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On the notion of parallel transport on RCD spaces

Nicola Gigli and Enrico Pasqualetto

Abstract. We propose a general notion of parallel transport on RCD
spaces, prove an unconditioned uniqueness result and existence under suit-
able assumptions on the space.

1. Introduction

More than ten years ago, Sturm [26], [27] and Lott–Villani [22] introduced the
concept of lower Ricci curvature bounds for metric measure spaces. Their approach
has been refined in [3] and [13] with the introduction of the class of metric measure
spaces with Riemannian Ricci curvature bounded from below, RCD spaces in short,
which is currently a very active research area. We refer to the surveys [29], [28]
for an overview of the topic and detailed references.

Among the various recent contributions, of particular relevance for the current
manuscript is the paper [15] by the first author, where a second order calculus
has been built. In particular, on RCD(K,∞) spaces the covariant derivative of
vector fields is well-defined. Let us mention that in [15] ‘vector field’ is intended in
the sense of abstract L2-normed L∞-modules, and that in our previous paper [17]
we showed that on RCD(K,N) spaces this abstract notion has a canonically more
concrete counterpart described in terms of pointed-measured-Gromov–Hausdorff
limits of rescaled spaces (this uses the rectifiability results obtained in [23] and
in [21], [18]).

In the classical smooth Riemannian framework, covariant derivative and paral-
lel transport are two closely related concepts, thus given the existence of covariant
derivative on RCD spaces it is natural to ask: is there a notion of parallel transport
in the same setting? In this paper we address this question, our main results being:

i) We provide a precise framework and give a rigorous meaning to the ‘PDE’
defining the parallel transport (see Definitions 3.19, 3.22 and 4.1).

ii) By the nature of our definition, norm-preservation and linearity of the par-
allel transport are easy to derive, and these in turn will give uniqueness
(see Corollary 4.3).

Mathematics Subject Classification (2010): 30Lxx, 51Fxx.
Keywords: Parallel transport, RCD spaces.
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iii) On finite-dimensional RCD spaces satisfying a certain (strong) regularity
property, we are able to show existence of the parallel transport (see Sec-
tion 4.2). The regularity condition that we use is closely related to the
existence of Sobolev vector fields with bounded covariant derivative (see Def-
inition 4.9 for the precise assumption).

We believe that in fact the parallel transport exists on any RCD space, but
we are currently unable to get the full proof. An insight on why this should not
be too easy to prove is the following: on a space where the parallel transport
exists, the dimension of the tangent module must be constant (see Theorem 4.8),
and thanks to the aforementioned paper [17] this would in turn imply that the
dimension of the pmGH-limits of rescaled spaces is constant. This very same
result has been extremely elusive even in the context of Ricci-limit spaces and has
been obtained only relatively recently by Colding–Naber in [8], while the constant
dimension of all finite-dimensional RCD spaces has been proven by Bruè–Semola
in [5]. Therefore it would be perhaps too optimistic to hope that the language
proposed in [15] and here can easily imply such ‘constant dimension’ result. In this
direction, we remark that the assumptions we put in order to obtain existence of
the parallel transport are rather ad hoc and not really interesting from a geometric
perspective: as pointed out by Lemma 4.12 below (see also Remark 4.13), they
force the space to behave as a manifold of class C1,1, in a sense. The intent with
our existence result for this ‘toy case’ is just to show that the approach we propose
is non-void. In the work-in-progress [7], we are investigating the same problem
(together with E. Caputo) for more interesting geometric structures, namely finite-
dimensional Alexandrov spaces or, more generally, non-collapsed RCD spaces. The
latter – called ncRCD(K,N) spaces for short – have been proposed in [9], and are
characterised by the fact that the reference measure is given by the N -dimensional
Hausdorff measure HN . The advantage of attacking the existence problem in this
framework is that ncRCD spaces are Ahlfors regular, whence the Lusin–Lipschitz
regularity results for regular Lagrangian flows that have been obtained in [6] seem
to be helpful in providing existence of the parallel transport.

Let us also mention that in the appendix (see Theorem A.2) we prove that

iv) any RCD(K,∞) space admits a basis of the tangent module made of vectors
that belong to the space W 1,2

C (TX) of Sobolev vector fields.

That is: if we relax the condition of ‘bounded covariant derivative’ present in (iii)
above into ‘covariant derivative in L2’, then every RCD space meets the require-
ment.

Let us now briefly describe our approach. The crucial idea is that we do not
study the problem of parallel transport along a single Lipschitz curve, but rather
we study the problem along π-a.e. curve, where π is a Borel probability measure
on the space Γ(X) of continuous curves such that

π is concentrated on equi-Lipschitz curves,

and for some C > 0 we have (et)∗π ≤ Cm for every t ∈ [0, 1],

where m is the given reference measure on our RCD space X and et : Γ(X) → X is
the evaluation map defined by et(γ) := γt. Measures π of this sort are a special
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case of so-called test plans introduced in [2]; these can be used to define Sobolev
functions on metric measure spaces by a kind of duality argument. The advantage
of working with these plans rather than with single curves is that they are naturally
linked to Sobolev calculus and thus also to all the functional-analytic machinery
built in [15].

Let us now pretend, for the sake of this introduction, that our space X is in fact
a smooth Riemannian manifold. In this case a time dependent vector field (vt)
along π is, roughly said, given by a choice, for π-a.e. γ, of time dependent vector
fields (vγt ) on X. Then we say that (vt) is a parallel transport along π provided for
π-a.e. γ the vector field t �→ vγt (γt) is a parallel transport along γ. This happens
if and only if

for π-a.e. γ we have ∂tv
γ
t +∇γ′

t
vγt = 0 a.e. t.

A relevant part of our paper (the whole Chapter 3) is devoted to showing that the
above PDE can be stated even in the non-smooth setting, the key point being that
it is possible to define a closed operator acting on L2 vector fields along π which
plays the role of (∂t +∇γ′

t
), see Definitions 3.17, 3.19 and Proposition 3.20.

We conclude this introduction by describing two possible applications of the
parallel transport theory for RCD spaces:

a) Petrunin proved in [24] that a certain ‘geometric’ notion of parallel transport
exists along geodesics on Alexandrov spaces. Uniqueness for his construction is
still an interesting open problem. On the other hand, in our ‘functional analytic’
approach uniqueness is trivial. It would be therefore interesting (and expected) to
show that the two notions agree: among other things this would allow to obtain
something new (i.e., uniqueness) for Petrunin’s construction at least in some a.e.
sense.

b) A more ambitious research direction is that of providing a more complete pic-
ture for what concerns a distributional approach to weak lower curvature bounds.
Recall indeed that in [15] it has been introduced the Ricci curvature tensor in
the RCD setting and that using the results in [4] one can see that, in a suitable
sense, a metric measure space is RCD(K,∞) if and only if such Ricci curvature is
bounded from below by K. This provides a complete correspondence between the
‘synthetic’ Lott–Sturm–Villani approach [22], [26], [27] plus infinitesimal Hilber-
tianity [13] to lower Ricci curvature bounds and the ‘distributional’ approach based
on a properly weakly defined Ricci tensor.

One could ask whether the same holds for lower sectional curvature bounds,
where the standard definition based on triangle comparison would account for the
‘synthetic’ point of view. An important observation in this direction is the fact
that on a RCD space one can give a meaning, in a very weak sense, to the full
Riemann curvature tensor, and thus in particular also to the sectional curvature
(see [16]). Recalling also Petrunin’s [25] and Zhang–Zhu’s [30] results it is therefore
natural to ask: is it true that a RCD space is, as metric space, an Alexandrov
space of curvature ≥ κ if and only if the sectional curvature in the above sense is
bounded from below by κ? Shortly said, to answer this question one should prove
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Toponogov’s theorem on RCD spaces and a key step to do this would be to prove
the formula for the second variation of the energy of a curve. In turn, to obtain
sharp estimates out of the variation of the energy it is crucial to have at disposal
the parallel transport in order to have sufficient freedom in building vector fields
along the geodesics we are varying.

In other words, having a good understanding of the parallel transport is a
necessary (but far from sufficient) ingredient for both tightening the link between
lower Ricci and lower sectional curvature bounds in the non-smooth setting and
for providing a ‘distributional’ approach to the latter.

2. Some basic notions

To keep the presentation short, we shall assume the reader familiar with the lan-
guage proposed in [15] (see also [14]).

2.1. Curves in Banach spaces

We recall here some basic results about measurability and integration of Banach-
valued maps of a single variable t ∈ [0, 1]. A detailed discussion about this topic
can be found e.g. in [10].

Let B be a fixed Banach space. We will denote by B′ its dual space. A simple
function is any map y : [0, 1] → B that can be written in the form

y =

k∑
i=1

χEi vi, for some E1, . . . , Ek ∈ B
(
[0, 1]

)
and v1, . . . , vk ∈ B,

where for any topological space X we denote by B(X) the set of Borel subsets of X.
A map y : [0, 1] → B is said to be strongly measurable provided there exists a se-
quence (yn)n of simple functions yn : [0, 1] → B such that limn

∥∥yn(t)− y(t)
∥∥
B
= 0

for L1-a.e. t ∈ [0, 1], while it is said to be weakly measurable provided [0, 1] 	 t �→
ω
(
y(t)

) ∈ R is a Borel map for every ω ∈ B′. It directly follows from the very defi-
nition that linear combinations of strongly (resp. weakly) measurable functions are
strongly (resp. weakly) measurable. Moreover, if a map y : [0, 1] → B is strongly
measurable, then the function [0, 1] 	 t �→ ‖y(t)‖B ∈ R is Borel.

The relation between the strongly measurable functions and the weakly mea-
surable ones is fully described by a theorem of Pettis, which states that a function
y : [0, 1] → B is strongly measurable if and only if it is weakly measurable and
there exists a Borel set N ⊆ [0, 1] of null L1-measure such that y

(
[0, 1] \ N)

is a
separable subset of B.

We now describe how to define B-valued integrals, the so-called Bochner inte-
grals. First of all, given a simple function y : [0, 1] → B, written as y =

∑k
i=1

χEi vi,
we define ∫ 1

0

y(t) dt :=

k∑
i=1

L1(Ei) vi ∈ B.

It can be readily checked that this definition does not depend on the particular
way of expressing the function y.
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Further, we say that any strongly measurable function y : [0, 1] → B is Bochner
integrable provided there exists a sequence (yn)n of simple functions yn : [0, 1] → B

such that limn

∫ 1

0 ‖yn(t)− y(t)‖
B
dt = 0. In particular, the sequence

( ∫ 1

0 yn(t) dt
)
n⊆ B is Cauchy, so that it makes sense to define∫ 1

0

y(t) dt := lim
n→∞

∫ 1

0

yn(t) dt ∈ B.

It turns out that the value of
∫ 1

0
y(t) dt just defined is independent of the approx-

imating simple functions (yn)n and that it satisfies the fundamental inequality

(2.1)
∥∥∥∫ 1

0

y(t) dt
∥∥∥
B

≤
∫ 1

0

‖y(t)‖B dt.

An alternative characterisation of the B-valued integrable maps is given by
the following theorem, which is due to Bochner: a strongly measurable function

y : [0, 1] → B is Bochner integrable if and only if it satisfies
∫ 1

0 ‖y(t)‖B dt < +∞.

The previous result naturally leads to the notion of B-valued Lp space: given
p ∈ [1,∞], we define Lp

(
[0, 1],B

)
as the space of all (equivalence classes of) those

strongly measurable maps y : [0, 1] → B for which the quantity ‖y‖Lp([0,1],B) is
finite, where

‖y‖Lp([0,1],B) :=

⎧⎪⎨⎪⎩
(∫ 1

0

∥∥y(t)∥∥p
B
dt
)1/p

if p <∞,

ess sup
t∈[0,1]

‖y(t)‖B if p = ∞.

Hence Lp
(
[0, 1],B

)
itself is a Banach space, for any p ∈ [1,∞].

Definition 2.1 (Vector-valued Sobolev/absolutely continuous maps). Let p ∈
[1,∞]. The space W 1,p([0, 1],B) consists of those curves y ∈ Lp([0, 1],B) for which
there is y′ ∈ Lp([0, 1],B) such that∫ 1

0

ϕ′(t) y(t) dt = −
∫ 1

0

ϕ(t) y′(t) dt, ∀ϕ ∈ C∞
c (0, 1).

It is equipped with the norm

‖y‖W 1,p([0,1],B) :=
(‖y‖pLp([0,1],B) + ‖y′‖pLp([0,1],B)

)1/p
.

The space ACp([0, 1],B) consists of those curves y : [0, 1] → B for which there is
f ∈ Lp(0, 1) such that

‖y(s)− y(t)‖B ≤
∫ s

t

f(r) dr, ∀t, s ∈ [0, 1], t ≤ s.

Proposition 2.2 (Absolutely continuous representative). Let y ∈ W 1,p([0, 1],B).
Then there exists a unique ỹ ∈ ACp([0, 1],B) such that y(t) = ỹ(t) for a.e. t.
Moreover, such ỹ satisfies

ỹ(s)− ỹ(t) =

∫ s

t

y′(r) dr, ∀t, s ∈ [0, 1], t < s.
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Proof. The curve t �→ z(t) :=
∫ t

0 y
′(s) ds belongs to ACp ∩W 1,p([0, 1],B) and thus

in particular the curve t �→ y(t) − z(t) belongs to W 1,p([0, 1],B) and, obviously,
has derivative a.e. equal to 0. Hence to conclude it is sufficient to show that any
such curve is a.e. constant. This follows noticing that for any � ∈ B′ the map
t �→ �(y(t) − z(t)) is in W 1,p([0, 1]) (by direct verification) and has derivative a.e.
equal to 0. �

Proposition 2.3 (Characterization of curves in the space W 1,p([0, 1],B)). Let
y, z ∈ Lp([0, 1],B). Then y ∈ W 1,p([0, 1],B) and z = y′ if and only if for some
dense set D ⊂ B′ we have that � ◦ y ∈ W 1,1([0, 1]) with (� ◦ y)′ = � ◦ z a.e. for
every � ∈ D.

In particular, if B = Lp̃(μ) for some Radon measure μ, then y ∈ W 1,p([0, 1],
Lp̃(μ)) and z = y′ if and only if for every Borel set E we have that t �→ ∫

E
y(t) dμ

is in W 1,1(0, 1) with derivative given by t �→ ∫
E z(t) dμ.

Proof. By assumption and using the fact that the Bochner integral commutes with
the application of �, we have that

�
(∫ 1

0

ϕ′(t)y(t) dt
)
= �

(
−

∫ 1

0

ϕ(t)z(t) dt
)

∀ϕ ∈ C∞
c (0, 1),

for every � ∈ D. The conclusion follows by the density of D in B′.
For the second claim just observe that the linear span of the set of characteristic

functions of Borel sets is dense in Lq̃(μ) ∼ (Lp̃(μ))′. �

It is important to underline that in general absolute continuity does not imply
a.e. differentiability: for instance, the curve [0, 1] 	 t �→ χ[0,t] ∈ L1(0, 1) is abso-
lutely continuous (as it is an isometry), but it is nowhere differentiable. The a.e.
differentiability of absolutely continuous curves has to do with the so-called Radon–
Nikodym property of the target Banach space. A sufficient condition for this im-
plication to hold is given in the next theorem.

Theorem 2.4. Let B be a reflexive Banach space, p∈ [1,∞] and y∈ACp([0, 1],B).
Then for a.e. t ∈ [0, 1] the limit of (y(t+ h)− y(t))/h as h→ 0 exists in B.

In particular, ACp([0, 1],B) ∼ W 1,p([0, 1],B), i.e., every absolutely continuous
curve is the (only) continuous representative of a curve in W 1,p([0, 1],B).

Proof. The first statement – namely, the a.e. differentiability of any element of
ACp([0, 1],B) – is well known. For the second statement, fix any y ∈ ACp([0, 1],B)
and � ∈ B′. Let us set z(t) := limh→0(y(t+ h) − y(t))/h for a.e. t ∈ [0, 1]. Notice
that z ∈ Lp([0, 1],B). Trivially, the function � ◦ y is absolutely continuous and a.e.
differentiable, with derivative � ◦ z, whence by using the dominated convergence
theorem one can conclude that �◦y ∈W 1,1(0, 1) and (�◦y)′ = �◦z in the a.e. sense.
Thanks to Proposition 2.3, this proves that (the equivalence class of) y belongs to
W 1,p([0, 1],B), as required. �
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Given any Banach space B, we shall denote by End(B) the space of all linear
and continuous maps of B to itself, which is a Banach space if endowed with the
operator norm.

The space Γ(B) := C([0, 1],B) is a Banach space with respect to the norm
‖ · ‖Γ(B), given by ‖y‖Γ(B) := max{‖yt‖B : t ∈ [0, 1]} for every y ∈ Γ(B).

Theorem 2.5 (Integral solutions to vector-valued linear ODEs). Let B be a Ba-
nach space. Let z ∈ Γ(B). Let λ : [0, 1] → End(B) be a bounded function, i.e.,
there exists c > 0 such that ‖λ(t)‖End(B) ≤ c for every t ∈ [0, 1]. Assume that
[0, 1] 	 t �→ λ(t)v ∈ B is strongly measurable for every v ∈ B. Then there exists a
unique curve y ∈ Γ(B) such that

(2.2) y(t) = z(t) +

∫ t

0

λ(s) y(s) ds for every t ∈ [0, 1].

Moreover, the solution y satisfies ‖y‖Γ(B) ≤ ec ‖z‖Γ(B).

Proof. Given any simple function t �→ yt =
∑k

i=1
χAi(t) vi, with A1, . . . , Ak ∈

B
(
[0, 1]

)
and v1, . . . , vk ∈ B, we have that t �→ λ(t)yt =

∑k
i=1

χAi(t)λ(t)vi
is strongly measurable by hypothesis on λ. Now fix y ∈ Γ(B). In particular,
y : [0, 1] → B is strongly measurable, hence there exists a sequence (yk)k of simple
functions yk : [0, 1] → B such that limk ‖ykt − yt‖B = 0 holds for L1-a.e. t ∈ [0, 1].

This grants that ‖λ(t)ykt − λ(t)yt‖B ≤ c ‖ykt − yt‖B k→ 0 is satisfied for L1-a.e.
t ∈ [0, 1], thus accordingly the map t �→ λ(t)yt is strongly measurable as pointwise
limit of strongly measurable functions. Moreover, since ‖λ(t)yt‖B ≤ c ‖y‖Γ(B) for

all t ∈ [0, 1], one has that t �→ λ(t)yt actually belongs to L∞(
[0, 1],B

)
. Therefore

it makes sense to define the function Λy : [0, 1] → B as (Λy)(t) :=
∫ t

0 λ(s)ys ds for
every t ∈ [0, 1]. Note that

(2.3) ‖Λy(t1)−Λy(t0)‖B ≤ c ‖y‖Γ(B)(t1−t0) for every t0, t1∈ [0, 1] with t0<t1.

Then Λy is Lipschitz with Lip(Λy) ≤ c ‖y‖Γ(B), so in particular Λy ∈ Γ(B). By

plugging t1 = t and t0 = 0 into (2.3), we deduce that ‖Λy(t)‖B ≤ c ‖y‖Γ(B)t for
all t ∈ [0, 1] and accordingly that ‖Λy‖Γ(B) ≤ c ‖y‖Γ(B). This guarantees that the

mapping Λ: Γ(B) → Γ(B) is linear and continuous, with ‖Λ‖End(Γ(B)) ≤ c. Now
observe that

(2.4) y ∈ Γ(B) satisfies (2.2) ⇐⇒ (IdΓ(B) − Λ)(y) = z.

Standard verifications show that the iterated operator Λn satisfies ‖Λn‖End(Γ(B)) ≤
cn/n!. Hence IdΓ(B) − Λ is invertible and the operator norm of (IdΓ(B) − Λ)−1 =∑∞

n=0 Λ
n is bounded above by ec. In light of (2.4), we finally conclude that there

exists a unique curve y ∈ Γ(B) fulfilling (2.2), namely y := (IdΓ(B)−Λ)−1(z), which
also satisfies ‖y‖Γ(B) ≤ ec ‖z‖Γ(B). �

The following result can be readily achieved as a consequence of Theorems 2.4
and 2.5.
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Corollary 2.6 (Differential solutions to vector-valued linear ODEs). Fix a reflex-
ive Banach space B. Let y ∈ B. Let λ : [0, 1] → End(B) be a bounded function.
Suppose that the map [0, 1] 	 t �→ λ(t)v ∈ B is strongly measurable for every v ∈ B.
Then there exists a unique curve y ∈ LIP

(
[0, 1],B

)
such that

(2.5)

{
y′(t) = λ(t)y(t) for L1-a.e. t ∈ [0, 1],
y(0) = ȳ.

Moreover, the solution y satisfies ‖y‖Γ(B) ≤ ec ‖y‖
B
, where c := max

t∈[0,1]
‖λ(t)‖End(B).

2.2. Pullback of an L0-normed module

The aim of this subsection is to introduce the concept of pullback of an L0-normed
module and to study its main properties. The following definitions and results
mimic and follow by the analogous ones for Lp-normed modules, which are treated
in [15], Subsection 1.6; a digression similar to the one below has been done in [20].

Theorem 2.7. Let (X,AX,mX), (Y,AY ,mY) be σ-finite measured spaces. Let
ϕ : X → Y be a map of bounded compression (i.e., ϕ∗mX ≤ CmY for some C > 0).
Let M 0 be an L0(mY)-normed module. Then there exists (up to unique isomor-
phism) a unique couple (N 0,T), where N 0 is an L0(mX)-normed module and
T : M 0 → N 0 is a linear map, such that

(i) |Tv| = |v| ◦ ϕ holds mX-a.e. in X, for every v ∈ M 0,

(ii) the set of all the elements of the form
∑n

i=1
χAiTvi, with (Ai)

n
i=1 ⊆ AX

partition of X and v1, . . . , vn ∈ M 0, is dense in N 0.

Namely, if two couples (N 0
1 ,T1) and (N 0

2 ,T2) as above fulfill both (i) and (ii),
then there exists a unique module isomorphism Φ: N 0

1 → N 0
2 such that the dia-

gram

is commutative.

Proof. Existence. Fix p ∈ [1,∞) and let M := {v ∈ M 0 : |v| ∈ Lp(mY)}.
Hence M is an Lp(mY)-normed module and M 0 is the L0-completion of M .
Define N 0 := (ϕ∗M )0. We construct the map T in the following way: since
the space M is dense in M 0 and ϕ∗M is continuously embedded into N 0, the
map ϕ∗ : M → ϕ∗M can be uniquely extended to a linear continuous function
T : M 0 → N 0. Such function T also satisfies (i). Moreover, it is clear that the
diagram
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commutes. Therefore, since the set {ϕ∗v : v ∈ M } generates N 0 as L0(mX)-
normed module, we have in particular that the set {Tv : v ∈ M 0} generates N 0

as L0(mX)-normed module, proving (ii).

Uniqueness. Let us choose (N 0
1 ,T1), (N 0

2 ,T2) satisfying (i) and (ii). For
j = 1, 2, denote by Vj the set of

∑n
i=1

χAiTjvi as in (ii). Then the unique L0(mX)-
linear map Ψ: V1 → V2, which satisfies Ψ ◦ T1 = T2, is necessarily given by
Ψ
(∑n

i=1
χAiT1vi

)
=

∑n
i=1

χAiT2vi. By requiring the condition (i), we force the
mX-a.e. equality ∣∣∣ n∑

i=1

χAiT2vi

∣∣∣ = n∑
i=1

χAi |vi| ◦ ϕ =
∣∣∣ n∑
i=1

χAiT1vi

∣∣∣,
which shows that the map Ψ is actually well-defined and continuous. There exists
a unique module morphism Φ: N 0

1 → N 0
2 that extends Ψ, by density of V1 in N 0

1 .
Such map Φ clearly satisfies Φ◦T1 = T2. Finally, by interchanging the roles of N 0

1

and N 0
2 , one can easily conclude that Φ is an isomorphism, getting the thesis. �

Definition 2.8 (Pullback module). Any couple (N 0,T) that satisfies Theorem 2.7
will be unambiguously denoted by

(
ϕ∗M 0, ϕ∗). Moreover, we shall call ϕ∗M 0 the

pullback module of M 0 and ϕ∗ the pullback map.

Proposition 2.9 (Universal property of the pullback). Let (X,AX,mX) and
(Y,AY, mY) be σ-finite measured spaces. Let ϕ : X → Y be a map of bounded
compression. Let M 0 be an L0(mY)-normed module and let N 0 be an L0(mX)-
normed module. Consider a linear operator T : M 0 → N 0 such that

(2.6) |Tv| ≤ � |v| ◦ ϕ mX-a.e. in X, for every v ∈ M 0,

for a suitable map � ∈ L0(mX). Then there exists a unique L0(mX)-linear and

continuous operator T̂ : ϕ∗M 0 → N 0 such that T̂ ◦ ϕ∗ = T and

(2.7) |T̂w| ≤ � |w| mX-a.e. in X, for every w ∈ ϕ∗M 0.

Proof. Denote by V the set of all elements of the form
∑n

i=1
χAiϕ

∗vi, with A1, ..., An

∈ AX partition of X and v1, . . . , vn ∈ M 0, so that V is a dense linear subspace
of ϕ∗M 0 by property (ii) of Theorem 2.7. Any L0(mX)-linear map T̂ : ϕ∗M 0 → N 0

with T̂ ◦ ϕ∗ = T must satisfy

(2.8) T̂w =

n∑
i=1

χAiT̂(ϕ
∗vi) =

n∑
i=1

χAiTvi, for w =

n∑
i=1

χAi ϕ
∗vi ∈ V.

Consider T̂ : V → N 0 defined as in (2.8), then (2.6) grants that

|T̂w| =
n∑

i=1

χAi |Tvi| ≤ �

n∑
i=1

χAi |vi| ◦ ϕ(2.9)

= �

n∑
i=1

χAi |ϕ∗vi| = � |w| holds mX-a.e.,
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which shows that T̂ : V → N 0 is well-defined (in the sense that T̂w depends

only on w and not on the way of representing it) and continuous. Therefore T̂

can be uniquely extended to a linear continuous operator T̂ : ϕ∗M 0 → N 0. We
readily deduce from the definition (2.8) that the equality f T̂w = T̂(fw) holds for

f : X → R simple function, so that T̂ can be shown to be L0(mX)-linear by an
approximation argument. Finally, it follows from (2.9) that the inequality (2.7) is
satisfied for w ∈ V , whence (2.7) holds by density of V in ϕ∗M 0. �

2.3. Some properties of test plans

For the sake of brevity, hereafter we shall use the notation L1 to indicate the
1-dimensional Lebesgue measure restricted to [0, 1], namely

L1 := L1|[0,1].

Let π ∈ P
(
Γ(X)

)
be any fixed test plan on X, whence

(
Γ(X), dΓ(X),π

)
is a metric

measure space. Given that the map et is of bounded compression, it makes sense
to consider the pullback module e∗tL

2(TX). Observe that e∗tL
2(TX) is a Hilbert

module as soon as (X, d,m) is infinitesimally Hilbertian.

Remark 2.10. Let us define the map e: Γ(X)×[0, 1] → X as e(γ, t) := γt for every
γ ∈ Γ(X) and t ∈ [0, 1]. It can be easily proved that the map e is continuous. This
grants that, given any Borel map f : X → R, the function f ◦ e is Borel. Moreover,
observe that

(π × L1)(e
−1(A)) =

∫ 1

0

π(e−1
t (A)) dt ≤ C(π)m(A) for every A ∈ B(X)

by Fubini’s theorem, in other words it holds that e∗(π ×L1) ≤ C(π)m. Therefore
one has that the composition f ◦ e ∈ L0(π×L1) is well-defined for any f ∈ L0(m).

�

The following result belongs to the folklore of the theory; we provide a proof
for completeness.

Theorem 2.11. Let (X, d,m) be a metric measure space. Let π be a test plan
on X. Then

(2.10) for every f ∈ L1(m) the map [0, 1] 	 t �−→ f ◦ et ∈ L1(π) is continuous.

In particular, the map [0, 1] 	 t �→ ∫
f ◦ et dπ is continuous for every f ∈ L1(m).

Proof. First of all, we claim that

(2.11) lim
s→t

∫
|f ◦ es − f ◦ et| dπ = 0 if f ∈ Cb(X) ∩ L1(m) and t ∈ [0, 1].

To prove it, note that |f ◦ es − f ◦ et|(γ) ≤ 2 ‖f‖L∞(m) for every γ ∈ Γ(X) and t, s

∈ [0, 1]. Moreover, |f(γs)− f(γt)| → 0 as s → t by continuity, for every γ ∈ Γ(X)
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and t ∈ [0, 1]. Hence we obtain (2.11) as a consequence of the dominated conver-
gence theorem. Observe also that

(2.12) L1(m) 	 f �−→ f ◦ et ∈ L1(π) is a linear bounded map, for every t ∈ [0, 1].

Indeed,
∫ |f ◦ et| dπ ≤ C(π)

∫ |f | dm is satisfied for every f ∈ L1(m). Now fix
f ∈ L1(m). Choose a sequence (fn)n ⊆ Cb(X) ∩ L1(m) that converges to f with
respect to the L1-norm. Given t ∈ [0, 1] and n ∈ N, we have that (2.11) and (2.12)
yield

lim
s→t

∫
|f ◦ es − f ◦ et| dπ ≤ 2C(π) ‖f − fn‖L1(m) + lim

s→t

∫
|fn ◦ es − fn ◦ et| dπ

= 2C(π) ‖f − fn‖L1(m).(2.13)

By letting n → ∞ in (2.13), we finally conclude that
∫ |f ◦ es − f ◦ et| dπ → 0 as

s→ t, which proves (2.10). The last statement is obvious. �

Under further assumptions on (X, d,m), we have at disposal also a notion of
‘speed’ π′

t of the test plan π at time t, as described in the following result. For the
proof of such fact, we refer to Theorem 2.3.18 in [15] or Theorem/Definition 1.32
in [14].

Theorem 2.12 (Speed of a test plan). Let (X, d,m) be a metric measure space
such that L2(TX) is separable. Let π be a test plan on X. Then there exists a
unique (up to L1-a.e. equality) family π′

t ∈ e∗tL2(TX) such that

(2.14) ∃L1(π)- lim
h→0

f ◦ et+h − f ◦ et
h

= (e∗tdf)(π
′
t) for L1-a.e. t ∈ [0, 1],

for every f ∈ W 1,2(X). Moreover, the function (γ, t) �→ |π′
t|(γ) is (the equivalence

class of ) a Borel map such that for L1-a.e. t ∈ [0, 1] it holds that

(2.15) |π′
t|(γ) = |γ̇t| for π-a.e. γ ∈ AC

(
[0, 1],X

)
.

Proposition 2.13. Let (X, d,m) be a metric measure space such that L2(TX) is
separable, let π be a test plan on X and f ∈ W 1,2(X). Then the a.e. defined map
[0, 1] 	 t �→ e∗tdf(π′

t) ∈ L1(π) is a.e. equal to a Borel map.

Proof. For every h ∈ (0, 1) the map [0, 1−h] 	 t �→ (f ◦ et+h− f ◦ et)/h ∈ L1(π) is
continuous. Thus by classical arguments the set of t’s for which the limit as h→ 0
exists is Borel and the limit function, set, say, to 0 when the limit does not exist,
is Borel. �

In this paper we shall work only on RCD spaces, which in particular are so that
W 1,2(X) is reflexive. In turn this implies, by the arguments in [1], that the tangent
module is separable, so that the assumptions of Theorem 2.12 and Proposition 2.13
above are fulfilled.

In the sequel, we will mainly focus our attention on those test plans π that
are concentrated on an equiLipschitz family of curves. As illustrated in the next
definition, we will refer to them as ‘Lipschitz test plans’.
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Definition 2.14 (Lipschitz test plan). Let (X, d,m) be a metric measure space
such that L2(TX) is separable. Then a test plan π on X is said to be a Lipschitz
test plan provided there exists a constant L ≥ 0 such that

(2.16) |π′
t| ≤ L holds π-a.e. in Γ(X), for L1-a.e. t ∈ [0, 1],

or, equivalently, such that π is concentrated on the family of all the L-Lipschitz
curves in X. The smallest constant L ≥ 0 for which (2.16) is satisfied will be
denoted by L(π).

Whenever the test plan π is Lipschitz, we have (e∗t df)(π
′
t) ∈ L2(π) for every

f ∈ W 1,2(X). One is then led to wonder whether in this case the limit in (2.14)
takes place not only in L1(π), but also in L2(π). The answer is affirmative, as
shown in the following simple result.

Proposition 2.15. Let (X, d,m) be a metric measure space such that L2(TX) is
separable. Let π be a Lipschitz test plan on X. Let f ∈ W 1,2(X). Then the
mapping t �→ f ◦ et ∈ L2(π) is Lipschitz and

(2.17) L2(π)-
d

dt
(f ◦ et) = (e∗t df)(π

′
t) for L1-a.e. t ∈ [0, 1],

where L2(π)- d
dt stands for the strong derivative (with respect to t) in the Banach

space L2(π).

Proof. Given any t, s ∈ [0, 1] with s < t, one has that∥∥f ◦ et − f ◦ es
∥∥2
L2(π)

=

∫ ∣∣f(γt)− f(γs)
∣∣2 dπ(γ)

(by definition of Sobolev functions) ≤
∫ (∫ t

s

|Df |(γr) |γ̇r| dr
)2

dπ(γ)

(by Hölder’s inequality) ≤ (t− s) L(π)2
∫∫ t

s

|Df |2(γr) dr dπ(γ)

≤ C(π) L(π)2 ‖f‖2W 1,2(X) (t− s)2,

which shows that t �→ f ◦ et ∈ L2(π) is a Lipschitz map. In particular, it is
differentiable at almost every t ∈ [0, 1] by Theorem 2.4, so that (2.17) follows
from (2.14). �

3. Introduction of appropriate functional spaces

Throughout all this chapter, (X, d,m) is a given RCD(K,∞) space and π a test
plan on it. Recall that the space TestF(X) of test functions on X is defined as

TestF(X) :=
{
f ∈ L∞ ∩ LIP ∩W 1,2(X) ∩D(Δ) : Δf ∈ W 1,2(X)

}
and that the space of test vector fields on X is defined as

TestV(X) :=
{ n∑

i=1

fi∇gi : n ∈ N+, fi, gi ∈ TestF(X) for every i
}
⊂ L2(TX).



On the notion of parallel transport on RCD spaces 13

3.1. Test vector fields along π

We define the space of vector fields along π as:

VF(π) :=
∏

t∈[0,1]

e∗tL
2(TX).

Thus VF(π) is the collection of maps assigning to each t ∈ [0, 1] an element of
e∗tL

2(TX); it is a vector space w.r.t. pointwise operation.

To each V ∈ VF(π) we associate the function [[V ]] : [0, 1] → [0,+∞), defined by

[[V ]]t := ‖Vt‖e∗tL2(TX) for every t ∈ [0, 1].

The subspace TestVF(π) ⊂ VF(π) of test vector fields along π is defined as:

TestVF(π) :=

{
t �→

n∑
i=1

ϕi(t)χAi e
∗
t vi

∣∣∣∣n ∈ N+, Ai∈B
(
Γ(X)

)
, ϕi ∈ LIP

(
[0, 1]

)
,

and vi ∈ TestV(X) for every i = 1, . . . , n

}
.

Since TestV(X) ⊆ L∞(TX) we see that for any V ∈ TestVF(π) the function
(γ, t) �→ |Vt|(γ) belongs to L∞(L1 × π).

Proposition 3.1 (Continuity of the test vector fields along π). For any V,W ∈
TestVF(π) we have that

(3.1) [0, 1] 	 t → 〈Vt,Wt〉 ∈ L1(π) is continuous.

In particular, the function [[V ]] : [0, 1] → [0,+∞) is continuous for every V ∈
TestΓ(X).

Proof. By linearity, it is clear that it is sufficient to prove the claim for V,W of the
form V = χA e∗t v, W = χB e∗tw for v, w ∈ TestV(X). In this case the claim (3.1) is
a direct consequence of

〈Vt,Wt〉 = χA∩B〈v, w〉 ◦ et
and Theorem 2.11. The last statement follows by choosing W = V . �

We now define two norms on TestVF(π):

‖V ‖2L 2(π) :=

∫ 1

0

[[V ]]2t dt and ‖V ‖C (π) := max
t∈[0,1]

[[V ]]t.

Notice that Proposition 3.1 ensures that t �→ [[V ]]t is Borel, hence ‖ · ‖L 2(π) is
well defined; also, routine computations show that ‖ · ‖L 2(π), ‖ · ‖C (π) are norms

on TestVF(π) with ‖ · ‖L 2(π) ≤ ‖ · ‖C (π).

We now want to show that (TestVF(π), ‖ · ‖C (π)) is separable by exhibiting
a countable dense subset. To this aim, we first choose three countable families
F1 ⊆ {

open sets of Γ(X)
}
, F2 ⊆ LIP

(
[0, 1]

)
and F3 ⊆ TestF(X) such that

given A ⊆ Γ(X) Borel and ε > 0, there exists U ∈ F1 with π(AΔU) < ε,

F2 is dense in C([0, 1]) and stable by product and Q-linear combinations,

F3 is aQ-vector space of functions inW 1,2(X) whose gradients generate L2(TX).
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We proceed in the following way:

F1: Since Γ(X) is separable, there exists a countable family F̃1 of open subsets of
Γ(X) that is a neighbourhood basis for each point γ ∈ Γ(X). Let us denote

by F1 the set of finite unions of elements of F̃1, so that F1 is countable. Fix
A ∈ B

(
Γ(X)

)
and ε > 0. The measure π is regular, since

(
Γ(X), dΓ(X)

)
is

complete and separable. By inner regularity of π, there exists a compact
subset K ⊆ A such that π(A \ K) < ε/2. By outer regularity of π, there
exists V ⊆ Γ(X) open such that K ⊆ V and π(V \K) < ε/2. We can then

associate to any γ ∈ K a set Uγ ∈ F̃1 such that γ ∈ Uγ ⊆ V . By compactness
of K, one has K ⊆ Uγ1 ∪ . . .∪Uγn ⊆ V for some finite choice γ1, . . . , γn ∈ K.
Let us call U := Uγ1 ∪ . . . ∪ Uγn ∈ F1. We thus have that

π(AΔU) = π(A \ U) + π(U \A) ≤ π(A \K) + π(V \K) < ε.

F2: By the separability of C([0, 1]), such F2 exists.

F3: Since the space (X, d,m) is infinitesimally Hilbertian, we have thatW 1,2(X) is
reflexive and therefore, by [1], separable. Thus let F3 be any countable dense
Q-vector subspace of W 1,2(X) and notice that since gradients of functions in
W 1,2(X) generate L2(TX), the same holds for functions in F3.

We now define the class of test vector fields TestVFN(π) as

TestVFN(π) :=

{
t �→

n∑
i=1

ψi(t)χUi e
∗
t∇fi

∣∣∣∣ n ∈ N+ and Ui ∈ F1, ψi ∈ F2,
fi ∈ F3 for every i = 1, . . . , n

}
.

Clearly, TestVFN(π) is a countable subset of TestVF(π). Also, notice that the
inequalities

[[χAe
∗
t v − χAe

∗
tw]]t ≤

√
C(π) ‖v − w‖L2(TX),

[[χAe
∗
t v − χUe

∗
t v]]t ≤

√
π(AΔU) ‖v‖L∞(TX),

valid for any t ∈ [0, 1], A,U ⊂ Γ(X) Borel and v, w ∈ L2(TX), and the very
definition of pullback module, show that

(3.2) for any t ∈ [0, 1] the set {Wt : W ∈ TestVFN(π)} is dense in e∗tL
2(TX).

Lemma 3.2 (Separability of TestVF(π)). The family TestVFN(π) is dense in
TestVF(π) with respect to the norm ‖ · ‖C (π) (and thus also w.r.t. ‖ · ‖L 2(π)).

Proof. Let V ∈ TestVF(π) be arbitrary, ε > 0 and t0 ∈ [0, 1]. By (3.2) there
is W ∈ TestVFN(π) such that [[V −W ]]t0 < ε. Since t �→ [[V −W ]]2t = [[V ]]2t +
[[W ]]2t − 2

∫ 〈Vt,Wt〉dπ is continuous, we see that [[V −W ]]t < ε for every t in a
neighbourhood of t0. By compactness of [0, 1], we can then find a finite number
of open intervals I1, . . . , In covering [0, 1] and elements W1, . . . ,Wn ∈ TestVFN(π)
such that

(3.3) [[V −Wi]]t < ε, ∀t ∈ Ii ∩ [0, 1], i = 1, . . . , n.
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By multiplying Wi by an appropriate function in F2 we can also assume that

(3.4) [[Wi]]t < ‖V ‖C (π) + 2ε, ∀t ∈ [0, 1].

Now let (φi) be a Lipschitz partition of the unity subordinate to the cover made
with the Ii’s and for any i let ψi ∈ F2 be such that |φi(t) − ψi(t)| < ε for every
t ∈ [0, 1]. Then we have Wt :=

∑
i ψi(t)Wi,t ∈ TestVFN(π) and

[[V −W ]]t ≤ [[V −
∑
i

φi(t)Wi]]t+[[
∑
i

(ψi(t)−φi(t))Wi]]t
(3.3),(3.4)

≤ ε+ε(‖V ‖C (π)+2ε)

for any t ∈ [0, 1]. The conclusion follows by the arbitrariness of ε > 0. �

3.2. The space L 2(π)

We start defining the class of Borel vector fields along π.

Definition 3.3 (Borel vector fields along π). We say that V ∈ VF(π) is Borel
provided

(3.5) [0, 1] 	 t �−→
∫

〈Vt,Wt〉dπ is a Borel function,

for every W ∈ TestVFN(π).

Notice that thanks to Lemma 3.2 this notion would be unaltered if we re-
quire (3.5) to hold for any W ∈ TestVF(π). Also, Proposition 3.1 ensures that
test vector fields are Borel. We have the following basic result.

Proposition 3.4. Let V ∈ VF(π) be Borel. Then the map [[V ]] : [0, 1] → [0,∞) is
Borel.

Proof. From (3.2) we deduce that

[[V ]]
2
t = sup

W∈TestΓN(X)

(
2

∫
〈Vt,Wt〉 dπ − [[W ]]

2
t

)
for every t ∈ [0, 1],

and the thesis follows. �

We can now define the space L 2(π).

Definition 3.5 (The space L 2(π)). We define L 2(π) as the space of all Borel
vector fields V ∈ VF(π) such that

‖V ‖2L 2(π) :=

∫ 1

0

[[V ]]
2
t dt =

∫ 1

0

∫
|Vt|2 dπ dt < +∞,

where we identify V, Ṽ ∈ VF(π) if Vt = Ṽt for a.e. t ∈ [0, 1].

Clearly
(
L 2(π), ‖ · ‖L 2(π)

)
is a normed space, wherein TestVF(π) is embed-

ded. The following result can be obtained by adapting the classical arguments
concerning the standard L2 spaces. For completeness we report its proof, the
context being different from the usual one.
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Proposition 3.6 (Basic properties of L 2(π)). The space L 2(π) is a Hilbert
space, and if Vn → V in L 2(π) then there is a subsequence such that Vn,t → Vt
in e∗tL

2(TX) for a.e. t ∈ [0, 1].

Proof. It is clear that the L 2(π) norm comes from the scalar product

〈V,W 〉L 2(π) :=

∫ 1

0

∫
〈Vt,Wt〉dπ dt.

To conclude the proof we shall show that if (Vn) is a sequence of Borel vector fields
in L 2(π) such that

∑
n ‖Vn+1 − Vn‖L 2(π) < ∞, then such sequence has a limit

V ∈ L 2(π) and for a.e. t it holds Vn,t → Vt in e∗tL
2(TX).

Define the Borel function g : [0, 1] → [0,+∞] as g :=
∑

n[[Vn+1−Vn]] and notice
that since, for all N ∈ N,∥∥∥ N∑

n=1

[[Vn+1 − Vn]]
∥∥∥
L2(0,1)

≤
N∑

n=1

‖Vn+1 − Vn‖L 2(π) ≤
∞∑
n=1

‖Vn+1 − Vn‖L 2(π) <∞ ,

we have that g ∈ L2(0, 1). Let N := {t : g(t) = +∞} and notice that for every
t ∈ [0, 1] \N we have

(3.6)

∞∑
n=1

‖Vn+1,t − Vn,t‖e∗tL2(TX) =

∞∑
n=1

[[Vn+1 − Vn]]t = g(t) <∞,

proving that (Vn,t) is a Cauchy sequence in e∗tL2(TX). Then define

Vt :=

{
limn Vn,t ∈ e∗tL2(TX), if t ∈ [0, 1] \N,
0 ∈ e∗tL

2(TX), if t ∈ N .

Notice that for everyW ∈ TestVF(π) we have
∫ 〈Vt,Wt〉dπ = limn

∫ 〈Vn,t,Wt〉dπ
for all t ∈ [0, 1] \ N , hence the map [0, 1] 	 t �→ ∫ 〈Vt,Wt〉dπ is Borel and, by
arbitrariness of W , this shows that V is Borel. Since trivially we have [[V ]]t ≤
[[V1]]t +

∑∞
n=1[[Vn+1 − Vn]]t, by (3.6) we see that V ∈ L 2(π). Now to check that

Vn → V in L 2(π) notice that, again by (3.6), the sequence [[V −Vn]]t is dominated
in L2(0, 1) and that for every t ∈ [0, 1] \N we have

lim
n→∞[[V − Vn]]t ≤ lim

n→∞ lim
m→∞

m∑
i=n

[[Vi+1 − Vi]]t
(3.6)
= 0,

so that the conclusion follows by the dominated convergence theorem. �

Proposition 3.7 (Density of TestVFN(π) in L 2(π)). The space TestVFN(π) is
dense in L 2(π). In particular, L 2(π) is separable.

Proof. Let (Zk) be an enumeration of the elements in TestVFN(π), pick a Borel

vector field V ∈ L 2(π) and choose ε > 0. Then for every k ∈ N let G̃k := {t ∈
[0, 1] : [[V − Zk]]t < ε} and put G1 := G̃1 and Gk := G̃k\(G̃1∪. . .∪G̃k−1) for k > 1.
Then (3.2) grants that (Gk)k≥1 is a Borel partition of [0, 1].
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Now for m ∈ N ∪ {∞} define Wm ∈ L 2(π) as Wm,t :=
∑m

k=1
χGk

(t)Zk,t.
Observe that ‖W∞ − V ‖L 2(π) < ε by definition of Gk. Moreover, for each m ≥ 1
one has that

‖Wm −W∞‖2L 2(π) =

∞∑
k=m+1

∫
Gk

[[Zk]]
2
t dt ≤

∫
⋃

k>m Gk

2 ([[V ]]
2
t + ε2) dt,

so that accordingly limm→∞ ‖Wm −W∞‖L 2(π) = 0 by the dominated convergence
theorem.

Hence to conclude it is sufficient to show that each Wm belongs to the L 2(π)-
closure of TestVFN(π) and in turn this will follow if we prove that for Z ∈
TestVFN(π) andG ⊂ [0, 1] Borel the vector field χGZ belongs to the L 2(π)-closure
of TestVFN(π). To see this, simply let (ϕn) ⊂ LIP([0, 1]) be uniformly bounded
and a.e. converging to χG, notice that ϕnZ ∈ TestVF(π) and that an application
of the dominate convergence theorem shows that ϕnZ → χGZ in L 2(π). �

Now consider the speed π′
t, associated to any test plan π by Theorem 2.12.

Proposition 3.8. The (equivalence class up to a.e. equality of the) map t �→ π′
t

is an element of the space L 2(π).

Proof. We have π′
t ∈ e∗tL2(TX) for a.e. t ∈ [0, 1] and∫ 1

0

∫
|π′

t|2 dπ dt
(2.15)
=

∫ 1

0

∫
|γ̇t|2 dπ(γ) dt < +∞

by the very definition of test plan. Hence we need only to show that t �→ π′
t has a

Borel representative in the sense of Definition 3.3.
Notice that for any f ∈ W 1,2(X), by Proposition 2.13 we have that the map t �→

(e∗tdf)(π′
t) has a Borel representative. Hence the same holds for t �→ ψ(t)χU 〈e∗t∇f ,

π′
t〉 for every ψ ∈ LIP([0, 1]) and U ⊂ Γ(X) Borel. Therefore there exists a

Borel negligible set N ⊂ [0, 1] such that for every V ∈ TestVFN(π) the map
t �→ ∫ 〈Vt,π′

t〉dπ, set to 0 on N , is Borel. This is sufficient to conclude. �

We conclude the section by pointing out that L 2(π) can also be seen as the pull-
back of L2(TX) via the evaluation map e: Γ(X)× [0, 1] → X defined as e(γ, t) := γt
(recall also Remark 2.10). To this aim, let us start by defining the following oper-
ations:

(i) Given f ∈ L∞(π × L1) and V ∈ L 2(π), we define fV ∈ L 2(π) as

(3.7) (fV )t := f(·, t)Vt for L1-a.e. t ∈ [0, 1].

(ii) To each V ∈ L 2(π) we associate the map |V | ∈ L2(π × L1), defined by

|V |(γ, t) := |Vt|(γ) for (π × L1)-a.e. (γ, t) ∈ Γ(X) × [0, 1].

It is clear that these operations give L 2(π) the structure of an L2(π × L1)-
normed module.
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We then define the linear continuous operator Φ: L2(TX) → L 2(π) by putting

Φ(v)t := e∗t v, for L1-a.e. t ∈ [0, 1].

We then have:

Proposition 3.9 (L 2(π) as pullback). We have (L 2(π),Φ) ∼ (e∗L2(TX), e∗),
i.e.:

|Φ(v)| = |v| ◦ e holds (π × L1)-a.e., for any v ∈ L2(TX),

{Φ(v) : v ∈ L2(TX)} generates L 2(π) as a module.
(3.8)

Proof. The first in (3.8) follows by noticing that |Φ(v)|(γ, t)= |e∗t v|(γ)=(|v|◦e)(γ, t)
holds for (π ×L1)-a.e. (γ, t), the second one stems from the density of TestVF(π)
in L 2(π). �

Notice that the notion of pullback module (e∗L2(TX), e∗) makes no (explicit)
reference to the concept of ‘test vector field’ as we defined it in Section 3.1. Thus
this last proposition is also telling that the choice of using these test object to check
Borel regularity, which a priori might seem arbitrary, leads in fact to a canonical
interpretation of L 2(π).

Remark 3.10 (L 2(π) as direct integral). The construction of L 2(π) can be
summarized by saying that such space is the direct integral of the e∗tL2(TX), the
space of Borel vector fields being the so-called ‘weakly measurable selections’ and
the set TestVFN(π) being the one used to check measurability. �

3.3. The space C (π)

Here we introduce and briefly study those vector fields in VF(π) which are ‘con-
tinuous in time’. We start with the following definition.

Definition 3.11 (The space C (π)). Let V ∈ VF(π). Then we say that V is a
continuous vector field provided

(3.9) [0, 1] 	 t �→
∫

〈Vt,Wt〉dπ is continuous

for every W ∈ TestVFN(π) and

(3.10) [0, 1] 	 t �→ [[V ]]t is continuous.

We denote the family of all continuous vector fields by C (π) and, for every V ∈
C (π), we put

‖V ‖C (π) := max
t∈[0,1]

[[V ]]t.

Lemma 3.2 ensures that this definition would be unaltered if we require (3.9) to
hold for anyW ∈ TestVF(π). Also, Proposition 3.1 gives that TestVF(π) ⊂ C (π).

It is not obvious that C (π) is a vector space, the problem being in checking
that (3.10) holds for linear combinations. This will be a consequence of the density
of TestVFN(π) in C (π), which is part of the content of the next result.
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Proposition 3.12. (C (π), ‖·‖C (π)) is a separable Banach space, with TestVFN(π)
being dense.

Proof. Let V1, V2 ∈ C (π) and notice that using (3.9), (3.10) and arguing exactly
as in the proof of Lemma 3.2 we can find (W1,n), (W2,n) ⊂ TestVFN(π) such that
the functions t �→ [[Vi −Wi,n]]t uniformly converge to 0 as n→ ∞, i = 1, 2.

Now observe that sinceW1,n+W2,n ∈ TestVFN(π) the map t �→ [[W1,n+W2,n]]t
is continuous and that for every t ∈ [0, 1] we have∣∣[[V1+V2]]t−[[W1,n+W2,n]]t

∣∣ ≤ [[V1−W1,n+V2−W2,n]]t ≤ [[V1−W1,n]]t+[[V2−W2,n]]t.

Hence t �→ [[V1 +V2]]t is the uniform limit of continuous functions and thus contin-
uous itself. Since trivially C (π) is closed by multiplication by scalars we proved
that it is a vector space. That ‖ · ‖C (π) is a complete norm on C (π) is trivial and
the density of TestVFN(π) has already been shown, hence the proof is finished. �

A useful consequence of the density of test vector fields is the following strength-
ening of the continuity property.

Corollary 3.13. Let V ∈ C (π). Then the map t �→ |Vt|2 ∈ L1(π) is continuous.

Proof. For V ∈ TestVF(π) the claim has been proved in Proposition 3.1. Now
notice that for V,W ∈ C (π) we have∫

||Vt|2 − |Wt|2| dπ ≤
∫

|Vt +Wt| |Vt −Wt| dπ ≤ (‖V ‖C (π) + ‖W‖C (π))[[V −W ]]t

thus showing that if Vn → V in C (π) then t �→ |Vn,t|2 ∈ L1(π) uniformly converge
to t �→ |Vt|2 ∈ L1(π). The conclusion then follows from the density of TestVF(π)
in C (π). �

3.4. The spaces W 1,2(π) and H 1,2(π)

Throughout all this section we shall further assume that the test plan π is Lipschitz
in the sense of Definition 2.14.

Let us briefly recall the definitions of W 1,2
C (TX) and H1,2

C (TX), with the corre-
sponding notion of covariant derivative. See Section 3 in [15] for a detailed account
on this topic.

First of all, we need to recall the notion of Hessian in this framework: given
any function f ∈ TestF(X), there exists a unique element Hess(f) ∈ L2((T ∗)⊗2X)
that satisfies the identity

2

∫
hHess(f)(∇g1,∇g2) dm

= −
∫

〈∇f,∇g1〉div(h∇g2) + 〈∇f,∇g2〉div(h∇g1) +
〈∇f,∇〈∇g1,∇g2〉

〉
dm

for every choice of h, g1, g2 ∈ TestF(X).
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The resulting notion of Hessian is consistent with the usual one in the smooth
setting, as it is an integral reformulation of the well-known identity

2Hess(f)(∇g1,∇g2) =
〈∇〈∇f,∇g1〉,∇g2

〉
+
〈∇〈∇f,∇g2〉,∇g1

〉
+
〈∇f,∇〈∇g1,∇g2〉

〉
.

With the Hessian at disposal, one can define the covariant derivative of a vector
field on X as follows: we say that v ∈ L2(TX) belongs to the space W 1,2

C (TX)
provided there exists an element ∇v ∈ L2(T⊗2X) –which is unique and called
covariant derivative of v – such that∫

h∇v : (∇f ⊗∇g) dm = −
∫

〈v,∇g〉div(h∇f) + hHess(g)(v,∇f) dm

for every f, g, h ∈ TestF(X). Also this notion is consistent with the classical one in
the smooth world, as it is based upon the identity 〈∇∇fv,∇g〉 = 〈∇〈v,∇g〉,∇f〉−
Hess(g)(v,∇f). It holds that TestV(X) is contained in W 1,2

C (TX), but it is not

known whether it is dense therein. For this reason, the space H1,2
C (TX) is defined

as the closure of TestV(X) in W 1,2
C (TX).

Let v ∈W 1,2
C (TX) and notice that the map from L0(TX) to e∗tL

0(TX) defined by

w �→ e∗t (∇wv)

satisfies

|e∗t (∇wv)| ≤ |∇v|HS ◦ et |w| ◦ et π-a.e.

Hence by the universal property of the pullback given in Proposition 2.9 we know
that there exists a unique L0(π)-linear continuous operator, which we shall call
Cov(v, ·) from e∗tL

0(TX) to e∗tL
0(TX) such that

Cov(v, e∗tw) = e∗t (∇wv), ∀w ∈ L0(TX),

and such operator satisfies the bound

(3.11) |Cov(v,W )| ≤ |∇v|HS ◦ et|W | π-a.e.

We shall be interested in such covariant differentiation along the speed of our test
plan: for every t ∈ [0, 1] such that π′

t exists we define the map Covt :W
1,2
C (TX) →

e∗tL0(TX) as

Covt(v) := Cov(v,π′
t).

Notice the following simple proposition.

Proposition 3.14. For every t ∈ [0, 1] such that π′
t exists, the map Covt is linear

and continuous from W 1,2
C (TX) to e∗tL2(TX).

Moreover, for every v ∈ W 1,2
C (TX) the (equivalence class up to a.e. equality of

the) a.e. defined map t �→ Covt(v) ∈ e∗tL
2(TX) is an element of L 2(π).
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Proof. The continuity of Covt as map from W 1,2
C (TX) to e∗tL2(TX) is a direct

consequence of the bounds (3.11) and our assumption (2.16):

‖Covt(v)‖2e∗tL2(TX) =

∫
|Covt(v)|2 dπ

(3.11)

≤
∫

|∇v|2HS ◦ et|π′
t|2 dπ ≤ C(π) L(π)

2 ‖v‖2W 1,2
C (TX).

Thanks to this bound, to conclude it is sufficient to show that for any v ∈W 1,2
C (TX)

the map t �→ Covt(v) = Cov(v,π′
t) is a.e. equal to a Borel element of VF(π).

Taking into account that t �→ π′
t ∈ L 2(π) by Proposition 3.8, that TestVF(π) is

dense in L 2(π), the second claim in Proposition 3.6 and the bound (3.11), we see
that to conclude it is sufficient to show that t �→ Cov(v, Vt) is a Borel vector field
in VF(π) for any V ∈ TestVF(π).

Thus fix such V , say Vt =
∑

i φi(t)χAie
∗
t vi, and let Wt =

∑
j ψj(t)χBj e

∗
twj ∈

TestVF(π) be arbitrary. Notice that since |vi|, |wj | ∈ L2 ∩ L∞(X), we have that
〈vi,∇wjv〉 ∈ L1(X) and thus by Theorem 2.11 we deduce that t �→ 〈vi,∇wjv〉◦et ∈
L1(π) is continuous for every i, j. Therefore

t �→
∫ 〈

Vt,Covt(v,Wt)
〉
dπ =

∑
i,j

ϕi(t)ψj(t)

∫
χAi∩Bj 〈vi,∇wjv〉 ◦ et dπ

is continuous, thus establishing, by the arbitrariness of W , the Borel regularity of
t �→ Cov(v, Vt). �

The ‘compatibility with the metric’ of the covariant derivative yields the fol-
lowing simple but crucial lemma.

Lemma 3.15. Let v, w ∈ TestV(X). Then the map t �→ 〈v, w〉 ◦ et ∈ L2(π), which
is Lipschitz by Proposition 2.15, satisfies, for L1-a.e. t ∈ [0, 1],

(3.12) L2(π)-
d

dt
〈v, w〉 ◦ et =

〈
Covπ(v)t, e

∗
tw

〉
+
〈
e∗t v,Covπ(w)t

〉
.

Proof. Recall from [15] that it holds

d(〈v, w〉)(z) = 〈∇zv, w〉 + 〈v,∇zw〉 m-a.e. ∀z ∈ L0(TX),

and notice that from the defining property of pointwise norm in the pullback and
by polarization we obtain that 〈e∗t v1, e∗t v2〉 = 〈v1, v2〉◦et for every v1, v2 ∈ L0(TX).
Thus we have that the identity

(3.13)
(
e∗td〈v, w〉

)
(Z) =

〈
Covt(v, Z), e

∗
tw

〉
+
〈
e∗t v,Covt(w,Z)

〉
holds for every Z ∈ e∗tL2(TX) of the form Zt = e∗t z for some z ∈ L2(TX). Since
both sides of this identity are L∞(π)-linear and continuous in Z, we see that (3.13)
holds for generic Z ∈ e∗tL

2(TX). The conclusion comes picking Z = π′
t and

recalling Proposition 2.15. �

We now want to introduce a new differential operator, initially defined only
on TestVF(π) and then extended to more general vector fields. To this aim, the
following lemma will be useful.
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Lemma 3.16. Let (ϕi), (ψj) ⊂ LIP([0, 1]), let (Ai), (Bj) Borel partitions of Γ(X),
and let (vi), (wj) ⊂ TestV(X), where i = 1, . . . , n and j = 1, . . . ,m. Assume that

(3.14)
∑
i

χAiϕi(t) e
∗
t vi =

∑
j

χBjψj(t) e
∗
twj for every t ∈ [0, 1].

Then for a.e. t it holds :∑
i

χAiϕ
′
i(t) e

∗
t vi =

∑
j

χBjψ
′
j(t) e

∗
twj ,∑

i

χAiϕi(t)Covt(vi) =
∑
j

χBjψj(t)Covt(wj).
(3.15)

Proof. For the first in (3.15) we notice that our assumption (3.14) and Propo-
sition 3.9 yield that

∑
i
χAi×[0,1](·, t)ϕi(t) e

∗vi =
∑

j
χBj×[0,1](·, t)ψj(t) e

∗wj as

elements in e∗L2(TX) ∼ L 2(π), thus we can differentiate in time and conclude
using again Proposition 3.9.

For the second in (3.15) start noticing that our assumption (3.14) and the
very definition of pullback imply that for any i, j and every t ∈ [0, 1] it holds
χCϕi(t) vi = χCψj(t)wj , where C := {d(et)∗(χAi∩Bjπ)/d(et)∗π > 0}. This
identity and the locality of the covariant derivative give that χCϕi(t)∇zvi =
χCψj(t)∇zwj for every z ∈ L2(TX). Applying the pullback map on both sides
and noticing that χC ◦ et ≥ χAi∩Bj we deduce that

χAi∩Bjϕi(t)Cov(vi, Z) = χAi∩Bjψj(t)Cov(wj , Z)

for every Z of the form Zt = e∗t z. From the L∞(π)-linearity in Z of both sides
and the arbitrariness of i, j the conclusion follows. �

We can now define the convective derivative of test vector fields.

Definition 3.17 (Convective derivative along a test plan). We define the con-

vective derivative operator D̃π : TestVF(π) → L 2(π) as follows: to the element
V ∈ TestVF(π), of the form Vt =

∑n
i=1 ϕi(t)χAi e

∗
t vi, we associate the vector field

D̃πV ∈ L 2(π) given by

(3.16) (D̃πV )t :=

n∑
i=1

χAi

(
ϕ′
i(t) e

∗
t vi + ϕi(t)Covt(vi)

)
for L1-a.e. t ∈ [0, 1].

For the sake of simplicity, we will briefly write D̃πVt instead of (D̃πV )t.

Notice that Lemma 3.16 ensures that the right-hand side of (3.16) depends
only on V and not on the way we write it as Vt =

∑n
i=1 ϕi(t)χAi e

∗
t vi. The fact

that the right-hand side of (3.16) defines a Borel vector field in VF(π) follows
directly from Proposition 3.14; to see that it belongs to L 2(π) notice that (t �→
e∗t vi),Covπ(vi) ∈ L 2(π) for every i and that the ϕi’s are Lipschitz.

Therefore the definition is well posed and is then clear that D̃π is a linear
operator.
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The convective derivative has the following simple and crucial property, which
is a direct consequence of Lemma 3.15.

Proposition 3.18. Let V,W ∈ TestVF(π). Then the map t �→ 〈Vt,Wt〉 ∈ L2(π)
is Lipschitz and satisfies

(3.17) L2(π)-
d

dt
〈Vt,Wt〉 = 〈D̃πVt,Wt〉+ 〈Vt, D̃πWt〉 for L1-a.e. t ∈ [0, 1].

Proof. By bilinearity, to prove (3.17) is sufficient to consider the case Vt=ϕ(t)χAe
∗
t v

and Wt = ψ(t)χB e∗tw for v, w ∈ TestV(X). Lemma 3.15 ensures that t �→
〈e∗t v, e∗tw〉 = 〈v, w〉 ◦ et ∈ L2(π) is Lipschitz, and it is then clear that t �→
〈Vt,Wt〉 = χA∩Bϕ(t)ψ(t)〈e∗t v, e∗tw〉 is also Lipschitz. The identity (3.17) now fol-
lows from (3.12) and the Leibniz rule. �

This last proposition allows to ‘integrate by parts’ and extend the definition of
convective derivative to ‘Sobolev vector fields along π’.

Let us define the support spt(V ) of a test vector field V ∈ TestVF(π) as the
closure of the set of t’s for which Vt �= 0 and let us introduce the space of sections
with compact support in (0, 1):

TestVFc(π) :=
{
V ∈ TestVF(π) : spt(V ) ⊆ (0, 1)

}
.

A simple cut-off argument shows that TestVFc(π) is L 2(π)-dense in TestVF(π)
and hence in L 2(π).

Definition 3.19 (The space W 1,2(π)). The Sobolev space W 1,2(π) is the vector
subspace of L 2(π) consisting of all those V ∈ L 2(π) such that there exists Z ∈
L 2(π) satisfying

(3.18)

∫ 1

0

∫
〈Vt, D̃πWt〉dπ dt= −

∫ 1

0

∫
〈Zt,Wt〉dπ dt for every W ∈TestVFc(π).

In this case the section Z, whose uniqueness is granted by density of TestVFc(π)
in L 2(π), can be unambiguously denoted by DπV and called convective derivative
of V . We endow W 1,2(π) with the norm ‖ · ‖W 1,2(π), defined by

‖V ‖W 1,2(π) :=
√
‖V ‖2L 2(π) + ‖DπV ‖2L 2(π) for every V ∈ W 1,2(π).

This choice of terminology is consistent with that of Definition 3.17:

Proposition 3.20. Let V ∈ TestVF(π). Then V ∈ W 1,2(π) and DπV = D̃πV .

Proof. Fix W ∈ TestVFc(π). We know from Proposition 3.18 that [0, 1] 	 t �→∫ 〈Vt,Wt〉dπ is an absolutely continuous function, so that (3.17) gives, after inte-
gration, that

0 =

∫
〈V1,W1〉dπ−

∫
〈V0,W0〉 dπ =

∫ 1

0

∫
〈D̃πVt,Wt〉dπ dt+

∫ 1

0

∫
〈Vt, D̃πWt〉 dπ dt.

This proves that V satisfies (3.18) with Z = D̃πV . �
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Proposition 3.21 (Basic properties of W 1,2(π)). The following hold :

(i) Dπ is a closed operator from L 2(π) into itself, i.e., its graph is closed in the
product space L 2(π)× L 2(π).

(ii) W 1,2(π) is a separable Hilbert space.

(iii) Let V, Z ∈ L 2(π). Then V ∈ W 1,2(π) and Z = DπV if and only if for
every W ∈ TestVF(π) the map t �→ 〈Vt,Wt〉 belongs to W 1,1([0, 1], L1(π))
with derivative given by

(3.19)
d

dt
〈Vt,Wt〉 = 〈Vt,DπWt〉+ 〈Zt,Wt〉 a.e. t.

Proof. (i) Let (Vn) ⊆ W 1,2(π) be a sequence such that Vn → V and DπVn → Z
in L 2(π) for some V, Z ∈ L 2(π). Then for arbitrary W ∈ TestVFc(π) we have∫ 1

0

∫
〈Vt,DπWt〉dπ dt = lim

n→∞

∫ 1

0

∫
〈V n

t ,DπWt〉dπ dt

= − lim
n→∞

∫ 1

0

∫
〈DπV

n
t ,Wt〉dπ dt = −

∫ 1

0

∫
〈Zt,Wt〉 dπ dt,

proving that V ∈ W 1,2(π) with DπV = Z, which was the claim.

(ii) Consequence of what just proved and the fact that the map

W 1,2(π) 	 V �→ (V,DπV ) ∈ L 2(π)× L 2(π)

is an isometry, provided we endow L 2(π)×L 2(π), with the (separable, by Propo-

sition 3.7) norm
∥∥(V, Z)∥∥2 := ‖V ‖2L 2(π) + ‖Z‖2L 2(π).

(iii) The ‘if’ trivially follows from (3.19) by integration. For the ‘only if’, fix
W ∈ TestVF(π) and let ϕ ∈ C1

c (0, 1) and Γ ⊂ Γ(X) Borel. Then t �→ ϕ(t)χΓWt is
in TestVFc(π) and a direct computation shows that Dπ(ϕχΓW )t = ϕ′(t)χΓWt +
ϕ(t)χΓDπWt. Hence writing the defining property (3.18) with ϕχΓW in place
of W we obtain, after rearrangement, that∫ 1

0

ϕ′(t)
∫
Γ

〈Vt,Wt〉dπ dt = −
∫ 1

0

ϕ(t)

∫
Γ

〈Vt,DπWt〉+ 〈Zt,Wt〉dπ dt.

The arbitrariness of ϕ,Γ and Proposition 2.3 yield the claim. �

We just proved that TestVF(π) is contained in W 1,2(π), but we don’t know if
it is dense. Hence the following definition is meaningful.

Definition 3.22 (The space H 1,2(π)). H 1,2(π) is the W 1,2(π)-closure of
TestVF(π).

Clearly, H 1,2(π) is a separable Hilbert space. A key feature of elements of
H 1,2(π) is that they admit a continuous representative (much like Sobolev func-
tions on the interval):
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Theorem 3.23. The inclusion TestVF(π) ↪→ C (π) uniquely extends to a linear
continuous and injective operator ι : H 1,2(π) → C (π).

Proof. We claim that

(3.20) ‖V ‖C (π) ≤
√
2 ‖V ‖W 1,2(π), ∀V ∈ TestVF(π).

By the density of TestVF(π) in H 1,2(π) this will be enough to obtain the existence
of ι. Thus let V ∈ TestVF(π), pickW = V in (3.17) and integrate in [t1, t2] ⊂ [0, 1]
and w.r.t. π to obtain∣∣[[V ]]

2
t2
− [[V ]]

2
t1

∣∣ = 2
∣∣∣ ∫ t2

t1

∫
〈Vt,DπVt〉dπ dt

∣∣∣
≤ 2

∫ t2

t1

∫ ∣∣Vt∣∣ ∣∣DπVt
∣∣ dπ dt ≤ ‖V ‖2L 2(π) + ‖DπV ‖2L 2(π).

Hence for any t ∈ [0, 1] one has

[[V ]]
2
t =

∫ 1

0

[[V ]]
2
t ds ≤

∫ 1

0

∣∣[[V ]]
2
t − [[V ]]

2
s

∣∣ds+ ‖V ‖2L 2(π) ≤ 2 ‖V ‖2W 1,2(π),

which is our claim (3.20).
To prove injectivity, let V ∈ H 1,2(π) be such that ι(V ) = 0. Choose a sequence

(Vn) ⊆ TestVF(π) which is W 1,2(π)-converging to V and notice that, up to pass
to a subsequence and using Proposition 3.6, we can assume that V n

t → Vt for
L1-a.e. t ∈ [0, 1]. By continuity of the operator ι, one also has ‖V n‖C (π) =∥∥ι(V n)− ι(V )

∥∥
C (π)

→ 0 and thus in particular V n
t → 0 for all t ∈ [0, 1]. Therefore

Vt = 0 for L1-a.e. t ∈ [0, 1], yielding the required injectivity of ι. �

Whenever we will consider an element V of H 1,2(π), we will always implicitly
refer to its unique continuous representative ι(V ) ∈ C (π).

Among the several properties of the test sections that can be carried over to
the elements of H 1,2(π), the most important one is the Leibniz formula for the
convective derivatives:

Proposition 3.24 (Leibniz formula for Dπ). Let V ∈ W 1,2(π) and W ∈ H 1,2(π).
Then the function t �→ 〈Vt,Wt〉 is in W 1,1([0, 1], L1(π)) and its derivative is
given by

d

dt
〈Vt,Wt〉 = 〈DπVt,Wt〉+ 〈Vt,DπWt〉 for L1-a.e. t ∈ [0, 1].

Proof. For W ∈ TestVF(π) the claim is a direct consequence of point (iii) in
Proposition 3.21. The general case can be achieved by approximation noticing
that the simple inequalities

‖〈Vt,Wt〉‖L1(π×L1) ≤ ‖V ‖L 2(π) ‖W‖L 2(π),

‖〈DπVt,Wt〉+ 〈Vt,DπWt〉‖L1(π×L1) ≤ 2‖V ‖W 1,2(π) ‖W‖W 1,2(π),

allow to pass to the limit in the distributional formulation of d
dt 〈Vt,Wt〉 asW varies

in H 1,2(π). �
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In the next proposition we collect some examples of elements of H 1,2(π).

Proposition 3.25. Let π be a Lipschitz test plan. Then :

(i) For every w ∈ H1,2
C (TX) the vector field t �→ Wt := e∗tw belongs to H 1,2(π)

and

(3.21) DπWt = Covt(w) a.e. t.

(ii) Let W ∈ H 1,2(π) be such that |W |, |DπW | ∈ L∞(π × L1) and let a ∈
W 1,2([0, 1], L2(π)). Then aW ∈ H 1,2(π) with

(3.22) Dπ(aW )t = a′tWt + atDπWt a.e. t.

Moreover, if W ∈ C (π) and a ∈ AC2([0, 1], L2(π)), then aW ∈ C (π).

Proof. (i) If w ∈ TestV(X) we have that W ∈ TestVF(π) by definition and in this
case formula (3.21) holds by the definition (3.16) and Proposition 3.20. The general
case can then be obtained by approximating w with vector fields in TestV(X) w.r.t.
the W 1,2

C (TX) topology, using the bounds∫ 1

0

∫ ∣∣e∗t (v)∣∣2 dπ dt =

∫ 1

0

∫
|v|2 ◦ et dπ dt ≤ C(π) ‖v‖2W 1,2

C (TX),∫ 1

0

∫ ∣∣Covπ(v)t∣∣2 dπ dt
(3.11)

≤ C(π) L(π)2 ‖v‖2W 1,2
C (TX)

and recalling the closure of Dπ.

(ii) The claim about continuity is obvious, so we concentrate on the other one.
Assume at first that a belongs to the space A defined as

A :=
{ n∑

i=1

ϕiχEi : n ∈ N, ϕi ∈ LIP([0, 1]), (Ei) Borel partition of Γ(X)
}

and that W ∈ TestVF(π). In this case aW belongs to TestVF(π) as well and
formula (3.22) is a direct consequence of the definitions. Then using the trivial
bounds

‖aW‖L 2(π) ≤ ‖a‖L∞(π×L1)‖W‖L 2(π),

‖a′W + aDπW‖L 2(π) ≤
(‖a‖L∞(π×L1) + ‖a′‖L∞(π×L1)

)‖W‖W 1,2(π),

the W 1,2(π)-density of TestVF(π) in H 1,2(π) and the closure of Dπ, we conclude
that aW ∈ H 1,2(π) for every a ∈ A and W ∈ H 1,2(π) and that (3.22) holds in
this case.

Now let W be as in the assumptions and notice that we also have the bounds

‖aW‖L 2(π) ≤ ‖a‖L2([0,1],L2(π))‖|W |‖L∞(π×L1),

‖a′W+aDπW‖L 2(π) ≤ ‖a‖W 1,2([0,1],L2(π))

(‖|W |‖L∞(π×L1)+‖|DπW |‖L∞(π×L1)

)
,
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therefore using again the closure of Dπ, to conclude it is sufficient to prove that A
is dense in W 1,2([0, 1], L2(π)). To this aim we argue as follows: for every n ∈ N,
let (En

i )i∈N be a Borel partition of supp(π) ⊂ Γ(X) made of sets with positive π-
measure and diameter ≤ 1/n. Then for every n,N ∈ N, let PN

n : L2(π) → L2(π)
be defined by

PN
n (f) :=

N∑
i=1

χEn
i

1

π(En
i )

∫
En

i

f dπ.

It is clear that PN
n has operator norm ≤ 1 for every n,N ∈ N, and an application

of the dominated convergence theorem shows that

(3.23) lim
n

lim
N
PN
n (f) = f

for every f ∈ Cb

(
Γ(X)

)
, the limits being intended in L2(π). Therefore (3.23) also

holds for every f ∈ L2(π). The linearity and continuity of PN
n also grants that if

t �→ at belongs to W
1,2([0, 1], L2(π)), then also t �→ PN

n (a)t := PN
n (at) belongs to

W 1,2([0, 1], L2(π)), with

(3.24)
(
PN
n (a)

)′
t
= PN

n (a′t) a.e. t.

All these considerations imply that

lim
n

lim
N
PN
n (a) = a in W 1,2([0, 1], L2(π))

for every a ∈ W 1,2([0, 1], L2(π)), and thus to conclude it is sufficient to prove
that PN

n (a) belongs to the W 1,2([0, 1], L2(π))-closure of A for every n,N ∈ N and
a ∈W 1,2([0, 1], L2(π)).

It is clear by construction and (3.24) that PN
n (a) =

∑N
i=1 giχEn

i
for some

gi ∈ W 1,2([0, 1]). Now for every i = 1, . . . , N find (gi,j) ⊂ LIP([0, 1]) which
W 1,2([0, 1])-converges to gi, and notice that∥∥∥ N∑

i=1

(gi,j − gi)χEn
i

∥∥∥2
W 1,2([0,1],L2(π))

=

N∑
i=1

π(En
i ) ‖gi,j − gi‖2W 1,2([0,1]) → 0

as j → ∞. Since
∑N

i=1 gi,jχEn
i
∈ A for every j, the proof is finished. �

4. Parallel transport on RCD spaces

4.1. Definition and basic properties of parallel transport

4.1.1. Definition and uniqueness. We shall frequently use the fact that, since
H 1,2(π) is continuously embedded into C (π) by Theorem 3.23, any vector field
V ∈ H 1,2(π) has pointwise values Vt ∈ e∗tL

2(TX) defined at every time t ∈ [0, 1].

Definition 4.1 (Parallel transport). Let K ∈ R, (X, d,m) an RCD(K,∞) space
and π be a Lipschitz test plan on X. A parallel transport along π is an element
V ∈ H 1,2(π) such that DπV = 0.
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The linearity of the requirement DπV = 0 ensures that the set of parallel
transports along π is a vector space. From Proposition 3.24 we deduce the following
simple but crucial result.

Proposition 4.2 (Norm preservation). Let V be a parallel transport along the
Lipschitz test plan π. Then t �→ |Vt|2 ∈ L1(π) is constant.

Proof. We know from Corollary 3.13 that t �→ |Vt|2 ∈ L1(π) is continuous. Hence
the choice W = V in Proposition 3.24 tells that such map is absolutely continuous
with derivative given by

d

dt
|Vt|2 = 2〈DπVt, Vt〉 = 0, a.e. t.

This is sufficient to conclude. �

Linearity and norm preservation imply uniqueness:

Corollary 4.3 (Uniqueness of parallel transport). Let π be a Lipschitz test plan,
and let V1 and V2 be two parallel transports along it such that for some t0 ∈ [0, 1]
it holds V1,t0 = V2,t0 . Then V1 = V2.

Proof. Since Dπ(V1 − V2) = DπV1 − DπV2 = 0, we have that V1 − V2 is a parallel
transport and by assumption we know that |V1,t0 −V2,t0 | = 0 π-a.e. . Thus Propo-
sition 4.2 above grants that for every t ∈ [0, 1] it holds |V1,t − V2,t| = 0 π-a.e., i.e.,
that V1,t = V2,t. �

Remark 4.4. We emphasize that the norm preservation property is a consequence
of the Leibniz formula in Proposition 3.24. We do not know if such formula holds
for V,W ∈ W 1,2(π) and this is why we defined the parallel transport as an element
of H 1,2(π) with null convective derivative, as opposed to an element of W 1,2(π)
with the same property. �

4.1.2. Some consequences of existence of parallel transport. In this sec-
tion we assume existence of parallel transport along some/all Lipschitz test plans
and see what can be derived from such assumption.

It will be convenient to recall the concept of basis of a module, referring to [15]
for a more detailed discussion. Let μ be a Borel measure on a Polish space Y,
let M be a L2(μ)-normed module, let v1, . . . , vn ∈ M , and let E ⊂ Y be a Borel
set. Then the vi’s are said to be independent on E provided for any fi ∈ L∞(μ)
we have ∑

i

fi vi = 0 ⇒ fi = 0 μ-a.e. on E,

and generators of M on E provided L∞(μ)-linear combinations of the vi’s are
dense in {χEv : v ∈ M }. If v1, . . . , vn are both independent and generators of M
on E, we say that they are a basis of M on E and in this case we say that the
dimension of M on E is n.
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Recall that there always exists a (unique up to μ-negligible sets) Borel partition
(Ei)i∈N∪{∞} of Y, called dimensional decomposition of M , such that the dimension
of M on Ei is i for every i ∈ N and for no Borel subset F of E∞ with positive
measure the dimension of M on F is finite.

For a separable Hilbert module H on a space with finite measure μ, one can
always find an orthonormal basis (vn)n∈N, i.e., a sequence whose L∞-linear combi-
nations are dense in H and such that for some Borel partition (En)n∈N∪{∞} the
following hold:

∀n ∈ N ∪ {∞} we have 〈vi, vj〉= δij μ-a.e. on En, ∀i, j ∈ N, i, j < n,
∀n ∈ N we have |vi|= 0 μ-a.e. on En, ∀i ∈ N, i ≥ n,

and it is easily verified that if these hold, then necessarily the En’s form the
dimensional decomposition of H (the role of the assumption about finiteness of μ
is to ensure that the vi’s are elements of H : their pointwise norm is in L∞(μ) and
thus in general it may be not in L2(μ)).

Given such a basis and v ∈ H , there are functions an ∈ L2(μ) such that

(4.1) v =
∑
n∈N

anvn ,

meaning that the sequence converges absolutely in H . A choice for the an is
an := 〈v, vn〉 and for any two sequences (an), (ãn) for which (4.1) holds we have

an = ãn μ-a.e. on Em, ∀m ∈ N ∪ {∞}, m > n.

With this said, it is easy to see that parallel transport sends bases into bases:

Proposition 4.5. Let π be a Lipschitz test plan such that for every t ∈ [0, 1] and
V̄t ∈ e∗tL2(TX) there exists a (necessarily unique) parallel transport V along π such
that Vt = V̄t.

Also, let (En)n∈N∪{∞} be the dimensional decomposition of e∗0L
2(TX), let (V̄n)

⊂ e∗0L2(TX), n ∈ N, be an orthonormal basis of e∗0L2(TX), and denote by t �→ Vn,t
the parallel transport of V̄n along π.

Then, for every t ∈ [0, 1], the partition (En)n∈N∪{∞} is also the dimensional
decomposition of e∗tL2(TX) and the set (Vn,t) is an orthonormal basis of e∗tL2(TX).

Proof. For every t, s ∈ [0, 1], consider the map sending V̄ ∈ e∗tL2(TX) to Vs ∈
e∗sL

2(TX), where V ∈ H 1,2(π) is the parallel transport such that Vt = V̄ . Propo-
sition 4.2 ensures that this map preserves the pointwise norm. Since it is clearly lin-
ear, it is easily verified that it must be an isomorphism of e∗tL2(TX) and e∗sL2(TX).

The conclusions follow. �

We shall apply this result to show that, under the same assumptions, we have
W 1,2(π) = H 1,2(π).

Proposition 4.6 (H = W ). Let π be a Lipschitz test plan such that for every
t ∈ [0, 1] and V̄t ∈ e∗tL

2(TX) there exists a (necessarily unique) parallel transport V
along π such that Vt = V̄t.

Then H 1,2(π) = W 1,2(π).
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Proof. Let V ∈ W 1,2(π), let (V̄i) ⊂ e∗0L
2(TX), i ∈ N, be an orthonormal basis

of e∗0L
2(TX), and let t �→ Vi,t the parallel transport of V̄i along π. Then by

Proposition 4.5 above we see that

(4.2) Vt =
∑
i∈N

ai,tVi,t, where ai,t := 〈Vt, Vi,t〉 a.e. t,

being intended that the series converges absolutely in e∗tL
2(TX) for a.e. t. By

Proposition 3.24, we see that t �→ ai,t is in W 1,1([0, 1], L1(π)) with derivative
given by

(4.3) a′i,t = 〈DπVt, Vi,t〉.

In particular, since |Vi,t| ≤ 1 we see that ai,t, a
′
i,t ∈ L2([0, 1], L2(π)), and in turn

this implies – by Proposition 2.3 – that t �→ ai,t is in W
1,2([0, 1], L2(π)). This fact

and point (ii) in Proposition 3.25 give that (t �→ ai,tVi,t) ∈ H 1,2(π) for every
i ∈ N, and therefore (t �→ ∑n

i=0 ai,tVi,t) ∈ H 1,2(π) for every n ∈ N.

Hence to conclude it is sufficient to show that these partial sums are a W 1,2(π)-
Cauchy sequence, as then it is clear from (4.2) that the limit coincides with V .
From (4.2) and (4.3) we have that

∑
i∈N

∫∫ 1

0

|ai,t|2 + |a′i,t|2 dt dπ = ‖V ‖2L 2(π) + ‖DπV ‖2L 2(π) <∞,

hence the conclusion follows from the identity∥∥∥ m∑
i=n

aiVi

∥∥∥2
W 1,2(π)

=
∥∥∥ m∑

i=n

aiVi

∥∥∥2
L 2(π)

+
∥∥∥ m∑

i=n

a′iVi
∥∥∥2

L 2(π)

=

m∑
i=n

∫∫ 1

0

|ai,t|2 + |a′i,t|2 dt dπ. �

We shall now prove that if the parallel transport exists along all Lipschitz test
plans, then the dimension of X, intended here as the dimension of the tangent
module, must be constant. We shall use the following simple lemma (for simplicity
we state it for Hilbert modules, but in fact the same holds for general ones).

Lemma 4.7. Let (X, dX,mX) and (Y, dY,mY) be two metric measure spaces, let
ϕ : Y → X be of bounded compression, and let H be a Hilbert module on X. Then
for every E ⊂ X Borel we have that the dimension of H on E is n if and only if
the dimension of ϕ∗H on ϕ−1(E) is n.

Proof. From the well-posedness of the definition of dimension, we see that it is
sufficient to prove the only if. Thus let v0, . . . , vn−1 be an orthonormal basis of H
on E, so in particular 〈vi, vj〉 = δij mX-a.e. on E.

From the fact that v0, . . . , vn−1 generate H on E and the very definition of
pullback, we deduce that ϕ∗v0, . . . , ϕ∗vn−1 generate ϕ∗H on ϕ−1(E).
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To see that they are independent, let f0, . . . , fn−1 ∈ L∞(Y) be such that∑
i fiϕ

∗vi = 0 on ϕ−1(E). Then it holds

0 =
∣∣∣∑

i

fiϕ
∗vi

∣∣∣2 =
∑
i,j

fifj 〈ϕ∗vi, ϕ∗vj〉

=
∑
i,j

fifj 〈vi, vj〉 ◦ ϕ =
∑
i

f2
i mY-a.e. on ϕ

−1(E),

and therefore fi = 0 mY-a.e. on ϕ
−1(E) for every i = 0, . . . , n− 1. �

We now prove that the dimension is constant.

Theorem 4.8 (From parallel transport to constant dimension). Let (X, d,m) be
any RCD(K,∞) space such that for any Lipschitz test plan π, any t ∈ [0, 1] and
any V̄ ∈ e∗tL2(TX), there exists the parallel transport V along π such that Vt = V̄ .

Then the tangent module has constant dimension, i.e., in its dimensional de-
composition (Ei)i∈N∪{∞} one of the Ei’s has full measure and the others are neg-
ligible.

Proof. We argue by contradiction, thus we shall assume that for some i, j ∈ N ∪
{∞}, i �= j, we have m(Ei),m(Ej) > 0. Let F0 ⊂ Ei and F1 ⊂ Ej be bounded,
with positive and finite measure, consider

μ0 := m(F0)
−1m|F0

, μ1 := m(F1)
−1m|F1

,

let π be the unique optimal geodesic plan connecting them, and recall that it is a
test plan (see [19]). Since π(e−1

0 (F0)) = μ0(F0) = 1 and the dimension of L2(TX)
on F0 is i, by Lemma 4.7 above we see that for the dimensional decomposition
(Ẽ0

n)n∈N∪{∞} of e∗0L
2(TX) we have π(Ẽ0

i ) = 1 and π(Ẽ0
k) = 0 for every k �= i.

Similarly, for the the dimensional decomposition (Ẽ1
n)n∈N∪{∞} of e∗1L2(TX) we

have π(Ẽ1
j ) = 1 and π(Ẽ1

k) = 0 for every k �= j. In particular we have

(4.4) π(Ẽ0
i ΔẼ

1
i ) = π(Ẽ0

i ) = 1 > 0.

Now notice that from basic considerations about optimal transport we have that π
is concentrated on geodesics starting from F0 and ending in F1. The constant
speed of any such geodesic is bounded from above by supx∈F0,y∈F1

d(x, y) < ∞
so that π is a Lipschitz test plan. Therefore from Proposition 4.5 we know that
the dimensional decomposition of e∗tL

2(TX) does not depend on t. This however
contradicts (4.4), hence the proof is completed. �

4.2. Existence of the parallel transport in a special case

It is unclear to us whether on general RCD spaces the parallel transport exists. Aim
of this section it to show at least that the theory we propose is not empty, i.e.,
that under suitable assumptions on the space the parallel transport exists. We will
not insist in trying to make such assumptions as general as possible (for instance,
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the ‘good basis’ defined below could consist in different vector fields on different
open sets covering our space), as our main concern is only to show that in some
circumstances our notion of parallel transport can be shown to exist. We recall a
deep deep result about the structure of finite-dimensional RCD spaces: given any
RCD(K,N) space (X, d,m) with N ∈ (1,∞) and whose dimensional decomposition
is called (Ak)k, there exists (a necessarily unique) n ∈ N with n ≤ N such that
m(X \ An) = 0. This ‘constant dimension’ result has been proved by E. Bruè and
D. Semola in [5].

We shall work with spaces admitting the following sort of basis for the tangent
module.

Definition 4.9 (Good basis). Let (X, d,m) be a given RCD(K,N) space, for some
K ∈ R and N ∈ (1,∞), which has dimension n ≤ N . Then a family W =
{w1, . . . , wn} ⊆ H1,2

C (TX) of Sobolev vector fields on X is said to be a good basis
for L2(TX) provided there exists M > 0 such that the following properties are
satisfied:

(i) We have that w1, . . . , wn constitute a basis for L2(TX) on X and

(4.5)

{
|wi| ∈ (M−1,M),∣∣〈wi, wj〉

∣∣ < 1
M2n ,

m-a.e. in X, for every i, j = 1, . . . , n with i �= j.

(ii) We have

(4.6) |∇wi|HS ≤M m-a.e. in X, for every i = 1, . . . , n.

Let us notice that the ‘hard’ assumption here is given by point (ii) – perhaps
coupled with the lower bound in (i) –, which imposes an L∞-bound on covari-
ant derivative, while in our setting the L2-ones are more natural (compare with
Theorem A.2).

Remark 4.10. We notice that the existence proof that we give below in The-
orem 4.15 would equally work if existence of good bases is only required locally,
i.e., if one requires the existence of an open cover of the space such that on each
open set a good basis as above exists. Still, even with this generalisation, having
a good basis would be an extremely strong requirement and not really satisfactory
(as said in the introduction, we are mainly interested in showing that our notion of
parallel transport is non-empty), thus we will avoid pushing in this direction and
simply concentrate on the key ideas. �

Remark 4.11. Let (Mn, g) be a compact Riemannian manifold of class C1,1.
Observe that the metric measure space (M, dg,Vol) is an RCD(K,n) space for
some K ∈ R, where dg stands for the length distance induced by the metric g
and Vol is the Riemannian volume measure. Therefore it is straightforward to
show –by working with charts – that the tangent module L2(TM) admits a good
basis in the sense of Definition 4.9 and Remark 4.10 above. The C1,1-regularity
assumption is needed in order to build vector fields w1, . . . , wn having bounded
covariant derivatives, i.e., satisfying item (ii) of Definition 4.9. �
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A sort of converse implication of what discussed in the previous remark holds as
well: any space admitting a good basis w1, . . . , wn resembles a Riemannian man-
ifold of class C1,1, the reason being the ‘metric tensor coefficients’ gij = 〈wi, wj〉
have Lipschitz representatives, as we are going to see in the following result.

Lemma 4.12. Let (X, d,m) be an RCD(K,N) space of dimension n. Suppose
that X admits a good basis w1, . . . , wn for L2(TX). Then the function gij :=
〈wi, wj〉 is m-a.e. equivalent to a Lipschitz function for every i, j = 1, . . . , n.

Proof. We know from Proposition 3.4.6 in [15] that each function gij belongs to
W 1,2(X) and satisfies dgij(·) = ∇wi(·, wj)+∇wj(·, wi), whence gij , |dgij | ∈ L∞(m)
by (4.5) and (4.6). This grants that gij admits a Lipschitz representative by the
Sobolev-to-Lipschitz property (see [3], [11], [12]), thus proving the statement. �

Remark 4.13. It is unclear to us whether under the assumptions of Lemma 4.12
the space must necessarily be a C1,1 manifold, but this is likely the case if one
further assumes that the vector fields in the good basis also have bounded diver-
gence. Indeed, under this further assumption such vector fields admit a regular
Lagrangian flow, and such flows might be used to build charts (see for instance [20]
for a construction in this direction). It is outside the scope of this paper to prove
this claim. �

Let us start the technical work with the following simple lemma.

Lemma 4.14. Let H be a Hilbert module on X and M > 1. Pick w1, . . . , wk ∈ H
such that{

|wi| ∈ (M−1,M),∣∣〈wi, wj〉
∣∣ ≤ 1

M2k ,
hold m-a.e. in X, for every i, j = 1, . . . , k with i �= j.

For h1, . . . , hk ∈ L0(m), put w :=
∑k

i=1 hiwi ∈ H 0 (the L0-completion of H ).
Then it holds

(4.7)
1

M2k

k∑
i=1

|hi|2 ≤ |w|2 ≤M2k

k∑
i=1

|hi|2 m-a.e. on X,

thus in particular w ∈ H if and only if hi ∈ L2(m) for every i = 1, . . . , k.

Proof. For the second in (4.7), we notice that 〈wi, wj〉 ≤ M2 m-a.e. on X for
every i, j, thus

|w|2 =
∣∣∣ k∑
i=1

hiwi

∣∣∣2= k∑
i,j=1

hihj〈wi, wj〉≤M2
k∑

i,j=1

(1
2
|hi|2+ 1

2
|hj |2

)
=M2k

k∑
i=1

|hi|2.

For the first inequality we recall that |wi| > M−1 and 〈wi, wj〉 ≥ − 1
M2k for i �= j
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m-a.e. on X to deduce

|w|2 =
∣∣∣ k∑
i=1

hiwi

∣∣∣2 =

k∑
i=1

|hi|2 |wi|2 +
∑
i�=j

hihj 〈wi, wj〉

≥ 1

M2

k∑
i=1

|hi|2 − 1

M2k

∑
i�=j

|hihj |

≥ 1

M2

k∑
i=1

|hi|2 − 1

M2k

∑
i�=j

(1
2
|hi|2 + 1

2
|hj |2

)
=

1

M2k

k∑
i=1

|hi|2.

Hence the statement is achieved. �

We now prove existence of the parallel transport for the class of those RCD
spaces that admit a good basis for their tangent module.

Theorem 4.15 (Existence of the parallel transport).Let (X,d,m)be any RCD(K,N)
space, where K ∈ R and N ∈ (1,∞), which admits a good basis for L2(TX). Let π
be a Lipschitz test plan on X and fix an initial datum V ∈ e∗0L2(TX). Then there
exists the parallel transport V ∈ H 1,2(π) along π such that V0 = V .

Proof. Let us fix a good basis w1, . . . , wn ∈ H1,2
C (TX) for L2(TX). Put Wi,t :=

e∗twi. By item (i) of Proposition 3.25 we have that Wi ∈ H 1,2(π), with

DπWi,t = Covt(wi),

and therefore from (3.11), (4.6) and the assumption that π is Lipschitz we get

(4.8) |DπWi,t| ≤M L(π).

Also, by the defining property of the pullback map and from (4.5), we have that
for every t ∈ [0, 1] it holds{ |Wi,t| ∈ (M−1,M),∣∣〈Wi,t,Wj,t〉

∣∣ ≤ (M2n)−1,
π-a.e., for every i, j = 1, . . . , n with i �= j,

thus Lemma 4.14 grants that there are functions g1, . . . , gn ∈ L2(π) such that
V =

∑n
i=1 gi e

∗
0wi. A similar argument applied to the pullback of the map e (recall

Proposition 3.9 and the definition (3.7)) and based on the bound (4.8) shows that
there are functions Hi,j ∈ L∞(π × L1) such that

(4.9) DπWi,t =
∑
j

Hi,j,tWj,t a.e. t.

It will be technically convenient to fix once and for all Borel representatives, still
denoted by Hi,j , of these functions such that

(4.10) sup
γ,t

|Hi,j,t(γ)| = ‖Hi,j‖L∞(π×L1), ∀i = 1, . . . , n.
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We shall look for a parallel transport of the form V :=
∑

i giWi with gi ∈
AC2([0, 1], L2(π)). Notice that Lemma 4.14 grants that any such V belongs to
H 1,2(π), with

DπVt
(3.22)
=

n∑
i=1

g′i,tWi,t +

n∑
i=1

gi,tDπWi,t
(4.9)
=

n∑
i=1

g′i,tWi,t +

n∑
i,j=1

gi,tHi,j,tWj,t

=

n∑
i=1

(
g′i,t +

n∑
j=1

Hj,i,t gj,t

)
Wi,t for L1-a.e. t ∈ [0, 1].

Hence our V is the desired parallel transport if and only if the functions g1, . . . , gn
solve the system

(4.11)

⎧⎨⎩
gi,0 = gi, ∀i = 1, . . . , n,

g′i,t +
n∑

j=1

Hj,i,t gj,t = 0, ∀i = 1, . . . , n and for L1-a.e. t ∈ [0, 1].

To solve this system we shall apply Theorem 2.6 to the Banach (in fact Hilbert)
space B := [L2(π)]n equipped with the norm

‖f‖2B :=

n∑
i=1

∫
|fi|2 dπ, ∀f = (f1, . . . , fn) ∈ B.

For every t ∈ [0, 1], define λt ∈ End(B) as

(λtf)i := −
n∑

j=1

Hj,i,t fj, ∀i = 1, . . . , n and f = (f1, . . . , fn) ∈ B,

so that the system (4.11) can be rewritten as{
g0 = g,
g′t = λt gt for a.e. t ∈ [0, 1],

where g := (g1, . . . , gn). Theorem 2.6 grants that a solution in LIP([0, 1],B) ⊂
AC2([0, 1],B) exists provided the λt’s are equibounded and t �→ λtf is strongly
measurable for every f ∈ B. The former follows from∥∥λtf∥∥2

B
=

n∑
i=1

∥∥∥ n∑
j=1

Hj,i,t fj

∥∥∥2
L2(π)

≤ n
n∑

i,j=1

∥∥Hj,i,t fj
∥∥2

L2(π)

≤ nmax
i,j,t

∥∥Hj,i,t

∥∥2
L∞(π)

n∑
i,j=1

‖fj‖2L2(π)

(4.10)

≤ n2max
i,j

‖Hi,j‖2L∞(π×L1)
‖f‖2

B
.

For the latter, notice that since B is separable it is sufficient to prove that for any
f ∈ B the map t �→ λtf ∈ B is weakly measurable. Since B is also Hilbert we need
to show that for every f, g ∈ B the map t �→ 〈λtf, g〉B ∈ R is measurable. Since we
have

〈λtf, g〉B = −
n∑

i,j=1

∫
Hj,i,t fj gi dπ,

the conclusion follows from Fubini’s theorem. �
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A. Sobolev basis of the tangent module

In this appendix we show that one can always build a basis of the tangent module of
a RCD space which has at least Sobolev regularity, as opposed to just L2 regularity.
The basic idea used in the construction is based on the observation that ‘being a
basis’ is a non-linear requirement. Technically speaking, the crucial argument is
contained in the following lemma.

Lemma A.1. Let (X, d,m) be a RCD(K,∞) space and w ∈ L2(TX). Then there
exists v ∈ H1,2

C (TX) such that 〈v, w〉 �= 0 holds m-a.e. on {|w| �= 0}.

Proof. We can assume w �= 0 or otherwise there is nothing to prove; then replacing
if necessary w with (χ{|w|≤1} + χ{|w|>1}|w|−1)w we can also assume that |w| ≤ 1
m-a.e. . Let (wn) ⊂ TestV(X) be L2(TX)-converging to w and m̃ a Borel probability
measure on X such that m � m̃ ≤ m. Then 〈wn, w〉 → |w|2 in L2(X, m̃) and thus

(A.1) mn := m̃
({|〈wn, w〉| > 0}) → m∞ := m̃

({|w| > 0}).
We now observe that

for every v, w̃ ∈ L2(TX) and a > 0 there is b ∈ (0, a) such that

m̃
({|〈w̃, w〉| > 0} ∩ {〈v + bw̃, w〉 = 0}) = 0.

(A.2)

Indeed, putting for brevity Eb := {|〈w̃, w〉| > 0
} ∩ {〈v + bw̃, w〉 = 0}, we have

m̃(Eb ∩ Eb′) ≤ m̃
({|〈w̃, w〉| > 0} ∩ {(b− b′)〈w̃, w〉 = 0}) = 0, ∀b �= b′,

so that the claim follows from the finiteness of m̃ and the fact that the interval
(0, a) is uncountable.

Now put αn := ‖|wn|‖L∞(X) + ‖wn‖W 1,2
C (TX) and recursively define decreasing

sequences (βn), (γn) ⊂ (0,∞) such that β1 = 1 and for every n ∈ N we have

3βn+1 ≤ γn+1 ≤ βn,

and for En :=
{∣∣∣〈 n∑

i=1

βi

αi
wi, w

〉∣∣∣ ≥ γn+1

}
, it holds m̃(En) ≥ mn

1 + 1/n
.

To see that this is possible, let β1 = 1, and notice that trivially
{|〈 β1

α1
w1, w〉| > 0

}
=

{|〈w1, w〉| > 0}, so that for γ2 ∈ (0, β1) sufficiently small the above holds. Now

assume that βn−1 and γn have been found, use (A.2) for v :=
∑n−1

i=1
βi

αi
wi, w̃ := wn

and a := γn/3 to find βn := b < γn/3 such that m̃
({|〈∑n

i=1
βi

αi
wi, w〉| > 0})

≥ m̃
({|〈wn, w〉| > 0}) = mn. Hence for γn+1 ∈ (0, βn) sufficiently small the claim

holds.
We claim that the vector v :=

∑
i≥1

βi

αi
wi satisfies the conclusion of the state-

ment, and start observing that βi ≤ 3−i, and thus∥∥ βi

αi
wi

∥∥
W 1,2

C (TX)
≤ 3−i ‖αi

−1wi‖W 1,2
C (TX) ≤ 3−i
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by definition of αi. Hence the series converges in W 1,2
C (TX), so that v is well

defined and belongs to H1,2
C (TX). Now notice that by construction and (A.1) we

have m̃(En) → m∞ and m̃
(
En \ {|w| > 0}) = 0, so that m̃

({|w| > 0} \ ∪nEn

)
= 0.

Hence to conclude it is sufficient to show that for every n ≥ 1 it holds 〈v, w〉 �= 0
m̃-a.e. on En. Fix such n, let m > n, and observe that by definition of the αi’s
and βi’s we have∣∣〈 βm

αm
wm, w

〉∣∣ ≤ 3n−m+1βn+1

∣∣〈α−1
m wm, w〉

∣∣ ≤ 3n−m+1βn+1, m̃-a.e.,

so that ∣∣∣ ∑
m>n

〈
βm

αm
wm, w

〉∣∣∣ ≤ 3

2
βn+1 ≤ 1

2
γn+1.

On the other hand by construction we have that
∣∣∑n

i=1 〈 βi

αi
wi, w〉

∣∣ ≥ γn+1 holds

m̃-a.e. on En, granting that |〈v, w〉| ≥ 1
2 γn+1 m̃-a.e. on En. �

By repeatedly applying Lemma A.1, we can find a family of H1,2
C (TX)-Sobolev

generators of the tangent module on any RCD(K,∞) space X, as follows.

Theorem A.2 (Sobolev basis of the tangent module).Let (X,d,m) be an RCD(K,∞)
space, for some constant K ∈ R. Suppose that the dimensional decomposition of X
is given by (An)n∈N

. Then there exists a sequence of vector fields (vn)n≥1 ⊆
H1,2

C (TX) such that

v1, . . . , vn is a basis for L2(TX) on An, for every n ∈ N+.

Proof. The thesis can be equivalently rewritten in the following way:

(A.3) v1, . . . , vn are independent on
⋃

k≥nAk, for every n ∈ N+.

We build the sequence (vn)n by means of a recursive argument. First of all,
choose a vector field w ∈ L2(TX) such that 0 < |w| ≤ 1 m-a.e. in

⋃
k≥1Ak, then

pick v1 ∈ H1,2
C (TX) such that 〈v1, w〉 �= 0 m-a.e. in

⋃
k≥1 Ak, whose existence is

granted by Lemma A.1. Thus in particular we have |v1| > 0 m-a.e. in
⋃

k≥1 Ak,
proving (A.3) for n = 1. Now suppose to have already found v1, . . . , vn satisfying
the required property. It can be easily seen that there exists w ∈ L2(TX) such
that 〈v1, w〉 = · · · = 〈vn, w〉 = 0 and 0 < |w| ≤ 1 hold m-a.e. in the set

⋃
k>n Ak.

Hence Lemma A.1 ensures the existence of a vector field vn+1 ∈ H1,2
C (TX) such

that 〈vn+1, w〉 �= 0 m-a.e. in
⋃

k>n Ak.

Now take any f1, . . . , fn+1 ∈L∞(m) such that
∑n+1

i=1 fi vi=0 m-a.e. in
⋃

k>n Ak,

thus one has fn+1〈vn+1, w〉 =
∑n+1

i=1 fi〈vi, w〉 = 0 m-a.e. in
⋃

k>n Ak, from which
we can deduce that fn+1 = 0 holds m-a.e. in

⋃
k>n Ak. Therefore

∑n
i=1 fi vi = 0

m-a.e. in
⋃

k>n Ak and accordingly also f1 = . . . = fn = 0 m-a.e. in
⋃

k>nAk, as a
consequence of the independence of v1, . . . , vn. This grants that the vector fields
v1, . . . , vn+1 are independent on

⋃
k>n Ak, proving (A.3) for n + 1. The thesis is

then achieved. �
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condition and Riemannian Ricci curvature bounds. Ann. Probab. 43 (2015), no. 1,
339–404.
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E-mail: enpasqua@jyu.fi

This research has been supported by the MIUR SIR-grant ‘Nonsmooth Differential Geometry’
(RBSI147UG4).

mailto:ngigli@sissa.it
mailto:enpasqua@jyu.fi

	Introduction
	Some basic notions
	Curves in Banach spaces
	Pullback of an L0-normed module
	Some properties of test plans

	Introduction of appropriate functional spaces
	Test vector fields along 
	The space L2()
	The space C()
	The spaces W1,2() and H1,2()

	Parallel transport on RCD spaces
	Definition and basic properties of parallel transport
	Definition and uniqueness
	Some consequences of existence of parallel transport

	Existence of the parallel transport in a special case

	Sobolev basis of the tangent module

