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marjaana.nokka@jyu.fi

S. Repin∗
V. A. Steklov Institute of Mathematics RAS
27, Fontanka, St. Petersburg 191011, Russia

Peter the Great St. Petersburg Polytechnic University
29, Polytekhnicheskaya St., St. Petersburg 195251, Russia

repin@pdmi.ras.ru UDC 519.6

We deduce a posteriori error estimates of functional type for the stationary Stokes prob-

lem with slip and leak boundary conditions. The derived error majorants do not contain

mesh dependent constants and are valid for a wide class of energy admissible approxima-

tions that satisfy the Dirichlet boundary condition on a part of the boundary. Different

forms of error majorants contain global constants associated with Poincaré type inequal-

ities or the stability (LBB) condition for the Stokes problem or constants associated

with subdomains (if a domain decomposition is applied). It is proved that the majorants

are guaranteed and vanish if and only if the functions entering them coincide with the

respective exact solutions. Bibliography: 38 titles. Illustrations: 1 figure.

Dedicated to the jubilee of dear Nina Nikolaevna Uraltseva

1 Introduction

Mathematical models of viscous incompressible fluids with nonlinear boundary conditions were

introduced and studied by Fujita [1]–[3], who proved the existence and uniqueness of weak

(generalized) solutions to the Stokes problem under leak or slip boundary conditions. These

models are often used in various applied problems (for example, in analysis of oil flow beneath
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or over sand layers [4, 5], simulation of blood flow, modeling of avalanches of water and rocks).

Numerical methods for this class of nonlinear problems are well developed (cf., for example,

[6]–[14] and many other publications cited therein).

In this paper, we address a different problem, which arises if a numerical solution has been

already found and we need to estimate the distance between the exact solution and this ap-

proximation. For the considered class of problems we deduce estimates (hereafter called error

majorants) that solve this problem. A majorant includes only known data and known functions

(approximations of the velocity, stress, and pressure fields). Also, they contain global constants

associated with certain functional inequalities (Friedrichs, Poincaré, LBB, Korn) related to the

problem in question. Estimates of these constants can be found either computationally (by well

known numerical methods) or analytically. The latter way is based on decomposition of Ω into

a collection of “simple” subdomains, for which the respective constants (or sharp estimates of

them) are known. Hence a majorant is a computable nonnegative functional that provides an

upper bound of the error measured in terms of the natural energy norm. We prove that it

vanishes if and only if an approximate solution substituted into the majorant coincides with

the exact solution. It should be outlined that the majorants are derived by purely functional

methods without attracting specific features of approximations (for example, Galerkin orthogo-

nality) or a numerical method by which they were obtained. Therefore, they are valid for any

approximation in the energy space satisfying the main boundary conditions.

Our analysis is based on the theory of functional a posteriori error estimates (for a systematic

exposition of this theory in the context of viscous incompressible fluids we refer to [15]–[17]).

For some problems with nonlinear boundary conditions estimates of this type have been earlier

obtained in [18, 19] by methods of duality theory and convex analysis (which differs from the

method used in this paper). In [20], the estimates were used for analysis of approximations

generated by the Uzawa method.

1.1. Notation and basic equations. Throughout the paper, Ω denotes a connected

bounded domain in R
d (d = 2, 3) with Lipschitz continuous boundary Γ, which consists of two

disjoint measurable parts Γ1 and Γ2 (measd−1Γ1 > 0). We denote by {ϕ }Ω the mean value

of a summable function ϕ in Ω, and ˜L2(Ω) coincides with L2(Ω) if Γ �= Γ1 and is defined as

the subspace of L2(Ω) containing functions with zero mean values in the case of full Dirichlet

boundary conditions. Next, V := H1(Ω,Rd) is the Sobolev space of vector-valued functions

having square summable derivatives of the first order and V0 is a subspace of V containing

functions vanishing on Γ1. We denote by S(Ω) a subspace of V containing solenoidal (divergence

free) functions. Analogously, S0(Ω) denotes the subspace of S(Ω) containing functions vanishing

on Γ1.

Also, we use the space of tensor-valued functions Σ(Ω) := L2(Ω,Md×d), where M
d×d is the

space of real d × d-matrices (tensors) with the unit element I and scalar product denoted by

two dots : , τn denotes the normal component (vector) of the tensor τ . Since no confusion may

arise, we use one common notation ‖ · ‖ for the L2-norms of scalar, vector, and tensor-valued

functions, for example,

‖τ‖2 :=
∫

Ω

|τ |2 dx =

∫

Ω

τ : τdx.

This norm is associated with the corresponding inner product ( , ). If it is associated with a

set ω that differs from Ω, then the norm is written as ‖ · ‖ω. We denote by div and Div the

2



divergence operators for the vector and tensor fields respectively. Henceforth, we use the bilinear

form a : V × V → R

a(u, v) :=

∫

Ω

νε(u) : ε(v) dx,

where

ε(u) =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

is the symmetric part of the gradient tensor and ν is a function (viscosity) bounded from below

and above by positive constants ν and ν. For the sake of convenience, we additionally introduce

the norms

‖η‖2ν :=

∫

Ω

ντ : τ dx,

‖η‖21/ν :=

∫

Ω

ν−1τ : τ dx,

which are equivalent to the norm of Σ(Ω).

1.2. Estimates of the distance to the exact solution of the Stokes problem. We

begin with a short overview of previous results related to the derivation of estimates that control

the distance between the exact solution of the Stokes problem and a vector-valued function

considered as an approximation of it. The classical Stokes problem with the Dirichlet–Neumann

boundary conditions consists of finding a velocity field u ∈ V and a pressure field p ∈ ˜L2(Ω)

such that

−Div η +∇p = f in Ω, (1.1)

div u = 0 in Ω, (1.2)

η = νε(u) in Ω, (1.3)

u = uD on Γ1, (1.4)

σn = F on Γ2, (1.5)

where f ∈ L2(Ω,Rd), F ∈ L2(Γ2,R
d), n denotes the unit outward normal vector to the boundary,

uD is a given divergence free function that defines the boundary condition on Γ1 (in the sense

that the trace of u coincides with the trace of uD), and ε(u) is connected with the stress tensor

σ by the relation σ = −pI+ νε(u).

It is well known (cf., for example, [21, 22]) that the problem (1.1)–(1.5) possesses a unique

generalized solution and the respective function u satisfies the integral identity

a(u,w) =

∫

Ω

f · w dx+

∫

Γ2

Fw ds ∀ w ∈ S0(Ω). (1.6)

Let v ∈ V0+uD be a vector-valued function considered as an approximation of (1.6). Our goal is

to deduce a fully computable majorant of the distance between u and v measured in terms of the

natural energy norm. To be of practical relevance, the majorant must be continuous with respect
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to v, vanish only if v coincides with the exact solution u and do not generate significant gaps

between the error and the estimate. For the Stokes problem the respective estimates have been

derived in [16, 15]. These estimates are not restricted to the case of divergence free fields. It is

only required that v satisfies the condition { div v }Ω = 0 (if v does not satisfy this integral type

condition, then is easy to fulfil it by a suitable correction of the velocity field). Let q ∈ ˜L2(Ω)

be an approximation of the pressure p and τ ∈ Σ(Ω) be an approximation of the exact stress σ.

In the simplest case, the majorant of the distance between v and u has the form:

‖ε(u− v)‖ν � M(v, q, τ) := ‖νε(v)− τ − Iq‖
+ CΩ‖Div τ + f‖+ CΓ‖τn− F‖+ 2νcΩ‖div v‖. (1.7)

Here, τ is any tensor-valued function in the set

HΓ2(Ω,Div ) :=
{

τ ∈ Σ | Div τ ∈ L2(Ω,Rd), τn ∈ L2(Γ2,R
d)
}

,

CΩ and CΓ are constants in the inequalities

‖w‖ � CΩ‖ε(w)‖, ‖w‖Γ2 � CΓ‖ε(w)‖, (1.8)

which hold for any w ∈ V0, cΩ is the constant coming from the following well known result (often

called the “existence of a bounded right inverse operator to the operator div ” or the “stability

lemma” for the Stokes problem).

Lemma 1.1. For any function g ∈ ˜L2(Ω) there exists a function v ∈ V vanishing on the

boundary and such that div v = g and

‖∇v‖ � cΩ‖g‖,

where cΩ is a positive constant depending on the shape of Ω (independent of scaling).

This result (in different forms) has been discovered by several authors. Probably the earliest

publication is by Nečas [23] who established it in the form of a weak Poincaré type inequality

for functions with gradients in H−1. For d = 2 Lemma 1.1 was established in [24] and for d � 2

in [22]. This result can be also formulated as the inf–sup condition (cf. [25]). In the literature,

it is often called the Ladyzhenskaya–Babuška–Brezzi (LBB) condition).

It is worth adding comments concerning the constants entering (1.7) and other similar es-

timates arising in the other problems. For domains with complicated boundaries the constants

CΩ, CΓ, and cΩ may be unknown. In [15], it was shown that using ideas of domain decomposi-

tion, difficulties related to CΩ can be avoided and this constant is replaced by constants CP (Ωi)

in the Poincaré inequalities related to subdomains Ωi covering Ω (for convex Ωi we know that

CP (Ωi) � π−1 diam Ωi; cf. [26]).

It was shown (cf. [17] and some other publications cited therein) that cΩ can be also replaced

by a collection of local constants associated with simple subdomains (this result is based on a

modified version of Lemma 1.1). Estimates of the constant cΩ has been studied by several authors

(mostly for the case d = 2; cf., for example, [27]–[32]). Thus, for relatively simple domains (for

example, triangles, rectangles) we have explicit estimates of cΩ and using decomposition we are

able to deduce estimates of the distance to exact solutions of the Stokes and Oseen problem

containing local inf–sup constants (associated with subdomains) instead of cΩ (associated with
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Ω, which may have a complicated form). If the function v is a numerical approximation of u (for

example, it is a finite element approximation), then the estimate (1.7) can be considered as an

a posteriori estimate of the accuracy. Computational applicability of such type estimates is well

studied (for example, cf. an overview in [33, Section 4.2] and the references cited in this book).

For the Stokes problem (1.1)–(1.5) (and modifications including rotation and reaction terms),

the estimates provide efficient and guaranteed bounds of approximation errors. Moreover, the

first term of the majorant M(v, q, τ) generates a robust indicator of local errors that can be used

for mesh adapting procedures. The majorants derived below for problems with slip and leak

boundary conditions contain the same terms except one: the nonlinear boundary condition is

accounted by the term Dj , which is a compound functional formed by the boundary functional

j and its conjugate j∗. The goal of this paper is to prove the estimates and to show that

they possess the same mathematical properties as the majorants derived for the classical Stokes

problem.

The trace constant CΓ is excluded from the majorant if τn = F on Γ2 (this condition is

easy to fulfil if, for example, F is constant and Γ2 is piecewise affine). However, this boundary

condition (as well as other more general conditions considered below) may be difficult to exactly

satisfy if F or/and Γ2 have complicated shapes. For this reason, we apply a different modus

operandi and estimate the boundary integral term by a version of the Poincaré inequality (the

so-called “sloshing” inequality (2.10)) valid for functions with zero mean traces on the boundary.

This method leads to error majorants containing much simpler constants.

Theorems 2.2 and 3.2 present the main results of the paper. They propose fully computable

upper bounds of the distance to the exact solutions of problems with slip and leak boundary

conditions, respectively.

1.3. Nonlinear boundary conditions. We consider the following nonlinear boundary

conditions on Γ2:

un = 0, −ςt ∈ κ∂|ut| slip type condition) (1.9)

or

ut = 0, −ςn ∈ κ∂|un| leak type condition). (1.10)

Here, κ � 0 is a constant, un := u · n, ut := u − nun (normal and tangential components

of the velocity vector). Henceforth, we use standard notation for the tangential and normal

components of a tensor:

τn := τn, τt := τn − nτnn, τnn := τn · n.

The scalar function ςn and the vector-valued function ςt are defined by the relations (1.11)

and (1.12) and represent the normal and tangential components of the stress, respectively.

Certainly, formulas (1.13) are related to the classical statement, and we assume that u

possesses necessary differentiability properties up to the boundary. Since

∂|z| =
⎧

⎨

⎩

z

|z| , z �= 0, z ∈ R
d,

ζ ∈ R
d, |ζ| � 1, z = 0, z ∈ R

d,

the conditions (1.9) and (1.10) are equivalent to

|ςt| � κ, ςt · ut + κ|ut| = 0 on Γ2,
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or

|ςn| � κ, ςnun + κ|un| = 0 on Γ2,

respectively.

In order to present the generalized statements, we define the sets Sn,0 and St,0 that contain

the divergence free functions satisfying the main boundary conditions, i.e.,

Sn,0 := {v ∈ S | v = 0 on Γ1, vn = 0 on Γ2},
St,0 := {v ∈ S | v = 0 on Γ1, vt = 0 on Γ2}.

It is clear that

Sn,0 ⊂ Vn,0 := {w ∈ V | w = 0 on Γ1, wn = 0 on Γ2} ,
St,0 ⊂ Vt,0 := {w ∈ V | w = 0 on Γ1, wt = 0 on Γ2} .

Now, ςn and ςt, are defined in the distributional sense by means of the integral identities (cf.

[1, 3]). For the component ςn we have

∫

Γ2

ςnwn ds = a(u,w)− (p,divw)− (f, w) ∀ w ∈ Vt,0, (1.11)

where wn denotes the normal component of the trace of w on Γ2. Analogously,

∫

Γ2

ςt · wt ds = a(u,w)− (p, divw)− (f, w) ∀ w ∈ Vn,0. (1.12)

If u is sufficiently regular, then integrating by parts and using (1.1)–(1.2), we conclude that

ςn = −p+ νεnn(u), ςt = νεt(u). (1.13)

The generalized solution u ∈ Sn,0 + uD of the problem with the boundary condition (1.9)

satisfies the variational inequality [1, 3]

a(u,w − u) +

∫

Γ2

(j(wt)− j(ut)) ds � (f, w − u) ∀ w ∈ Sn,0 + uD, (1.14)

where j(ζ) := κ|ζ|. In the case of (1.10), the generalized solution u ∈ St,0 + uD satisfies

a(u,w − u) +

∫

Γ2

(j(wn)− j(un)) ds � (f, w − u) ∀ w ∈ St,0 + uD. (1.15)

We note that the above two problems can be formulated as variational problems for convex

and coercive functionals. Therefore, the existence and uniqueness of the solutions follow from

general theorems of the calculus of variations (cf., for example, [34, 35]).
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2 Slip Boundary Condition

2.1. Estimates for approximations in Sn,0+uD. Let v be a divergence free vector-valued

function in Sn,0 + uD considered as an approximation of u. We rewrite (1.14) in the form

a(u− v, v − u) +

∫

Γ2

(j(vt)− j(ut)) ds � (f, v − u)− a(v, v − u), (2.1)

which implies the estimate

‖ε(u− v)‖2ν �
∫

Ω

(νε(v)− τ − Iq) : ε(v − u) dx

+

∫

Γ2

(j(vt)− j(ut)) ds −
∫

Ω

(f · (v − u)− τ : ε(v − u)) dx. (2.2)

Here, τ is any tensor-valued function in Σ(Ω) (it can be considered as an approximation of the

true stress σ) and q ∈ ˜L2(Ω) is an approximation of the pressure p. In view of the Young–Fenchel

inequality, for any η ∈ L2(Γ2,R
d) we have

∫

Γ2

−j(ut) ds �
∫

Γ2

(j∗(η)− η · ut) ds, (2.3)

where j∗ is the functional conjugate to j. In general, j∗ is defined on a wider set H−1/2,

however, in what follows, we always operate with tensors having summable normal traces on Γ2

and restrict admissible arguments of j∗ accordingly. This is motivated by practical requirements

because η can be considered as an approximation of ςt on Γ2, which, in numerical applications,

is presented by an integrable function.

From (2.2) and (2.3) it follows that

‖ε(u− v)‖2ν �
∫

Ω

(νε(v)− τ − Iq) : ε(v − u) dx+

∫

Γ2

(j(vt) + j∗(η)− η · vt) ds

+

∫

Γ2

η · (vt − ut) ds−
∫

Ω

(f · (v − u)− τ : ε(v − u)) dx. (2.4)

For any η and τ

Lη,τ (w) :=

∫

Ω

(τ : ε(w)− f · w) dx+

∫

Γ2

η · wt ds

is a linear continuous functional on Vn,0 the norm of which is defined by the relation

|||Lη,τ ||| := sup
w∈Vn,0

|Lη,τ (w)|
‖ε(w)‖ν

.
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It is easy to see that the set KerLη,τ contains tensor-valued functions that satisfy (in the

generalized sense) the equilibrium equation Div τ + f = 0 and the prescribed relation between

τ and η on Γ2 (cf. (1.12)), which states that

∫

Γ2

ςt · wt ds =

∫

Ω

(νε(u) : ε(w)− f · w)

for any test function w ∈ Sn,0. Note that

∫

Ω

(νε(v)− τ − Iq) : ε(v − u) dx+ |Lη,τ (v − u)|

� ‖νε(u)− τ − Iq‖1/ν‖ε(u− v)‖ν + |||Lη,τ ||| ‖ε(u− v)‖ν

� α

2
‖ε(u− v)‖2ν +

1

2α
(‖d(v, q, τ)‖1/ν + |||Lη,τ ||| )2 ,

where α is a positive number and d(v, q, τ) := νε(v)− τ − Iq.

We obtain the first form of the majorant M I
sl for the Stokes problem with slip boundary

conditions:

1

2
‖ε(u− v)‖2ν � M I

sl(v, τ, η, q, α) := c1(α)Dj(vt, η) + c2(α)
(‖d(v, q, τ)‖1/ν + |||Lη,τ |||

)2
, (2.5)

where

Dj(vt, η) :=

∫

Γ2

(j(vt) + j∗(η)− η · vt) ds.

The constants c1 and c2 are defined by the relations

c1(α) =
1

2− α
, c2(α) =

1

2α
c1(α), (2.6)

where α ∈ (0, 2). This flexibility can be used to balance different parts of the majorants and

minimize the values.

By definition,

j∗(ζ∗) = sup
ζ

{ζ · ζ∗ − κ|ζ|} =

{

0, |ζ∗| � κ,

+∞, |ζ∗| > κ.

Hence the majorant is finite provided that |η| � κ on Γ2. Under this condition,

Dj(vt, η) =

∫

Γ2

(κ|vt| − η · vt) ds.

It is not difficult to show that the majorant vanishes if and only if v, τ , and q coincide with u,

σ, and p respectively. Indeed, assume that M I
sl(v, τ, η, q, α)=0. Since the first two terms of the

majorant vanish, we see that τ = νε(v) − Iq and κ|vt| − η · vt = 0. Now, from |||Lη,τ ||| = 0 we

conclude that
∫

Ω

(νε(v) : ∇w̃ − f · w̃) dx− (q,div w̃) +

∫

Γ2

η · w̃t ds = 0 ∀ w̃ ∈ Vn,0. (2.7)

8



We set w̃ = v − w, where w ∈ Sn,0 + uD and rewrite (2.7) in the form

∫

Ω

νε(v) : ε(v − w)dx+

∫

Γ2

η · (vt − wt) ds = (f, (v − w)).

Since η · vt = j(vt) and

∫

Γ2

η · wt ds �
∫

Γ2

(j(wt) + j∗(η)) ds =
∫

Γ2

j(wt) ds,

we conclude that v satisfies (1.14).

So far the estimate is not fully computable because the term |||Lη,τ ||| contains the supremum

over an infinite amount of functions (however, majorants of this type may be useful for other

purposes, for example, for analysis of errors in Uzawa type iteration methods [20]).

Getting a majorant expressed in terms of computable integrals requires certain reduction of

the sets of admissible η and τ . Assume that

τ ∈ HΓ2(Div ,Ω) :=
{

τ ∈ H(Div ,Ω), τt ∈ L2(Ω,Rd) on Γ2

}

,

where H(Div ,Ω) := {τ ∈ Σ(Ω) | Div τ ∈ L2(Ω,Rd)}, and impose an integral type condition

∫

Γ2

(η + τt) ds = 0. (2.8)

We integrate by parts, recall that w ∈ Sn,0, and represent Lη,τ in the form

Lη,τ (w) = −
∫

Ω

(f +Div τ) · w dx+

∫

Γ2

(η + τt) · wt ds.

The first integral is easily estimated by (1.8) (valid for vector-valued functions vanishing on Γ1)

∫

Ω

(f +Div τ) · wdx � CΩ‖f +Div τ‖‖ε(w)‖. (2.9)

Certainly, in this case, we need to know CΩ or have a realistic upper bound of it. In many cases,

such a bound can be indeed found (cf., for example, a discussion related to this question and

practical recommendations in [33]). In other cases, we suggest a different way based on the idea

of domain decomposition (in the context of a posteriori estimates it is systematically considered

in [15]). This method is briefly presented in Remark 2.1 below.

The last integral is estimated by means of the Poincaré type inequality

‖ϕ‖Γ2 � ˜CΓ2(Ω)‖∇ϕ‖ (2.10)

which holds for any ϕ ∈ H1(Ω) such that {ϕ }Γ2
= 0. For such domains as parallelepipeds,

triangles, and tetrahedrons, the constant ˜CΓ2 has been found analytically or numerically (cf.

[36, 37] and the references therein).

It is worth noting that the constants ˜CΓ2(Ω) possess a certain monotonicity property, namely,

if Ω′ ⊂ Ω and both domains have the same boundary part Γ2 (where the functions have traces
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with zero mean), then ˜CΓ2(Ω) � ˜CΓ2(Ω
′). Hence, if ˜CΓ2(Ω

′) is known for a “simple” domain Ω′,
then this constant is valid for the whole Ω. This fact allows us to obtain bounds of the constant

for a wide spectrum of domains. For example, let the “simple” domain be a right triangle with

both legs having the same length (cf. Figure). We have three possible options: Γ2 coincides with

(a) one leg, (b) the union of two legs, and (c) the hypotenuse. In all these cases, the constants
˜CΓ2(Ω) were found analytically. For example, if Γ is a leg (of length h), then

˜CΓ2(Ω) �
√
h(ζ tanh ζ)−1/2,

where ζ ≈ 2.3650 is the root of the equation tan(z) + tanh(z) = 0 in the interval (0, π). If Γ

coincides with the hypotenuse of the right triangle with legs of the size h, then

˜CΓ2(Ω) �
√
h.

Using these results and applying affine mappings, one can deduce the constants for any other

nondegenerate triangle (cf. [36]). Therefore, finding the constants is not a difficult task (at least

in the case where Γ2 is a boundary of a polygonal domain).

(a) (b) (c)

Figure. Right triangles: (a) Γ2 is a leg, Γ2 is the union of two legs, (c) Γ2 is the hypotenuse.

It is clear that (2.10) also holds for vector-valued functions. Moreover, since the rigid motions

are excluded by the boundary condition on Γ1, we can rewrite it in terms of the symmetric

gradient tensor, i.e.,

‖w‖Γ2 = ̂CΓ2(Ω)‖ε(w)‖ (2.11)

provided that w ∈ V satisfies the conditions {wi }Γ2
= 0 for i ∈ 1, . . . , d (in this case, the

constant ̂CΓ2(Ω) can be obtained from the constant in (2.10) if we multiply it by the Korn

constant).

In view of (2.11) and (2.8), we have
∫

Γ2

(η + τt) · wt ds =

∫

Γ2

(η + τt) · (wt − {wt }Γ2
) ds

� ‖η + τt‖Γ2 ‖w − {w }Γ2
‖ � ̂CΓ2‖η + τt‖Γ2 ‖ε(w)‖

and

|||Lη,τ ||| � CΩ‖f +Div τ‖+ ̂CΓ2‖η + τt‖Γ2 .

We recall (2.5) and arrive at the following result.
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Theorem 2.1. For any v ∈ Sn,0 + uD, τ ∈ HΓ2(Div ,Ω), η ∈ L2(Γ2,R
d) (|η| � κ), q ∈

˜L2(Ω), and α ∈ (0, 2) the error is subject to the estimate

1

2
‖ε(u− v)‖2ν � M II

sl (v, τ, η, q, α), (2.12)

where the majorant is defined by the relation

M II
sl (v, τ, η, q, α) := c1(α)Dj(vt, η)

+ c2(α)
(

‖d(v, q, τ)‖1/ν + CΩ‖f +Div τ‖+ ̂CΓ2‖η + τt‖Γ2

)2

and the constants are defined in (2.6), (2.9), and (2.10).

Note that the majorant in (2.12) is expressed in terms of integrals (unlike the majorant

M I
sl(v, τ, η, q, α)) and contains only known functions (v, τ , and η are approximations of different

components of the exact solution). As above, α is any number in (0, 2). It can be used to

properly balance parts of the majorant.

If M II
sl (v, τ, η, q, α) = 0, then |||Lη,τ ||| = 0, and, repeating the same arguments as above, we

conclude that v coincides with the exact solution.

Remark 2.1. We can deduce a different form of the majorant if (2.9) is replaced by the

estimate
∫

Ω

(f +Div τ) · wdx �
N
∑

i=1

CRD(Ωi)‖f +Div τ‖Ωi‖ε(w)‖Ωi (2.13)

which holds provided that
∫

Ωi

(f +Div τ) · η dx = 0 ∀ η ∈ E0 := {ε(η) ≡ 0 in Ωi} (2.14)

for any Lipschitz subdomain Ωi, i = 1, 2, ..., N , such that Ωi ∩ Ωj = ∅ if i �= j and Ω = ∪N
i=1Ωi

(cf. [15, Chapter 7]). Here, CRD(Ωi) are constants in the inequalities ‖v‖Ωi � CRD(Ωi)‖ε(v)‖Ωi

which hold for functions orthogonal to the kernel of the operator ε (i.e., they are orthogonal to

rigid deflections). The existence of CRD(Ωi) is easily proved by standard compactness arguments.

Then we obtain
1

2
‖ε(u− v)‖2ν � ˜M II

sl (v, τ, η, q, α), (2.15)

where

˜M II
sl (v, τ, η, q, α) := c1(α)Dj(vt, η)

+ c2(α)

(

‖d(v, q, τ)‖1/ν +

√

√

√

√

N
∑

i=1

C2
RD(Ωi)‖f +Div τ‖2Ωi

+ ̂CΓ2‖η + τt‖Γ2

)2

.

The estimates (2.12) and (2.15) are valid only for divergence free functions. This fact may

lead to certain difficulties in practical applications because approximations of the velocity field

obtained by numerical methods often satisfy this condition only approximately. Therefore, our

next goal is to extend the estimates to a wider class of functions which may not exactly satisfy
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the divergence free condition (1.2). This can be done by using the same ideas as has been earlier

used in the case of the Stokes and Oseen problems [16, 15].

2.2. Estimates for approximations in Vn,0 + uD. Assume that v ∈ Vn,0 + uD. For any

v0 ∈ S0 and β > 0

‖ε(u− v)‖2ν � (‖∇(u− v0)‖ν + ‖∇(v − v0‖ν )
2

� (1 + β)‖∇(u− v0)‖2ν + (1 +
1

β
)‖∇(v − v0)‖2ν . (2.16)

The first term on the right-hand side of (2.16) is estimated from above by M II
sl (v0, τ, η, q, α) (or

by ˜M II
sl (v0, τ, η, q, α)).

We consider the respective parts of the majorant. First, we note that

‖d(v0, q, τ)‖1/ν � ‖νε(v)− τ − Iq‖1/ν + ‖ν∇(v − v0)‖1/ν

� ‖νε(v)− τ − Iq‖1/ν + ‖∇(v − v0)‖ν � ‖d(v, q, τ)‖1/ν +
√
ν‖∇(v − v0)‖. (2.17)

Next,
∫

Γ2

(j(v0t) + j∗(η)− η · v0t) ds = Dj(vt, η) +

∫

Γ2

(η · vt − j(vt)) ds

� Dj(vt, η) +

∫

Γ2

((η + τt) · vt + j∗(−τt)) ds � Dj(vt, η) +

∫

Γ2

(η + τt) · vt ds

provided that |τt| � κ.

We recall (2.8) and that v0 vanishes on the boundary Γ1. Then
∫

Γ2

(η + τt) · vt ds =
∫

Γ2

(η + τt) · (vt − v0t) ds

� ̂CΓ‖η + τt‖‖∇(vt − v0t)‖ � ̂CΓ‖η + τt‖‖∇(v − v0)‖. (2.18)

Hence

M II
sl (v0, τ, η, q, α, β) � c1(α)Dj(vt, η) + c1(α) ̂CΓ‖η + τt‖‖∇(v − v0)‖

+ c2(α)
(

R(v, q, τ, η) +
√
ν‖∇(v − v0)‖

)2
,

where

R(v, q, τ, η) := ‖d(v, q, τ)‖1/ν +
(

CΩ‖f +Div τ‖+ ̂CΓ‖η + τt‖Γ2

)

.

Now, we recall that the distance between a vector-valued function v ∈ H1(Ω,Rd) satisfying the

homogeneous boundary conditions on Γ1 and S0 is subject to the estimate (cf., for example,

[16])

inf
v0∈S0

‖∇(v − v0)‖ � CΩ‖div v‖. (2.19)

In view of (2.19), the respective terms in (2.16), (2.17), and (2.18) are estimated by the norm

of div v. This result can be extended to the case, where the functions vanish only on a part
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Γ1 of Γ provided that v additionally satisfies {div v}Ω = 0 (cf. [15, Chapter 6, Section 2.6]).

It is worth noting that the distance estimate (2.19) is important not only for incompressible

viscous problems. In [38], it was used to derive a new (fully computable) bound of the limit load

parameter in the Hencky plasticity problems.

Thus, we arrive at the following result.

Theorem 2.2. For any α ∈ (0, 2), β > 0, |τt| � κ, and |η| � κ the distance between u and

v is subject to the estimate

‖ε(u− v)‖2ν � M III
sl (v, τ, η, q, α, β), (2.20)

where

M III
sl (v, τ, η, q, α, β) := (1 + β)

(

c1(α)Dj(vt, η) + c2(α)R
2(v, q, τ, η)

+H(v, q, τ, η, α)CΩ ‖div v‖+ c3(α, β)C
2
Ω‖div v‖2

)

,

c3(α, β) =
(

c2(α) +
1
2β

)

ν, and

H(v, q, τ, η, α) := ̂CΓ ‖η + τt‖Γ2 + 2c2(α)
√
νR(v, q, τ, η).

Remark 2.2. All the terms of the majorant are nonnegative. If M III
sl (v, τ, η, q, α, β) = 0,

then div v = 0, and, by the same arguments as for M II
sl , we conclude that the functions entering

the majorant coincide with the exact velocity, pressure, and stress. By the same arguments as

above, the constant CΩ entering R(v, q, τ, η) can be replaced by a collection of local constants

associated with subdomains Ωi.

Further modifications of the majorant are related to the condition (2.19). In [17], it was

shown that the distance between v and S0 has another upper bound based on local constants

Ci associated with Ωi.

Lemma 2.1. Let v ∈ V satisfy

{div v}Ωi = 0, i = 1, 2, ..., N. (2.21)

Then,

inf
v0∈S0(Ω)

‖∇(v − v0)‖2 � d2N (v) :=
N
∑

i=1

C
2
Ωi
‖div v‖2Ωi

. (2.22)

By Lemma 2.1, we modify the estimate (2.20) as follows

‖ε(u− v)‖2ν � ˜M III
sl (v, τ, η, q, α, β), (2.23)

where

˜M III
sl (v, τ, η, q, α, β) := (1 + β)

(

c1(α)Dj(vt, η) + c2(α)R
2(v, q, τ, η)

+H(v, q, τ, η, α)dN (v) + c3(α, β)d
2
N (v)

)

,
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which uses the constants CΩi in the LBB inequality for local subdomains.

It should be remarked that the constant CΩ may be unknown (if Ω is a complicated domain).

However, Ω may admit a decomposition into simpler domains for which the corresponding

constants (or upper bounds of them) may be known. At least, for 2D star-shaped domains with

respect to a ball such estimates are known [27]. Therefore, the estimate (2.23) is practically more

convenient than (2.20). Certainly, in this estimate, v must satisfy the additional conditions

(2.21). However, these integral type relations do not produce essential technical difficulties

because any reasonable approximation of u ∈ S(Ω) should satisfy the incompressibility condition

in Ωi, at least, in the integral (mean) sense. If, by some reasons, they do not satisfy it, then

they should be corrected by a post-processing procedure changing normal components of the

velocity on ∂Ωi. Typically, the number N (amount of subdomains Ωi) is not large, so that such

type “correction” procedures could be quite cheap.

3 Leak Boundary Condition

Analysis of problems with the leak boundary conditions follows the same lines as for the slip

ones. Below we expose the results supplied with brief comments.

3.1. Estimates for functions in St,0 + uD. From (1.15) it follows that

a(u− v, v − u) +

∫

Γ2

(j(vn)− j(un)) ds � (f, v − u)− a(v, v − u), (3.1)

where v ∈ St,0 + uD is an approximation of u.

Let τ ∈ Σ(Ω), and let q ∈ ˜L2(Ω). By (3.1), we obtain

‖ε(u− v)‖2ν �
∫

Ω

(νε(v)− τ − Iq) : ε(v − u) dx

+

∫

Γ2

(j(vn)− j(un)) ds −
∫

Ω

(f · (v − u)− τ : ε(v − u)) dx

�
∫

Ω

(νε(v)− τ − Iq) : ε(v − u) dx+

∫

Γ2

(j(vn) + j∗(η)− ηvn) ds

+

∫

Γ2

η(vn − un) ds−
∫

Ω

(f · (v − u)− τ : ε(v − u)) dx. (3.2)

Define the functional

Lη,τ (w) :=

∫

Ω

(τ : ε(w)− f · w)dx+

∫

Γ2

ηwn ds

and the corresponding norm

|||Lη,τ ||| := sup
w∈Vt,0

|Lη,τ (w)|
‖ε(w)‖ν

.
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The set KerLη,τ contains tensor-valued functions that satisfy (in a generalised sense) the equi-

librium equation Div τ + f and the relation between τ and η on Γ2. We reform the right-hand

side of (3.2) and, by the same arguments as for the slip boundary condition, deduce the estimate

1

2
‖ε(u− v)‖2ν � M I

le(v, τ, η, q, α), (3.3)

where M I
le(v, τ, η, q, α) =: c1(α)Dj(vn, η) + c2(α) (‖d(v, q, τ)‖1/ν + |||Lη,τ ||| )2and

Dj(vn, η) :=

∫

Γ2

(j(vn) + j∗(η)− ηvn) ds.

The coefficients ci(α), i = 1, 2, and d(v, q, τ) are defined as in the previous section, and

α ∈ (0, 2). If the function v satisfies the condition |vn| � κ (what is a natural requirement for

a reasonable approximation of u), then the majorant is finite and

Dj(vn, η) =

∫

Γ2

(κ|vn| − ηvn) ds.

Assume that M I
le(v, τ, η, q, α)=0. Then τ = νε(v)−Iq and κ|vn|−η vn = 0. Also, |||Lη,τ ||| = 0.

Therefore, for any w ∈ St,0 we have

∫

Ω

(νε(v) : ε(w)− f · w) dx− (q,divw) +

∫

Γ2

η wn ds = 0. (3.4)

We can set the test function in the form v − w, where w ∈ St,0 + uD, and rewrite (3.4) in the

form
∫

Ω

νε(v) : ε(v − w)dx+

∫

Γ2

η (vn − wn) ds =

∫

Ω

f · (v − w) dx.

Note that η vn = j(vn) and
∫

Γ2

η wn ds �
∫

Γ2

j(wn) ds.

We conclude that v satisfies
∫

Ω

νε(v) : ε(v − w)dx+

∫

Ω

f · (w − v) dx �
∫

Γ2

j(wn) ds−
∫

Γ2

j(vn) ds

for any w and, therefore, v satisfies (1.15).

The norm |||Lη,τ ||| is estimated from above by the same arguments as in Section 2. We impose

additional conditions on admissible η and τ , namely,

τ ∈ HΓ2(Div ,Ω) :=
{

τ ∈ H(Div ,Ω), τnn ∈ L2(Ω,Rd) on Γ2

}

and
∫

Γ2

(η + τnn) ds = 0.
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It is clear that for τ = σ and η = σn this condition holds. Moreover, for any pair of approxima-

tions (η and τ) satisfaction of this integral condition does not lead to essential difficulties. With

these conditions, we rewrite Lη,τ (w) as follows:

Lη,τ (w) = −
∫

Ω

(f +Div τ · w) dx+

∫

Γ2

(η + τnn)wn ds.

Since
∫

Γ2

(η + τnn) · wn ds � ̂CΓ‖η + τnn‖Γ2 ‖ε(w)‖,

∫

Ω

(f +Div τ · w) dx � CΩ‖f +Div τ‖‖ε(w)‖,

we find that

|||Lη,τ ||| � CΩ‖f +Div τ‖+ ̂CΓ‖η − τ · n‖Γ2 .

Hence we arrive at the result similar to Theorem 2.1.

Theorem 3.1. For any v ∈ St,0 + uD, τ ∈ HΓ2(Div ,Ω), η ∈ L2(Γ2) (|η| � κ), q ∈ ˜L2(Ω),

and α ∈ (0, 2), the error is subject to the estimate

1

2
‖ε(u− v)‖2ν � M II

le (v, τ, η, q, α), (3.5)

where

M II
le (v, τ, η, q, α) := c1(α)Dj(vn, η)

+ c2(α)
(

‖d(v, q, τ)‖1/ν + CΩ‖f +Div τ‖+ ̂CΓ‖η + τnn‖Γ2

)2
.

The estimate (3.5) has the same meaning and properties as the estimate (2.12).

If M II
le (v, τ, η, q, α) = 0, then d(v, q, τ) = 0, Dj(vn, η) = 0, |||Lη,τ ||| = 0, and we conclude that

v, τ , and q coincide with u, σ, and p respectively.

If τ satisfies the mean value conditions (2.14) in subdomains Ωi, then the estimates (2.13)

and (3.5) imply a somewhat different form of majorant based upon different constants (which

is analogous to (2.15)):

˜M II
le (v, τ, η, q, α) := c1(α)Dj(vn, η)

+ c2(α)

⎛

⎝‖d(v, q, τ)‖1/ν +

√

√

√

√

N
∑

i=1

C2
RD(Ωi)‖f +Div τ‖2Ωi

+ ̂CΓ‖η + τnn‖Γ2

⎞

⎠

2

,

All comments in Remark 2.1 remain true for ˜M II
le (v, τ, η, q, α).

3.2. Estimates for approximations in Vt,0 + uD. An extension of the estimate to

v ∈ Vt,0 + uD follows from (2.16), (2.17), and the relation
∫

Γ2

(j(v0n) + j∗(η)− η · v0n) ds = Dj(vt, η) +

∫

Γ2

(η · vn − j(vn)) ds
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� Dj(vn, η) +

∫

Γ2

(η + τnn) · vn ds,

where v0 ∈ S0 and |τnn| � κ. By (2.8), we obtain
∫

Γ2

(η + τnn) · vn ds =
∫

Γ2

(η + τnn) · (vn − v0n) ds

� ̂CΓ‖η + τnn‖‖∇(vn − v0n)‖ � ̂CΓ‖η + τnn‖‖∇(v − v0)‖.
Therefore,

M II
le (v0, τ, η, q, α, β) � c1(α)Dj(vn, η) + c1(α) ̂CΓ‖η + τnn‖‖∇(v − v0)‖

+ c2(α)
(

R(v, q, τ, η) +
√
ν‖∇(v − v0)‖

)2
,

where

R(v, q, τ, η) := ‖d(v, q, τ)‖1/ν +
(

CΩ‖f +Div τ‖+ ̂CΓ‖η + τnn‖Γ2

)

.

Now, we recall (2.19) and arrive at the following result.

Theorem 3.2. For any α ∈ (0, 2), β > 0, |τnn| � κ, and |η| � κ

‖ε(u− v)‖2ν � M III
le (v, τ, η, q, α, β), (3.6)

where

M III
le (v, τ, η, q, α, β) := (1 + β)

(

c1(α)Dj(vn, η) + c2(α)R
2(v, q, τ, η)

+H(v, q, τ, η, α)CΩ ‖div v‖+ c3(α, β)C
2
Ω‖div v‖2

)

,

H(v, q, τ, η, α) := ̂CΓ ‖η + τnn‖+ 2c2(α)
√
νR(v, q, τ, η).

Remark 3.1. The majorant M III
le (v, τ, η, q, α, β) in (3.6) is quite analogous to the majorant

M III
sl (v, τ, η, q, α, β) in (2.20). It consists of nonnegative terms and vanishes if and only if v,

τ , and q coincide with the respective exact solutions. By the same arguments as above, the

constant CΩ entering R(v, q, τ, η) can be replaced by a collection of local constants associated

with subdomains Ωi. Also, we can use (2.22) and replace the term containing CΩ ‖div v‖ by the

quantity dN (v) (cf. (2.21)) containing the constants CΩi .
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