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ABSTRACT

In this article, a model-based method for clustering life
sequences is suggested. In the social sciences, model-free
clustering methods are often used in order to find typical
life sequences. The suggested method, which is based on
hidden Markov models, provides principled probabilistic
ranking of candidate clusterings for choosing the best so-
lution. After presenting the principle of the method and
algorithm, the method is tested with real life data, where
it finds eight descriptive clusters with clear probabilistic
structures.

1. INTRODUCTION

In social science applications the goal of sequence analy-
sis is usually to find a typology of life sequences in the
data. Model-free methods, such as optimal matching for
pairwise alignment of sequences combined with cluster-
ing methods like Ward’s agglomerative algorithm, are ty-
pically used [1]. The aim of this article was to develop
a model-based method providing a simple probabilistic
description of the sequence data and helping to find typical
life paths. Hidden Markov models (HMMs) were chosen
as a tool for these tasks. Hidden Markov models have been
widely used earlier in biological sequence analysis [2] and
speech recognition [3]. In both biological sequence analy-
sis and speech recognition, there are usually large datasets
available, whereas the datasets of life events are typically
much smaller (both in number of sequences and length of
single sequence).

Methods for clustering with hidden Markov models
have been developed before [4] [5], but most of these met-
hods implicitly assume very long observation sequences,
since a distinct HMM for each sequence is used as a star-
ting point of clustering. Other methods, such as Matry-
oshka algorithm [6], have been developed for the case of
continuous valued observations.

In this article, a model-based method for clustering
and analysing life sequence data is suggested.

2. METHODS

2.1. Hidden Markov Models

A Hidden Markov model consisting of m hidden states
and l distinct observation symbols is described by the pa-
rameters λ = (A,B, δ), where A is the state transition
probability matrix, B is the observation symbol emission
probability matrix and δ is the initial distribution of states.

The element ai,j in matrix A gives the probability of
transiting from state si to state sj . The element bi,j in mat-
rix B gives the probability of state si emitting observation
symbol oj . The element δi of the initial distribution δ gi-
ves the probability of starting from state si.

Figure 1 shows the graphical representation of a hid-
den Markov model. The upper part of the figure shows
the transition matrix A as a directed graph where the th-
ree states are the nodes, and non-zero transitions proba-
bilities ai,j are shown as arcs between nodes. The pro-
bability of starting from state i is shown inside the node
i as δi. The stacked bars below each state represent the
symbol emission distribution at the state, where each non-
zero emission probability bi,j is represented with a dis-
tinctly colored bar, having the height proportional to bi,j .
For example, the second state can only emit two different
symbols, nps (with probability of ≈ 0.75) and nds (with
probability of ≈ 0.25). Arcs with zero probability are not
drawn.

Figure 1. Example of HMM: si ∈ {1, 2, 3}, oi ∈
{”nss”, ”nds”, ”nps”, ”npo”, ”ndw”, ”npw”}.



The parameters of the model λ are usually estimated
by Baum-Welch algorithm minimizing the negative log-
likelihood

L = − log

N∏
i=1

P (oi|λ), (1)

where oi = (oi1, . . . , o
i
n) is the ith observation sequence,

and N is the total number of observation sequences. All
the sequences have equal lengths n. The probability of the
observation sequence given the model is

P (oi|λ) =
∑
s∈Sn

[
P (oi1|s1)P (s1)

×
n∏

j=2

P (oij |sj)P (sj |sj−1)
]

=
∑
s∈Sn

bs1,oi1δs1

n∏
j=2

bsj ,oijasj−1,sj , (2)

where the state sequences s = (s1, . . . , sn) take all pos-
sible values in the state space Sn = {1, . . . ,m}n. Despite
the apparent complexity of (2), P (oi|λ) can be efficiently
calculated by an iterative algorithm [3].

The most probable path of hidden states given the ob-
servation sequence oi can be efficiently calculated by the
Viterbi algorithm and is denoted ŝi = (ŝi1, . . . , ŝ

i
n). For

more detailed description of hidden Markov models and
their properties, see for example [3].

2.2. Discussion on the interpretation of HMM for life
sequences

One rationale behind using the HMM for life sequence
analysis will be the attempt to identify similar sequences
based on similar "hidden"or simplified state trajectories.
The existence of similar hidden sequence of states can be
attributed to both external factors, common to groups of
populations, or to internal behavioral similarities for indi-
viduals with similar features. Finding hidden dynamics is
thus important for analyzing and grouping the sequences
and also for understanding the relationships between the
factors that are measured. The significance of the hidden
states in life sequences is dependent on the chosen structu-
re of the hidden Markov models. The goals of our analysis
are two-folded:

(G1) to group the similar sequences in a small number
of clusters and

(G2) to group those symbols that act similarly within
a cluster or under certain temporal contexts.

Our analysis is exploratory, we test a number of HMM
structures and choose the optimal one(s) according to an
information theoretic criterion. We then check the resul-
ting optimal structure and find interpretations for the two
types of groupings. We note that usual training of HMM
acts along a full mixture model: the likelihoods are com-
puted by summing over all possible sequences of hidden
states. However, we are interested in explaining the da-
ta using clusters and therefore we defined the goal of our

optimization problem by a different criterion, which ma-
kes use of the cluster structure. Differently than in simple
clustering, where sequences are grouped based on a simi-
larity measure applied to the sequence of observations, we
now define the clusters in terms of the distinct parameters
of the underlying HMMs.

2.3. Likelihood functions accounting for clustering
with HMMs

Suppose that we constructed λ1, . . . ,λK , the K HMMs
by which we want to defineK clusters. We have a number
of ways to decide for each sequence to which cluster it
belongs. A hard decision will be based on the likelihood
of the observations, conditional on the most likely state
sequence. Let

P̂ (oi;λk) = max
s∈Sn

P (oi|s;λk)P (s|λk)P (λk)

def
= P (oi|ŝi(oi);λk)

×P (ŝi(oi)|λk)P (λk), (3)

which is the maximum likelihood obtained for the maxi-
mizing state sequence ŝi(oi). The quantity− log P̂ (oi;λk)
is the codelength necessary to transmit the sequence oi

using the model λk. A natural decision will be to use for
the sequence oi that model which requires the smallest co-
delength, so the clustering of the sequences is done accor-
ding to

λ̂(oi) = argmax
λk

P̂ (oi;λk). (4)

Under this decision strategy, the training of the K HMMs
will have the goal of minimizing the overall codelength

L1 = −
N∑
i=1

log P̂ (oi; λ̂(oi)). (5)

A second clustering strategy is still based on the code-
length for encoding the sequence oi based on the best
cluster, but now the coding strategy is defined by a mixtu-
re of all the hidden states in a given cluster. Given a cluster
λk, we construct the distribution

P (oi;λk) =
∑
s∈Sn

P (oi|s;λk)P (s|λk), (6)

which being a distribution can be used to encode the se-
quence oi in− log2 P (o

i;λk) bits. Thus a natural strategy
of choosing the best cluster for the sequence oi is

λ(oi) = argmax
λk

P (oi;λk). (7)

Under this decision strategy, the training of theK HMM’s
will have the goal of minimizing the overall codelength

L2 = −
N∑
i=1

logP (oi;λ(oi)). (8)



2.4. Algorithm for clustering with HMMs based on
MDL

The algorithm is presented first for a given number of clus-
ters K and number of states m in each cluster. In order
to find an initial clustering, one HMM λ is fitted to the
whole data, with the transition probability matrix A con-
strained such that it contains K block diagonal matrices.
This produces a single HMM with K ”submodels”. The
estimation of the parameters of this block diagonal HMM
is done with the usual Baum-Welch algorithm by mini-
mizing (1). In order to reduce the risk of being trapped in
a poor local minima, a large number of initial values for
the model parameters are used.

The block diagonal model λ obtained in the initial sta-
ge is split into K separate HMMs, λ1, . . . ,λK , using the
parameters corresponding the kth block of the block dia-
gonal model as the parameters of the kth HMM, λk, k =
1, . . . ,K. The most probable cluster for each observation
sequence oi is the λk that maximizes the P (oi|λk) in (4)
or (7). After finding the most probable cluster for each
sequence, we get the empirical probabilities P (λk). Now
instead of minimizing the negative log-likelihood of equa-
tion (1) by Baum-Welch, we minimize the negative log-
likelihood (5) or (8). The expressions (5) or (8) are mini-
mized numerically, for example using the nlm routine in
the R environment [7].

Finally a modified minimum description length crite-
rion is used to evaluate the goodness of fit:

MDLc = 2Lc + p log(Nn), (9)

where Lc is calculated by (5) or (8), p is the number of
model parameters with non-zero values and Nn is the to-
tal number of data points (number of sequences times the
length of sequence). The MDLc accounts for encoding
the parameters of the models and thus penalizes for too
complex models and helps avoiding overfitting. After fin-
ding the minima of Lc, the model parameters can be tuned
by setting some small probabilities in A and B to zero
(and scaling the corresponding row probabilities so they
sum to unity), which can provide smaller MDLc than the
parameters that minimize Lc.

Models with number of clusters K and states m in
each cluster varying in sensible region are then fitted to
the data, and the model with the lowest MDLc is chosen
as the best model. As allowing different number of hidden
states in each cluster would make the search space explo-
de, an assumption that there are equal number of hidden
states in each cluster makes the search of the optimal mo-
del much simpler. In future work, ways to relax this as-
sumption are possibly studied.

3. APPLICATION

The example data (the HELS study, Salmela-Aro & Nur-
mi) consist of 207 first year students in 1991 at the Univer-
sity of Helsinki. Their life events from three life domains
were recorded retrospectively in 2008.

1. Parenthood: having/not having children (c/n).

2. Partnership: living single (s), living in a partnership
(p), living separated/divorced/widowed (d).

3. Study and career: studying full-time (s), working
(w), or doing something else (being in army, ma-
ternal leave, unemployed etc) (o).

From the 18-year follow-up, life sequences were con-
structed as character strings (such as nsw) resulting in 18
possible extended symbol combinations for each year, see
the table on top of Figure 2.

In order to find the best model for clustering and desc-
ribing the data, models with K and m ranging from 2 to
10 were fitted to the data. In this application, we chose to
minimize (5).

The parameter values that minimized (1), the log-like-
lihood of the initial block-diagonal model, did not change
significantly when minimizing (5), and thus the sequence
assignments were the same. However, this may not hold
in all cases and needs to be investigated.

Table 1 shows the number of clusters and number of
hidden states in each cluster for the ten models with the
smallestMDLc value. In all,MDLc favored models with
large number of clusters and small number of hidden sta-
tes in a cluster. The model with eight clusters and three
hidden states in each cluster had the lowest MDLc va-
lue. In comparison, if the minima of the (1) would have
been used in calculation of MDLc, the best model would
have been the model with only two clusters and nine sta-
tes in both clusters. The MDLc value of that model was
12530.0 when using (5) instead of (1). The hidden states

Table 1. Ten fitted models with lowest MDLc value.
K m MDLc

8 3 10867.7
9 3 10937.2
7 3 11002.9
8 4 11082.9

10 3 11099.5
4 3 11120.7
6 3 11155.5
5 3 11178.7
5 4 11226.4
7 4 11254.8

of the best model were interpreted in terms of the most
probable symbols emitted, resulting in 11 distinct hidden
states composed by the original 18 observation symbols.
Their coding is given at the top of Figure 3 (on the right).
Based on the hidden states, the model parameters and the
hidden structure of the model (Figure 2), the clusters were
given the following descriptions. They represent the ty-
pical path of a member of the corresponding cluster.

1. Graduation-anchored life paths.

2. Unstable partnerships, early enter to working life.

3. Fast starters, early and stable partnership with chil-
dren when studying.



4. Mainly singles with traditional working history.

5. Work-oriented unstable partnerships without chil-
dren.

6. Slow starters, late and stable partnership with chil-
dren.

7. Family with fragmented working history.

8. Untypical life paths, singles having children, single-
supporters.

4. CONCLUSION

The suggested method was able to find clusters of life
paths in the sequence data. Compared to the usual model-
free alignment methods, which are based on pairwise dis-
tances of the sequences and their clustering, our method
has a clear probabilistic model structure. It was assumed
that the sequence data is composed by a mixture of li-
fe pathways. This mixture of pathways was modelled as a
hidden layer which can be interpreted as an underlying de-
velopmental structure from which the observed sequences
are noisy realizations. Unlike biological sequences, life
sequences tend to be much shorter and less variable, but
usually some external information and theoretical know-
ledge about the developmental processes exist. The pro-
babilistic structure of the method allows to incorporate
that information by modelling the transition probabilities.
The efficient estimation of such models, as well as finding
ways to measure the interaction of multiple life domains
in time is left for further work.

5. ACKNOWLEDGMENTS

We thank the Helsinki Longitudinal Student Study (HELS)
by K. Salmela-Aro & J-E Nurmi for letting us use the data
for our purposes.

6. REFERENCES

[1] A. Abbott and A. Tsay, “Sequence analysis and op-
timal matching methods in sociology: Review and
prospect,” Sociological Methods & Research, vol. 29,
pp. 3–33, Aug. 2000.

[2] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison,
Biological sequence analysis: Probabilistic models of
proteins and nucleic acids, Cambridge University
Press, Cambridge, 1998.

[3] L. Rabiner, “A tutorial on hidden Markov models
and selected applications in speech recognition,” in
Proceedings of the IEEE, Feb. 1989, pp. 257–286.

[4] P. Smyth, “Clustering sequences with hidden Markov
models,” in Advances in Neural Information Proces-
sing Systems. 1997, pp. 648–654, MIT Press.

[5] M. Bicego, V. Murino, and M.A.T. Figueiredo,
“Similarity-based clustering of sequences using hid-
den Markov models,” in Machine Learning and Da-
ta Mining in Pattern Recognition. 2003, pp. 86–95,
Springer.

[6] C. Li and G. Biswas, “Applying the hidden Markov
methodology for unsupervised learning of temporal
data,” International Journal of Knowledge Based In-
telligent Engineering Systems, vol. 6, pp. 152–160,
Jul. 2002.

[7] R Development Core Team, R: A Language and Envi-
ronment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria, 2009, ISBN
3-900051-07-0.



Cluster 1, N1 = 41 Cluster 2, N2 = 37

Cluster 3, N3 = 36 Cluster 4, N4 = 27

Cluster 5, N5 = 22 Cluster 6, N6 = 22

Cluster 7, N7 = 17 Cluster 8, N8 = 5

Figure 2. The 8 clusters found by our algorithm. Shown in each subfigure is the structure of the HMM for cluster k,
with the hidden state transitions Ak and the symbol emission distribution Bk. Nk is the number of sequences assigned to
cluster k.



Observation space State space
(color codes, significance, and extended symbols) (color codes and significance)

Cluster 1 Cluster 2
observations states observations states

Cluster 3 Cluster 4
observations states observations states

Cluster 5 Cluster 6
observations states observations states

Cluster 7 Cluster 8
observations states observations states

Figure 3. Observation sequences and their color coding (left) and the most probable paths of hidden states and their
color coding (right) for each cluster. The most probable paths are sequences of 11 hidden states based on a similar
composition of observed states in Fig 2. Note that the colors on the right and left figures may not in all cases have the
same interpretation.


