
• with hypervisor and disabled page verification
• with hypervisor and enabled page verification
We selected an open-source benchmarking software,

Phoronix Test Suite [13] (PTS) v5.2.1 (Khanino). Six tests
were conducted:
(a) unpack-linux: Linux kernel unpacking, disk-intensive,

default configuration.
(b) compress-7zip: 7-Zip compression test, cpu-intensive, de-

fault configuration.



(c) dbench-6client: Dbench disk performance test, disk-
intensive, 6-client configuration.

(d) dbench-48client: Dbench disk performance test, disk-
intensive, 48-client configuration.

(e) ramspeed: System memory performance test, memory-
intensive, copy and integer configuration.

(f) git: Sample git operations, general system benchmark,
default configuration.

As can be seen in the results reported in Fig. 5, the perfor-
mance penalty of the hypervisor is no more than 5% compared
with No-HV, whereas compared with the performance penatly
of the HV with page verification, it is no more than 2%
compared with HV only.
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Fig. 5. Overhead of the benchmark execution under two conditions: (a) with
HV only, and (b) with HV and enabled page verification

VI. LIMITATIONS AND FUTURE WORK

Our method suffers from several limitations. These limita-
tions and possible solutions are described in the next para-
graphs.

A. SMP support

Our method currently supports only one processor. Recall
that whenever an EPT violation occurs, the processor needs to
update the EPT structures with the correct access rights (write
or execute). The processor may cache information from the
EPT paging structures. That is, in a multi-processor system,
the processor that caused the violation will have to gather
all the processors to make sure that their internal caches are
flushed after setting up the new rights. This process is very
common and is usually referred to as TLB shootdown. Due to
the relatively high turnover of user mode pages, this gathering
process can induce significant overhead.

A possible optimization to the aforementioned performance
problem is based on the fact that it is not always necessary for
all processors to have an identical EPT paging structure at any
given point in time as we do not modify the actual mappings
but only the access rights. For example, if processor A needs
to set execution rights for a physical page x and processor
B has only read rights for physical page x, then processor A
can freely modify its EPT paging structure without gathering
processor B.

B. Other OSes support

Supporting other OSes is indeed possible as we do not
perform any modifications whatsoever to the running kernel.
However, other OSes may behave differently, both in kernel
mode and user mode. For example, Windows may modify the
program’s code at load time. These modifications, however, are
not difficult to handle because all information about them is
located within the PE file. In addition, they all take place only
at load time. Examples of such modifications are relocations
and security cookies that if they exist, are stored within the PE
executable file. The former is stored within a special section
while the latter is stored in a PE data-directory.

Despite the security consequences of having both code and
writable data on the same page (for example, this arrangement
breaks DEP), there are still OSes on which it is possible. The
latter may introduce two problems to our current method: (a)
a partial code page, (b) a self-modifying page. If the data part
of a partial code page is modified during runtime, then its hash
might not match. Fig. 6 illustrates the problem.

Consider the same scenario as described in the previous
problem, but this time page A modifies its own data. As a
result, the system will enter an infinite write/execute EPT
violation loop.

The second problem becomes like the first problem by
emulating the write operation. However, the bigger challenge
is to decide whether the written data is legitimate or malicious.
We argue that the executable scanner can be modified to
support legitimate runtime modifications.

C. Managed code

Our method is very efficient and effective when execution of
native-code is considered because it is executed directly by the
processor. On the other hand, managed and interpreted code
is typically executed by another application usually referred
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Fig. 6. Page A is a partial code page (i.e., contains both code and data).
Initially, the data part has not yet been modified; therefore, H(A) is located
within the whitelist database. Later, the data part of page A is modified. Even
though the code is left untouched, an execution attempt of A’ will fail as
H(A’) is not located in the whitelist database.

to as a virtual machine. If the virtual machine itself is signed,
then the hypervisor will allow it to freely execute possibly
malicious code.

A possible solution to managed and interpreted code is to
to store the hashes of the managed and interpreted code within
the whitelist database. The hypervisor can intercept the virtual
machine application attempts to load the code and perform
a hash validation. The hypervisor can possibly detect such
attempts by intercepting system-calls within the guest OS.
This solution, however, will not handle cases in which the
interpreted code is compiled into native code (i.e., JIT code).

D. Control flow and data integrity

Our method guarantees that no malicious modifications will
be undertaken to executing code (both in user mode and kernel
mode). However, our method does not provide user mode and
kernel mode control flow and data integrity. For example,
an attacker may modify the contents of the .got section,
thus affecting the control flow of a program. Thankfully,
control flow integrity is a heavily researched subject and many
effective solutions exist[14][15]. We believe that such attacks
can be mitigated by combining our method with a method that
guarantees control flow integrity. Moreover, our system can be
used to enforce authorized code execution on the used method.

E. ARM architecture

Our method can be ported to the ARM architecture on ARM
devices (e.g., most of today’s smartphones) that implement
the virtualization extensions. ARM virtualization extensions
provide capabilities similar to Intel VT-x. For example, they
provide a mechanism similar to Intel EPT for guest-physical-
address (IPA in ARM terminology) to host-physical-address
translation. The ARM Security Extensions, known as Trust-
Zone, provide a way to create an isolated environment in
which sensitive applications can execute. This isolated envi-
ronment executes at the highest privilege level (higher than
the hypervisor) and is not subject to virtualization. Due to
the latter, for better security guarantees, our system might use
TrustZone in addition to a hypervisor.

F. Other applications

Our method can be further extended to provide other useful
security applications. An example of such application is a
sandbox for runtime analysis of malware. This can be done
by entering a special monitor mode in case of an execution
violation. In monitor mode, the behavior of the violating
process may be inspected. Examples of potentially interesting
behaviors are system-calls initiated by the process and code
executed by the process.

VII. CONCLUSIONS

We have seen that current whitelist-based systems have
deficiencies that make them impractical, particularly in the
case of code modification attacks. We have described a system
that will prevent any unauthorized native-code from being
executed. We explained in detail how the described system can
be installed and even verified on each subsequent boot. We also
showed that the performance overhead of the proposed system
is negligible. The described system has a few limitations.
However, as described, most of these limitations can be
overcome without much effort. The described system can be
further extended to provide other useful security applications.
We believe that in addition to VMX, the Intel SGX can be
used to provide data integrity for user mode applications.
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