
Juha Koivistoinen

An investigation of Signed-Volume Gilbert-Johnson-Keerthi

algorithm in collision detection.

Master’s Thesis in Information Technology

December 9, 2019

University of Jyväskylä

Faculty of Information Technology

Author: Juha Koivistoinen

Contact information: juha.t.koivistoinen@gmail.com

Supervisor: Paavo Nieminen, Tuomo Rossi

Title: An investigation of Signed-Volume Gilbert-Johnson-Keerthi algorithm in collision

detection.

Työn nimi: Signed-Volume Gilbert-Johnson-Keerthi algoritmin tutkimus törmäystarkasteluissa.

Project: Master’s Thesis

Study line: Games and gamification

Page count: 60+0

Abstract: In this thesis, an investigation of the Signed-Volume Gilbert-Johnson-Keerthi col-

lision detection algorithm is presented. The principles of video game physics engines, the

general flow of the collision detection process and the GJK algorithm itself, are reviewed.

Additionally, running the algorithm with graphics card, and the relevant related topics, such

as GPGPU and CUDA SDK, are introduced. A simulation software was implemented for

both CPU and GPU following the presented principles, and some experiments were con-

ducted. The results acquired from the tests are discussed. In addition, some self-reflecting

notions and discussion about implementing a simulation software for similar experiments,

are brought up in later chapters.

Keywords: GPU, CPU, GJK, GPGPU, Collision detection, spatial partition, parallel think-

ing, physics engine, game engine, video game physics

Suomenkielinen tiivistelmä: Tässä tutkielmassa esitellään Signed-Volume Gilbert-Johnson-

Keerthi törmäystarkastelu-algoritmi. Videopelien fysiikkamoottoreiden, törmäystarkatelun

yleinen kulku ja GJK - algoritmi itsessään käydään läpi oleellisimmilta osin. Työssä pa-

neudutaan myös esitellyn algoritmin suorittamiseen grafiikkasuorittimella, ja esitellään si-

ihen liittyvät tärkeimmät aiheet, kuten GPGPU ja CUDA SDK. Tutkielmaa varten tehtiin

kokeita, joita varten implementoitiin esitettyjen periaatteiden mukainen simulaatio-ohjelmisto

i

CPU ja GPU suoritukseen. Näistä kokeista saadut tulokset esitellään ja niistä keskustellaan.

Myös reflektoinnin omaisia huomioita ja keskustelua vastaavanlaisen ohjelmiston implemen-

taatiosta käydään myöhemmissä kappalesissa.

Avainsanat: GPU, CPU, GJK, GPGPU, Collision detection, spatial partition, parallel think-

ing, physics engine, game engine, video game physics

ii

List of Figures
Figure 1. Schematic representation of physics engine. 4
Figure 2. Simulation game loop . 5
Figure 3. The principle of quadtree demonstrated in two dimensions. 11
Figure 4. Overall flow of GJK algorithm. 16
Figure 5. Depiction of Voronoi regions. 18
Figure 6. Streaming Multiprocessor block diagram. 30
Figure 7. GTX 1060 block diagram.. 31
Figure 8. Simulation class diagram . 40
Figure 9. Testcase 2: initial and final configuration. 42
Figure 10. Single-core performace of gpu and cpu . 43
Figure 11. Single-core performace ratio. 44

iii

Contents
1 INTRODUCTION . 1

1.1 Formalism . 2

2 PHYSICS SIMULATIONS IN VIDEO GAMES . 4
2.1 Rigid body physics . 5

2.1.1 State . 5
2.1.2 Time-advancement. 7

2.2 Numerical Integrators . 7
2.2.1 Euler’s Mehtod . 7
2.2.2 Semi-Implicit Euler . 8
2.2.3 Runge-Kutta. 8
2.2.4 Verlet Velocity Integrator . 9

3 BIRD’S EYE VIEW ON COLLISION DETECTION. 10
3.1 Broad-phase . 10

3.1.1 Octree . 10
3.1.2 Other broad-phase methods . 12

3.2 Narrow-phase . 13

4 GILBERT-KEERTHI-JOHNSON ALGORITHM .. 14
4.1 Johnson Distance Sub-Algorithm . 17
4.2 Evolution of GJK . 19
4.3 Signed-Volume Sub-Algorithm . 21

5 BIRD’S EYE VIEW ON COLLISION DETECTION REVISITED. 23
5.1 Contact Handling . 23

5.1.1 Manifold Construction . 23
5.1.2 Collision Response . 24

5.2 Solvers for Systems of Equations . 25
5.2.1 Linear equations . 25
5.2.2 Quadratic . 26
5.2.3 LCP . 26

5.3 Other narrow-phase methods . 27
5.3.1 Separating axis theorem . 27
5.3.2 Minkowski portal refinement. 27

5.4 Approximate methods . 28

6 REMARKS ON GPU IMPLEMENTATION . 29
6.1 Background and GPGPU . 29
6.2 GPU Hardware Architecture . 29
6.3 GPU Programming . 31

6.3.1 Code considerations . 32
6.3.2 Parallel thinking . 34

iv

6.3.3 Unified Memory . 35
6.4 GPU vs CPU. 37

7 EXPERIMENTING WITH SV-GJK. 39
7.1 Description of Simulation Software . 39
7.2 CPU vs GPU Performance Comparison. 41
7.3 Results of Single-Core Experiments . 42
7.4 Impact of Implementation Details . 43
7.5 Parallellism . 45

8 CONCLUSION . 47

LITERATURE . 49

v

1 Introduction

The demand for better graphics in video games and technological advancement boosted the

manufacturing of 3D graphics cards in mid nineties (Hook 1995). It was around that same

time when the term game engine surfaced and was made familiar to the public (Gregory

2009). A game engine is basically a complex software, as described by Gregory (2009),

consisting of separate components programmed to handle physics, sound, rendering etc.

which can be reused. When making a new game, it was not necessary to code all these

features from scratch anymore, but to use the components provided by the engine and simply

code the new game’s logic and interactions, instead. Physics engine represents a component

of a game engine, responsible of handling physics calculations of the engine, for example,

for rigid bodies and their collisions. Millington (2010) states that, ideally, a physics engine

is a reusable component that handles the underlying physics simulations of a game, and it is

totally independent of the scenario. Today, in terms of gaming experience, physics engine is

one of the most crucial aspects of technical implementation of a video game (Ericson 2004).

Also, as brought out by Gregory (2009), it is common that video game manufacturers attach

third-party physics engine libraries to their own engines, instead of developing their own

simulation software.

The role of graphics cards, since their invention has shifted from being a one-purpose,

graphics-acceleration processors with build-in functionalities, towards programmable multi-

purpose computation units. The first fully programmable modern GPU is often considered

to be GeForce 256, which was released by NVIDIA Corporation in 1999 (NVIDIA Launches

the World’s First Graphics Processing Unit: GeForce 256 1999). After the release of the

new version (2.0) of graphics API, OpenGL (OpenGL 2.0: OpenGl version history, Khronos

2004), it became popular to write shader programs with GLSL, a C based language, giving

possibility to write code for GPU. In the late 2007, NVIDIA Corporation released general

purpose GPU (GPGPU) API, CUDA, which was followed by Khronos group counterpart,

OpenCL (Khronos Launches Heterogeneous Computing Initiative 2008). Because of this

evolution, GPUs today are also usable for more general purposes, such as scientific calcu-

lations (Stone et al. 2007), machine learning (Bergstra et al. 2011), data mining (Böhm et

1

al. 2009) and cryptography (Cheng et al. 2018). Due to this evolution, it also became more

feasible harnessing GPU for simulating physics in video games.

In this thesis, a an improved Gilbert-Johnson-Keerthi (GJK) distance algorithm (Montanari,

Petrinic, and Barbieri 2017) is conducted by applying it to rigid body simulations. The

algorithm improves the original GJK (Gilbert, Johnson, and Keerthi 1988) by fixing the

setbacks of Johnson sub-algorithm with Signed-Volume sub-algorithm. The theoretical basis

for rigid body simulations, collision detection and GPU programming are reviewed and a

simulation software coded for experimentation, and the provided results are discussed. The

implementation is coded with C++ for CPU and the GPU implementation is done using

CUDA SDK. The reader will also be provided with an overview of evolution and the GPU

hardware, functionality and coding convensions are introduced.

A central element in physics engines is the collision detection system, and how collisions

are handled, can make or break the game’s commercial success. In video games, the original

GJK developed by Gilbert, Johnson, and Keerthi (1988) is one of the most utilized collision

detection algorithms for the narrow-phase stage of the collision detection process. According

to Karras (2012), certain stages of a collision detection process are parallelizable. This makes

the utilized graphics processor, GeForce GTX 1060, with more than a thousand CUDA cores,

ideal for handling collision detection. According to Montanari, Petrinic, and Barbieri (2017),

the improved GJK improves the performance of the conventional GJK by 15 - 30 %, thus

indicating an improved player experience, and a possibility for developers to allocate more

for other CPU side executions. This, combined with the praised performance of modern

low level graphics API could provide a motivation for commercial actors to code CUDA

implementations to their engines.

1.1 Formalism

It is convenient to list and describe mathematical formalism here, as the thesis contains a

fair amount of mathematical formulae and symbols. This section contains a complete list

of mathematical formalism utilized in this thesis. If the reader should have problems under-

standing notations in the thesis, this section should act as a reminder:

2

Table 1: Formalism

Name Description Notation Example

scalar lower case letter a a+b = 0

set upper case letter A A =∅

set {...} i ∈ {1,2,3, ..., j | i≤ N}

vector lower case bold letter v u+v = w

matrix upper case bold letter M A+B = C

quaternion lower case bold letter q̂ q̂ = (qw,qv)

with hat qv ∈ R3,qw ∈ R

scalar product in N di-

mensions

u ·v w = u ·v =
N

∑
i=1

uivi

cross product u×v n = v×u

matrix multiplication AB C = AB

matrix transformation Aa a = Ab

function f (x) f (x) = 5x2 +b

function with vector

variable

f (x) f (x) = x×x+b

vector function f(x) f(x) = g(x)u×v+h(x)b

matrix dependent on x matrix with one or more A(x)

elements depending on x

time derivative d
dt f (t) d

dt F(t) = v(t)m

time derivative Ẋ(t) d
dt X(t) = Ẋ(t)

2nd time derivative Ẍ(t) d
dt Ẋ(t) = Ẍ(t)

set size |...| |A| ≥ |B|

vector length ‖...‖ r ·n : ‖n‖= 1

and ∧ a,b ∈ A : a > b∧b > 0

or ∨ ab = c : a < 0∨b < 0

so that mid bar or colon | or : a < b : a < 0

3

2 Physics simulations in video games

Physics in game engines are handled by a specialized engine, sometimes referred as physics

engine. Commonly, physics engine may consist of handling particle effects, fluids and rigid-

body mechanics, and includes some type of collision detection system (Gregory 2009). A

general flow of physics simulation process done in games is depicted in Figure 1.

Figure 1. Schematic representation of a typical scenario of retroactive detection. The figure

depicts the portion of the rigid body engine that is run on update-phase in game engines.

On the left side, the arrows depict the propagation of the rigid body state, and the contact

evolution is depicted on right. The system is a representation of the one described by Baraff

and Witkin (1997)

Traditionally, in terms of software architecture, physics evaluations are situated in the update

- section of the main game-loop (Figure 2), and is thus evaluated after user input or enemy

action and before rendering. However, more evolved techniques such as multi-threading and

GPU usage may alter or intertwine the exact execution order these tasks.

4

Figure 2. Game loop used in the simulation software.

2.1 Rigid body physics

In the following section, basic building blocks of rigid body physics, needed to perform rigid

body physics in computer simulations and games are described. In rigid body simulations,

the collisions between bodies are concidered elastic and therefore the kinetic energy is con-

served, as other forms of energy such as, heat or potential energy are neglected and also,

the bodies are considered to preserve their shapes throughout the simulation. In practice, the

inelastic can be approximated by using a retention parameter.

2.1.1 State

The central piece of rigid body simulation is the state vector, which evolves with passing

time. The state vector consists of state variables, which govern the physics of the simulation.

Thus, these variables store the information between about the positions and momenta of each

body between timesteps. They are defind as center of mass dependent variables but they hold

no information about the actual vertice positions of the bodies. It is assumed, the center of

mass of each body with respect to its vertices remains constant throughtout the simulation.

More accurately, X(t) is composed of time-dependent state variables: center of mass, orien-

tation, and linear and angular momenta, x(t), R(t), P(t) and L(t), respectively.

5

X(t) =


x(t)

R(t)

P(t)

L(t)

=>
d
dt

X(t) =


v(t)

Ω(t)∗R(t)

F(t)

τ(t)

 (2.1)

d
dt


x(t)

q̂(t)

v(t)/m

ω(t)I(t)

=


v(t)

1
2ω̂(t)q̂(t)

F(t)

τ(t)

 (2.2)

In the above

ω(t) =


ωx

ωy

ωz

=> Ω(t)∗ =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.3)

and ω̂(t) is a quaternion composed of ω(t), as such:

ω̂(t) = (ωw,ω(t)) : ωw = 0 (2.4)

As Baraff and Witkin (1997) describe, in this type of rigid body system mass, m and inertia

tensor of the body Ibody are constants. Velocity, v(t), angular velocity, ω(t), and inertia tensor

I(t) (or I−1(t)) are treated as auxiliary variables. v(t), ω(t) and I−1(t) are updated on every

time step and are affected directly or indirectly by the simulation environment. Although,

rotation matrix, R(t), presented in the equations is effectively replaced by quaternion ω̂(t),

R(t) is still utilized when inertia tensor is updated. Quaternions can be easily transformed to

rotation matices and vice versa.

6

2.1.2 Time-advancement

State of each body advances in time steps of size dt. Time-advancement is performed by

solving ordinary differential equation (ODE)

f (X, t) = Ẋ(t) =
dX(t)

dt
(2.5)

In practice, infinitesimal dt cannot be expressed computationally. Instead, some "small-

enough" discrete time step ∆t is used. Time advancement of state, X(t) from current time ti

to ti+1, that is

Xi
step
==⇒ Xi+1 (2.6)

is equivalent to:

X(t0)
step
==⇒ X(t0 +∆t) (2.7)

is also referred as time-stepping. Solving ODE numerically, and can be generally expressed

as

Xi+1 = Xi +∆X, (2.8)

and different ODE solvers approximate ∆X differently, and each one of them have their

advantages and disadvantages.

2.2 Numerical Integrators

In this section the numerical integrators used in the simulation are described. These integra-

tors are approximations of integration of continuous systems used in solving ODEs related

to real-life problems. This approximation holds as long as the time interval is small enough

and the solver is convergent. All of the following solvers are implemented in simulation

software, used in this research, and tested at some point, but only one is used in the actual

measurements.

2.2.1 Euler’s Mehtod

Euler’s method, or explicit Euler’s method, is a simple method for solving ODEs. It is

expressed as:

7

Xi+1 = Xi +∆tẊ, (2.9)

where X is the state of the system and Ẋ it’s time derivative. Explicit Euler’s method is

considered inaccurate and it never converges (∆t > 0). Instead, it’s divergence rate is directly

proportional to the time-step size. Euler’s method is not symplectic integrator and thus, it

does not conserve energy in physics simulations.

2.2.2 Semi-Implicit Euler

Semi-Implicit Euler’s (SIE) method, is an improvement of Euler’s method. It is expressed

as:

Vi+1 = Vi +∆tV̇i

Xi+1 = Xi +∆tVi+1,
(2.10)

where

Vi = Ẋi

V̇i = Ẍi

(2.11)

SIE accumulates similar error to Euler’s method, and is thus not accurate, but does not di-

verge, which is a clear advantage over its predecessor.

2.2.3 Runge-Kutta

Fourth order Runge-Kutta (RK4), reduces the error of Euler’s method from O(∆t) to O(∆t5).

8

k1 = ∆t f (Xi, t0)

k2 = ∆t f (Xi +
k1

2
, t0 +

∆t
2
)

k3 = ∆t f (Xi +
k2

2
, t0 +

∆t
2
)

k4 = ∆t f (Xi + k3, t0 +∆t)

Xi+1 = Xi +
1
6

k1 +
1
3

k2 +
1
3

k3 +
1
6

k4.

(2.12)

RK4 is accurate and often used, but does not conserve energy. Although, the method is very

stable compared to Euler’s method, and can thus be used for larger systems and with larger

∆t, although it diverges slowly.

2.2.4 Verlet Velocity Integrator

Verlet Velocity Integrator (VVI) originally described by Verlet (1967) is less accurate than

RK4, but stable. It produces O(∆t3) error and can be expressed as follows:

Vi+∆t
2
= Vi +

∆t
2

V̇i

Xi+1 = Xi +∆tVi+∆t
2

(2.13)

9

3 Bird’s eye view on collision detection

The primary purpose of a collision detection engine is to detect if collisions between rigid

bodies occur in the first place, and if they do, calculate contact points, normals and distances

between colliding objects.

The collision detection process can be divided into two phases, the broad-phase and the

narrow-phase. The former is responsible of querying the world for possible collisions and, if

such events might be occurring, the latter handles the more detailed inspection of collisions

between specific colliding object pair candidates.

3.1 Broad-phase

Purpose of the broad-phase is to assess if any pair-wise collision detection should be tested

in the first place. Although, implementing an extra layer of algorithms increases the com-

plexity of the collision engine, the benefit of the broad-phase is that it reduces the number

of unnecessary collision queries, and the complexity of the querying algorithm from O(nk)

to O(logn), where k is the dimensionality of the coordinate system, or O(n logn), depending

on the underlying algorithm (Ericson 2004).

Typically, the game world is divided into spatial compartments. The objects residing in the

same compartment, are queried for pair-wise collisions. If the objects inside the compart-

ment are in close enough proximity, or close enough to the compartment walls, dividing

non-empty compartments, the pair-wise collisions may be queried.

When the distance of the object and the illusionary compartment wall are calculated, a

bounding volume (i.e. sphere) may be utilized to see if another object is near enough.

3.1.1 Octree

Meagher (1980) described octree as a data structure for presenting and querying three di-

mensional objects, and it is often used for acceleration structure for ray-tracing (Revelles,

Ureña, and Lastra 2000), rasterization (Laine and Karras 2010) or some other static render-

10

ing process. In short, octree is a data structure that represents hierarchically evenly divided

three dimensional space.

Figure 3. Principle of quadtree demonstrated in two dimensions. On left, the spatial partition

is performed and on right, that partition is represented as a data structure. Note that on the

left side, the space is divided as many times as needed in order to find the smallest space that

still contains the child shape. The hexagonal star shape is stored in root since it does not fit

to any child container.

Generally, an octree can be constructed and maintained based on different criteria. Their

implementation details can be governed by the use-case. In Figure 3, the principle of octree is

presented as a two dimensional case. Depending on the use-case, stored objects can either be

stored to the signle smallest container they fit or several, if they overlap multiple containers.

The division of a container to smaller containers is often limited explicitly, by assigning a

minimum sub-space size or maximum depth.

For systems large enough, the increased complexity produced by a broad phase collision

detection will be overcome by the improved overall performance, as broad-phase reduces

the complexity of collision queries from O(n3) to O(logn).

11

3.1.2 Other broad-phase methods

BVH - Bounding volume hierarchy (Gu et al. 2013). In BVH, the game world is sectioned

in volumes residing within other volumes, forming a tree structure similarly to octrees, with

the exception that the sub-space containers are not necessarily cubic in shape, restricted to

fill the parent container or equal in volume to their siblings. Bounding volume hierarchies

have been studied as acceleraton structures in collision detection by Xiao-rong, Meng, and

Chun-gui (2009) with AABBs, by Hubbard (1996) with spheres and by Gottschalk, Lin,

and Manocha (1996) with OBB. The advantage of BVH over octree is flexibility in depth

management. Also, in BVH, the containers can be moved during the simulation if possible.

However, additional flexibility also adds complexity to updating the tree.

k-d tree. Originally developed by Bentley (1975), k-d tree has been used in collision de-

tection, as was shown by Schauer and Nuchter (2015), and also as an optimization data

structure for ray-tracing, which was demonstrated by Brown (2015). K-d tree, is a binary

tree, in which the space is partitioned in half-spaces by planes. The planes are residing in

branch nodes and the actual formed AABBs in leaf nodes. The partitioning plane and its

position on the perpendicular axis is governed by heuristics, and the space division of a node

is always performed perpendicular to its parent division plane. Unlike in BVH, the child

containers always fill the parent fully, that is, the sum of volumes of all child half-spaces

equals the volume of the entire space.

Sweep and prune. Possibly the most common broad-phase collision detection algorithm

was originally formalized by Baraff (1992) in his PhD thesis. In sweep and prune, the ex-

tremities of objects are projected to axes, determined by the face normals of involved objects.

For each object, for each projection axis there exists a lower bound and upper bound, and

these values are sorted in a list, and queried for overlap. If a lower boundary of one ob-

ject is higher on the list than a higher boundary of another object, these objects intersect with

respect to this particular axis. In principle, on each frame, all the axis orientations and projec-

tions should be re-calculated and the list containing the boundaries, sorted or re-implemented

completely. However, this computationally possibly cumbersome process is almost always

avoided by taking advantage of temporal coherence. Originally, the algorithm was referred

as sort and sweep, but in the process of publishing their physics engine I-COLLIDE, Cohen

12

et al. (1995) rephrased the algorithm. More recently, (Karras 2012) also implemented sweep

and prune to CUDA in order to utilize GPUs for collision detection.

3.2 Narrow-phase

As told in the previous section, the broad-phase queries the object pair candidates for possible

collisions. Then, the narrow-phase uses the output of the broad-phase as input, and acquires

information about the possible collisions, in more detail. The minimum requirement of a

narrow-phase method is to detect if a contact between two objects occurs, but it may also

provide some preliminary information for contact manifold construction, such as contact

point, contact distance, penetration distance and contact normal. Sometimes, even the type

of contact features, that is vertices, edges and faces, participating on the observed contact

can be deduced.

13

4 Gilbert-Keerthi-Johnson algorithm

Gilbert, Johnson, and Keerthi (1988) came up with a procedure, for querying pair-wise col-

lisions of polytopes by taking advantage of Minkowski difference of convex objects A and

B:

A−B =C

C = {ai−b j = ck}
(4.1)

where

i ∈ I∧|I|= |A|,

j ∈ J∧|J|= |B|,

k ∈ K∧|K|= |I||J| and

ai ∈ A,b j ∈ B,ck ∈C

(4.2)

That is, the shapes of polytopes A and B are defined by a set of vertices a and b, respectively.

The Minkowski sum, C, of sets A and B contains |A||B| vertices. If A and B are convex, also

the hull of C is convex. If origin is contained by the hull of C, that is Conv(C), polytopes A

and B are intersecting. The simplest way to demonstrate this property is to choose A and B

to be single vertex polytopes, that is, points.

A = {a0}∧B = {b0}

=> A−B =C = {c0}
(4.3)

c0 = a0−b0 =

contact (0,0,0)

no contact 6= (0,0,0)
(4.4)

The only way there can be a contact between A and B is if they populate the same point in

space. This holds for more complex shapes also. However, in for more convex shapes the

origin may or may not reside on the hull but within the hull, instead. Calculating the entire

Minkowski difference of a pair of polytopes each frame, has a negative impact on perfor-

mance. Fortunately, calculating the whole difference is not necessarily. In three dimensions,

if any four points are selected from C a tetrahedron is formed that is fully contained within

Conv(C). Therefore, it is enough to find a simplex within Conv(C) that contains the origin.

14

Traditionally, GJK also measures the minimum distance between polytopes and provides

the closest points in A and B, participating in a contact. An implementation of GJK main

algorithm is shown in Algorithm 3.1.

Algorithm 4.1 Gilbert-Keerthi-Johnson Algorithm (Bergen 2003)
k = 0

Wk = /0,τk = /0,wk = vk = arbitrary vector

while |Wk| ≤ 4 or ||vk||2 ≤ ε2 max{||yk||2 : yk ∈Wk} do

k = k+1

wk = sA−B(−vk)

if ||vk||2−vk ·wk ≤ ε2||vk||2 then

continue

end if

τk = {wk}∪Wk−1

[Wk,λ] = doSimplex(wk,τk)

vk+1 = Σiλiyi

end while

return||vk||

In Algorithm 4.1, k stands for iteration count, wk is a new simplex point for iteration k, vk is

a search direction for iteration k, τk is a group of vertices resembling the simplex, Wk ⊆ τk

stands for simplex primitive, λ is the set of barycentric coordinates, each yi stand for a

simplex witness point, and sA−B resembles the support function, which is described in more

detailed below.

In short, the origin is searched by building a 3-simplex, τk, and testing if the simplex contains

the origin. On each k, the search direction, vk, is updated to point toward the origin and a

new vertex, wk, furthest in v contained in Minkowski difference of A and B, is added to the

simplex. τk is then passed to doSimplex, which evaluates the closest features of the existing

simplex to origin, and makes assessment if the simplex should be evolved towards higher

dimensions or if a vertex should be removed. The overall workflow of GJK is depicted in

Figure 4.

15

Figure 4. The overall flow of GJK algorithm. (a) 0-simplex. On the first iteration, usually

another vertex is added automatically to the simplex, and the algorithm never comes back

to (a). (b) 1-simplex. Depending on subroutine doSimplex, add another vertex or quit GJK.

(c) 2-simplex. Depending on subroutine doSimplex remove a vertex and return to (b), add a

vertex and proceed to (d) or quit. (d) 3-simplex. GJK finishes with success or backs down to

(c) or (b) or quits.

In practice, wk is found with the help of a support function, sAB(−v), which is defined as:

sA−B(−v) = sA(v)− sB(−v) (4.5)

Here, sA(v) and sB(−v) are the support functions for searching the vertex contained in A

furthest in direction v, and the vertex contained in B furthest in direction −v, respectively.

The difference of return values of these functions equals the vertex furthest in direction v

contained in A−B.

GJK can be applied to other applications such as ray-tracing (Bergen 2004) and proximity

querying (Bergen 2001). Although, the core algorithm (Algorithm 4) for each application

is the same, the doSimplex sub-algorithm is governed by the problem domain. Originally

Gilbert, Johnson, and Keerthi (1988) used Johnson’s distance sub-algorithm for querying

contact events.

16

4.1 Johnson Distance Sub-Algorithm

In Johnson algorithm solves, in each iteration, a system of linear equations for each Wk ⊂ τ ,

formed by simplex vertices si ∈ τk, for and barycentric coordinates λ , in a following way:


1 . . . 1
...

(s j− sl) · s1 . . . (s j− sl) · sr




λ1
...

λr

=


1
...

0

 (4.6)

or equally:

Aλ = b (4.7)

And barycentric coordinates are used for calculating the closest points xi between objects,

v = Σiλixi∀ i = 1, ...,r (4.8)

For barycentric coordinates, the following rule applies:

Σiλi = 1∧λi ≥ 0∀ i = 1, ...,r (4.9)

In the equations above, r = m+1, where m is the simplex cardinality. That is, m = |τk|.

Eq 3.7. ensures that for W ⊆ τk, meaning that W represents a primitive of the simplex, such

as point, line or plane, so that m for W ≤ m for τk, ν(aff(W)) = ν(conv(τk)). The key idea

in Johnson’s algorithms is to search for point ν(τk), or the point of minimum norm, which

governs the search direction, vk. Geometrically, Johnson’s algorithm deals with Voronoi

regions of simplices. In each iteration new ν(τk) is found, and it is always the point closest

to the origin. In which primitive ν(τk) can be found, is determined which primitive is closest

to origin. This is continued until one of the exit conditions in Algorithm 4 is reached.

The overall flow of GJK algorithm could be described from the point of view of Johnson’s

algorithm as follows: First, the simplex is composed of only one vertex, τk = {s1}. At this

stage, s1 is the point of miminum norm, and the direction is set to vk =−s1. vk is passed to

support function sAB(−vk) and a new point, found furthest in vk in the Minkowski difference,

is added to the simplex yielding τk = {s1,s2}. Next, Johnson’s sub-algorithm performs a

test, which primitive of the simplex, that is the s1 or s2 or the line formed in between them,

17

Figure 5. Voronoi regions of (A) line, or 1-simplex and (B) triangle, or 2-simplex. Vi, Vi j and

Vi jk represent Voronoi regions of vertex i, line i j and triangle i jk, respectively, and i, j and k,

the vertices corresponding to the simplex region. Although Voronoi regions of tetrahedron

are also crucial to Johnson algorithm, they have been left out firstly, because their graphical

representation can be complicated, and secondly because they are merely combinations of

(A) and (B).

is closest to the origin, and calculates the ν(aff(W)). This is depicted in Figure 5A, where

VA and VB stand for Voronoi regions of end vertices and VAB the Voronoi region of the line.

The region inhabited by origin, dictates the closest primitive. If the origin is found closest to

s2 of the end points, the other end point is replaced with a new point, found in direction −s2.

If the origin is closest to the line, ν(aff(W)) is calculated, and a new point, s3 is added to

the simplex. Currently, the simplex is a triangle. Johnson’s sub-algorithm performs a test for

Voronoi regions of the triangle that has not yet been tested. If origin resides in the vicinity

of s3, or in VC in Figure 5B, one of the previous points s1 or s2 is removed and the previous

phase for line testing is performed again. If origin resides outside the triangle, but in the

close vicinity of yet untested edges, the point that is not part of the edge is removed and

another point in the direction perpendicular to the edge closest to the origin is added to the

simplex. Finally, if the origin resides within the triangle, or within VABC, Johnson’s algorithm

tests which side of the triangle origin resides, sets triangle normal as vk and adds fourth point

18

to τk. In the last phase, Johnson’s algorithm tests if the simplex, which is now a tetrahedron,

contains the origin. If the origin resides outside of the simplex it can reside in one of the

seven different Voronoi regions, three edges, three faces and a vertex. If origin is contained

in the simplex, objects A and B intersect. In short, Johnson algorithm performs a bottom-up

query of Voronoi regions of a simplex, and as a result finds the point of the minimum norm

and barycentric coordinates.

In practice, the required plane tests can be performed as dot products and the simplex and its

primitives handled as concrete geometrical objects, but originally the algorithm was designed

to calculate determinants and their cofactors, for plane tests, but also for the calculation of

barycentric coordinates. However, both approaches, geometrically intuitive and determinant

- based approach, are effectively equivalent.

In addition to Johnson algorithm, GJK constitutes a backup procedure to terminate the algo-

rithm prematurely if a degenerate simplex is constructed. In degenerate cases, j:th cofactor

of det(W), ∆ jdet(W) may be close to zero, and thus τk affinely dependent. The backup

procedure determines ν(conv(W)) by defining ν(aff(Ws)) for all Ws ⊂W . Backup proce-

dure always succeeds, but it is computationally more cumbersome than Johnson algorithm

(Gilbert, Johnson, and Keerthi 1988).

Also, Johnson’s distance algorithm fails due to numerical error when |det(A)| becomes very

small. Montanari, Petrinic, and Barbieri (2017) experimented on these issues and noticed that

these issues arise from the implicit orthogonality requirement in Johnson’s sub-algorithm (Eq

3.5). This is further enforced by requirements presented in Eq 3.7.

4.2 Evolution of GJK

GJK has been under extensive investigation and improvement on several occasions in the

past. Ong and Gilbert (1997) used information of the adjacent vertices and Lin-Canny al-

gorithm(Lin 1993) to improve the performance of the GJK. They updated GJK to take ad-

vantage of the temporal coherence, that is, it assumes that most of the time the system is not

changed significantly between two consecutive frames and the contact information obtained

in the last frame is still valid. The performance was noted as "excellent" (Ong and Gilbert

19

1997) when the object motions remained coherent, but a decrease in performance was also

noted when coherence was lost.

Bergen (1999) developed an improvement to GJK coined as Incremental Separating Axis -

GJK (ISA-GJK). ISA-GJK improves the original GJK by taking advantage of a few numer-

ical enhancements. First, in ISA-GJK, the backup procedure is completely removed and is

replaced by caching support points, simplices, dot products and determinants from last iter-

ation. Bergen (1999) state that when caching is done properly the algorithm may terminate

within the first iteration. In terms of the simulation, this procedure exploits temporal coher-

ence. Second, in order to know if a collision is occurring between a pair of objects, it is

enough to know if vk ·wk > 0 . Calculating vector length involves taking square root which

is an expensive operation. By utilizing vk ·wk > 0, or squared lengths (Algorithm 4.1), the

performance of GJK can be further improved. With these principles the core GJK algorithm

can be reduced to Algorithm 4.2.

Algorithm 4.2 ISA - GJK Algorithm (Bergen 1999)
k = 0

W = /0

while vk = 0 do

k = k+1

wk = sA−B(−vk)

if vk ·wk > 0 then

return false

end if

vk = ν(conv(Wk∪wk))

end while

return true

Casey Muratori showed in Implementing GJK (2006) how to apply GJK for collision queries,

when the only interest is whether a collision occurs or not. In this approach, GJK is stripped

down of all unnecessary functionality. Practically, this means neither barycentric coor-

dinates, nor distance information is extracted. This implementation has also referred as

boolean GJK(Linahan 2015). Similarly to ISA-GJK, in boolean GJK the termination condi-

20

tion is vk ·wk > 0. Also, in Implementing GJK (2006), the GJK is portrayed in an intuitive

geometric manner. This implementation was later published by Linahan (2015).

If boolean GJK is intended to be used in a collision detection engine, an additional the

helper algorithm, expanding polytope algorithm (EPA)(Bergen 2003) or a method applying

separating axis theorem (SAT)(Boyd and Vandenberghe 2004), is needed to obtain contact

information and construct manifolds.

4.3 Signed-Volume Sub-Algorithm

Recently, Montanari, Petrinic, and Barbieri (2017) came up with a sub-algorithm, Signed-

Volume, that would overcome the numerical downsides of Johnson algorithm in a perfor-

mance increasing manner. They found a way to preserve the orthogonality condition embed-

ded in Eq. 4.6. by moving it from the left side to the right side of the equation, yielded an

algebraic system:


1 . . . 1
...

sl
1 . . . sl

r+1




λ1
...

λr

=


1
...

pl

 (4.10)

or equally:

Mλ = p (4.11)

In Eq. 4.10 M is a matrix formed from simplex τ . The equation states that by projecting a

simplex M on a plane, and a triangle is formed, and that triangle contains the point p. This

projection can be done because the barycentric coordinates are invariant under projection,

which allows the calculation of barycentric coordinates in lower dimensional space. The

algorithm has three main phases:

1. Vertices of simplex, τ ∈ Rm, are projected into Rr, where r ≤ m.

2. Discard any vertices not supporting ν(τ).

3. Solve Eq. 4.10 for λ .

Signed-Volume prevents the multiplication of potentially small quantities, and thus most of

21

numerical issues exhibited by Johnson algorithm.

As described in previous subsection, in Johnson algorithm, the algebraic system Eq. 4.6 is

solved for each W ⊂ τ . However, in Signed-Volume, a unique set of points for which the Eq.

4.10 is solved for barycentric cordinates. Both algorithms must satisfy Eq. 4.9.

22

5 Bird’s eye view on collision detection revisited

The latter chapter related to the general flow of collision detection process briefly introduces

some additional, but also generally used, methods. Mostly, it focuses on how the information

obtained from the actual detection query is used further in the process.

5.1 Contact Handling

5.1.1 Manifold Construction

After a collision between two objects is detected, and contact distance, or penetration depth,

and the closest points have been found by narrow-phase, a contact manifold can be con-

structed. The contact primitive, that is, vertex, edge or face, participating on a contact is

solved at first, for both objects. This can be achieved by exploiting the number of different

support points per object needed to construct the final simplex. In GJK, support points for

both objects are stored into a list. The size of the list of distinguish support points per object

can be one, two or three, or four. These correspond to vertex, edge and face contact of that

particular object, respectively. For example, when a collision between objects A and B is

detected, if the number of different support points for object A is one and the corresponding

number for object B is three the collision occurs between a face in object A, closest to object

B, and a vertex in object B, closest to object A.

After the contact primitive types of both incident bodies are resolved the overall contact

surface is clipped. This clipped surface holds the information about the contact points par-

ticipating on the contact between the two bodies. This area is also known as the contact

manifold, and information contained in the manifolds is used as an input for the collision

response calculations.

23

5.1.2 Collision Response

The multi-point-contact method used in this research was originally presented by Giang,

Bradshaw, and Sullivan (2003). The idea, in overall, is to solve:

b+Ax≥ 0 (5.1)

for x.

In the above equation A and b are term with a set of constraints and normals between a pair

of contacts and between contact pairs, respectively. x is the set of contact forces to be applied

to the bodies involved in incident contact. More detailed, Eq. 5.1 can be expressed as:

bi = Σ jx jAi j, (5.2)

where i is the contact index. Here, bi is derived from distance constraint requirements.

c = pB−pA = 0

pk = xk +Rkrk

(5.3)

and the time derivative:

ċ = ni(vB−vA)≥ 0

vk = ṗk = vk +ωk× rk

(5.4)

being:

bi = v−rel,i(1+ ε)

v−rel,i = ni(v−B −v−A)
(5.5)

Where v−rel,i is the relative velocity between two bodies about the contact normal ni for i:th

contact. A minus sign (-) and a plus sign (+), in the superscript, signifys a before collision

value and after collision value, respectively.

The elements of matrix A stems from equations of motion and, in short, can be described as:

Ai j = ni · ((
n j

MAi

+ I−1
Ai
(rAi×n j)× rA j)− (

n j

MBi

+ I−1
Bi
(rBi×n j)× rB j)) (5.6)

24

It should be noted that in order to get proper values for contact forces or impulses in the

simulation. All the contacts must be solved simultaneously with a linear equation solver or,

for inequality condition, with an LCP-solver, which is described in more detail in the next

section.

5.2 Solvers for Systems of Equations

After contacts are resolved and contact manifolds constructed, the contact response is han-

dled and, usually, a system consisting of multiple variables is evaluated. Here, some most

common methods and tools, which are also used in the context of this thesis, are presented.

5.2.1 Linear equations 
b1
...

bk

=


a11 . . . a1k

...

ak1 . . . akk




x1
...

xk

 (5.7)

Which can be written as:

b = Ax (5.8)

And to solve all the xi in x:

x = A−1b. (5.9)

In the context of physics simulations, each xi signifies an impulse or a force for i:th contact.

Even though, it would be simple to write a brute-force -solver for eq 2.13., pre-existing soft-

ware libraries, such as LAPACK (LAPACK documentation. 1992) or Eigen (Eigen documen-

tation. 2009), of which the latter is utilized in the implementation part of this thesis, contain

highly optimized tools for solving systems presented here, and they are freely available. The

corresponding tool set for an NVIDIA chip set is found, for example, in cuSOLVER library

(cuSOLVER documentation. 2007).

25

5.2.2 Quadratic

In physics simulations, quadratic solvers are used for systems described with quadratic be-

havior that are subjected to linear constraints. Quadratic optimization problems are generally

expressed in terms of optimized function and constraints.

1
2

xT Qx+ cT x

Ax≥ b
(5.10)

Here the above function represents the behavior, and the lower the constraint, to which the

behavior is subjected to. As described by Baraff and Witkin (1997), quadratic solvers can be

used in contact resolution, for example, in a following manner:

d̈ = Af+b

f · d̈ = 0
(5.11)

In the above equation d̈ and f are vectors containing the relative acceleration between objects

of a contact pair, and the corresponding applied forces, respectively. The vectors with super-

scripts xT and cT are transposes of vectors x and c, respectively. Matrix A and vector b are

described above. The system simply describes that if contact remains between contact pairs

of contact i, then d̈i = 0 and fi > 0, and if the contact breaks, d̈i > 0 and fi = 0.

Millington (2010) describes the entire structure and functionality of their physics engine

without usage of quadratic solvers. Also, Baraff and Witkin (1997) state that contact han-

dling in constrained physics simulations is usually handled as linear complementary prob-

lem.

5.2.3 LCP

As stated above, it is more common to solve contacts, in physics engines, as linear com-

plemetary problems than general quadratic problems. In fact, linear complementary prob-

lems are a special case of quadratic problems, and LCP methods can be used for solv-

ing them. An example of common LCP solver algorithms are Projected Gauss-Seidel and

Projected Jacobi. Both of these algorithms are described by Richards, Benevolenski, and

Voroshilov (2012).

26

LCP can be generally expressed as:

Af+b,z≥ 0

zT · (Af+b) = 0
(5.12)

Whereas quadratic programming attempts to find the smallest values for all elements of f,

LCP solvers attempt to find f that solves both of the constraints.

5.3 Other narrow-phase methods

5.3.1 Separating axis theorem

The separating axis theorem (SAT) is a narrow-phase technique based on hyperplane separa-

tion theorem (Boyd and Vandenberghe 2004). The idea is to project the extremities of both

of the colliding objects of the object pair to a set of axes and see if the objects overlap with

respect to that axis. These axes are defined by face normals (edge normals in 2D) of both

of the objects. If the objects overlap with respect to all of the axes, they collide. Hornus

(2017) compared a set of narrow-phase algorithms, and found that SAT performs worse than

GJK, with a higher number of required plane tests per frame, that is for more complex poly-

gons. Also, it has been mentioned by Ericson (2004) that SAT not provide any information

about contact points or distance on its own. Therefore, it is understandable if GJK is more

commonly used as a narrow-phase method by physics engines.

5.3.2 Minkowski portal refinement

Another convex polytope based method that uses support mapping is Minkowski Portal Re-

finement (MPR) algorithm invented by Snethen (2008), who has also stated that it is more

robust, simpler and therefore more performant and maintainable than the original GJK, but

it does not return the minimum distance between colliding shapes. MPR is implemented in

Xenocollide library Xenocollide library (2006) by its author and it is freely available.

27

5.4 Approximate methods

As stated by Richards, Benevolenski, and Voroshilov (2012), in games, physics is not always

simulated exactly. Dealing with forces and acceleration involve dealing with second order

derivatives, which has an impact on both, the numerical stability and performance of the

system as discussed by Bender, Müller, and Macklin (2017). A solution to this is solving

only first order derivatives and approximating Newton’s second law with momentum and

velocity (Richards, Benevolenski, and Voroshilov 2012). The momentum-velocity model is

more about dealing with the actual rigid body simulation and not just collisions and contact

handling. Alternative term for the momentum-velocity model is position-based dynamics

(Bender, Müller, and Macklin 2017).

The method is implemented in Box2D (Catto 2007), an open-source physics engine, by

Erin Catto, along with the GJK. It was Catto, who also introduced sequential solver for

solving contacts iteratively instead of solving linear equations or LCPs. Sequential solver

is analogous to Projected-Gaussian Seidel, originally reported by Morales, Nocedal, and

Smelyanskiy (2008), and its main advantage is that it makes contact handling simpler in

terms of programming, as contact forces can be solved separately from the other simulation

and simply added to the system.

Another advantage of the momentum-velocity model over traditional Newtonian-physics is

that it provides an alternative method for resolving collision time. The way the collision time

is resolved, with the methods described in above, it’s usually heavily coupled to either to the

rigid body simulation, collision detection or both. Firth (2011) introduced a method called

speculative collisions. The idea is to take into account the movement of objects in the contact

resolution step, by adding a small quantity of velocity to the relative velocity between ob-

jects. This is usually in the order of the time step of the simulation. This means, speculative

contacts is a form of CA time handling method. Speculative time handling is implemented

in an open source physics engine called JitterPhysics (JitterPhysics - engine Readme) and it

can also be used in Unity3D (Unity3D - Manual, Continuous Collision detection).

28

6 Remarks on GPU Implementation

In this chapter, the hardware, principles and programming some conventions for a graphics

processing unit (GPU) will be introduced, the background and its common usage is de-

scribed. In addition, general purpose GPU applications, relevant to this thesis, are reviewed

and GPU is compared to CPU.

6.1 Background and GPGPU

Ever since the release of programmable GPUs, processing graphics has been made more

available to developers. The development of shader languages, along with the GPU hard-

ware, has ignited new approaches to process graphics in GPU. This includes some pro-

grammable steps, additional to the traditional graphics pipeline consisting of vertex and

fragment shader, such as programmable geometry and tessellation shaders. Along with the

increased freedom over the GPU pipeline, there are more stages that can be used for other

graphics related computations, such as shadow calculations as shown by Billeter, Sintorn,

and Assarsson (2010), or lighting as demonstrated by Boubekeur and Alexa (2008).

Hardware of the GPU has become more powerful and more control over the usage of GPU

resources has been provided for programmers, as graphics pipeline has evolved. This com-

bined with the parallel nature of GPU has resulted in other purposes for GPU, such as in

scientific computation as described in general level by Luebke (2008), machine learning as

shown by Garg et al. (2019) and game physics calculations, of which the most commonly

used commercial GPU physics engine in games is PhysX SDK documentation (2001) by

NVIDIA.

6.2 GPU Hardware Architecture

This chapter is mostly based on Pascal Whitepaper, published by NVIDIA (2016b) and a

handbook written by Wilt (2013). In order to understand how GPU calculations are per-

formed, a bird’s eye perspective to GPU hardware architecture must be given. The descrip-

29

tion will follow NVIDIA Pascal micro-acrhitecture. It is chosen because of its similarities to

any modern GPU microachitecture, and because it is also the governing architecture of the

GPU hardware used in this investigation.

The central functional component for GPU for GPGPU are the Streaming Multiprocessors

(SM). Each SM contains an instruction cache, instruction buffers, dispatch units, warp sched-

ulers, registers, L1 cache, texture processors and memory and multiple cores. SM also con-

tains Warp scheduler, with a dispatch unit, which is the GPU equivalent of CPU control unit.

Warp scheduler organizes the instructions in a single unit of a set of threads that share the

same instructions. This unit is called a warp. The SM picks up the instructions from the

warp sequentially. The execution is handled by GPU Core, which is a floating point unit

(FPU). The SM structure of an NVIDIA GP100 series GPU is presented as a block diagram

in Figure 6.

Figure 6. A block diagram of a single Streaming Multiprocessor (NVIDIA 2016b)).

32 bit single-precision cores, FPUs, in the Figure 6 are termed as CUDA. Each SM consti-

tutes of 64 CUDA cores, and hardware model, GP106, used in our experiments, or commer-

30

cially GTX 1060, contains in total twenty SMs. In overall, this yields 1260 CUDA cores.

A complete GP106 block diagram is presented in Figure 7. Here, the CUDA cores are pre-

sented in as green rectangles.

Figure 7. A complete GTX 1060 block diagram by NVIDIA (2016a)).

6.3 GPU Programming

The general execution pipeline in GPGPU calculations is independent of the API. In general,

the execution is divided in sequential execution and parallel execution, performed in CPU

and GPU, respectively. From programmer’s perspective parallel execution is done in blocks

31

and threads (Wilt 2013).

Cuda interface requires additional arguments when a function call is performed from CPU

to GPU. These arguments are passed in a similar manner to C++ templates, but within

triple brackets as in: function<<<N, M>>>(args);. In the example, N and M de-

note the number of blocks and threads per block, respectively, the block resembling a block

of threads, or threadblock. That is, a programmer prepares the data and forms a grid of

threadblocks, thus controlling the measure of parallelism used for the execution (NVIDIA

2019).

1 function<<<1, 1>>>(args);

would be completely sequential execution.

From hardware’s perspective, a SM can execute multiple threadblocks and a thread is exe-

cuted by a core. The grid represents the GPU unit used for the entire execution.

The threads and threadblocks are indexed, and commonly an execution of a function operat-

ing to an array of elements in parallel resembles the following:

1 __global__ void add(float *a , float *b , float *c , int N)

2 {

3 int index = blockIdx.x * blockDim.x + threadIdx.x ;

4 if(index < N)

5 {

6 c[index] = a[index] + b[index] ;

7 }

8 }

6.3.1 Code considerations

The rooted terminology in the field separates CPU and GPU executions as host and device

executions. The data is prepared in host-side and possibly converted to a format that is

excepted by the device. The memory allocations, on both, host and device, are done on host-

side. The initialization of the device execution is performed by calling a kernel function.

In CUDA, the lingua franca is C, or a subset of C, with some functionalities replaced with

32

interfaces specific to the client-side, such as mallocwith cudaMalloc and memcpywith

cudaMemcpy (NVIDIA 2019). An example of a kernel function declaration and execution:

1 __global__ void my_kernel(int *a, int *b, int *c, int N);

2

3 int main()

4 {

5 int *da, *db, *dc, N;

6 // initilize data, do memory allocations

7 int blocks, threads;

8 my_kernel<<<blocks, threads>>>(da, db, dc, N);

9 return 0;

10 }

11

12 __global__ void my_kernel(int *a, int *b, int *c, int N)

13 {

14 // kernel function body

15 }

Also all function prefixed with a __global__ keyword. The other prefixing keywords in

CUDA are __device__ and __host__. Kernel function can be thought of as a bridge

between host and device execution. This is because device functions can only be called from

other functions labeled with __device__ or __global__, whereas __global__ and

__host__ functions can be called from host (NVIDIA 2019).

In this research, the GPU-side GJK process is implemented using the following conventions:

1 // GJK for single contact pair

2 __device__ float gjkGPU(bdGPU *bodyA, bdGPU *bodyB,

3 simplexGPU *simplex, float *distance);

4

5 __global__ void queryContacts(queryPairGPU *pair,

6 float *distances, unsigned int Npairs)

7 {

8 int index = blockIdx.x * blockDim.x + threadIdx.x;

9 int stride = blockDim.x * gridDim.x;

10 for (int i = index; i < N; i += stride)

11 {

33

12 // GJK for single contact pair

13 distances[i] = gjkGPU(contactPairs[i].bodyA,

14 contactPairs[i].bodyB, &contactPairs[i].simplex);

15 }

16 }

17 ...

18 void narrowPhase(queryPairGpu **contactPairArr,

19 float **distances, unsigned int N)

20 {

21 queryContacts<<<1,N>>>(*contactPairArr, *distances, N);

22 }

23

24 vector<Contacts> collisions(const QueryPairs &pairs)

25 {

26 vector<queryPairGPU*> pairs;

27 vector<float*> distances;

28 // build data, allocate memory

29

30 queryContacts(pairs.data(), distances.data(), pairs.size());

31 // build and return contacts

32 }

6.3.2 Parallel thinking

The following terminology and principles are mainly based on the text written by Karras

(2012), by using a BVH construction and traversal as an example. The factors pointed out

in this chapter demonstrates, is how differently sequentially executed algorithms should be

coded and their performance cost evaluated compared to parallel execution. Simple evalua-

tion of algorithm complexity, in a form of O(n) or O(log n), is not sufficient for evaluating

GPU-run algorithms.

The first and foremost factor affecting GPU-execution that should be considered, both in

computations and graphics applications, is divergence. Divergence is a measure of similarity

of operations performed by close by threads, and it’s evaluated both for data and execution,

yielding data divergence and execution divergence, respectively. If nearby threads are ex-

34

ecuting the same code or execution branches, the execution divergence is said to be low.

Similarly, if the data is read from, or written to, a same location in memory or registers, the

data divergency is low. The lower the divergence, the better it is for the performance of the

algorithm. Of course, this is same for all parallel executions, not just GPU. In CPU execu-

tions this is not so clearly evident as cache size per core is high compared to GPU and cache

is more easily available by the cores executing instructions. This is also referred as global

cache coherence, originally described by Ravishankar and Goodman (1983).

Another factor affecting parallel GPU-executions is occupancy, which is a ratio of threads

involved in execution per available threads on the processor, that is occupied active warps per

maximum available warps. A new set of parallel instructions, that is a single thread block, are

dispatched from a single warp, at a time, for the execution. If the warp is not fully occupied,

the SM is not operating in full capacity, and a full parallellism isn’t achieved. Occupation is

especially important for large data size, capable occupying a significant amount of warps in

the whole GPU.

6.3.3 Unified Memory

Originally, the GPGPU programmers using CUDA had to allocate memory separately for

host and device side, initialize data on host side, use cudaMemcpy to copy the data to a

memory address pointed by a device pointer and run the execution. After the execution, they

had to use cudaMemcpy to copy the data back to host, and free host and device pointers,

after data usage. This was because the CPU and GPU memory was physically separated

and shared address space didn’t exist. On CUDA 6, the Unified Memory (UM) was intro-

duced. UM creates a pool of managed memory which can be accessed by both, CPU and

GPU. However, this model required that all managed memory utilized by the host, has to be

synchronized with the memory used by the device, before any kernel calls. The allocation of

memory and usage of variable on host side, in terms of CUDA 6, works as follows:

1 int doStuff(int size)

2 {

3 int *data;

4 // allocate unified memory

5 cudaMallocManaged(&data, size);

35

6 //... init / handle data

7 int blocks, threads;

8 doStuffGPU<<<blocks, threads>>>(data, N);

9 // synchronizes the data and returns back

10 // to sequential execution

11 cudaDeviceSynchronize();

12 // ... use data here...

13 // ... before releasing unified memory

14 cudaFree(data);

15 }

Pascal architecture came after CUDA 6, and brought in two improvements: support for large

space addressing and memory page faulting mechanism. Former enabling the GPU access to

CPU and GPU virtual spaces. The latter guaranteeing a global data coherency between CPU

and GPU. The unified memory in CUDA 9 are used in a following manner:

1 int doStuff(int size)

2 {

3 int *data;

4 // allocate unified memory

5 data = (int*)malloc(size);

6

7 ... init / handle / data

8

9 int blocks, threads;

10 doStuffGPU<<<blocks, threads>>>(data, N);

11

12 // synchronizes the data and returns back

13 // to sequential execution

14 cudaDeviceSynchronize();

15

16 ... use data

17

18 // free unified memory

19 free(data);

20 }

Although, CUDA 9.x is the current practice, the support for the post-CUDA 6 features is

36

dependent on the operating system, and currently are only provided for Linux systems. Our

experiments are conducted using Windows OS and thus, CUDA 6 practices will be followed,

in terms of memory management, at least. Additionally, the GPU hardware utilized in the

measurement (NVIDIA GTX 1060), supports CUDA 6.1 provided and earlier features, and

the CUDA source will be compiled using -arch=sm_61 flag.

6.4 GPU vs CPU

The term general-purpose graphics processing unit (GPGPU) calculation is an umbrella term

for any computational tasks, other than graphics, performed using GPU. Handling physics

in games with GPU can be considered as a GPGPU task. Handling physics with GPU frees

one of the most computationally cumbersome tasks, in games, from CPU to GPU. Another

reason than reallocating computational effort to GPU is that GPU is implicitly parallel. As

described by Karras (2012), collision detection is a parallelizable task, and therefore suitable

to be solved with a GPU. Using GPU over CPU, to solve parallelizable problems, may seem

overwhelmingly advantageous. However, as discussed by Pabst, Koch, and Straßer (2010)

the PCI-e bus creates a bottleneck in inter GPU data transfer resulting in a relative reduction

in performance, meaning that doubling the number of cores in the GPU will not halve the

computation time. Additionally, it has been noted by Pan and Manocha (2012) that when

using only one core or thread the CPU has been found generally more computationally ef-

fective. Despite of these findings, the shear number of GPU cores is so vast that, in collision

detection, the performance advantage can be more than one order of magnitude higher than

solving the same problem with CPU, as was noted by Pabst, Koch, and Straßer (2010). Also,

it should be noted that as described by NVIDIA (2016b) the CPU-GPU data transfer is not

necessarily performed via a PCI-e bus, but with NVIDIA Pascal architecture, a more recent

NVLink is possibly utilized. Pan and Manocha (2012) noted that benchmark comparison

between CPU and GPU is not a trivial matter, and it’s affected by the algorithm, CPU and

GPU hardware and the amount of parallelism used in both CPU and GPU, and the also by

the test set. These factors are further discussed in section Results and Discussion.

Additionally, as noted in CUDA Technical Documentation (NVIDIA 2019) and Pascal Whitepa-

per NVIDIA (2016b), there is no global cache coherence in Pascal. Only within each SM,

37

which have their own L1 cache. Also there is a shared memory between cores within SM

and the L2 is shared between SMs. This is very different from current CPU that thrives on

cache coherency. In addition, memory size and bandwidths differ between CPU and GPU.

The L1 and L2, of a current GPU, are more than one fold smaller, whereas the bandwidth is

2 fold, compared to CPU.

38

7 Experimenting with SV-GJK

In this chapter, the simulation software and the experiments conducted using the software

are described and the experimental environment is presented. Also, a depiction of how the

results will be presented, is given.

7.1 Description of Simulation Software

The simulation software is a typical physics simulation software, combined with a game

loop, not unlike described by Nystron (2014), who also describes some other design patterns

that influenced the implementation. In Game-class, while-loop is executed as long as the

simulation is halted. This loop (Figure 2) consists of three major functions: Game::input(),

Game::update(float), Game::render(), all executed sequentially. The first one handles player

input, which in this simulation is only available for some debug functionality and handling

camera movement. The second function, Game::update(float), does most of the work; dur-

ing its execution forces, velocities and positions are calculated, collisions queried, contacts

solved and impact from the previous frame applied. The last function in the loop is solely

for rendering purposes.

The overall class diagram of the software is provided in Figure 8. The main()-function uses

an instance of game class, which initiates all needed objects in the before the loop is run.

During update the positions and physics of all instances of Object-class are updated. Those

objects that move use an object of Body-class, which represents a rigid body and handles all

physics, and an instance of Shape-class, that deals with rendering and shape related informa-

tion such as vertex positions. SV-GJK and the applied acceleration structure is implemented

in update-phase. The collision queries are abstracted in CollisionDetection-class. The GJK

algorithm is implemented in a way that the sub-algorithm can be changed if needed. The col-

lision information is saved to an instance of Contacts-class, which subsequently constructs

the contact manifold. A contact contains data about contact point, contact normal and point-

ers to corresponding the colliding object pair. The constructed contact information is then

passed to ResponseHandler-class, which solves contact impulses and passes them to the rigid

39

bodies of incident objects, for the next frame.

The selected techniques implemented in simulation software, described in the theory part of

this thesis, are VVI solver and octree as broad-phase method.

Figure 8. Class diagram of the simulation software. Only the most important classes are

included in the description.

The renderer is OpenGL (v. 4.6), which is used with GLEW extension and GLSL shading

language (version 460 core). The window handle is provided by GLFW extension, which

also implicitly provides the needed game loop.

The original CPU implementation of the algorithm was done with C++. Since C++ is not

supported by CUDA, this causes a possible incomparability between CPU and GPU execu-

tions. This issue was solved by using the implementation in openGJK-library by Montanari,

Petrinic, and Barbieri (2017) for both GPU and CPU simulation. In addition, GPU profiling

tools are not built for measuring performance of the GPU code executed as part of exten-

sive MSVC projects. This problem was solved by using a custom Logger-class for both

implementations.

40

7.2 CPU vs GPU Performance Comparison

GPU - CPU performance comparison is conducted using three different test cases. Each case

consists of static object (i.e. "the floor"), which collides with other objects but does not have

any other physics properties, such as velocity or momentum, and dynamic objects, which

determine the nature of the particular measurement. Dynamic objects are perfect cubes.

Such simple geometries are used in order to simplify the implementation and to reduce the

number of complex collision schemes, which would make interpretation of the data more

unambiguous.

In all experiments, the measured quantity is contact query rate, that is, observed contacts per

time, as a function of the number of objects. Each measurement is set to run as long as a

stable state in simulation is found. Another tested quality is parallelizability in GPU. Mainly,

CPU will be run with single thread, and the optimal usage of cores and blocks on CUDA, in

these test cases, is attempted to be uncovered.

The CPU execution time is measured by using C++ standard library tool std::chrono::high_

precision_clock. With the utilized hardware, measurements can be realistically made with

microsecond precision, which is sufficient. For GPU, the execution time is measured from

host side (CPU) for the entire process, using the the same tool as for CPU measurements.

Use-cases applied in the experiments were:

1. Static Tower - A tower of eight uniformly shaped cubes act as dynamic objects that

are placed on a static object. Purpose is to test the performance of the algorithm for

resting contact.

2. Dynamic Tower I - A tower, similar to Case 1, is assembled by dropping cubes from

above. Purpose is to test the stability and robustness of the algorithm.

3. Dynamic Tower II - Same as Case 1, but an additional cube is tossed to the side of the

tower to a random height from a randomized direction. The measurement is repeated

numerous times in order to get enough data for statistical significance.

The CPU simulation is run with Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz, 2501 Mhz,

4 Core(s), 4 Logical Processor(s) and the GPU code is executed by NVIDIA GeForce GTX

1060, 6 GB, with 32 CUDA FPU.

41

Figure 9. Screenshots of Case 2 performed with six dynamic cubes and one static (below).

The initial state of the scene is presented on left, and the final state, when all cubes have

fallen down and formed a pile, are shown on right. It should be noted that the camera can be

moved similarly to first-person shooter games.

7.3 Results of Single-Core Experiments

The test cases 1 and 2 were conducted using up to 1 - 15 cubes. The results of a single

CUDA core vs CPU measurement are depicted in Figure 10. The data of case 1 is plotted

as an averaged contact query rate against sample size. Averaging was done over all frames.

The same data was plotted in more general terms, as a ratio of collision detection rates of

CPU and GPU (11). The data in acquired in case 1 is almost identical with the one obtained

in test case 2. Only cases 1 and 2 were focused due to instabilities of Case 3, in which the

outcome was not meaningful for any meaningful comparison.

Here, the results shown in Figures 10 and 11, conclude that in a single-core experiment, a

CPU out performs the used GPU by being 2-5 times more performant. Also, the results show

the decreasing efficiency in GPU side with an increasing object count. This performance

42

Figure 10. Comparison of a single-core performance. Average collision detection rate (Col-

lisions / s) is depicted on the vertical axis and the number of cubes (8 vertices each) are

represented by horizontal axis.

difference is largely explained by the technical differences between CUDA core and Intel

i5 CPU, the latter being faster in terms of clock cycles (2.4 MHz vs. 1.5 MHz) and having

1-2 orders of magnitude larger cache L1 and L2 (NVIDIA 2016b). Pabst, Koch, and Straßer

(2010) indicated that the performance could be hindered by the step transferring data between

host and device, but since the two hardware share a common memory space, and the memory

bandwidths are in order of tens or hundreds of gigabytes, it is unlikely that the data transfer

between hardware has a large impact here, especially because the required data is only 232

bytes, per call.

7.4 Impact of Implementation Details

For a sparse, dynamic system, such as in this study, a uniform dissection of the whole sim-

ulation space is not an ideal solution. Also, as stated by Ericson (2004), successfully im-

43

Figure 11. Proportional data acquired from single-core experiment. Within the limits of the

utilized dataset, the proportional decrease of performance with an increasing object count

has a linear behavior.

plemented acceleration structures should give rise to asymptotic behavior, with respect to

an increasing object count. However, the acquired results appear to behave exponentially.

This may be because of a wrong choice of the space partition parameters, such as, where

the space dividing plane is situated or how small is the smallest cell that still contains the

object. These errors may result in only very few subspaces, where all objects are contained,

effectively making the broad-phase behave similarly to two nested loops. Also, octree is

more often used for evenly spaced structures such as voxels or pixels as Laine and Karras

(2010) have done, or for a static scene, such as shown by Revelles, Ureña, and Lastra (2000).

Chapter 3.1.2 contains preliminary information and references to broad-phase collision de-

tection methods that should be noted. The other methods, BVH, k-d tree and sweep and

prune should probably all be considered before octree in such case as here. Readers new to

the subject should see Karras (2012) for GPU implementations of BVH, and Baraff (1992)

for sweep and prune.

44

Device side SV-GJK executions designed to be performed for two-object sets per thread

block. That is, every single object pair interaction would be queried in parallel. The studied

sub-algorithm is implemented so that minimal divergence should take place. Depending on

the relative orientation of queried objects, threads may be executing different paths concur-

rently, resulting in separate function calls. Also, the implementation takes into accounting

that caching occurs mostly in situ. That is, most of the data manipulation is focusing on data

declared on the host side, before device execution, where the query data is prepared in an ar-

ray. Thus, nearby threads will most likely operate on the data in adjacent memory locations,

resulting in minimal data divergence. The effect of these factors is difficult to estimate be-

cause of the lack of metrics, and the causes affecting the obtained results are most probably

stemming from other sources such as, sub-optimal implementation choices.

A notion should be made, that since the problem domain is well known, it’s possible that the

benefits of the OOP, such as system maintanability and extendability, may be outweighted

by the performance gain provided by the procedural or the functional approach.

7.5 Parallellism

A couple of different procedures were attempted to succeed in multi-core experiments.

Firstly, for single-core experiment, the allocation worked only with cudaHostAlloc

(NVIDIA 2019):

1 void checkCollision(// args //)

2 {

3 body *d_bodyA, *bodyA = (bdGPU *)malloc(sizeof(bdGPU));

4 cudaHostAlloc(&d_bodyA, sizeof(bdGPU), cudaHostAllocDefault);

5 cudaError error = cudaHostGetDevicePointer(&d_bodyA, bodyA, 0);

6 if (error != cudaSuccess)

7 exit(-1);

8 //... init / handle host data

9 //... pass device pointers to device.

10 // free data

11 },

which was also attempted for the multi-core simulation. Another two schemes were to use

45

cudaMallocManaged and also allocating host and device memory separately, and copy-

ing data back and forth with cudaMalloc and cudaMemcpy, as described in 4.4.2. How-

ever either the deallocation failed completely with error code cudaIllegalMemoryAddress,

which occurred latest at cudaHostRelease.

46

8 Conclusion

Here, the improved GJK algorithm, or SV-GJK, was reviewed. Compared to its predeces-

sors, it has some advantages, that stem from mathematical properties of chosen techniques,

such as barycentric coordinates and projections to lower dimensional spaces. Also, the prin-

ciples of physics engines in video games were described. The reader was also introduced to

CUDA and GPGPU. These concepts were used in practical experimentation by implement-

ing simulation software, which applied both CPU and GPU hardware for running SV-GJK as

a collision detection algorithm. The hope was to acquire generally applicable results about

parallelism of SV-GJK, and see how modern CPU and GPU compare in a benchmark test.

The experiments were conducted by devising a set of well-defined use cases, and measuring

the computation time with respect to number of colliding objects. Single-core CPU vs GPU

was only successful one, and it shows that for a subsequent execution a single Intel i5 (7th

gen.) core outperforms a single-precision FPU on GPU, in terms of handled contacts per

second, being 2-5 times more performant, with applied test data, depending on the number

of potential colliding objects used in the simulation.

In overall, the work could work as an initial spark for more formal scientific publication. For

those who hope to learn about making these experiments, or begin conducting a larger scale

research on the subject, a couple of factors are advised to take into careful consideration:

(i) Getting the collision detection algorithm to work properly GPU can be more tedious

than in CPU. Pre-assessing the compatibility between the SDK and IDE, compiler and

OS, is advised. Alternatively, a more general approach could be to use computation

shaders, that are currently supported by most graphics cards, and are independent of

the OS or programming language used for the rest of the simulation.

(ii) Test the integration between CPU and GPU implementations and the required tools.

The usage of built-in profiling tools etc., are provided by vendors or can be found

open-source.

(iii) Careful planning of code design and requirements of implementation should be taken

in to account in advance of the implementation. Also, the programming paradigm

47

can indirectly affect the performance. Data-driven-design, functional or procedural

features should be preferred over OOP. Here, the problem domain is restricted and

fully known, and extensibility and maintainability are less crucial than performance.

48

Literature

Baraff, David. 1992. “Dynamic Simulation of Non-Penetrating Rigid Bodies”. PhD thesis,

Cornell University, Computer Science Department.

Baraff, David, and Andrew Witkin. 1997. Physically Based Modeling: Principles and Prac-

tice. "https://www.cs.cmu.edu/~baraff/sigcourse/". SIGGRAPH 97

Course notes.

Bender, Jan, Matthias Müller, and Miles Macklin. 2017. “A Survey on Position Based Dy-

namics”. In EG 2017 - Tutorials.

Bentley, Jon Louis. 1975. “Multidimensional binary search trees used for associative search-

ing.” Communications of the ACM. 18 (9).

Bergen, Gino van den. 1999. “A fast and robust GJK implementation for collision detection

of convex objects.” Journal of Graphics Tools 4 (2): 7–25.

. 2001. “Proximity Queries and Penetration Depth Computation on 3D Game Ob-

jects”. GDC.

. 2003. Collisions Detection in Interactive 3D Environments. Morgan Kaufmann Pub-

lishers.

. 2004. “Ray Casting against General Convex Objects with Application to Continuous

Collision Detection”. unpublished manuscript.

Bergstra, James, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu, Olivier Delalleau, Guil-

laume Desjardins, Ian Goodfellow, Arnaud Bergeron, Yoshua Bengio, and Pack Kaelbling.

2011. Theano: Deep Learning on GPUs with Python.

Billeter, Markus, Erik Sintorn, and Ulf Assarsson. 2010. “Real Time Volumetric Shadows

Using Polygonal Light Volumes”. In Proceedings of the Conference on High Performance

Graphics, 39–45. HPG.

49

"https://www.cs.cmu.edu/~baraff/sigcourse/"

Böhm, Christian, Robert Noll, Claudia Plant, Bianca Wackersreuther, and Andrew Zherdin.

2009. Data Mining Using Graphics Processing Units - Transactions on Large-Scale Data-

and Knowledge-Centered Systems I. Edited by Abdelkade Hameurlain, Josef Küng, and

Roland Wagner. 63–90. Berlin, Heidelberg: Springer Berlin Heidelberg.

Boubekeur, Tamy, and Marc Alexa. 2008. “Phong Tessellation”. ACM Transactions on Graph-

ics (Proc. SIGGRAPH Asia 2008) 27 (5).

Boyd, Stephen P., and Lieven Vandenberghe. 2004. Convex Optimization. 27–29. ISBN 978-

0-521-83378-3. Cambridge University Press.

Brown, Russel A. 2015. “Building a balanced k-d tree in O(kn log n) time.” Journal of

Computer Graphics Techniques. 4 (1): 50–68.

Catto, Erin. 2007. Box2D - A 2D Physics Engine for Games. "https://box2d.org/

about/".

Cheng, Wangzhao, Fangyu Zheng, Wuqiong Pan, Jingqiang Lin, Huorong Li, and Bingyu Li.

2018. High-Performance Symmetric Cryptography Server with GPU Acceleration. 529–540.

ISBN: 978-3-319-89499-7.

Cohen, Jonathan D., Ming C. Lin, Dinesh Manocha, and Madhav Ponamgi. 1995. “I-COLLIDE:

An Interactive and Exact Collision Detection System for Large-scale Environments”. In Pro-

ceedings of the 1995 Symposium on Interactive 3D Graphics, 189–ff. I3D ’95. ACM.

cuSOLVER documentation. 2007. "https://docs.nvidia.com/cuda/cusolver

/index.html".

Eigen documentation. 2009. http://eigen.tuxfamily.org/index.php?title

=Main_Page".

Ericson, Christer. 2004. Real-Time Collision Detection. Boca Raton, FL, USA: CRC Press,

Inc.

Firth, Paul. 2011. Speculative contacts – an continuous collision engine approach part 1.

"https://wildbunny.co.uk/blog/2011/03/25/speculative-contacts

-an-continuous-collision-engine-approach-part-1/".

50

"https://box2d.org/about/"
"https://box2d.org/about/"
"https://docs.nvidia.com/cuda/cusolver/index.html"
"https://docs.nvidia.com/cuda/cusolver/index.html"
http://eigen.tuxfamily.org/index.php?title=Main_Page"
http://eigen.tuxfamily.org/index.php?title=Main_Page"
"https://wildbunny.co.uk/blog/2011/03/25/speculative-contacts-an-continuous-collision-engine-approach-part-1/"
"https://wildbunny.co.uk/blog/2011/03/25/speculative-contacts-an-continuous-collision-engine-approach-part-1/"

Garg, Adhesh, Diwanshi Gupta, Parimi Praveen Sahadev, and Sanjay Saxena. 2019. “Com-

prehensive Analysis of the Uses of GPU and CUDA in Soft-Computing Techniques”. In

2019 6th International Conference on Signal Processing and Integrated Networks (SPIN),

584–589.

Giang, Thanh, Gareth Bradshaw, and Carol O’ Sullivan. 2003. Complementarity Based Mul-

tiple Point Collision Resolution. Fourth Irish Workshop on Computer Graphics. Conference

paper.

Gilbert, Elmer G., Daniel W. Johnson, and S. Sathiya Keerthi. 1988. “A Fast Procedure

for Computing the Distance between Complex Objects in Three-Dimensional Space.” IEEE

Trans. Robotics and Automation 4:193–203.

Gottschalk, S., M. C. Lin, and D. Manocha. 1996. “OBBTree: A Hierarchical Structure for

Rapid Interference Detection”. In Proceedings of the 23rd Annual Conference on Computer

Graphics and Interactive Techniques, 171–180. SIGGRAPH ’96.

Gregory, Jason. 2009. Game Engine Architecture 1st Ed. A K Peters, Ltd. , 830 p.

Gu, Yan, Yong He, Kayvon Fatahalian, and Guy Blelloch. 2013. Efficient BVH Construction

via Approximate Agglomerative Clustering. HPG.

Hook, Timothy Van. 1995. “High performance low cost video game system with coprocessor

providing high speed efficient 3D graphics and digital audio signal processing”. US6239810B1.

Hornus, Samuel. 2017. “Detecting the intersection of two convex shapes by searching on the

2-sphere”. Computer-Aided Design 90:71–83. doi:https://doi.org/10.1016/j.

cad.2017.05.009.

Hubbard, Philip M. 1996. “Approximating Polyhedra with Spheres for Time-critical Colli-

sion Detection”. ACM Trans. Graph. 15 (3): 179–210.

Implementing GJK. 2006. "https://caseymuratori.com/blog_0003".

JitterPhysics - engine Readme. "https://github.com/mattleibow/jitterphy

sics".

51

http://dx.doi.org/https://doi.org/10.1016/j.cad.2017.05.009
http://dx.doi.org/https://doi.org/10.1016/j.cad.2017.05.009
"https://caseymuratori.com/blog_0003"
"https://github.com/mattleibow/jitterphysics"
"https://github.com/mattleibow/jitterphysics"

Karras, Tero. 2012. Thinking Parallel, Part I: Collision Detection on the GPU. "https:

//devblogs.nvidia.com/thinking-parallel-part-i-collision-

detection-gpu/".

Khronos Launches Heterogeneous Computing Initiative. 2008. "https://web.archi

ve.org/web/20080620123431/http://www.khronos.org/news/press/

releases/khronos_launches_heterogeneous_computing_initiative/

".

Laine, Samuli, and Tero Karras. 2010. “Efficient Sparse Voxel Octrees – Analysis, Exten-

sions and Implementation”. NVIDIA Research.

LAPACK documentation. 1992. "http://www.netlib.org/lapack/".

Lin, Ming Chieh. 1993. “Efficient Collision Detection for Animation and Robotics”. PhD

thesis.

Linahan, Jeff. 2015. “A Geometric Interpretation of the Boolean Gilbert-Johnson-Keerthi

Algorithm”. arXiv abs/1505.07873.

Luebke, David. 2008. “CUDA: Scalable parallel programming for high-performance scien-

tific computing”. In 2008 5th IEEE International Symposium on Biomedical Imaging: From

Nano to Macro, 836–838.

Meagher, Donald. 1980. Octree Encoding: A New Technique for the Representation, Manipu-

lation and Display of Arbitrary 3-D Objects by Computer. Technical Report IPL-TR-80-111.

Rensselaer Polytechnic Institute.

Millington, Ian. 2010. Game Physics Engine Development, Second Edition: How to Build a

Robust Commercial-Grade Physics Engine for Your Game. 2nd. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc. ISBN: 0123819768, 9780123819765.

Montanari, Mattia, Nik Petrinic, and Ettore Barbieri. 2017. “Improving the GJK Algorithm

for Faster and More Reliable Distance Queries Between Convex Objects.” ACM Trans.

Graph. 36 (30): 1–17.

Morales, Jose Luis, Jorge Nocedal, and Mikhail Smelyanskiy. 2008. Numerische Mathematik

111:251–266.

52

"https://devblogs.nvidia.com/thinking-parallel-part-i-collision-detection-gpu/"
"https://devblogs.nvidia.com/thinking-parallel-part-i-collision-detection-gpu/"
"https://devblogs.nvidia.com/thinking-parallel-part-i-collision-detection-gpu/"
"https://web.archive.org/web/20080620123431/http://www.khronos.org/news/press/releases/khronos_launches_heterogeneous_computing_initiative/"
"https://web.archive.org/web/20080620123431/http://www.khronos.org/news/press/releases/khronos_launches_heterogeneous_computing_initiative/"
"https://web.archive.org/web/20080620123431/http://www.khronos.org/news/press/releases/khronos_launches_heterogeneous_computing_initiative/"
"https://web.archive.org/web/20080620123431/http://www.khronos.org/news/press/releases/khronos_launches_heterogeneous_computing_initiative/"
"http://www.netlib.org/lapack/"

NVIDIA. 2016a. NVIDIA GeForce GTX 1060 Full Specifications Detailed. https://

wccftech.com/nvidia-geforce-gtx-1060-final-specifications/.

. 2016b. NVIDIA Tesla P100 - The Most Advanced Datacenter Accelerator Ever Built

Featuring Pascal GP100, the World’s Fastest GPU. Technical report.

. 2019. CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/.

NVIDIA Launches the World’s First Graphics Processing Unit: GeForce 256. 1999. "http

s://www.nvidia.com/object/IO_20020111_5424.html".

Nystron, Robert. 2014. Game Programming Patterns. Genever Benning; 1st Ed., 354 p.

Ong, Chong Jin, and Elmer G. Gilbert. 1997. “The Gilbert-Johnson-Keerthi distance algo-

rithm: a fast version for incremental motions”. In Proceedings of International Conference

on Robotics and Automation, 2:1183–1189.

OpenGL 2.0: OpenGl version history, Khronos. 2004. "https://www.khronos.org/

opengl/wiki/History_of_OpenGL#OpenGL_2.0_.282004.29".

Pabst, Simon, Artur Koch, and Wolfgang Straßer. 2010. “Fast and Scalable CPU/GPU Col-

lision Detection for Rigid and Deformable Surfaces”. Computer Graphics Forum 29 (5):

1605–1612.

Pan, Jia, and Dinesh Manocha. 2012. “GPU-based parallel collision detection for fast motion

planning”. The International Journal of Robotics Research 31 (2): 187–200.

PhysX SDK documentation. 2001. "https://developer.nvidia.com/physx-

sdk".

Ravishankar, Chinya V., and James R. Goodman. 1983. “Cache implementation for multiple

microprocessors”, Conference: Sponsored by IEEE.

Revelles, J., C. Ureña, and M. Lastra. 2000. “An Efficient Parametric Algorithm for Octree

Traversal”. In Journal of WSCG, 212–219.

Richards, Tonge, Feodor Benevolenski, and Andrey Voroshilov. 2012. “Mass Splitting for

Jitter-Free Parallel Rigid Body Simulation”. ACM Transactions on Graphics 31 (4): 1–8.

53

https://wccftech.com/nvidia-geforce-gtx-1060-final-specifications/
https://wccftech.com/nvidia-geforce-gtx-1060-final-specifications/
https://docs.nvidia.com/cuda/
"https://www.nvidia.com/object/IO_20020111_5424.html"
"https://www.nvidia.com/object/IO_20020111_5424.html"
"https://www.khronos.org/opengl/wiki/History_of_OpenGL#OpenGL_2.0_.282004.29"
"https://www.khronos.org/opengl/wiki/History_of_OpenGL#OpenGL_2.0_.282004.29"
"https://developer.nvidia.com/physx-sdk"
"https://developer.nvidia.com/physx-sdk"

Schauer, Johannes, and Andreas Nuchter. 2015. “Collision detection between point clouds

using an efficient k-d tree implementation”. Advanced Engineering Informatics 29 ().

Snethen, Gary. 2008. “Complex Collision Made Simple”. Game Programming Gems 7:165–

178.

Stone, John E., James C. Phillips, Peter L. Freddolino, David J. Hardy, and Trabuco Klaus

Schulten. 2007. “Accelerating molecular modeling applications with graphics processors”.

J. Comput. Chem: 10–1002.

Unity3D - Manual, Continuous Collision detection. "https://docs.unity3d.com/

Manual/ContinuousCollisionDetection.html".

Verlet, Loup. 1967. “Computer "Experiments" on Classical Fluids. I. Thermodynamical

Properties of Lennard-Jones Molecules”. Phys. Rev. 159 (1): 98–103.

Wilt, Nicholas. 2013. The CUDA Handbook: A Comprehensive Guide to GPU Programming.

Addison-Wesley Professional, 520 p.

Xenocollide library. 2006. "https://protogame.readthedocs.io/en/latest

/jitter/api/xenocollide.gen.html".

Xiao-rong, W., W. Meng, and L. Chun-gui. 2009. “Research on Collision Detection Algo-

rithm Based on AABB”. In 2009 Fifth International Conference on Natural Computation,

6:422–424.

54

"https://docs.unity3d.com/Manual/ContinuousCollisionDetection.html"
"https://docs.unity3d.com/Manual/ContinuousCollisionDetection.html"
"https://protogame.readthedocs.io/en/latest/jitter/api/xenocollide.gen.html"
"https://protogame.readthedocs.io/en/latest/jitter/api/xenocollide.gen.html"

	1 Introduction
	1.1 Formalism

	2 Physics simulations in video games
	2.1 Rigid body physics
	2.1.1 State
	2.1.2 Time-advancement

	2.2 Numerical Integrators
	2.2.1 Euler's Mehtod
	2.2.2 Semi-Implicit Euler
	2.2.3 Runge-Kutta
	2.2.4 Verlet Velocity Integrator

	3 Bird’s eye view on collision detection
	3.1 Broad-phase
	3.1.1 Octree
	3.1.2 Other broad-phase methods

	3.2 Narrow-phase

	4 Gilbert-Keerthi-Johnson algorithm
	4.1 Johnson Distance Sub-Algorithm
	4.2 Evolution of GJK
	4.3 Signed-Volume Sub-Algorithm

	5 Bird’s eye view on collision detection revisited
	5.1 Contact Handling
	5.1.1 Manifold Construction
	5.1.2 Collision Response

	5.2 Solvers for Systems of Equations
	5.2.1 Linear equations
	5.2.2 Quadratic
	5.2.3 LCP

	5.3 Other narrow-phase methods
	5.3.1 Separating axis theorem
	5.3.2 Minkowski portal refinement

	5.4 Approximate methods

	6 Remarks on GPU Implementation
	6.1 Background and GPGPU
	6.2 GPU Hardware Architecture
	6.3 GPU Programming
	6.3.1 Code considerations
	6.3.2 Parallel thinking
	6.3.3 Unified Memory

	6.4 GPU vs CPU

	7 Experimenting with SV-GJK
	7.1 Description of Simulation Software
	7.2 CPU vs GPU Performance Comparison
	7.3 Results of Single-Core Experiments
	7.4 Impact of Implementation Details
	7.5 Parallellism

	8 Conclusion
	Literature

