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We describe resistive states of the system combining two types of orderings—a superconducting and a
ferromagnetic one. It is shown that in the presence of magnetization dynamics such systems become
inherently dissipative and in principle cannot sustain any amount of the superconducting current because of
the voltage generated by the magnetization dynamics. We calculate generic current-voltage characteristics
of a superconductor-ferromagnet-superconductor Josephson junction with an unpinned domain wall and
find the low-current resistance associated with the domain wall motion. We suggest the finite slope of
Shapiro steps as the characteristic feature of the regime with domain wall oscillations driven by the ac

external current flowing through the junction.

DOI: 10.1103/PhysRevLett.123.207001

The ability to sustain dissipationless electric currents is
assumed to be the defining property of a superconducting
state. However, this fundamental concept has been chal-
lenged by the subsequent discovery of type-II supercon-
ductors, which can be driven into the mixed state
characterized by the presence of Abrikosov vortices gen-
erated by the magnetic field [1]. The mixed state is a
generically resistive one since, in the absence of additional
constraints such as the geometrical confinement of the
pinning potential, the superconductor vortices start to move
under the action of any external current [2]. In such a flux-
flow regime, vortex motion generates an electric field
which leads to the finite resistance and Ohmic losses [3,4].

In this Letter we point out one more fundamental
mechanism which can drive a superconducting system into
the resistive state realized in the ideal situation for arbitrary
small applied current. We find that the voltage can be
generated in the superconductor-ferromagnet (SF) systems
due to the interplay of two different order parameters
known to produce many nontrivial effects [5-9]. The
presence of superconducting condensate allows for the
generation of dissipationless spin currents [10] and spin
torques to manipulate the magnetic order parameter
[8,9,11-25]. Here we point out that the magnetization
dynamics generated in this way by the supercurrent with
necessity generates an electric field and Ohmic losses in a
way analogous to the Abrikosov vortex motion in the flux-
flow regime. However, there is no complete analogy
between these fundamental processes. In the case of a
magnetic system it is the dynamics of a magnetic order
parameter that generates an electric field and Ohmic losses

0031-9007/19/123(20)/207001(7)

207001-1

in the superconducting state due to the Gilbert damping
mechanism. The importance of this new resistive state for
understanding the physics of nonequilibrium superconduct-
ing-ferromagnet systems motivates the present work.

The sketch of the system under consideration is shown in
Fig. 1(a). Its magnetic part consists of a ferromagnetic strip
and it is conceptually similar to the domain wall (DW)
racetrack memory proposal [26,27]. The position of DWs
in the strip can be controlled by the normal current jy,

FIG. 1. (a) Sketch of the system under consideration. Super-
conducting electrodes forming a Josephson junction are placed
on top of a ferromagnetic strip. The position of DWs in the strip
can be controlled by the normal current jy. (b) A simplified
model of the Josephson junction region. A Néel-type DW is
present in the interlayer. The Josephson supercurrent flows in the
F region in the x direction.
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which can be applied along the strip. In addition, two
superconducting leads forming a Josephson junction are
placed on top of a ferromagnetic strip. The Josephson
current in such a geometry has been measured through
CrO, half-metallic ferromagnet [28] for the distance
between superconducting electrodes that greatly exceed
the typical DW size of 20 nm. In such system the
Josephson current is necessarily mediated by spin-triplet
Cooper pairs [8] that can pick up the Berry phase [29]
propagating through the noncoplanar spin texture or in the
presence of spin-orbit coupling (SOC). This leads to the
possibility of spin transfer torques (STT) generated by
the supercurrent [23], so that when a DW is located inside
the interlayer region of the Josephson junction, it can be
moved by the Josephson current j applied between the
superconducting leads.

As areciprocal effect to the STT, a gauge spin-dependent
vector potential appears in the local spin basis due to
SOC [30-38]. It produces an anomalous phase shift and, in
the presence of magnetization dynamics it also produces an
electromotive force [39—41]. This situation is the focus of
our present study. The electromotive force should be
compensated by the voltage induced at the junction. It is
this voltage that maintains the DW motion, compensating
the dissipation power occurring due to Gilbert damping by
the work done by a power source, as it is shown below.

The model.—Figure 1(b) illustrates the simplified model
of the SFS Josephson junction region, which we consider in
our calculations. We assume that there is a Néel-type DW
inside the F interlayer. The Rashba SOC is present in F due
to a structural or internal inversion symmetry breaking. The
Josephson supercurrent, which flows in F along the x
direction, generates a torque on the DW [23] consisting of
the adiabatic STT [42—44] and spin-orbit torques [45,46].
Under these conditions DW motion is caused even by very
small currents if pinning effects are neglected. We neglect
the nonadiabatic STT [47] assuming that the most part of
the voltage is dropped at the interfaces and the quasiparticle
nonequilibrium in the interlayer is small enough.

In the considered SFS junction, the coupled dynamics of
magnetization M and Josephson phase difference ¢ is
determined by the following closed set of equations

@ — po{M}

= Josin(p - o)) + 2200 )
oM a oM

O e UM xHy+MxSo 4T 2
or yM x eff+M X8t+’ (2)

Eq. (1) represents the nonequilibrium current-phase rela-
tion (CPR) generalizing a resistively shunted Josephson
junction (RSJ) model. This relation is written in a gauge-
invariant form amended to include the anomalous phase
shift [12,24,29,48-74] po{M} defined by SOC and mag-
netic texture. For strong ferromagnets only spin-triplet pairs
can penetrate into F'. Then the transport can be calculated in

the local spin basis for spin-up and spin-down Fermi
surfaces separately with an effective U(1) spin-dependent
gauge field Z that yields [29]

/2

po{M} = -2 /
—d/2

Z(x, 1)dx, (3)

where Z = Z" + Z*°. Here 7" = —iTr(6,070,0)/2 is the
texture-induced part, where U (r, 1) is the time- and space-
dependent unitary 2 x 2 matrix that rotates the spin
quantization axis z to the local frame determined by the
exchange field.

The term Z3° = (M;B,; 1)/ M appears due to SOC, where
B;; is the constant tensor coefficient describing the linear
spin-orbit coupling of the general form I:Iw =0;Bijp; /m.
Here we assume that H,, is of a Rashba type: H,, =
(Bg/m)(o.py — 6,p,). Z" is nonzero only for noncoplanar
magnetic structures, and in our case Z" =0 [75]. The
electromotive force can also occur due to the noncompla-
narity of the moving DW or the presence of the non-
adiabatic (antidamping) torque [76-81]. However, for
the case of Rashba SOC and the Néel DW, presented in
Fig. 1(b), the moving DW remains coplanar.

In fact, Eq. (1) is quite general and is applicable to a wide
class of Josephson systems exhibiting an anomalous phase
shift. We derive it [82] microscopically for the case
of a strong ferromagnetic interlayer [29]. Besides that, in
contrast to the previously used gauge noninvariant formu-
lations [13,17], Eq. (1) describes the normal spin-galvanic
effects when j. = 0 such as the electromotive force and
charge current generated in the ferromagnet due to the time
derivative of the Berry phase [76—80,83,84]. The analogous
equation is also valid for a more general nonsinusoidal CPR.

The magnetization dynamics driven by the spin-polarized
supercurrent is described by LLG Eq. (2) where a is the
Gilbert damping constant, y is the gyromagnetic ratio. The
last term in Eq. (2) is the current-induced spin torque
T = (y/M)J,V)M + (2y/M)(M x B;)J ;. The first term
here is the adiabatic spin-transfer torque generated by the
spin current J in the local spin basis. The second term is the
spin-orbit induced torque determined by the spin vector
B; = (B,;. By;, B.;) corresponding to the jth spatial com-
ponent of the SOC tensor B;;. Below we assume Ry < R
and neglect for simplicity the spin-down contribution to the
current. In this case J; ~j/2e.

DW motion.—It is convenient to parametrize the mag-
netization as M = M (sin@sin g, cos 0, sin f cos 5), where
the both angles depend on (x, ). At zero applied super-
current the equilibrium shape of the DW is given by
6 =n/2 and

cos @ = —tanh[(x — xo)7/dy], (4)
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where dy = n\/A,./K is the DW width. Here it is
assumed that K >0 and K, >0 are the anisotropy
constants for the easy and hard axes, respectively, and
A,, is the constant describing the inhomogeneous part of
the exchange energy. The effective magnetic field H s =
(I/Mz)(KM)y - KJ_MZZ + Aexa)sz)'

For dealing with the SOC-induced torque it is convenient
to define the dimensionless SOC constant f = —2Bgdy /7.
For small applied supercurrents j << dyMe/(ntyugla — p|)
the DW moves as a coplanar object correspondingly to
0(x,7) defined by Eq. (4) with xo(t) = [} v(¢)dt' and
6 = §(t). The exact solution for v(z) following from Eq. (2)
for the situation when the electric current is switched on at
t = 0 is presented in the Supplemental Material [82]. On a
characteristic timescale 7, = (1 + a*)M/(ayK | ), the DW
velocity reaches its stationary value

Vst = _Mﬂ/av (5)

where u =yJ,/M.

In the considered case of a Néel DW and a Rashba SOC,
Zy’ = (npM,)/(2dwM), which according to (3) yields the
anomalous phase shift:

@o(t) = =2xfx(t)/dy. (6)

Our consideration is strictly applicable if |d/2 £ xq| > dy,
that is if the DW is not close to the SF interface.
Resistive state.—Suppose that we apply a constant
electric current / = jS (here S is the junction area) to
the Josephson junction and consider a steady motion of the
DW across the junction with a constant velocity defined by
Eq. (5). In this case Eq. (1) can be easily solved and the
time-averaged voltage induced at the junction is

— S, . mplu
V(1) = RS\/j* - ji + cady’ (7)

where the first term represents the well-known Josephson
voltage, which is generated at j > j.. The second term V,
is nonzero even at j < j. and reflects the fact that the
Josephson junction is in the resistive state if the DW is
moved by the current. The corresponding /V characteristics
of the junction are shown in Fig. 2. In principle, in small-
area or point Josephson junctions with a large resistance,
the capacitance or inductance shunting can also lead to the
finite slope of the supercurrent branch [85-87]. At the same
time, the experimentally realized Josephson junctions via
metallic ferromagnets [28,88] practically do not demon-
strate noticeable slopes of the supercurrent branches.
However, even if a finite slope due to the interaction
with the environment is present, it can be distinguished
experimentally from the effect discussed in our Letter by
comparing [V characteristics of the same junction in the
presence and in the absence of the domain wall. It is also

60 T T T

0.0 0.5 1.0 1.5

I/I,
FIG. 2. IV characteristics of the SFS junction with a DW at rest
(blue) and a moving DW (red). f = 1, @« = 0.1, eKdy /(nj.) =5,
ty = 40t;, where t; = 1/2eRI .. Upper-left insert: Shapiro steps
for I(t) = I + 0.31, cos wt, @ = 15¢;'. Axis labeling is the same

as in the main figure. Bottom-right insert: the equivalent circuit
scheme of the junction.

worth noting that Eq. (1) does not yield a ratchet potential
for the Josephson phase because the anomalous phase shift
can be compensated by the change of origin. Therefore, our
model yields no rectification effects typical for asymmetric
Josephson systems [89—100] and the IV characteristics
remain purely antisymmetric with respect to the current
reversal.

For numerical estimates of V,, we take a = 0.01,
dy = 60 nm, u ~ 1 m/s, what corresponds to the maximal
Josephson current density [28] through the CrO, nanowire
je~10° A/m?. The dimensionless SOC constant  can
vary in wide limits. Having in mind that experimentally
our predictions can be realized, for example, for hybrid
interlayers consisting of a ferromagnet—heavy-metal
bilayers, f = 1-10 considering that the SOC ai =
Bg/m ranges from 3 x 10! to 3 x 1071 eV m at inter-
faces of heavy-metal systems [101]. Then we can obtain
Viul—; up to 107 — 1073 V.

The resistance of the junction at j < j. caused by the
DW motion is given by

ov nyfPh
Row= (=] ==g—. 8
pw <az>,<,[ 2e2SadyM ®

It is interesting that, according to Eq. (8), Rpw per unit area
does not depend on the Josephson junction parameters,
suchas j. and R, and is determined only by the characteristics
of the magnetic subsystem. It can be naturally understood if
we take into account that in this case the work done by a
power source is exactly equal to the energy losses due to
the Gilbert damping. Indeed, the dissipation power due to
Gilbert damping can be calculated as [102]

Po :y%/dx(%)z 9)
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For the stationary DW motion described by Eq. (4) with x, =
vy, we get Pg = j(nuf?/eady), which exactly coincides
with the power of jV provided by the source.

In the regime j < j. the normal current through the
Josephson junction is zero in spite of the nonzero voltage
generated at the junction. This follows directly from Eq. (1)
because for j < j. it has the solution ¢(7) = @o(t). The
equivalent circuit scheme of the junction is presented in
the insert to Fig. 2. The voltage is compensated by the
electromotive force induced in the junction by the emergent
electric field (71/¢)Z,,.

If there are n DWs inside the junction, then under the
assumptions above Rpy expressed by Eq. (8) is multiplied
by n. If the Josephson junction is driven by an ac
component of the voltage or current having the frequency
w, then the dependence V(I) manifest horizontal steps at
Vi =kw/2e, which are known as the Shapiro steps
[103,104]. If a moving DW is present in the junction, then
the Shapiro steps acquire a nonzero slope, which is
determined by Eq. (8). The reason is that in this case
the oscillation frequency of the Josephson current is
determined by ¢ — ¢, and does not coincide with 2 eV
anymore. The Shapiro steps occur just when the oscillation
frequency of the Josephson current equals to a multiple
integer of the external frequency. The [V characteristic
demonstrating the inclined Shapiro steps is shown in the
insert of Fig. 2.

In real setups the time of the DW movement through
the junction is limited by the finite junction length:
tow ~ d/vy, = (a/f)(d/u). Therefore, the voltage should
be averaged over t < fpyw. Although experimental data on
the DW motion in Josephson junctions are not yet
available, for the estimates we take d = 0.5 x 107° m
and u ~ 1 m/s. Then tpy > 0.5(a/B) x 1075 s. For other
experiments, where the Josephson current carried by equal-
spin triplet correlations was reported [105,106], this time
can be several orders of magnitude higher due to much less
values of the critical current density.

The IV characteristic presented in Fig. 2 was obtained
under the assumption of a steady DW motion. In fact, V(1)
is driven by ¢~ v(t). For a steplike applied electric
current, V() saturates exponentially at the characteristic
time ¢, except for the short Josephson pulses (see below).
Therefore, in order to be able to measure the resistance
expressed by Eq. (8) it is important to have tpw > ;. For
estimations of 7; we use the material parameters of the
CrO, nanostructures [28,107]. Taking the saturation mag-
netization M=4.75x10°A/m, K = 1.43 x 10° erg/cm?
and K, =4zM?, and a =0.01 we obtain t,~ 107 s.
Consequently, the ratio fpw/7; > 1/ and, for not very
large values of the SOC constant < 1, the condition
fpw > 1y 1s realistic.

In practice DW motion can be induced by large current
pulses. For short pulses j(1)=j0(1)0(T—1t) with T < tpyy,
the DW does not go out of the junction during the impulse

time. The exact expression for the DW velocity v(¢) is to be
found from the LLG equation and is calculated in the
Supplemental Material [82]. The resulting voltage signal
consists of two parts of different physical origin. The first
part is the purely Josephson response with the characteristic
time ; = 1/2eRI . and the other part is of purely magnetic
origin, has a timescale 7; and vanishes if there is no moving
DW in the junction. Taking for estimates of ¢, the material
parameters of the CrO, nanostructures j. ~ 10° A/m?,
R~03-15Q, S=75%x10""m?> we obtain 1, =
03 x 107" =1.5x 107" 5. According to this estimate
t; < t;. Then the Josephson voltage signal should decay
much faster than the DW signal.

The resulting voltage signals for j < j. are shown in
Fig. 3(a). In this regime the typical V(¢) curve consists of an
initial, sharp Josephson voltage impulse decaying at ¢ ~ ¢,
a final sharp impulse of the same nature, and a gradual
voltage increase and decrease of purely magnetic origin,
which takes the form V(z) = —zpuv(t)/edy,. The signal
saturates at time 7, to the voltage defined by the steady DW
motion velocity. In the absence of DW there is no generated
voltage between the initial and final Josephson pulses as
shown by dashed curves in Fig. 3(a).

26‘/td/h
= N

ot

0.0 0.5 1.0 1.5 2.0 2.5
t/td

FIG. 3. V(r) for rectangular current impulses. Different curves
correspond to different impulse periods 7. For all the panels the
solid lines correspond to =1 (the anomalous phase due to
the DW motion is nonzero) and the dashed lines are for # = O (the
anomalous phase shift is zero). (a) j = 0.5j., T = 3¢, (blue),
T = 2t, (yellow), T = t, (red); (b) j = 1.2j., T = 1.25t, (blue),
T = 0.83t; (yellow), T = 0.42t; (red). Insert: j =1.2j., T =
1.25¢, (the part of the main panel on a large scale). For all the
curves a = 0.1, eKdy /(zj.) = 5, t; = 401,.
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The regime j > j, is characterized by the voltage signal
Josephson oscillations during the impulse time as shown in
Fig. 3(b). Nevertheless, the gradual increase of the voltage
due to the DW motion is also present. It results in the
increasing difference between the solid and the dashed
curves minima as marked by a red dashed line in the insert.

To conclude we have generalized the RSJ equation to
describe the new resistive state generated by magnetization
dynamics in the interlayer of a SFS junction. Taking into
account the emergent vector potential originated from the
SOC and/or magnetization texture, we obtained the gauge-
invariant system of coupled equations which governs the
dynamics of the magnetization and superconducting phase.
Using this model we have shown that in the presence of
magnetization dynamics the Josephson junction is in the
resistive state even at j < j.. In this regime the junction
can be used for electrical detection of the dynamics.
Experimentally DW motion inside the Josephson junction
can also be observed through the nonzero slope of
Shapiro steps.
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