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ABSTRACT 

 

The characterization of dynamic electrophysiological brain 

activity, which form and dissolve in order to support ongoing 

cognitive function, is one of the most important goals in 

neuroscience. Here, we introduce a method with tensor 

decomposition for measuring the task-induced oscillations in 

the human brain using electroencephalography (EEG). The 

time frequency representation of source-reconstructed single-

trail EEG data constructed a third-order tensor with three 

factors of time ∗ trails, frequency and source points. We then 

used a non-negative Canonical Polyadic decomposition 

(NCPD) to identify the temporal, spectral and spatial changes 

in electrophysiological brain activity. We validate this 

method using both simulation EEG data and real EEG data 

recorded during a task of irony comprehension. The results 

demonstrated that proposed method can track dynamics of the 

temporal-spectral modes of the rhythm in the brain on a 

timescale commensurate to the task they are undertaking. 

 

Index Terms— EEG, source localization, neural 

oscillations, tensor decomposition. 

 

1. INTRODUCTION 

 

 

During the past decade, the characterization of brain 

functional networks and their dynamics has become an 

important field of study [1]. Most efforts focusing on the 

functional networks have been made through functional 

magnetic resonance imaging (fMRI) technique due to high 

spatial resolution [2]. Unfortunately, fMRI temporal 

resolution is limited since it indirectly measures the 

consequences of neural activity. The electrophysiological 

underpinnings of the human brain are not yet fully understood 

through fMRI. The direct non-invasive measures of neural 

activity such as electro- or magnetoencephalography 

(EEG/MEG) provide a means to study the neural oscillations.  

The EEG consists of the activity of an ensemble of 

generators producing rhythmic activity in several frequency 

ranges [3]. By application of sensory stimulation these 

generators are coupled and act together in a coherent way. 

This synchronization and enhancement of EEG activity gives 

rise to ‘evoked’ or ‘induced’ oscillations (the former being 

phase-locked to the event, the latter not) [3, 4]. To obtain the 

data representation of the evoked oscillations, the single trial 

EEG data were first averaged and then transformed to the 

time-frequency domain by means of wavelet analysis. The 

obtained data representations were with multi modes since 

EEG had many channels in sensor space. The analysis for 

multi-way data (channel × time × frequency) of the evoked 

oscillation based on tensor decomposition has been studied 

[5-7] (for review see [8]). In contrast, the data of induced 

oscillation can be generated by transforming the single trial 

EEG to time-frequency domain, which resulted in another 

data formation with channel ×  time∗ trial ×  frequency. In 

addition, to examine functional brain structure, source 

reconstruction techniques are applied to sensor-level EEG 

data, which can somehow overcome the limited spatial 

resolution of the EEG [9, 10]. Thus, a new data representation 

can be generated with source ×  time ∗ trial ×  frequency. 

CANDECOMP/PARAFAC (CP), as a basic tensor 

decomposition method, can be applied to source-

reconstructed data to extract task-induced neural oscillations.  

In this study, we proposed a method based on NCPD for 

measuring the task-induced oscillations in the human brain. 

The time frequency representation of single-trail source-

reconstructed EEG data constructed a third-order tensor with 

three factors of time ∗ trails, frequency and source space. 

NCPD was performed to identify the temporal, spectral and 

spatial changes in electrophysiological brain activity. The 

proposed method was validated using both simulated EEG 

data and real EEG data recorded during a task of irony 

comprehension. The results demonstrated that proposed 

method can tracks dynamics of the temporal-spectral modes 

of the rhythm in the brain. 

 

2. MATERIALS AND METHODS 

 

2.1. Data description 

 

2.1.1. Simulated data 

We simulated EEG data using Brainstorm toolbox [11]. 

Three oscillating current dipoles perpendicular to the cortical 

surface were placed pre-selected brain regions (Fig.1). The 

duration of each trail of the simulated measurement was 1400 



ms from -200 to 1200 ms. Each oscillatory source, generated 

using different frequent sine wave (8Hz, 15Hz, 25Hz, see 

Fig.1), was amplitude modulated by a different smoothed 

Hanning widow (Fig. 2) with a SNR of 20 dB. Next, we 

applied a forward solution with a boundary-element 

conductor model from template anatomy to simulate the 128-

channel EEG data. Finally, to make the simulations more 

realistic, the magnitudes of different trails were different and 

were normal distribution. 
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Fig. 1. Locations (A) of the simulated oscillatory current 

sources on an inflated and flattened brain surface and the time 

courses (B) and spectrum (C) of the three sources. 

 

2.1.2. Experimental data 

The data was collected at the University of Jyvaskyla, 

Finland. Thirty-eight participants were included in the final 

sample, in which there were 17 dysphoric participants and 21 

control participants. The study was approved by the Ethics 

Committee of the University of Jyvaskyla. Stimuli with one-

sentence spoken lines and colored pictures were applied. 

Each stimulus trial consisted of an introductory sentence, a 

contextual picture, and a commenting sentence. There were 

two different types of stimuli (two conditions). If the keyword 

in commenting sentence was semantically congruent with the 

content of the contextual pictures, the trail provided a neutral 

meaning; otherwise, the keyword was semantically 

incongruent with the picture composed an ironic meaning. 

The commenting sentences were presented twice to the 

participants combined with the congruent and incongruent 

contextual pictures. There were 90 trials in each condition.  

EEG data were collected by NeurOne system (Bittium 

Biosignals Ltd, Kuopio, Finland) with a 128-Channel Net 

(HydroCel Geodesic Sensor Net, Electric Geodesic Inc, 

USA), and preprocessed using EEGlab [12]. They were 

down-sampled to 250 Hz to reduce the size of datasets 

without losing important data information. The 0.5 Hz high-

pass and 20 Hz low-pass filters were applied on EEG data. 

Next, EEG data were visually checked and the bad channels 

were interpolated using a spherical spline model. After this, 

EEG data was extracted into 1100 ms long segments relative 

to the onset of keywords, starting from 100 ms before the 

presentation of keywords. Segments whose maximum 

exceeds 150 μV for all channels were rejected. Hereinafter, 

when EEG is mentioned, it means the preprocessed one.  

In order to extract task-induced neural oscillations, the 

data used in this study were from the control group with 

incongruent (ironic) stimuli. It should be noted that we do not 

intend to examine the difference between groups or stimulus. 

 

2.2. Third-order tensor of source-level EEG data 

 

The forward model and the inverse model were computed 

with a MATLAB toolbox Brainstorm [11]. The forward 

model was calculated using the symmetric boundary element 

method and default MNI MRI template (Colin 27). 

Preprocessed single-trial data were used to compute the 

inverse model, which was estimated using the weighted 

Minimum Norm Estimate. Finally, activation time-courses at 

4003 vertices were estimated. 

Spectral decomposition of source-reconstructed EEG 

from single trials was conducted with Morlet wavelet. 275 

linearly spaced time points form -100 ms to 1000 ms and 37 

frequency points linearly spaced between 2 Hz and 20 Hz 

were estimated for each trial. Therefore, for every subject, we 

obtained a 3D tensor of 37 (frequency points) × 275∗‘number 

of trials’ (time points) × 4003 (source points). Absolute 

values of the decomposed data were analyzed to investigate 

task-induced changes in oscillatory power.  

 

2.3. Nonnegative Canonical polyadic decomposition 

(CPD) 

 

In this paper, we denote a scalar variable by lowercase letter, 

such as x; a vector by boldface lowercase letter, such as x; a 

matrix by boldface uppercase letter, such as X; and a high 

order tensor by boldface script letter, such as 𝓧. Operator ∘ 

represents outer product of vectors, ⊛ denotes the 
Hadarmard product, ⟦ ⟧  represents Kruskal operator, 
and ‖ ‖𝐹  means Frobenius norm. Nonnegative 
CANDECOMP/PARAFAC decomposition is abbreviated as 
NCP for convenience in following contents. 
The NCP model [13] can be formulated as follows. For a 

given Nth-order tensor 𝓧 ∈ ℝ+
𝑰𝟏×𝑰𝟐×⋯×𝑰𝑵  performing a 

factorization into a set of N unknown non-negative matrices 

whose elements are non-negative: 𝑼(𝑛) =

[𝒖1
(𝑛)

, 𝒖2
(𝑛)

, ⋯ , 𝒖𝐽
(𝑛)

] ∈ ℝ+
𝐼𝑛×𝐽(𝑛 = 1,2, ⋯ , 𝑁)  can be 

described as: 

                               𝓧 ≈ ⟦𝑼(𝟏), ⋯ , 𝑼(𝑵)⟧,                              (1) 

where J is the number of extracted components, 𝐼𝑛 is the size 

in mode-n, The Kruskal operator for estimated non-negative 

matrices in (1) can be represented by the sum of J rank-1 

tensors in outer productor form: 

  ⟦𝑼(1), ⋯ , 𝑼(𝑁)⟧ = ∑ 𝓤𝑗
𝐽
𝑗=1 = ∑ 𝒖𝑗

(1)
°𝒖𝑗

(2)
° ⋯ °𝒖𝑗

(𝑁)𝐽
𝑗=1 ,  (2) 



where 𝓤𝑗(𝑗 = 1,2, ⋯ , 𝐽) are the rank-1 tensors. The target of 

NCP is to obtain the suitable 𝑼(𝑛) and one J here is defined to 

correspond to one NCP model. Each factor 𝑼(𝑛) explains the 

data tensor along a corresponding mode. Hence, one factor 

can be considered as features of the data onto the subspace 

spanned by the others. Most algorithms for NCP are to 

minimize a squared Euclidean distance as the following 

optimization problem: 

                   min
𝑼(1),⋯,𝑼(𝑁)

1

2
‖𝓧 − ⟦𝑼(1), ⋯ , 𝑼(𝑁)⟧‖

𝐹

2
.              (3) 

In this paper, we applied the hierarchical alternating least 

squares (HALS) algorithm whose simplified version for NMF 

has been proved to be superior to the multiplicative 

algorithms [14]. The HALS is related to the column-wise 

version of the ALS algorithm for 3-D data [5]. The HALS 

algorithm used in this study sequentially updates components 

u by a simple update rule 

                 𝒖𝑗
(𝑛)

← 𝓧 ×̅−𝑛 {𝒖𝑗} − 𝑼−𝑗
(𝑛)

{𝑼−𝑗
𝑇 𝒖𝑗}

⊛−𝑛
,           (4) 

where 𝓧 ×̅−𝑛 {𝒖𝑗} is sequentially computed as the (𝑁 − 1) 

tensor-vector multiplications among all modes, but mode-n. 

It should be noted that this study does not intend to propose 

an NCP algorithm. Therefore, any NCP algorithm can work 

for the data. In this paper, the CPD was performed to the 

third-order data (N=3). After decomposition, the jth 

component containing spectral, temporal, spatial factor can 

be represented by 𝓤𝑗 = 𝒖𝑗
(1)

°𝒖𝑗
(2)

°𝒖𝑗
(3)

 according to Eqn (2). 

 

2.4. Component number estimation 

 

In the application of tensor decomposition to EEG data, it is 

necessary to determine a proper component number, which is 

the rank-1 tensor number J in (2). Determining this number 

is very important to NCP because different numbers in 

different quantitative levels may probably correspond to very 

different decomposition results. In this study, DIFFIT 

(difference of fit) method was applied to determine the 

number of components [15]. DIFFIT measures the change of 

the fit (explained variance of the raw data by the proposed 

model) and the core tensor of the decomposition among a 

number of models [5]. We run ten times for each J and 

average the fits to obtain a more precise estimation. After 

DIFFIT estimation, J = 5 was selected for simulated dataset 

and J = 10 for real EEG dataset. 

 

2.5. Testing for task-related brain activity 

 

After tensor decomposition, a set of J brain activity, showing 

interactions among spectral temporal and spatial modes, were 

yielded. In all tensor-based methods, it is a general question 

that which components extracted need to be retained and 

which just reflect noise. In this study, the statistical 

significance of each obtained component was accessed by a 

permutation procedure based on surrogate data [16]. Phase-

randomized surrogate time courses of equal mean and 

autocorrelation to the extracted temporal factor of the 

component were obtained. The phase-randomization was 

computed by rotating the phase ϕ(𝑓)  by an independent 

random variable φ(𝑓)  which was uniformly chosen in the 

range of [0, 2π) [16]. 

We first averaged the time courses matrix 𝑼(2) over all 

trials in all subjects yielding a new matrix, 𝑼̅(2), containing J 

trial averaged time courses of component. The size of 

 𝑼̅(2)was 𝑁𝑡𝑟𝑖𝑎𝑙 × 𝐽, (where 𝑁𝑡𝑟𝑖𝑎𝑙  denotes the number time 

points per trial; 350 for simulated data and 275 for real data). 

Then, the phase randomization permutation process was 

performed [17]. Following this, an empirical null distribution 

was constructed. A matrix 𝑼̂𝑁𝑈𝐿𝐿
(2)

 was generated in the same 

way as  𝑼̅(2), but prior to averaging over trials, the phases of 

time courses for each trial were randomized. We reasoned 

that if the components extracted were not related to the 

cognitive tasks, this phase randomization would no effect on 

the magnitude of the trial averaged time courses, and 

therefore the magnitudes of fluctuations in 𝑼̂𝑁𝑈𝐿𝐿
(2)

 and  𝑼̅(2) 

would match. However, if the components contained trial-

onset-locked increases or decreases in brain activity, then 

these would be maintained in  𝑼̅(2) but diminished in 𝑼̂𝑁𝑈𝐿𝐿
(2)

. 

This procedure was repeated 5000 times. A component was 

deemed significant if, at any one time point in the trial 

average, the associated column of  𝑼̅(2) fluctuated such that it 

fell outside a threshold defined by the null distribution. The 

threshold for significance was defined at 0.05 and it should be 

noted this was corrected by Bonferroni correction for 

multiple comparisons across J components [17]. 

 

3. RESULTS 

 

3.1. Simulation results 

 

Fig. 2 shows the envelope time courses and the power spectra 

for all three correctly reconstructed brain networks and one 

noise artifact (we just present one artifact for demonstration). 

As can be seen that the location, spectra and the averaged 

time courses of the pre-set brain sources were reconstructed 

successfully. Fig. 2C shows the time course of the brain 

activity, represented as the corresponding trial averaged time 

courses of components in 𝑼̅(2). The grey area represents the 

null distribution generated by randomizing the phase of the 

trial time courses (𝑼̂𝑁𝑈𝐿𝐿
(2)

). Again, the black line represents 

the average response across all trials in all subjects, and the 

grey distribution is the 95th percentile threshold for the null 

distribution. 

 

3.2. Results from experimental EEG data 

 

Fig. 3 shows the results of our method applied to the real EEG 

data. Although 10 components were extracted, we just 

present two components that demonstrated significant task 

modulation. Clearly, the 1st row of Fig. 3 indicates that the 

Delta brain oscillation appeared in the right temporal-



occipital junction during 800 ms after onset. The 2nd row of 

Fig. 3 shows that the Theta rhythm emerges in the left frontal 

area corresponding to Broca’s area, which is significantly 

related with language cognition, during 400 ms after onset. 
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Fig. 2. Results of simulation. A: spatial maps of extracted 

components. B: Spectral factor of the components. C: Time 

courses of components, averaged across trials (black line). 

The grey shaded region represents the null distribution based 

on a hypothesis that the response is not time locked to the 

tasks. Significance (𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 < .05) is attributed if the black 

line appears outside the null distribution. Rows 1 to 3 show 

the three induced oscillatory sources. Row 4 demonstrates an 

artifact. 

 

4. DISCUSSION 

 

This paper has introduced a method mainly based on tensor 

decomposition to extract task-induced brain oscillations, 

which allows characterization of transiently forming and 

dissolving electrophysiological brain activity. The proposed 

method was validated by both simulated data and real EEG 

data. When application to real EEG data collected from task 

of irony comprehension, we found brain activity of interest, 

which was associated with irony comprehension. The results 

demonstrated that the Delta rhythm was elicited in Broca’s 

area after 400ms of the ironic stimulus and the theta 

oscillation involved in comprehension of irony in right 

temporal-occipital junction after 800ms of the stimulus. 

Actually, such elicited brain activity in those brain regions 

can be expected since the previous studies has also reported 

that the same brain areas were associated with humor 

comprehension [18, 19].   

The proposed approach is different from the previous 

reports where the tensor decomposition was applied to extract 

multi-domain feature of ERP (event-related potential) [5-7]. 

Here, we performed tensor decomposition to trials 

concatenated source-level data to extract the task-induced 

brain oscillation, which allows examination of temporal 

spectral dynamics in brain cortex during task performance or 

cognitive process.  
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Fig. 3. Results of experiment data. A: spatial maps of 

extracted components. B: Spectral factors of the components. 

C: Time courses of components, averaged across trials in all 

subjects (black line). The grey shaded region represents the 

null distribution (𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 < .05) based on a hypothesis that 

the response is not time locked to the tasks. Row 1 shows the 

Delta oscillation involved in comprehension of irony in right 

temporal-occipital junction after 800 ms of the stimulus 

onset. Row 2 demonstrates the Theta rhythm was elicited in 

Broca’s area after 400 ms of the ironic stimulus onset. 

 

As we all known, it is very complex to decode brain 

response to external stimulus. During a cognitive process, 

different brain rhythm would be emerging in different regions 

at different time, which causes the complexity of analysis for 

the EEG data. Therefore, the analysis for the data must 

account for temporal non-stationarity, spatial 

inhomogeneities, and spectral structure [20]. The time 

frequency representation of source level data based on 

wavelet transformation can well describe the property of the 

brain data. Tensor decomposition technique provides a means 

to extract information from such big and complex data. 
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