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Abstract

Hirvonen, Henry
Master’s thesis
Department of Physics, University of Jyviskyla, 2019, pages.

In relativistic heavy ion collisions substance called quark-gluon plasma (QGP) is
created. The Quark gluon plasma is a matter which consists from a weakly coupled
quarks and gluons and it can only be created on extreme temperatures or pressures.
After QGP cools down it experiences phase transition to the hadron gas. The
evolution of QGP and hadron gas can be modeled using the relativistic hydrodynamics,
which is effective theory describing dynamics of the fluids. In this thesis we are
particularly interested about effects of the bulk viscosity in Pb+Pb collisions with
V/Snny = 2.76 TeV. Initial state for hydrodynamic evolution was calculated using the
EKRT-model and freeze-out was done using Cooper-Frye procedure. We found out
that the bulk viscosity caused expansion of the system to slow down which evidently

decreased average transverse momentum of the final state particles.
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Tiivistelma

Hirvonen, Henry
Pro gradu -tutkielma
Fysiikan laitos, Jyvéskylan yliopisto, 2019, sivua

Relativistisissa raskasionitormayksissa syntyy ainetta, jota kutsutaan kvarkki-gluoniplasmaksi
(QGP). QGP on ainetta, joka koostuu heikosti kytketyisté kvarkeista ja gluoneista
ja sitd syntyy ainoastaan erittain korkeissa ldmpotiloissa tai paineissa. Kun tormayk-
sessa syntynyt QGP alkaa jadhtymaén, se kokee faasitransition hadronikaasuksi.
QGP:n ja hadronikaasun kehitysta voidaan mallintaa kayttéen relativistista hydrody-
namiikkaa, joka on fluidin dynamiikkaa kuvaava efektiivinen teoria. Tdma tutkielma
kasittelee erityisesti tilavuusviskositeetin vaikutusta raskasionitorméyksiin Pb+Pb
tormayksissd, joissa \/syy = 2.76 TeV. Alkutila hydrodynaamiselle kehitykselle saa-
tiin EKRT-mallin avulla ja irtikytkeytyminen toteutettiin Cooper-Frye menetelmalla.
Saaduista tuloksista nahtiin, ettd tilavuusviskositeetti hidasti systeemin laajenemista

ja sitd kautta pienesi lopputilan hiukkasten keskiméaraisia poikittaisliikeméaaria.

Avainsanat: raskasionitormaéys, QGP, hydrodynamiikka, kineettinen teoria, tilavu-

usviskositeetti,
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1 Introduction

One of the goals of the modern physics has always been to study matter at the
extreme conditions in which temperature or density of the system is very high. One
place where these kinds of conditions are met is in heavy ion collisions where two
heavy nuclei collide to each other velocities near speed of light. As a consequence
of the high collisions energies, even thousands of hadrons, such as protons, pions or
kaons, can be created in a single collision.[1]

In heavy ion collisions most of the interactions happen via the strong interaction
which described by theory called quantum chromodynamics (QCD). In QCD all the
hadrons are considered as bound states of quarks and interactions between quarks
are mediated by gluons. The quarks are spin-1/2 fermions which have three possible
color charges, while gluons are spin-1 bosons which can have eight different color
charges.[2]

One of the most interesting properties of QCD is so called color confinement
which states that bound states of quarks must always exist in color neutral state.
Another interesting property of QCD is the asymptotic freedom which expresses that
interactions between quarks become asymptotically weaker as energy scale increases.
These properties of QCD indicate that matter consisting from quarks and gluons
should have two different states. At the low energies color confinement indicates
that quarks and gluons form a gas of interacting hadrons while at the high energies
this matter is expected to behave like weakly coupled gas of quarks and gluons due
to asymptotic freedom.[1], [2]

The high energy state of QCD matter is usually referred as quark gluon plasma
(QGP) and it is believed to exist in the early times of the universe, where temperatures
were extremely high [1], [3]. The best way to experimentally replicate these conditions
is by doing heavy ion collision experiments, where QGP is also expected to be created.
First heavy ion collision experiments were done in the 1970s at BEVALAC where the
center of mass energies of the collisions were around 2 GeV [4]. Since then particle
accelerators have improved a lot and nowadays the highest energies are achieved in

LHC where center of mass energies are as high as 5.02 TeV [5], [6].
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In principle, modeling heavy ion collisions should be done by calculating all
interactions between quarks and gluons with the help of QCD. However, there can
be several thousands of particles created in one heavy ion collision which makes it
difficult to use QCD directly. Instead, one usually uses hydrodynamics to model
dynamics of the system. In this approach matter created in collision is described
as a fluid which is close to thermal equilibrium. Because hydrodynamics describe
collective behavior of the fluid, there is no need to calculate individual particle
interactions. This makes modeling of the system much simpler.

The hydrodynamic fluid also has some thermal properties which are described by
equation of state and some viscous properties which describe deviation from thermal
equilibrium. Viscous properties of the fluid are usually divided into bulk viscosity
and shear viscosity. The shear viscosity has been successfully used in context of
heavy ion collision for many years and it has provided some excellent results [7]-[10].
The bulk viscosity has only recently added to simulations and amount of studies
using it is still limited [11]—[14].

The goal of this thesis is to study effects of the bulk viscosity in relativistic
heavy ion collisions and give theoretical overview about relativistic hydrodynamics
and heavy ion collisions. To achieve this goal this thesis organized following way:
In section [2| we discuss general structure of relativistic dissipative hydrodynamics
and derive relativistic Navier-Stokes theory, which turns out to be acausal. We
then proceed to derive causal Israel-Stewart theory by using the second law of
thermodynamics. In section [3| we go through method to derive relativistic dissipative
hydrodynamics directly from the kinetic theory. The modeling of the heavy ion
collisions using hydrodynamics is then discussed in section [4l In section [5] we then
introduce numerical methods used in the simulations and discuss a general structure
of the numerical code. The results and final conclusions of this thesis are presented

in sections [0] and [7] respectively.



11

2 Relativistic hydrodynamics

The relativistic hydrodynamics is an effective theory which describes macroscopic
evolution of a relativistic fluid. In general describing behavior of fluid in microscopic
scales is extremely complicated due to the fact that the fluid consists of many
particles which interact with each other. This means that the system of interest has
many degrees of freedom. Fortunately when studying the macroscopic behavior of
the fluid most of the microscopic degrees of freedom are irrelevant and only overall
effect of these complicated particle interactions are of interest. For example there
is no need for information about velocity or position of every single particle in the
fluid when considering macroscopic scales. Instead, the average quantities, like the
velocity of the fluid, are much more prominent.

When applying hydrodynamics, there are some important assumptions that have
to be made. First of all fluid has to considered continuous system where in close
proximity of each point we have infinitesimal volume element where all properties of
fluid remain constant. This means that this kind of fluid element has to be a very
small compared to any macroscopic scales. Another assumption is that every fluid
element is reasonably close to the thermodynamic equilibrium. This thermodynamic
equilibrium is assured if fluid element is large enough relative to microscopic scales
so that microscopic fluctuations can be ignored.

Both of these conditions are met if the difference between microscopic and
macroscopic scales is large enough. All every day liquids and gasses fulfill this
condition and that’s why hydrodynamics is used to model their behavior in many
applications. When studying QGP formed in heavy ion collisions this kind of
separation is not trivial at all, because typical macroscopic distance scales in this
kind of systems are ~ 1 fm. It has been pretty well established that the hydrodynamics
are applicable when two heavy ions (e.g. Pb) collide, but the minimum size of a
QGP droplet that can be formed is still under heavy debate [15]—[17].

In this section we go through formalism of relativistic hydrodynamics by first
starting from ideal hydrodynamics and then proceeding to dissipative hydrodynamics.

Most of this section, especially section , follows structure similar to one in Ref.[1§]
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2.1 Relativistic ideal hydrodynamics

The simplest case of the relativistic hydrodynamics is ideal hydrodynamics. In
ideal hydrodynamics it is assumed that fluid element is exactly in thermodynamic
equilibrium. In the most literature this kind of thermodynamic equilibrium is called
the local thermal equilibrium. The local thermal equilibrium assures that in each
space-time point z* there is well-defined temperature T'(x*), chemical potential p(x*)
and fluid velocity field @(z").

In hydrodynamics evolution of the fluid is controlled by different conservation
laws: conservation of energy, momentum and particle number. For each of these
conservation laws, there must be associated some conserved current. In case of
relativistic hydrodynamics conserved currents connected to energy and momentum
conservation are written in terms of one tensor T" called energy-momentum tensor,

which components are defined as [19]:

o 7% is the energy density,

T7° is the density of the j:th component of momentum (j=1,2,3),

TY is the flux of energy along i-axis (i=1,2,3),

T% is the flux of j:;th momentum component along i-axis .

The momentum flux can also be thought as force per area so that components of 7%
are really the components of kinetic pressure. Conserved current used for particle
number conservation is called particle 4-current N*, in which N° component is
particle density and N7 components describe particle flux along i-axis. In addition, it
is useful to define entropy 4 -current S* similar way than particle 4-current so that S°
component is entropy density and S’/ components describe entropy flux along i-axis.
We also note that we use convention where metric tensor g,, = Diag(—1,1,1,1).
When studying fluid in its rest frame, where fluid 4-velocity v* = (1,0,0,0),
assumption of exact local thermal equilibrium demands that system is isotropic
[19]. This isotropy implies that kinetic pressure components cannot be off diagonal
and all diagonal components must equal to thermodynamic pressure meaning that
T, = 6p, where RF denotes rest frame. In rest frame there is also no flow of

energy, entropy or particles and momentum density vanishes. Because of this energy-
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momentum tensor in rest frame can be written as

Thy = Diag(e,p, p, p)- (2.1)

Similarly entropy and particle 4-currents take forms

N]%F = (TL,0,0,0), (22)

S]%F = (5707070)7 (23)

where n is particle density and s is entropy density. Basically these equations tell
that ideal fluid rest frame is frame where there is no energy or particle flow. More
general form of these tensors in any boosted frame can now be obtained by doing
general Lorenz -transformation to the rest frame tensors. General form of Lorenz

transformation to a frame which moves with velocity @ in respect of original frame is

form of
,_)/ _u(E _uy _uZ
A —u® 1+ (1+9)wu® (1 +5) u®u? (1+~) tu*u? (2.4)
- —w! (1) 1 (L) v (L) ety |
—u? (1 + ) tu®u? (1 +~) tubu? 14+ (1 + ) tueu?

Now for the ideal fluid in boosted frame it is possible to write

Tloy = AZ,AZ,TE’;, = culu” — A"p, (2.5)
Nigy = Ny Nigp = nu*, (2.6)
Sty = A St = sul, (2.7)

where lower index 0 denotes that we are talking about ideal fluid. In addition we

introduced projection operator

AP = g — utu”. (2.8)
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This kind of projection operator projectiles tensors into 3 dimensional space orthogo-

nal to 4-velocity u* and it has following properties

U AP =y, AP =0
AFEAY = AP (2.9)

All = g — u'u, = 3.

As mentioned each conserved current is associated with some conservation law.
These conservation laws cover conservation of energy, momentum and particle
number. Using definitions of energy-momentum tensor and particle four current

these conservation laws can be written as

0, Tl =0, (2.10)

0uNfj, = 0. (2.11)

Conservation of energy-momentum tensor contains in total four equations. It is
customary to divide these equation in to two parts, one which is parallel to 4-velocity

and another which is orthogonal to 4-velocity. Parallel part reads

uy Oy = uy (W'u” O + €0, (u'u”) + pO,(u'u”) — A*0,p)

d
=u"0,e+ (e +p)V,u' = i + (e+p)d =0,

(2.12)

where d/dr = u"0, is the comoving derivative, V,, = A7, is the space-time like
derivative and 6 = V, u" is the expansion rate. It is also convenient to notice useful

relation between different kind of derivatives

d
O = V" (2.13)

Similarly we obtain energy-momentum conservation equations orthogonal to u*

dut
AgaﬁT(%? =(e+ p)d—uT —Vip =0 (2.14)

and particle number conservation equation

dn
Ny = Ou(nut) = e +nf = 0. (2.15)
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Equations (2.12)), (2.14]) and (2.15]) together form the equations of motion for the
ideal relativistic hydrodynamics and they read
€
df + (8 + p)@ = 0,
ut

(e +p)——V“ =0, (2.16)

dn

— +nf =0.

dr
Because these equations contain 6 independent variables, ¢, p and four components of
ut, and there is only have 5 equations of motion, we need some additional constraint
to solve this set of equations. This additional constrain is called equation of state

which connects the pressure to energy and particle densities and it is discussed in

more detail in section 2.

2.2 Covariant thermodynamics

Covariant thermodynamics is useful way to express usual thermodynamic relations
in terms of covariant quantities, like entropy 4-current S*. In order to understand
foundation of covariant thermodynamics better lets first take a quick look at the
standard presentation of the thermodynamics.

Thermodynamics is theory which deals with the transfer of energy from one
form to another. Its idea is to describe complicated microscopic processes in terms
of macroscopic quantities like energy FE, entropy S and particle number N. In
this sense thermodynamics resembles a lot of hydrodynamics. This is not too
surprising since hydrodynamics is based mostly on the thermodynamics. All of
the thermodynamics can be derived from the four laws of thermodynamics. When
considering hydrodynamics two of these four law are in particular interest: first and
second laws of thermodynamics. The second law of thermodynamics turns out to
be very useful, when considering dissipative fluid dynamics. It states that in an
isolated system entropy can only increase or stay constant. First law on the other
hand states that change of energy in system is caused by heat, mechanical work or
change of particles. This law gives us basic thermodynamic relation and is extremely
useful. The first law of thermodynamics can be written mathematically in terms of
differentials [20]

dE = dQ — pdV + pdN, (2.17)
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where d() is a transferred heat, V' is a volume of the system, p is a pressure and p is a
chemical potential. When considering reversible processes heat can be written in terms

of temperature and entropy, d@) = T'dS. In this case first law of thermodynamics is
dE =TdS — pdV + udN. (2.18)

From this relation it is then easy to obtain other thermodynamic quantities

oF
T=(—
(35>Ny
(%) "
p= av N.S ( )

_<aE> _0
R=\oN)sy —

Thermodynamic quantities are usually divided into intensive and extensive quan-
tities. Intensive quantity doesn’t depend on size of the system. Extensive quantity on
the other hand depends linearly on the size of the system. In thermodynamics 7', p, u
are intensive quantities and F,S,V, N are extensive ones. Because all £S5,V N are

extensive quantities it is possible to write
AE = E(AS, AV, AN), (2.20)

where A is some arbitrary constant. Now taking derivative from Eq.(2.20) with

respect of A and setting A = 1, one obtains

oF oF oF
2= (55) 05 (o) () @20

When using definitions of thermodynamic quantities from Eq.(2.19) we get Euler’s
relation
E =TS —pV + uN. (2.22)

Expressing this relation in terms of differentials and using Eq.(2.18)), we find the
Gibbs-Duhem equation
Vidp = SdT + Ndpu. (2.23)

In hydrodynamics we usually deal with densities so it is useful to divide Eqs. (2.18§]),
(2.22)) and ([2.23)) with volume V. This leads to
e+p="Ts+ un,
dp = sdT + ndp, (2.24)
ds = Bde + adn,
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where 5 = 1/T and a = p/T. These are the equations for which we would like to
find covariant forms. In order to do so let’s first define

Bt = uB. (2.25)

Idea to convert Egs.(2.24]) into covariant form is to use normalization condition of 4

-velocity u,u* = 1 and following relations for energy and particle densities

_ v
£ = wu, Ty,

(2.26)
n = u, Nip.
Let’s first take a look at Euler’s relation, which can be written in form
eB+pB— s+ an = u,(w BTy +puB — su + anu”) (2.27)
= w,(B,Tloy + pB* — Sy + aNfg) = 0.
Similarly for Gibbs-Duhem equation
Bdp — BsdT + ndu = Bdp + (¢ + p — un)df — Bndu = d(Bp) — nda + edf (2.28)
= u,(d(8"p) — Nigyda + dB,Tly) =0
and for first law of thermodynamics
ds — Bde + adn = u,(dS) — B,dT () + adNj,) = 0. (2.29)

It would now seem to reasonable to suggest that covariant thermodynamics are

described by equations
dSég) — ﬁydT(‘g)' + osz(‘S) =0,
d(B8"p) — Nigyda + dB, Ty =0, (2.30)
BTy + pB" — Sipy + aNjg, =0,
but one needs to be careful that these equations don’t contain more information than
original equations. Fortunately, taking projection orthogonal to u* from Eqgs.
leads to trivial 0 = 0 equations so that all information is covered in equations parallel
to u* which are in fact just Eqgs. (2.2742.29). That is why we can use covariant

equations (12.30)) instead of Eqs. (2.24). Now taking differential 0, from first law of
thermodynamics in Eq. (2.30) we obtain

0,5ty = B 0TI — ad, N, (2.31)
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When considering the ideal fluid, conservation of energy-momentum tensor and
particle 4-current just states that right hand side of Eq.(2.31)) vanishes and we are

left with

ds
0u5(0) = d

T

+ 56 =0. (2.32)

This equation tells that the entropy is conserved for the ideal fluids.

2.3 Relativistic dissipative hydrodynamics

Even though ideal hydrodynamics is a reasonable approximation in some cases, it
relies purely on assumption about exact local thermal equilibrium. However, there
is always some dissipative effects that has to be taken account. These dissipative
effects are caused by irreversible thermodynamic processes, like friction or heat
exchange between fluid elements. Because of these dissipative effects, our system is
no longer isotropic and it is no longer possible to write energy-momentum tensor
or particle 4-current in rest frame in such a convenient form. Instead, we assume
that we are still close to thermal equilibrium and add some dissipative terms to ideal

energy-momentum tensor and particle 4-current

T = Tl + 0T™ = eu'u” — AMp + 6T, (2.33)

N* = Nl + ON" = nu + GN*. (2.34)

Even though the system is not anymore in equilibrium, angular momentum is still
conserved and dissipative energy momentum must be symmetric. As seen before,
the ideal part is a symmetric, so also dissipative part must be symmetric in order to

keep a sum of ideal and dissipative parts symmetric.

2.3.1 Decomposition of dissipative parts

Equations (2.33]) and (2.34]) are still not in a very useful form because dissipative
parts contain parts that are parallel to 4-velocity and parts that are orthogonal
to 4-velocity. That is why it is very useful to decompose dissipative parts to their

irreducible components. For the particle 4-current this is pretty straightforward:

IN* = dnu + nt, (2.35)
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where dn is the off-equilibrium contribution to the particle density which is parallel to
the 4-velocity. n* is usually called the particle diffusion 4-current and it is orthogonal
to the 4-velocity,

u,n* = 0. (2.36)

Taking contractions from the particle 4-current N*, it is also easy to see that

n+on = u, N¥, (2.37)

n* = ANV (2.38)

In case of energy-momentum tensor situation is a little bit more complicated.

Now there is two different scalar parts, vector part and tensor part:
0T = deuru” — SpAH + 2hWy”) + 7| (2.39)

where the symmetrization notation A®) = (A" 4 AY*)/2 for the parentheses is
used. The two scalars de and dp are just off-equilibrium contributions to energy
density and pressure. The vector term, h*, is the energy diffusion 4-current, which
is orthogonal to the 4-velocity and the tensor 7# is shear stress tensor, which is
symmetric and traceless part that is orthogonal to the 4-velocity. The properties of
h* and 7 state that

u = 0, (2.40)

u, ™ =, ™" = 7l = 0. (2.41)
Using these properties we can write dissipative quantities in terms of energy-
momentum tensor and equilibrium quantities
€+ 0 = uyu, T,
1 12
p+op = gAWT“ , (2.42)
h = AVT" .
Writing shear stress tensor 7 in terms of energy-momentum tensor is a little

bit harder. For that purpose we define the double symmetric, traceless projection

operator orthogonal to 4-velocity

AMaB ;(A“C*M? + NﬂA”a) - ; AR A, (2.43)
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This kind of projection operator satisfies following properties, which can be derived
easily using properties of projection operator A*”
AHvaB — AaBuv Aﬁaul/,
UV AN v
AI;JAOC% = A567
uuA“”aB = gm,A“”aﬂ =A,, =0,

A =5,

(2.44)

Contracting energy-momentum tensor with projection operator AL we obtain

1 1
AT = _(p + Sp)A™ + = (p + 6p) AP A% + APAYTP — Z AP o700
; (p+ 3p) A + < (p + o) s L S

= 7H,

2.3.2 Landau matching conditions
At this point the particle 4-current and energy-momentum tensor are in form of

Nt = (n+ dn)u” + nt,

(2.46)
TH = (e + d)utu” — (p + 6p) AP + 2hFu?) 4 v,

Left hand side of Eqs. contain in total six scalars (n,dn,e,de, p, dp), three vectors
(u*,n* h*) and one second rank tensor. All vectors contain only three independent
components, because of their orthogonality. In addition, shear stress tensor is
symmetric and traceless second rank tensor which is orthogonal to 4-velocity, so
it contains five independent components. Adding all components together we end
up with total 20 independent components. On the other hand energy-momentum
tensor is symmetric so therefore N* and T together only have 14 independent
components.

This problem is partially due to fact that in dissipative hydrodynamics the system
cannot be considered to be in a local thermal equilibrium. This is why we have to
construct artificial equilibrium state that is defined by thermodynamic variables
ng, €0, Po, So,00 and ag, where subscript 0 denotes that we are talking about artificial
equilibrium state. This artificial equilibrium state has to be constructed so that the
usual equilibrium relations for the thermodynamic quantities are valid. Because all
the other thermodynamic quantities can be derived from energy and particle densities

using equation of state or other thermodynamic relations, we can arbitrary choose
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energy and particle densities for this artificial equilibrium state. This is usually done

by so-called Landau matching conditions:

g0 = € = uuu, T, (2.47)

ny =n = u, N". (2.48)

Using definitions of energy-momentum tensor and particle 4-current from Egs. (2.46))
we immediately obtain that
de =dn =0. (2.49)

Now the entropy density can be obtained using equation of state sy = so(e,n). All

other thermodynamic variables are now defined from thermodynamic relations in

Egs. (2.24):
@80
Qp = (an) )

8, = (%io)n’ (2.50)

po = Toso + pon — €.

Alternatively py can be obtained directly from equation of state py = po(e,n). On
the other hand pressure p in Eq. is quantity, which is similarly obtained from e
and n using equation of state. This means that we can replace p in Eq. with
po- Unlike for particle and energy densities off-equilibrium contribution for pressure
Op is not zero. Instead, it can be thought as correction to the isotropic equilibrium
pressure pg. Usually dp is called bulk viscous pressure and it is denoted by II. Using
this notation Eqs. can be written as

N¥ = nut +nt,

(2.51)
T = euru” — (po(en) + AP + 2hHy?) 4 b

where pg(e,n) is from now on denoted as py. Right hand side of Eqgs.(2.51)) still
contains 17 independent components, which is still three more than in the left hand

side. This is because 4-velocity in a dissipative hydrodynamics is not uniquely
defined.
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2.3.3 Fluid rest frame and equations of motion

In ideal hydrodynamics fluids rest frame was defined as a frame where there was no
particle or energy flow. This kind of definition is no longer possible in dissipative
hydrodynamics due to dissipative currents. This means that definition of velocity
would be arbitrary. However, there are two particular definitions for 4-velocity that
have clear physical meaning. First of all, there is the Eckart picture where 4-velocity
is defined such a way that it is parallel with particle 4-current
NH
ut = NG (2.52)

From this definition it directly follows that dissipative particle current n* vanishes

nt = AUNF = Abu”\/ N ,N® = 0. (2.53)
When dealing with the Eckart picture and there is multiple particle types, the
4-velocity must be defined by choosing only one particle type. Another way to define
4-velocity is so-called Landau picture. In Landau picture 4-velocity is defined such a
way that it follows energy current
TH u,

1/ UATAQTO‘BUQ .

When defining 4-velocity this way energy diffusion current ~A* vanishes:

W= APT"u, = N’ \JurTaoT*Pug = 0. (2.55)

Now we see that defining 4-velocity using either Eckart or Landau definition causes

ut =

(2.54)

one of the dissipative currents to vanish, which means that we got rid of 3 extra
components in Eq.(2.51). Both of these definitions for 4-velocity are usable, but
from now on we only use Landau’s picture. In Landau picture Eqgs.(2.51)) take more

simplified form
N¥ = nu* + nt,
(2.56)
T = eutu” — (po + I)A* + 7H.

Lets now write equations of motion for dissipative hydrodynamics to similar form
than for ideal fluid in section [2.1] Ideal parts of these equations are identical to
Egs.(2.16]) and only dissipative parts have to be calculated:

u, 0, (=AML 4+ 7)) = u, 110, (uv"u”) + 0, (u, ") — 70, u,,

=11 — 7P A", = 11 — w0 (250
afYrHu Hvs
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where we introduced shear tensor o*”

1 1
o = AU = (Vi + V) JA0. (2.58)
In addition
y7
AFOs(—APTL + 7P = H‘Z‘ — VM + AFOam®P. (2.59)
T

Now using Eqs.(2.16)),(2.57) and (2.59) we can write the equations of motion for

dissipative hydrodynamics:

d
u,,(?lLT’“’ = £ + (5 +p+ H)e - Wuyo-,uu = 07

dr
du*
ALIST™ = (e +p+ H)d—”T — VH(p +I0) + AL9m™? = 0, (2.60)
dn
ON* = 2 40+ Gt = 0.

In ideal fluid case these equations of motion were enough to solve evolution of the
fluid, because there were only 5 independent variables. However, in dissipative hydro-
dynamics there is in total 14 independent variables, so we need 9 more constraints
in order to get complete equations of dissipative hydrodynamics. Turns out that
these missing constraints are ones which define dissipative quantities II, n* and 7*

in terms of equilibrium quantities.

2.3.4 Navier-Stokes equations

One way to get relations for the dissipative quantities II, n* and 7 is to make use
of a second law of thermodynamics. In ideal case entropy was conserved. This is

generally no longer true when there are dissipative currents. Entropy conservation
law for ideal hydrodynamics was derived from Eq.(2.31))

Difference compared to ideal fluid case is that now there are no conservation laws
for equilibrium parts of energy-momentum tensor and particle 4-current. Instead,

only total energy-momentum and particle number are conserved so,

9.N* = 0, Nlyy + dn* =0,

(2.62)
0T = 0, Tl + 9, (" — AMII) = 0.
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Using these equations together with Eq.(2.57)) it is possible to write Eq.(2.61) in

form
8u5'éf)) = 50u1,8M(A“”H — ) + apd,nt

(2.63)
= Bo(m" o, — 110) + an0,n".

It is convenient to write Eq.(2.63) in a such a form that it doesn’t contain any

derivatives of dissipative quantities on the right hand side. This is done by writing
a0, nt = 0, (aon’) — ntV a0
and rearranging terms in Eq. to obtain
8H(Ség) — agn*) = Bor 0, — Boll0 — n'V . (2.64)

The left hand side of this equation now contains divergences of the ideal entropy
4-current and some dissipative current, where the right hand side only contains terms
with dissipative currents. This would suggest that the left hand side of Eq.({2.64)) is

the divergence of the total entropy 4-current S*, i.e.
St = Sl — aon”, (2.65)

and the right hand side could be identified as a source of entropy production. This
kind of choice of entropy 4-current is not necessarily the correct one, but it is one
which leads to the relativistic Navier-Stokes equations. Now that the entropy 4-
current S* is known we can make use of the second law of thermodynamics which
requires that entropy production is always positive. Applying this to Eq. leads
to

05" = om0, — Boll — n*V 00 > 0. (2.66)

In order to satisfy this condition for all different configurations it is necessary to
require that each individual term must be positive, which is achieved by setting a

linear relation between dissipative currents and quantities o#, 6 and V*ay:

=0, (2.67)
n* = kV"ay, (2.68)
T = 2not”. (2.69)
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Here proportionally coefficients ¢, n and x are called bulk viscosity, shear viscosity
and heat conductivity, respectively. It is important to notice that n*n,, is negative.

This can be shown by going to fluids rest frame where u* = (1,0,0,0) so that

u,nt =n’ =0, (2.70)
nfn, = (n")? — ;(#)2 =— 2(#)2 <0. (2.71)

Because scalar quantities are Lorentz invariant n#n, is also negative in general frame.
In addition 77, is positive, which can be shown by going to frame where 7" is
diagonal. This kind of frame must exist, because 7 is symmetric. In this kind of

frame
4

T Ty = Gopgpem™ ™ =3 (7")? > 0. (2.72)
n=0

Again this must also hold in general frame so 7, is allways positive. Now we

can see that entropy production can be written in terms of dissipative quantities as

1
_ Do _ —ntn, + @WWWW, (2.73)

i
0,5 c - o

which is indeed positive when the proportionally coefficients (,x and 7 are all positive.

From Eqs.—, one can also deduce physical effects of each dissipative
quantity. The bulk viscous pressure was correction to the equilibrium pressure
and it is proportional for expansion rate #. This would indicate that the bulk
viscosity reduces pressure and slows down expansion. The particle diffusion current
is proportional to the temperature gradients so it would seem reasonable to assume
that it would act as a particle diffusion. The shear stress tensor is proportional to
shear tensor o* which indicates that the shear viscosity drives system towards more
isotropic state.

The relativistic Navier-Stokes equations are now recovered by substituting
Eqgs.(2.67)),(2.68)),(2.69) into the equations of motion (2.60)):

d
é +(e+p—¢H)0 —2n0"0,, =0,
dut
(e+p— 49)% — VE(p — () + 2AD(no°?) = 0, (2.74)
dn

P nd + 0, (kV*ay) = 0.
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These equations were first derived by Landau and Lifshitz in 1959, and they were
one of the first proposals for the relativistic dissipative fluid dynamics [21]. However,
these equations have a major problem. The relativistic Navier-Stokes theory is
unstable, which means that even small perturbations in hydrostatic equilibrium grow
exponentially [22]-]24]. Reason why this kind of instability exist is that relativistic
Navier-Stokes equations are parabolic. Because of this, changes in fluid properties will
immediately effect on dissipative currents. This kind of infinite signal propagation
speed is forbidden in relativistic case where the information cannot travel faster than
the speed of light.

2.3.5 Second-order hydrodynamics

Because relativistic Navier-Stokes theory ended up being acausal it seems reasonable
to assume that definition for S* in Eq. is not correct. Instead, we need more
general expression for the entropy 4-current. In this thesis we follow Israel and
Stewart approach and expand entropy 4-current in terms of powers of the dissipative

currents all the way up to second order |25,

1
St = S(‘g) — aont — iu“((SOHQ —on“ng + 52W“’8Wa5) — YolIn* — vy whn”

(2.75)
= Sl — awon” + Q"
where we introduced expansion coefficients dg, 01, d2, 70 and v, and defined
1
Q" = —iu“((soHQ — 01Ny + 09T Tag) — Yolln# — yymhn”. (2.76)

The expansion coefficients cannot be directly calculated using thermodynamics.
Instead, they must be calculated from microscopic principles which are described
by kinetic theory. How this is practically done is discussed in more detail in section
x. From Eq. we can see that the relativistic Navier-Stokes theory is obtained
by setting Q* = 0. It is also interesting to notice that entropy density in fluids rest

frame s is no longer equivalent to artificial equilibrium entropy density so(n,e), i.e.

s = u,S* = u, S + u, Q" = so+ u, Q" # so. (2.77)

Now like in case of the relativistic Navier-Stokes equation we calculate divergence of
entropy 4-current which is obtained by adding 9,Q" to the both sides of Eq.(2.64),

0MS“ _ /BOWMVO-MV _ /801_[0 _ nﬂvuao + aﬂQ“. (278)
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Straight forward calculation shows that d,Q* can be written in a form
d 1
0,Q" = <u”E + V,J( — §u“(50H2 —0n“ng + 52W“’3Wa5) — YolIn* — fym,’j?l”)
1,. . . o C oy
= —5(501'[2 + 2001111 — 61n%ny — 201, + dam Bﬂ‘ag + 209, 7 )
1
- §<5OH2 —0nng + 527ra57ra5)9 — (IIV 70 + %V, D! — 4 IIV 0

— 0, Vi — e VY — yin"Vir,,.
(2.79)

Now substituting Eq.(2.79) back to Eq.(2.64]) we obtain

: o - do ’YO
S — H( 6— L gom— D1 Qg 20, gup_ Dy )
Fo 250 old B 25 250 Bo
01 pv
+ nu< — Vta + 751 + 517'1“ + Enue — *V“’}/o — ’YovHH — 7T2 Vy’Yl - ’71VV7TIW>
7TMV (52 5
p 2w - oV
+ Bo <0 2o bs BOW 250 60— 250 1 —nwVin >

(2.80)

As in the case of relativistic Navier-Stokes theory, the second law of thermodynamics
requires that entropy production must be positive which is generally satisfied only if

it can be written in a form
0,5" = BowonIl? — w,ntn, + Boww T, (2.81)

where wr, w, and w, are positive constants. This constraint together with Eq.(2.80)

leads to following dynamical equations for dissipative currents

do do Yo
fH—i-w II=—-60—-——II0 — V“H —Vtn,, 2.82
Bo " 280 250 Bo : (2.82)

nz

W2 Vo +mV,nt”,  (2.83)

5 I
ot + w,nt = Via — én“@ + §V“’yg + V! +

09 0o
— 7t + et = ot — e —

Bo 260 250

where we have neglected couple of higher order terms. These equations are relaxation-

1 —nrvVin”, (2.84)

type equations and they are usually called Israel-Stewart equations. In general

relaxation equations for quantity A are form of

TAA+A=f, (2.85)
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where 74 is relaxation time and f contains all source terms. In absence of the source
terms solution for Eq.(2.85]) vanishes exponentially i.e.

A= Age V™, (2.86)

where Ajg is initial value of A. In case of dissipative currents all source terms include
some gradients. Now, unlike in relativistic Navier-Stokes theory, dissipative currents
don’t immediately react to the gradients. In fact dissipative currents relax to the
value of corresponding source terms on relaxation time timescales. This is why

relaxation type equations have finite signal propagation speed and Egs.(2.82)),(2.83))
and (2.84]) are causal and stable equations for relativistic dissipative hydrodynamics.

Writing Eqgs. (2.82]),(2.83)) and (2.84]) to the relaxation equation form and comparing
coefficient of terms to Eqs.(2.67)),(2.68]), (2.69)) and (2.85]) we can identify viscosity,

diffusion and relaxation time coefficients

¢= 2B2f;n’ (2.87)
= 2;’ (2.88)
n = 23?;; (2.89)
= gzg, (2.90)
T = 01K, (2.91)
T = 2;)277. (2.92)

It is still important to remember that all these constant are complicated functions of
thermodynamic quantities and we still haven’t derived exact form of these coefficients,
but they must be derived from kinetic theory. In addition, when deriving equation

for dissipative currents from kinetic theory there will be some additional second

order terms added to the right hand side of Eqgs.(2.82), (2.83]) and (2.84)).
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2.4 Applicability of hydrodynamics

Validity of hydrodynamics is important question that has to be addressed, because
it is not always so clear if conditions for local thermal equilibrium and infinitesi-
mal size of the fluid element are satisfied. Most direct way to find out how well
theory of relativistic fluids works is to compare its solutions to the solutions of
relativistic Boltzmann equation which describes evolution of particle distribution
functions. However, this kind of method is often very tedious. Instead, applicability

of hydrodynamics is often quantified by a couple of parameters:

e The Knudsen number Kn = l,ier/ Linaer i the ratio between some microscopic
and macroscopic scales. Typically in relativistic case relaxation time is used as

a microscopic scale and inverse of expansion rate 8! as a macroscopic one.

e The inverse Reynolds number R~ which describes ratio of dissipative quantity
compared to similar equilibrium quantity. In relativistic case we had three

different dissipative quantities so it is possible to define three different Reynolds

Rl = @ Rl = V Inkn,| Rl = V |7 |
H_p()’n_no’W_ Po .

As discussed earlier in this section applicability of hydrodynamics requires that

numbers:

difference between microscopic and macroscopic scales is large enough. This condition
immediately tells that we should have Kn < 1. In addition, when we expanded
entropy 4-current in terms of dissipative current in section we assumed that
dissipative currents are small enough that we don’t have to take account terms higher
than first order in dissipative currents. This condition corresponds to requirement
that R~! < 1.

In relativistic heavy-ion collisions using hydrodynamics is produced some excellent
results. Nevertheless, when looking at the Knudsen and Reynolds numbers applica-
bility of hydrodynamics seems to strongly depend on viscosity parameterization and

size of the collision system [26], [27].
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3 Relativistic kinetic theory

When considering fluid or any many particle system there are usually two different
way to approach the subject. It is possible to consider the overall macroscopic
phenomena, which was done is section 2] Another way to tackle this kind of problems
is to consider the microscopic phenomena, where properties of single particle are of
interest. Kinetic theory takes a look at the microscopic world and in a way allows
to connect these microscopic and macroscopic worlds. Instead of trying to describe
behavior of every single particle in the system, kinetic theory relies on statistics
of the system. Statistical tool used to describe whole system is the single particle
phase-space distribution function f;, which describes how particles are distributed

in position and momentum spaces.

3.1 Macroscopic variables in relativistic kinetic theory

Lets start with considering system of particles with each having rest mass m and
4-momentum k* = (k°,k), where k is the momentum vector and k° = \/p? + m?
is the relativistic energy of the particle. Single particle phase-space distribution
function f is defined such a way that the total number of particles in the system is
given by
d3x >k

N= / i fel) (3.1)
where ¢ is number of internal degrees of freedom. From this equation it is obvious
that particle density is defined as

dN _/(d3k:

() = iy = [ (gmys (k). (3.2)

and the particle flux along i-axis as

NP — / (;l ";3 gv* fu(k,x), (3.3)

where v* = k'/k° is the particle velocity along i-axis. Now it is possible to use

Egs.(3.2)) and (3.3)) in order to write particle 4-current N* in covariant form

Nt = / dK K fiu(k.), (3.4)
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where dK = gdk/[(27)3k"] is the Lorenz-invariant momentum-space volume. Simi-
larly, using the definitions of energy momentum tensors components introduced in
section and the fact that k° is energy of the single particle it is possible to write

energy-momentum tensor in terms of particle distribution function,
T = / dK KK fi(k.z). (3.5)
To make notations look cleaner we introduce following notation for the averages:

- /dK s (3.6)

Using this notation particle 4-current and energy-momentum tensor can be written

in simple looking form

Nt = (B, T = (k") (3.7)

It is also important to note that throughout this section we are working in Landau
picture, where 4-velocity, particle 4-current and energy-momentum tensor are defined
as in Eqs. and . In order to write equilibrium and dissipative quantities
n,e, po,II, n* and " in terms of distribution function f; we first must divide 4-

momentum into parts parallel and orthogonal to u*:
kKt = Epuf + kW, (3.8)

where ), = u, k" is the projection of 4-momentum along the 4-velocity. We also
used notation A% = AFAY for the orthogonal part. Now with use of Eq.(3.8)) we

can modify Eqs.(3.7)) into form

N* = (B ub 4+ (W), (3.9)

T = (E?) + Q(Ekk:((’”)u”) + <k<u)k<V)>

) (3.10)
= (E?) + 2(EpkWN ) + (KM + gA“”(Aaﬁk“k:ﬁ),
where A¥) = AR AP We also used the fact that
Ko = (3 (A“Ag ABAY) - S AMA KR
(3.11)

= kWt gA“”(Aaﬂk”‘k:'B).
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This relation will be used extensively throughout this section. Comparing Egs.(3.9))
and (3.10|) to definition of particle 4-current and energy-momentum tensor from
Egs.(2.56]) we can now identify macroscopic variables in kinetic theory:

1
n=(Ey), €=(FE?, po+I=—=(Ask*k"),
(Ek) (E%), po 3< skk”) (3.12)

nt = <k:<“>>, T — <k(#k”>>7 Wt = (Ekk<’“‘>> —0.
When the system is in a local thermal equilibrium, it can be shown from the statistical

physics that single-particle distribution function fo gets form [20]

-1
for = (eﬁoEk‘“‘) + a) , (3.13)

where a = 1 corresponds to a Fermi-Dirac statistics for fermions, a = —1 corresponds
to Bose-Einstein statistics for bosons and a = 0 corresponds to Maxwell-Boltzmann
statistics for a classical particles. Usually fo is called local equilibrium distribution
function. From previous section we also remember that in local thermal equilibrium
all dissipative quantities vanish, and we are left with ideal fluid case. In addition when
system is out off equilibrium Landau matching conditions, which were introduced in

section [2.3.2] state that our artificial equilibrium state is defined by

n=ng = (Ep)o, € =eo = (E}) (3.14)

where we introduced notation

<~~~>0:/dK o fors (3.15)

Now it is possible to distinguish the pressure py and bulk viscous pressure from each
other. This is done by dividing particle distribution function into its equilibrium and

off equilibrium parts as fr = for + 9 fk, so that

1 1
po = —§<Aa5kak’3>o, 1= —§<Aa5kakﬁ>5, (3.16)

where

(s =)= (o (3.17)
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3.2 Expansion of the single-particle distribution function

and orthogonal momentum basis

In dissipative hydrodynamics usual assumption is that system is reasonably close to
thermal equilibrium. This is why it is convenient expand distribution function f

around equilibrium distribution fo:

fe = for + 0 [k, (3.18)

where 0 f;, is correction to the equilibrium distribution, which is usually written as

fr = for ok, (3.19)

where fOk = 1—afor and ¢y contains information about the off-equilibrium correction
to the equilibrium distribution. Next we have to expand ¢; in terms of a complete
set tensors formed by k* and Fj. Most natural choice would be to choose momentum

basis as:

1, k", KPR KPRVR, .. (3.20)

This was in fact the basis which was used by Israel and Stewart when they derived
equations of motion for dissipative currents [28]. However, this basic is not orthogonal,
which means that the exact form of expansion coefficients cannot be obtained once
the expansion is truncated. In context this thesis this would not be a problem but it

is more illustrative to work on orthogonal momentum basis,
RIS Sl A g S (3.21)

which is used in Refs.|18], [29]. In sake of convenience we also introduced notation

for angled brackets
A(m---;m) — AMLHm AV Vm

L ) (3.22)
where AfL7#'™ are symmetric, traceless (for m > 1) projection operators orthogonal

to a 4-velocity. These projection operators are defined using projection A" as [30]

[¢/2]
A = S O (3.29
k=0

where in the summation [¢/2] denotes the largest integer smaller that ¢/2. In addition

coefficients C'(¢,k) and tensors ®{, """ are defined as

(D2 (20— 2k)!
2OV — k)€ - 2k)

C(tk) = (—1) (3.24)
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k
@@Zjﬂevlww — (6—216)! (2 k|>2 Z AHLB2 . \P2k—1H2k AVIV2 . \V2k—1V2k A F2k+1V2k+1... A\ PEVE

E! PM7P}/
(3.25)

Summation in Eq.(3.25)) runs over all permutations of indices x4 and v in such a way
that we don’t permute indices p with v. Construction of these projection operators

is done in a such a way that they satisfy following relations when m > 1

AP — A(#1'~~w)
2

7 (v1-vg)
Ab g = AR gYY = ) (3.26)

Al = 90 41,

As mentioned earlier, basis tensors (3.21]) are orthogonal so they obey orthogonality

condition,

1)
AR Fk® - ik -k = MAM"'“m/dKF Ak kO™, (3.27
/ k (n W = Gy K (Dagh®k”)™, (3.27)
where 9,,, is the Kronecker-delta and F}, is an arbitrary function of E}. Proof of this

orthogonality condition is shown in Ref.[31]. Now ¢, can be expanded in orthogonal

momentum basis (3.21)) as
Pk = Z >\]<€u1~~w)k<m Ky, (3.28)
=0

)

where the expansion coefficients )\,i“ 1R are functions with Ej, dependence. In

principle, we could expand coefficients )\,i“ ) iy terms of orthogonal polynomials
of Ej. However, this in not done in here, but we settle to expand )\,i“ M) in the

powers of Fj:
N,

Aprme) Sl g (3.29)
n=0

where N, is truncation order of power series. In theory parameter N, should be
infinite, but in practice dealing with this kind of infinite series is not possible. Now
expansion coefficients can be calculated by matching dissipative currents II,n* h*

and % with their kinetic definitions in Egs.(3.12)) and ([3.16]). This is in fact done

in case of 14-moment approximation in section [3.4]
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3.3 Equations of motion for irreducible moments

In this section we derive equations of motion for the irreducible moments, which are
defined as
plHe = (Erg . R s (3.30)

Special cases for these equations will also give us equation of motions for dissipative
currents as we can see in section [3.4] In relativistic kinetic theory evolution of
single-particle distribution function is determined by the relativistic Boltzmann
equation [30]

K0, f = Clf), (3.31)

where C[f] is the collision integral which describes interaction between particles. If
we only allow elastic two-to-two collisions with incoming particles having momenta
k and k" and outgoing ones having momenta p and p’, collision term can be written
in form

Clf = 1 [ AR APAP Wiy (ol Fifie — il fof),  (332)
where v is symmetry factor which is two if particles are identical and otherwise one.
In addition, we introduced Lorenz-invariant transition rate Wiy _,,,y. Transition rate
describes probability of collision to happen and it depends on type of interaction
between particles. When deriving equations of motions for irreducible moments it
is useful to split distribution function to an equilibrium distribution and to some
correction, i.e. fi = for + 0fr. In addition, when decomposing derivative 9, as
0, = u,d/dr + V, it is possible to write relativistic Boltzmann equation in

more convenient form,
0fk = —for — B 'RV (for + 0fi) + B O[S (3.33)

Now taking definition of the irreducible moments, Eq.(3.30)), and by applying co-

moving derivative and projection operator to both sides of this equation we get

PRI = Al / dK Epk - ks . (3.34)

As we can see later in section [3.4] we only need these equations up to second rank
tensors in order to derive equations of motion for dissipative currents. Let’s start

with the equation for the scalar p,, which reads

o=+ / dK El6fy = / dK ~(B)Ofe+ / dK EL6 . (3.35)
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First term in this equation can be calculated directly:

/dK (BN f = r/dKE’" VB f = ru#/dKE’" S
(3.36)
= Tu“/dKEZ_Ik: 6 fr = Tl Pk,

where we used the fact that u* is orthogonal to u* so that u,k* = u#k<"“>. Second
term in Eq.(3.35)) can be decomposed further by a use of Boltzmann Eq.(3.33)),

/ dK Bl = — / AK EL for — / dK B K76V, for
A B

_ / AK B K6 ,6 fy + / dKELO[f),

(3.37)

D Cr—l
where we introduced A,B and D in order to make calculations to look more cleaner.
In addition we defined irreducible collision term, which in general can be defined as

Clpr-ene) / A ELE . r O[], (3.38)

All terms that are proportional to irreducible moments p#t# in Eq.(3.37)) arise from

term D, which can be written as

D=V, / AKEL" k76 f, — / AV, (B Yk S fi

—v, / dK By (B’ + K)o fi — (r — 1)V, / ARETR RO e (3 59,

= VY [up] +Vupt_, — (r — 1)V uu/dKE}; 210 19§ £,
—_———

Op, Dy

where in last step we have used the fact that v and «” are orthogonal to V,u,.

With use of Eq.(3.11)), D; can be written in terms of irreducible moments:

1
Dy = (r — 1)V, / AR B (KR 4+ S0 (m? — E2)) 8 10

= (= D([Tuudols + 30002~ ).

In total, part D is now form of

, 1
D =Vypl_y = (r=1Dowp’s - g((r — )m’p,a — (1 +2)p,). (3.41)
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Lets next calculate part B in Eq.(3.37)):
B=V, / AKE;' K for — (r — 1)V, / AK B2 kPR for

_9 / AKEL fo + Y, / dK B~ %) fo — (r — 1)V, / AK B2k ) foy

=0 By

(3.42)

where the orthogonality condition (3.27)) is used. Last part of this equation B; can

be calculated even further
By = (r = 1)V,u,| / dK B2 fop +; / K B2 A" (Dask®k?) for
=0 (3.43)
- ;(r —1)0 [ AK B 2(Bash® k) fo.

Now it is possible to write B as
B=0(lo+ (r—1)I), (3.44)

where we have defined thermodynamic integrals
1
(2g + )N

It is important to note that there is couple of special cases where these thermodynamic

I (B2 (= Agsk®E) 7). (3.45)

integrals can be directly identified as thermodynamic variables

Lio=mn, Iy =c¢, Iy = po. (3.46)

In order to calculate last term A form Eq.(3.37) we have to first derive some useful
relations for comoving derivatives g and fy. We start from equations of motion for

dissipative energy-momentum tensor and particle 4-current, Eqs. (2.74)),
de 88

= ) Wy
dr BO aﬁo =T Ouy 6<€ + Po + H)7 (347>

dn . 8n

e 50860

From these equations it possible to solve ¢q and §y in terms of others macroscopic

—nf — g,nt. (3.48)

variables and their derivatives. This leads to

on nz Sy 11 Oe 2 a I
. sac (0 — 0(e +po+ 1)) + g5 (nb + Oun
Qg = o ( on Oe an) Oe ( ) ’ <349)
9Bo Oag dag 9Po
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O (104, — O(e + po +10) ) + 2= (00 + 9,n*
. o\ T o €+ po —\n n
50260( : o 86_871)8880( . ) (3.50)

8&0 860 850 (9010

Next we need to figure out different derivatives of equilibrium distribution function

Jor:

0 0 .
Ofor _ By Jor _ — B for for,
9o dag
(3.51)
OTok — _ o furf
oF, 0.Jok Jok-
Now we can see that
8Inq +1-2 af()k: aIn—l—l
= dK BP0 (= Ay gk kP =— 1= —J, 3.52
&6’0 (2q+ ”/ ( ) 80(0 8040 +la ( )
where we defined auxiliary thermodynamic integral J,,, as
g, = O _ / AK EM 20 A sk k) for (3.53)
ng — 3040 (2q + 1 I af 0k JOk- .

Especially we notice that the derivatives of pressure, energy density and particle

density can be written in terms of these integrals:

on Oe on Oe
— - — = — Jan. .54
8040 Jl()? 8@0 850 J207 850 J30 (3 g )

Substituting these relations back to Eqgs.(3.49)),(3.50) we get following equations for
djo and BO

1

do = ——( = Jao(nb + 9un) — Jag (7 0, — 0(c + po + 1)), (3.55)
Dy

.1

fo = ——(— Jao(nb + B,n) — g7 0, — 0(e + po + 1)), (3.56)
D20

where we defined quantity D,,, in terms of thermodynamic auxiliary integrals

Doy = Jni1gdn-14— J7 (3.57)

ng

Now we are finally in position to calculate A from Eq.(3.37)). This is done by using

chain rule to comoving time derivative of equilibrium distribution function and
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making use of orthogonality condition from Eq.(3.27)):

0 for +603f0k —I—E 5fok>

A= /dKEkfo’ﬁ_/dKE’f( ? dag By “OE,

r 8f k T af k
= o Jro — Bodri1,0 + Ut /dKEkH 9E Ok u /dKEk & aEOk (3.58)
_0 ~
G3r GQT v
— _DQO (nQ—i—@,ﬂL‘u) — Dizo('ﬂ"u O-My_e(g +pO+H)>)

where we introduced one more quantity

Grg = JnoJdqo — Jn—-1,0J4+1,0- (3.59)

Combining all results from Eqs. (3.36)),(3.37)),(3.41)),(3.44) and (3.58)) we can write

full scalar equation for irreducible moments

G2T

G,
(WWJW — «91'[) + = dunt +ritpl_| — V.l
20 D20
' (3.60)
+ (7" - 1)0"“1,/):}22 + §G(<7‘ - 1)m2pr_2 - (7‘ + 2)p7«),

pr - Crfl :Oé,(no)e +

where coefficient a$,0> is complicated function temperature and chemical potential

defined as

G G
O — 1. (1. s Gy G
a, o0 — (r—1)11 + DQOn Da

(c+m).- (3.61)

The equations of motion for irreducible vector moment p# and second rank tensor
moment p*” can be derived following similar steps and the derivation of these
equations is presented in detail in appendix [A] The obtained equations of motion

are

pir — o a4 6(( Dm?pl_y — (r+3)p) + (r — 1)oappls

Jr
bt — ARy e Doz (M — VHIT + Akym™?)
€t P (3.62)
+ 7, phY +10“<2(T—1)m26 —(2r +3) B)
vPr—1 5 B Pr—2 Pr

1 1.
- gvﬂ(mQPT—l - pr—l-l) + guu (Tm2pr—1 + (T + 3)pr+1>7
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Pl — qu’i’? =2006" 4 (r — 1)oapp"5" — A%V/\P?fi + 2w pr®

2 y y 2 "y

- gv<“<m2pr)—l - Przrl) + 5(7"7”207(«/11 —(r+ 5)P7<~Ii1)u >
2

- 1—50“”((7" —Dm'py — (2r +3)m’p, + (r + Dprsa)  (3.63)
2 V) V) VA -

+ ?O-a‘u (2(7” - 1)m2pr>—2 - (27’ + 5)pr> ) + Tp;f—?u)\

1
+50(0 = Dy — (r+ 4)pl),

where we introduce coefficients a(! and a(?),

n
ol = J 4 — Jr+2,18 o (3.64)
047(?) = dr411 + (7’ - 1>Ir+2,2- (365)

In addition, we defined vorticity tensor w*” = (V#u” — V"u#) and space-like gradient
of the ration between chemical potential and temperature I* = V*aq. It is important
to note that these are general equations which can be applied no matter what kind of
expansion of distribution function we are using as long as the equilibrium distribution
is isotropic distribution described by Eq.. For anisotropic single-particle
distribution function similar kind, but more complicated, equations of motion can
also be derived, but that is not done here. More details about anisotropic dissipative

fluid dynamics can be found in Ref.[31].

3.4 14-moment approximation

14-moment approximation is maybe the simplest way to handle expansion of single-
particle distribution in Eq. . The idea is to truncate the expansion in such a
way that there is equal amount of expansion coefficients and independent macroscopic
variables, i.e 14 coefficients. This way it is possible to simply figure out coefficients
by matching macroscopic variables to their kinetic definitions. The form of the

expansion of ¢ in 14-momentum approximation is therefore
O = M+ A ki + A kb, (3.66)

where expansion coefficients are still expanded in terms of powers of E} like in
Eq.(3.29). Each of these expansions have truncation order NNV, indicating highest
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power of Fj in expansion. In 14-moment approximation we choose Nyg =2, N; =1
and Ny = 0. This is because there are three independent scalar quantities, €, ng, 11,
two independent vector quantities n*, u* and one tensor quantity m*”. Expansion

coefficient can now simply be written as

e = o+ 1By + B2, MY = 4 B, AP =) (3.67)

Now we can solve coefficients c{1"#¢ using kinetic definitions for macroscopic

variables from Egs.(3.12) and (3.16)), where we remember that & f, = ¢y fo fos. Lets
start by writing down definition for shear stress tensor 7m:

™ = /de<“k”>¢kf0kf0k = cief /de<“k”>k<ak5>f0kf0k
2 v
= 5/dK (Ao k)2 for for (3.68)

15
- 20 J42a

where we have used orthogonality condition in order to get rid off all scalar

and vector coefficients. Solving co ) from this equation we get

s
24
Now following similar steps than in Eq.(3.68) it is possible get relation between

(uv) _

(3.69)

irreducible moment pt” and shear stress tensor 7

P = / AK EJEY K by for for = 28 T a0

0), pv
O,

(3.70)

where we defined coefficient

J,

7 = %42 (3.71)
42

When trying to solve coefficients cé“ ) and CYL ) we need two constraints from the

kinetic definitions of n* and h* from which the last one is set to zero because we

work in the Landau picture. These definitions read

nt = /de O for for = /de +Cl Ek)k(u)f(]kf(]k
- _7/dK e Ek)(Aaﬁkakﬂ)fOkak (3.72)

= Co J21 + Ci J317
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W= [ AK B oy fucfon = [ AKBED () + ki fou o
1 v 14 a ~
T3 /dKEk(C‘<J '+ ol B) (Dask®k) for for (3.73)
- Cg/> Ja1 + C§V> Jin =0,

where we have again made use of orthogonality condition 1) Solving cé" ) and

" from Eqs. and leads to

3J.
C(<)'u‘> = - D41nu7
3 (3.74)
i 3Ts1
b Dy
Irreducible moments p# can now be written as
o = [ KBk o forfor = [ AR ERY) alf) + 0 By forfon -
= C(<)V> Jry21 + C§V> 31 = %El)”“a
where
1
A = —(Jndrro1 — Ja1dri31). (3.76)

D3,
Last three scalar coefficients cg,c; and ¢y can be solved from the definition of bulk
viscous pressure II and Landau matching conditions which state that there is no

off-equilibrium corrections to energy and particle densities, i.e.

(Ey)s = <E,§>5 = 0. (3.77)
This leads to
1 .
1= 2 (Aash"k?) / dK G for for
%,—/
m2,E2 (378)

m2
= —?(Cojoo + CIJ10 + CZJQ(J)?

(Ex)s = /dKEk¢kf0kf0k

= coJro + c1J20 4 cad30 = 0,

(3.79)
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<E13>6 = /dKEk¢kf0kf0k

= coJao + c1J30 4+ caJyo = 0,

(3.80)

where in the first equation we also used matching conditions to write bulk viscosity

in more convenient form. Solution of this group of equations is

3 D3Il
Co = ———5 )
0 m? JagDag + J30G12 + JaoD1o
Gos
cL=a 3.81
V= a0p”, (3.81)
o =a Dao
2 = Ao —
D3y

Like previously, we can now easily derive relation between irreducible moments p.,

and bulk viscous pressure:

Pr = /dKE;:éﬁkakak = coJro + C1dr110 + C2Jrp2

=01,

(3.82)

%go) _ _% D3y Jyo + GagJrg10 + DZOJT-&-Q,O'
m?  JyoDag + J30G12 + Jao Do
Now that we have derived relations between dissipative quantities and irreducible
tensors we can write Eqgs. , and in terms of dissipative quantities.
However, because all non-zero irreducible moments are promotional to dissipative

quantities, we could use any value of 7 in Egs. (3.60)),(3.62) and (3.63)) to derive
equations for dissipative quantities. In this thesis we use r = 0, which leads to the

(3.83)

following equations:

3 G G
~ 2 0l =al"0 4 2 (7, — OT) + T2 — V(Y
m Dao Dy (3.84)

1
- ’Y£22)UMV7TMV + 0]-_[ (2m_2 - §m27£02))a

1
a — oW :a(()l)l“ — §9n“ (mQ’y(_lg) + 3) + whn” — ALV, (7 ) “)
n
i — VAL + Akdame”
+ €+p0< U + AL 0T ) (385)
1
- 5aﬂn (2m ~+Y 3) 3V“(m27(_01)H)
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4 2 2
w — O =200t — o (m*y 11— OT1) — 2V (m*y )

r

p
+ 2wl — ?fgy (2m?4Ba 4 57) (3.86)

— 20(mA G 1 da),

where all the terms with irreducible moments of rank three or higher will vanish
because expansion of d fi, contain only momenta up to k*“k). In addition, we made
use of Landau matching conditions, i.e. Eq.(3.77), which state that p; = ps = p{ = 0.
We also note that in derivation of Eq.(3.85) we used the fact that

dpo  Ipo

Bodar = 60@70 o " (3.87)

In order to derive equations of motion for dissipative quantities we still have to
deal with the collision terms Cﬁ’i Lo 2 Perhaps the simplest way to do it is to
linearize the collision operator in terms of 0 f; and then write it in terms of
the irreducible moments. How this is done in detail is not addressed in this thesis.

However, calculations in Ref.[18] show that this kind of procedure leads to
Ny
Cﬁ;fl.--ue) _ Z Afnpﬁl"’“‘, (3.88)
n=0

where N, is order of truncation introduced earlier and A% are complicated coefficients
which depend on underlying microscopic theory. In 14-momentum approximation we

are left with
3
Cre m2 AQTL Y = —Afne, O = — AR (3.89)

Now substituting collision terms back to Eqs.(3.84)-(3.86) and rearranging terms we

get equations of motion for dissipative quantities,

T fI—I—H:—CQ—K wVnt — o, F,nt
! e T (3.90)
— (SHHH@ — /\anun“ —+ )\HWW‘LWO'W,,

Tt 4t =g, I* — WY — Gt — Log VPIL 4 €, APV

TonlLFH — 7 B, — Nppohn” + ALY — N\ I,

(3.91)
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TR =2not 4 2w — 5 0T — 0.,V ) — o)

- o (3.92)
— Ten 0+ Ae o + Ay 1907,

where we introduced notation F* = V#p, and ignored terms that are higher than

second order in inverse Reynolds or Knudsen numbers. In addition, we used chain
rule and Eq.(A.16) from appendix |[A|to write

o o 1 o
V"vw):( 5 . )f” 1w (3.93)

‘ Jdag €+ po 0B _5+p001n50 ’
As we can now see Eqs.— are similar to relaxation type equations that
were obtained from second law of thermodynamics using general entropy 4-current
in section [2.3.5] However, this time around we have also solved exact form of
proportionally coefficients, which are presented in appendix [Bl We also notice that
equations of motion derived here have some additional first order terms in dissipative
quantities compared to Eqs.—, but they are missing all the second order
terms. Terms which are second order in inverse Reynolds number come from non-
linear collision term [32]. Terms that are second order in Knudsen number are missing
due to the fact that in the 14-moment approximation, the momentum expansion of
particle distribution function is truncated and there is not any small parameter, like
Knudsen number, in which we could do power counting and therefore improve our
approximation by taking higher order terms into account. That is, we have ignored
infinite amount of terms that are second order in Knudsen or inverse Reynolds

number. Another problem, which is connected to previous one, is that in 14-moment

approximation one could use arbitrary value of r in Egs.(3.60)),(3.62)) and (3.63)) to

obtain different transport coefficients for the equations of motion. This is why the
14-moment approximation is presented in this thesis mostly on illustrative purposes.
However, the equations of motion for irreducible moments and idea of expanding
single-particle distribution function in orthogonal basis are very useful even when
doing systematic power counting in terms of Knudsen and inverse Reynolds numbers.

More details about how this is done can be found in Refs.[18], [29).



47

4 Heavy-ion collisions

Modeling heavy ion collisions is a complicated task and there are lots of different
methods that try to solve this problem. Most of these methods are based on the
hydrodynamics which relies on assumption that strongly interacting matter created in
collision has fluid like behavior. However, there are also models which take a slightly
different approach to this problem. One of these models is the AMPT-model which
uses kinetic theory to solve the evolution of medium formed in collision [33], [34].
This kind of method should in principle be more accurate if the system is far from
thermal equilibrium, like in case of Pb-p collisions, but it also has its own problems.
For example during its evolution the strongly interacting matter experiences phase
transition from the quark-gluon plasma to the hadron gas. In models based on
hydrodynamics this phase transition doesn’t need any special treatment, but it is
already taken account in the equation of state, which describes thermal properties
of the medium. In case of models which are based directly on the kinetic theory it
is necessary to consider in detail how partons in the quark-gluon plasma hadronize.
There are also even some approaches which use hydrodynamics to describe evolution
of QGP and switch to kinetic theory after phase transition. This kind of method is
used for example in Refs.[12], [35]. Even though both the hydrodynamic and the
kinetic theory approaches have their own flaws both of them generate results which
seem to agree with the data reasonably well. In this thesis we only focus on the
models which use only hydrodynamics.

Even though hydrodynamics is important part of modeling heavy ion collision, it
is not enough in itself. The basic structure of models based on hydrodynamics is

usually divided into the following steps:

i. Formation of the initial state,
ii. Expansion of the quark-gluon plasma,
iii. Phase transition from the quark-gluon plasma to the hadron gas,

iv. Expansion of the hadron gas,
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v. Particle freeze-out,

which are also illustrated in figure [I From these steps only steps ii-iv involve
hydrodynamics and even these steps also use equation of state to connect strongly
interacting matter to its thermal properties.

There are also some other things that should in principle be taken account when
modeling heavy ion collisions. For example when two initial nuclei collide high
energy partons, also called jets, are formed together with the QGP. These jets travel
through QGP while it is expanding and interact with it. These interactions make
simulations of heavy-ion collisions much more complicated. There have even been
some discussion that jets traveling through medium could create mach cones, similar
to those which are created when velocity of fighter plane exceeds the speed of sound
[36]—[38]. Fortunately jets have only slight effect to the expansion of the medium
and therefore they are usually ignored when studying properties of QGP and this is
also done here. More information about jets in QGP can be found in Refs.[39], [40].

In this section we go through in detail theory behind each step in heavy ion
collisions excluding technical discussion about hydrodynamics which is covered in
sections 2l and Bl But before that we discuss a little bit about different kind of

observables in heavy ion collisions and how these quantities are calculated in theory.

Time—»

1 Freezeout

Figure 1. Evolution of a heavy ion collision. Figure from [41].
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4.1 Observables

Even though theoretical models predict that existence of QGP is very likely, there
is no way to directly observe QGP because of its short lifetime and QCD color
confinement. Most of the knowledge about properties of the QGP come through
matching theoretical models to the experimental observations.

Most direct measurable observable is the number of hadrons reaching detectors
and their energies. Usually particle number is expressed per rapidity y or per

pseudorapidity ns, which are defined as

1 E+p,
y:21n<E_pz>, (4.1)
ns = —1In [tan(@/Q)] = ;ln (;E;iij), (4.2)

where z-axis is chosen to be the collision beam axis and 6 is the angle between
particles momentum vector and beam axis. From definitions of y and 1 we can
see that y = 7 if the particles are massless. The reason why we have two different
rapidities is that in case of unidentified charged hadrons (not knowledge about hadron
masses) one can only measure the number of particles per pseudorapdity d/N/dn. In
cases when one measures particle number for the specific type of particle, one usually
measures the quantity dN/dy. Commonly in literature either of quantities dN/dy or
dN/dn is referred as multiplicity. Usually most accurate measurements are obtained
when particles are measured transverse to the beam axis, i.e. 7~ y =~ 0. This region
is called mid-rapidity and it covers rapidity gaps |n| < 0.5 or |y| < 0.5. This is also
the region in which we are focusing on this thesis.

The number of particles created in a collision is also used to categorize events
into different percentile bins, which are called centrality classes. These classes are
defined such a way that centrality class 0-5% contains all events in which number
of produced particles would belong to the highest 5% from all collisions. Similarly
centrality class 90-100% would contain events in which number of produced particles
would belong to the lowest 10% from all collisions.

In addition of particle number and their rapidities it is also possible to measure
particles transverse momentum pr and the azimuthal angle ¢, which tells particles
direction in a transverse plane. Using these quantities it is then possible to measure

dN/dydp%de spectrum. However, studying angular dependence this way is not very
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practical. Instead, angular dependence is quantified using Fourier coefficients v,

from series:

e (O SEA TSI LCEH) NS
where 1, is first angle where the n :th harmonic component has its maximum
multiplicity and it is called the event plane angle. The Fourier coefficients v,, are
often called flow harmonics, and they are defined as

dN
w(y,pr) = d )] 4.4
wlor) = (o) [ docostnte =)l s (44)
Similar coefficients can also be obtained from pr integrated spectrum dN/dyd¢ and
they are given by

i) = (55) " [ avcosinto - vl (4.5

First order coefficients v, describes situations where particles have one preferred
direction and for symmetry reasons this coefficient is usually close to zero. One
is usually only interested about couple of next coefficients vy, and v3 which are
called elliptic flow and triangular flow respectively. In last decade also higher order
coefficients have been measured, but their contribution to angular distribution is
much smaller[42]. In this thesis we use so called averaged initial state (see section
in which case only vy is non-zero. In order to see effects of v3 or higher order
flow harmonics one needs to take account initial state fluctuations. Because the
definition of the flow harmonics depends on event-plane angles, which are not
directly measurable, one usually uses so called cumulants, which don’t depend on
event-plane. In particular when comparing v, using averaged initial state one usually

compares them to the 4-particle cumulants defined as [43]
1/4
ve{d} = (2<U72L>ev)2 - <U;l:,>ev) ) (4.6)
where averages are taken over all events in given centrality class.

In numerical simulations one usually obtains particle spectrum dN/dydpzd¢ for
each hadron specie separately. If one then wants to calculate the total multiplicity
of charged hadrons it is necessary to write it in terms of 7 distributions in order to
compare results to the data. This kind of transformation can be done using relation

19)

dNep, 2 l T (Aﬁﬂ dnN;
—————| =) —sinh sinh | — )| ———, 4.7
dndprde|,, 2 An mr; 2 /| dydp7ds 47

7
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where An is pseudorapidity range of interest, mr; = \/m? + p3 and m; is the mass
of hadron 7. The sum in Eq.(4.7)) is over all the charged hadrons.

4.2 Initial state

When talking about initial state in heavy ion collisions one usually refers to the
earliest stages of the collision when QGP is formed and thermalized. Mathematically
speaking initial state can be thought as initial values for the components of energy-
momentum tensor and particle 4-current. These initial values are necessary when
trying to solve hydrodynamic evolution of QGP, because hydrodynamic equations
are differential equations which require initial condition. However, usually when
collision energies are high enough we can approximate baryon density to be zero so it
is enough to give initial values for energy density, pressure, 4-velocity and dissipative
currents. In most general case all of these initial state quantities depend from all
three spatial coordinates. However, when studying dynamics of the collision in
central rapidity region, where particle multiplicity remains constant, one can assume
boost invariance to the collisions system and only two spatial dimensions are enough
to describe the system. Boost invariance is discussed in more detail in section [£.3]

One of the biggest problem when modeling the heavy ion collisions is the fact that
only thing we can measure is the particles which reach the detector. This means that
we cannot separately measure things like initial state or viscosity of QGP. In fact
there are different kind of initial states that seem to match with the data reasonably
well when the viscosity parameters are adjusted accordingly.

Generally speaking initial states can be categorized into two different classes:
One where the nucleus is described by its average nuclear density profile and another
where the distributions of nucleons inside the nucleus are taken to account. Second
choice has obviously more physical grounds. After all, the nuclei consist from many
nucleons which will cause some fluctuations to nuclear density. However, this kind of
method has one drawback. Because the nucleon positions inside the nucleon has to
be sampled randomly according to their position distribution, it is necessary to do
thousands of events in order to get averaged results that can be compared to the data.
In this sense it reminds real heavy ion collision experiments where it is impossible to
study only one collision. Many times these fluctuations in the nucleon positions are
called event-by-event (EBYE) fluctuations or just initial state fluctuations. Initial

states where we only use average quantities when calculating initial state are often
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called averaged initial states.

In this thesis all simulations are done by using averaged initial state obtained
from the EKRT model [9]. The EKRT model is also capable of taking account EBYE
fluctuations and possible effect of these fluctuations is discussed in section [0 Before
going into details of the EKRT model we first discuss about optical Glauber model

and how one can use it to determine centrality classes for averaged initial state.

4.2.1 Optical Glauber model

The optical Glauber model is one of the simplest models for initial state and it is
mostly based on geometrical arguments. In this section we go through main results
of the optical Glauber model without much derivation. More detailed discussion
about optical Glauber model can be found in Refs.[44], [45].

In the optical Glauber model colliding nuclei are treated as a round discs moving
along straight path such a way that their cross section remains constant even after
collision. Geometry of this kind of collision is illustrated in figure [2| where we defined
the impact parameter b as a difference between transverse coordinates of the two

nucleus. We also defined vector r as a transverse position vector.

Figure 2. Geometry of the collision system.

Nuclear density of the nucleus with mass number A is given by the Woods-Saxon
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parametrization
pa(r,z) = eXp((r2+z2)?2RA> I (4.8)
where d = 0.54 fm. The nuclear radius R4 can be calculated as
Ry =1.12AY3 —0.86A7"/3, (4.9)
The parameter pg is obtained by requiring that
/derA /dzrdsz(r z)=A, (4.10)

where we defined nuclear thickness function

Ta(r) = / dzpa(r,2). (4.11)

Typically when A ~ 200 we have py ~ 0.17 fm . The optical Glauber model predicts
that in A+B collision the total cross section is given by
T
Oup = /de[1 - (1 ”NNAAB ) /d2 ( ”NNTAB“O)), (4.12)

where oy is the cross section for inelastic nucleon-nucleon collision and T4 g is the

nuclear overlap function which is defined as
Tan(b) = / A2 T4 (r + b/2)Ts(r — b/2). (4.13)

The transverse density of binary nucleon-nucleon collisions can be calculated using

optical Glauber model:
nBc(I',b) = JNNTA(r+b/2)TB(r—b/2). (414)

Glauber model also predicts the transverse density of nucleons participating in
nuclear collision, which is often called the wounded nucleon transverse density and it
is given by
Tp(r —b/2) > B
B

Ta(r ;1 b/2)>A

If the optical Glauber model is used as a initials state for hydrodynamics one assumes

nwn(r,b) = Ta(r +b/2) [1 — (1 —ONN

(4.15)
+ Tu(r+b/2) [1 - (1 ~ony

that either npc or ny is proportional to the energy density (eBC- or eWN-model)
or to the entropy density (sBC- or sWB-model) |46]. However in this thesis the
energy density is obtained using the EKRT-model and the optical Glauber model is

only used in the centrality determination.
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Table 1. The averaged values of impact parameter for different centrality classes
in /syny = 2.76 TeV Pb+PDb collisions

centrality (%) b (fm)
0-5 2.32
5-10 4.24
10-20 6.00
20-30 7.76
30-40 9.19
40-50 10.43
50-60 11.53

4.2.2 Centrality determination

Like in a case of Glauber model geometry of averaged initial state is usually controlled
by the impact parameter b, which is not observable quantity. Experimentally collisions
are categorized to different centrality classes according to amount of particles created
in collision. Similar kind of method to determine centrality class can also be used
in case of fluctuating initial state where thousands of randomly sampled events are
modeled separately. In case of averaged initial states we only want to simulate one
event, with specific impact parameter b, for each centrality class. The connection
between impact parameter and centrality classes can be found using the optical
Glauber model.

In the optical Glauber model collisions are divided into different centrality classes
according to their contribution to the total cross section. In this case the 0 — 5%
centrality class would contribute 5% of the total cross section in such a way that

impact parameter would range from 0 to some upper limit by, i.e.

1 b dO‘AB
0.05=— [ d°b
oAB JO d2b ’

(4.16)

where 045 and doap/d?b are calculated using Eq.(4.12)). From this equation we
could then determine value b;. Eq.(4.16]) can be also generalized for the centrality
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class ¢; — ¢;11%. In this case

1 biti . doap
AT s &b

(4.17)

Now that we know value of b; we can use Eq.(4.17) recursively to obtain all values
of b;. Because we only want to use one impact parameter for specific centrality class

we calculate averages (b;).

1 o, doag
(b) = (T/b d*bb 2, (4.18)
where \ 1
0, = /b b ;f]‘f. (4.19)

Now doing simulations with the value (b;) (usually denoted as b) would correspond to
centrality class ¢; — ¢;;1%. The dependence between centrality classes and averaged

values of impact parameter in case of Pb-+Pb collision is shown in Table

4.2.3 EKRT model

The original EKRT model was introduced by K.J. Eskola, K. Kajantie, P.V.Ruuskanen
and K. Tuominen in 2000 and it was aimed to provide initial conditions for central
heavy ion collisions |47]. Later, in 2001, the EKRT model was extended for non-
central collisions |46]. In both of these cases the EKRT model made use of a leading
order (LO) minijet cross section calculations in perturbative QCD (pQCD). Next-
to-leading order (NLO) corrections were introduced to the EKRT model in 2013
together with EBYE fluctuations [9], [48]. This version of EKRT model, but without
EBYE fluctuations, is also used in this thesis. However in this section we also go
though theory behind EBYE version of EKRT model.

The main idea behind EKRT model is that energy density of initial state comes
from energies of multiple low-momentum partonic jets, usually referred as a minijets.
Because these minijets are mostly dominated by gluons, heavy ion collision in EKRT
model is thought to be more like collision between two gluon clouds than collision
between two nuclei. Calculating energy of minijets using pQCD is only possible
when a QCD coupling constant «; is much smaller than unity, which corresponds to
a condition that a transverse momentum scale of the minijet py is much larger than
the QCD scale factor Agep ~ 220 MeV. This condition would suggest that it is not
possible to calculate energy of all minijets only using pQCD. This problem is solved
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in the EKRT model by conjecturing that there exists some saturation momentum
Psat, Which is the lower limit to the minijet transverse momentum. Physical reasoning
behind the saturation momentum is that at some point partons with high transverse
momentum, which are produced before ones with low transverse momentum, will
fill up whole transverse plane. When gluons that have transverse momentum below
Psat are produced afterwards there is no enough space in the transverse plane so
that these gluons have to fuse together with gluons which have higher transverse
momenta. The most natural way to obtain the saturation momentum would be to
first calculate a number of produced partons with pr > py and then compare it to
available transverse area in order to solve saturation momentum. This was in the fact
method which was used to calculate saturation scale in original EKRT model which
used LO minijet cross section calculations. However, similar kind of method is no
longer valid when extending EKRT model to the NLO because number of produced
partons is not infrared safe(adding one infinitesimally soft particle does not change
the direction or set of jets) and collinearly safe (collinear splitting will not change
jets) quantity in NLO pQCD [49]. In the NLO extension of EKRT model saturation
is expected to happen when transverse energy Ep production ends. This corresponds
to a moment when transverse plane is fully filled and gluon fusions start, i.e. (3 — 2)
processes start to dominate over usual (2 — 2) processes. Therefore, saturation is
set to take place when rapidity densities of the produced transverse energy fulfill the

condition

dET dET
—_— 2) ~ 2 . .
erdy(S — 2) d2rdy( — 2) (4.20)

We can further write scaling law for the right-hand side of this equation

dET 2 Oéz
dQTdy(Q — 2) ~ (Tag) (pg)po, (4.21)

where g denotes gluon parton distribution functions (PDFs) and T4 refers to nuclear
thickness function introduced earlier in section [4.2.1, The factor T)4g is assigned for
each of the incoming gluons, o?/p3 comes from partonic cross section o(2 — 2) and

po is introduced as cut-off scale for Fp. Similar way it is possible to write left-hand

side of the Eq. (4.20) as

dErp 1 a3

3 s
m(?’ —2) ~ (Tayg) p%<pg)po7 (4.22)
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where additional factor py? is introduced to compensate dimensions of extra Ty
factor. Now substituting Eqs.(4.21]) and (4.22)) to the saturation condition Eq.(4.20))

we obtain

2
Tag ~ 2. (4.23)

s

Taking this scaling law and plugging it back to saturation condition Eq.(4.20]) and

solving dEr/d?r leads to the local saturation criterion

dET

(pO,\/SN A,r.b; B) =

where transverse coordlnates are denoted as r = (x,y), A is mass number of colliding

KS(I
Ay, (124

nucleon and b is the impact parameter. In addition K, ~ 1 is introduced as a a;
independent proportionally constant and Ay is mid-rapidity gap in which minijet
transverse energy is produced. In Ref.|9] it is chosen that Ay = 1, i.e. |y| < 0.5,
which is also chose made in this thesis. Exact value of K, is prior unknown and it
has to be determined from the data. We also note that the condition py > Agep
must still hold because left-hand side of Eq. has to be calculated perturbatively.
This perturbative part describes the total minijet transverse energy produced into a
rapidity window Ay in A+A collision when collision energy is /sy and it can be
calculated as [48]

dET (P(), Vsnn, A, r.b; B) = TA(rl)TA(r2)0<ET>p0,Ay,B7 (4.25)

where ry/5 = r £b/2. Last part, 0(Er)y, ay,s, is the first Ep-moment of the minijet
Er distribution and it has to be calculated using pQCD and collinear factorization
[50]:

do

— 4.26
I (426)

P0,Ay,3

where the semi-inclusive Ep distribution of minijets is defined as

SNN
o(Erhmans = | dErEr

do Z / 2%71 )
= = I, S, (4.27
dEr po.Ays  n=2"! d PS

Further, do*2/d[PS], and do?73/d[PS], are defined as a differential NLO partonic

cross sections corresponding (2 — 2) and (2 — 3) scatterings respectively. More

details about computation of these differential cross sections is found in Ref. [49).
Phase-space differentials are notated as d[PS],, and integration is set to take place

in 4 — 2¢ dimensions in order to handle infrared divergences. The measurement
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functions S; and S3 define the total minijet Fr produced into a rapidity window
Ay. Because mass of all partons are small compared to their momentum, the minjet
E7 produced in Ay can be calculated as a sum of the final state partons transverse

momenta whose rapidities are in Ay

n=2,3

i=1
where 6 is the Heaviside step function which must not to be confused with expansion
rate = V, u”. In definition of the measurement functions one also must take account
that not all scatterings are perturbative. In case of (2 — 2) processes perturbative

scatterings can be chosen to be ones that fulfill

pr1+ pr2 > 2po, (4.29)

where py > Agep. In this case we see that if at least one particle has rapidity in Ay,
then Er > py. Same kind of condition for perturbative scatterings also generalizes

0 (2 — 3) processes

pr1 + pr2 + prs = 2po. (4.30)

In this case however it is possible that two high-pr partons fall outside Ay range
and only one low-pr parton with pr < py enters Ay. It is shown in Ref.[] that this
kind of behavior adds additional freedom when defining measurement function Sz
and it is possible to restrict the minimum FE7 even more in infrared and collinearly
safe way by applying condition Er > (pgy, where 0 < 5 < 1. Parameter 3 is called
the hardness parameter and it’s exact value has to be determined from the data.
Using the definition of minijet Er and above restrictions it is now possible to

write measurement functions as

n=2,3 n=2,3

S, = 5<ET - [ > Oy € Ay)pTiD X 9( > pri > 2Po> x 0(Er > fpo) (4.31)

i=1 i=1

Plugging measurement functions back to definition (4.26]) and integrating over delta

functions first Ep-moment minijet Ep distribution can be written as

2%11

oA ErImans = 3 > / d[Ps], 3 (4.32)
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where
_ n=2,3 n=2,3
S, :< > 0y e Ay)?ﬂ) X 9( > pri > 2190)
i:1n223 =1 (4.33)

x0("3 0w € Aylprs = Bm)

i=1
Now substituting Eq. back to saturation criterion (4.24)) it is possible to solve
numerically saturation momentum pyq(r) = po(r). In order to calculate the initial
state energy density we first note that hydrodynamic evolution is done in light-cone
coordinates 7 and 7, which are defined as

T:¢§??,m:;mqtz) (4.34)
so that ¢ = 7cosh(n,) and z = 7sinh(ns). Coordinate 7; is called the space-time

rapidity and 7 is the longitudinal proper time. In mid-rapidity, when y ~ 0 it can be
shown that space-time rapidity is equal to momentum rapidity, i.e. ns ~ y. Because
we are studying case when |y| < 0.5 this seems to be a reasonable approximation,

and we can write infinitesimal volume element in form

dV = d’rdz = d’r(dr sinh(n,) + dn,7 cosh(n,)) = 7d’*rAy (4.35)
Now using saturation criterion (4.24]) energy density at the formation time 7, can be
written as AE B %
T T 1 sat 4
: = = = sa , 4.36
) = G = o — o (Puel) (4.3

where the formation time of minijet plasma is given by 75(r) = 1/psu(r), like in
Refs.[9], [51]. Here it is important to note that the formation time depends on spatial
coordinates, but initial energy density which is used in a hydrodynamics must be at
fixed time. This fixed time is obtained by setting a minimum saturation momentum
p™in =1 GeV for which pQCD calculations are still viable. This minimum saturation
momentum then corresponds to a maximum formation time 7o = 1/p™" ~ (.2
fm. The step which describes evolution between the local formation time 7,4(r) and
the maximum formation time 7 is called a pre-thermal evolution. There are two
alternative choices how the pre-thermal evolution can be done in EKRT-model. The
first way is to use scaling which preserves the transverse energy. In this kind of

situation first equality of Eq.(4.36]) holds for all times and we can write

£(r,79) = £(r, 74(r)) (Ts(r)). (4.37)
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This kind of scaling is often also called as a free streaming (FS). Another way to
handle the pre-thermal evolution is to use the Bjorken hydrodynamic scaling (BJ)
52

e(r, 7o) = e(r, 75(r)) (TS“))M’, (4.38)

To
where work done by a pressure reduces energy almost by a maximum amount. In
this thesis all calculations are done by using BJ pre-thermal evolution.
At the some point when trying to calculate saturation momenta in the edges of the
system there is the region where solution of the saturation criteria will give momentum

min
sat *

we are no longer able to use Eq.(4.36)) to calculate energy densities. This problem

smaller than p In these regions pQCD calculations become questionable and
is solved by smoothly connecting BJ-evolved energy densities to the binary profile,
which is used outside validity of pQCD. In other words when pyo; < p™i", the energy

density is parameterized as € = C(T4T4)" where

(4.39)

1 TyTy —
n=g (k—i—l)—l—(k—l)tanh(w)].

o
Here oy y is the total inelastic nucleon-nucleon cross-section and g = ¢ = 0.5 fm 2.
The parameters C' and k are adjusted so that the energy density is smooth function
when py,; = prir.

The whole above procedure leads to the energy density profile for the averaged
initial state. The figure [3| shows these averaged initial states for 0-5% and 30-40%
centrality classes in Pb+Pb collision with \/syny = 2.76 TeV and K,,; = 0.52. The
impact parameters corresponding to a different centrality classes were obtained using
the optical Glauber model as discussed in section [4.2.2] The initial collision time was
set to 7o = 0.2 fm and hardness parameter to § = 0.8 which will remain unchanged
for all the simulations done in this thesis. From Figf3] we can see that energy density
profile for 30-40% centrality is narrower and more asymmetrical compared to 0-5%
centrality. Maximum value of the energy density is also lower when centrality class
is 30-40% . These kinds of results are expected considering that the collision zone
gets smaller and more asymmetric when increasing impact parameter, i.e. going to
the higher centrality classes.

Even though only the averaged initial states are used in the simulations done in
this thesis, it is interesting to see how EBYE fluctuations affect to the initial state.

The main reason behind the EBYE fluctuations is that the positions of the nucleons
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Figure 3. Initial energy densities in /syy = 2.76 TeV Pb+Pb collision at
70 = 0.2 fm in the 0-5% (a) and 30-40% (b) centrality classes. The pre-thermal
evolution is done using BJ and values of parameters are set to K, = 0.52,
8 =0..

randomly fluctuate inside the colliding nuclei. One of the challenges in fluctuating
initial state is that nucleons have finite size and finding their distribution inside
nuclei is not a trivial task. Fortunately, at least in case of Pb nucleus, standard
Woods-Saxon parameterization for charge density is within the error bars of the
nucleon distribution and it can be used in practical calculations [53]. The nucleon
positions can then be sampled using Woods-Saxon parameterization. In order to
get enough statistics for reliable result one needs to sample nucleon positions for
around 10000 events. It is also important to note that positions of nucleons are
sampled separately for both colliding nuclei. After positions of nucleons are known,
it is still necessary to define how these positions correspond to changes in geometry
of collision. This is done by defining nuclear thickness function 7’y as a sum of the

nucleon thickness functions 7T,,:

Ta(r) =) Tu(r — ri]), (4.40)

i=1
where r; is the position of nucleon in given nucleus and 7;, have been normalized to
unity. Because the production of minijets is mostly dominated by gluons, the T,, can
be understood as a gluonic thickness function which is given by [9], [54]
1 2 /(902
To(r) = ——e /) 4.41
(1) = 5ge 1), (141)

where 0 = 0.43 fm. Now saturation momentum can again be solved from saturation
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Figure 4. EBYE Initial energy densities in /syny = 2.76 TeV Pb+Pb collision

at 79 = 0.2 fm for two different nucleon sampling. The pre-thermal evolution is

done using BJ and values of parameters are set to K,,; = 0.52, 8 = 0.8.

criteria and energy densities can be calculated similarly as in case of averaged
initial state. Final BJ-evolved initial state for couple of events is shown in figure
We can see that there are multiple peaks at the energy density profile compared
to the averaged initial state and the position of these peaks vary greatly event to
event. As seen in Refs.[9], [10] EBYE EKRT-model seems to produce data very well
in most of the measurements. As a downside computing thousands of events in order

to get good statistic is computationally rather expensive.

4.3 Hydrodynamics and boost-invariance

The general structure of hydrodynamics is already derived in section [2] where we
discussed about the conservation of the energy-momentum tensor and the particle
number. In case of the heavy-ion collisions one typically replaces the particle number
with the baryon number, which describes difference between number of quarks and
antiquarks. In most of the high energy collisions one usually assumes that baryon
density npg is close to zero and focuses only in the energy momentum tensor. This
assumption is also done in this thesis. In this case system is described by equilibrium
quantities e, pg,u* and dissipative quantities II, 7#".

The equations of motion for dissipative quantities were derived in section but
we did not do systematic power counting in terms of Knudsen and inverse Reynolds
numbers. In addition we only studied case where r = 0 in Egs.(3.60),(3.62) and

(3.63]), but in more accurate case one takes account all values of . More accurate
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derivation for equations of motion of dissipative quantities is done in Ref.|29] and

when ng = 0 it leads to

Il + 11 = —C0 — Sl + A\ 0,0, + @1 11 + 0377, (4.42)

T T =20t 4 Al = 6O — Trro 7 4 AgiTlo (4.43)
eIl + pymiiaie, '

The structure of these equations differs from equations (3.90) and (3.92)) only by

terms which are second power of inverse Reynolds number, i.e. terms with transport
coefficients ;. However, even all other transport coefficients are not the same than
in appendix [Bl When using these equations of motion, it useful to write all transport
coefficients in terms of equilibrium quantities € and py. This can be done in a limit
m < T in which case transport coefficients for bulk viscous pressure can be written
as [b5]

C 1455 x (1 2)2( + o)

— =14 - —cC €

TH 3 S pO )

O _ 2. (4.44)
TII 3

>\H7r_8<1_02>
m  5\3 °

where ¢, is the speed of sound. In similar limit transport coefficients for shear

viscosity can also be obtained [32], [55]. These read

n €+ DPo
T 5
Onm 4
s
Trn 10
P 6
. 5

9
¢7—m-

Unfortunately convenient forms for coefficients @3 and g have not yet been obtained

and for this reason they are left out when doing hydrodynamic simulations. From
Eqs.(4.44)) and (4.45) one can see that rest of the transport coefficients can be
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expressed either using the bulk viscosity coefficient ¢ or the shear viscosity coefficient
1. The coefficients ¢ and n have to be fitted based on the data.

Generally hydrodynamic equations are solved in 341 dimensions, i.e we have
3 spatial and one time coordinate. However, if one assumes longitudinal boost-
invariance to the system (system is invariant under Lorentz-boosts in z direction),
one can eliminate one of the spatial dimensions and only solve hydrodynamics in
2+1 dimensional system. The idea of boost-invariance, in context of heavy-ion
collisions, was first introduced by J.D.Bjorken [52]. The assumption about boost-
invariance is based on the experimental fact that in the mid-rapidity region the
total particle multiplicity seems to remain constant, as can be seen in figure [5
In case of boost-invariance most natural coordinates for the system are (7,2,y,75)
coordinates, where longitudinal proper time 7 and spacetime rapidity 7, are defined
in Eq.. The assumption about boost-invariance is then consistent to a definition
that the longitudinal flow velocity u* = z/t and that all hydrodynamic quantities are
independent of the spacetime rapidity 7. As we see in section choices made

above lead eventually to the particle spectrum which is independent of rapidity .

T T T T T T T T PbPb /ey = 5.02TeV
0- 5%
5-10 %
10-20%
20-30%
3040 %
40-50 %
50-60 %
60-70 %
70-80%
80-90 %
Data (symmetrised)
Reflected
Uncorr. syst. unc.
Corr. syst. unc.

102

iU+ RENCERNEN

Figure 5. Charged particle pseudorapidity distribution in several centrality
classes measured by ALICE for Pb+Pb collisions at /syy = 5.02 TeV. From

Ref..
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4.4 Equation of state

An equation of state describes thermodynamic properties of the system and it
gives relations between various thermodynamic quantities, such as energy density,
temperature and pressure. The relation p = p(e,n) is in fact necessary to close the
system of hydrodynamic conservation equations .

In case of heavy ion collisions we are interested about behavior of strongly
interacting matter which consist two different phases: QGP and hadron gas. Recent
lattice QCD calculations have shown that at zero baryon chemical potential the
phase transition between these two phases should happen around 7" = 154 + 9 MeV
[57]. Schematic phase diagram for this kind of matter is presented in figure [f| From
this figure we see that at the large collision energies, baryon chemical potential goes
close to zero and it can be neglected. This is also why baryon density is usually
approximated as a zero and EoS p = p(e) is enough when solving equations of motion
for the hydrodynamics. At the extremely large chemical potential phase diagram
seems to indicate that there exist phase called color superconductor in which quark
matter is in condensate state. However, this kind of phase is only theoretical right
now and it is thought to only exist in the core of neutron stars.

In this thesis we use the sp95-PCE parameterization for equation of state [58], [59)].
This parameterization models hadron gas phase as gas consisting non-interacting
hadrons and resonances, which have masses up to 2 GeV. EoS for this so called

hadron resonance gas (HRG) can be calculated from thermodynamics and it reads
HRG T
P T ) = 37 2 In Zi(T Vi), (4.46)

where we sum over all hadrons and resonances. The partition function is defined as

In Zz (T,V) =

o APk 1
Vg / (d (4.47)
0

T 27)3 elwi—E)/T £ 17
where g; is degeneracy factor and Ej; is particles energy. The positive sign in partition
function corresponds to fermions and negative sign to bosons. Relation between
energy density and pressure can then be obtained using thermodynamic relations
(12.24)).

Modeling QGP phase is done by using a lattice QCD results from the hotQCD
collaboration [60], [61]. In the lattice QCD partition function is expressed as path

integral over the classical action and then discretised so that integrals are replaced
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Figure 6. The phase diagram of strongly interacting matter. From Ref..

by sums over fermion fields which occupy nodes in the lattice. These sums are then
done in discrete space-time lattice over N3 spatial and N, temporal steps which are
related to the systems volume and temperature:

1
aN,’

where a is the lattice spacing. Physical continuum and thermodynamic limit is

V = (aN,)* T = (4.48)

obtained by doing calculation with different lattice sizes keeping ratio N, /N, constant
and then extrapolating to limit a — 0, N, — oo,V — oo.

After partition function is calculated in lattice, EoS can be computed using trace

anomaly ,

T'dlnZ
OT)=ec—-3p=—= . 4.49
) === " Thna (4.49)
With use of thermodynamic identities (2.24)) we can also write
o) e—3p d/p )
T5 7> dT <T4 (4.50)



67

Integrating both sides we obtain

T+ T} T 5

where T} is some reference temperature which can be calculated using HRG model.

(4.51)

Again after solving p = p(T') we can easily solve p = p(¢) with use of thermodynamics.

Connecting lattice QCD calculations to HRG smoothly leads to the equation of
state which is demonstrated on Figl[7] Temperature dependence of other thermody-
namic quantities is shown in Figl8l As we can see, there are no discontinuities at
the phase transition temperature. This means that strongly interacting matter don’t
have phase transition in canonical sense, even thought QGP and HRG are clearly
different states of matter. This kind of phase transition is usually called crossover
phase transition. Even water has this kind phase transition when temperature rises

above critical point.

0.6

0 1 1 1 1 1

0 0.5 1 15 2 2.5 3
e (GeV /fm?)

Figure 7. Pressure as a function of energy density at ng = 0.
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4.5 Particle freeze-out

In the hydrodynamic phase QGP expands, cools down and experiences phase tran-
sition to the hadron gas. This hadron gas keeps expanding until at some point
hadrons are so far away from each other that interactions between them stop and
freeze-out takes place. Freeze-out stage is divided into two parts: chemical and

thermal freeze-out.

4.5.1 Chemical freeze-out

Chemical freeze-out is defined as a point in which all inelastic processes that convert
one types of hadrons into a different ones end. Usually one assumes that chemical
freeze-out happens when temperature reaches value Tipep,. If system would evolve
according to ideal hydrodynamics this would fix number of hadrons to a constant
for each hadron specie separately, i.e. N;{(T < Topem) = Ni(Tenem). This effect is
caused by the fact that entropy is conserved in ideal hydrodynamics. In dissipative

hydrodynamics entropy is no longer conserved even though there is only small
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amount of entropy production bellow T = 175 MeV. However, because hadrons
cannot change species after chemical freeze-out, the rations between hadrons will
remain fixed. Therefore adding chemical freeze-out will add additional constraints
to equation of state and slightly change behavior of the hadronic part. In this thesis
we use couple of different parametrization which use either 150 MeV or 175 MeV

temperature for chemical freeze-out. More details about chemical freeze-out can be
found in Refs.[59], [64].

4.5.2 Thermal freeze-out

What we call thermal freeze-out is a moment in which all collision processes that
change particles momentum stop. At this stage system is no longer in local thermal
equilibrium and hydrodynamics cannot be used to describe the system. On the
other hand, only final hadron spectra is observable in experiments, so one needs
some method to convert a hydrodynamic quantities into hadrons. Most common
way to do this is to use so called Cooper-Frye decoupling procedure [65]. In Cooper-
Frye procedure one defines decoupling hypersurface ¢* in which thermal freeze-out
happens. In this thesis decoupling surface is chosen to be constant temperature
hypersurface defined by decoupling temperature Ty.. = 100 MeV. Number of specific
type of hadrons going through this hypersurface can be calculated as

N, = / do, N*, (4.52)

where index ¢ denotes particles type and do, is the normal vector of the surface

element, which points outwards of the surface. Using kinetic theory definition of

particle 4-current N* from Eq. (3.4) leads to a Lorentz-invariant hadron spectrum
&N, g
dp  (27)3

| doup! siap), (4.5

where p!' is the four-momentum and f; is hadrons distribution function. Generally
surface integral over hypersurface o contains three integrals. However, in case of
boost-invariance one of the integrals can be calculated analytically. Lets see how
this is done explicitly. Because we assume that system is boost-invariant, the freeze-
out hypersurface is independent of coordinate ng and we can parameterize it as

7 = 7(z,y). In this case surface 4-vector in (7,z,y,7;) coordinates is given by

ot = (1(z,y),2,y,0). (4.54)
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However we want to express this in (¢,x,y,z)-coordinates in order to make contrac-
tion with p#. This kind of transformation from (7,z,y, ns)-coordinates to (t,z,y,z)-

coordinates is done by a matrix

coshns 0 0 7sinhn;
oxt 0 10 0
Xt =7 (4.55)
dx” 0 01 0
sinhn, 0 0 7coshns
Now we can write the surface vector in (t,x,y,z)-coordinates as
o = Xlio" = (7(2,y) coshns,a,y,7(x,y) sinh 7). (4.56)

In general normal vector do, on 3-dimensional hypersurface, which can be parame-
terized in terms of three parameters u,v and w, is determined by
v (0%
do, = ewaﬂa(;b(?;;%:jdudvdw, (4.57)
where €,,,5 is totally antisymmetric fourth rank permutation tensor for which
€uwap = —1 for all even permutations of (0,1,2,3). Using this identity it is possible to
write normal vector of the hypersurface as

do, = —[£](coshn,, — g;, — g;, — sinh ny)Tdadydn;, (4.58)

where additional factor [£] =sign(07/07) is added so that normal vector of the
surface element points outwards from the surface to the smaller temperature. In

(t,z,y,z)-coordinates four-momentum p* can be written in terms of rapidity y:
pf = (mm cosh Y, Pr,i, M1 sinh y), (459)

where pr; is the transverse momentum vector and my; is transverse mass defined

mr; =\/mf + pt;. (4.60)

Combining Egs.(4.58) and (4.59)) we obtain

as

or or
d ”:—:l:(m ;cosh(y — n,) — pf— — p/ — )rdadydn;. 4.61
oupi = —[E]( M cosh(y —ns) —pi 5 — 1] 8y)T ydn (4.61)
Now that we have written out the surface part do,p} we still must deal with
distribution functions f;(z,p). Like in section , we write distribution function as

sum of equilibrium part fy; and some correction ¢ f;:

filz.p) = foi + 4 fi, (4.62)
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Joi = [GXP (W) + 1]1. (4.63)

Lets first study case where we only have equilibrium distribution. In this case

distribution function can be expanded using relation:

1 e T o'} co
— — 1 n,—ne _ 1 n—1_—nx 464
T Txew ¢ LFUETT =2 (F)T (4.64)

where geometrical series is used when expanding (1 + ¢ %)~!. Now we can write

> nu; — npt'u
foo =Y (F1)"texp (,u Tp “)- (4.65)
n=1

In addition we note that 4-velocity can be written in (¢,z,y,z)-coordinates in form of
ut = y(1,u",uY, z/t) = yr(cosh ns, vy, sinh ), (4.66)

where

vr = (u®,u¥) coshn,, ~p = (1 —0v2) V2 (4.67)
Contracting this 4-velocity with 4-momentum from Eq.(4.59) we get
piu, = yr(mr; cosh(y —ns) — pri - vr). (4.68)

Now putting Eqgs.(4.61)),(4.65)) and (4.68]) back to Cooper-Frye integral formula (4.53))

we obtain

d*N, 9 N Hi + 917 — PT,i* VT
i i 1 n—l/ N4 < 7 i )
&p ) nz::l($ ) dady'[£]Texp (n =
o0 waT /aT
X /_OO dns|mr, cosh(y — ns) — pj 9 p) &y/] (4.69)
X exp ( — WTmTln cosh(y — 775)>,

where we denoted spatial y-coordinate as ¥’ in order to separate it from rapidity y.
From this form of the hadron spectrum we can see that all dependence of rapidity y
and 7, come through combination y — 7,. In addition contribution from 7, integral
is dominated by region y ~ 1, and exponentially suppressed in elsewhere. Now we
finally see that assumption made in section [4.3] that hydrodynamic variables are
independent of n, indeed leads to y independent particle spectrum. We also notice

that we can do change of variables ' = y — 1, which leads to y independent hadron
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spectrum. In a matter of fact after this kind of change of variables 7, integral can be

done analytically and written in terms of modified Bessel functions of the second

kind:

d®N; - ; —pri-
E——"=— Ji 3 Z(:Fl)”’l/dxdy’[ihexp <nu T — P, VT)
#p 2P o r (4.70)
YrmT, or Ot YrmT,i
o) - (- )

When comparing results to the data it is useful to write left hand side of Cooper-Frye

integral in terms of rapidity y:

&N, AN,
dBp " dydpide’

(4.71)

where ¢ is the polar coordinate angle of the momentum vector. From this form
it then easy to integrate over transverse momentum or angle ¢ to obtain different
observable quantities.

Next let’s study viscous correction to this equilibrium spectra. We did see in

section [3.4] that correction to the equilibrium distribution fy; can be written in form

of = fofod = folo (co B+ 6B+ o™ <Mp,,>>, (4.72)

where coefficients c¢y,c1,c9 ~ II and cé’m ~ " are defined in Eqs.(3.69) and (3.81]).
We also left out index 7 in order to simplify notation. In this thesis we only consider
freeze-out corrections which are caused by shear viscosity. In this case Eq.
simplifies to

of = fofopﬂpﬂ ; (4.73)

where

- n—2q a1.B ~
Jng = (2q+1 )M /dKE (—Aapk®k”) for for, (4.74)

and one must remember that Ej, = k*u, # E. Now we can expand f fo similarly
than what we did for fy:

[e.e]

. mpt
fofo=folF fo) = Z +)" ! exp (W) (4.75)

However in practice we can take only first term from this series because this sum

converges quickly and we already study a small correction to the equilibrium hadron
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spectra. In this approximation we see that f, behaves like the classical Boltzmann
gas, so

fofo = fo = exp ('u_TpuuM> (4.76)

For classical Boltzmann gas we can get relations between thermodynamic integrals
Jng- This can be most conveniently done by doing partial integration in fluids rest
frame where u* = (1,0,0,0), Ey = k° and —A,3k*k? = |k|?. In this case:

r - k| 9
Ing =g = _7/ dE  Ep7(=Aaskok7)? 20 o
S (2¢ + D! ~ ko (—Aap ) 9E, k|’
gd3k/(2m)3ko
B /K|
T dQdlk| 9 N
C(2q+ 1)!!/ (27)3 OlK| <g|k| B >fo
T dQ d/| .
T (2q+ 1)!!/ (2)3 9<(2q+ 1) [k
+(n— 2q)’k|2q+1En2q1|k|>f (4.77)
k Ek; 0

T o
_ (2q+1)”/dK<(2q+1)(—Aa5kak5)q‘1Ek -2

k
+(n—20)(~Bugheny B ) g
k

= T(In-rg-1+ (0= 20) [0 14),

where we neglected surface term because f vanishes exponentially when |k| — oo.

Using this relation two times for Jy, we obtain
Jio = T?*(e + po), (4.78)

where we used kinetic theory definitions for ¢ = 5y and pg = ;. Now we can write

viscous correction in simple form

Pubu
Of = fo—tho 4.79
S =togaic s (4.79)

Hydrodynamic evolution is done in (7,2,y,7) coordinates so all components of 7+
should be expressed in this basic. However we have to calculate contraction p,p, 7"
and we only know p* in (t,x,y,z) coordinates. p* in (7,z,y,m) coordinates can be

obtained by using inverse of transformation (4.55):

’ N —1 m .
P = (X)) P = (mg cosh(y — n,),pr, 7T sinh(y — 7). (4.80)
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Using inverse of transformation (4.55)) we can also calculate metric g in these new

coordinates and it is

9w = Diag(l,—1,— 1, — 7°). (4.81)

After these transformations obtaining p,p, 7" is straightforward calculation. Final

answer reads:

Pupym = mi cosh?(y — ny)m”" + (p*)*7" + (p¥)* 7% + 72mF sinh*(y — )7

T, __TX

— 2my cosh(y — 1) (p T+ pway) — 27m3 cosh(y — n,) sinh(y — n,)7™

+ 2p.py ™Y + 27my sinh(y — ;) (p%m i pyﬂny)
(4.82)

Finally we are in position to calculate viscous correction to hadron spectra. This is

done by substituting Eqgs.(4.61)), (4.79) and (4.82) to Cooper-Frye integral. Like in

case of equilibrium spectrum 7, integral can be done analytically. After little bit of

manipulation of hyperbolic functions we arrive to the final result:

d®Nyise 9i W+ — Pt VT
B _ / dady|+ ( )
Pp T2(= + po)(2m)2 J y[E exp T
L 0T

X [((pz)Qﬂm + (p¥)? +pzpy7T$y> (mTKl — <p Oz +pY oy

i
1 17,0 0

1 1 0 0
+ TQm%ﬂ'm’ <4mT <K3 — K1> — 5 (pma; +pya;> (KQ — K0)>
>K

1 0 9,
—2my | P 4 p'n || Sy <K2 - Ko> - (pr + pyi
2 ox Y

where each modified Bessel function has an argument yrmy/T. The total hadron
spectra can be obtained by summing viscous correction to result from equilibrium
calculation Eq..

Even though bulk viscosity is taken account in hydrodynamic evolution we do
not take it account when calculating viscous correction to hadron spectra. The
main reason for this is that theory behind bulk viscous corrections is not yet well

established. However, there has been some researches which use bulk viscosity
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correction to the distribution function, which is calculated using Chapman-Enskog

expansion [66], [67]. In these cases the correction is form of

Chur | m? (1 2)
O four = —fo(1 £ — == HTI, 4.84
Joutk fo(1 £ fo) e [SP;LU” 3 G JPutt (4.84)
where ¢, is the speed of sound and
1 1 9 d3k m? 1 9
- s | —————foi(1 £ foi) | == — (= — )| EL|. 4.85

Unfortunately in this case one cannot integrate one integral analytically when
calculating Cooper-Frye integral , which makes numerical calculations a bit
more expensive. In theory ignoring bulk viscosity in freeze-out could be problematic.
Nevertheless, at least when Ty.. = 100 MeV, effect of bulk viscosity is very small
compared to shear viscosity at the freeze-out. This is demonstrated in figure [9] where
we present quantities |II|/py and /777, /py averaged over the freeze-out surface
in function of centrality. From this figure we can see that in most central collisions
bulk viscosity is around one fourth of the shear viscosity at the freeze-out surface.
The difference between shear and bulk viscosity gets only larger when going to a
larger centrality classes. From this we can conclude that at least in context of this
thesis it is justified to ignore bulk viscous correction at the freeze-out.

After calculating particle spectra at the thermal freeze-out, one still needs to
take account possible decays of the unstable particles before they reach detectors.
The Cooper-Frye integral is calculated for all particles included in the HRG part of
the EoS. This consists in total several hundreds of particles which each can decay to
other particles through multiple decay channels. In this thesis we take account all 2-
and 3-particle decays. However, we don’t go through how these decays are calculated
in practice. Interested reader can find more details about calculating these particle
decays in Refs.[68], [69].
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5 Numerical methods

5.1 Equations of motion

In section [2] we derived equations of motion for hydrodynamics in terms of different
equilibrium and dissipative quantities. However it is numerically more convenient to

solve components of the energy-momentum tensor from the conservation law
0,T" = 0. (5.1)

We also use boost-invariant approximation where the natural choice of coordinates is
(1,2,y,m5). When changing coordinates we have to replace derivatives 0, with the

covariant derivatives D, [70]. This leads to

D, T =8, T" + Th, T + T, T" = 0, (5.2)
where
1
Fllj)\ = §g,u0' (al/g)\d - 80'91/)\ + a)\gazz) (53)

are the Chritoffel symbols. We already calculated metric g, in (7,2,y,7;) coordinates

in section [.5.2] and it reads
gu = Diag(l,—1,— 1, — 77). (5.4)

Using this form of the metric it is easy to see that only non-zero Chirstoffel symbols

are
T 1

Now we can write Egs.(5.2)) in form

1
8T+ + =T + 7T =0,
T
1
8, T+ + =T™ =0,
T
1
8T + =T™ =0,
T

3
9, T + ZT™ = 0.
T
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These equations can be further simplified because all components of T"” are not
independent. In order to do so, we first need to know form of fluid’s 4-velocity in

these new coordinates. This is done by applying inverse of transformation (4.55)) to
the 4-velocity in Eq.(4.66]):

w = (Xl’;‘,)_lu” = ~vr(1,vr,0). (5.7)

Now using definition ([2.56)) we can write following relations for the components of

the energy-momentum tensor
Txx — UxTTx + <p0 + H) + ,ch _ U;,ﬂTTx,
T — UmTTT + Ua:(po + H) + T _ UCIZT‘-TT;

T = v, T + 7Y — v,

(5.8)

1
T = =5 (po +10) + 77,

where indices z and y are interchangeable. We also note that T = 7" when u # n.
In the boost-invariant approximation all derivatives of 1 vanish in which case we can
eliminate last equation from Egs. , because it does not provide any addition
information. The rest of equations of motion can be simplified using relations

(5.8) to a form

0T + 0y (v, T77) + 0, (0, T7) = =0 (va(po + 11— 77) + 77)

1 (5.9)
— 0y (”y(po + I —7"") + W”’) - ;(T” + po + ) — 77
1
0. T™ 4+ 0p (v, T7*) + 0y (v, T™) = —=T™ — O, (7™ — v, 7"
™)+ 0,0 T) = T =3 ™)
- 6x(p0 + 11+ T — UxWTx),
1
aTTTy + ax UCETTy + a v TTy — —7T7y - ax ,/sz - /Uxﬂ—Tx
(0 T™) + 9y (v, T™) = —— ( ) _—

— Oy(po + 1L + 7% — v, ™).

Finally equations of motion — are in a form where they can be solved
numerically using the SHASTA algorithm, which is introduced in section [5.2] The
equations of motion for dissipative quantities and can also be written
in form which can be numerically solved using the SHASTA algorithm:

1
O 1L+ 0, (0,11) + 9, (0,11) = TL(,0, + Dy, ) + WT( o+ ) (5.12)
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1
Ormt + Oy (v, ) + Oy (v, ) = 7 (31% + 5@;%) o <2770W + >, (5.13)
T

where we didn’t explicitly write all terms from the right-hand side of Egs.(4.42) and
(4.43). In dissipative equations we have quantities 6, 0" and w"”, which all have to
be written in terms of velocity. This is already done in Ref.[71] and not repeated

here.

5.2 SHASTA

The SHASTA (SHArp and Smooth Transport Algorithm) was introduced by Jay P.
Boris and David L. Book in 1971 [72] and it is used to numerically solve equations
which are of the form

3
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