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Abstract

Hirvonen, Henry
Master’s thesis
Department of Physics, University of Jyväskylä, 2019, 118 pages.

In relativistic heavy ion collisions substance called quark-gluon plasma (QGP) is
created. The Quark gluon plasma is a matter which consists from a weakly coupled
quarks and gluons and it can only be created on extreme temperatures or pressures.
After QGP cools down it experiences phase transition to the hadron gas. The
evolution of QGP and hadron gas can be modeled using the relativistic hydrodynamics,
which is effective theory describing dynamics of the fluids. In this thesis we are
particularly interested about effects of the bulk viscosity in Pb+Pb collisions with
√
sNN = 2.76 TeV. Initial state for hydrodynamic evolution was calculated using the

EKRT-model and freeze-out was done using Cooper-Frye procedure. We found out
that the bulk viscosity caused expansion of the system to slow down which evidently
decreased average transverse momentum of the final state particles.

Keywords: heavy ion collisions, QGP, hydrodynamics, kinetic theory, bulk viscosity
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Tiivistelmä

Hirvonen, Henry
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2019, 118 sivua

Relativistisissa raskasionitörmäyksissä syntyy ainetta, jota kutsutaan kvarkki-gluoniplasmaksi
(QGP). QGP on ainetta, joka koostuu heikosti kytketyistä kvarkeista ja gluoneista
ja sitä syntyy ainoastaan erittäin korkeissa lämpötiloissa tai paineissa. Kun törmäyk-
sessä syntynyt QGP alkaa jäähtymään, se kokee faasitransition hadronikaasuksi.
QGP:n ja hadronikaasun kehitystä voidaan mallintaa käyttäen relativistista hydrody-
namiikkaa, joka on fluidin dynamiikkaa kuvaava efektiivinen teoria. Tämä tutkielma
käsittelee erityisesti tilavuusviskositeetin vaikutusta raskasionitörmäyksiin Pb+Pb
törmäyksissä, joissa √sNN = 2.76 TeV. Alkutila hydrodynaamiselle kehitykselle saa-
tiin EKRT-mallin avulla ja irtikytkeytyminen toteutettiin Cooper-Frye menetelmällä.
Saaduista tuloksista nähtiin, että tilavuusviskositeetti hidasti systeemin laajenemista
ja sitä kautta pienesi lopputilan hiukkasten keskimääräisiä poikittaisliikemääriä.

Avainsanat: raskasionitörmäys, QGP, hydrodynamiikka, kineettinen teoria, tilavu-
usviskositeetti,
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1 Introduction

One of the goals of the modern physics has always been to study matter at the
extreme conditions in which temperature or density of the system is very high. One
place where these kinds of conditions are met is in heavy ion collisions where two
heavy nuclei collide to each other velocities near speed of light. As a consequence
of the high collisions energies, even thousands of hadrons, such as protons, pions or
kaons, can be created in a single collision.[1]

In heavy ion collisions most of the interactions happen via the strong interaction
which described by theory called quantum chromodynamics (QCD). In QCD all the
hadrons are considered as bound states of quarks and interactions between quarks
are mediated by gluons. The quarks are spin-1/2 fermions which have three possible
color charges, while gluons are spin-1 bosons which can have eight different color
charges.[2]

One of the most interesting properties of QCD is so called color confinement
which states that bound states of quarks must always exist in color neutral state.
Another interesting property of QCD is the asymptotic freedom which expresses that
interactions between quarks become asymptotically weaker as energy scale increases.
These properties of QCD indicate that matter consisting from quarks and gluons
should have two different states. At the low energies color confinement indicates
that quarks and gluons form a gas of interacting hadrons while at the high energies
this matter is expected to behave like weakly coupled gas of quarks and gluons due
to asymptotic freedom.[1], [2]

The high energy state of QCD matter is usually referred as quark gluon plasma
(QGP) and it is believed to exist in the early times of the universe, where temperatures
were extremely high [1], [3]. The best way to experimentally replicate these conditions
is by doing heavy ion collision experiments, where QGP is also expected to be created.
First heavy ion collision experiments were done in the 1970s at BEVALAC where the
center of mass energies of the collisions were around 2 GeV [4]. Since then particle
accelerators have improved a lot and nowadays the highest energies are achieved in
LHC where center of mass energies are as high as 5.02 TeV [5], [6].
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In principle, modeling heavy ion collisions should be done by calculating all
interactions between quarks and gluons with the help of QCD. However, there can
be several thousands of particles created in one heavy ion collision which makes it
difficult to use QCD directly. Instead, one usually uses hydrodynamics to model
dynamics of the system. In this approach matter created in collision is described
as a fluid which is close to thermal equilibrium. Because hydrodynamics describe
collective behavior of the fluid, there is no need to calculate individual particle
interactions. This makes modeling of the system much simpler.

The hydrodynamic fluid also has some thermal properties which are described by
equation of state and some viscous properties which describe deviation from thermal
equilibrium. Viscous properties of the fluid are usually divided into bulk viscosity
and shear viscosity. The shear viscosity has been successfully used in context of
heavy ion collision for many years and it has provided some excellent results [7]–[10].
The bulk viscosity has only recently added to simulations and amount of studies
using it is still limited [11]–[14].

The goal of this thesis is to study effects of the bulk viscosity in relativistic
heavy ion collisions and give theoretical overview about relativistic hydrodynamics
and heavy ion collisions. To achieve this goal this thesis organized following way:
In section 2 we discuss general structure of relativistic dissipative hydrodynamics
and derive relativistic Navier-Stokes theory, which turns out to be acausal. We
then proceed to derive causal Israel-Stewart theory by using the second law of
thermodynamics. In section 3 we go through method to derive relativistic dissipative
hydrodynamics directly from the kinetic theory. The modeling of the heavy ion
collisions using hydrodynamics is then discussed in section 4. In section 5 we then
introduce numerical methods used in the simulations and discuss a general structure
of the numerical code. The results and final conclusions of this thesis are presented
in sections 6 and 7 respectively.



11

2 Relativistic hydrodynamics

The relativistic hydrodynamics is an effective theory which describes macroscopic
evolution of a relativistic fluid. In general describing behavior of fluid in microscopic
scales is extremely complicated due to the fact that the fluid consists of many
particles which interact with each other. This means that the system of interest has
many degrees of freedom. Fortunately when studying the macroscopic behavior of
the fluid most of the microscopic degrees of freedom are irrelevant and only overall
effect of these complicated particle interactions are of interest. For example there
is no need for information about velocity or position of every single particle in the
fluid when considering macroscopic scales. Instead, the average quantities, like the
velocity of the fluid, are much more prominent.

When applying hydrodynamics, there are some important assumptions that have
to be made. First of all fluid has to considered continuous system where in close
proximity of each point we have infinitesimal volume element where all properties of
fluid remain constant. This means that this kind of fluid element has to be a very
small compared to any macroscopic scales. Another assumption is that every fluid
element is reasonably close to the thermodynamic equilibrium. This thermodynamic
equilibrium is assured if fluid element is large enough relative to microscopic scales
so that microscopic fluctuations can be ignored.

Both of these conditions are met if the difference between microscopic and
macroscopic scales is large enough. All every day liquids and gasses fulfill this
condition and that’s why hydrodynamics is used to model their behavior in many
applications. When studying QGP formed in heavy ion collisions this kind of
separation is not trivial at all, because typical macroscopic distance scales in this
kind of systems are∼ 1 fm. It has been pretty well established that the hydrodynamics
are applicable when two heavy ions (e.g. Pb) collide, but the minimum size of a
QGP droplet that can be formed is still under heavy debate [15]–[17].

In this section we go through formalism of relativistic hydrodynamics by first
starting from ideal hydrodynamics and then proceeding to dissipative hydrodynamics.
Most of this section, especially section 2.2, follows structure similar to one in Ref.[18]
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2.1 Relativistic ideal hydrodynamics

The simplest case of the relativistic hydrodynamics is ideal hydrodynamics. In
ideal hydrodynamics it is assumed that fluid element is exactly in thermodynamic
equilibrium. In the most literature this kind of thermodynamic equilibrium is called
the local thermal equilibrium. The local thermal equilibrium assures that in each
space-time point xµ there is well-defined temperature T (xµ), chemical potential µ(xµ)
and fluid velocity field ~u(xµ).

In hydrodynamics evolution of the fluid is controlled by different conservation
laws: conservation of energy, momentum and particle number. For each of these
conservation laws, there must be associated some conserved current. In case of
relativistic hydrodynamics conserved currents connected to energy and momentum
conservation are written in terms of one tensor T µν called energy-momentum tensor,
which components are defined as [19]:

• T 00 is the energy density,

• T j0 is the density of the j:th component of momentum (j=1,2,3),

• T 0i is the flux of energy along i-axis (i=1,2,3),

• T ij is the flux of j:th momentum component along i-axis .

The momentum flux can also be thought as force per area so that components of T ij

are really the components of kinetic pressure. Conserved current used for particle
number conservation is called particle 4-current Nµ, in which N0 component is
particle density and N j components describe particle flux along i-axis. In addition, it
is useful to define entropy 4 -current Sµ similar way than particle 4-current so that S0

component is entropy density and Sj components describe entropy flux along i-axis.
We also note that we use convention where metric tensor gµν = Diag(−1,1,1,1).

When studying fluid in its rest frame, where fluid 4-velocity uµ = (1,0,0,0),
assumption of exact local thermal equilibrium demands that system is isotropic
[19]. This isotropy implies that kinetic pressure components cannot be off diagonal
and all diagonal components must equal to thermodynamic pressure meaning that
T ijRF = δijp, where RF denotes rest frame. In rest frame there is also no flow of
energy, entropy or particles and momentum density vanishes. Because of this energy-
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momentum tensor in rest frame can be written as

T µνRF = Diag(ε, p, p, p). (2.1)

Similarly entropy and particle 4-currents take forms

Nµ
RF = (n, 0, 0, 0), (2.2)

SµRF = (s, 0, 0, 0), (2.3)

where n is particle density and s is entropy density. Basically these equations tell
that ideal fluid rest frame is frame where there is no energy or particle flow. More
general form of these tensors in any boosted frame can now be obtained by doing
general Lorenz -transformation to the rest frame tensors. General form of Lorenz
transformation to a frame which moves with velocity ~u in respect of original frame is
form of

Λµν =


γ −ux −uy −uz

−ux 1 + (1 + γ)−1uxux (1 + γ)−1uxuy (1 + γ)−1uxuz

−uy (1 + γ)−1uxuy 1 + (1 + γ)−1uyuy (1 + γ)−1uxyz

−uz (1 + γ)−1uxuz (1 + γ)−1uyuz 1 + (1 + γ)−1uzuz

 . (2.4)

Now for the ideal fluid in boosted frame it is possible to write

T µν(0) = Λµ
µ′Λν

ν′T
µ′ν′

RF = εuµuν −∆µνp, (2.5)

Nµ
(0) = Λµ

µ′N
µ′

RF = nuµ, (2.6)

Sµ(0) = Λµ
µ′S

µ′

RF = suµ, (2.7)

where lower index 0 denotes that we are talking about ideal fluid. In addition we
introduced projection operator

∆µν = gµν − uµuν . (2.8)
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This kind of projection operator projectiles tensors into 3 dimensional space orthogo-
nal to 4-velocity uµ and it has following properties

uµ∆µν = uν∆µν = 0

∆µα∆ν
α = ∆µν

∆µ
µ = gµµ − uµuµ = 3.

(2.9)

As mentioned each conserved current is associated with some conservation law.
These conservation laws cover conservation of energy, momentum and particle
number. Using definitions of energy-momentum tensor and particle four current
these conservation laws can be written as

∂µT
µν
(0) = 0, (2.10)

∂µN
µ
(0) = 0. (2.11)

Conservation of energy-momentum tensor contains in total four equations. It is
customary to divide these equation in to two parts, one which is parallel to 4-velocity
and another which is orthogonal to 4-velocity. Parallel part reads

uν∂µT
µν
(0) = uν(uµuν∂µε+ ε∂µ(uµuν) + p∂µ(uµuν)−∆µν∂µp)

= uµ∂µε+ (ε+ p)∇µu
µ = dε

dτ
+ (ε+ p)θ = 0,

(2.12)

where d/dτ = uµ∂µ is the comoving derivative, ∇µ = ∆ν
µ∂ν is the space-time like

derivative and θ = ∇µu
µ is the expansion rate. It is also convenient to notice useful

relation between different kind of derivatives

∂µ = ∇µ + uµ
d

dτ
. (2.13)

Similarly we obtain energy-momentum conservation equations orthogonal to uµ

∆µ
α∂βT

αβ
(0) = (ε+ p)du

µ

dτ
−∇µp = 0 (2.14)

and particle number conservation equation

∂µN
µ
(0) = ∂µ(nuµ) = dn

dτ
+ nθ = 0. (2.15)
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Equations (2.12), (2.14) and (2.15) together form the equations of motion for the
ideal relativistic hydrodynamics and they read

dε

dτ
+ (ε+ p)θ = 0,

(ε+ p)du
µ

dτ
−∇µp = 0,

dn

dτ
+ nθ = 0.

(2.16)

Because these equations contain 6 independent variables, ε, p and four components of
uµ, and there is only have 5 equations of motion, we need some additional constraint
to solve this set of equations. This additional constrain is called equation of state
which connects the pressure to energy and particle densities and it is discussed in
more detail in section 2.

2.2 Covariant thermodynamics

Covariant thermodynamics is useful way to express usual thermodynamic relations
in terms of covariant quantities, like entropy 4-current Sµ. In order to understand
foundation of covariant thermodynamics better lets first take a quick look at the
standard presentation of the thermodynamics.

Thermodynamics is theory which deals with the transfer of energy from one
form to another. Its idea is to describe complicated microscopic processes in terms
of macroscopic quantities like energy E, entropy S and particle number N . In
this sense thermodynamics resembles a lot of hydrodynamics. This is not too
surprising since hydrodynamics is based mostly on the thermodynamics. All of
the thermodynamics can be derived from the four laws of thermodynamics. When
considering hydrodynamics two of these four law are in particular interest: first and
second laws of thermodynamics. The second law of thermodynamics turns out to
be very useful, when considering dissipative fluid dynamics. It states that in an
isolated system entropy can only increase or stay constant. First law on the other
hand states that change of energy in system is caused by heat, mechanical work or
change of particles. This law gives us basic thermodynamic relation and is extremely
useful. The first law of thermodynamics can be written mathematically in terms of
differentials [20]

dE = dQ− pdV + µdN, (2.17)
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where dQ is a transferred heat, V is a volume of the system, p is a pressure and µ is a
chemical potential. When considering reversible processes heat can be written in terms
of temperature and entropy, dQ = TdS. In this case first law of thermodynamics is

dE = TdS − pdV + µdN. (2.18)

From this relation it is then easy to obtain other thermodynamic quantities

T =
(
∂E

∂S

)
N,V

p = −
(
∂E

∂V

)
N,S

µ =
(
∂E

∂N

)
S,V

= 0.

(2.19)

Thermodynamic quantities are usually divided into intensive and extensive quan-
tities. Intensive quantity doesn’t depend on size of the system. Extensive quantity on
the other hand depends linearly on the size of the system. In thermodynamics T, p, µ
are intensive quantities and E, S, V,N are extensive ones. Because all E,S,V,N are
extensive quantities it is possible to write

λE = E(λS, λV, λN), (2.20)

where λ is some arbitrary constant. Now taking derivative from Eq.(2.20) with
respect of λ and setting λ = 1, one obtains

E =
(
∂E

∂S

)
N,V

S +
(
∂E

∂V

)
N,V

V +
(
∂E

∂N

)
N,V

N. (2.21)

When using definitions of thermodynamic quantities from Eq.(2.19) we get Euler’s
relation

E = TS − pV + µN. (2.22)

Expressing this relation in terms of differentials and using Eq.(2.18), we find the
Gibbs-Duhem equation

V dp = SdT +Ndµ. (2.23)

In hydrodynamics we usually deal with densities so it is useful to divide Eqs. (2.18),
(2.22) and (2.23) with volume V . This leads to

ε+ p = Ts+ µn,

dp = sdT + ndµ,

ds = βdε+ αdn,

(2.24)
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where β = 1/T and α = µ/T . These are the equations for which we would like to
find covariant forms. In order to do so let’s first define

βµ = uµβ. (2.25)

Idea to convert Eqs.(2.24) into covariant form is to use normalization condition of 4
-velocity uµuµ = 1 and following relations for energy and particle densities

ε = uµuνT
µν
(0) ,

n = uµN
µ
(0).

(2.26)

Let’s first take a look at Euler’s relation, which can be written in form

εβ + pβ − s+ αn = uµ(uνβT µν(0) + puµβ − suµ + αnuµ)

= uµ(βνT µν(0) + pβµ − Sµ(0) + αNµ
(0)) = 0.

(2.27)

Similarly for Gibbs-Duhem equation

βdp− βsdT + ndµ = βdp+ (ε+ p− µn)dβ − βndµ = d(βp)− ndα + εdβ

= uµ(d(βµp)−Nµ
(0)dα + dβνT

µν
(0)) = 0

(2.28)

and for first law of thermodynamics

ds− βdε+ αdn = uµ(dSµ(0) − βνdT
µν
(0) + αdNµ

(0)) = 0. (2.29)

It would now seem to reasonable to suggest that covariant thermodynamics are
described by equations

dSµ(0) − βνdT
µν
(0) + αdNµ

(0) = 0,

d(βµp)−Nµ
(0)dα + dβνT

µν
(0) = 0,

βνT
µν
(0) + pβµ − Sµ(0) + αNµ

(0) = 0,

(2.30)

but one needs to be careful that these equations don’t contain more information than
original equations. Fortunately, taking projection orthogonal to uµ from Eqs. (2.30)
leads to trivial 0 = 0 equations so that all information is covered in equations parallel
to uµ which are in fact just Eqs. (2.27-2.29). That is why we can use covariant
equations (2.30) instead of Eqs. (2.24). Now taking differential ∂µ from first law of
thermodynamics in Eq. (2.30) we obtain

∂µS
µ
(0) = βν∂µT

µν
(0) − α∂µN

µ
(0). (2.31)



18

When considering the ideal fluid, conservation of energy-momentum tensor and
particle 4-current just states that right hand side of Eq.(2.31) vanishes and we are
left with

∂µS
µ
(0) = ds

dτ
+ sθ = 0. (2.32)

This equation tells that the entropy is conserved for the ideal fluids.

2.3 Relativistic dissipative hydrodynamics

Even though ideal hydrodynamics is a reasonable approximation in some cases, it
relies purely on assumption about exact local thermal equilibrium. However, there
is always some dissipative effects that has to be taken account. These dissipative
effects are caused by irreversible thermodynamic processes, like friction or heat
exchange between fluid elements. Because of these dissipative effects, our system is
no longer isotropic and it is no longer possible to write energy-momentum tensor
or particle 4-current in rest frame in such a convenient form. Instead, we assume
that we are still close to thermal equilibrium and add some dissipative terms to ideal
energy-momentum tensor and particle 4-current

T µν = T µν(0) + δT µν = εuµuν −∆µνp+ δT µν , (2.33)

Nµ = Nµ
(0) + δNµ = nuµ + δNµ. (2.34)

Even though the system is not anymore in equilibrium, angular momentum is still
conserved and dissipative energy momentum must be symmetric. As seen before,
the ideal part is a symmetric, so also dissipative part must be symmetric in order to
keep a sum of ideal and dissipative parts symmetric.

2.3.1 Decomposition of dissipative parts

Equations (2.33) and (2.34) are still not in a very useful form because dissipative
parts contain parts that are parallel to 4-velocity and parts that are orthogonal
to 4-velocity. That is why it is very useful to decompose dissipative parts to their
irreducible components. For the particle 4-current this is pretty straightforward:

δNµ = δnuµ + nµ, (2.35)
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where δn is the off-equilibrium contribution to the particle density which is parallel to
the 4-velocity. nµ is usually called the particle diffusion 4-current and it is orthogonal
to the 4-velocity,

uµn
µ = 0. (2.36)

Taking contractions from the particle 4-current Nµ, it is also easy to see that

n+ δn = uµN
µ, (2.37)

nµ = ∆µ
νN

ν . (2.38)

In case of energy-momentum tensor situation is a little bit more complicated.
Now there is two different scalar parts, vector part and tensor part:

δT µν = δεuµuν − δp∆µν + 2h(µuν) + πµν , (2.39)

where the symmetrization notation A(µν) = (Aµν + Aνµ)/2 for the parentheses is
used. The two scalars δε and δp are just off-equilibrium contributions to energy
density and pressure. The vector term, hµ, is the energy diffusion 4-current, which
is orthogonal to the 4-velocity and the tensor πµν is shear stress tensor, which is
symmetric and traceless part that is orthogonal to the 4-velocity. The properties of
hµ and πµν state that

uµh
µ = 0, (2.40)

uµπ
µν = uνπ

µν = πµµ = 0. (2.41)

Using these properties we can write dissipative quantities in terms of energy-
momentum tensor and equilibrium quantities

ε+ δε = uµuνT
µν ,

p+ δp = 1
3∆µνT

µν ,

hµ = ∆µ
νT

ναuα.

(2.42)

Writing shear stress tensor πµν in terms of energy-momentum tensor is a little
bit harder. For that purpose we define the double symmetric, traceless projection
operator orthogonal to 4-velocity

∆µναβ = 1
2

(
∆µα∆νβ + ∆µβ∆να

)
− 1

3∆µν∆αβ. (2.43)
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This kind of projection operator satisfies following properties, which can be derived
easily using properties of projection operator ∆µν

∆µναβ = ∆αβµν = ∆βαµν ,

∆µν
λσ∆λσ

αβ = ∆µν
αβ,

uµ∆µναβ = gµν∆µναβ = ∆µν = 0,

∆µν
µν = 5.

(2.44)

Contracting energy-momentum tensor with projection operator ∆µν
αβ we obtain

∆µν
αβT

αβ = −(p+ δp)∆µν + 1
3(p+ δp)∆µν∆α

α + ∆µ
α∆ν

βπ
αβ − 1

3∆µν∆αβπ
αβ

= πµν .
(2.45)

2.3.2 Landau matching conditions

At this point the particle 4-current and energy-momentum tensor are in form of

Nµ = (n+ δn)uµ + nµ,

T µν = (ε+ δε)uµuν − (p+ δp)∆µν + 2h(µuν) + πµν .
(2.46)

Left hand side of Eqs.(2.46) contain in total six scalars (n,δn,ε,δε, p, δp), three vectors
(uµ, nµ, hµ) and one second rank tensor. All vectors contain only three independent
components, because of their orthogonality. In addition, shear stress tensor is
symmetric and traceless second rank tensor which is orthogonal to 4-velocity, so
it contains five independent components. Adding all components together we end
up with total 20 independent components. On the other hand energy-momentum
tensor is symmetric so therefore Nµ and T µν together only have 14 independent
components.

This problem is partially due to fact that in dissipative hydrodynamics the system
cannot be considered to be in a local thermal equilibrium. This is why we have to
construct artificial equilibrium state that is defined by thermodynamic variables
n0, ε0, p0, s0,β0 and α0, where subscript 0 denotes that we are talking about artificial
equilibrium state. This artificial equilibrium state has to be constructed so that the
usual equilibrium relations for the thermodynamic quantities are valid. Because all
the other thermodynamic quantities can be derived from energy and particle densities
using equation of state or other thermodynamic relations, we can arbitrary choose
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energy and particle densities for this artificial equilibrium state. This is usually done
by so-called Landau matching conditions:

ε0 = ε = uµuνT
µν , (2.47)

n0 = n = uµN
µ. (2.48)

Using definitions of energy-momentum tensor and particle 4-current from Eqs.(2.46)
we immediately obtain that

δε = δn = 0. (2.49)

Now the entropy density can be obtained using equation of state s0 = s0(ε,n). All
other thermodynamic variables are now defined from thermodynamic relations in
Eqs.(2.24):

α0 =
(
∂s0

∂n

)
ε
,

β0 =
(
∂s0

∂ε

)
n
,

p0 = T0s0 + µ0n− ε.

(2.50)

Alternatively p0 can be obtained directly from equation of state p0 = p0(ε,n). On
the other hand pressure p in Eq.(2.46) is quantity, which is similarly obtained from ε

and n using equation of state. This means that we can replace p in Eq.(2.46) with
p0. Unlike for particle and energy densities off-equilibrium contribution for pressure
δp is not zero. Instead, it can be thought as correction to the isotropic equilibrium
pressure p0. Usually δp is called bulk viscous pressure and it is denoted by Π. Using
this notation Eqs.(2.46) can be written as

Nµ = nuµ + nµ,

T µν = εuµuν − (p0(ε,n) + Π)∆µν + 2h(µuν) + πµν ,
(2.51)

where p0(ε,n) is from now on denoted as p0. Right hand side of Eqs.(2.51) still
contains 17 independent components, which is still three more than in the left hand
side. This is because 4-velocity in a dissipative hydrodynamics is not uniquely
defined.
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2.3.3 Fluid rest frame and equations of motion

In ideal hydrodynamics fluids rest frame was defined as a frame where there was no
particle or energy flow. This kind of definition is no longer possible in dissipative
hydrodynamics due to dissipative currents. This means that definition of velocity
would be arbitrary. However, there are two particular definitions for 4-velocity that
have clear physical meaning. First of all, there is the Eckart picture where 4-velocity
is defined such a way that it is parallel with particle 4-current

uµ = Nµ

√
NαNα

. (2.52)

From this definition it directly follows that dissipative particle current nµ vanishes

nµ = ∆µ
νN

µ = ∆µ
νu

ν
√
NαNα = 0. (2.53)

When dealing with the Eckart picture and there is multiple particle types, the
4-velocity must be defined by choosing only one particle type. Another way to define
4-velocity is so-called Landau picture. In Landau picture 4-velocity is defined such a
way that it follows energy current

uµ = T µνuν√
uλTλαTαβuβ

. (2.54)

When defining 4-velocity this way energy diffusion current hµ vanishes:

hµ = ∆µ
νT

νσuσ = ∆µ
νu

ν
√
uλTλαTαβuβ = 0. (2.55)

Now we see that defining 4-velocity using either Eckart or Landau definition causes
one of the dissipative currents to vanish, which means that we got rid of 3 extra
components in Eq.(2.51). Both of these definitions for 4-velocity are usable, but
from now on we only use Landau’s picture. In Landau picture Eqs.(2.51) take more
simplified form

Nµ = nuµ + nµ,

T µν = εuµuν − (p0 + Π)∆µν + πµν .
(2.56)

Lets now write equations of motion for dissipative hydrodynamics to similar form
than for ideal fluid in section 2.1. Ideal parts of these equations are identical to
Eqs.(2.16) and only dissipative parts have to be calculated:

uν∂µ(−∆µνΠ + πµν) = uνΠ∂µ(uµuν) + ∂µ(uνπµν)− πµν∂µuµ
= Πθ − παβ∆µν

αβ∂µuµ = Πθ − πµνσµν ,
(2.57)
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where we introduced shear tensor σµν

σµν = ∆µν
αβ∂

αuβ = 1
2(∇µuν +∇νuµ)− 1

3∆µνθ. (2.58)

In addition

∆µ
α∂β(−∆αβΠ + παβ) = Πdu

µ

dτ
−∇µΠ + ∆µ

α∂βπ
αβ. (2.59)

Now using Eqs.(2.16),(2.57) and (2.59) we can write the equations of motion for
dissipative hydrodynamics:

uν∂µT
µν = dε

dτ
+ (ε+ p+ Π)θ − πµνσµν = 0,

∆µ
α∂βT

αβ = (ε+ p+ Π)du
µ

dτ
−∇µ(p+ Π) + ∆µ

α∂βπ
αβ = 0,

∂νN
µ = dn

dτ
+ nθ + ∂µn

µ = 0.

(2.60)

In ideal fluid case these equations of motion were enough to solve evolution of the
fluid, because there were only 5 independent variables. However, in dissipative hydro-
dynamics there is in total 14 independent variables, so we need 9 more constraints
in order to get complete equations of dissipative hydrodynamics. Turns out that
these missing constraints are ones which define dissipative quantities Π, nµ and πµν

in terms of equilibrium quantities.

2.3.4 Navier-Stokes equations

One way to get relations for the dissipative quantities Π, nµ and πµν is to make use
of a second law of thermodynamics. In ideal case entropy was conserved. This is
generally no longer true when there are dissipative currents. Entropy conservation
law for ideal hydrodynamics was derived from Eq.(2.31)

∂µS
µ
(0) = β0uν∂µT

µν
(0) − α0∂µN

µ
(0). (2.61)

Difference compared to ideal fluid case is that now there are no conservation laws
for equilibrium parts of energy-momentum tensor and particle 4-current. Instead,
only total energy-momentum and particle number are conserved so,

∂µN
µ = ∂µN

µ
(0) + ∂µn

µ = 0,

∂µT
µν = ∂µT

µν
(0) + ∂µ(πµν −∆µνΠ) = 0.

(2.62)
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Using these equations together with Eq.(2.57) it is possible to write Eq.(2.61) in
form

∂µS
µ
(0) = β0uν∂µ(∆µνΠ− πµν) + α0∂µn

µ

= β0(πµνσµν − Πθ) + α0∂µn
µ.

(2.63)

It is convenient to write Eq.(2.63) in a such a form that it doesn’t contain any
derivatives of dissipative quantities on the right hand side. This is done by writing

α0∂µn
µ = ∂µ(α0n

µ)− nµ∇µα0

and rearranging terms in Eq.(2.63) to obtain

∂µ(Sµ(0) − α0n
µ) = β0π

µνσµν − β0Πθ − nµ∇µα0. (2.64)

The left hand side of this equation now contains divergences of the ideal entropy
4-current and some dissipative current, where the right hand side only contains terms
with dissipative currents. This would suggest that the left hand side of Eq.(2.64) is
the divergence of the total entropy 4-current Sµ, i.e.

Sµ = Sµ(0) − α0n
µ, (2.65)

and the right hand side could be identified as a source of entropy production. This
kind of choice of entropy 4-current is not necessarily the correct one, but it is one
which leads to the relativistic Navier-Stokes equations. Now that the entropy 4-
current Sµ is known we can make use of the second law of thermodynamics which
requires that entropy production is always positive. Applying this to Eq.(2.65) leads
to

∂µS
µ = β0π

µνσµν − β0Πθ − nµ∇µα0 ≥ 0. (2.66)

In order to satisfy this condition for all different configurations it is necessary to
require that each individual term must be positive, which is achieved by setting a
linear relation between dissipative currents and quantities σµν , θ and ∇µα0:

Π = −ζθ, (2.67)

nµ = κ∇µα0, (2.68)

πµν = 2ησµν . (2.69)
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Here proportionally coefficients ζ, η and κ are called bulk viscosity, shear viscosity
and heat conductivity, respectively. It is important to notice that nµnµ is negative.
This can be shown by going to fluids rest frame where uµ = (1,0,0,0) so that

uµn
µ = n0 = 0, (2.70)

nµnµ = (n0)2 −
3∑
i=1

(ni)2 = −
3∑
i=1

(ni)2 ≤ 0. (2.71)

Because scalar quantities are Lorentz invariant nµnµ is also negative in general frame.
In addition πµνπµν is positive, which can be shown by going to frame where πµν is
diagonal. This kind of frame must exist, because πµν is symmetric. In this kind of
frame

πµνπµν = gαµgβνπ
µνπαβ =

4∑
µ=0

(πµµ)2 ≥ 0. (2.72)

Again this must also hold in general frame so πµνπµν is allways positive. Now we
can see that entropy production can be written in terms of dissipative quantities as

∂µS
µ = β0

ζ
Π2 − 1

κ
nµnµ + β0

2ηπ
µνπµν , (2.73)

which is indeed positive when the proportionally coefficients ζ,κ and η are all positive.
From Eqs.(2.67)-(2.69), one can also deduce physical effects of each dissipative

quantity. The bulk viscous pressure was correction to the equilibrium pressure
and it is proportional for expansion rate θ. This would indicate that the bulk
viscosity reduces pressure and slows down expansion. The particle diffusion current
is proportional to the temperature gradients so it would seem reasonable to assume
that it would act as a particle diffusion. The shear stress tensor is proportional to
shear tensor σµν which indicates that the shear viscosity drives system towards more
isotropic state.

The relativistic Navier-Stokes equations are now recovered by substituting
Eqs.(2.67),(2.68),(2.69) into the equations of motion (2.60):

dε

dτ
+ (ε+ p− ζθ)θ − 2ησµνσµν = 0,

(ε+ p− ζθ)du
µ

dτ
−∇µ(p− ζθ) + 2∆µ

α∂β(ησαβ) = 0,
dn

dτ
+ nθ + ∂µ(κ∇µα0) = 0.

(2.74)
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These equations were first derived by Landau and Lifshitz in 1959, and they were
one of the first proposals for the relativistic dissipative fluid dynamics [21]. However,
these equations have a major problem. The relativistic Navier-Stokes theory is
unstable, which means that even small perturbations in hydrostatic equilibrium grow
exponentially [22]–[24]. Reason why this kind of instability exist is that relativistic
Navier-Stokes equations are parabolic. Because of this, changes in fluid properties will
immediately effect on dissipative currents. This kind of infinite signal propagation
speed is forbidden in relativistic case where the information cannot travel faster than
the speed of light.

2.3.5 Second-order hydrodynamics

Because relativistic Navier-Stokes theory ended up being acausal it seems reasonable
to assume that definition for Sµ in Eq.(2.65) is not correct. Instead, we need more
general expression for the entropy 4-current. In this thesis we follow Israel and
Stewart approach and expand entropy 4-current in terms of powers of the dissipative
currents all the way up to second order [25],

Sµ = Sµ(0) − α0n
µ − 1

2u
µ(δ0Π2 − δ1n

αnα + δ2π
αβπαβ)− γ0Πnµ − γ1π

µ
νn

ν

= Sµ(0) − α0n
µ +Qµ,

(2.75)

where we introduced expansion coefficients δ0, δ1, δ2, γ0 and γ1 and defined

Qµ = −1
2u

µ(δ0Π2 − δ1n
αnα + δ2π

αβπαβ)− γ0Πnµ − γ1π
µ
νn

ν . (2.76)

The expansion coefficients cannot be directly calculated using thermodynamics.
Instead, they must be calculated from microscopic principles which are described
by kinetic theory. How this is practically done is discussed in more detail in section
x. From Eq.(2.75) we can see that the relativistic Navier-Stokes theory is obtained
by setting Qµ = 0. It is also interesting to notice that entropy density in fluids rest
frame s is no longer equivalent to artificial equilibrium entropy density s0(n,ε), i.e.

s = uµS
µ = uµS

µ
0 + uµQ

µ = s0 + uµQ
µ 6= s0. (2.77)

Now like in case of the relativistic Navier-Stokes equation we calculate divergence of
entropy 4-current which is obtained by adding ∂µQµ to the both sides of Eq.(2.64),

∂µS
µ = β0π

µνσµν − β0Πθ − nµ∇µα0 + ∂µQ
µ. (2.78)
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Straight forward calculation shows that ∂µQµ can be written in a form

∂µQ
µ =

(
uµ

d

dτ
+∇µ

)(
− 1

2u
µ(δ0Π2 − δ1n

αnα + δ2π
αβπαβ)− γ0Πnµ − γ1π

µ
νn

ν
)

= −1
2
(
δ̇0Π2 + 2δ0ΠΠ̇− δ̇1n

αnα − 2δ1nαṅ
α + δ̇2π

αβπαβ + 2δ2πµν π̇
µν
)

− 1
2
(
δ0Π2 − δ1n

αnα + δ2π
αβπαβ

)
θ − (Π∇µγ0 + γ0∇µΠ)nµ − γ0Π∇µn

µ

− nνπµν∇µγ1 − γ1πµν∇µnν − γ1n
ν∇µπµν .

(2.79)

Now substituting Eq.(2.79) back to Eq.(2.64) we obtain

∂µS
µ = β0Π

(
− θ − 1

2β0
δ̇0Π− δ0

β
Π̇− δ0

2β0
Πθ − γ0

2β0
nµ∇µΠ− γ0

β0
∇µnµ

)
+ nµ

(
−∇µα + nµ

2 δ̇1 + δ1ṅ
µ + δ1

2 n
µθ − Π

2∇
µγ0 − γ0∇µΠ− πµν

2 ∇νγ1 − γ1∇νπ
µν
)

+ β0πµν

(
σµν − πµν

2β0
δ̇2 −

δ2

β0
π̇µν − δ2

2β0
πµνθ − nν

2β0
∇µγ1 − γ1π∇µnν

)
.

(2.80)

As in the case of relativistic Navier-Stokes theory, the second law of thermodynamics
requires that entropy production must be positive which is generally satisfied only if
it can be written in a form

∂µS
µ = β0$ΠΠ2 −$nn

µnµ + β0$ππ
µνπµν , (2.81)

where $Π, $n and $π are positive constants. This constraint together with Eq.(2.80)
leads to following dynamical equations for dissipative currents

δ0

β0
Π̇ +$ΠΠ = −θ − δ0

2β0
Πθ − γ0

2β0
nµ∇µΠ− γ0

β0
∇µnµ, (2.82)

δ1ṅ
µ +$nn

µ = ∇µα− δ1

2 n
µθ + Π

2∇
µγ0 + γ0∇µΠ + πµν

2 ∇νγ1 + γ1∇νπ
µν , (2.83)

δ2

β0
π̇µν +$ππ

µν = σµν − δ2

2β0
πµνθ − nν

2β0
∇µγ1 − γ1π∇µnν , (2.84)

where we have neglected couple of higher order terms. These equations are relaxation-
type equations and they are usually called Israel-Stewart equations. In general
relaxation equations for quantity A are form of

τAȦ+ A = f, (2.85)
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where τA is relaxation time and f contains all source terms. In absence of the source
terms solution for Eq.(2.85) vanishes exponentially i.e.

A = A0e
−t/τA , (2.86)

where A0 is initial value of A. In case of dissipative currents all source terms include
some gradients. Now, unlike in relativistic Navier-Stokes theory, dissipative currents
don’t immediately react to the gradients. In fact dissipative currents relax to the
value of corresponding source terms on relaxation time timescales. This is why
relaxation type equations have finite signal propagation speed and Eqs.(2.82),(2.83)
and (2.84) are causal and stable equations for relativistic dissipative hydrodynamics.
Writing Eqs.(2.82),(2.83) and (2.84) to the relaxation equation form and comparing
coefficient of terms to Eqs.(2.67),(2.68), (2.69) and (2.85) we can identify viscosity,
diffusion and relaxation time coefficients

ζ = 2β0

2β0$Π
, (2.87)

κ = 2
2$n

, (2.88)

η = β0

2β0$π

, (2.89)

τΠ = δ0

β0
ζ, (2.90)

τn = δ1κ, (2.91)

τπ = 2δ2

β0
η. (2.92)

It is still important to remember that all these constant are complicated functions of
thermodynamic quantities and we still haven’t derived exact form of these coefficients,
but they must be derived from kinetic theory. In addition, when deriving equation
for dissipative currents from kinetic theory there will be some additional second
order terms added to the right hand side of Eqs.(2.82), (2.83) and (2.84).
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2.4 Applicability of hydrodynamics

Validity of hydrodynamics is important question that has to be addressed, because
it is not always so clear if conditions for local thermal equilibrium and infinitesi-
mal size of the fluid element are satisfied. Most direct way to find out how well
theory of relativistic fluids works is to compare its solutions to the solutions of
relativistic Boltzmann equation which describes evolution of particle distribution
functions. However, this kind of method is often very tedious. Instead, applicability
of hydrodynamics is often quantified by a couple of parameters:

• The Knudsen number Kn ≡ lmicr/Lmacr is the ratio between some microscopic
and macroscopic scales. Typically in relativistic case relaxation time is used as
a microscopic scale and inverse of expansion rate θ−1 as a macroscopic one.

• The inverse Reynolds number R−1 which describes ratio of dissipative quantity
compared to similar equilibrium quantity. In relativistic case we had three
different dissipative quantities so it is possible to define three different Reynolds
numbers:

R−1
Π ≡

|Π|
p0
, R−1

n ≡

√
|nµnµ|
n0

, R−1
π ≡

√
|πµνπµν |
p0

.

As discussed earlier in this section applicability of hydrodynamics requires that
difference between microscopic and macroscopic scales is large enough. This condition
immediately tells that we should have Kn � 1. In addition, when we expanded
entropy 4-current in terms of dissipative current in section 2.3.5 we assumed that
dissipative currents are small enough that we don’t have to take account terms higher
than first order in dissipative currents. This condition corresponds to requirement
that R−1 � 1.

In relativistic heavy-ion collisions using hydrodynamics is produced some excellent
results. Nevertheless, when looking at the Knudsen and Reynolds numbers applica-
bility of hydrodynamics seems to strongly depend on viscosity parameterization and
size of the collision system [26], [27].
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3 Relativistic kinetic theory

When considering fluid or any many particle system there are usually two different
way to approach the subject. It is possible to consider the overall macroscopic
phenomena, which was done is section 2. Another way to tackle this kind of problems
is to consider the microscopic phenomena, where properties of single particle are of
interest. Kinetic theory takes a look at the microscopic world and in a way allows
to connect these microscopic and macroscopic worlds. Instead of trying to describe
behavior of every single particle in the system, kinetic theory relies on statistics
of the system. Statistical tool used to describe whole system is the single particle
phase-space distribution function fk, which describes how particles are distributed
in position and momentum spaces.

3.1 Macroscopic variables in relativistic kinetic theory

Lets start with considering system of particles with each having rest mass m and
4-momentum kµ = (k0,~k), where ~k is the momentum vector and k0 =

√
p2 +m2

is the relativistic energy of the particle. Single particle phase-space distribution
function fk is defined such a way that the total number of particles in the system is
given by

N ≡
∫ d3x d3k

(2π)3 gfk(k,x), (3.1)

where g is number of internal degrees of freedom. From this equation it is obvious
that particle density is defined as

n(x) = dN

d3x
=
∫ d3k

(2π)3 gfk(k,x). (3.2)

and the particle flux along i-axis as

N i =
∫ d3k

(2π)3 gv
i fk(k,x), (3.3)

where vi = ki/k0 is the particle velocity along i-axis. Now it is possible to use
Eqs.(3.2) and (3.3) in order to write particle 4-current Nµ in covariant form

Nµ =
∫
dK kµ fk(k,x), (3.4)
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where dK = gd3k/[(2π)3k0] is the Lorenz-invariant momentum-space volume. Simi-
larly, using the definitions of energy momentum tensors components introduced in
section 2.1 and the fact that k0 is energy of the single particle it is possible to write
energy-momentum tensor in terms of particle distribution function,

T µν =
∫
dK kµkν fk(k,x). (3.5)

To make notations look cleaner we introduce following notation for the averages:

〈· · ·〉 =
∫
dK · · · fk. (3.6)

Using this notation particle 4-current and energy-momentum tensor can be written
in simple looking form

Nµ = 〈kµ〉, T µν = 〈kµkν〉 (3.7)

It is also important to note that throughout this section we are working in Landau
picture, where 4-velocity, particle 4-current and energy-momentum tensor are defined
as in Eqs.(2.54) and (2.56). In order to write equilibrium and dissipative quantities
n,ε, p0,Π, nµ and πµν in terms of distribution function fk we first must divide 4-
momentum into parts parallel and orthogonal to uµ:

kµ = Eku
µ + k〈µ〉, (3.8)

where Ek = uµk
µ is the projection of 4-momentum along the 4-velocity. We also

used notation A〈µ〉 = ∆µ
νA

ν for the orthogonal part. Now with use of Eq.(3.8) we
can modify Eqs.(3.7) into form

Nµ = 〈Ek〉uµ + 〈k〈µ〉〉, (3.9)

T µν = 〈E2
k〉+ 2〈Ekk(〈µ〉〉uν) + 〈k〈µ〉k〈ν〉〉

= 〈E2
k〉+ 2〈Ekk(〈µ〉〉uν) + 〈k〈µkν〉〉+ 1

3∆µν〈∆αβk
αkβ〉,

(3.10)

where A〈µν〉 = ∆µν
αβA

αβ. We also used the fact that

k〈µkν〉 =
(1

2

(
∆µ
α∆ν

β + ∆µ
β∆ν

α

)
− 1

3∆µν∆αβ

)
kαkβ

= k〈µ〉k〈ν〉 − 1
3∆µν(∆αβk

αkβ).
(3.11)
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This relation will be used extensively throughout this section. Comparing Eqs.(3.9)
and (3.10) to definition of particle 4-current and energy-momentum tensor from
Eqs.(2.56) we can now identify macroscopic variables in kinetic theory:

n = 〈Ek〉, ε = 〈E2
k〉, p0 + Π = −1

3〈∆αβk
αkβ〉,

nµ = 〈k〈µ〉〉, πµν = 〈k〈µkν〉〉, hµ = 〈Ekk〈µ〉〉 = 0.
(3.12)

When the system is in a local thermal equilibrium, it can be shown from the statistical
physics that single-particle distribution function f0k gets form [20]

f0k =
(
eβ0Ek−α0 + a

)−1
, (3.13)

where a = 1 corresponds to a Fermi-Dirac statistics for fermions, a = −1 corresponds
to Bose-Einstein statistics for bosons and a = 0 corresponds to Maxwell-Boltzmann
statistics for a classical particles. Usually f0k is called local equilibrium distribution
function. From previous section we also remember that in local thermal equilibrium
all dissipative quantities vanish, and we are left with ideal fluid case. In addition when
system is out off equilibrium Landau matching conditions, which were introduced in
section 2.3.2, state that our artificial equilibrium state is defined by

n = n0 = 〈Ek〉0, ε = ε0 = 〈E2
k〉0 (3.14)

where we introduced notation

〈· · ·〉0 =
∫
dK · · · f0k. (3.15)

Now it is possible to distinguish the pressure p0 and bulk viscous pressure from each
other. This is done by dividing particle distribution function into its equilibrium and
off equilibrium parts as fk = f0k + δfk, so that

p0 = −1
3〈∆αβk

αkβ〉0, Π = −1
3〈∆αβk

αkβ〉δ, (3.16)

where
〈· · ·〉δ = 〈· · ·〉 − 〈· · ·〉0. (3.17)
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3.2 Expansion of the single-particle distribution function
and orthogonal momentum basis

In dissipative hydrodynamics usual assumption is that system is reasonably close to
thermal equilibrium. This is why it is convenient expand distribution function fk
around equilibrium distribution f0k:

fk = f0k + δfk, (3.18)

where δfk is correction to the equilibrium distribution, which is usually written as

fk = f0kf̃0kφk, (3.19)

where f̃0k = 1−af0k and φk contains information about the off-equilibrium correction
to the equilibrium distribution. Next we have to expand φk in terms of a complete
set tensors formed by kµ and Ek. Most natural choice would be to choose momentum
basis as:

1, kµ, kµkν ,kµkνkλ, ... (3.20)

This was in fact the basis which was used by Israel and Stewart when they derived
equations of motion for dissipative currents [28]. However, this basic is not orthogonal,
which means that the exact form of expansion coefficients cannot be obtained once
the expansion is truncated. In context this thesis this would not be a problem but it
is more illustrative to work on orthogonal momentum basis,

1, k〈µ〉, k〈µkν〉,k〈µkνkλ〉, ... (3.21)

which is used in Refs.[18], [29]. In sake of convenience we also introduced notation
for angled brackets

A〈µ1···µm〉 = ∆µ1···µm
ν1···νm A

ν1···νm , (3.22)

where ∆µ1···µm
ν1···νm are symmetric, traceless (for m > 1) projection operators orthogonal

to a 4-velocity. These projection operators are defined using projection ∆µν as [30]

∆µ1···µ`ν1···ν` =
[`/2]∑
k=0

C(`,k)Φµ1···µ`ν1···ν`
(`k) , (3.23)

where in the summation [`/2] denotes the largest integer smaller that `/2. In addition
coefficients C(`,k) and tensors Φµ1···µmν1···νm

(`k) are defined as

C(`,k) = (−1)k (`!)2

(2`)!
(2`− 2k)!

k!(`− k)!(`− 2k)! , (3.24)
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Φµ1···µ`ν1···ν`
(`k) = (`−2k)!

(2kk!
`!

)2 ∑
Pµ,Pν

∆µ1µ2···∆µ2k−1µ2k∆ν1ν2 ···∆ν2k−1ν2k∆µ2k+1ν2k+1···∆µ`ν` .

(3.25)
Summation in Eq.(3.25) runs over all permutations of indices µ and ν in such a way
that we don’t permute indices µ with ν. Construction of these projection operators
is done in a such a way that they satisfy following relations when m > 1

∆µ1···µ`
ν1···ν` = ∆(µ1···µ`)

(ν1···ν`) ,

∆µ1···µ`
ν1···ν` gµiµj = ∆µ1···µ`

ν1···ν` g
νiνj = 0

∆µ1···µ`
µ1···µ` = 2`+ 1.

(3.26)

As mentioned earlier, basis tensors (3.21) are orthogonal so they obey orthogonality
condition,∫

dKFkk
〈µ1 · · · kµm〉k〈ν1 · · · kνn〉 = m!δmn

(2m+ 1)!!∆
µ1···µm
ν1···νm

∫
dKFk(∆αβk

αkβ)m, (3.27)

where δmn is the Kronecker-delta and Fk is an arbitrary function of Ek. Proof of this
orthogonality condition is shown in Ref.[31]. Now φk can be expanded in orthogonal
momentum basis (3.21) as

φk =
∞∑
`=0

λ
〈µ1···µ`〉
k k〈µ1 · · · kµ`〉, (3.28)

where the expansion coefficients λ〈µ1···µ`〉
k are functions with Ek dependence. In

principle, we could expand coefficients λ〈µ1···µ`〉
k in terms of orthogonal polynomials

of Ek. However, this in not done in here, but we settle to expand λ〈µ1···µ`〉
k in the

powers of Ek:

λ
〈µ1···µ`〉
k =

N∑̀
n=0

c〈µ1···µ`〉
n En

k , (3.29)

where N` is truncation order of power series. In theory parameter N` should be
infinite, but in practice dealing with this kind of infinite series is not possible. Now
expansion coefficients can be calculated by matching dissipative currents Π,nµ,hµ

and πµν with their kinetic definitions in Eqs.(3.12) and (3.16). This is in fact done
in case of 14-moment approximation in section 3.4.
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3.3 Equations of motion for irreducible moments

In this section we derive equations of motion for the irreducible moments, which are
defined as

ρµ1···µ`
r ≡ 〈Er

kk
〈µ1 · · · kµ`〉〉δ. (3.30)

Special cases for these equations will also give us equation of motions for dissipative
currents as we can see in section 3.4. In relativistic kinetic theory evolution of
single-particle distribution function is determined by the relativistic Boltzmann
equation [30]

kµ∂µfk = C[f ], (3.31)

where C[f ] is the collision integral which describes interaction between particles. If
we only allow elastic two-to-two collisions with incoming particles having momenta
k and k′ and outgoing ones having momenta p and p′, collision term can be written
in form

C[f ] = 1
ν

∫
dK ′ dPdP ′Wkk′→pp′(fpfp′ f̃kf̃k′ − fkfk′ f̃pf̃p′), (3.32)

where ν is symmetry factor which is two if particles are identical and otherwise one.
In addition, we introduced Lorenz-invariant transition rate Wkk′→pp′ . Transition rate
describes probability of collision to happen and it depends on type of interaction
between particles. When deriving equations of motions for irreducible moments it
is useful to split distribution function to an equilibrium distribution and to some
correction, i.e. fk = f0k + δfk. In addition, when decomposing derivative ∂µ as
∂µ = uµd/dτ +∇µ it is possible to write relativistic Boltzmann equation (3.31) in
more convenient form,

δḟk = −ḟ0k − E−1
k kν∇ν(f0k + δfk) + E−1

k C[f ]. (3.33)

Now taking definition of the irreducible moments, Eq.(3.30), and by applying co-
moving derivative and projection operator to both sides of this equation we get

ρ̇〈µ1···µ`〉
r = ∆µ1···µ`

ν1···ν`
d

dτ

∫
dK Er

kk
〈µ1 · · · kµ`〉δfk. (3.34)

As we can see later in section 3.4, we only need these equations up to second rank
tensors in order to derive equations of motion for dissipative currents. Let’s start
with the equation for the scalar ρr, which reads

ρ̇r = d

dτ

∫
dK Er

kδfk =
∫
dK

d

dτ
(Er

k)δfk +
∫
dK Er

kδḟk. (3.35)
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First term in this equation can be calculated directly:

∫
dK

d

dτ
(Er

k)δfk = r
∫
dK Er−1

k Ėkδfk = ru̇µ

∫
dKEr−1

k kµδfk

= ru̇µ

∫
dKEr−1

k k〈µ〉δfk = ru̇µρ
µ
r−1,

(3.36)

where we used the fact that uµ is orthogonal to u̇µ so that u̇µkµ = u̇µk
〈µ〉. Second

term in Eq.(3.35) can be decomposed further by a use of Boltzmann Eq.(3.33),∫
dK Er

kδḟk =−
∫
dKEr

kḟ0k︸ ︷︷ ︸
A

−
∫
dKEr−1

k kνδ∇νf0k︸ ︷︷ ︸
B

−
∫
dKEr−1

k kνδ∇νδfk︸ ︷︷ ︸
D

+
∫
dKEr−1

k C[f ]︸ ︷︷ ︸
Cr−1

,
(3.37)

where we introduced A,B and D in order to make calculations to look more cleaner.
In addition we defined irreducible collision term, which in general can be defined as

C〈µ1···µ`〉
r =

∫
dKEr

kk
〈µ1 · · · kµ`〉C[f ]. (3.38)

All terms that are proportional to irreducible moments ρµ1···µ`
r in Eq.(3.37) arise from

term D, which can be written as

D = ∇ν

∫
dKEr−1

k kνδfk −
∫
dK∇ν(Er−1

k )kνδfk

= ∇ν

∫
dKEr−1

k (Ekuν + k〈ν〉)δfk − (r − 1)∇νuµ

∫
dKEr−2

k kµkνδfk

= ∇v[uνρr]︸ ︷︷ ︸
θρr

+∇νρ
ν
r−1 − (r − 1)∇νuµ

∫
dKEr−2

k k〈µ〉k〈ν〉δfk︸ ︷︷ ︸
D1

,

(3.39)

where in last step we have used the fact that uµ and uν are orthogonal to ∇νuµ.
With use of Eq.(3.11), D1 can be written in terms of irreducible moments:

D1 = (r − 1)∇νuµ

∫
dKEr−2

k

(
k〈µkν〉 + 1

3∆µν(m2 − E2
k)
)
δfk

= (r − 1)
(
[∇νuµ]ρµνr−2 + 1

3θ(m
2ρr−2 − ρr)

)
.

(3.40)

In total, part D is now form of

D = ∇νρ
ν
r−1 − (r − 1)σµνρµνr−2 −

1
3
(
(r − 1)m2ρr−2 − (r + 2)ρr

)
. (3.41)
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Lets next calculate part B in Eq.(3.37):

B = ∇ν

∫
dKEr−1

k kνf0k − (r − 1)∇νuµ

∫
dKEr−2

k kµkνf0k

= θ
∫
dKEr

kf0k +∇ν

∫
dKEr−1

k k〈ν〉f0k︸ ︷︷ ︸
=0

− (r − 1)∇νuµ

∫
dKEr−2

k k〈µ〉k〈ν〉f0k︸ ︷︷ ︸
B1

,

(3.42)

where the orthogonality condition (3.27) is used. Last part of this equation B1 can
be calculated even further

B1 = (r − 1)∇νuµ
[ ∫

dKEr−2
k k〈µkν〉f0k︸ ︷︷ ︸

=0

+1
3

∫
dKEr−2

k ∆µν(∆αβk
αkβ)f0k

]

= 1
3(r − 1)θ

∫
dKEr−2

k (∆αβk
αkβ)f0k.

(3.43)

Now it is possible to write B as

B = θ
(
Ir0 + (r − 1)Ir1

)
, (3.44)

where we have defined thermodynamic integrals

Inq ≡
1

(2q + 1)!!〈E
n−2q
k (−∆αβk

αkβ)q〉0. (3.45)

It is important to note that there is couple of special cases where these thermodynamic
integrals can be directly identified as thermodynamic variables

I10 = n, I20 = ε, I21 = p0. (3.46)

In order to calculate last term A form Eq.(3.37) we have to first derive some useful
relations for comoving derivatives α̇0 and β̇0. We start from equations of motion for
dissipative energy-momentum tensor and particle 4-current, Eqs. (2.74),

dε

dτ
= α̇0

∂ε

∂α0
+ β̇0

∂ε

∂β0
= πµνσµν − θ(ε+ p0 + Π), (3.47)

dn

dτ
= α̇0

∂n

∂α0
+ β̇0

∂n

∂β0
= −nθ − ∂µnµ. (3.48)

From these equations it possible to solve α̇0 and β̇0 in terms of others macroscopic
variables and their derivatives. This leads to

α̇0 =
∂n
∂β0

(
πµνσµν − θ(ε+ p0 + Π)

)
+ ∂ε

∂β0

(
nθ + ∂µn

µ
)

∂n
∂β0

∂ε
∂α0
− ∂n

∂α0
∂ε
∂β0

, (3.49)
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β̇0 =
∂n
∂α0

(
πµνσµν − θ(ε+ p0 + Π)

)
+ ∂ε

∂α0

(
nθ + ∂µn

µ
)

∂n
∂α0

∂ε
∂β0
− ∂n

∂β0
∂ε
∂α0

. (3.50)

Next we need to figure out different derivatives of equilibrium distribution function
f0k:

∂f0k

∂β0
= −Ek

∂f0k

∂α0
= −Ekf0kf̃0k,

∂f0k

∂Ek
= −β0f0kf̃0k.

(3.51)

Now we can see that

∂Inq
∂β0

= − 1
(2q + 1)!!

∫
dKEn+1−2q

k (−∆αβk
αkβ)q ∂f0k

∂α0
= −∂In+1,q

∂α0
= −Jn+1,q, (3.52)

where we defined auxiliary thermodynamic integral Jnq as

Jnq ≡
∂Inq
∂α0

= 1
(2q + 1)!!

∫
dKEn+1−2q

k (−∆αβk
αkβ)qf0kf̃0k. (3.53)

Especially we notice that the derivatives of pressure, energy density and particle
density can be written in terms of these integrals:

∂n

∂α0
= J10,

∂ε

∂α0
= − ∂n

∂β0
= J20,

∂ε

∂β0
= −J30. (3.54)

Substituting these relations back to Eqs.(3.49),(3.50) we get following equations for
α̇0 and β̇0

α̇0 = 1
D20

(
− J30(nθ + ∂µn

µ)− J20(πµνσµν − θ(ε+ p0 + Π))
)
, (3.55)

β̇0 = 1
D20

(
− J20(nθ + ∂µn

µ)− J10(πµνσµν − θ(ε+ p0 + Π))
)
, (3.56)

where we defined quantity Dnq in terms of thermodynamic auxiliary integrals

Dnq = Jn+1,qJn−1,q − J2
nq. (3.57)

Now we are finally in position to calculate A from Eq.(3.37). This is done by using
chain rule to comoving time derivative of equilibrium distribution function and
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making use of orthogonality condition from Eq.(3.27):

A =
∫
dKEr

kḟ0k =
∫
dKEr

k

(
α̇0
∂f0k

∂α0
+ β̇0

∂f0k

∂β0
+ Ėk

∂f0k

∂Ek

)
= α̇0Jr0 − β̇0Jr+1,0 + u̇µu

µ︸ ︷︷ ︸
=0

∫
dKEr+1

k

∂f0k

∂Ek
+ u̇µ

∫
dKEr

kk
〈µ〉∂f0k

∂Ek︸ ︷︷ ︸
=0

= −G3r

D20

(
nθ + ∂µn

µ
)
− G2r

D20

(
πµνσµν − θ(ε+ p0 + Π)

)
,

(3.58)

where we introduced one more quantity

Gnq = Jn0Jq0 − Jn−1,0Jq+1,0. (3.59)

Combining all results from Eqs. (3.36),(3.37),(3.41),(3.44) and (3.58) we can write
full scalar equation for irreducible moments

ρ̇r − Cr−1 =α(0)
r θ + G2r

D20

(
πµνσµν − θΠ

)
+ G3r

D20
∂µn

µ + ru̇µρµr−1 −∇µρ
µ
r−1

+ (r − 1)σµνρµνr−2 + 1
3θ
(
(r − 1)m2ρr−2 − (r + 2)ρr

)
,

(3.60)

where coefficient α(0)
r is complicated function temperature and chemical potential

defined as

α(0)
r = −Ir0 − (r − 1)Ir1 + G3r

D20
n− G2r

D20

(
ε+ p0

)
. (3.61)

The equations of motion for irreducible vector moment ρµr and second rank tensor
moment ρµνr can be derived following similar steps and the derivation of these
equations is presented in detail in appendix A. The obtained equations of motion
are

ρ̇〈µ〉r − C
〈µ〉
r−1 =α(1)

r Iµ + 1
3θ
(
(r − 1)m2ρµr−2 − (r + 3)ρµr

)
+ (r − 1)σαβρµαβr−2

+ ωµν ρ
ν
r −∆µ

ν∇αρ
να
r + β0Jr+2,1

ε+ p0

(
Πu̇µ −∇µΠ + ∆µ

α∂βπ
αβ
)

+ ru̇νρ
µν
r−1 + 1

5σ
µ
β

(
2(r − 1)m2ρβr−2 − (2r + 3)ρβr

)
− 1

3∇
µ(m2ρr−1 − ρr+1) + 1

3 u̇
µ
(
rm2ρr−1 + (r + 3)ρr+1

)
,

(3.62)
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ρ̇〈µν〉r − C〈µν〉r−1 =2α(0)
r σµν + (r − 1)σαβρµναβr−2 −∆µν

αβ∇λρ
αβλ
r−1 + 2ω〈µα ρν〉αr

− 2
5∇

〈µ(m2ρ
ν〉
r−1 − ρ

ν〉
r+1) + 2

5
(
rm2ρ

〈µ
r−1 − (r + 5)ρ〈µr+1

)
u̇ν〉

+ 2
15σ

µν
(
(r − 1)m4ρr−2 − (2r + 3)m2ρr + (r + 4)ρr+2

)
+ 2

7σ
〈µ
α

(
2(r − 1)m2ρ

ν〉α
r−2 − (2r + 5)ρν〉αr

)
+ rρµνλr−1u̇λ

+ 1
3θ
(
(r − 1)m2ρµνr−2 − (r + 4)ρµνr

)
,

(3.63)

where we introduce coefficients α(1)
r and α(2)

r ,

α(1)
r = Jr+1,1 − Jr+2,1

n

ε+ p0
, (3.64)

α(2)
r = Ir+1,1 + (r − 1)Ir+2,2. (3.65)

In addition, we defined vorticity tensor ωµν = (∇µuν−∇νuµ) and space-like gradient
of the ration between chemical potential and temperature Iµ = ∇µα0. It is important
to note that these are general equations which can be applied no matter what kind of
expansion of distribution function we are using as long as the equilibrium distribution
is isotropic distribution described by Eq.(3.13). For anisotropic single-particle
distribution function similar kind, but more complicated, equations of motion can
also be derived, but that is not done here. More details about anisotropic dissipative
fluid dynamics can be found in Ref.[31].

3.4 14-moment approximation

14-moment approximation is maybe the simplest way to handle expansion of single-
particle distribution in Eq. (3.28). The idea is to truncate the expansion in such a
way that there is equal amount of expansion coefficients and independent macroscopic
variables, i.e 14 coefficients. This way it is possible to simply figure out coefficients
by matching macroscopic variables to their kinetic definitions. The form of the
expansion of φk in 14-momentum approximation is therefore

φk = λk + λ
〈µ〉
k k〈µ〉 + λ

〈µν〉
k k〈µkν〉, (3.66)

where expansion coefficients are still expanded in terms of powers of Ek like in
Eq.(3.29). Each of these expansions have truncation order N` indicating highest
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power of Ek in expansion. In 14-moment approximation we choose N0 = 2, N1 = 1
and N2 = 0. This is because there are three independent scalar quantities, ε, n0,Π,
two independent vector quantities nµ, uµ and one tensor quantity πµν . Expansion
coefficient can now simply be written as

λk = c0 + c1Ek + c2E
2
k , λ

〈µ〉
k = c

〈µ〉
0 + c

〈µ〉
1 Ek, λ

〈µν〉
k = c

〈µν〉
0 . (3.67)

Now we can solve coefficients c〈µ1···µ`〉
n using kinetic definitions for macroscopic

variables from Eqs.(3.12) and (3.16), where we remember that δfk = φkf0kf̃0k. Lets
start by writing down definition for shear stress tensor πµν :

πµν =
∫
dKk〈µkν〉φkf0kf̃0k = c

〈αβ〉
0

∫
dKk〈µkν〉k〈αkβ〉f0kf̃0k

= 2
15c

〈αβ〉
0 ∆µν

αβ

∫
dK(∆λσk

λkσ)2f0kf̃0k

= 2c〈µν〉0 J42,

(3.68)

where we have used orthogonality condition (3.27) in order to get rid off all scalar
and vector coefficients. Solving c〈µν〉0 from this equation we get

c
〈µν〉
0 = πµν

2J42
. (3.69)

Now following similar steps than in Eq.(3.68) it is possible get relation between
irreducible moment ρµνr and shear stress tensor πµν

ρµνr =
∫
dKEr

kk
〈µkν〉φkf0kf̃0k = 2c〈µν〉0 Jr+4,2

= γ(0)
r πµν ,

(3.70)

where we defined coefficient
γ(2)
r = Jr+4,2

J42
. (3.71)

When trying to solve coefficients c〈µ〉0 and c
〈µ〉
1 we need two constraints from the

kinetic definitions of nµ and hµ from which the last one is set to zero because we
work in the Landau picture. These definitions read

nµ =
∫
dKk〈µ〉φkf0kf̃0k =

∫
dKk〈µ〉(c〈ν〉0 + c

〈ν〉
1 Ek)k〈ν〉f0kf̃0k

= −1
3

∫
dK(c〈ν〉0 + c

〈ν〉
1 Ek)(∆αβk

αkβ)f0kf̃0k

= c
〈ν〉
0 J21 + c

〈ν〉
1 J31,

(3.72)
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hµ =
∫
dKEkk

〈µ〉φkf0kf̃0k =
∫
dKEkk

〈µ〉(c〈ν〉0 + c
〈ν〉
1 Ek)k〈ν〉f0kf̃0k

= −1
3

∫
dKEk(c〈ν〉0 + c

〈ν〉
1 Ek)(∆αβk

αkβ)f0kf̃0k

= c
〈ν〉
0 J31 + c

〈ν〉
1 J41 = 0,

(3.73)

where we have again made use of orthogonality condition (3.27). Solving c〈µ〉0 and
c
〈µ〉
1 from Eqs.(3.72) and (3.73) leads to

c
〈µ〉
0 = −3J41

D31
nµ,

c
〈µ〉
1 = 3J31

D31
nµ.

(3.74)

Irreducible moments ρµr can now be written as

ρµr =
∫
dKEr

kk
〈µ〉φkf0kf̃0k =

∫
dKEr

kk
〈µ〉(a〈ν〉0 + a

〈ν〉
1 Ek)k〈ν〉f0kf̃0k

= c
〈ν〉
0 Jr+2,1 + c

〈ν〉
1 Jr+3,1 = γ(1)

r nµ,
(3.75)

where
γ(1)
r = 1

D31
(J41Jr+2,1 − J31Jr+3,1). (3.76)

Last three scalar coefficients c0,c1 and c2 can be solved from the definition of bulk
viscous pressure Π and Landau matching conditions which state that there is no
off-equilibrium corrections to energy and particle densities, i.e.

〈Ek〉δ = 〈E2
k〉δ = 0. (3.77)

This leads to

Π = −1
3〈∆αβk

αkβ︸ ︷︷ ︸
m2−E2

k

〉δ = −m
2

3

∫
dKφkf0kf̃0k

= −m
2

3 (c0J00 + c1J10 + c2J20),

(3.78)

〈Ek〉δ =
∫
dKEkφkf0kf̃0k

= c0J10 + c1J20 + c2J30 = 0,
(3.79)



44

〈E2
k〉δ =

∫
dKEkφkf0kf̃0k

= c0J20 + c1J30 + c2J40 = 0,
(3.80)

where in the first equation we also used matching conditions to write bulk viscosity
in more convenient form. Solution of this group of equations is

c0 = − 3
m2

D30Π
J20D20 + J30G12 + J40D10

,

c1 = a0
G23

D30
,

c2 = a0
D20

D30
.

(3.81)

Like previously, we can now easily derive relation between irreducible moments ρr
and bulk viscous pressure:

ρr =
∫
dKEr

kφkf0kf̃0k = c0Jr0 + c1Jr+1,0 + c2Jr+2

= γ(0)
r Π,

(3.82)

γ(0)
r = − 3

m2
D30Jr0 +G23Jr+1,0 +D20Jr+2,0

J20D20 + J30G12 + J40D10
. (3.83)

Now that we have derived relations between dissipative quantities and irreducible
tensors we can write Eqs. (3.60),(3.62) and (3.63) in terms of dissipative quantities.
However, because all non-zero irreducible moments are promotional to dissipative
quantities, we could use any value of r in Eqs. (3.60),(3.62) and (3.63) to derive
equations for dissipative quantities. In this thesis we use r = 0, which leads to the
following equations:

− 3
m2 Π̇− C−1 =α(0)

0 θ + G20

D20

(
πµνσµν − θΠ

)
+ G30

D20
∂µn

µ −∇µ(γ(1)
−1n

µ)

− γ(2)
−2σµνπ

µν + θΠ
(
2m−2 − 1

3m
2γ

(0)
−2

)
,

(3.84)

ṅ〈µ〉 − C〈µ〉−1 =α(1)
0 Iµ − 1

3θn
µ
(
m2γ

(1)
−2 + 3

)
+ ωµνn

ν −∆µ
ν∇α(γ(2)

−1π
να)

+ n

ε+ p0

(
Πu̇µ −∇µΠ + ∆µ

α∂βπ
αβ
)

− 1
5σ

µ
βn

β
(
2m2γ

(1)
−2 + 3

)
− 1

3∇
µ(m2γ

(0)
−1Π)

(3.85)
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π̇〈µν〉r − C〈µν〉r−1 =2α(0)
0 σµν − 2

15σ
µν
(
m4γ

(0)
−2Π− 9Π

)
− 2

5∇
〈µ(m2γ

(1)
−1n

ν〉)

+ 2ω〈µα πν〉α −
2
7σ
〈µ
α

(
2m2γ

(2)
−2π

ν〉α + 5πν〉α
)

− 1
3θ
(
m2γ

(2)
−2π

µν + 4πµν
)
,

(3.86)

where all the terms with irreducible moments of rank three or higher will vanish
because expansion of δfk contain only momenta up to k〈µkν〉. In addition, we made
use of Landau matching conditions, i.e. Eq.(3.77), which state that ρ1 = ρ2 = ρµ1 = 0.
We also note that in derivation of Eq.(3.85) we used the fact that

β0J21 = β0
∂p0

∂α0
= ∂p0

∂µ0
= n. (3.87)

In order to derive equations of motion for dissipative quantities we still have to
deal with the collision terms C〈µ1···µ`〉

r−1 . Perhaps the simplest way to do it is to
linearize the collision operator (3.32) in terms of δfk and then write it in terms of
the irreducible moments. How this is done in detail is not addressed in this thesis.
However, calculations in Ref.[18] show that this kind of procedure leads to

C
〈µ1···µ`〉
r−1 = −

N∑̀
n=0
A`rnρµ1···µ`

n , (3.88)

where N` is order of truncation introduced earlier and A`rn are complicated coefficients
which depend on underlying microscopic theory. In 14-momentum approximation we
are left with

Cr−1 = 3
m2A

(0)
00 Π, C〈µ〉r−1 = −A(1)

00 n
µ, C

〈µ〉
r−1 = −A(2)

00 π
µν . (3.89)

Now substituting collision terms back to Eqs.(3.84)-(3.86) and rearranging terms we
get equations of motion for dissipative quantities,

τΠΠ̇ + Π =− ζθ − `Πn∇µn
µ − τΠnFµn

µ

− δΠΠΠθ − λΠnIµn
µ + λΠππ

µνσµν ,
(3.90)

τnṅ
〈µ〉 + nµ =κnIµ − ωµνnν − δnnθnµ − `nΠ∇µΠ + `nπ∆µ

ν∇απ
να

τnΠΠF µ − τnπFνπµν − λnnσµνnν + λnΠΠIµ − λnπIνπµν ,
(3.91)
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τππ̇
〈µν〉
r + πµν =2ησµν + 2ω〈µα πν〉α − δππθπµν − `πn∇〈µnν〉 − τππσ〈µα πν〉α

− τπnF 〈µnν〉 + λπΠΠσµν + λπnI
〈µnν〉,

(3.92)

where we introduced notation F µ = ∇µp0 and ignored terms that are higher than
second order in inverse Reynolds or Knudsen numbers. In addition, we used chain
rule and Eq.(A.16) from appendix A to write

∇µγ
(`)
i =

(∂γ(`)
i

∂α0
+ n

ε+ p0

∂γ
(`)
i

∂β0

)
Iµ − 1

ε+ p0

∂γ
(`)
i

∂ ln β0
F µ. (3.93)

As we can now see Eqs.(3.90)-(3.92) are similar to relaxation type equations that
were obtained from second law of thermodynamics using general entropy 4-current
in section 2.3.5. However, this time around we have also solved exact form of
proportionally coefficients, which are presented in appendix B. We also notice that
equations of motion derived here have some additional first order terms in dissipative
quantities compared to Eqs.(2.82)-(2.84), but they are missing all the second order
terms. Terms which are second order in inverse Reynolds number come from non-
linear collision term [32]. Terms that are second order in Knudsen number are missing
due to the fact that in the 14-moment approximation, the momentum expansion of
particle distribution function is truncated and there is not any small parameter, like
Knudsen number, in which we could do power counting and therefore improve our
approximation by taking higher order terms into account. That is, we have ignored
infinite amount of terms that are second order in Knudsen or inverse Reynolds
number. Another problem, which is connected to previous one, is that in 14-moment
approximation one could use arbitrary value of r in Eqs.(3.60),(3.62) and (3.63) to
obtain different transport coefficients for the equations of motion. This is why the
14-moment approximation is presented in this thesis mostly on illustrative purposes.
However, the equations of motion for irreducible moments and idea of expanding
single-particle distribution function in orthogonal basis are very useful even when
doing systematic power counting in terms of Knudsen and inverse Reynolds numbers.
More details about how this is done can be found in Refs.[18], [29].
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4 Heavy-ion collisions

Modeling heavy ion collisions is a complicated task and there are lots of different
methods that try to solve this problem. Most of these methods are based on the
hydrodynamics which relies on assumption that strongly interacting matter created in
collision has fluid like behavior. However, there are also models which take a slightly
different approach to this problem. One of these models is the AMPT-model which
uses kinetic theory to solve the evolution of medium formed in collision [33], [34].
This kind of method should in principle be more accurate if the system is far from
thermal equilibrium, like in case of Pb-p collisions, but it also has its own problems.
For example during its evolution the strongly interacting matter experiences phase
transition from the quark-gluon plasma to the hadron gas. In models based on
hydrodynamics this phase transition doesn’t need any special treatment, but it is
already taken account in the equation of state, which describes thermal properties
of the medium. In case of models which are based directly on the kinetic theory it
is necessary to consider in detail how partons in the quark-gluon plasma hadronize.
There are also even some approaches which use hydrodynamics to describe evolution
of QGP and switch to kinetic theory after phase transition. This kind of method is
used for example in Refs.[12], [35]. Even though both the hydrodynamic and the
kinetic theory approaches have their own flaws both of them generate results which
seem to agree with the data reasonably well. In this thesis we only focus on the
models which use only hydrodynamics.

Even though hydrodynamics is important part of modeling heavy ion collision, it
is not enough in itself. The basic structure of models based on hydrodynamics is
usually divided into the following steps:

i. Formation of the initial state,

ii. Expansion of the quark-gluon plasma,

iii. Phase transition from the quark-gluon plasma to the hadron gas,

iv. Expansion of the hadron gas,
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v. Particle freeze-out,

which are also illustrated in figure 1. From these steps only steps ii-iv involve
hydrodynamics and even these steps also use equation of state to connect strongly
interacting matter to its thermal properties.

There are also some other things that should in principle be taken account when
modeling heavy ion collisions. For example when two initial nuclei collide high
energy partons, also called jets, are formed together with the QGP. These jets travel
through QGP while it is expanding and interact with it. These interactions make
simulations of heavy-ion collisions much more complicated. There have even been
some discussion that jets traveling through medium could create mach cones, similar
to those which are created when velocity of fighter plane exceeds the speed of sound
[36]–[38]. Fortunately jets have only slight effect to the expansion of the medium
and therefore they are usually ignored when studying properties of QGP and this is
also done here. More information about jets in QGP can be found in Refs.[39], [40].

In this section we go through in detail theory behind each step in heavy ion
collisions excluding technical discussion about hydrodynamics which is covered in
sections 2 and 3. But before that we discuss a little bit about different kind of
observables in heavy ion collisions and how these quantities are calculated in theory.

Figure 1. Evolution of a heavy ion collision. Figure from [41].
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4.1 Observables

Even though theoretical models predict that existence of QGP is very likely, there
is no way to directly observe QGP because of its short lifetime and QCD color
confinement. Most of the knowledge about properties of the QGP come through
matching theoretical models to the experimental observations.

Most direct measurable observable is the number of hadrons reaching detectors
and their energies. Usually particle number is expressed per rapidity y or per
pseudorapidity ηs, which are defined as

y = 1
2 ln

(
E + pz
E − pz

)
, (4.1)

ηs = − ln
[

tan(θ/2)
]

= 1
2 ln

(
|p|+ pz
|p| − pz

)
, (4.2)

where z-axis is chosen to be the collision beam axis and θ is the angle between
particles momentum vector and beam axis. From definitions of y and η we can
see that y = η if the particles are massless. The reason why we have two different
rapidities is that in case of unidentified charged hadrons (not knowledge about hadron
masses) one can only measure the number of particles per pseudorapdity dN/dη. In
cases when one measures particle number for the specific type of particle, one usually
measures the quantity dN/dy. Commonly in literature either of quantities dN/dy or
dN/dη is referred as multiplicity. Usually most accurate measurements are obtained
when particles are measured transverse to the beam axis, i.e. η ≈ y ≈ 0. This region
is called mid-rapidity and it covers rapidity gaps |η| ≤ 0.5 or |y| ≤ 0.5. This is also
the region in which we are focusing on this thesis.

The number of particles created in a collision is also used to categorize events
into different percentile bins, which are called centrality classes. These classes are
defined such a way that centrality class 0-5% contains all events in which number
of produced particles would belong to the highest 5% from all collisions. Similarly
centrality class 90-100% would contain events in which number of produced particles
would belong to the lowest 10% from all collisions.

In addition of particle number and their rapidities it is also possible to measure
particles transverse momentum pT and the azimuthal angle φ, which tells particles
direction in a transverse plane. Using these quantities it is then possible to measure
dN/dydp2

Tdφ spectrum. However, studying angular dependence this way is not very
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practical. Instead, angular dependence is quantified using Fourier coefficients vn
from series:

dN
dydp2

Tdφ = 1
2π

dN
dydp2

T

(
1 +

∞∑
n=1

vn(y,pT ) cos[n(φ− ψn)]
)
, (4.3)

where ψn is first angle where the n :th harmonic component has its maximum
multiplicity and it is called the event plane angle. The Fourier coefficients vn are
often called flow harmonics, and they are defined as

vn(y,pT ) =
( dN

dydp2
T

)−1 ∫
dφ cos[n(φ− ψn)] dN

dydp2
Tdφ. (4.4)

Similar coefficients can also be obtained from pT integrated spectrum dN/dydφ and
they are given by

vn(y) =
(dN

dy

)−1 ∫
dφ cos[n(φ− ψn)] dN

dydφ. (4.5)

First order coefficients v1 describes situations where particles have one preferred
direction and for symmetry reasons this coefficient is usually close to zero. One
is usually only interested about couple of next coefficients v2 and v3 which are
called elliptic flow and triangular flow respectively. In last decade also higher order
coefficients have been measured, but their contribution to angular distribution is
much smaller[42]. In this thesis we use so called averaged initial state (see section
4.2) in which case only v2 is non-zero. In order to see effects of v3 or higher order
flow harmonics one needs to take account initial state fluctuations. Because the
definition of the flow harmonics (4.4) depends on event-plane angles, which are not
directly measurable, one usually uses so called cumulants, which don’t depend on
event-plane. In particular when comparing v2 using averaged initial state one usually
compares them to the 4-particle cumulants defined as [43]

v2{4} =
(
2〈v2

n〉ev)2 − 〈v4
n〉ev

)1/4
, (4.6)

where averages are taken over all events in given centrality class.
In numerical simulations one usually obtains particle spectrum dN/dydp2

Tdφ for
each hadron specie separately. If one then wants to calculate the total multiplicity
of charged hadrons it is necessary to write it in terms of η distributions in order to
compare results to the data. This kind of transformation can be done using relation
[9]

dNch

dηdp2
Tdφ

∣∣∣∣∣
∆η

=
∑
i

2
∆η sinh−1

[
pT
mT,i

sinh
(∆η

2

)] dNi

dydp2
Tdφ, (4.7)
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where ∆η is pseudorapidity range of interest, mT,i =
√
m2
i + p2

T and mi is the mass
of hadron i. The sum in Eq.(4.7) is over all the charged hadrons.

4.2 Initial state

When talking about initial state in heavy ion collisions one usually refers to the
earliest stages of the collision when QGP is formed and thermalized. Mathematically
speaking initial state can be thought as initial values for the components of energy-
momentum tensor and particle 4-current. These initial values are necessary when
trying to solve hydrodynamic evolution of QGP, because hydrodynamic equations
are differential equations which require initial condition. However, usually when
collision energies are high enough we can approximate baryon density to be zero so it
is enough to give initial values for energy density, pressure, 4-velocity and dissipative
currents. In most general case all of these initial state quantities depend from all
three spatial coordinates. However, when studying dynamics of the collision in
central rapidity region, where particle multiplicity remains constant, one can assume
boost invariance to the collisions system and only two spatial dimensions are enough
to describe the system. Boost invariance is discussed in more detail in section 4.3.

One of the biggest problem when modeling the heavy ion collisions is the fact that
only thing we can measure is the particles which reach the detector. This means that
we cannot separately measure things like initial state or viscosity of QGP. In fact
there are different kind of initial states that seem to match with the data reasonably
well when the viscosity parameters are adjusted accordingly.

Generally speaking initial states can be categorized into two different classes:
One where the nucleus is described by its average nuclear density profile and another
where the distributions of nucleons inside the nucleus are taken to account. Second
choice has obviously more physical grounds. After all, the nuclei consist from many
nucleons which will cause some fluctuations to nuclear density. However, this kind of
method has one drawback. Because the nucleon positions inside the nucleon has to
be sampled randomly according to their position distribution, it is necessary to do
thousands of events in order to get averaged results that can be compared to the data.
In this sense it reminds real heavy ion collision experiments where it is impossible to
study only one collision. Many times these fluctuations in the nucleon positions are
called event-by-event (EBYE) fluctuations or just initial state fluctuations. Initial
states where we only use average quantities when calculating initial state are often
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called averaged initial states.
In this thesis all simulations are done by using averaged initial state obtained

from the EKRT model [9]. The EKRT model is also capable of taking account EBYE
fluctuations and possible effect of these fluctuations is discussed in section 6. Before
going into details of the EKRT model we first discuss about optical Glauber model
and how one can use it to determine centrality classes for averaged initial state.

4.2.1 Optical Glauber model

The optical Glauber model is one of the simplest models for initial state and it is
mostly based on geometrical arguments. In this section we go through main results
of the optical Glauber model without much derivation. More detailed discussion
about optical Glauber model can be found in Refs.[44], [45].

In the optical Glauber model colliding nuclei are treated as a round discs moving
along straight path such a way that their cross section remains constant even after
collision. Geometry of this kind of collision is illustrated in figure 2, where we defined
the impact parameter b as a difference between transverse coordinates of the two
nucleus. We also defined vector r as a transverse position vector.

A
B

x

y

Figure 2. Geometry of the collision system.

Nuclear density of the nucleus with mass number A is given by the Woods-Saxon
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parametrization
ρA(r,z) = ρ0

exp
(

(r2+z2)1/2−RA
d

)
+ 1

, (4.8)

where d = 0.54 fm. The nuclear radius RA can be calculated as

RA = 1.12A1/3 − 0.86A−1/3. (4.9)

The parameter ρ0 is obtained by requiring that∫
d2rTA(r) =

∫
d2rdzρA(r,z) = A, (4.10)

where we defined nuclear thickness function

TA(r) =
∫
dzρA(r,z). (4.11)

Typically when A ∼ 200 we have ρ0 ≈ 0.17 fm−3. The optical Glauber model predicts
that in A+B collision the total cross section is given by

σAB =
∫

d2b
[
1−

(
1− σNNTAB(b)

AB

)AB]
'
∫

d2b
(

1− e−σNNTAB(b)
)
, (4.12)

where σNN is the cross section for inelastic nucleon-nucleon collision and TAB is the
nuclear overlap function which is defined as

TAB(b) =
∫

d2rTA(r + b/2)TB(r− b/2). (4.13)

The transverse density of binary nucleon-nucleon collisions can be calculated using
optical Glauber model:

nBC(r,b) = σNNTA(r + b/2)TB(r− b/2). (4.14)

Glauber model also predicts the transverse density of nucleons participating in
nuclear collision, which is often called the wounded nucleon transverse density and it
is given by

nWN(r,b) = TA(r + b/2)
[
1−

(
1− σNN

TB(r− b/2)
B

)B]
+ TB(r + b/2)

[
1−

(
1− σNN

TA(r− b/2)
A

)A] (4.15)

If the optical Glauber model is used as a initials state for hydrodynamics one assumes
that either nBC or nWN is proportional to the energy density (eBC- or eWN-model)
or to the entropy density (sBC- or sWB-model) [46]. However in this thesis the
energy density is obtained using the EKRT-model and the optical Glauber model is
only used in the centrality determination.
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Table 1. The averaged values of impact parameter for different centrality classes
in √sNN = 2.76 TeV Pb+Pb collisions

centrality (%) b (fm)
0-5 2.32
5-10 4.24
10-20 6.00
20-30 7.76
30-40 9.19
40-50 10.43
50-60 11.53

4.2.2 Centrality determination

Like in a case of Glauber model geometry of averaged initial state is usually controlled
by the impact parameter b, which is not observable quantity. Experimentally collisions
are categorized to different centrality classes according to amount of particles created
in collision. Similar kind of method to determine centrality class can also be used
in case of fluctuating initial state where thousands of randomly sampled events are
modeled separately. In case of averaged initial states we only want to simulate one
event, with specific impact parameter b, for each centrality class. The connection
between impact parameter and centrality classes can be found using the optical
Glauber model.

In the optical Glauber model collisions are divided into different centrality classes
according to their contribution to the total cross section. In this case the 0 − 5%
centrality class would contribute 5% of the total cross section in such a way that
impact parameter would range from 0 to some upper limit b1, i.e.

0.05 = 1
σAB

∫ b1

0
d2b

dσAB
d2b

, (4.16)

where σAB and dσAB/d2b are calculated using Eq.(4.12). From this equation we
could then determine value b1. Eq.(4.16) can be also generalized for the centrality
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class ci − ci+1%. In this case

ci+1 − ci = 1
σAB

∫ bi+1

bi
d2b

dσAB
d2b

. (4.17)

Now that we know value of b1 we can use Eq.(4.17) recursively to obtain all values
of bi. Because we only want to use one impact parameter for specific centrality class
we calculate averages 〈bi〉.

〈bi〉 = 1
σci

∫ bi+1

bi
d2b b

dσAB
d2b

, (4.18)

where
σci =

∫ bi+1

bi
d2b

dσAB
d2b

. (4.19)

Now doing simulations with the value 〈bi〉 (usually denoted as b) would correspond to
centrality class ci − ci+1%. The dependence between centrality classes and averaged
values of impact parameter in case of Pb+Pb collision is shown in Table 1

4.2.3 EKRT model

The original EKRTmodel was introduced by K.J. Eskola, K. Kajantie, P.V.Ruuskanen
and K. Tuominen in 2000 and it was aimed to provide initial conditions for central
heavy ion collisions [47]. Later, in 2001, the EKRT model was extended for non-
central collisions [46]. In both of these cases the EKRT model made use of a leading
order (LO) minijet cross section calculations in perturbative QCD (pQCD). Next-
to-leading order (NLO) corrections were introduced to the EKRT model in 2013
together with EBYE fluctuations [9], [48]. This version of EKRT model, but without
EBYE fluctuations, is also used in this thesis. However in this section we also go
though theory behind EBYE version of EKRT model.

The main idea behind EKRT model is that energy density of initial state comes
from energies of multiple low-momentum partonic jets, usually referred as a minijets.
Because these minijets are mostly dominated by gluons, heavy ion collision in EKRT
model is thought to be more like collision between two gluon clouds than collision
between two nuclei. Calculating energy of minijets using pQCD is only possible
when a QCD coupling constant αs is much smaller than unity, which corresponds to
a condition that a transverse momentum scale of the minijet p0 is much larger than
the QCD scale factor ΛQCD ≈ 220 MeV. This condition would suggest that it is not
possible to calculate energy of all minijets only using pQCD. This problem is solved
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in the EKRT model by conjecturing that there exists some saturation momentum
psat, which is the lower limit to the minijet transverse momentum. Physical reasoning
behind the saturation momentum is that at some point partons with high transverse
momentum, which are produced before ones with low transverse momentum, will
fill up whole transverse plane. When gluons that have transverse momentum below
psat are produced afterwards there is no enough space in the transverse plane so
that these gluons have to fuse together with gluons which have higher transverse
momenta. The most natural way to obtain the saturation momentum would be to
first calculate a number of produced partons with pT ≥ p0 and then compare it to
available transverse area in order to solve saturation momentum. This was in the fact
method which was used to calculate saturation scale in original EKRT model which
used LO minijet cross section calculations. However, similar kind of method is no
longer valid when extending EKRT model to the NLO because number of produced
partons is not infrared safe(adding one infinitesimally soft particle does not change
the direction or set of jets) and collinearly safe (collinear splitting will not change
jets) quantity in NLO pQCD [49]. In the NLO extension of EKRT model saturation
is expected to happen when transverse energy ET production ends. This corresponds
to a moment when transverse plane is fully filled and gluon fusions start, i.e. (3→ 2)
processes start to dominate over usual (2→ 2) processes. Therefore, saturation is
set to take place when rapidity densities of the produced transverse energy fulfill the
condition

dET
d2rdy (3→ 2) ∼ dET

d2rdy (2→ 2). (4.20)

We can further write scaling law for the right-hand side of this equation

dET
d2rdy (2→ 2) ∼ (TAg)2

(α2
s

p2
0

)
p0, (4.21)

where g denotes gluon parton distribution functions (PDFs) and TA refers to nuclear
thickness function introduced earlier in section 4.2.1. The factor TAg is assigned for
each of the incoming gluons, α2

s/p
2
0 comes from partonic cross section σ(2→ 2) and

p0 is introduced as cut-off scale for ET . Similar way it is possible to write left-hand
side of the Eq. (4.20) as

dET
d2rdy (3→ 2) ∼ (TAg)3 1

p2
0

(α3
s

p2
0

)
p0, (4.22)
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where additional factor p−2
0 is introduced to compensate dimensions of extra TA

factor. Now substituting Eqs.(4.21) and (4.22) to the saturation condition Eq.(4.20)
we obtain

TAg ∼
p2

0
αs
. (4.23)

Taking this scaling law and plugging it back to saturation condition Eq.(4.20) and
solving dET/d2r leads to the local saturation criterion

dET
d2r

(p0,
√
sNN , A, r,b; β) = Ksat

π
p3

0∆y, (4.24)

where transverse coordinates are denoted as r = (x,y), A is mass number of colliding
nucleon and b is the impact parameter. In addition Ksat ∼ 1 is introduced as a αs
independent proportionally constant and ∆y is mid-rapidity gap in which minijet
transverse energy is produced. In Ref.[9] it is chosen that ∆y = 1, i.e. |y| ≤ 0.5,
which is also chose made in this thesis. Exact value of Ksat is prior unknown and it
has to be determined from the data. We also note that the condition p0 � ΛQCD

must still hold because left-hand side of Eq.(4.24) has to be calculated perturbatively.
This perturbative part describes the total minijet transverse energy produced into a
rapidity window ∆y in A+A collision when collision energy is √sNN and it can be
calculated as [48]

dET
d2r

(p0,
√
sNN , A, r,b; β) = TA(r1)TA(r2)σ〈ET 〉p0,∆y,β, (4.25)

where r1/2 = r± b/2. Last part, σ〈ET 〉p0,∆y,β, is the first ET -moment of the minijet
ET distribution and it has to be calculated using pQCD and collinear factorization
[50]:

σ〈ET 〉p0,∆y,β =
∫ √sNN

0
dETET

dσ
dET

∣∣∣∣∣
p0,∆y,β

, (4.26)

where the semi-inclusive ET distribution of minijets is defined as

dσ
dET

∣∣∣∣∣
p0,∆y,β

=
3∑

n=2

1
n!

∫
d[PS]n

dσ2→n

d[PS]n
Sn. (4.27)

Further, dσ2→2/d[PS]2 and dσ2→3/d[PS]3 are defined as a differential NLO partonic
cross sections corresponding (2 → 2) and (2 → 3) scatterings respectively. More
details about computation of these differential cross sections is found in Ref. [49].
Phase-space differentials are notated as d[PS]n and integration is set to take place
in 4 − 2ε dimensions in order to handle infrared divergences. The measurement
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functions S2 and S3 define the total minijet ET produced into a rapidity window
∆y. Because mass of all partons are small compared to their momentum, the minjet
ET produced in ∆y can be calculated as a sum of the final state partons transverse
momenta whose rapidities are in ∆y

ET =
n=2,3∑
i=1

θ(yi ∈ ∆y)pT i, (4.28)

where θ is the Heaviside step function which must not to be confused with expansion
rate θ = ∇µu

µ. In definition of the measurement functions one also must take account
that not all scatterings are perturbative. In case of (2→ 2) processes perturbative
scatterings can be chosen to be ones that fulfill

pT1 + pT2 ≥ 2p0, (4.29)

where p0 � ΛQCD. In this case we see that if at least one particle has rapidity in ∆y,
then ET ≥ p0. Same kind of condition for perturbative scatterings also generalizes
to (2→ 3) processes

pT1 + pT2 + pT3 ≥ 2p0. (4.30)

In this case however it is possible that two high-pT partons fall outside ∆y range
and only one low-pT parton with pT < p0 enters ∆y. It is shown in Ref.[] that this
kind of behavior adds additional freedom when defining measurement function S3

and it is possible to restrict the minimum ET even more in infrared and collinearly
safe way by applying condition ET ≥ βp0, where 0 ≤ β ≤ 1. Parameter β is called
the hardness parameter and it’s exact value has to be determined from the data.

Using the definition of minijet ET and above restrictions it is now possible to
write measurement functions as

Sn = δ
(
ET −

[ n=2,3∑
i=1

θ(yi ∈ ∆y)pT i
])
× θ

( n=2,3∑
i=1

pT i ≥ 2p0

)
× θ(ET ≥ βp0) (4.31)

Plugging measurement functions back to definition (4.26) and integrating over delta
functions first ET -moment minijet ET distribution can be written as

σ〈ET 〉p0,∆y,β =
3∑

n=2

1
n!

∫
d[PS]n

dσ2→n

d[PS]n
S̃n, (4.32)



59

where

S̃n =
( n=2,3∑

i=1
θ(yi ∈ ∆y)pT i

)
× θ

( n=2,3∑
i=1

pT i ≥ 2p0

)

× θ
( n=2,3∑

i=1
θ(yi ∈ ∆y)pT i ≥ βp0

)
.

(4.33)

Now substituting Eq.(4.32) back to saturation criterion (4.24) it is possible to solve
numerically saturation momentum psat(r) = p0(r). In order to calculate the initial
state energy density we first note that hydrodynamic evolution is done in light-cone
coordinates τ and ηs, which are defined as

τ =
√
t2 − z2, ηs = 1

2 ln
( t+ z

t− z
)

(4.34)

so that t = τ cosh(ηs) and z = τ sinh(ηs). Coordinate ηs is called the space-time
rapidity and τ is the longitudinal proper time. In mid-rapidity, when y ≈ 0 it can be
shown that space-time rapidity is equal to momentum rapidity, i.e. ηs ≈ y. Because
we are studying case when |y| ≤ 0.5 this seems to be a reasonable approximation,
and we can write infinitesimal volume element in form

dV = d2rdz = d2r(dτ sinh(ηs) + dηsτ cosh(ηs)) ≈ τd2r∆y (4.35)

Now using saturation criterion (4.24) energy density at the formation time τs can be
written as

ε(r, τs(r)) = dET
dV = dET

d2r
1

τs(r)∆y = Ksat

π
(psat(r))4, (4.36)

where the formation time of minijet plasma is given by τs(r) = 1/psat(r), like in
Refs.[9], [51]. Here it is important to note that the formation time depends on spatial
coordinates, but initial energy density which is used in a hydrodynamics must be at
fixed time. This fixed time is obtained by setting a minimum saturation momentum
pminsat = 1 GeV for which pQCD calculations are still viable. This minimum saturation
momentum then corresponds to a maximum formation time τ0 = 1/pminsat ≈ 0.2
fm. The step which describes evolution between the local formation time τs(r) and
the maximum formation time τ0 is called a pre-thermal evolution. There are two
alternative choices how the pre-thermal evolution can be done in EKRT-model. The
first way is to use scaling which preserves the transverse energy. In this kind of
situation first equality of Eq.(4.36) holds for all times and we can write

ε(r, τ0) = ε(r, τs(r))
(
τs(r)
τ0

)
. (4.37)
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This kind of scaling is often also called as a free streaming (FS). Another way to
handle the pre-thermal evolution is to use the Bjorken hydrodynamic scaling (BJ)
[52]

ε(r, τ0) = ε(r, τs(r))
(
τs(r)
τ0

)4/3
, (4.38)

where work done by a pressure reduces energy almost by a maximum amount. In
this thesis all calculations are done by using BJ pre-thermal evolution.

At the some point when trying to calculate saturation momenta in the edges of the
system there is the region where solution of the saturation criteria will give momentum
smaller than pminsat . In these regions pQCD calculations become questionable and
we are no longer able to use Eq.(4.36) to calculate energy densities. This problem
is solved by smoothly connecting BJ-evolved energy densities to the binary profile,
which is used outside validity of pQCD. In other words when psat < pminsat , the energy
density is parameterized as ε = C(TATA)n where

n = 1
2

[
(k + 1) + (k − 1) tanh

(
σNNTATA − g

δ

)]
. (4.39)

Here σNN is the total inelastic nucleon-nucleon cross-section and g = δ = 0.5 fm−2.
The parameters C and k are adjusted so that the energy density is smooth function
when psat = pminsat .

The whole above procedure leads to the energy density profile for the averaged
initial state. The figure 3 shows these averaged initial states for 0-5% and 30-40%
centrality classes in Pb+Pb collision with √sNN = 2.76 TeV and Ksat = 0.52. The
impact parameters corresponding to a different centrality classes were obtained using
the optical Glauber model as discussed in section 4.2.2. The initial collision time was
set to τ0 = 0.2 fm and hardness parameter to β = 0.8 which will remain unchanged
for all the simulations done in this thesis. From Fig.3 we can see that energy density
profile for 30-40% centrality is narrower and more asymmetrical compared to 0-5%
centrality. Maximum value of the energy density is also lower when centrality class
is 30-40% . These kinds of results are expected considering that the collision zone
gets smaller and more asymmetric when increasing impact parameter, i.e. going to
the higher centrality classes.

Even though only the averaged initial states are used in the simulations done in
this thesis, it is interesting to see how EBYE fluctuations affect to the initial state.
The main reason behind the EBYE fluctuations is that the positions of the nucleons
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Figure 3. Initial energy densities in √sNN = 2.76 TeV Pb+Pb collision at
τ0 = 0.2 fm in the 0-5% (a) and 30-40% (b) centrality classes. The pre-thermal
evolution is done using BJ and values of parameters are set to Ksat = 0.52,
β = 0.8.

randomly fluctuate inside the colliding nuclei. One of the challenges in fluctuating
initial state is that nucleons have finite size and finding their distribution inside
nuclei is not a trivial task. Fortunately, at least in case of Pb nucleus, standard
Woods-Saxon parameterization for charge density is within the error bars of the
nucleon distribution and it can be used in practical calculations [53]. The nucleon
positions can then be sampled using Woods-Saxon parameterization. In order to
get enough statistics for reliable result one needs to sample nucleon positions for
around 10000 events. It is also important to note that positions of nucleons are
sampled separately for both colliding nuclei. After positions of nucleons are known,
it is still necessary to define how these positions correspond to changes in geometry
of collision. This is done by defining nuclear thickness function TA as a sum of the
nucleon thickness functions Tn:

TA(r) =
A∑
i=1

Tn(|r− ri|), (4.40)

where ri is the position of nucleon in given nucleus and Tn have been normalized to
unity. Because the production of minijets is mostly dominated by gluons, the Tn can
be understood as a gluonic thickness function which is given by [9], [54]

Tn(r) = 1
2πσ2 e

−r2/(2σ2), (4.41)

where σ ≈ 0.43 fm. Now saturation momentum can again be solved from saturation
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Figure 4. EBYE Initial energy densities in √sNN = 2.76 TeV Pb+Pb collision
at τ0 = 0.2 fm for two different nucleon sampling. The pre-thermal evolution is
done using BJ and values of parameters are set to Ksat = 0.52, β = 0.8.

criteria (4.24) and energy densities can be calculated similarly as in case of averaged
initial state. Final BJ-evolved initial state for couple of events is shown in figure
4. We can see that there are multiple peaks at the energy density profile compared
to the averaged initial state and the position of these peaks vary greatly event to
event. As seen in Refs.[9], [10] EBYE EKRT-model seems to produce data very well
in most of the measurements. As a downside computing thousands of events in order
to get good statistic is computationally rather expensive.

4.3 Hydrodynamics and boost-invariance

The general structure of hydrodynamics is already derived in section 2 where we
discussed about the conservation of the energy-momentum tensor and the particle
number. In case of the heavy-ion collisions one typically replaces the particle number
with the baryon number, which describes difference between number of quarks and
antiquarks. In most of the high energy collisions one usually assumes that baryon
density nB is close to zero and focuses only in the energy momentum tensor. This
assumption is also done in this thesis. In this case system is described by equilibrium
quantities ε, p0,uµ and dissipative quantities Π, πµν .

The equations of motion for dissipative quantities were derived in section 3.4, but
we did not do systematic power counting in terms of Knudsen and inverse Reynolds
numbers. In addition we only studied case where r = 0 in Eqs.(3.60),(3.62) and
(3.63), but in more accurate case one takes account all values of r. More accurate
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derivation for equations of motion of dissipative quantities is done in Ref.[29] and
when nB = 0 it leads to

τΠΠ̇ + Π = −ζθ − δΠΠΠθ + λΠππ
µνσµν + ϕ1Π2 + ϕ3π

µνπµν , (4.42)

τππ̇
〈µν〉
r + πµν =2ησµν + 2ω〈µα πν〉α − δππθπµν − τππσ〈µα πν〉α + λπΠΠσµν

ϕ6Ππµν + ϕ7π
〈µ
α π

ν〉α.
(4.43)

The structure of these equations differs from equations (3.90) and (3.92) only by
terms which are second power of inverse Reynolds number, i.e. terms with transport
coefficients ϕi. However, even all other transport coefficients are not the same than
in appendix B. When using these equations of motion, it useful to write all transport
coefficients in terms of equilibrium quantities ε and p0. This can be done in a limit
m� T in which case transport coefficients for bulk viscous pressure can be written
as [55]

ζ

τΠ
= 14.55×

(1
3 − c

2
s

)2
(ε+ p0),

δΠΠ

τΠ
= 2

3 ,

λΠπ

τΠ
= 8

5

(1
3 − c

2
s

) (4.44)

where cs is the speed of sound. In similar limit transport coefficients for shear
viscosity can also be obtained [32], [55]. These read

η

τπ
= ε+ p0

5 ,

δππ
τπ

= 4
3 ,

τππ
τπ

= 10
7 ,

λπΠ

τπ
= 6

5 ,

ϕ7 = 9
70p0

.

(4.45)

Unfortunately convenient forms for coefficients ϕ3 and ϕ6 have not yet been obtained
and for this reason they are left out when doing hydrodynamic simulations. From
Eqs.(4.44) and (4.45) one can see that rest of the transport coefficients can be
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expressed either using the bulk viscosity coefficient ζ or the shear viscosity coefficient
η. The coefficients ζ and η have to be fitted based on the data.

Generally hydrodynamic equations are solved in 3+1 dimensions, i.e we have
3 spatial and one time coordinate. However, if one assumes longitudinal boost-
invariance to the system (system is invariant under Lorentz-boosts in z direction),
one can eliminate one of the spatial dimensions and only solve hydrodynamics in
2+1 dimensional system. The idea of boost-invariance, in context of heavy-ion
collisions, was first introduced by J.D.Bjorken [52]. The assumption about boost-
invariance is based on the experimental fact that in the mid-rapidity region the
total particle multiplicity seems to remain constant, as can be seen in figure 5.
In case of boost-invariance most natural coordinates for the system are (τ,x,y,ηs)
coordinates, where longitudinal proper time τ and spacetime rapidity ηs are defined
in Eq.(4.34). The assumption about boost-invariance is then consistent to a definition
that the longitudinal flow velocity uz = z/t and that all hydrodynamic quantities are
independent of the spacetime rapidity ηs. As we see in section 4.5.2 choices made
above lead eventually to the particle spectrum which is independent of rapidity y.

Figure 5. Charged particle pseudorapidity distribution in several centrality
classes measured by ALICE for Pb+Pb collisions at √sNN = 5.02 TeV. From
Ref.[56].
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4.4 Equation of state

An equation of state describes thermodynamic properties of the system and it
gives relations between various thermodynamic quantities, such as energy density,
temperature and pressure. The relation p = p(ε, n) is in fact necessary to close the
system of hydrodynamic conservation equations (2.60).

In case of heavy ion collisions we are interested about behavior of strongly
interacting matter which consist two different phases: QGP and hadron gas. Recent
lattice QCD calculations have shown that at zero baryon chemical potential the
phase transition between these two phases should happen around T = 154± 9 MeV
[57]. Schematic phase diagram for this kind of matter is presented in figure 6. From
this figure we see that at the large collision energies, baryon chemical potential goes
close to zero and it can be neglected. This is also why baryon density is usually
approximated as a zero and EoS p = p(ε) is enough when solving equations of motion
for the hydrodynamics. At the extremely large chemical potential phase diagram
seems to indicate that there exist phase called color superconductor in which quark
matter is in condensate state. However, this kind of phase is only theoretical right
now and it is thought to only exist in the core of neutron stars.

In this thesis we use the sp95-PCE parameterization for equation of state [58], [59].
This parameterization models hadron gas phase as gas consisting non-interacting
hadrons and resonances, which have masses up to 2 GeV. EoS for this so called
hadron resonance gas (HRG) can be calculated from thermodynamics and it reads

pHRG(T,µi) = T

V

∑
i

lnZi(T,V,µi), (4.46)

where we sum over all hadrons and resonances. The partition function is defined as

lnZi(T,V ) = V gi
T

∫ ∞
0

d3k
(2π)3

1
e(µi−Ei)/T ± 1 , (4.47)

where gi is degeneracy factor and Ei is particles energy. The positive sign in partition
function corresponds to fermions and negative sign to bosons. Relation between
energy density and pressure can then be obtained using thermodynamic relations
(2.24).

Modeling QGP phase is done by using a lattice QCD results from the hotQCD
collaboration [60], [61]. In the lattice QCD partition function is expressed as path
integral over the classical action and then discretised so that integrals are replaced
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Figure 6. The phase diagram of strongly interacting matter. From Ref.[62].

by sums over fermion fields which occupy nodes in the lattice. These sums are then
done in discrete space-time lattice over N3

σ spatial and Nτ temporal steps which are
related to the systems volume and temperature:

V = (aNσ)3 T = 1
aNτ

, (4.48)

where a is the lattice spacing. Physical continuum and thermodynamic limit is
obtained by doing calculation with different lattice sizes keeping ratio Nσ/Nτ constant
and then extrapolating to limit a→ 0, Nτ →∞, V →∞.

After partition function is calculated in lattice, EoS can be computed using trace
anomaly [60], [63]

Θ(T ) = ε− 3p = −T
V

d lnZ
d ln a . (4.49)

With use of thermodynamic identities (2.24) we can also write
Θ(T )
T 5 = ε− 3p

T 5 = d
dT

(
p

T 4

)
. (4.50)
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Integrating both sides we obtain

p(T )
T 4 = p(T0)

T 4
0

+
∫ T

T0
dT ′Θ(T ′)

T ′5
, (4.51)

where T0 is some reference temperature which can be calculated using HRG model.
Again after solving p = p(T ) we can easily solve p = p(ε) with use of thermodynamics.

Connecting lattice QCD calculations to HRG smoothly leads to the equation of
state which is demonstrated on Fig.7. Temperature dependence of other thermody-
namic quantities is shown in Fig.8. As we can see, there are no discontinuities at
the phase transition temperature. This means that strongly interacting matter don’t
have phase transition in canonical sense, even thought QGP and HRG are clearly
different states of matter. This kind of phase transition is usually called crossover
phase transition. Even water has this kind phase transition when temperature rises
above critical point.

0 0.5 1 1.5 2 2.5 3
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Figure 7. Pressure as a function of energy density at nB = 0.
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4.5 Particle freeze-out

In the hydrodynamic phase QGP expands, cools down and experiences phase tran-
sition to the hadron gas. This hadron gas keeps expanding until at some point
hadrons are so far away from each other that interactions between them stop and
freeze-out takes place. Freeze-out stage is divided into two parts: chemical and
thermal freeze-out.

4.5.1 Chemical freeze-out

Chemical freeze-out is defined as a point in which all inelastic processes that convert
one types of hadrons into a different ones end. Usually one assumes that chemical
freeze-out happens when temperature reaches value Tchem. If system would evolve
according to ideal hydrodynamics this would fix number of hadrons to a constant
for each hadron specie separately, i.e. Ni(T ≤ Tchem) = Ni(Tchem). This effect is
caused by the fact that entropy is conserved in ideal hydrodynamics. In dissipative
hydrodynamics entropy is no longer conserved even though there is only small
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amount of entropy production bellow T = 175 MeV. However, because hadrons
cannot change species after chemical freeze-out, the rations between hadrons will
remain fixed. Therefore adding chemical freeze-out will add additional constraints
to equation of state and slightly change behavior of the hadronic part. In this thesis
we use couple of different parametrization which use either 150 MeV or 175 MeV
temperature for chemical freeze-out. More details about chemical freeze-out can be
found in Refs.[59], [64].

4.5.2 Thermal freeze-out

What we call thermal freeze-out is a moment in which all collision processes that
change particles momentum stop. At this stage system is no longer in local thermal
equilibrium and hydrodynamics cannot be used to describe the system. On the
other hand, only final hadron spectra is observable in experiments, so one needs
some method to convert a hydrodynamic quantities into hadrons. Most common
way to do this is to use so called Cooper-Frye decoupling procedure [65]. In Cooper-
Frye procedure one defines decoupling hypersurface σµ in which thermal freeze-out
happens. In this thesis decoupling surface is chosen to be constant temperature
hypersurface defined by decoupling temperature Tdec = 100 MeV. Number of specific
type of hadrons going through this hypersurface can be calculated as

Ni =
∫
σ

dσµNµ
i , (4.52)

where index i denotes particles type and dσµ is the normal vector of the surface
element, which points outwards of the surface. Using kinetic theory definition of
particle 4-current Nµ from Eq. (3.4) leads to a Lorentz-invariant hadron spectrum

E
d3Ni

d3p
= gi

(2π)3

∫
σ

dσµpµi fi(x,p), (4.53)

where pµi is the four-momentum and fi is hadrons distribution function. Generally
surface integral over hypersurface σ contains three integrals. However, in case of
boost-invariance one of the integrals can be calculated analytically. Lets see how
this is done explicitly. Because we assume that system is boost-invariant, the freeze-
out hypersurface is independent of coordinate ηS and we can parameterize it as
τ = τ(x,y). In this case surface 4-vector in (τ,x,y, ηs) coordinates is given by

σµ = (τ(x,y),x,y,0). (4.54)
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However we want to express this in (t,x,y,z)-coordinates in order to make contrac-
tion with pµ. This kind of transformation from (τ,x,y, ηs)-coordinates to (t,x,y,z)-
coordinates is done by a matrix

Xµ
ν′ = ∂xµ

∂xν′
=


cosh ηs 0 0 τ sinh ηs

0 1 0 0
0 0 1 0

sinh ηs 0 0 τ cosh ηs

 . (4.55)

Now we can write the surface vector in (t,x,y,z)-coordinates as

σµ = Xµ
ν′σ

ν′ = (τ(x,y) cosh ηs,x,y,τ(x,y) sinh ηs). (4.56)

In general normal vector dσµ on 3-dimensional hypersurface, which can be parame-
terized in terms of three parameters u,v and w, is determined by

dσµ = εµναβ
∂σν

∂u

∂σα

∂v

∂σβ

∂w
dudvdw, (4.57)

where εµναβ is totally antisymmetric fourth rank permutation tensor for which
εµναβ = −1 for all even permutations of (0,1,2,3). Using this identity it is possible to
write normal vector of the hypersurface as

dσµ = −[±](cosh ηs,−
∂τ

∂x
,− ∂τ

∂y
,− sinh ηs)τdxdydηs, (4.58)

where additional factor [±] =sign(∂T/∂τ) is added so that normal vector of the
surface element points outwards from the surface to the smaller temperature. In
(t,x,y,z)-coordinates four-momentum pµ can be written in terms of rapidity y:

pµi = (mT,i cosh y,pT,i,mT,i sinh y), (4.59)

where pT,i is the transverse momentum vector and mT,i is transverse mass defined
as

mT,i =
√
m2
i + p2

T,i. (4.60)

Combining Eqs.(4.58) and (4.59) we obtain

dσµpµi = −[±]
(
mT,i cosh(y − ηs)− pxi

∂τ

∂x
− pyi

∂τ

∂y

)
τdxdydηs. (4.61)

Now that we have written out the surface part dσµpµi we still must deal with
distribution functions fi(x,p). Like in section 3, we write distribution function as
sum of equilibrium part f0i and some correction δfi:

fi(x,p) = f0i + δfi, (4.62)
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f0i =
[

exp
(pµi uµ − µi

T

)
± 1

]−1
. (4.63)

Lets first study case where we only have equilibrium distribution. In this case
distribution function can be expanded using relation:

1
ex ± 1 = e−x

1± e−x = e−x
∞∑
n=0

(∓1)ne−nx =
∞∑
n=1

(∓1)n−1e−nx, (4.64)

where geometrical series is used when expanding (1± e−x)−1. Now we can write

f0i =
∞∑
n=1

(∓1)n−1 exp
(
nµi − npµi uµ

T

)
. (4.65)

In addition we note that 4-velocity can be written in (t,x,y,z)-coordinates in form of

uµ = γ(1, ux, uy, z/t) = γT (cosh ηs,vT, sinh ηs), (4.66)

where
vT = (ux, uy) cosh ηs, γT = (1− v2

T )−1/2. (4.67)

Contracting this 4-velocity with 4-momentum from Eq.(4.59) we get

pµi uµ = γT (mT,i cosh(y − ηs)− pT,i · vT). (4.68)

Now putting Eqs.(4.61),(4.65) and (4.68) back to Cooper-Frye integral formula (4.53)
we obtain

E
d3Ni

d3p
=− gi

(2π)3

∞∑
n=1

(∓1)n−1
∫

dxdy′[±]τ exp
(
n
µi + γT − pT,i · vT

T

)

×
∫ ∞
−∞

dηs
[
mT,i cosh(y − ηs)− pxi

∂τ

∂x
− py

′

i

∂τ

∂y′

]
× exp

(
− γTmT,i

T
n cosh(y − ηs)

)
,

(4.69)

where we denoted spatial y-coordinate as y′ in order to separate it from rapidity y.
From this form of the hadron spectrum we can see that all dependence of rapidity y
and ηs come through combination y − ηs. In addition contribution from ηs integral
is dominated by region y ≈ ηs and exponentially suppressed in elsewhere. Now we
finally see that assumption made in section 4.3 that hydrodynamic variables are
independent of ηs indeed leads to y independent particle spectrum. We also notice
that we can do change of variables η′ = y − ηs which leads to y independent hadron
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spectrum. In a matter of fact after this kind of change of variables ηs integral can be
done analytically and written in terms of modified Bessel functions of the second
kind:

E
d3Ni

d3p
=− gi

(2π)3

∞∑
n=1

(∓1)n−1
∫

dxdy′[±]τ exp
(
n
µi + γT − pT,i · vT

T

)

×
[
mT,iK1

(
n
γTmT,i

T

)
−
(
pxi
∂τ

∂x
− py

′

i

∂τ

∂y′

)
K0
(
n
γTmT,i

T

)]
.

(4.70)

When comparing results to the data it is useful to write left hand side of Cooper-Frye
integral in terms of rapidity y:

E
d3Ni

d3p
= 2 d3Ni

dydp2
Tdφ

, (4.71)

where φ is the polar coordinate angle of the momentum vector. From this form
it then easy to integrate over transverse momentum or angle φ to obtain different
observable quantities.

Next let’s study viscous correction to this equilibrium spectra. We did see in
section 3.4 that correction to the equilibrium distribution f0i can be written in form

δf = f0f̃0φ = f0f̃0
(
c0 + c1E + c2E

2 + c
〈µν〉
0 p〈µpν〉

)
, (4.72)

where coefficients c0,c1,c2 ∼ Π and c〈µν〉0 ∼ πµν are defined in Eqs.(3.69) and (3.81).
We also left out index i in order to simplify notation. In this thesis we only consider
freeze-out corrections which are caused by shear viscosity. In this case Eq.(4.72)
simplifies to

δf = f0f̃0
pµpνπ

µν

2J42
, (4.73)

where
Jnq = 1

(2q + 1)!!

∫
dKEn−2q

k (−∆αβk
αkβ)qf0kf̃0k, (4.74)

and one must remember that Ek = kµuµ 6= E. Now we can expand f0f̃0 similarly
than what we did for f0:

f0f̃0 = f0(1∓ f0) =
∞∑
n=1

n(±)n+1 exp
(
nµi − npµi uµ

T

)
. (4.75)

However in practice we can take only first term from this series because this sum
converges quickly and we already study a small correction to the equilibrium hadron
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spectra. In this approximation we see that f0 behaves like the classical Boltzmann
gas, so

f0f̃0 ≈ f0 = exp
(
µ− pµuµ

T

)
. (4.76)

For classical Boltzmann gas we can get relations between thermodynamic integrals
Jnq. This can be most conveniently done by doing partial integration in fluids rest
frame where uµ = (1,0,0,0), Ek = k0 and −∆αβk

αkβ = |k|2. In this case:

Jnq =Inq = − T

(2q + 1)!!

∫
dK︸︷︷︸

gd3k/(2π)3k0

En−2q
k (−∆αβk

αkβ)q ∂|k|
∂Ek︸ ︷︷ ︸
Ek/|k|

∂

∂|k|
f0

= T

(2q + 1)!!

∫ dΩ d|k|
(2π)3

∂

∂|k|

(
g|k|2q+1En−2q

k

)
f0

= T

(2q + 1)!!

∫ dΩ d|k|
(2π)3 g

(
(2q + 1)|k|2qEn−2q

k

+ (n− 2q)|k|2q+1En−2q−1
k

|k|
Ek

)
f0

= T

(2q + 1)!!

∫
dK

(
(2q + 1)(−∆αβk

αkβ)q−1En−1−2q
k

+ (n− 2q)(−∆αβk
αkβ)qEn−2q−1

k

|k|
Ek

)
f0

= T
(
In−1,q−1 + (n− 2q)In−1,q

)
,

(4.77)

where we neglected surface term because f0 vanishes exponentially when |k| → ∞.
Using this relation two times for J42 we obtain

J42 = T 2(ε+ p0), (4.78)

where we used kinetic theory definitions for ε = I20 and p0 = I21. Now we can write
viscous correction in simple form

δf = f0
pµpνπ

µν

T 2(ε+ p0) . (4.79)

Hydrodynamic evolution is done in (τ,x,y,η) coordinates so all components of πµν

should be expressed in this basic. However we have to calculate contraction pµpνπµν

and we only know pµ in (t,x,y,z) coordinates. pµ in (τ,x,y,η) coordinates can be
obtained by using inverse of transformation (4.55):

pµ
′ =

(
Xµ′

ν

)−1
pν = (mT cosh(y − ηs),pT,

mT

τ
sinh(y − ηs)). (4.80)
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Using inverse of transformation (4.55) we can also calculate metric gµν in these new
coordinates and it is

gµν = Diag(1,− 1,− 1,− τ 2). (4.81)

After these transformations obtaining pµpνπµν is straightforward calculation. Final
answer reads:

pµpνπ
µν = m2

T cosh2(y − ηs)πττ + (px)2πxx + (py)2πyy + τ 2m2
T sinh2(y − ηs)πηη

− 2mT cosh(y − ηs)
(
pxπτx + pyπτy

)
− 2τm2

T cosh(y − ηs) sinh(y − ηs)πτη

+ 2pxpyπxy + 2τmT sinh(y − ηs)
(
pxπηx + pyπηy

)
(4.82)

Finally we are in position to calculate viscous correction to hadron spectra. This is
done by substituting Eqs.(4.61), (4.79) and (4.82) to Cooper-Frye integral. Like in
case of equilibrium spectrum ηs integral can be done analytically. After little bit of
manipulation of hyperbolic functions we arrive to the final result:

E
d3Nvisc

d3p
= − gi

T 2(ε+ p0)(2π)3

∫
dxdy[±]τ exp

(
µ+ γT − pT · vT

T

)

×

((px)2πxx + (py)2 + pxpyπxy
)(

mTK1 −
(
px
∂τ

∂x
+ py

∂τ

∂y

)
K0

)

+m2
Tπ

ττ

(
1
4mT

(
K3 + 3K1

)
− 1

2

(
px
∂τ

∂x
+ py

∂τ

∂y

)(
K2 + K0

))

+ τ 2m2
Tπ

ηη

(
1
4mT

(
K3 −K1

)
− 1

2

(
px
∂τ

∂x
+ py

∂τ

∂y

)(
K2 −K0

))

− 2mT

(
pxπτx + pyπτy

)(
1
2mT

(
K2 −K0

)
−
(
px
∂τ

∂x
+ py

∂τ

∂y

)
K1

),

(4.83)

where each modified Bessel function has an argument γTmT/T . The total hadron
spectra can be obtained by summing viscous correction to result from equilibrium
calculation Eq.(4.70).

Even though bulk viscosity is taken account in hydrodynamic evolution we do
not take it account when calculating viscous correction to hadron spectra. The
main reason for this is that theory behind bulk viscous corrections is not yet well
established. However, there has been some researches which use bulk viscosity
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correction to the distribution function, which is calculated using Chapman-Enskog
expansion [66], [67]. In these cases the correction is form of

δfbulk = −f0(1± f0)Cbulk
T

[
m2

3pµuµ
−
(1

3 − c
2
s

)
pµu

µ

]
Π, (4.84)

where cs is the speed of sound and

1
Cbulk

= 1
3T

∑
i

gim
2
i

∫ d3k
(2π)3Ek

f0i(1± f0i)
[
m2
i

3Ek
−
(1

3 − c
2
s

)
Ek

]
. (4.85)

Unfortunately in this case one cannot integrate one integral analytically when
calculating Cooper-Frye integral (4.53), which makes numerical calculations a bit
more expensive. In theory ignoring bulk viscosity in freeze-out could be problematic.
Nevertheless, at least when Tdec = 100 MeV, effect of bulk viscosity is very small
compared to shear viscosity at the freeze-out. This is demonstrated in figure 9 where
we present quantities |Π|/p0 and √πµνπµν/p0 averaged over the freeze-out surface
in function of centrality. From this figure we can see that in most central collisions
bulk viscosity is around one fourth of the shear viscosity at the freeze-out surface.
The difference between shear and bulk viscosity gets only larger when going to a
larger centrality classes. From this we can conclude that at least in context of this
thesis it is justified to ignore bulk viscous correction at the freeze-out.

After calculating particle spectra at the thermal freeze-out, one still needs to
take account possible decays of the unstable particles before they reach detectors.
The Cooper-Frye integral is calculated for all particles included in the HRG part of
the EoS. This consists in total several hundreds of particles which each can decay to
other particles through multiple decay channels. In this thesis we take account all 2-
and 3-particle decays. However, we don’t go through how these decays are calculated
in practice. Interested reader can find more details about calculating these particle
decays in Refs.[68], [69].
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Figure 9. Quantities 〈|Π|/p0〉 and 〈|πµν |/p0〉 = 〈|√πµνπµν/p0〉 as function of
centrality. Averages are over 100 MeV constant temperature freeze-out surface.
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5 Numerical methods

5.1 Equations of motion

In section 2 we derived equations of motion for hydrodynamics in terms of different
equilibrium and dissipative quantities. However it is numerically more convenient to
solve components of the energy-momentum tensor from the conservation law

∂µT
µν = 0. (5.1)

We also use boost-invariant approximation where the natural choice of coordinates is
(τ,x,y,ηs). When changing coordinates we have to replace derivatives ∂µ with the
covariant derivatives Dµ [70]. This leads to

DµT
µν = ∂µT

µν + ΓµµλT λν + ΓνµλT µλ = 0, (5.2)

where
Γµνλ = 1

2g
µσ
(
∂νgλσ − ∂σgνλ + ∂λgσν

)
(5.3)

are the Chritoffel symbols. We already calculated metric gµν in (τ,x,y,ηs) coordinates
in section 4.5.2 and it reads

gµν = Diag(1,− 1,− 1,− τ 2). (5.4)

Using this form of the metric it is easy to see that only non-zero Chirstoffel symbols
are

Γτηη = τ, Γηητ = Γητη = 1
τ
. (5.5)

Now we can write Eqs.(5.2) in form

∂µT
µτ + 1

τ
T ττ + τT ηη = 0,

∂µT
µx + 1

τ
T τx = 0,

∂µT
µy + 1

τ
T τy = 0,

∂µT
µη + 3

τ
T τη = 0.

(5.6)
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These equations can be further simplified because all components of T µν are not
independent. In order to do so, we first need to know form of fluid’s 4-velocity in
these new coordinates. This is done by applying inverse of transformation (4.55) to
the 4-velocity in Eq.(4.66):

uµ
′ =

(
Xµ′

ν

)−1
uν = γT (1,vT, 0). (5.7)

Now using definition (2.56) we can write following relations for the components of
the energy-momentum tensor

T xx = vxT
τx + (p0 + Π) + πxx − vxπτx,

T τx = vxT
ττ + vx(p0 + Π) + πτx − vxπττ ,

T xy = vyT
τx + πxy − vyπτx,

T ηη = 1
τ 2 (p0 + Π) + πηη,

(5.8)

where indices x and y are interchangeable. We also note that T ηµ = πηµ when µ 6= η.
In the boost-invariant approximation all derivatives of η vanish in which case we can
eliminate last equation from Eqs. (5.6), because it does not provide any addition
information. The rest of equations of motion (5.6) can be simplified using relations
(5.8) to a form

∂τT
ττ + ∂x(vxT ττ ) + ∂y(vyT ττ ) = −∂x

(
vx(p0 + Π− πττ ) + πτx

)
− ∂y

(
vy(p0 + Π− πττ ) + πτy

)
− 1
τ

(T ττ + p0 + Π)− τπηη
(5.9)

∂τT
τx + ∂x(vxT τx) + ∂y(vyT τx) = −1

τ
T τx − ∂y(πxy − vyπτx)

− ∂x(p0 + Π + πxx − vxπτx),
(5.10)

∂τT
τy + ∂x(vxT τy) + ∂y(vyT τy) = −1

τ
T τy − ∂x(πxy − vxπτx)

− ∂y(p0 + Π + πyy − vyπτy).
(5.11)

Finally equations of motion (5.9)-(5.11) are in a form where they can be solved
numerically using the SHASTA algorithm, which is introduced in section 5.2. The
equations of motion for dissipative quantities (4.42) and (4.43) can also be written
in form which can be numerically solved using the SHASTA algorithm:

∂τΠ + ∂x(vxΠ) + ∂y(vyΠ) = Π
(
∂xvx + ∂yvy

)
+ 1
τγT

(
− ζθ + ...

)
(5.12)
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∂τπ
µν + ∂x(vxπµν) + ∂y(vyπµν) = πµν

(
∂xvx + ∂yvy

)
+ 1
τγT

(
2ησµν + ...

)
, (5.13)

where we didn’t explicitly write all terms from the right-hand side of Eqs.(4.42) and
(4.43). In dissipative equations we have quantities θ, σµν and ωµν , which all have to
be written in terms of velocity. This is already done in Ref.[71] and not repeated
here.

5.2 SHASTA

The SHASTA (SHArp and Smooth Transport Algorithm) was introduced by Jay P.
Boris and David L. Book in 1971 [72] and it is used to numerically solve equations
which are of the form

∂tρ(x,t) +
3∑
i=1

∂i(viρ(x,t)) = C, (5.14)

where v is local flow velocity and C includes all possible source terms. Without the
source terms this equation expresses local conservation of quantity

m =
∫
V

d3xρ(x,t). (5.15)

This is why quantity ρ can be considered as a density and m as a mass. Lets first
study how SHASTA works in one dimension and then generalize algorithm into two
dimensions.

5.2.1 SHASTA in one dimension

In one dimension Eq.(5.14) simplifies to

∂tρ(x,t) + ∂x(vxρ(x,t)) = C. (5.16)

The SHASTA algorithm consists of two major stages, a transport stage which is
followed by an antidiffusive stage. Both of these stages are executed in a cell grid,
where all variables are known at the node points which typically locate at the center
of the cell. In transport stage the density distribution between two node points is
approximated by linear distribution like in figure 10. Mass between two node points
is
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Figure 10. The SHASTA transport stage 1. Picture from Harri Niemi [69].

Figure 11. The SHASTA transport stage 2. Picture from Harri Niemi [69].

m = 1
2(ρnj + ρnj+1)∆x, (5.17)

where upper index indicates time steps and lower index position of node point. Now
we transfer node points by a distance vj∆t. This is illustrated in figure 11 Mass
between node points must be conserved so we define new densities ρ′j and ρ′j+1 so
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that

m′ = 1
2(ρ′j + ρ′j+1)(∆x− vj∆t+ vj+1∆t) = 1

2(ρnj + ρnj+1)∆x = m. (5.18)

Now we can choose

ρ′j = ∆x
∆x′ρ

n
j , (5.19)

where ∆x′ is the new distance between node points defined as

∆x′ = ∆x− vj∆t+ vj+1∆t. (5.20)

Figure 12. The SHASTA transport stage 3. Picture from Harri Niemi [69].

To get density ρn+1
j we must calculate average density on the original cell to

obtain a piecewise-constant mass distribution like in figure 12. With this kind of
method we can write the updated density in terms of the original quantities

ρn+1
j = 1

2Q
2
−(ρnj−1 − ρnj ) + 1

2Q
2
+(ρnj+1 − ρnj ) + (Q+ +Q−)ρnj , (5.21)

where
Q± = 1/2∓ εj

1± (vj±1 − vj) ∆t
∆x
, (5.22)

εj = vj
∆t
∆x. (5.23)
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In order to make this method work one must demand that

|εj| = |vj
∆t
∆x | <

1
2 , (5.24)

because otherwise the node point would move out of the cell. Much artificial diffusion
is created during this transport phase. That’s why there is antidiffusion stage where
the generated diffusion is compensated with antidiffusion. One advantage of SHASTA
is that explicit form of the diffusion can be obtained. When velocity is constant
everywhere equation (5.21) takes form

ρn+1
j = ρnj + 1

2εj(ρ
n
j+1 − ρnj−1) +

(1
8 +

ε2j
2
)
(ρnj+1 − 2ρnj + ρnj−1), (5.25)

where final term tells amount of diffusion. In this work ∆t
∆x = 0.2 is used so that

ε < 0.02 and velocity independent part of diffusion dominates. If we add antidiffusion
to density which fully compensates diffusion in equation (5.25) we get

ρ̄n+1
j = ρn+1

j − fj+1/2 + fj−1/2, (5.26)

where
fj±1/2 = ±

(1
8 + ε2

2
)
(ρnj±1 − ρnj ). (5.27)

Unfortunately using this kind of antidiffusion directly generates unphysical ripples
in to the solutions. This problem can be solved by requiring that no new maxima or
minima is generated in the antidiffusion stage. To guarantee this the antidiffusion
flux is defined as

f cj+1/2 = Smax(0,min(S∆j−1/2,D|∆j+1/2|,S∆j+3/2))), (5.28)

where
S = sign(∆j+1/2), (5.29)

∆j+1/2 = ρnj+1 − ρj (5.30)

and D is antidiffusion coefficient. According to equation (5.25) this coefficient should
have numerical value of 1/8 + ε2/2, but in practice this value seems to produce
unstable solutions so smaller values are used. Typically diffusion coefficient is set
somewhere between 0.10− 0.11. Now the density after the antidiffusion stage is

ρ̄n+1
j = ρn+1

j − f cj+1/2 + f cj−1/2, (5.31)
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There are still source terms C that need to be added to the solution. This is simply
done by following way

ρ̃n+1
j = ρ̄n+1

j − C∆t. (5.32)

After the source terms are added we can recursively use SHASTA algorithm to
get solution for Eq.(5.16) at arbitrary time. More details in implementing one
dimensional SHASTA can be found from Ref.[73].

5.2.2 SHASTA in two dimensions

The transport stage of the two-dimensional SHASTA algorithm can be done by
applying Eq.(5.21) in both spatial dimensions separately. However, the antidiffusion
stage has to be modified in order to prevent existence of new minima or maxima.
Modification to the antidiffusion stage was done by Zalesak in 1979 [74]. In two
dimensions, where node points are denoted by (i,j), numerical diffusion flux is defined
as:

fi+1/2,j = D(ρn+1
i+1,j − ρn+1

i,j ), (5.33)

where ρn+1
i,j is the density after the transport stage. Next we want to find some

limiting densities ρmini,j and ρmaxi,j so that when ρmini,j < ρi,j < ρmaxi,j there is no new
minima or maxima that are created. Zalesak defines these densities as

ρmaxi,j = max(ρai−1,j,ρ
a
i,j,ρ

a
i+1,j,ρ

a
i,j−1,ρ

a
i,j+1),

ρai,j = max(ρni,j,ρ̄n+1
i,j ),

ρmini,j = min(ρbi−1,j,ρ
b
i,j,ρ

b
i+1,j,ρ

b
i,j−1,ρ

b
i,j+1),

ρbi,j = min(ρni,j,ρ̄n+1
i,j ),

(5.34)

where ρn is the density in previous time step and ρ̄ is density after the transport
stage which includes the pressure gradient source terms. When doing antidiffusion
using the Zalesak algorithm, the first step is to set numerical diffusion flux to zero in
directions of pressure gradients. This is done because pressure gradients will enhance
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minima and maxima. Therefore we have to set restrictions

fi+1/2,j = 0, if fi+1/2,j(ρ̄n+1
i+1,j − ρ̄n+1

i,j ) < 0

and either fi+1/2,j(ρ̄n+1
i+2,j − ρ̄n+1

i+1,j) < 0

or fi+1/2,j(ρ̄n+1
i,j − ρ̄n+1

i−1,j) < 0, (5.35)

fi,j+1/2 = 0, if fi,j+1/2(ρ̄n+1
i,j+1 − ρ̄n+1

i,j ) < 0

and either fi,j+1/2(ρ̄n+1
i,j+2 − ρ̄n+1

i,j+1) < 0

or fi,j+1/2(ρ̄n+1
i,j − ρ̄n+1

i,j−1) < 0.

In the Zelasek algorithm one also has to define following flux related quantities:

R+
i,j =


min(1, O+

i,j/P
+
i,j), if P+

i,j > 0

0, if P+
i,j = 0

, (5.36)

R−i,j =


min(1, O−i,j/P−i,j), if P−i,j > 0

0, if P−i,j = 0
, (5.37)

where

P+
i,j =

∑
(all flux into cell (i,j))

= max(0, fi−1/2,j)−min(0,fi+1/2,j) + max(0, fi,j−1/2)−min(0,fi,j+1/2),

O+
i,j = ρmaxi,j − ρ̄n+1

i,j ,

P−i,j =
∑

(all flux out from cell (i,j))

= max(0, fi+1/2,j)−min(0,fi−1/2,j) + max(0, fi,j+1/2)−min(0,fi,j−1/2),

O−i,j = ρ̄n+1
i,j − ρmini,j .

(5.38)

Using these quantities one can then obtain final form of antidiffusion fluxes:

f ci+1/2,j = Ci+1/2,jAi+1/2,j,

f ci,j+1/2 = Ci,j+1/2Ai,j+1/2,
(5.39)

where

Ci+1/2,j =


min(R+

i+1,j, R
−
i,j), if fi+1/2,j > 0

min(R+
i,j, R

−
i+1,j), if fi+1/2,j < 0

, (5.40)

Ci,j+1/2 =


min(R+

i,j+1, R
−
i,j), if fi,j+1/2 > 0

min(R+
i,j, R

−
i,j+1), if fi,j+1/2 < 0

. (5.41)
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The final updated density can then be obtained by adding these antidiffusions to
transport stage similar manner that was done in one-dimensional case:

ρ̃n+1
i,j = ρn+1

i,j − f ci+1/2,j + f ci−1/2,j − f ci,j+1/2 + f ci,j−1/2 −∆tC, (5.42)

where we also included the effect of the source terms.

5.3 Structure of the code

The basic of numerical calculations done in this thesis was already existing numerical
code, which was first tested in Ref.[71] and then successfully applied in the context
of heavy-ion collisions in Refs.[7], [9], [10], [75]. However, these studies only included
shear viscosity to the evolution of the system. As a part of this thesis, bulk viscosity
was also included to this existing numerical code.

The used code consist from two major parts: one which calculates hydrodynamic
evolution and another which calculates final particle spectrum using methods dis-
cussed in section 4.5.2. The hydrodynamic evolution is mostly solved using the
SHASTA algorithm but it can only solve evolution of components energy momentum
tensor and dissipative quantities from one time-step to next one. Because source
terms of Eqs.(5.9)-(5.13) contain also pressures and velocities it is necessary to have
some method how to extract these quantities between time-steps. This can be done
by noticing that energy density and transverse components of velocity can be written
as:

ε = T ττ − πττ − vx
(
T τx − πτx

)
− vy

(
T τy − πτy

)
,

vi = T τi − πτi

T ττ − πττ +
(
p0(ε) + Π

) , (5.43)

where i = x,y. So we have group of equations which can be solved numerically when
we know equation of state p0 = p0(ε). After velocity and pressure are known, we
could use SHASTA recursively to obtain the full time evolution. However, better
accuracy is achieved when first calculating velocity and pressure using half time-step
from ti to ti + ∆t/2 and then doing complete time-step from ti to ti + ∆t using half
time-step values for velocity and pressure in source terms.

The hydrodynamic evolution has to calculated to the point in which whole thermal
freeze-out surface is inside our (τ,x,y) space, i.e. if freeze-out surface is defined by
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τsurf = τsurf (x,y) hydrodynamic evolution must be continued until τ > τsurf (x,y) for
all x,y. Of course one cannot prior know the parametrization of freeze-out surface,
so its not so obvious when to stop hydrodynamic evolution. However we chose
freeze-out surface as a constant temperature hypersurface with T = 100 MeV. With
this choice one can at each time step check the temperature in every grid point
and then stop evolution when temperature drops below 100 MeV everywhere. The
freeze-out surface is then found from full evolution space by using the Cornelius
algorithm [76].

In the second part of the code, integrals (4.70) and (4.83) are calculated numeri-
cally for each hadron species separately to obtain hadron spectra at the freeze-out.
After that 2- and 3-particle decays are calculated. This leads to the final hadron
spectra from which one can calculate the observable quantities that can be compared
with the data.
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6 Results

The simulations of this thesis were done to study effect of bulk viscosity in case
of a Pb+Pb collisions with a center of mass energy √sNN = 2.760 TeV. This was
done by using three different parametrizations: one with the bulk viscosity and two
without it. The initial state parameters and the chemical freeze-out temperatures
for all parametrizations are shown in table 2. Values for Ksat parameter were chosen
such a way that total charged particle multiplicity would match with the data in
0-5% centrality class. All parametrizations included constant shear viscosity with
no temperature dependence. For bulk viscosity, temperature dependence was taken
account with similar parametrizations that was used in Refs.[12], [35]:

ζ/s(T ) = (ζ/s)max
1 +

(
T−(ζ/s)T0
(ζ/s)width

) , (6.1)

where values (ζ/s)max = 0.062, (ζ/s)T0 = 180 MeV and (ζ/s)width = 0.019 were used.
Temperature dependence of bulk viscosity is also shown in figure 13 from where on
can see that bulk viscosity peaks at the QCD phase transition temperature T = 180
MeV. This kind of behavior is expected based on calculations in Refs.[77]–[79].

Ksat β Tchem (MeV)
PCE150+bulk, η/s = 0.1 0.56 0.8 150
PCE150, η/s =0.15 0.60 0.8 150
PCE175, η/s =0.15 0.52 0.8 175

Table 2. The initial state parameters and the chemical freeze-out temperatures
for different parametrizations.
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Figure 13. Temperature dependence of the bulk viscosity.

6.1 Hydrodynamic evolution

The hydrodynamic evolution were done in a grid with Nx = Ny = 220 grid points in
both x, y directions. The distance between each grid point was set to ∆x = ∆y = 0.15
fm and time between each time step to ∆t = 0.06 fm.

The expansion of the medium during the hydrodynamic evolution is caused by
the pressure gradients. The effect of these gradients can be seen in figure 14, which
shows transverse velocity as a function of radius in most central 0− 5% collisions.
At the initial state biggest pressure gradients are around r = 6 fm (check Fig.3),
which generates peak in the velocity profile at the early times τ = 1.4 fm. The
similar kind of behavior can be seen with all parametrizations even though adding
bulk viscosity will reduce the height of the peak when temperature is close to 180
MeV. This is not a surprise since bulk viscosity is supposed to resist the expansion of
the fluid and 180 MeV is the same temperature in which ζ/s(T ) gets its maximum
value. We also notice that at the edges of the grid, when r ≥ 16 fm, velocity seems
to remain constant and mostly depend on chemical freeze-out temperature. However,
this behavior should not have impact on measurable quantities since there is almost
no material (i.e. energy density is close to zero) when r ≥ 16 fm. At the time τ = 7.4
fm transverse velocity has increased significantly. The effect of bulk viscosity at early
times can be still seen as a small dip in the transverse velocity profile around r = 8
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fm but other than that all parametrizations have similar behavior.

Figure 14. Transverse velocity as a function of radius at times τ = 1.3, 7,4 fm
in most central 0-5% collisions.

The entropy production during hydrodynamic evolution for centrality classes
0-5% and 30-40% is illustrated in figures 15 and 16. In case of 0-5% centrality class
the most of the entropy is produced within first couple of fm. The initial production
of entropy seems to heavily depend on chemical freeze out-temperature and value
of η/s. At the times 3 fm ≤ τ ≤ 12 fm, only parametrization with bulk viscosity
have noticeable increase in entropy, which indicates that the bulk viscosity produces
entropy constantly throughout the evolution while the shear viscosity produces lots
of entropy, but only at the early times. After the time τ = 12 fm total entropy seems
to be decreasing, which would violate the second law of thermodynamics. Of course
this is not the case and the decrease of entropy is caused by the fact that at the
late times part of the fluid is already gone outside the grid, which decreases the
entropy. This doesn’t have any effect on final observables because temperature of
this escaping fluid is already below the freeze-out temperature 100 MeV. The entropy
seems to be produced similar manner also in case of 30-40% centrality class. The
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biggest difference is that the values of dS/dy are around three times smaller than
in previous case. The bulk viscosity also seems to have bigger impact on entropy
production, which translates to bigger values of entropy at the late times.

Figures 15 and 16 also show points in which center of the system reaches freeze-out
temperature. After this point the whole system has decoupled and the hydrodynamic
evolution will no longer have any impact on observable quantities. In 0-5% centrality
class this freeze-out point seems mostly depend on chemical freeze-out temperature,
while in 30− 40% centrality class also viscosities seem to have an impact.
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Figure 15. The rapidity density of entropy as a function of longitudinal proper
time in 0-5% centrality class.

The systems anisotropy during hydrodynamic evolution was also studied. The
anisotropy of system can be characterized by the momentum space eccentricity
defined as [80]:

εp =
∫

dxdy(T xx − T yy)∫
dxdy(T xx + T yy) . (6.2)

Momentum eccentricity is closely related to elliptical flow coefficient v2 obtained from
hadron spectra. The momentum eccentricities as function of longitudinal proper time
for 0-5% and 30-40% centrality classes are shown in figures 17 and 18. With both
centralities the system starts initially from value εp = 0. This is because we have set
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Figure 16. The rapidity density of entropy as a function of longitudinal proper
time in 30-40% centrality class.

initial velocity to zero so T xx = T yy. When system is not completely cylindrically
symmetric pressure gradients start to generate difference between velocities vx and
vy. Collision systems with centrality 0− 5% are almost cylindrically symmetric, so
vx ∼ vy. This is why values eccentricities in fig.17 are much smaller when compared
to eccentricities in fig.18, where initial state geometry is more ellipsoidal (see Fig.3).
In case of 0-5% centrality class we see that viscosity only has small impact on
eccentricities at least in the late times. At the times 4 fm ≤ τ ≤11 fm there is
slight deviation between different parametrizastions which follows general trend
that smaller values of η/s correspond to larger eccentricities. The bulk viscosity
seems also have small impact in this region based on differences between different
parametrizations. For centrality 30-40% behavior seem pretty similar, except the
fact that effects of viscosity are little bit more apparent. The bulk viscosity in this
case seem to create clear peak at the time τ = 5 fm which was not so apparent with
centrality 0-5%.
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Figure 17. Momentum eccentricity as function of longitudinal proper time in
the 0-5% centrality class.
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Figure 18. Momentum eccentricity as function of longitudinal proper time in
the 30-40% centrality class.
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6.2 Multiplicities, average pT and flow harmonics

The Cooper-Frye integrals (4.70) and (4.83) were calculated numerically for different
values of transverse momentum pT and azimuthal angle φ. In simulations 51 evenly
distributed transverse momentum points, with ∆pT = 0.2 GeV, ranging from 0
GeV to 10 GeV were used. Azimuthal angle was calculated in 24 points that cover
all values of φ, i.e ∆φ = π/12. It was noticed that higher transverse momentum
resolution slightly increased multiplicities, but difference was insignificant in context
of this thesis. However, in future higher resolution should be used.
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Figure 19. Centrality dependence of the total charged hadron multiplicity for
different parametrizations. Experimental data is taken from ALICE [81].

The calculated total charged hadron multiplicities for different centrality classes
are shown in Fig, 19 and compared to the ALICE measurements [81]. As we see
all different paramerizations produce almost identical results and match with the
data in couple of most central centrality bin. However, at the larger centralities all
paramerizations overshoot the data quite considerably. This problem is caused by
the fact that we used averaged initial states that do not take account initial state
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fluctuations. Calculations that take account these fluctuations are done in Refs.[9],
[10] where the charged hadron multiplicity matches nicely with the data.

0 10 20 30 40 50 60

centrality (%)

100

101

102

103

dN
/d

y |y
|<

0.
5

ALICE
PCE150+bulk, /s=0.1
PCE150, /s=0.13
PCE175, /s=0.15

K+

+

p

Figure 20. Multiplicities of pions, kaons and protons as function of centrality
for different parametrizations. Experimental data is taken from ALICE [82].

The multiplicities of identified hadrons, were also calculated and they are shown
in figure 20 against the ALICE measurements [82]. Pion multiplicity matches well
with the data for all parametrizations even though centrality dependence is not quite
right. This is excepted since the centrality dependence of the total charged hadron
multiplicity was not perfect either. In case of kaons, multiplicities are constantly
too large no matter what parametrization is used. Unfortunately this cannot be
completely fixed by taking account the initial state fluctuations, but would most
likely require some changes in the equation of state. For protons, parametrizations
that use chemical freeze-out temperature Tchem =150 MeV fit well to the data while
parametrization using Tchem = 175 MeV overshoots the data by a large margin.

Figure 21 presents calculated values of elliptic flow coefficients v2 compared
against ALICE measurements of 4-particle cumulant v2{4} [83]. As can be seen from
the figure all parametrizations give similar values and match with the data very well
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except in the first 0-5% centrality bin. This again caused by the fact that we did not
take account initial state fluctuations which are the main source of anisotropy in
case of most central collisions. There is also some small deviations between different
parametrizations at large centralities, but even these could be mostly removed by
fine tuning the viscosity parameters.
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Figure 21. Centrality dependence of elliptic flow coefficient v2 for different
parametrizations. Calculations were compared to the ALICE measurements of
the 4-particle cumulant v2{4} [83].

The most important effect of the bulk viscosity can be seen from the centrality
dependence of the averaged transverse momentum, which is presented in Fig.22.
The PCE175, η/s = 0.15 -parametrization gives too small averaged pT values for all
studied hadrons while the PCE150, η/s = 0.13 -parametrization gives mostly too
large values, only exceptions being large centralities for pions and kaons. Adding bulk
viscosity reduces average pT of particles giving more accurate results at least in small
centralities. Nevertheless, even parametrization with bulk viscosity struggles to give
correct centrality dependence. Better centrality dependence could be obtained by
taking account initial state fluctuations [9]. Adding initial state fluctuations would
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also increase average pT to a such a level that using Tchem = 175 MeV, without bulk
viscosity, would give good agreement with the data. In this case all parametrizations
that have Tchem = 150 MeV but do not have bulk viscosity would produce way
too large values for average pT . This indicates that using bulk viscosity would be
necessary in order to produce good results for the identified hadron multiplicities
and for the average transverse momentum. However, detailed studies using bulk
viscosity together with EBYE EKRT initial state have not yet been done, so exact
effects of bulk viscosity in this situation are still unknown.
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Figure 22. Averaged transverse momentum of pions, kaons and protons as
function of centrality for different parametrizations. Experimental data is taken
from ALICE [82].
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7 Conclusion

In this thesis ultra relativistic heavy-ion collisions were modeled using the viscous
hydrodynamics and averaged initial state obtained from the EKRT-model. The
equation of state used was based on lattice QCD calculations and thermal freeze-out
was done using Cooper-Frye procedure, where only shear viscous correction was
taken account.

The main goal of this thesis was to study effects of bulk viscosity and provide some
theoretical background behind relativistic hydrodynamics and heavy ion collisions
in general. During hydrodynamic evolution bulk viscosity slowed down expansion
of the strongly interacting matter and produced some entropy at the later stages
of evolution. From the observable quantities, the bulk viscosity mainly affected to
the averaged transverse momenta, which was decreased in presence of bulk viscosity.
Even though parametrization that used bulk viscosity produced data reasonably well
there is still some room for improvements.

There are multiple ways to improve the accuracy of the simulations in a future.
First and foremost, the initial state fluctuations should be taken account in order
to get better centrality dependence for multiplicities. Taking account initial state
fluctuations would also make possible to compare higher order flow harmonics to
the data. Secondly bulk viscous correction at thermal freeze-out should also be
taken account. In addition, adding temperature dependence for shear viscosity and
fine-tuning all parameters could also improve the results.

In the future one could also start expanding simulations outside mid-rapidity
region. This would require tweaking the initial state and also modifying hydrodynamic
code to work in 3+1 dimensions. In addition, baryon density could no longer be
ignored and this should be taken account in EoS. However, all these additions will
cost lots of computation power and doing this kind of simulations with the fluctuating
initial state might not even be possible on modern hardware.
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Appendices

A Derivation of equations of motions for irreducible
vector and tensor moments

Equations of motion for irreducible vector and tensor moments (3.62) and (3.63) are
derived in this appendix. Lets start by writing general Eq.(3.30) in case of vector
moments:

ρ̇〈µ〉r = ∆µ
ν

d

dτ

∫
dKEr

kk
〈ν〉δfk = ∆µ

ν

∫
dK

d

dτ
(Er

k∆ν
α)kαδfk︸ ︷︷ ︸

Aµ

+
∫
dKEr

kk
〈ν〉δḟk (A.1)

The first part Aµ can be written as

Aµ = ru̇α

∫
dKEr−1

k k〈α〉k〈µ〉δfk −∆µ
ν

∫
dKEr

k(uν u̇α) + u̇νuα)kαδfk

= ru̇α∆µ
ν

∫
dKEr−1

k

(
k〈αkν〉 + 1

3∆αν(m2 − E2
k)
)
− u̇µ

∫
dKEr+1

k δfk

= ru̇αρ
αµ
r−1 + 1

3ru̇
µ(m2ρr−1 − ρr+1)− u̇µρr+1.

(A.2)

The second term can be opened up using Boltzmann equation (3.31):∫
dKEr

kk
〈ν〉δḟk =−

∫
dKEr−1

k k〈µ〉kα∇αδfk︸ ︷︷ ︸
Bµ

+
∫
dKEr−1

k k〈µ〉C[f ]︸ ︷︷ ︸
=C〈µ〉r−1

−
∫
dKEr−1

k k〈µ〉kα∇αf0k︸ ︷︷ ︸
Dµ

−
∫
dKEr

kk
〈µ〉ḟ0k︸ ︷︷ ︸

Gµ

,

(A.3)

where C〈µ〉r−1 is collision term defined by Eq.(3.38). Only term Bµ is containing δfk
which leads to irreducible moments. This term can be written as

Bµ = ∇α

∫
dKEr−1

k k〈µ〉kαδfk −
∫
dK∇α(Er−1

k ∆µ
ν )kνkα
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− (r − 1)∇αuβ

∫
dKEr−2

k k〈µ〉k〈α〉k〈β〉δfk︸ ︷︷ ︸
Bµ2

−
∫
dKEr−1

k ∇α(∆µ
ν )kνkαδfk︸ ︷︷ ︸

Bµ3

,

(A.4)
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where in the second term we used fact that ∇αuβ is orthogonal to uα and uβ. With
use of Eq.(3.11), term Bµ

1 can be calculated and written in terms of irreducible
moments:

Bµ
1 = ∇α

[
uα
∫
dKEr

kk
〈µ〉δfk +

∫
dKEr−1

k

(
k〈µkα〉 + 1

3∆µα(m2 − E2
k)
)
δfk

]
= θρµr +∇αρ

µα
r−1 + 1

3∇
µ(m2ρr−1 − ρr+1)− 1

3u
µθ(m2ρr−1 − ρr+1).

(A.5)

In case of Bµ
2 we need to use definition of the projection operator (3.23) to write

∆µ1µ2µ3
ν1ν2ν3 = 1

6
∑
Pµ,Pν

∆µ1
ν1 ∆µ2

ν2 ∆µ3
ν3 −

1
15

∑
Pµ,Pν

∆µ1µ2∆ν1ν2∆µ3
ν3 , (A.6)

so we can notice that

k〈µkαkβ〉 = k〈µ〉k〈α〉k〈β〉 − 3
5∆(µαk〈β〉)∆λσk

λkσ

= k〈µ〉k〈α〉k〈β〉 − 3
5∆(µαk〈β〉)(m2 − E2

k),
(A.7)

where ()- brackets denote symmetrization over all different indices. Now Bµ
2 can be

written as:

Bµ
2 = (r − 1)∇αuβρ

µαβ
r−2 + 1

5(r − 1)(∇µuβ +∇βu
µ)
∫
dKEr−2

k k〈β〉(m2 − E2
k)δfk

+ 1
5(r − 1)θ

∫
dKEr−2

k k〈µ〉(m2 − E2
k)δfk

= (r − 1)σαβρµαβr−2 + 2
5(r − 1)σµβ(m2ρβr−2 − ρβr ) + 1

3(r − 1)θ(m2ρµr−2 − ρµr ).

(A.8)

With a little bit of manipulation Bµ
3 can also be written in more convenient form

Bµ
3 = −

∫
dKEr−1

k (uµ∇αuβ + uβ∇αu
µ)kβkαδfk

= uµuβ∇α

∫
dKEr−1

k k〈β〉k〈α〉δfk −∇αu
µραr

= −uµuβ∇αρ
αβ
r−1 −

1
3u

µθ(m2ρr−1 − ρr+1) + (ωµα − σµα)ραr −
1
3θρ

µ
r ,

(A.9)

where ωµα = (∇µuα−∇αu
µ)/2 is vorticity tensor introduced in the main text. Putting

Eqs.(A.5), (A.8) and (A.9) back together we can write Bµ in terms of irreducible
moments

Bµ = ∆µ
ν∇αρ

να
r − ωµαραr + 1

3∇
µ(m2ρr−1 − ρr+1)− (r − 1)σαβρµαβr−2

− 1
5σ

µ
β

(
2(r − 1)m2ρβr−2 − (2r + 3)ρβr

)
− 1

3θ
(
(r − 1)m2ρµr − (r + 3)ρµr+2

)
.

(A.10)
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Now we still have to calculate equilibrium terms Dµ and Gµ. Lets start with Dµ

which can be written as

Dµ = ∆µ
ν∇α

∫
dKEr−1

k kνkαf0k︸ ︷︷ ︸
Dνα1

−(r − 1)∆µ
ν∇αuβ

∫
dKEr−2

k kνkαkβf0k︸ ︷︷ ︸
Dναβ2

, (A.11)

where Dνα
1 can be decomposed to parts which are parallel or orthogonal to 4-velocity:

Dνα
1 = Ir+1,0u

νuα − Ir+1,1∆να. (A.12)

Here Ir+1,1 is defined similarly than in Eq.(3.45) which can be seen by contracting
Eq.(A.12) with ∆να:

Ir+1,1 = −1
3∆ναD

µα
1 = −1

3〈E
r−1
k (∆αβk

αkβ)〉0, (A.13)

where we remembered that ∆µ
µ = 3. Now we can write

∆µ
ν∇αD

να
1 = −∆µ

ν∇α(∆ναIr+1,1) = −∇µIr+1,1

= −∇µ(α0) ∂

∂α0
Ir+1,1 −∇µ(β0) ∂

∂β0
Ir+1,1

= −Jr+1,1I
µ + Jr+2,1∇µβ0,

(A.14)

where Jmn = ∂Imn/∂α. Using thermodynamic relations (2.24), we can derive relation
between ∇µβ0 and other thermodynamic quantities:

∇µp0 = s∇µ(β−1
0 ) + n∇µ(µ) = −∇µβ0

( s
β2

0
+ nµ

β0

)
+ n

β0
Iµ. (A.15)

Solving ∇µβ0 leads to

∇µβ0 = nIµ − β0∇µp0

sβ1 + nµ
= nIµ − β0∇µp0

ε+ p0
, (A.16)

where we again used relations 2.24. We can also decompose Dνα
2 similarly to what

we did for Dνα
1 :

Dναβ
2 = Ir+2,0u

νuαuβ − 3Ir+2,1u
(ν∆αβ). (A.17)

In this case we are not interested from exact form of coefficients Ir+2,0 and Ir+2,1,
because both of these parts vanish when calculating Dµ, i.e.

(r − 1)∆µ
ν∇αuβD

ναβ
2 = 3(r − 1)Ir+2,1∆µ

ν∇αuβu
(ν∆αβ) = 0. (A.18)
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Now putting Eqs.(A.14) and (A.16) back to Eq.(A.11) we get

Dµ = Jr+2,1
nIµ − β0∇µp0

ε+ p0
− Jr+1,1I

µ. (A.19)

The last part Gµ can be massaged a bit by using chain rule and equation of motion
(2.60):

Gµ =
∫
dKEr

kk
〈µ〉ḟ0k =

∫
dKEr

kk
〈µ〉
(
α̇0
∂f0k

∂α0
+ β̇0

∂f0k

∂β0
+ Ėk

∂f0k

∂Ek

)
= −u̇νβ0

∫
dKEr

kk
〈µ〉k〈ν〉f0kf̃0k

= −u̇νβ0
[ ∫

dKEr
kk
〈µkν〉f0kf̃0k︸ ︷︷ ︸

=0

+1
3

∫
dKEr

k∆µν(∆αβk
αkβ)f0kf̃0k

]

= −β0u̇
µJr+2,1 = β0Jr+2,1

ε+ p0

(
∇µp0 − Πu̇µ +∇µΠ−∆µ

α∂βπ
αβ
)
,

(A.20)

where we also used orthogonality condition (3.27). Now finally we are in position to
put all different terms from Eqs. (A.2),(A.19),(A.19) and (A.20) back to Eq.(A.1).
This way we can write equations of motion for irreducible vector moment in following
form

ρ̇〈µ〉r − C
〈µ〉
r−1 =α(1)

r Iµ + 1
3θ
(
(r − 1)m2ρµr − (r + 3)ρµr+2

)
+ (r − 1)σαβρµαβr−2

+ ωµν ρ
ν
r −∆µ

ν∇αρ
να
r + β0Jr+2,1

ε+ p0

(
Πu̇µ −∇µΠ + ∆µ

α∂βπ
αβ
)

+ ru̇νρ
µν
r−1 + 1

5σ
µ
β

(
2(r − 1)m2ρβr−2 − (2r + 3)ρβr

)
− 1

3∇
µ(m2ρr−1 − ρr+1) + 1

3 u̇
µ
(
rm2ρr−1 + (r + 3)ρr+1

)
,

(A.21)

where we defined
α(1)
r = Jr+1,1 − Jr+2,1

n

ε+ p0
. (A.22)

Next lets write Eq.(3.30) for tensor moments:

ρ̇〈µν〉r =∆µν
αβ

d

dτ

∫
dKEr

kk
〈αkβ〉δfk = ∆µν

αβ

∫
dKEr

k

d

dτ
(∆αβ

λσ)kλkσδfk︸ ︷︷ ︸
Aµν1

+ ∆µν
αβ

∫
dK

d

dτ
(Er

k)k〈αkβ〉δfk︸ ︷︷ ︸
Aµν2

+∆µν
αβ

∫
dKEr

kk
〈αkβ〉δḟk.

(A.23)
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First term Aµν1 can be directly calculated:

Aµν1 = ∆µν
αβ

∫
dK(2∆α

λ

d

dτ
∆β
σ −

1
3∆λσ

d

dτ
∆αβ)kλkσδfk

= −2∆µν
αβu̇

β
∫
dKEr+1

k k〈α〉δfk = −2u̇〈µρν〉r+1

(A.24)

In term Aµν2 we need to use relation (A.7) to obtain

Aµν2 = r∆µν
αβu̇λ

∫
dKEr−1

k k〈αkβ〉kλδfk = r∆µν
αβu̇λ

∫
dKEr−1

k k〈α〉k〈β〉k〈λ〉δfk

= r∆µν
αβu̇λ

∫
dKEr−1

k

(
k〈αkβkλ〉 + 3

5∆(αβk〈λ〉)(m2 − E2
k)
)
δfk

= ru̇λρ
µνλ
r−1 + 2

5ru̇
〈µ
(
m2ρ

ν〉
r−1 − ρ

ν〉
r+1

)
.

(A.25)

The last term from Eq.(A.23) can be opened up using Boltzmann Eq.(3.31):

∆µν
αβ

∫
dKEr

kk
〈αkβ〉δḟk = −∆µν

αβ

∫
dKEr−1

k k〈αkβ〉kλ∇λδfk︸ ︷︷ ︸
Bµν

+
∫
dKEr−1

k k〈µkν〉C[f ]︸ ︷︷ ︸
=C〈µν〉r−1

−∆µν
αβ

∫
dKEr−1

k k〈αkβ〉kλ∇λf0k︸ ︷︷ ︸
Dµν

−
∫
dKEr

kk
〈µkν〉ḟ0k︸ ︷︷ ︸

Gµν

,

(A.26)

where C〈µν〉r−1 is again the same collision term which is defined in Eq.(3.38). In addition
Gµν = 0, because of the orthogonality condition (3.27). The term Bµν can be divided
into couple of smaller pieces:

Bµν = ∆µν
αβ∇λ

∫
dKEr−1

k k〈αkβ〉kλδfk︸ ︷︷ ︸
Bµν1

− (r − 1)∆µν
αβ∇λuσ

∫
dKEr−2

k k〈αkβ〉kλkσδfk︸ ︷︷ ︸
Bµν2

−∆µν
αβ

∫
dKEr−1

k ∇λ(∆αβ
σγ )kσkγkλδfk︸ ︷︷ ︸

Bµν3

.

(A.27)
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First piece Bµν
1 can be easily calculated using earlier relations

Bµν
1 = ∆µν

αβ∇λ

∫
dKEr−1

k

(
k〈α〉k〈β〉 − 1

3∆αβ(m2 − E2
k)
)(
Eku

λ + k〈λ〉
)
δfk

= ∆µν
αβ∇λ

[
uλραβr

]
+ ∆µν

αβ∇λ

∫
dKEr−1

k k〈αkβkλ〉δfk

+ ∆µν
αβ∇λ

∫
dKEr−1

k

(2
5∆λαk〈β〉 + 1

5∆αβk〈λ〉
)
(m2 − E2

k)δfk

= θρµνr + ∆µν
αβ∇λρ

αβλ
r−1 + 2

5∇
〈µ(m2ρ

ν〉
r−1 − ρ

ν〉
r+1).

(A.28)

The term Bµν
2 is little bit more complicated and it requires use of projection operator

with eight indices. From definition (3.23) we can see that it can be written in form

∆µ1µ2µ3µ4
ν1ν2ν3ν4 = 1

24
∑
Pµ,Pν

∆µ1
ν1 ∆µ2

ν2 ∆µ3
ν3 ∆µ4

ν4 −
1
84

∑
Pµ,Pν

∆µ1µ2∆ν1ν2∆µ3
ν3 ∆µ4

ν4

+ 1
105

∑
Pµ,Pν

∆µ1µ2∆µ3µ4∆ν1ν2∆ν3ν4

(A.29)

Using this projection operator we find out that

k〈αkβkλkσ〉 =k〈α〉k〈β〉k〈λ〉k〈σ〉 − 6
7∆(αβk〈λ〉k〈σ〉)(m2 − E2

k)

+ 3
35∆(αβ∆λσ)(m2 − E2

k)2.
(A.30)

Now we can use relation (A.30) to write Bµν
2 as

Bµν
2 = (r − 1)∆µν

αβ∇λuσ

∫
dKEr−2

k k〈αkβkλkσ〉δfk

+ 2
7(r − 1)∆µν

αβ

(
∇αuσ +∇σu

α
) ∫

dKEr−2
k k〈β〉k〈σ〉(m2 − E2

k)δfk

+ 1
7(r − 1)∆µν

αβθ
∫
dKEr−2

k k〈α〉k〈β〉(m2 − E2
k)δfk

− 2
35(r − 1)∆µν

αβ∇αuβ(m4ρr−2 − 2m2ρr + ρr+2)

= (r − 1)σλσρµνλσr−2 + 2
15(r − 1)σµν(m4ρr−2 − 2m2ρr + ρr+2)

+ 4
7(r − 1)σ〈µσ (m2ρ

ν〉σ
r−2 − ρν〉σr ) + 1

3(r − 1)θ(m2ρµνr−2 − ρµνr ).

(A.31)

The space-like gradient ∇λ in term Bµν
3 can be calculated similarly than comoving

derivative d/dτ in Eq.(A.24). This way Bµν
3 can be written as

Bµν
3 = −2∆µν

αβ∇σu
β
∫
dKEr

kk
〈α〉k〈σ〉δfk

= −2∆µν
αβ∇σu

β
∫
dKEr

k

(
k〈αkσ〉 + 1

3∆ασ(m2 − E2
k)
)
δfk

= 2(ω〈µλ − σ
〈µ
λ )ρν〉λr −

2
3θρ

µν
r −

2
3σ

µν(m2ρr − ρr+2).

(A.32)
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Term Dµν can be divided into equilibrium integrals Dαβλ
1 and Dαβλ

1 :

Dµν =∆µν
αβ∇λ

∫
dKEr−1

k kαkβkλf0k︸ ︷︷ ︸
Dαβλ1

− (r − 1)∆µν
αβ∇λuσ

∫
dKEr−2

k kαkβkλkσf0k︸ ︷︷ ︸
Dαβλσ2

.
(A.33)

We can decompose equilibrium integral Dαβλ
1 similarly than we did in case of vector

moments:

Dαβλ
1 = Ir+2,0u

αuβuλ − 3Ir+2,1∆(αβuλ), (A.34)

so that

∆µν
αβ∇λD

αβλ
1 = −2∆µν

αβ∇αuβIr+2,1. (A.35)

The form of Ir+2,1 can be obtained by contracting Dαβλ
1 with ∆αβuλ:

Ir+2,1 = −1
3∆αβuλD

αβλ
1 = −1

3〈E
r
k(∆αβk

αkβ)〉0, (A.36)

which agrees with definition (3.45). Decomposition for Dαβλσ
2 reads:

Dαβλσ
2 = Ir+2,0u

αuβuλuσ − 6Ir+2,1∆(αβuλuσ) + 3Ir+2,2∆(αβ∆λσ), (A.37)

so that

∆µν
αβ∇λuσD

αβλσ
2 = 2∆µν

αβ∇αuβIr+2,2. (A.38)

The thermodynamic integral Ir+2,2 can be solved by contracting Dαβλσ
2 with ∆αβ∆λσ:

Ir+2,2 = 1
15∆αβ∆λσD

αβλσ
2 = 1

15〈E
r−2
k (∆αβk

αkβ)2〉0, (A.39)

which again agrees with definition (3.45). The term Dµν can now be obtained by
combining Eqs.(A.35) and (A.38):

Dµν = −2σµν
(
Ir+2,1 + (r − 1)Ir+2,2

)
. (A.40)

Finally we can combine all terms from Eqs.(A.24),(A.25),(A.28),(A.31),(A.32) and
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(A.40) to obtain equations of motion for irreducible tensor moments

ρ̇〈µν〉r − C〈µν〉r−1 =2α(2)
r σµν + (r − 1)σαβρµναβr−2 −∆µν

αβ∇λρ
αβλ
r−1

− 2
5∇

〈µ(m2ρ
ν〉
r−1 − ρ

ν〉
r+1) + 2ω〈µα ρν〉αr

+ 2
7σ
〈µ
α

(
2(r − 1)m2ρ

ν〉α
r−2 − (2r + 5)ρν〉αr

)
+ 2

15σ
µν
(
(r − 1)m4ρr−2 − (2r + 3)m2ρr + (r + 4)ρr+2

)
+ 1

3θ
(
(r − 1)m2ρµνr−2 − (r + 4)ρµνr

)
,

(A.41)

where we have defined
α(2)
r = Ir+1,1 + (r − 1)Ir+2,2. (A.42)
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B Transport coefficients in 14-moment aproxima-
tion

In this appendix we list all transport coefficients for Eqs.(3.90)-(3.92). All transport
coefficients are written in terms of thermodynamic quantities or in terms of coefficients
γ and A, which are defined in Eqs.(3.71), (3.76), (3.83) and (3.88). The transport
coefficients for the bulk viscosity are:

τΠ = 1
A(0)

00
, (B.1)

ζ = m2α
(0)
0

3A(0)
00

, (B.2)

`Πn = m2τΠ

3

(
G30

D20
− γ(1)

−1

)
, (B.3)

τΠn = m2τΠ

3(ε+ p0)

(
∂γ

(1)
−1

∂ ln β0
− G30

D20

)
, (B.4)

λΠn = −m
2τΠ

3

(
∂γ

(1)
−1

∂α0
+ n

ε+ p0

∂γ
(1)
−1

∂β0

)
, (B.5)

λΠπ = m2τΠ

3

(
γ

(2)
−2 −

G20

D20

)
, (B.6)

δΠΠ = m2τΠ

3

(
2m−2 + γ

(0)
−2 −

G20

D20

)
. (B.7)

The transport coefficients for the particle diffusion current are:

τn = 1
A(1)

00
, (B.8)

κn = α
(1)
0

A(1)
00
, (B.9)

`nΠ = τn

(
n

ε+ p0
+ γ

(0)
−1

)
, (B.10)
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`nπ = τn

(
n

ε+ p0
− γ(2)

−1

)
, (B.11)

τnΠ = τn
ε+ p0

(
n

ε+ p0
+ ∂γ

(0)
−1

∂ ln β0

)
, (B.12)

τnπ = τn
ε+ p0

(
n

ε+ p0
+ ∂γ

(2)
−1

∂ ln β0

)
, (B.13)

λnΠ = τn

(
∂γ

(0)
−1

∂α0
+ ∂γ

(0)
−1

∂β0

)
, (B.14)

λnn = τn
5
(
3 + 2m2γ

(1)
−2

)
, (B.15)

λnπ = τn

(
∂γ

(2)
−1

∂α0
+ ∂γ

(2)
−1

∂β0

)
. (B.16)

The transport coefficients for the shear viscosity are:

τπ = 1
A(2)

00
, (B.17)

ζ = α
(2)
0

A(2)
00
, (B.18)

`πn = −2
5m

2τπγ
(1)
−1 , (B.19)

τπn = −2
5
m2τπ
ε+ p0

∂γ
(1)
−1

∂ ln β0
, (B.20)

τππ = −2τπ
7
(
5 + 2m2γ

(2)
−2

)
, (B.21)

λπn = −2
5m

2τπ

(
∂γ

(1)
−1

∂α0
+ n

ε+ p0

∂γ
(1)
−1

∂β0

)
, (B.22)

λπΠ = 2τπ
5
(
3 +m2γ

(0)
−2

)
, (B.23)

δππ = 1τπ
3
(
4 +m2γ

(2)
−2

)
. (B.24)
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