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ABSTRACT

Mokaev, Ruslan
Effective analytical-numerical methods for the study of regular and chaotic
oscillations in dynamical systems
Jyväskylä: University of Jyväskylä, 2019, 84 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 172)
ISBN 978-951-39-7989-8 (PDF)

This dissertation examines the difficulties in analyzing the onset of oscillations in
the process of loss of stability in various nonlinear dynamical systems. The study
of the onset of oscillations originated with the discovery of periodic regimes in
automatic control systems, as well as with the discovery of chaos associated with
attempts to explain a laminar fluid flow becoming turbulent. One of the first
methods revealing and analyzing stability of periodic oscillations applied to au-
tomatic control systems with one scalar nonlinearity was the Andronov point-
mapping method, which is applicable only to piecewise linear systems of low
order. Van der Pol, Krylov and Bogolyubov suggested the harmonic balance
method, which is applicable to systems of arbitrary dimension with scalar non-
linearity of a general form. However, this method is approximate and may incor-
rectly predict the loss of stability and existence of oscillations.

In this dissertation, for systems with one scalar nonlinearity, the discussion
of the classical harmonic balance and the point-mapping methods has been car-
ried out. Advantages and disadvantages of the locus of a perturbed relay system
(LPRS) method, which is an extension of the harmonic balance method, were dis-
cussed and new examples demonstrating difficulties of studying scenarios of the
loss of stability and onset of oscillations in relay systems were presented.

None of the above mentioned methods are applicable when oscillations
emerging in the system after the loss of stability demonstrate complex chaotic
behavior. Such phenomenon was first noticed by famous scientist Lorenz in the
study of turbulent convection of a fluid layer. One of the first explanations to the
birth of such oscillations was given via a homoclinic bifurcation, in which a ho-
moclinic oscillation appears in the phase space. In general, proving the existence
of a homoclinic oscillation and giving a full description of the loss of stability and
the onset of chaos via a homoclinic bifurcation remain open challenges.

In this dissertation, for a class of Lorenz-like systems, the conditions of the
existence of a homoclinic oscillation have been analytically obtained and a nu-
merical investigation of several new homoclinic bifurcation scenarios have been
carried out. For the Lorenz system, to visualize unstable periodic oscillations,
which may appear during homoclinic bifurcations and are embedded in chaotic
attractor, the Pyragas control algorithm has been implemented.

Keywords: global stability, periodic and homoclinic oscillations, chaos



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Mokaev, Ruslan
Tehokkaita analyyttis-numeerisia menetelmiä dynaamisten systeemien
säännöllisten ja kaoottisten värähtelyjen tutkimiseen
Jyväskylä: University of Jyväskylä, 2019, 84 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 172)
ISBN 978-951-39-7989-8 (PDF)

Työssä kehitetään uusia menetelmiä dynaamisten systeemien värähtelyjen tutki-
miseen. Tutkimusalueen juuret ovat yhtäältä automaattisten ohjausjärjestelmien
analyysissä ja toisaalta virtausten turbulenssin syntymekanismeissa. Vanhimpia
metodeja ovat Andronovin pistemenetelmä, joka soveltuu paloittain lineaaristen
ohjausjärjestelmien toimintapisteiden ja stabiiliuden tutkimiseen, sekä harmoni-
sen tasapainon menetelmä (Van der Pol, Krylov, Bogolyubov), joka soveltuu ylei-
sille systeemeille, joissa on yksi epälineaarinen elementti. Menetelmä ei kuiten-
kaan ole tarkka, vaan voi antaa vääriä ennusteita systeemin stabiiliudesta.

Tässä työssä vertaillaan yhden epälineaarisuuden sisältäville systeemeille
em. menetelmiä sekä pistemenetelmän laajennusta, LPRS-menetelmää (Locus of
Perturbed Relay System). Osoittautui, että menetelmät täydentävät toisiaan ai-
dosti ja eri menetelmien avulla voitiin löytää uusia, ennen tuntemattomia esi-
merkkejä piilevistä kaoottisista värähtelijöistä.

Monimutkaisemmille systeemeille, joissa on useampi epälineaarinen kom-
ponentti ja värähtely on kaoottista, edelliset menetelmät eivät ole riittäviä. Kaoot-
tisille värähtelyille on monta syntymekanismia, joista tunnetuin on niin sanottu
homokliininen bifurkaatio, jossa tasapainossa olevaan järjestelmään syntyy toi-
mintapisteen muuttuessa spontaanisti periodinen värähtely. Tämän ilmiön löysi
meteorologi Lorenz tutkiessaan turbulenssin syntyä ilmakehässä.

Yleisessä tapauksessa kysymys siitä, voiko systeemiin syntyä homokliini-
nen värähtely ja voiko systeemi siirtyä tätä kautta kaoottisen värähtelyn tilaan,
on avoin.

Tässä työssä on johdettu joukolle Lorenzin mallin kaltaisia systeemejä eh-
dot, joiden vallitessa niissä esiintyy homokliininen värähtely. Tämä on mahdol-
listanut useiden uusien bifurkaatioskenaarioiden numeerisen tarkastelun. Osana
numeerista tarkastelua on toteutettu Pyragasin säätöalgoritmi, jonka avulla voi-
daan visualisoida kaoottisen värähtelyn sisään piiloutuneita, epästabiileja, perio-
disia värähtelyjä.

Avainsanat: globaali stabiilius, periodisia ja homokliiniset värähtelyt, kaaos
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1 INTRODUCTION AND STRUCTURE OF THE
WORK

1.1 Introduction

The necessity of studying stability and limiting dynamical regimes (attractors)
arises in classical theoretical and applied problems. One of the first such prob-
lems was related to the design of automatic control (regulators) systems, which
ensured the transition of the controlled object to the operating regime and its sta-
bility with respect to external disturbances. For the first dynamical models of the
control systems the operating regime corresponds to a globally stable equilibrium
state (or a stationary set).

A classic example of such a dynamical model is the model suggested by
I.A. Vyshnegradsky (Vyshnegradsky, 1877) in his stability analysis of the Watt
governor – a mechanism used to maintain a constant speed of rotation of a tur-
bine shaft. For the closed dynamic model "machine + governor" Vyshnegradsky
studied an approximate linear mathematical model without dry friction and pro-
posed the stability conditions of the desired operating regime corresponding to
the equilibrium state (trivial attractor).

Soon it became clear that local stability of the equilibrium state (a necessary
condition for the existence of an operating regime) is not a sufficient condition
for global stability, and thus, Vyshnegradsky’s results were criticized. In a similar
regulation system with dry friction it was demonstrated (Léauté, 1885) that the
loss of global stability might be related with by existence of non-trivial oscillating
periodic working regimes (called lately limit cycles (Poincare, 1892, 1893, 1899))
could appear. Thus, the important question of rigorous proof of global stability
and the validation of the Vyshnegradsky procedure of linearizing the system by
discarding dry friction remained open.

Afterwards, A.A. Andronov and A.G. Maier (Andronov and Maier, 1944)
shown that conditions obtained by Vyshnegradsky are sufficient for global sta-
bility using specially developed point-mapping method, which was designed
for analysis of oscillations in a special case of low-order nonlinear systems with
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piecewise-linear nonlinearities.
For stability analysis of general nonlinear systems with one nonlinearity

an approximate method, called the harmonic balance method, was developed
(van der Pol, 1926; Krylov and Bogolyubov, 1937). It allowed one to detect the
existence of periodic oscillations, whose presence indicates the loss of global sta-
bility of a system. For a special case of relay systems with nonlinearity sign(·)
the harmonic balance method was further developed (see (Tsypkin, 1984; Boiko,
2008) and others), which allowed to get more accurate prediction on existence of
periodic oscillations. However, all these methods may not find all periodic oscil-
lations, especially the so-called hidden oscillations (Leonov and Kuznetsov, 2013;
Leonov et al., 2015; Kuznetsov et al., 2018b; Kuznetsov, 2016, 2018a,b, 2019, 2020),
which basin of attraction is not connected with equilibrium states, and which are
”hidden” somewhere in the phase space.

In more general cases, when there are several scalar nonlinearities in the
system, the classical harmonic balance method and its extensions, as well as the
point-mapping method, could not be applied for the stability analysis. Another
obstacle for application of these methods is related to the fact that the loss of
global stability in a system could lead to the birth of not only periodic, but also
chaotic oscillations.

The discovery of the first chaotic attractor is connected with the work of the
famous American meteorologist E. Lorenz (Lorenz, 1963), who proposed a math-
ematical model of fluid convection in a two-dimensional layer and numerically
discovered a chaotic limit regime in this model.

In order to study and predict the appearance of chaotic dynamics in the
Lorenz system, researchers considered various scenarios of the loss of global sta-
bility and appearance of chaotic attractors. One of the first such scenarios of
the transition to chaos, deeply studied in the works of the scientific school of
L.P. Shilnikov (Afraimovich et al., 2014), is connected with the appearance in a
phase space of a homoclinic orbit (homoclinic bifurcation). In the vicinity of this
homoclinic bifurcation, depending on the parameters of the system, both stable
and unstable periodic orbits (UPOs) can arise before and after the appearance of
a homoclinic orbit. Note that chaotic dynamics may be related with the countable
number of unstable periodic orbits (e.g., embedded in a chaotic attractor), which
are hard to detect.
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in the Fishing Principle 

for the Lorenz-like Systems

A.1) Matlab implementations of the Andronov 
point-mapping method and the LPRS method

FIGURE 1 Structure of the chapters and their connection with included articles.
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1.3 Included articles and author’s contribution

The main results were published in the eight included articles. In (PI; PIII) author
studied the famous Kalman conjecture and introduced a new counterexample
representing a system with a hidden chaotic oscillation (coexisting with hidden
periodic oscillation with respect to stable equilibrium point), which could not be
found by approaches that were used previously. In PII author illustrated advan-
tages of the locus of a perturbed relay system method (LPRS) in comparison with
the classical harmonic balance method and described limitations of both meth-
ods. In PIV author studied the Kalman conjecture and introduced a new coun-
terexample representing a system with three coexisting hidden limit cycles in its
phase space. In PV author described limitations of the classical harmonic balance
method on the example of three known nonlinear systems and demonstrated that
while this method may give correct results it still may give incorrect prediction on
the existence of periodic oscillations and, therefore, on the global stability. In PVI
author implemented a procedure for visualization of attractors in the vicinity of
the line of equilibria in a memristor model. In PVII author proved the existence
of homoclinic orbit and provided a numerical analysis of different homoclinic bi-
furcation scenarios in the Lorenz-like systems. In PVIII author implemented the
Pyragas algorithm for localization of unstable periodic orbits (UPOs) embedded
in Lorenz attractor.

In all the above publications author contribution is in writing, proving ana-
lytical theorems and numerical modeling.

The results of this study were also reported at the 39th International JVE
Conference (St. Petersburg, Russia, 2019) and the 11th IFAC Symposium on Non-
linear Control Systems (Vienna, Austria, 2019); at the seminars of the Department
of Applied Cybernetics (St. Petersburg State University), and at the seminars of
the Faculty of Information Technology (University of Jyväskylä).



2 PROBLEM STATEMENT AND MAIN RESULTS

2.1 Oscillations in dynamical systems with one scalar
nonlinearity: Lurie systems

In this section, following papers PI-PV, the problem of analysis of oscillations
and describing scenarios of the loss of stability in dynamical systems with one
scalar nonlinearity are considered.

2.1.1 Global stability and oscillations

In 1877 Vyshnegradsky published his famous work on the Watt regulator, where
he considered the following nonlinear dynamic model (here we consider its Lurie
form (Lurie and Postnikov, 1944) - linear part plus nonlinearity, depending only
on measurable outputs) of the regulator (see, e.g., PI):

ẋ = Ax + Bϕ(σ), σ = Cx, (1)

with

A =




0 0 1
−1 0 0
−av 1 −bv


 , B =




0
0
−1


 , C =




0
0
1




T

, ϕ(σ) =
1
2

sign σ.

He performed ’linearization’ (by discarding nonlinearity ϕ) in the vicinity of
regime, analyzed its local stability and obtained corresponding conditions:

av > 0, bv > 0, avbv > 1. (2)

Vyshnegradsky supposed that this necessary conditions of local stability would
imply also the global stability.

However, soon in similar regulation system with dry friction non-trivial os-
cillating periodic regimes (Léauté, 1885) were discovered (called lately limit cy-
cles (Poincare, 1892, 1893, 1899)). Thus, Zhukovsky criticized Vyshnegradsky
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approach and posed a problem of rigorous justification of Vyshnegradsky con-
clusion (Zhukovsky, 1909).

For analysis of periodic oscillations in dynamical systems of low order and
with piecewise-linear nonlinearities, Andronov developed a point-mapping me-
thod (see, e.g., (Andronov et al., 1937)), which was used by Andronov and Maier
(Andronov and Maier, 1944) for rigorous analysis of Vyshnegradsky system. It
was shown that there are no periodic oscillations in the system if condition (2) is
met and, therefore, local stability implies global stability for the system. How-
ever, for nonlinear systems with nonlinearities of general form this method could
not be applied.

2.1.2 Harmonic balance method

For analysis of periodic oscillations in nonlinear systems with one scalar non-
linearity of general form a classical harmonic balance method was developed in
the 192x–193x in the works of van der Pol (van der Pol, 1926), Krylov and Bo-
golyubov (Krylov and Bogolyubov, 1937). This method is as follows (see (Leonov
and Kuznetsov, 2013) and (Khalil, 2002), P. 450–457): suppose there is a periodic
solution a cos ω0t in system (1). Then frequency w0 can be found from

Im W(jω0) = 0, (3)

where W(s) is a transfer function of system (1):

W(s) = C(A− Is)−1B, (4)

and amplitude a can be found from harmonic balance equation

2π
ω0∫

0

ϕ(a cos(ω0t)) cos(ω0t)dt = ak

2π
ω0∫

0

(cos(ω0t))2dt, (5)

where k is a linearization coefficient:

k = −(Re W(jω0))
−1. (6)

For relay systems with sign(σ) nonlinearity this method allows to calculate
amplitude analytically:

a =
4

πk
. (7)

For instance, this method allowed to obtain the same conditions (2) for the
global stability of Vyshnegradsky system (see e.g. Gelig et al. (1978)). However,
since the classical harmonic balance method is an approximate method of peri-
odic solutions searching, it appeared that the method may be wrong in two direc-
tions: it can show that there are no periodic oscillations while they actually exist
in the phase space (Leonov and Kuznetsov, 2013) and, on the contrary, shows that
there are oscillations, although in fact they do not exist (Leonov and Kuznetsov,
2018a).
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For instance, following (Keldysh, 1944), let us consider Keldysh1 model of
the suppression of flutter with one degree of freedom and show that the classical
harmonic balance method may predict existence of periodic solutions, while in
reality they do not exist. Keldysh system in Lurie form is as follows:

A =

(
0 1
−1 −µ

)
, B =

(
0
−1

)
, C =

(
0
1

)T

, ϕ(σ) = (Φ + κσ2)sign(σ). (8)

Using the classical harmonic balance method, Keldysh formulated the fol-
lowing result: If

−2.08
√

Φκ < µ, (9)

then all trajectories of (8) converge to the rest segment; If

µ < −2.08
√

Φκ, (10)

then there are two periodic trajectories (limit cycles). Other trajectories behave as follows.
The trajectories, emerging from infinity, tend to the external limit cycle. The domain be-
tween two limit cycles is filled with trajectories unwinding from the internal (unstable)
limit cycle and winding onto external (stable) limit cycle. The stability domain bounded
by the internal limit cycle is filled with trajectories tending to one of the possible equilib-
rium on the rest segment.

Using Lyapunov-type theorems for systems with discontinuous right-hand
side it can be shown (see (Leonov and Kuznetsov, 2018b)) that if

−2
√

Φκ < µ, (11)

then any solution (in the Filippov sense (Filippov, 1960)) of (8) converges to the
stationary segment [−Φ, Φ]. Thus, Keldysh’s estimate of the global stability re-
gion (9) is close to the rigorous analytical estimate, but doesn’t coincide as in the
case of the Vyshnegradsky system. Fig. 2 shows the bifurcation of collision of the
external limit cycle and the stationary segment (see PV). In this numerical exper-
iment both limit cycles have disappeared, while Keldysh’s estimate (10) holds.

The opposite effect can be observed in the Keldysh system (see (Keldysh,
1944), Eq. 2, P. 34) of flutter suppression with two degrees of freedom, where
Φ = 1, κ = 0 and

a11 = a22 = b22 = c11 = c22 = 0, a21 = m2
1 + β2, a12 = m2

2 + β2,
b11 = −1, b12 = b21 = 2β, c12 = c21 = 1.

1 Mstislav Keldysh was the president of the Soviet Union Academy of Sciences during 1961-
1975.
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a) b)

FIGURE 2 Numerical analysis of the Keldysh system with one degree of freedom and
λ = 0, Φ = 3, κ = 1. a) µ = −3.85792: outer trajectory attracts to the limit
cycle around rest segment. b) µ = −3.6287: limit cycle ’disappeared’.

Lurie form of this system is

A =




0 1 0 0
−(m2

1 + β2) −2β 0 −λ

0 0 0 1
0 1 −(m2

2 + β2) −2β


 , B =




0
−1
0
0


 ,

C =




0
0
0
1




T

, ϕ(σ) = sign(σ),

(12)

where λ is a linear parameter of damper; m1 = 0.9, m2 = 1.1, β is a parameter.
Transfer function of system (12) is

W(s) =
s2

s4 + a3s3 + (a2 + λ)s2 + a1s + a0
, (13)

where a0 = (m2
1 + β2)(m2

2 + β2), a1 = 2β(m2
1 + m2

2 + 2β2), a2 = m2
1 + m2

2 + 6β2,
a3 = 4β.

The rest segment of system (12) is

Λ = {(x1, x2, x3, x4) ∈ R4 ∣∣ x2 = x3 = x4 = 0, − 1
a0
≤ x1 ≤ 1

a0
}. (14)

Applying the Routh-Hourwitz criterion to find a stability sector of the lin-
earized system ẋ = Ax + k b c∗x, we obtain

(
− 4β2 − λ− (m2

1 −m2
2)

2

2(m2
1 + m2

2 + 2β2)
, +∞

)
.
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Consider system (12) with parameter values

β = 0.01, λ = −0.041. (15)

According to the classical harmonic balance method, this system has only
one unstable periodic solution with frequency ωunst = 1.005037312 (see (3)).
However, using numerical integration (Piiroinen and Kuznetsov, 2008) with ini-
tial data in the vicinity of the rest segment (14), we can localize two additional
asymmetric periodic solutions (see Fig. 3), which are self-excited with respect to
the rest segment. Therefore, this classical method requires further development.

FIGURE 3 Two self-excited (with respect to rest segment) asymmetric periodic solu-
tions of the Keldysh system with λ = 0, Φ = 1, κ = 0 and β = 0.01 and
λ = −0.041.

2.1.3 Aizerman and Kalman conjectures

An interesting connection can be observed between the classical harmonic bal-
ance method and the absolute stability theory (see, e.g., (Gelig et al., 1978; Khalil,
2002; Rasvan, 2006a,b)), in which the main focus was on the selection of classes of
nonlinear systems for which necessary and sufficient conditions for global stabil-
ity coincide, which imply the absence of non-trivial limiting oscillations (as was
in the case of Vyshnegradsky system). The history of attempts to solve this prob-
lems is connected with the Aizerman (Aizerman, 1949) and Kalman (Kalman,
1957) conjectures on global stability of Lurie systems with nonlinearity satisfying
generalized Routh-Hurwitz criterion and with attempts to construct counterex-
amples to these conjectures. It can be shown that for systems in Lurie form (1)
satisfying conditions of Aizerman or Kalman conjectures, the classical harmonic
balance method states that this systems have no periodic solutions.
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Aizerman formulated his problem in 1949, while being inspirited by the
discussion of the work (Andronov and Maier, 1944) at the Andronov’s scientific
seminar in the Institute of Automation and Remote Control (USSR Academy of
Sciences, Moscow) (Bissell, 1998) and it is as follows: consider system (1) where
ϕ(σ) is a continuous piecewise-differentiable scalar function and ϕ(0) = 0. Sup-
pose that for all k ∈ (0, K), where K is a positive number or +∞ and any solution
of system (1) with ϕ(σ) = kσ tends to a unique stable equilibrium state. Then for
system (1) with any nonlinearity ϕ(σ) satisfying the property

0 < ϕ(σ) < Kσ, σ 6= 0,

all solutions tend to the unique stable equilibrium state.
In 1957, Kalman formulated a more restrictive conjecture on global stability,

where in addition to the conditions from the Aizerman conjecture, it was required
that the derivative of nonlinearity belongs to the linear stability sector: if at the
points of differentiability ϕ(σ) the condition

0 < ϕ′(σ) < K, (16)

is satisfied, then all solutions tend to a unique stable equilibrium state.
Analytical approaches to obtain counterexamples to these conjectures (see,

e.g., (Barabanov, 1988)) were based on application of Andronov point-mapping
method to nonlinear systems with discontinuous nonlinearity sign(·), which
made it possible to analytically integrate their periodic solutions. And after pe-
riodic solutions were found, transition to the nonlinear system with piece-wise
continuous and continuous nonlinearities (’smoothing’ of discontinuous nonlin-
earity) was performed. Difficulties of numerical search for periodic oscillations
in systems that represent counterexamples to Aizerman and Kalman conjectures
arise because of multistability, when different attracting oscillations coexist in the
phase space and their number and mutual disposition are unknown. At the same
time, non-trivial oscillations coexisting with the locally stable equilibrium state
are hidden oscillations2, for which it is not straightforward how to find initial
data for their visualization.

2.1.4 Extensions of harmonic balance method

Harmonic analysis of periodic solutions in Lurie systems with relay nonlinear-
ities was extended and new methods were introduced, e.g., Tsypkin method

2 The classification of attractors as being hidden or self-excited was proposed in (Leonov and
Kuznetsov, 2013; Leonov et al., 2015; Kuznetsov et al., 2018b): an oscillation is called self-
excited if its basin of attraction intersects with any vicinity of an unstable equilibrium and,
thus, it can be visualized numerically by a trajectory srating from a point in a neighborhood
of unstable equilibrium; otherwise it is called a hidden oscillation and its basin of attraction
is not connected with equilibria and could be small. This classification became a basis
for the theory of hidden oscillations, which has been developed by N. Kuznetsov in recent
publications (Kuznetsov, 2016, 2018a,b, 2019, 2020). This theory represents the modern
stage of Andronov’s theory of oscillations.
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(Tsypkin, 1984) and its further development, which is called the locus of a per-
turbed relay system approach (the LPRS method) (Boiko, 2005, 2008). This meth-
ods made it possible in many cases to refine the results (both existence prediction
and parameters estimation), obtained by the classical harmonic balance method.
Let us focus on the LPRS method (Boiko, 2008), which is as follows: consider a
system in a form

ẋ = Ax + Bu,
y = Cx,

u =

{
+c, if σ = f0 − y ≥ b or σ > −b, u(t− 0) = c
−c, if σ = f0 − y ≤ b or σ < b, u(t− 0) = −c.

(17)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are matrices, and u(t− 0) is the control
value at the time immediately preceding the current time, f is a cumulative input
(disturbance) to the system transposed to the relay input, u is the control, y is the
output, σ is the error signal, c is the amplitude of the relay, 2b is the hysteresis
value of the relay function u = u(σ). Note that system (1) defines an ideal relay
(without hysteresis) and is special case of system (17).

For system (17) a complex function of frequency J(w), called the locus of a
perturbed relay system (LPRS), was introduced in (Boiko, 2008):

J(w) = −0.5C
[
A−1 + 2π

ω (I − e
2π
ω A)−1e

π
ω A]B+

+ i π
4 C(I + e

π
ω A)−1(I − e

π
ω A)A−1B.

(18)

Imaginary part of the function defined in that way contains information
about the frequency ω of a periodic solution for the system and the real part of
J(ω) contains information about the amplitude a and transfer properties of the
relay with respect to a small bias at its input.

With available LPRS of a system, symmetric periodic solutions can be found
exactly through solving the following algebraic equation for the frequency ω0 (see
Fig. 4):

Im J(ω0) = −
πb
4c

. (19)

For the relay without hysteresis b = 0 and frequency ω0 of a periodic oscil-
lation can be found from equation

Im J(ω0) = 0, (20)

and corresponding amplitudes can be found from

a = −4 Re J(ω0)

π
. (21)

2.1.5 Problems of frequency analysis

To illustrate advantages and limitations of the LPRS method let’s apply this method
to system (12) (see, e.g., (PI; PIII; PV; PIV)) with

λ = 0, Φ = 1, κ = 0. (22)
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FIGURE 4 The LPRS of relay system and oscillation analysis.

Its sector of linear stability is the following interval
(
− 4β2 − (m2

1 −m2
2)

2

2(m2
1 + m2

2 + 2β2)
,+∞

)
, (23)

therefore, it satisfies generalized Routh-Hurwitz criterion and according to the
classical harmonic balance method, this system has no periodic solutions.

However, using LPRS method, for system (22) with β = 0.03 we can obtain
values of frequency ω = 0.5272504 and initial data (see Table. 2) of a symmet-
ric self-excited periodic oscillation (see Fig. 5,6)3. A narrower frequency range of
[0.4, 0.8] for the respective part of the LPRS, containing the sought periodic solu-
tion, is given in Fig. 6. In addition, this solution can be visualized via numerical
modeling from the vicinity of the rest segment (stationary set of system (22)) (see
Fig. 7).

However, using Andronov point-mapping method it is possible to get initial
data and values of parameters of two hidden limit cycles, that are not found by
the LPRS method (see Fig. 8). Their parameters and initial data are presented
in Table 1. Note that it is also possible to obtain initial data and parameters of
self-excited limit cycle that was already found using numerical modeling and the
LPRS method.

Finally, we can apply one of the methods for numerical localization of hid-
den oscillations in multidimensional dynamical systems, which is based on ho-
motopy and numerical continuation method. The idea is to construct a sequence
of similar systems such that for the first (starting) system the initial point for nu-
merical computation of oscillating solution (starting oscillation) can be obtained
analytically. Then the transformation of this starting oscillation in the phase space
is tracked numerically while passing from one system to another (initial data for

3 The analysis of the candidate points shows that only one point of intersection of the LPRS
and the horizontal axis corresponds to an actual periodic oscillation.
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FIGURE 5 The LPRS of the Keldysh system with λ = 0, Φ = 1, κ = 0 and β = 0.03.

TABLE 1 Parameters and initial data of two hidden periodic oscillations of the Keldysh
system with λ = 0, Φ = 1, κ = 0 and β = 0.03.

ω 0.672578885438731
T 9.341930654098658

a) Parameters

x1 ±0.625205162606947
x2 ±3.732409707265053
x3 ±0.0
x4 ∓3.475416972869716

b) Initial data

TABLE 2 Parameters and initial data of a self-excited periodic oscillation of the Keldysh
system with λ = 0, Φ = 1, κ = 0 and β = 0.03.

ω 0.527252701490018
T 11.916838528135139

a) Parameters

x1 -0.212347571833203
x2 1.671123725917290
x3 0.0
x4 -1.478087381572674

b) Initial data

numerical modeling of oscillation in the next system is a last point of oscillation
in previous system); the last system corresponds to the system in which an at-
tractor is searched (see, e.g., (Kuznetsov et al., 2018a)). Applying this approach
to system (22) and passing from β = 0.03 to β = 0.1, it is possible to localize a
chaotic solution and a periodic solution (see Fig. 9) in the phase space of system
(22) with β = 0.1.

This chaotic oscillation (as well as periodic one) remains under the reverse
scenario of discontinuous Aizerman-Pyatnitsky approximation (Aizerman and
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FIGURE 6 The LPRS of the Keldysh system with λ = 0, Φ = 1, κ = 0 and β = 0.03
in the range of [0.4, 0.8]. The frequency of 0.4 corresponds to the lower end
point of the LPRS, and 0.8 corresponds to the higher end point.

x1x3

x4

FIGURE 7 From initial point in vicinity of rest segment it is possible to arrive at a limit
cycle in the Keldysh system with λ = 0, Φ = 1, κ = 0 and β = 0.03.

Pyatnitskiy, 1974), i.e., transition from system (22) with nonlinearity ϕ(σ) = sign σ

to the system (22) with smooth nonlinearity ϕ(σ) = tanh( σ
N ), where N is a suffi-

ciently small number. This approximation is organized using the numerical con-
tinuation method while changing the nonlinearity of system (22) as follows:

ϕ(σ) = sign(σ) + ε (tanh(σ/N)− sign(σ)) ,
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x1 x4

x3

FIGURE 8 Three coexisting limit cycles in the Keldysh system with λ = 0, Φ = 1, κ = 0
and β = 0.03: one is a self-symmetric self-excited and two are hidden with
the respect to rest segment.

FIGURE 9 Coexisting chaotic and periodic solutions of the Keldysh system with λ =

0, Φ = 1, κ = 0 and β = 0.1 (subspace (x1, x2, x3)).

for ε increasing from 0 to 1 with the step 0.1 and N = 0.05. During this transi-
tion chaotic and periodic oscillations preserved (see PI). These oscillations coexist
with unique locally stable equilibrium state and, therefore, they are hidden. This
configuration represents the first counterexample to the Kalman conjecture with
chaotic dynamics (see PIII). Note that this chaotic dynamics could not be found
neither using the classical harmonic balance method or its extensions on relay
systems, nor using point-mapping method.
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Point-mapping 
method

- analytical for low-ordered 
systems
- piecewise-linear nonlinearities

LPRS 
method

- any dimension
- relay nonlinearities

Harmonic 
balance 
method

- approximate method
- general form of 
nonlinearities

Periodic oscillations

Chaotic oscillations

Keldysh model with two degrees of 
freedom (15) with periodic oscillations

- HBM can not find anything
- PMM gives analytical formula for initial 
data calculatioin of three solutions (can 
be solved only numerically)
- LPRS finds only one periodic solution

Vyshnegradsky model
- all these three methods give 
precise estimation of global 
stability region

Keldysh model with one 
degree of freedom (8)

- HBM estimation of global 
stability region is close to 
results of rigorous analysis
- PMM and LPRS method can 
not be applied

Keldysh model (22) with two degrees of 
freedom with periodic and chaotic oscillations 

- HBM can not find periodic oscillations
- PMM and LPRS method find periodic oscillations
- HBM, PMM and LPRS method can not find 
chaotic oscillations, however, they exist
- Chaotic oscillations here are self-excited with 
respect to a rest segment and could be visualized 
numerically 

.
.

.

.

Oscillations in dynamical systems with one 
scalar nonlinearity: Lurie systems 

FIGURE 10 Schematic explanation of results on analysis of oscillations and the loss of
global stability in Lurie systems.

2.1.6 Conclusion

In this section (see Fig. 10), on the example of Keldysh’s models we revealed ad-
vantages and limitations of the classical harmonic balance method and the LPRS
method of oscillations analysis. Difficulties of analysis of oscillations in Lurie sys-
tems with one scalar nonlinearity are connected with the problems of localization
of hidden oscillations and possible birth of chaotic regimes. For analytical and
numerical analysis of chaotic behavior it is necessary to develop special meth-
ods. Some of these methods are presented and discussed in the next section.
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2.2 Oscillations in dynamical systems with multiple scalar
nonlinearities: Lorenz-like systems

In this section, following papers PVI-PVIII, the difficulties in studying the sce-
narios of the loss of stability and transition to chaos are discussed.

2.2.1 Global stability and chaotic oscillations

In 1963 famous meteorologist E. Lorenz for the first time demonstrated (Lorenz,
1963) that conditions of the loss of stability could be related not only with the
emergence of periodic oscillations, but also with the appearance of chaotic oscil-
lations.

A chaotic behavior was discovered in the following Lorenz system4 with
two scalar quadratic nonlinearities:





ẋ = −σ(x− y),
ẏ = rx− dy− xz,
ż = −bz + xy,

(24)

which describes a convection of fluid in a two-dimensional layer. Here d = 1,
σ > 0 is a Prandtl number, r > 0 is a Rayleigh number, b > 0 is a parameter that
determines the ratio of the vertical and horizontal dimensions of the convection
cell. For r < 1 system (24) has only one globally stable equilibrium S0 =

(
0, 0, 0

)
,

and for r > 1 the equilibrium S0 turns into a saddle, while two new symmetric
equilibria appear:

S± =
(
±
√

b(r− 1), ±
√

b(r− 1), r− 1
)
, (25)

which stability depends on the values of parameters. Remark that system (24)
is also encountered in other mechanical and physical problems, for example, in
the problem of fluid convection in a closed annular tube (Rubenfeld and Sieg-
mann, 1977), for describing the mechanical model of a chaotic water wheel (Tel
and Gruiz, 2006), the model of a dissipative oscillator with an inertial nonlinear-
ity (Neimark and Landa, 1992), and the dynamics of a single-mode laser (Oraevsky,
1981).

Since the form of system (24) and the chaotic nature of possible oscillations
do not allow to apply classical methods, which were considered in Chapter 1, the

4 The Lorenz model is a subject of research for more than 50 years and still is actively stud-
ied. See e.g. recent papers in Nature (Stewart, 2000), and Science (Voosen, 2019). One of the
challenging problems is to verify the existence of hidden attractors in the Lorenz-like mod-
els (Mokaev, 2016; Chen et al., 2017; Yuan et al., 2017; Sprott and Munmuangsaen, 2018;
Kuznetsov et al., 2018b; Kuznetsov and Mokaev, 2019). This problem arise, in particular,
since in numerical computation of a trajectory over a finite-time interval it is difficult to dis-
tinguish a sustained chaos from a transient chaos (a transient chaotic set in the phase space,
which can persist for a long time).
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challenge for researchers is to develop necessary and sufficient stability criteria
and study all possible scenarios of the loss of stability and transition to chaos.
Another challenging task in the study of the loss of global stability is to search and
visualize appearing oscillations in the phase space of dynamical system (which in
the general case can have a large dimension). The search for persistent oscillations
could be simplified if for a system it is possible to prove the dissipativeness in
the sense of Levinson (see e.g. (Leonov et al., 2015)) – a property, which ensures
the existence of a global bounded absorbing set containing a global attractor. It
is known that the Lorenz system (24) has this property and its absorbing set is
defined as follows:

B =
{
(x, y, z) ∈ R3 ∣∣ 1

2(x2 + y2 + (z− r− σ)2) ≤ b2(σ+r)2

2(b−1)

}
. (26)

For three-dimensional systems5 it is possible to use the following special
analytical method (Smith, 1986; Leonov, 1991; Kuznetsov et al., 2016; Kuznetsov,
2016) to obtain analytical conditions for the global stability, when all their trajec-
tories tend to equilibria. Rewrite system (24) in the general form

u̇ = f (u), f : U ⊆ R3 → R3, (27)

and consider its linearization

q̇ = J(u(t, u0))q (28)

along the solution u(t, u0) existing for t ∈ [0, ∞) with u(0, u0) = u0 ∈ U. Here f is
continuously differentiable vector-function, J(u0) = D f (u0) is the 3× 3 Jacobian
matrix, det J(u0) 6= 0, ∀u0 ∈ U.

To check the global stability of system (27), it is sufficient to choose a specific
nonsingular 3× 3 matrix S and differentiable scalar function V : U ⊆ R3 → R1,
and to verify the following condition:

λ1(u0, S) + λ2(u0, S) + V̇(u0) < 0, (29)

where λ1(u0, S), λ2(u0, S) are eigenvalues of the matrix 1
2

(
SJS−1 + (SJS−1)∗

)
,

and derivative of the function V is taken with respect to system (27).
For the Lorenz system (24), this technique gives the following result (see,

e.g. (Leonov, 2012)): if the inequality

r ≤ (σ + b)(b + 1)
σ

(30)

holds, then any solution tends to an equilibrium as t→ +∞.

5 The development of similar methods in the general case for high-dimensional systems is
still an open problem.
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2.2.2 Scenario of transition to chaos via a homoclinic bifurcation

Condition (30), for the fixed values σ = 10, b = 8/3 and r varying, completes
the classical scenario of transition to chaos in the Lorenz system (Sparrow, 1982),
which contains the so-called homoclinic bifurcation (Afraimovich et al., 2014) and
connected with the appearance of a homoclinic orbit in the phase space. As r
increases, the phase space of the Lorenz system is a subject to the following se-
quence of bifurcations. For 0 < r < 1, there is a globally asymptotically stable
zero equilibrium S0. For r > 1, equilibrium S0 is a saddle, and a pair of symmetric
equilibria S± appears, but if r ≤ rgs ≈ 4.64 all solutions still tend to a stationary
set. For rgs < r < rh ≈ 13.926, the separatrices Γ± of equilibria S0 are attracted
to the equilibria S1,2. For r = rh, the separatrices Γ± form two homoclinic orbits
of equilibria S0 (homoclinic butterfly, see Fig. (11)). For rh < r < rc ≈ 24.06,
the separatrices Γ± tend to S∓, respectively. For rc < r, there is a case of mul-
tistability: the separatrices Γ± are attracted to the attractor, which is self-excited
with respect to one equilibrium S0, and this attractor co-exists with the stable
equilibria S± (see Fig. (12)). For r > ra ≈ 24.74, the equilibria S± become unsta-
ble. Finally, r = 28 corresponds to the classical self-excited Lorenz attractor with
respect to all equilibria S0, S± (see Fig. (13)).
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FIGURE 11 Numerical visualization of behavior in the phase space of the Lorenz sys-
tem in the vicinity of homoclinic bifurcation at r = rh ≈ 13.926.
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FIGURE 12 Numerical visualization of the self-excited chaotic attractor in the Lorenz
system by the trajectories that start in small neighborhoods of the unsta-
ble equilibrium S0. This attractor co-exists with stable equilibria S± (trivial
attractors).
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FIGURE 13 Numerical visualization of the classical self-excited chaotic attractor in the
Lorenz system by integrating the trajectories with initial data from small
neighborhoods of the unstable equilibria S0,±. Here the separation of the
trajectory into transition process and approximation of attractor is rough.

2.2.3 Studying of homoclinic orbits: analytical method

Let us describe a general method for proving the existence of homoclinic trajecto-
ries for systems (27) called the Fishing principle (Leonov, 2012, 2013, 2014a; Leonov
et al., 2015; PVII). Consider an autonomous system of differential equations

ẋ = f (x, q), t ∈ R, x ∈ Rn. (31)

Here f (x, q) is a smooth vector-function, Rn = {x} is a phase space of system
(31). Let γ(s), s ∈ [0, 1] be a smooth path in the space of the parameter {q} =
Rm. Consider the following Tricomi problem (Tricomi, 1933; Leonov, 2014b) for
system (31) and the path γ(s): is there a point q0 ∈ γ(s) for which system (31) with
q0 has a homoclinic orbit?

Consider system (31) with q = γ(s) and introduce the following notions. Let
x(t, s)+ be an outgoing separatrix of the saddle point x0 (i.e. lim

t→−∞
x(t, s)+ = x0)

with a one-dimensional unstable manifold. Define by xΩ(s)+ the point of the first
crossing of separatrix x(t, s)+ with the closed set Ω:

x(t, s)+ 6∈ Ω, t ∈ (−∞, T),

x(T, s)+ = xΩ(s)+ ∈ Ω.

If there is no such crossing, we assume that xΩ(s)+ = ∅ (the empty set).

Theorem 1 ((Leonov, 2012, 2013, 2014a; Leonov et al., 2015; PVII)). Suppose that
for the path γ(s) there is an (n− 1)-dimensional bounded manifold Ω with a piecewise-
smooth edge ∂Ω that possesses the following properties:
(i) for any x ∈ Ω \ ∂Ω and s ∈ [0, 1], the vector f (x, γ(s)) is transversal to the

manifold Ω \ ∂Ω;
(ii) for any s ∈ [0, 1], f (x0, γ(s)) = 0, the point x0 ∈ ∂Ω is a saddle;
(iii) for s = 0 the inclusion xΩ(0)+ ∈ Ω \ ∂Ω is valid;
(iv) for s = 1 the relation xΩ(1)+ = ∅ is valid (i.e. xΩ(1)+ is an empty set);
(v) for any s ∈ [0, 1] and y ∈ ∂Ω \ x0 there exists a neighborhood U(y, δ) = {x ∈

Rn | |x− y| < δ} such that xΩ(s)+ 6∈ U(y, δ).
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If conditions (i)–(v) are satisfied, then there exists s0 ∈ [0, 1] such that x(t, s0)
+ is a

homoclinic orbit of the saddle point x0.

For system (24) with an arbitrary value of parameter d, by using this method
it is possible to analytically prove the existence of a homoclinic orbit and make
an attempt to study the various scenarios of homoclinic bifurcation numerically
(see PII). Using the following smooth change of variables (see, e.g. (Leonov, 2016;
Leonov et al., 2017)):

η := σ(y− x), ξ := z− x2

b (32)

one can reduce system (24) to the form




ẋ = η,
η̇ = −(σ + d)η + σξx + σ(r− d)x− σ

b x3,

ξ̇ = −bξ − (2σ−b)
bσ xη.

(33)

Then, by changing

t :=
√

σ(r− d)t, x :=
x√

b(r− d)
, ϑ :=

η√
bσ(r− d)

, u :=
ξ

r− d

system (33) can be reduced to the form




ẋ = ϑ,
ϑ̇ = −λϑ− xu + x− x3,
u̇ = −αu− βxϑ,

(34)

λ =
(σ + d)√
σ(r− d)

, α =
b√

σ(r− d)
, β =

2σ− b
σ

.

After the transformation, new equilibria have the following form:

S0 = (0, 0, 0), S± = (±1, 0, 0). (35)

For positive α, β, λ the equilibrium state S0 is always a saddle, and S± are stable

equilibria if β < λ(λα+α2+2)
(λ+α)

.
The application of the Fishing principle (see Theorem 1) allows us to formu-

late for system (34) the following result (see PVII):

Theorem 2. Consider a smooth path λ(s), α(s), β(s), s ∈ [0, 1) in the parameter space
of system (34). Let

λ(0) = 0, lim
s→1

λ(s) = +∞,

lim sup
s→1

α(s) < +∞, lim sup
s→1

β(s) < +∞
(36)

and the following condition holds

α(s)(
√

λ(s)2 + 4 + λ(s)) > 2(β(s)− 2), ∀s ∈ [0, 1]. (37)

Then there exists s0 ∈ (0, 1) such that system (34) with α(s0), β(s0), λ(s0) has a homo-
clinic orbit.
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Corollary 1. Of particular interest to this study is the following path

λ(s) =
s√

1− s
, α(s) = δ

√
1− s, β(s) ≡ β ∈ (0, 2 + δ), s ∈ [0, 1), δ > 0.

(38)
This path satisfies all conditions of Theorem 2, and therefore there exists a number s0 ∈
(0, 1) such that system (34) with parameters (38) and s = s0 has a homoclinic orbit.

The equilibrium S0 is of saddle type and has stable and unstable local invari-
ant manifolds Ws

loc and Wu
loc of dimension dim Ws

loc = 2 and dim Wu
loc = 1, respec-

tively, intersecting at S0. For S0 the sign of the saddle value σ0 = (1− δ)
√

1− s,
defined by the sum of real parts of the leading unstable and stable eigenval-
ues (Shilnikov et al., 2001), depends on the parameter δ.

2.2.4 Studying of homoclinic orbits: numerical method

To study numerically scenarios of homoclinic bifurcations with different signs of
the saddle value σ0 we consider the region of the parameters Bδ,β = { (δ, β)

∣∣ δ ∈
(0, 1.1], β ∈ (0, 2 + δ)} in the parameter plane (δ, β), which satisfies condi-
tions (38), and for points filling the region Bδ,β calculate the approximate interval
[s , s] ⊂ (0, 1), such that within it there exist a homoclinic orbit. We select a grid of
points Bgrid ⊂ Bδ,β with the predefined partitioning steps δgrid = βgrid = 0.01 and
for each point (δcurr, βcurr) ∈ Bgrid we choose the partition 0 < s0

step < 2s0
step <

. . . , (N − 1)s0
step < 1 of the interval (0, 1) with step s0

step = 1
N = 0.001. For the

system (34) with parameters δcurr, βcurr, λ(scurr), α(scurr) we integrate numerically
the separatrix (xsepa(t), ϑsepa(t), usepa(t)) of the saddle S0 of system (34) on the
chosen time interval t ∈ [0, Ttrans = 4 · 103] using the ode45 solver in MATLAB.
Using this numerical routine, we have shown that there are 4 subregions (see
PVII) with different homoclinic bifurcations (Fig. 14) within the region covered
by the given grid of points.

In region I before bifurcation separatrices Γ±(t) were attracted to the oppo-
site equilibria S∓ and after bifurcation – to the nearest ones, i.e., to S±. In this
case, during the inverse bifurcation (i.e. while moving from s = 1 to s = 0), two
unstable limit cycles are born from the homoclinic butterfly. This scenario corre-
sponds to the case of the homoclinic bifurcation in classical Lorenz system (see,
e.g., (Sparrow, 1982; Wiggins, 1988; Shilnikov et al., 2001)).

In region II during the bifurcation, one large stable ”eight”-type limit col-
lides with the saddle equilibrium S0 and splits into two stable limit cycles around
S±. Numerical analysis of the separatrices behavior for all δ ∈ [1, 1.1], β ∈
(0, 2 + δ) within the chosen partition and the dynamics analysis of the Poincaré
map (see PVII) give us a reason to state that there is no chaotic dynamics in the
vicinity of the homoclinic bifurcation in the case of zero and negative saddle val-
ues σ0.

Also, two new scenarios of homoclinic bifurcation were found. In region III,
depending on values of parameters δ, β, two symmetric limit cycles Θ± around
S± coexist with either one stable ”eight”-type limit cycle, or a strange attractor
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FIGURE 14 Different types of homoclinic bifurcations in the Lorenz-like system with
parameters (δ, β) ∈ Bδ,β, and λ(s), α(s), s ∈ (0, 1).

which attract the separatrices Γ±(t). Then this attractor (periodic or strange) loses
stability and separatrices Γ±(t) are attracted to the opposite limit cycles Θ∓. Af-
ter the bifurcation the separatrices Γ±(t) are attracted to the nearest limit cycles
Θ±. As in the case of the Lorenz system, in this case during the inverse bifur-
cation, two unstable limit cycles are born from the homoclinic butterfly, but here
they separate two stable cycles Θ±. For example, for parameter values δ = 0.9,
β = 0.2, the dynamics of separatrices in the phase space is shown in Fig. 15.

xv
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S+S−

(a) s = 0.06013146057 . . .
xv

u

S0

S+S−

(b) s = 0.06013146058 . . .

FIGURE 15 Scenario of homoclinic bifurcation the Lorenz-like system with δ = 0.9,
β = 0.2, and λ(s), α(s), s ∈ [s, s]. Two symmetric limit cycles Θ± exist
around S± at s = s before the bifurcation (left subfigure) and at s = s after
the bifurcation (right subfigure).

For parameter values δ = 0.5, β = 2.2 the case of coexistence of two sym-
metric limit cycles Θ± which are self-excited w.r.t S±, respectively, with a strange
attractor self-excited w.r.t S0 and defined by its separatrix Γ+(t) is presented in
Fig. 16.

In region IV, when an unstable homoclinic orbit occurs, one strange attrac-
tor splits into two (or, if we track the change in the parameter s from 1 to 0, then
we can say that two strange attractors merge into one strange attractor). For ex-
ample, for parameter values δ = 0.9, β = 2.899, the dynamics of separatrices in
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(a) s′ = 0.797940743 . . . (b) s ∈ [0.797940744 . . . , 0.80592918053 . . .]

FIGURE 16 In the Lorenz-like system with δ = 0.5, β = 2.2, and λ(s), α(s), before ho-
moclinic bifurcation the strange attractor co-exists with two stable symmet-
ric limit cycles Θ± at s = s′ (left subfigure); when it collapses, the separatrix
Γ+(t) of the saddle S0 tends to limit cycle Θ− at s = s (right subfigure), and
to limit cycle Θ+ at s = s = 0.80592918054 . . . (after the bifurcation).
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FIGURE 17 Scenario of homoclinic bifurcation the Lorenz-like system with δ = 0.9,
β = 2.899, and λ(s), α(s), s ∈ [s, s]. Two separated symmetric strange
attractors exist at s = s before the bifurcation (left subfigure) and merge at
s = s after the bifurcation (right subfigure).

the phase space is shown in Fig. 17.
Further study and refinement of these results may require the application

of the new numerical methods with a high-performance computing. Also, one
could take into consideration recently developed new reliable numerical meth-
ods for studying trajectories of dynamical systems (see e.g. Tucker (1999); Liao
and Wang (2014); Lozi and Pchelintsev (2015); Kehlet and Logg (2017)) and the
existing general numerical tools for the analysis of homoclinic bifurcations (see
e.g. Champneys et al. (1996); Doedel and et. al (2007); Homburg and Sandstede
(2010)).



41

Stable periodic orbits that arise in the described scenarios of homoclinic bi-
furcation can be detected using the standard computational procedure, however,
after the disappearance of the homoclinic orbit, unstable periodic orbits (UPOs)
can arise in the phase space. Besides, for the case of the sustained chaos, UPOs
could be embedded in a chaotic attractor (see e.g. (Afraımovic et al., 1977; Auer-
bach et al., 1987; Cvitanović, 1991)). One of the effective methods among others
for the computation of UPOs is the delay feedback control (DFC) approach, sug-
gested by K. Pyragas (Pyragas, 1992) (see also discussions in (Kuznetsov et al.,
2015; Chen and Yu, 1999; Lehnert et al., 2011)). This approach allows one to stabi-
lize and study UPOs in various chaotic dynamical systems. Nevertheless, some
general analytical results have been obtained (Hooton and Amann, 2012b), show-
ing that DFC has a certain limitation, called the odd number limitation (ONL),
which is connected with an odd number of real Floquet multipliers larger than
unity. In order to overcome ONL, later Pyragas suggested a modification of the
classical DFC technique, which was called the unstable delayed feedback control
(UDFC) (Pyragas, 2001).

Let uupo(t) be an UPO with period τ > 0, uupo(t− τ) = uupo(t), satisfying
differential equation (27). To compute the UPO and overcome ONL, we add the
UDFC in the following form:

u̇(t) = f (u(t)) + KB
[
FN(t) + w(t)

]
,

ẇ(t) = λ0
c w(t) + (λ0

c − λ∞
c )FN(t),

FN(t) = C∗u(t)− (1−R)
N

∑
k=1

Rk−1C∗u(t− kT),

(39)

where 0 ≤ R < 1 is an extended DFC parameter, N = 1, 2, . . . , ∞ defines the
number of previous states involved in delayed feedback function FN(t), λ0

c >
0, and λ∞

c < 0 are additional unstable degree of freedom parameters, B, C are
vectors and K > 0 is a feedback gain. For initial condition uupo1

0 and T = τ we
have

FN(t) ≡ 0, w(t) ≡ 0,

and, thus, the solution of system (39) coincides with the periodic solution of initial
system (27).

For the Lorenz system (24) with parameters r = 28, σ = 10, b = 8/3 us-
ing (39) with B∗ = (0, 1, 0), C∗ = (0, 1, 0), R = 0.7, N = 100, K = 3.5, λ0

c = 0.1,
λ∞

c = −2, one can stabilize (see, e.g., PVIII) a period-1 UPO uupo1(t, u0) with
period τ1 = 1.5586 . . . from the initial point u0 = (1, 1, 1), w0 = 0 (see Fig. 18).

Results of this experiment could be verified using various other numerical
approaches (see e.g. (Viswanath, 2001; Budanov, 2018; Pchelintsev et al., 2019)),
and are in agreement with similar results on the existence of UPOs embedded in
the Lorenz attractor (Galias and Tucker, 2008; Barrio et al., 2015). However, the
Pyragas procedure, in general, is more convenient for UPOs numerical visualiza-
tion.

For the initial point uupo1
0 ≈ (−6.2262,−11.0027, 13.0515) on the UPO uupo1(t)

= u(t, uupo1
0 ) the trajectory of system (39) without the stabilization (i.e. with
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K = 0) on the time interval [0, T = 100] is computed (see Fig. 18b). Denote it by
ũ(t, uupo1

0 ) to distinguish this pseudo-trajectory from the periodic orbit u(t, uupo1
0 ).

One can see that on the initial small time interval [0, T1 ≈ 11], even without the
control, the obtained trajectory ũ(t, uupo1

0 ) traces approximately the ”true” peri-
odic orbit u(t, uupo1

0 ). But for t > T1, without a control, the trajectory ũ(t, uupo1
0 )

diverge from uupo1(t, uupo1
0 ) and visualize a local chaotic attractor.

0

10

-20

20

30

20

40

-10

50

100 010 -10
-2020x y

z

S0

S+S−

uupo1

0

u(t, uupo1

0 )

(a) UPO (K = 3.5)

x y

z

uupo1

0 ũ(t, uupo1

0 )

u(t, uupo1

0 )

S0

S+S−

(b) Pseudo-trajectory (K = 0) and UPO

FIGURE 18 Period-1 UPO uupo1(t) (period τ1 = 1.5586 . . .) stabilized using UDFC
method, and pseudo-trajectory ũ(t, uupo1

0 ) (t ∈ [0, 100]) in the system Lorenz
with parameters r = 28, σ = 10, b = 8/3.

2.2.5 Conclusion

In this section (see Fig. 19), on the example of the classical Lorenz and various
Lorenz-like systems, difficulties in analysis of oscillations of dynamical systems
with multiple scalar nonlinearities, related to the onset of chaos, are revealed. An-
alytical and numerical analysis of homoclinic orbits, which are connected with
the loss of stability bifurcation and appearance of chaotic oscillations, are per-
formed. Also, an efficient procedure for visualization of unstable periodic orbits
embedded in chaotic attractors of the Lorenz system is implemented.

Remark that the obtained results are connected with the problem of calcu-
lation of various dimension characteristics (e.g. Lyapunov dimension and topo-
logical entropy (Kuznetsov, 2016; Kuznetsov et al., 2018b, 2019b)), and the prob-
lem of distinguishing a sustained chaos from a transient chaos in numerical com-
putations of trajectories over finite-time intervals (Chen et al., 2017; Yuan et al.,
2017; Sprott and Munmuangsaen, 2018; Kuznetsov et al., 2018b; Kuznetsov and
Mokaev, 2019).
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Oscillations in dynamical systems with multiple 
scalar nonlinearities: Lorenz-like systems
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FIGURE 19 Schematic explanation of results on analysis of oscillations and the loss of
global stability in the Lorenz-like systems.



3 CONCLUSION

In this thesis effective analytical-numerical methods studying regular and chaotic
oscillations in dynamical systems were presented and discussed. For systems
with one scalar nonlinearity, the comparative analysis of the classical harmonic
balance and the point-mapping methods has been carried out. To study the loss of
stability and birth of oscillations in relay systems, the LPRS method, an extension
of the classical harmonic balance method specifically tailored for relay systems,
was applied. To demonstrate its advantages over the classical harmonic balance
method, the Keldysh models of flutter suppression in aircraft control systems
were considered. Constraints of existing methods for oscillations analysis, de-
fined by difficulties in localization of hidden oscillations and possible emergence
of chaotic regimes, have been described through the study of Keldysh models.
Further studies may be undertaken to improve the existing methods with a view
to overcoming the outlined difficulties.

Also, the challenges associated with the analysis of the loss of stability and
transition to chaos in the systems with multiple scalar nonlinearities have been
described. For the class of Lorenz-like systems the existence of a homoclinic orbit
tending to a saddle equilibrium was analytically proved and various scenarios
of the loss of stability via a homoclinic bifurcation were numerically analyzed.
To visualize an unstable periodic orbit which may appear during homoclinic bi-
furcations and which is embedded in the chaotic attractor, Pyragas time-delayed
feedback control algorithm was implemented. Further development of the sug-
gested analytical and numerical methods and their generalization for the case of
a homoclinic orbit tending to a saddle-focus equilibrium remain open problems.



YHTEENVETO (SUMMARY IN FINNISH)

Työssä käsitellään menetelmiä dynaamisten järjestelmien stabiiliuden sekä mah-
dollisten värähtelyjen kaoottisuuden selvittämiseen. Tehokkaimmat menetelmät
yhdistävät matemaattista analyysiä ja numeerisia menetelmiä.

Järjestelmille, joissa on yksi epälineaarinen komponentti, tunnetaan useita
analyyttisiä menetelmiä. Tässä työssä vertaillaan klassista pistemenetelmää ja
harmonisen tasapainon menetelmää sekä pistemenetelmän laajennusta, LPRS-
menetelmää (Locus of Perturbed Relay System), joka on kehitetty epäjatkuville
niin sanotuille relesysteemeille. Menetelmillä tutkitaan systeemien stabiilisuutta
sekä värähtelyjen syntymekanismeja.

Testiesimerkkeinä on käytetty Keldyshin systeemejä, jotka mallintavat lento-
koneiden värähtelynhallintamekanismeja. Tutkimus osoitti, että kaikilla mene-
telmillä oli omia rajoitteitaan värähtelyjen analysoinnissa ja kaoottisten värähte-
lyjen synnyn ennustamisessa. Tältä osin voidaan tunnistaa useita tarpeita lisä-
tutkimukselle menetelmien edelleen kehittämiseksi.

Myös monimutkaisempien, useita epälineaarisia komponentteja sisältävien,
systeemien stabiiliuden ja värähtelyjen syntymekanismien analyysin haasteita
kartoitettiin. Yleinen stabiiliusanalyysi on tunnettu avoin ongelma. Tässä työssä
tunnistettiin luokka niin sanottuja Lorenz-tyyppisiä systeemejä, joille voitiin ana-
lyyttisesti määritellä ehdot, joiden toteutuessa systeemiin syntyy omaehtoinen,
homoklininen värähtely. Systeemin numeerinen tarkastelu värähtelyn syntyp-
isteen ympäristössä paljasti lisäksi muita, kaoottisia värähtelymoodeja. Näiden
visualisoimiseksi ja analysoimiseksi toteutettiin Pyragasin viiveyhtälökontrolliin
pohjautuva menetelmä, jonka avulla voitiin tunnistaa kaoottisen värähtelyn alta
epäsäännöllisiä periodisia värähtelymoodeja. Kehitettyjen menetelmien yleistämi-
nen muille systeemityypeille on kiinnostava jatkotutkimuskohde.
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APPENDIX 1 MATLAB IMPLEMENTATIONS OF THE
ANDRONOV POINT-MAPPING METHOD
AND THE LPRS METHOD

APPENDIX 1.1 Implementation of the Andronov point-mapping
method for the Keldysh system

LISTING 1.1 symSolOde1.m – function that defines the exact solution of system (12) in
the subregion Σ+ = {σ = c∗x > 0}.

1 function sol = symSolOde1(m1, m2, b)
2

3 syms X_1 X_2 X_3 X_4 real
4

5 C1 = - ( (b^2 + m2^2) * X_1 + 2 * b * X_2 + X_3 ...
6 - 1 / (m1^2 + b^2) ) / ...
7 (m1^2 - m2^2);
8 C2 = ( (m1^2 + b^2) * X_1 + 2 * b * X_2 + X_3 ...
9 - 1 / (b^2 + m2^2) ) / ...

10 (m1^2 - m2^2);
11 C3 = - ( b * (b^2 + m2^2) * X_1 + ...
12 (3*b^2 + m2^2) * X_2 + ...
13 3 * b * X_3 + X_4 - ...
14 b / (m1^2 + b^2) ) / ...
15 ( m1 * (m1^2 - m2^2) );
16 C4 = ( b * (m1^2 + b^2) * X_1 + ...
17 (m1^2 + 3*b^2) * X_2 + ...
18 3 * b * X_3 + X_4 - ...
19 b / (b^2 + m2^2) ) / ...
20 ( m2 * (m1^2 - m2^2) );
21 syms t positive
22

23 x1(t) = 1 / ( (m1^2 + b^2) * (b^2 + m2^2)) + ...
24 C1 * exp(-b*t) * cos(m1*t) + ...
25 C2 * exp(-b*t) * cos(m2*t) + ...
26 C3 * exp(-b*t) * sin(m1*t) + ...
27 C4 * exp(-b*t) * sin(m2*t);
28 x2(t) = - exp(-b*t) * ...
29 ( (C1 * b - C3 * m1) * cos(m1*t) + ...
30 (C2 * b - C4 * m2) * cos(m2*t) + ...
31 (C1 * m1 + C3 * b) * sin(m1*t) + ...
32 (C2 * m2 + C4 * b) * sin(m2*t));
33 x3(t) = exp(-b*t) * ( ...
34 (-(m1^2 - b^2) * C1 - 2 * m1 * b * C3) * cos(m1*t) + ...
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35 ( (b^2 - m2^2) * C2 - 2 * b * m2 * C4) * cos(m2*t) + ...
36 ( 2 * m1 * b * C1 - (m1^2 - b^2) * C3) * sin(m1*t) + ...
37 ( 2 * b * m2 * C2 + (b^2 - m2^2) * C4) * sin(m2*t) );
38 x4(t) = exp(-b*t) * ( ...
39 ( (3 * m1^2 - b^2) * b * C1 - (m1^2 - 3 * b^2) * m1 * C3)

* cos(m1*t) + (-(b^2 - 3 * m2^2) * b * C2 + (3 * b^2 -
m2^2) * m2 * C4) * cos(m2*t) + ( (m1^2 - 3 * b^2) * m1 *
C1 + (3 * m1^2 - b^2) * b * C3) * sin(m1*t) + (-(3 * b
^2 - m2^2) * m2 * C2 - (b^2 - 3 * m2^2) * b * C4) * sin(
m2*t) );

40

41 sol = [x1(t); x2(t); x3(t); x4(t)];
42

43 end

LISTING 1.2 symSolOde2.m – function that defines the exact solution of system (12) in
the subregion Σ− = {σ = c∗x < 0}.

1 function sol = symSolOde2(m1, m2, b)
2

3 syms X_1 X_2 X_3 X_4 real
4

5 C1 = - ( (b^2 + m2^2) * X_1 + 2 * b * X_2 + X_3 + ...
6 1 / (m1^2 + b^2) ) / ...
7 (m1^2 - m2^2);
8 C2 = ( (m1^2 + b^2) * X_1 + 2 * b * X_2 + X_3 + ...
9 1 / (b^2 + m2^2) ) / ...

10 (m1^2 - m2^2);
11 C3 = - ( b * (b^2 + m2^2) * X_1 + ...
12 (3*b^2 + m2^2) * X_2 + ...
13 3 * b * X_3 + X_4 + ...
14 b / (m1^2 + b^2) ) / ...
15 ( m1 * (m1^2 - m2^2) );
16 C4 = ( b * (m1^2 + b^2) * X_1 + ...
17 (m1^2 + 3*b^2) * X_2 + ...
18 3 * b * X_3 + X_4 + ...
19 b / (b^2 + m2^2) ) / ...
20 ( m2 * (m1^2 - m2^2) );
21 syms t positive
22

23 x1(t) = - 1 / ( (m1^2 + b^2) * (b^2 + m2^2)) + ...
24 C1 * exp(-b*t) * cos(m1*t) + ...
25 C2 * exp(-b*t) * cos(m2*t) + ...
26 C3 * exp(-b*t) * sin(m1*t) + ...
27 C4 * exp(-b*t) * sin(m2*t);
28 x2(t) = - exp(-b*t) * ...
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29 ( (C1 * b - C3 * m1) * cos(m1*t) + ...
30 (C2 * b - C4 * m2) * cos(m2*t) + ...
31 (C1 * m1 + C3 * b) * sin(m1*t) + ...
32 (C2 * m2 + C4 * b) * sin(m2*t));
33 x3(t) = exp(-b*t) * ( ...
34 (-(m1^2 - b^2) * C1 - 2 * m1 * b * C3) * cos(m1*t) + ...
35 ( (b^2 - m2^2) * C2 - 2 * b * m2 * C4) * cos(m2*t) + ...
36 ( 2 * m1 * b * C1 - (m1^2 - b^2) * C3) * sin(m1*t) + ...
37 ( 2 * b * m2 * C2 + (b^2 - m2^2) * C4) * sin(m2*t) );
38 x4(t) = exp(-b*t) * ( ...
39 ( (3 * m1^2 - b^2) * b * C1 - (m1^2 - 3 * b^2) * m1 * C3)

* cos(m1*t) + (-(b^2 - 3 * m2^2) * b * C2 + (3 * b^2 -
m2^2) * m2 * C4) * cos(m2*t) + ( (m1^2 - 3 * b^2) * m1 *
C1 + (3 * m1^2 - b^2) * b * C3) * sin(m1*t) + (-(3 * b
^2 - m2^2) * m2 * C2 - (b^2 - 3 * m2^2) * b * C4) * sin(
m2*t) );

40

41 sol = [x1(t); x2(t); x3(t); x4(t)];
42

43 end

LISTING 1.3 findRootsChebFun.m – auxiliary routine to find function zeros using the
Chebfun package.

1 function out = findRootsChebFun(symFunc, tInterval)
2 fun = matlabFunction(symFunc);
3 out = roots(chebfun(fun, tInterval));
4 end

LISTING 1.4 determineNextSwitch.m – function of finding the switching moment and
the corresponding point on a trajectory.

1 function [tSwitch,xSwitch] = determineNextSwitch(odeNum,m1,
m2,b,x0,tEnd,vpaPrecision)

2

3 syms t positive
4 syms X_1 X_2 X_3 X_4 real
5

6 symSolOde = str2func([’symSolOde’, int2str(odeNum)]);
7 sol = symSolOde(m1, m2, b);
8

9 sol_x1 = subs(sol(1), {X_1, X_2, X_3, X_4}, {x0(1), x0
(2), x0(3), x0(4)});

10 sol_x2 = subs(sol(2), {X_1, X_2, X_3, X_4}, {x0(1), x0
(2), x0(3), x0(4)});

11 sol_x3 = subs(sol(3), {X_1, X_2, X_3, X_4}, {x0(1), x0
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(2), x0(3), x0(4)});
12 sol_x4 = subs(sol(4), {X_1, X_2, X_3, X_4}, {x0(1), x0

(2), x0(3), x0(4)});
13

14 % Define the moment of switching numerically:
15 tRoots = findRootsChebFun(sol_x3, [0, double(tEnd)]);
16 tRoots = tRoots(abs(tRoots) > 1e-12);
17

18 if ~isempty(tRoots)
19 digitsOld = digits;
20 digits(vpaPrecision);
21

22 % Specify the moment of switching using VPA:
23 tSwitch = vpasolve(sol_x3, t, tRoots(1));
24 if tSwitch < 0
25 return;
26 end
27

28 % Define the coordinate of switching using VPA:
29 xSwitch = formula(...
30 [vpa(subs(sol_x1, t, tSwitch), vpaPrecision);
31 vpa(subs(sol_x2, t, tSwitch), vpaPrecision);
32 vpa(subs(sol_x3, t, tSwitch), vpaPrecision);
33 vpa(subs(sol_x4, t, tSwitch), vpaPrecision)]);
34 digits(digitsOld);
35 else
36 tSwitch = tEnd; xSwitch = [];
37 end
38 end

LISTING 1.5 integrateTrajectory.m – function to simulate trajectories of the Keldysh
system (12) with nonlinearity ϕ(x) = sign(x).

1 function traj = integrateTrajectory(m1,m2,beta,x0,tEnd,
vpaPresision)

2

3 digitsOld = digits;
4 digits(vpaPrecision);
5

6 a1 = (2*(m1^2+beta^2))*beta+2*beta*(m2^2+beta^2);
7 a0 = (m1^2+beta^2)*(m2^2+beta^2);
8

9 syms t positive
10

11 traj = {}; tCurr = 0;
12
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13 if x0(3) < 0
14 [tSwitch, xSwitch] = determineNextSwitch(1, m1, m2,

beta, x0, tEnd-tCurr, vpaPresision);
15 traj = cat(1, traj, {1, x0, tSwitch});
16 x0 = xSwitch;
17 else
18 [tSwitch, xSwitch] = determineNextSwitch(2, m1, m2,

beta, x0, tEnd-tCurr, vpaPresision);
19 traj = cat(1, traj, {2, x0, tSwitch});
20 x0 = xSwitch;
21 end
22 tCurr = tCurr + tSwitch;
23

24 while tCurr < tEnd
25 if x0(4) > 0
26 [tSwitch, xSwitch] = determineNextSwitch(2, m1, m2,

beta, x0, tEnd-tCurr, vpaPresision);
27 traj = cat(1, traj, {2, x0, tSwitch});
28 x0 = xSwitch;
29 elseif x0(4) < 0
30 [tSwitch, xSwitch] = determineNextSwitch(1, m1, m2,

beta, x0, tEnd-tCurr, vpaPresision);
31 traj = cat(1, traj, {1, x0, tSwitch});
32 x0 = xSwitch;
33 else
34 if a0 * x0(1) + a1 * x0(2) > 1
35 [tSwitch, xSwitch] = determineNextSwitch(1, m1,

m2, beta, x0, tEnd-tCurr, vpaPresision);
36 traj = cat(1, traj, {1, x0, tSwitch});
37 x0 = xSwitch;
38 elseif a0 * x0(1) + a1 * x0(2) < -1
39 [tSwitch, xSwitch] = determineNextSwitch(2, m1,

m2, beta, x0, tEnd-tCurr, vpaPresision);
40 traj = cat(1, traj, {2, x0, tSwitch});
41 x0 = xSwitch;
42 else
43 fprintf(’Sliding mode detected!\n’);
44 if x0(2) > 0
45 tSliding = (1 - (a0 * x0(1) + a1 * x0(2)))/

a0/x0(2);
46 traj = cat(1, traj, {3, x0, tSliding});
47 x0 = [(1 - a1*x0(2)) / a0; x0(2); 0; 0];
48

49 traj = cat(1, traj, {2, x0, tSwitch});
50 x0 = xSwitch;
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51 elseif x0(2) < 0
52 tSliding = (-1 - (a0 * x0(1) + a1 * x0(2)))

/a0/x0(2);
53 traj = cat(1, traj, {3, x0, tSliding});
54 x0 = [(-1 - a1*x0(2)) / a0; x0(2); 0; 0];
55

56 traj = cat(2, traj, {2, x0, tSwitch});
57 x0 = xSwitch;
58 else
59 fprintf(’Equilibrium interval is reached!\n

’);
60 break;
61 end
62 end
63 end
64 tCurr = tCurr + tSwitch;
65 end
66 save(’traj.mat’, ’traj’);
67

68 digits(digitsOld);
69

70 end

LISTING 1.6 plotTraj2D.m – auxiliary function drawing a trajectory in a 2D plane.

1 function plotTraj2D(traj,m1,m2,b,coordInd2d)
2

3 syms t positive
4 syms X_1 X_2 X_3 X_4 real
5

6 [numArcs, ~] = size(traj);
7

8 figure(1); hold on;
9

10 color = {’red’,’blue’};
11

12 for iTr = 1 : numArcs
13 symSolOde = str2func([’symSolOde’, int2str(traj{iTr, 1})

]);
14

15 currSol = symSolOde(m1, m2, b);
16 currIC = traj{iTr, 2};
17 sol_x1 = subs(currSol(coordInd2d{1}), {X_1, X_2, X_3,

X_4}, ...
18 {currIC(1), currIC(2), currIC(3),

currIC(4)});
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19 sol_x2 = subs(currSol(coordInd2d{2}), {X_1, X_2, X_3,
X_4}, ...

20 {currIC(1), currIC(2), currIC(3),
currIC(4)});

21

22 plot3(currIC(coordInd2d{1}), currIC(coordInd2d{2}), ’.’,
’markersize’, 15, ’Color’, ’black’);

23 fplot(sol_x1, sol_x2, [0, double(traj{iTr, 3})], ’Color’
, color{traj{iTr, 1}});

24 end
25 grid on; axis on;
26 xlabel([’x’ int2str(coordInd2d{1})], ’FontName’, ’Times New

Roman’, ’FontAngle’, ’italic’, ’FontSize’, 21);
27 ylabel([’x’ int2str(coordInd2d{2})], ’FontName’, ’Times New

Roman’, ’FontAngle’, ’italic’, ’FontSize’, 21);
28 hold off;
29

30 end

LISTING 1.7 plotTraj3D.m – auxiliary function drawing a trajectory in a 3D subspace.

1 function plotTraj3D(traj, m1, m2, b, coordInd3d)
2

3 syms t positive
4 syms X_1 X_2 X_3 X_4 real
5

6 [numArcs, ~] = size(traj);
7

8 figure(1); hold on;
9

10 trajColors = {’red’,’blue’};
11

12 for iTr = 1 : numArcs
13 symSolOde = str2func([’symSolOde’, int2str(traj{iTr, 1})

]);
14 currSol = symSolOde(m1, m2, b);
15 currIC = traj{iTr, 2};
16 sol_x1 = subs(currSol(coordInd3d{1}), {X_1, X_2, X_3,

X_4}, ...
17 {currIC(1), currIC(2), currIC(3),

currIC(4)});
18 sol_x2 = subs(currSol(coordInd3d{2}), {X_1, X_2, X_3,

X_4}, ...
19 {currIC(1), currIC(2), currIC(3),

currIC(4)});
20 sol_x3 = subs(currSol(coordInd3d{3}), {X_1, X_2, X_3,
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X_4}, ...
21 {currIC(1), currIC(2), currIC(3),

currIC(4)});
22

23 % Plot switching point
24 plot3(currIC(coordInd3d{1}), currIC(coordInd3d{2}),

currIC(coordInd3d{3}), ’.’, ’markersize’, 15, ’Color’, ’
black’);

25

26 % Plot the arc of trajectory of the regime
27 fplot3(sol_x1, sol_x2, sol_x3, [0, double(traj{iTr, 3})

], ’Color’, trajColors{traj{iTr, 1}});
28 end
29

30 grid on; axis on;
31 xlabel([’x’ int2str(coordInd3d{1})], ’FontName’, ’Times New

Roman’, ’FontAngle’, ’italic’, ’FontSize’, 21);
32 ylabel([’x’ int2str(coordInd3d{2})], ’FontName’, ’Times New

Roman’, ’FontAngle’, ’italic’, ’FontSize’, 21);
33 zlabel([’x’ int2str(coordInd3d{3})], ’FontName’, ’Times New

Roman’, ’FontAngle’, ’italic’, ’FontSize’, 21);
34 hold off;
35

36 end

LISTING 1.8 findPeriodicExact.m – function for localization of periodic solutions via
Andronov’s point mapping method.

1 function [solX1,solX2,solX4,solT1,solT2] =
findPeriodicExact(m1,m2,beta,INIT_GUESS)

2

3 syms t t1 t2 positive
4 syms X_1 X_2 X_3 real
5 syms X_4 positive
6

7 solOde1 = symSolOde1(m1, m2, beta);
8 solOde2 = symSolOde2(m1, m2, beta);
9

10 x1_Ode1 = subs(solOde1(1), {t, X_3}, {-t1, 0});
11 x2_Ode1 = subs(solOde1(2), {t, X_3}, {-t1, 0});
12 x3_Ode1 = subs(solOde1(3), {t, X_3}, {-t1, 0});
13 x4_Ode1 = subs(solOde1(4), {t, X_3}, {-t1, 0});
14

15 x1_Ode2 = subs(solOde2(1), {t, X_3}, {t2, 0});
16 x2_Ode2 = subs(solOde2(2), {t, X_3}, {t2, 0});
17 x3_Ode2 = subs(solOde2(3), {t, X_3}, {t2, 0});
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18 x4_Ode2 = subs(solOde2(4), {t, X_3}, {t2, 0});
19

20 assume(X_4 > 0); assume(t1 > 0); assume(t2 > 0);
21 [solX1, solX2, solX4, solT1, solT2] = vpasolve(...
22 [x1_Ode2 - x1_Ode1 == 0, x2_Ode2 - x2_Ode1 == 0, ...
23 x3_Ode2 - x3_Ode1 == 0, x3_Ode2 == 0, x4_Ode2 - x4_Ode1

== 0], ...
24 [X_1, X_2, X_4, t1, t2],

INIT_GUESS);
25 end

LISTING 1.9 keldyshMain.m – main function to run an analytical-numerical algorithm
for searching for periodic trajectories for the Keldysh system (12) with pa-
rameters m1 = 0.9, m2 = 1.1, β = 0.03.

1 function keldyshMain
2

3 vpaPresision = 32;
4

5 m1 = vpa(’0.9’, vpaPresision);
6 m2 = vpa(’1.1’, vpaPresision);
7 beta = vpa(’0.03’, vpaPresision);
8

9 x0 = [vpa(’10’, vpaPresision); vpa(’10’, vpaPresision);
10 vpa(’10’, vpaPresision); vpa(’10’, vpaPresision)];
11

12 tEnd = vpa(’500’, vpaPresision);
13

14 traj = integrateTrajectory(m1,m2,beta,x0,tEnd,vpaPresision)
;

15

16 plotTraj3D(traj, m1, m2, b, {1,2,3});
17 plotProj(traj, m1, m2, b, {1,2});
18

19 INIT_GUESS = [traj{end-1,2}(1), traj{end-1,2}(2), ...
20 traj{end-1,2}(4), traj{end-2,3}(1), traj{end

-1,3}(1)];
21

22 [solX1,solX2,solX4,solT1,solT2] = findPeriodicExact(m1,m2,
beta,INIT_GUESS);

23

24 disp(solX1); disp(solX2); disp(solX4);
25 disp(solT1); disp(solT2);
26

27 end
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APPENDIX 1.2 Implementation of the LPRS method for the Keldysh
system

LISTING 1.10 syst_keldysh.m – function defining the Keldysh system (12) with param-
eters m1 = 0.9, m2 = 1.1, β = 0.03 in the Lurie form.

1 function [A, B, C] = syst_keldysh(m1, m2, beta)
2

3 a0 = (m2 ^ 2 + beta ^ 2 ) * (m1 ^ 2 + beta ^ 2);
4 a1 = 2 * beta * (m2 ^ 2 + m1 ^ 2 + 2 * beta ^ 2);
5 a2 = m2 ^ 2 + m1 ^ 2 + 6 * beta ^ 2;
6 a3 = 4 * beta;
7

8 A = [0 1 0 0; 0 0 1 0; 0 0 0 1; -a0 -a1 -a2 -a3];
9 B = [0; 0; 0; 1];

10 C = [0 0 -1 0];
11

12 end

We use the following function for the LPRS numerical computation (Boiko, 2008).

LISTING 1.11 lprs_matr.m – function for numerical calculation of the locus of a per-
turbed relay system J(w) (LPRS, see Eq. (18)).

1 function J = lprs_matr(A, B, C, w)
2 n = size(A,1);
3 I = eye(n);
4 AINV = inv(A);
5 if w == 0
6 J = (-0.5 + 1i * 0.25 * pi) * C * AINV * B;
7 else
8 t = 2 .* pi / w;
9 EXP_A_T = expm(0.5 * A * t);

10 EXP_A_T_2 = expm(A * t);
11 re_lprs = -0.5 * C * (AINV + t * inv(I-EXP_A_T_2) *

EXP_A_T) * B;
12 im_lprs = 0.25 * pi * C * inv((I + EXP_A_T))*(I -

EXP_A_T) * AINV * B;
13 J = re_lprs + 1i * im_lprs;
14 end

LISTING 1.12 keldysh_main.m – main function to run the LPRS mehod for the Keldysh
system (12) with parameters m1 = 0.9, m2 = 1.1, β = 0.03.

1 function keldysh_main
2

3 m1 = 0.9;
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4 m2 = 1.1;
5 beta = 0.03;
6

7 num_points = 100000;
8 omega_min = 0.1;
9 omega_max = 10;

10

11 yy_lprs = zeros(1, num_points);
12 xx = linspace(omega_min, omega_max, num_points);
13

14 [A, B, C] = syst_keldysh(m1, m2, beta);
15

16 for i = 1 : num_points
17 yy_lprs(i) = lprs_matr(A, B, C, xx(i));
18 end
19

20 ht = figure(’units’,’normalized’,’visible’,’on’);
21 ht.Renderer=’Painters’;
22 plot(yy_lprs, ’Color’, [0.5, 0, 0.5], ’LineWidth’, 1)
23 xlabel(’\textbf{ReJ}’,’Interpreter’,’latex’, ’fontsize’,15)

;
24 ylabel(’\textbf{ImJ}’,’Interpreter’,’latex’, ’fontsize’,15,

’rotation’,0);
25 grid on
26

27 end



APPENDIX 2 MATLAB IMPLEMENTATION OF
HOMOCLINIC BIFURCATIONS NUMERICAL
ANALYSIS AND STABILIZATION OF
UNSTABLE PERIODIC OSCILLATIONS

APPENDIX 2.1 Implementation of homoclinic bifurcations numer-
ical analysis in the Lorenz-like system

LISTING 2.1 runDeltaBetaGridScan.m – script to run a numerical procedure for scan-
ning the region parameters Bδ,β (see Eq. (38)) and studying the behavior
of the separatrices of saddle equilibria S0, S±.

1 clear global;
2

3 DIR = ’./GRID_TEST’;
4

5 delta = 0.5;
6

7 betaStep = 0.01;
8 betaSpan = betaStep : betaStep : 2 + delta - betaStep;
9

10 sStep = 0.01;
11 sSpan = sStep : sStep : 1 - sStep;
12

13 % Choosing the vicinity for points near the equilibria S0,
S1, S2

14 eqEpsVic.S0 = 1e-16;
15 eqEpsVic.S12 = 1e-2;
16

17 acc = 1e-16; rel_tol = acc; abs_tol = acc; InitialStep =
acc/10;

18

19 radiusInf = 1000; S1 = [1,0,0]; epsVicS1 = 1e-1;
20 ODE.solverName = ’ode45’;
21 ODE.options = odeset(’RelTol’, rel_tol, ’AbsTol’, abs_tol,

’InitialStep’, InitialStep, ’NormControl’, ’on’, ’Events
’, @(t, x) trajBehaviorEvents(t, x, radiusInf, S1,
epsVicS1));

22 ODE.lim = true;
23

24 % Integration time:
25 tEnd.trans = 4000; tEnd.lim = 1000;
26

27 % Log options:
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28 logOption = [];
29

30 % Plot options:
31 plotOptions.symmetric = false;
32 plotOptions.color = true;
33 plotOptions.figVisible = ’off’;
34 plotOptions.figSave = true;
35 plotOptions.axis = [];
36 plotOptions.view = [];
37

38 % Main routing:
39 deltaBetaGridScan(DIR, delta, betaSpan, sSpan, eqEpsVic,

ODE, tEnd, logOption, plotOptions);

LISTING 2.2 trajBehaviorEvents.m – function to detect the events ”a trajectory goes
outside the sphere” and ”a trajectory is in the ε-vicinity of a point”.

1 function [value, isterminal, direction] =
trajBehaviorEvents(~, x, radiusInf, xEq, epsEq)

2 value = [sqrt(x(1)^2 + x(2)^2 + x(3)^2) - radiusInf;
3 sqrt((x(1) - xEq(1))^2 + ...
4 (x(2) - xEq(2))^2 + ...
5 (x(3) - xEq(3))^2) - epsEq];
6 isterminal = [1; 1];
7 direction = [0; 0];

LISTING 2.3 deltaBetaGridScan.m – numerical procedure for scanning the region of
parameters (δ, β) and studying the behavior of separatrices of saddle equi-
libria S0, S±.

1 function deltaBetaGridScan(DIR, delta, betaList, sList,
eqEpsVic, ODE, tEnd, logOption, plotOptions)

2

3 for iBeta = 1 : length(betaList)
4 betaDIR = [DIR ’/Delta=’ num2str(delta,’%.2g’) ...
5 ’/Beta=’, num2str(betaList(iBeta),’%.2g’)];
6 if ~isequal(exist(betaDIR, ’dir’), 7) % 7 = directory.
7 mkdir(betaDIR);
8 end
9 end

10

11 numWorkers = feature(’numCores’);
12 poolObj = parpool(2*numWorkers);
13 cleaner = onCleanup(@() delete(poolObj));
14 parfor iBeta = 1 : length(betaList)
15
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16 beta = betaList(iBeta);
17

18 for iS = 1 : length(sList)
19

20 warning(’off’,’MATLAB:odearguments:RelTolIncrease’)
;

21

22 s = sList(iS);
23

24 betaDIR = [DIR ’/Delta=’ num2str(delta,’%.2g’) ’/
Beta=’, num2str(beta,’%.2g’)];

25

26 integrateTraj(betaDIR, delta, beta, s, eqEpsVic,
ODE, tEnd, logOption, plotOptions);

27

28 warning(’on’,’MATLAB:odearguments:RelTolIncrease’);
29 end
30 end
31

32 figs2png(delta, betaList, sList);
33

34 end

LISTING 2.4 integrateTraj.m – function for numerical integrating separatrices of saddle
equilibria for given parameter values δ, β, s.

1 function sol = integrateTraj(DIR, delta, beta, s, eqEpsVic,
ODE, tEnd, logOption, plotOptions)

2

3 fileName = [DIR, ’/s=’, num2str(s, ’%.16g’)];
4

5 warning(’off’,’MATLAB:odearguments:RelTolIncrease’);
6

7 S0 = [0, 0, 0]; S1 = [1, 0, 0]; %S2 = [-1, 0, 0];
8

9 % Values of parameters :
10 alpha = delta * sqrt(1-s); lambda = s / sqrt(1-s);
11

12 [V, D] = eig(J(S0, alpha, beta, lambda));
13 [~, IX] = sort(real(diag(D)), ’descend’);
14

15 %% Eigenvectors of J in S0
16 vU_S0 = V(:, IX(1))’ / norm(V(:, IX(1))’);
17

18 [V1, D1] = eig(J(S1, alpha, beta, lambda));
19 [~, IX1] = sort(real(diag(D1)), ’descend’);
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20

21 if ~isempty(logOption)
22 fprintf(’%.12g\n’, s);
23

24 fprintf(’parameters: alpha = %.16g, beta = %.16g,
lambda = %.16g\n’, alpha, beta, lambda);

25

26 fprintf(’lambda_1(S0) = %s, lambda_2(S0) = %s, lambda_3
(S0) = %s\n’, ...

27 D(IX(1), IX(1)), D(IX(2), IX(2)), D(IX(3), IX(3)));
%

28 if real(D(IX(1), IX(1))) > 0
29 fprintf(’Eq. S0 is unstable\n’);
30 else
31 fprintf(’Eq. S0 is stable\n’);
32 end
33

34 fprintf(’lambda_1(S1) = %s, lambda_2(S1) = %s, lambda_3
(S1) = %s\n’, ...

35 D1(IX1(1), IX1(1)), D1(IX1(2), IX1(2)), D1(IX1(3),
IX1(3))); %

36 if real(D1(IX1(1), IX1(1))) > 0
37 fprintf(’Eq. S1 and S2 are unstable\n’);
38 else
39 fprintf(’Eq. S1 and S2 are stable\n’);
40 end
41 end
42

43 initPointS0 = S0 + eqEpsVic.S0 * sign(vU_S0(1)) * vU_S0;
44 sol.sepaS0 = feval(ODE.solverName, @(t, x) lorenzLikeSyst(t

, x, alpha, beta, lambda), [0, tEnd.trans], initPointS0,
ODE.options);

45 if ~isempty(plotOptions)
46 plotLorenzLikeSepa(fileName, sol.sepaS0.x, sol.sepaS0.y

’, plotOptions);
47 if ODE.lim
48 tLimSpan = linspace(tEnd.trans-tEnd.lim, tEnd.trans

,100*tEnd.lim);
49 attrS0 = deval(sol.sepaS0, tLimSpan);
50 plotLimOptions = plotOptions; plotLimOptions.color

= false;
51 plotLorenzLikeSepa(fileName, tLimSpan, attrS0’,

plotLimOptions);
52 end
53 end
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54

55 if beta > s * (delta + 2 / (delta * (1-s) + s))
56 vU1_S1 = real(V1(:, IX1(1)))’ / norm(real(V1(:, IX1(1))

));
57 vU2_S1 = imag(V1(:, IX1(1)))’ / norm(imag(V1(:, IX1(1))

));
58

59 initPointS1 = S1 + eqEpsVic.S12 * (vU1_S1 + vU2_S1) /
norm(vU1_S1 + vU2_S1);

60 sol.sepaS1 = feval(ODE.solverName, @(t, x)
lorenzLikeSyst(t, x, alpha, beta, lambda), [0, tEnd.
trans], initPointS1, ODE.options);

61 if ~isempty(plotOptions)
62 plotLorenzLikeSepa(fileName, sol.sepaS1.x, sol.

sepaS1.y’, plotOptions);
63 if ODE.lim
64 attrS1 = deval(sol.sepaS1, tLimSpan);
65 plotLorenzLikeSepa(fileName, tLimSpan, attrS1’,

plotLimOptions);
66 end
67 end
68 else
69 sol.sepaS1 = [];
70 end
71

72 warning(’on’,’MATLAB:odearguments:RelTolIncrease’);
73

74 end

LISTING 2.5 plotLorenzLikeSepa.m – auxiliary function for plotting and saving phase
space pictures of system (34).

1 function plotLorenzLikeSepa(fileName, t, traj, plotOptions)
2

3 S0 = [0, 0, 0]; S1 = [1, 0, 0]; S2 = [-1, 0, 0];
4

5 hFigMain = figure; hold on;
6

7 set(hFigMain, ’visible’, plotOptions.figVisible);
8

9 plot3(S0(1),S0(2),S0(3), ’.’,’markersize’, 15, ’Color’,
’red’);

10 plot3(S1(1),S1(2),S1(3), ’.’,’markersize’, 15, ’Color’,
’red’);

11 plot3(S2(1),S2(2),S2(3), ’.’,’markersize’, 15, ’Color’,
’red’);
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12

13 plot3(traj(:,1), traj(:,2), traj(:,3));
14 if plotOptions.symmetric
15 plot3(-traj(:,1), -traj(:,2), traj(:,3));
16 end
17 grid on; xlabel(’x’); ylabel(’v’); zlabel(’u’);
18

19 if isempty(plotOptions.axis)
20 axis auto;
21 else
22 axis(plotOptions.axis);
23 end
24

25 if isempty(plotOptions.view)
26 view(3);
27 else
28 view(plotOptions.view);
29 end
30

31 if plotOptions.figSave
32 savefig(hFigMain, [fileName, ’.fig’], ’compact’);
33 end
34

35 if strcmp(plotOptions.figVisible, ’off’)
36 close(hFigMain);
37 end
38

39 if plotOptions.color
40 hFigColor = figure; hold on;
41

42 set(hFigColor, ’visible’, plotOptions.figVisible);
43

44 plot3(S0(1),S0(2),S0(3), ’.’, ’markersize’,15,’
Color’,’red’);

45 plot3(S1(1),S1(2),S1(3), ’.’, ’markersize’,15,’
Color’,’red’);

46 plot3(S2(1),S2(2),S2(3), ’.’, ’markersize’,15,’
Color’,’red’);

47

48 c = 1:numel(t); %# colors
49 surf([traj(:,1),traj(:,1)], ...
50 [traj(:,2), traj(:,2)], ...
51 [traj(:,3), traj(:,3)], ...
52 [c(:), c(:)], ...
53 ’EdgeColor’,’flat’, ’FaceColor’,’none’)
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;
54 colormap( jet(numel(t)) );
55

56 grid on; xlabel(’x’); ylabel(’v’); zlabel(’u’);
57

58 if isempty(plotOptions.axis)
59 axis auto;
60 else
61 axis(plotOptions.axis);
62 end
63

64 if isempty(plotOptions.view)
65 view(3);
66 else
67 view(plotOptions.view);
68 end
69

70 if plotOptions.figSave
71 savefig(hFigColor, [fileName, ’_col.fig’], ’

compact’);
72 end
73

74 if strcmp(plotOptions.figVisible, ’off’)
75 close(hFigColor);
76 end
77 end
78 end

LISTING 2.6 figs2png.m – auxiliary function to plot and save PNG-images.

1 function figs2png(delta, betaList, sList)
2

3 for iBeta = 1 : length(betaList)
4

5 beta = betaList(iBeta);
6

7 for iS = 1 : length(sList)
8 s = sList(iS);
9

10 DIR = [’./GRID_TEST/Delta=’ num2str(delta,’%.2g’) ’
/Beta=’, num2str(beta,’%.2g’)];

11 fileName = [DIR, ’/’ int2str(iS) ’-s=’, num2str(s,
’%.16g’)];

12

13 if exist(fileName, ’file’)
14 hFig = openfig([fileName ’.fig’], ’invisible’);
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15 set(hFig, ’Position’, [1, 1, 200, 200]);
16 print(hFig, ’-r300’, [fileName, ’.png’], ’-dpng

’);
17 close(hFig);
18

19 fileNameNoTrans = [fileName ’_noTrans’];
20 hFig2 = openfig([ fileNameNoTrans ’.fig’],’

invisible’);
21 set(hFig2, ’Position’, [1, 1, 200, 200]);
22 print(hFig2, ’-r300’, [fileNameNoTrans, ’.png’

],’-dpng’);
23 close(hFig2);
24 end
25 end
26 end
27 end

LISTING 2.7 bifChaoticMain.m – script to start the procedure for modeling the behav-
ior of a grid of points on a Poincaré section with the sequential application
of the Poincaré map.

1 function bifChaoticMain
2

3 DIR = ’./FIG/’;
4 delta = 0.9; beta = 2.899;
5

6 sL = 0.7955; sR = 0.7958;
7 numPoincareMaps = 100;
8 isContinue = 0;
9 lorenzLikeSystPoincareSec(DIR,delta,sL,numPoincareMaps,

isContinue);
10

11 end

LISTING 2.8 lorenzLikeSystPoincareSec.m – procedure for modeling the behavior of a
grid of points on a Poincaré section with the sequential application of the
Poincaré map.

1 function lorenzLikeSystPoincareSec(DIR, delta, beta, s,
numPoincareMaps, isCont)

2

3 warning(’off’, ’MATLAB:odearguments:RelTolIncrease’);
4

5 T = 1000;
6

7 alpha = delta * sqrt(1-s); lambda = s / sqrt(1-s);
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8

9 %% Event 1 : Is trajectory in the vicinity of the eq. S0:
10 function [value, isterminal, direction] = isInVic(~, y,

epsHomoclin, dir)
11 value = norm(y) - epsHomoclin;
12 isterminal = 1;
13 direction = dir;
14 end
15

16 %% Event 2 :
17 function [value, isterminal, direction] = isOnPS0(~, y,

p, vNorm)
18 value = vNorm(1) * (y(1) - p(1)) + vNorm(2) * (y(2)

- p(2)) + vNorm(3) * (y(3) - p(3));
19 isterminal = 1;
20 direction = 1;
21 end
22

23 %% Event 3 :
24 function [value, isterminal, direction] = isOnPS1(~, y,

p, vNorm)
25 value = [vNorm(1) * (y(1) - p(1)) + vNorm(2) * (y(2)

- p(2)) + vNorm(3) * (y(3) - p(3)), ...
26 -vNorm(1) * (y(1) + p(1)) - vNorm(2) * (y(2) + p

(2)) + vNorm(3) * (y(3) - p(3))];
27 isterminal = [1, 1];
28 direction = [1, 1];
29 end
30

31 %% Event 4 :
32 function [value, isterminal, direction] = isTurning(~,

y, vS, vSS)
33 value = [y(1), y(2), det([y(1), y(2), y(3); vS(1),

vS(2), vS(3); vSS(1), vSS(2), vSS(3)])];
34 isterminal = [1, 1, 0];
35 direction = [1, -1, 0];
36 end
37

38 %%
39 odeLorenzLike = @(t, x) lorenzLikeSyst(t, x, alpha, beta,

lambda);
40

41 S0 = [0, 0, 0]; S1 = [1, 0, 0]; S2 = [-1, 0, 0];
42 equilPoints = [S0; S1; S2];
43
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44 %% Stability of the equilibria:
45 [V, D] = eig(J(S0, alpha, beta, lambda));
46 [~, IX] = sort(real(diag(D)), ’descend’);
47 fprintf(’lambda_1(S0) = %s, lambda_2(S0) = %s, lambda_3(S0)

= %s\n’, D(IX(1), IX(1)), D(IX(2), IX(2)), D(IX(3), IX
(3)));

48 if real(D(IX(1), IX(1))) > 0
49 fprintf(’Eq. S0 is unstable\n’);
50 else
51 fprintf(’Eq. S0 is stable\n’);
52 end
53

54 [~, D1] = eig(J(S1, alpha, beta, lambda));
55 [~, IX1] = sort(real(diag(D1)), ’descend’);
56 fprintf(’lambda_1(S1) = %s, lambda_2(S1) = %s, lambda_3(S1)

= %s\n’, ...
57 D1(IX1(1), IX1(1)), D1(IX1(2), IX1(2)), D1(IX1(3),

IX1(3))); %
58 if real(D1(IX1(1), IX1(1))) > 0
59 fprintf(’Eq. S1 and S2 are unstable\n’);
60 else
61 fprintf(’Eq. S1 and S2 are stable\n’);
62 end
63

64 %% Eigenvectors of J in S0
65 vU = V(:, IX(1))’ / norm(V(:, IX(1))’);
66 vS = V(:, IX(2))’ / norm(V(:, IX(2))’);
67 vSS = V(:, IX(3))’ / norm(V(:, IX(3))’);
68

69 %% Parameters of ODE solver:
70 acc = 1e-16;
71 rel_tol = acc;
72 abs_tol = acc;
73 InitialStep = acc/10;
74

75 %% Choosing ’epsHomoclin’ for init. point in the vicinity
of the eq.s S0

76 epsHomoclinInit = 1e-16;
77 x_unst_01 = S0 + epsHomoclinInit * vU;
78

79 %% Choosing ’epsVicinity’ for placing the Poincare sections
Pi0

80 epsVicPS0 = 5e-1; %3e-5;
81

82 %% Define P0 - point on the Poincare section Pi_0
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83 P0 = S0 + epsVicPS0 * vS;
84 optionsOnPS0 = odeset(’RelTol’, rel_tol, ’AbsTol’, abs_tol,

’InitialStep’, InitialStep, ’NormControl’, ’on’, ’
Events’, @(t, x) isOnPS0(t, x, P0, -vS));

85

86 [~, sepa] = ode45(odeLorenzLike, [0 T], x_unst_01,
optionsOnPS0);

87 sepaEnd = sepa(end, :);
88

89 %% Construct a rectangular grid of points on Pi_0
90 wNorm = [det([vS(2), vSS(2); vS(3), vSS(3)]), ...
91 -det([vS(1), vSS(1); vS(3), vSS(3)]), ...
92 det([vS(1), vSS(1); vS(2), vSS(2)])];
93 vPS = cross(vS, wNorm) / norm(cross(vS, wNorm));
94 vPSN = -cross(vS, vPS) / norm(cross(vS, vPS));
95

96 epsPoincareWidth = 2.5e-2; %norm(sepaEnd - P0) + epsVicPS0
/10;

97 disp(epsPoincareWidth);
98

99 A = det([vS(2), vS(3); vSS(2), vSS(3)]);
100 B = -det([vS(1), vS(3); vSS(1), vSS(3)]);
101 C = det([vS(1), vS(2); vSS(1), vSS(2)]);
102

103 distSepaStMan = abs(A * sepaEnd(1) + B * sepaEnd(2) + C *
sepaEnd(3)) / (sqrt(A^2 + B^2 + C^2));

104 disp(distSepaStMan);
105

106 horNumSteps = 5;
107 frameThikness = epsPoincareWidth / 2; %epsVicPS0/20;
108

109 epsPoincareHeight = epsPoincareWidth + frameThikness;
110 disp(epsPoincareHeight);
111

112 %% Vertex of the frame
113 frVertex = frameVertex(P0, vPS, vPSN, frameThikness,

epsPoincareWidth, epsPoincareHeight);
114

115 %% Rectangular on Poincare section Pi0
116 rectHorSize = 6e-2;
117 rectVertSize = 6e-2;
118 rect3D = rectangle3d(P0, vPS, vPSN, rectHorSize,

rectVertSize);
119

120 %% Distance from saddle to Poincare section Pi1
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121 epsVicPS1 = 1.5 * rectVertSize;
122 P1 = S0 + epsVicPS1 * vU;
123 optionsOnPS1 = odeset(’RelTol’, rel_tol, ’AbsTol’, abs_tol,

’InitialStep’, InitialStep, ’NormControl’, ’on’, ’
Events’, @(t, x) isOnPS1(t, x, P1, vU));

124

125

126 axisSize3D = [];
127

128 %% Check continuation of num. procedure
129 if isCont == 0
130

131 pointsPS0 = frameGrid(P0, vPS, vPSN, frameThikness, ...
132 epsPoincareWidth, epsPoincareHeight

, horNumSteps);
133

134 [pointsBackPS0, pointsPS1_1, pointsPS1_2] =
execPoincareMap(pointsPS0, odeLorenzLike, [0 T],
optionsOnPS0, optionsOnPS1);

135

136 fileName = [DIR ’00’];
137

138 plotPoincareSec(equilPoints, vS, vSS, rect3D, sepa,
frVertex, pointsPS0, pointsPS1_1, pointsPS1_2,
pointsBackPS0, axisSize3D, fileName);

139

140 lastIndex = 0;
141 currPointsPS0 = pointsBackPS0;
142 save([DIR ’currPointsPS0.mat’], ’currPointsPS0’);
143 preIterPoincareMap = 1;
144 elseif isCont == 1
145 lastIndex = getLastFigIndex(DIR);
146 load([DIR ’currPointsPS0.mat’], ’currPointsPS0’);
147 preIterPoincareMap = 0;
148 else
149 return;
150 end
151

152 %% Main loop
153 for iPoincareMap = 1 : numPoincareMaps-preIterPoincareMap
154

155 [currPointsBackPS0, currPointsPS1_1, currPointsPS1_2] =
execPoincareMap(currPointsPS0, odeLorenzLike, [0 T],
optionsOnPS0, optionsOnPS1);

156
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157 currIndex = lastIndex+iPoincareMap;
158 fileName = [DIR num2str(currIndex, ’%02d’)];
159

160 plotPoincareSec(equilPoints, vS, vSS, rect3D, sepa,
frVertex, currPointsPS0, currPointsPS1_1,
currPointsPS1_2, currPointsBackPS0, axisSize3D, fileName
);

161

162 currPointsPS0 = currPointsBackPS0;
163 save([DIR ’currPointsPS0.mat’], ’currPointsPS0’);
164 end
165

166 warning(’on’,’MATLAB:odearguments:RelTolIncrease’);
167

168 end

LISTING 2.9 execPoincareMap.m – function performing the Poincaré map.

1 function [pointsBackOnPS0, pointsOnPS1_1, pointsOnPS1_2] =
execPoincareMap(pointsOnPS0, ode, tInt, optionsOnPS0,
optionsOnPS1)

2 if ~isempty(pointsOnPS0)
3 numWorkers = feature(’numCores’);
4 poolObj = parpool(numWorkers);
5 cleaner = onCleanup(@() delete(poolObj));
6

7 [rPS0, cPS0] = size(pointsOnPS0);
8 startPointPS0 = pointsOnPS0(:, 1:3);
9 colorPS0 = pointsOnPS0(:, 4:6);

10 pointsOnPS1 = zeros(rPS0, cPS0+1);
11 parfor iPS0 = 1 : rPS0
12 warning(’off’, ’MATLAB:odearguments:

RelTolIncrease’);
13 [~, currTraj, ~, ~, currIe] = ode45(ode, tInt,

startPointPS0(iPS0, :), optionsOnPS1);
14 pointsOnPS1(iPS0, :) = [currTraj(end, :),

colorPS0(iPS0, :), currIe];
15 warning(’on’, ’MATLAB:odearguments:

RelTolIncrease’);
16 end
17 pointsOnPS1_1 = pointsOnPS1(pointsOnPS1(:, end) ==

1, 1 : end-1);
18 pointsOnPS1_2 = pointsOnPS1(pointsOnPS1(:, end) ==

2, 1 : end-1);
19

20 if ~isempty(pointsOnPS1_1)
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21 [rPS1_1, cPS1_1] = size(pointsOnPS1_1);
22 pointsBackOnPS0_1 = zeros(rPS1_1, cPS1_1);
23 startPointPS1_1 = pointsOnPS1_1(:, 1:3);
24 colorPS1_1 = pointsOnPS1_1(:, 4:6);
25 parfor iPS1_1 = 1 : rPS1_1
26 warning(’off’, ’MATLAB:odearguments:

RelTolIncrease’);
27 [~, currTraj] = ode45(ode, tInt,

startPointPS1_1(iPS1_1, :), optionsOnPS0);
28 pointsBackOnPS0_1(iPS1_1, :) = [currTraj(

end, :), colorPS1_1(iPS1_1, :)];
29 warning(’on’, ’MATLAB:odearguments:

RelTolIncrease’);
30 end
31 else
32 pointsBackOnPS0_1 = [];
33 end
34 pointsBackOnPS0 = pointsBackOnPS0_1;
35

36 if ~isempty(pointsOnPS1_2)
37 [rPS1_2, cPS1_2] = size(pointsOnPS1_2);
38 pointsBackOnPS0_2 = zeros(rPS1_2, cPS1_2);
39 startPointPS1_2 = pointsOnPS1_2(:, 1:3);
40 colorPS1_2 = pointsOnPS1_2(:, 4:6);
41 parfor iPS1_2 = 1 : rPS1_2
42 warning(’off’, ’MATLAB:odearguments:

RelTolIncrease’);
43 [~, currTraj] = ode45(ode, tInt,

startPointPS1_2(iPS1_2, :), optionsOnPS0);
44 pointsBackOnPS0_2(iPS1_2, :) = [currTraj(

end, :), colorPS1_2(iPS1_2, :)];
45 warning(’on’, ’MATLAB:odearguments:

RelTolIncrease’);
46 end
47 else
48 pointsBackOnPS0_2 = [];
49 end
50 pointsBackOnPS0 = [pointsBackOnPS0;

pointsBackOnPS0_2];
51 else
52 errorMessage = sprintf(’Error: No points on

Poincare section\n’);
53 uiwait(warndlg(errorMessage));
54 return;
55 end
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56 end

LISTING 2.10 rectangle3d.m – function specifying the vertices of a rectangular frame
on a Poincaré section Σin.

1 function rect3d = rectangle3d(P0, vHor, vVert, rectHorSize,
rectVertSize)

2

3 p1 = P0 + rectHorSize * vHor - rectVertSize * vVert;
4 p2 = P0 - rectHorSize * vHor - rectVertSize * vVert;
5 p3 = P0 - rectHorSize * vHor + rectVertSize * vVert;
6 p4 = P0 + rectHorSize * vHor + rectVertSize * vVert;
7

8 rect3d = [p1(:), p2(:), p3(:), p4(:)];
9 end

LISTING 2.11 frameVertex.m – function that defines the vertices of the half-frame on
the Poincaré section Σin.

1 function frVertex = frameVertex(midPoint, vHor, vVert, ...
2 frThickness, frInHalfWidth,

frHalfHeight)
3

4 P2 = midPoint + frInHalfWidth * vHor;
5 P1 = P2 + frThickness * vHor;
6 P8 = P1 + frHalfHeight * vVert;
7 P3 = P2 + (frHalfHeight - frThickness) * vVert;
8 P4 = P3 - 2 * frInHalfWidth * vHor;
9 P5 = midPoint - frInHalfWidth * vHor;

10 P6 = P5 - frThickness * vHor;
11 P7 = P6 + frHalfHeight * vVert;
12

13 frVertex = [P1; P2; P3; P4; P5; P6; P7; P8];
14

15 end

LISTING 2.12 frameGrid.m – function that generates the initial half-framed grid of
points on the Poincaré section Σin.

1 function grid = frameGrid(midPoint, vHor, vVert, ...
2 frThickness, frInHalfWidth, frHalfHeight, numPoints)
3

4 grid = []; currIndex = 1;
5 %% 1st rectangle
6 pointRect1 = midPoint + frInHalfWidth * vHor;
7

8 stepSize = frThickness / (numPoints-1);
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9 numPointsVert = floor(frHalfHeight / stepSize) + 1;
10 col = jet(numPointsVert);
11

12 for iPointX = 1 : numPoints
13 xp = pointRect1 + (iPointX-1) * stepSize * vHor;
14 for iPointY = 1 : numPointsVert
15 grid = [grid; xp + (iPointY-1) * stepSize * vVert,

col(iPointY, :)];
16 currIndex = currIndex+1;
17 end
18 end
19

20 %% 2nd rectangle
21 pointRect2 = midPoint - frInHalfWidth * vHor;
22

23 for iPointX = 1 : numPoints
24 xp = pointRect2 - (iPointX-1) * stepSize * vHor;
25 for iPointY = 1 : numPointsVert
26 grid = [grid; xp + (iPointY-1) * stepSize * vVert,

col(iPointY, :)];
27 currIndex = currIndex+1;
28 end
29 end
30

31 numPointsHor = 2 * frInHalfWidth / stepSize + 1;
32

33 %% 3nd rectangle
34 pointRect3 = midPoint + frInHalfWidth * vHor + (

numPointsVert-1) * stepSize * vVert;
35

36 for iPointX = 1 : numPointsHor-1
37 xp = pointRect3 - iPointX * stepSize * vHor;
38 for iPointY = 1 : numPoints
39 grid = [grid; xp - (iPointY-1) * stepSize * vVert,

col(end - (iPointY-1),:)];
40 currIndex = currIndex+1;
41 end
42 end
43

44 grid(:, 1:3) = grid(:, 1:3) + stepSize * vVert;
45 end

LISTING 2.13 plotPoincareSec.m – function for drawing a grid of points on the
Poincaré section in the sequential application of the Poincaré map and
saving the corresponding pictures.
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1 function plotPoincareSec(equilibria, vS, vSS, rect,
separatrix, frVertex, pointsPS0, pointsPS1_1,
pointsPS1_2, pointsBackPS0, axisSize3D, fileName)

2

3 S0 = equilibria(1, :); S1 = equilibria(2, :); S2 =
equilibria(3, :);

4 xPS0 = rect(1, :); yPS0 = rect(2, :); zPS0 = rect(3, :);
5

6 fx = @(s,t) vS(1) * s + vSS(1) * t;
7 fv = @(s,t) vS(2) * s + vSS(2) * t;
8 fu = @(s,t) vS(3) * s + vSS(3) * t;
9

10 epsManifold = 1e1;
11

12 hFig1 = figure(’Visible’,’off’); hold on;
13 axFig1 = gca;
14

15 %% Equilibria:
16 plot3(axFig1, S0(1), S0(2), S0(3), ’.’, ’markersize’, 20, ’

Color’, ’black’);
17 plot3(axFig1, S1(1), S1(2), S1(3), ’.’, ’markersize’, 20, ’

Color’, ’black’);
18 plot3(axFig1, S2(1), S2(2), S2(3), ’.’, ’markersize’, 20, ’

Color’, ’black’);
19

20 %% 2D stable manifold
21 fsurf(axFig1, fx, fv, fu, [-epsManifold, epsManifold], ’

EdgeColor’, ’none’, ’FaceColor’, [0.9, 0.9, 0.9]);
22

23 %% Separatrix
24 if ~isempty(separatrix)
25 plot3(axFig1, separatrix(:,1), separatrix(:,2),

separatrix(:,3));
26 plot3(axFig1, -separatrix(:,1), -separatrix(:,2),

separatrix(:,3));
27 end
28

29 %% Poincare section:
30 hPS1 = fill3(axFig1, xPS0, yPS0, zPS0, ’r’); set(hPS1, ’

FaceAlpha’, 0.1);
31 plotDashedLine(axFig1, [(xPS0(1) + xPS0(4)) / 2, ...
32 (yPS0(1) + yPS0(4)) / 2, ...
33 (zPS0(1) + zPS0(4)) / 2], ...
34 [(xPS0(2) + xPS0(3)) / 2, ...
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35 (yPS0(2) + yPS0(3)) / 2, ...
36 (zPS0(2) + zPS0(3)) / 2]);
37

38 %% Half-frame
39 plotDashedLine(axFig1, frVertex(1, :), frVertex(2, :));
40 plotDashedLine(axFig1, frVertex(2, :), frVertex(3, :));
41 plotDashedLine(axFig1, frVertex(3, :), frVertex(4, :));
42 plotDashedLine(axFig1, frVertex(4, :), frVertex(5, :));
43 plotDashedLine(axFig1, frVertex(5, :), frVertex(6, :));
44 plotDashedLine(axFig1, frVertex(6, :), frVertex(7, :));
45 plotDashedLine(axFig1, frVertex(7, :), frVertex(8, :));
46 plotDashedLine(axFig1, frVertex(8, :), frVertex(1, :));
47

48 %% Grid of points
49 scatter3(axFig1, pointsPS0(:,1),pointsPS0(:,2),pointsPS0

(:,3), 36, pointsPS0(:,4:6), ’filled’);
50

51 if ~isempty(pointsPS1_1)
52 scatter3(axFig1, pointsPS1_1(:,1),pointsPS1_1(:,2),

pointsPS1_1(:,3), 36, pointsPS1_1(:,4:6), ’filled’);
53 end
54 if ~isempty(pointsPS1_2)
55 scatter3(axFig1, pointsPS1_2(:,1),pointsPS1_2(:,2),

pointsPS1_2(:,3), 36, pointsPS1_2(:,4:6), ’filled’);
56 end
57

58 grid(axFig1, ’on’);
59 if ~isempty(axisSize3D)
60 axis(axFig1, axisSize3D);
61 else
62 axis(axFig1, ’auto’);
63 end
64

65 xlabel(axFig1, ’x’); ylabel(axFig1, ’y’); zlabel(axFig1, ’z
’);

66 view(axFig1, 3);
67 hold off;
68

69 set(hFig1, ’Position’, [1, 1, 500, 500]);
70 savefig(hFig1, [fileName, ’_(PS0->PS1).fig’], ’compact’);
71 close(hFig1);
72

73 %%
74 hFig2 = figure(’Visible’,’off’); hold on;
75 axFig2 = gca;
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76

77 plot3(axFig2, S0(1), S0(2), S0(3), ’.’, ’markersize’, 20, ’
Color’, ’black’);

78 plot3(axFig2, S1(1), S1(2), S1(3), ’.’, ’markersize’, 20, ’
Color’, ’black’);

79 plot3(axFig2, S2(1), S2(2), S2(3), ’.’, ’markersize’, 20, ’
Color’, ’black’);

80

81 %% 2D stable manifold
82 fsurf(axFig2, fx, fv, fu, [-epsManifold, epsManifold], ’

EdgeColor’, ’none’, ’FaceColor’, [0.9, 0.9, 0.9]);
83

84 if ~isempty(separatrix)
85 plot3(axFig2, separatrix(:,1), separatrix(:,2),

separatrix(:,3));
86 plot3(axFig2, -separatrix(:,1), -separatrix(:,2),

separatrix(:,3));
87 end
88

89 hPS1 = fill3(axFig2, xPS0, yPS0, zPS0, ’r’); set(hPS1, ’
FaceAlpha’, 0.1);

90 plotDashedLine(axFig2, [(xPS0(1) + xPS0(4)) / 2, ...
91 (yPS0(1) + yPS0(4)) / 2, ...
92 (zPS0(1) + zPS0(4)) / 2], ...
93 [(xPS0(2) + xPS0(3)) / 2, ...
94 (yPS0(2) + yPS0(3)) / 2, ...
95 (zPS0(2) + zPS0(3)) / 2]);
96

97 %% Half-frame
98 plotDashedLine(axFig2, frVertex(1, :), frVertex(2, :));
99 plotDashedLine(axFig2, frVertex(2, :), frVertex(3, :));

100 plotDashedLine(axFig2, frVertex(3, :), frVertex(4, :));
101 plotDashedLine(axFig2, frVertex(4, :), frVertex(5, :));
102 plotDashedLine(axFig2, frVertex(5, :), frVertex(6, :));
103 plotDashedLine(axFig2, frVertex(6, :), frVertex(7, :));
104 plotDashedLine(axFig2, frVertex(7, :), frVertex(8, :));
105 plotDashedLine(axFig2, frVertex(8, :), frVertex(1, :));
106

107 if ~isempty(pointsPS1_1)
108 scatter3(axFig2, pointsPS1_1(:,1),pointsPS1_1(:,2),

pointsPS1_1(:,3), 36, pointsPS1_1(:,4:6),’filled’);
109 end
110 if ~isempty(pointsPS1_2)
111 scatter3(axFig2, pointsPS1_2(:,1),pointsPS1_2(:,2),

pointsPS1_2(:,3), 36, pointsPS1_2(:,4:6),’filled’);
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112 end
113 scatter3(axFig2, pointsBackPS0(:,1),pointsBackPS0(:,2),

pointsBackPS0(:,3), 36, pointsBackPS0(:,4:6),’filled’);
114 grid(axFig2, ’on’);
115 if ~isempty(axisSize3D)
116 axis(axFig2, axisSize3D);
117 else
118 axis(axFig2, ’auto’);
119 end
120 xlabel(axFig2, ’x’); ylabel(axFig2, ’v’); zlabel(axFig2, ’u

’);
121 view(axFig2, 3);
122 hold off;
123

124 set(hFig2, ’Position’, [1, 1, 500, 500]);
125 savefig(hFig2, [fileName, ’_(PS1->PS0).fig’], ’compact’);
126 close(hFig2);
127 end

LISTING 2.14 plotDashedLine.m – auxiliary function for drawing a dashed line.

1 function h = plotDashedLine(ax, pBegin, pEnd)
2

3 h = plot3(ax, [pBegin(1), pEnd(1)], [pBegin(2), pEnd(2)], [
pBegin(3), pEnd(3)], ’--’, ’LineWidth’, 1.5, ’Color’, ’
black’);

4

5 end

LISTING 2.15 getLastFigIndex.m – auxiliary function for determining the number of
the last iteration of the Poincaré map and the corresponding picture of
the Poincaré section stored in the current folder.

1 function lastIndex = getLastFigIndex(DIR)
2

3 figFiles = dir([DIR ’/*_(PS0->PS1).fig’]);
4

5 if isempty(figFiles)
6 lastIndex = -1;
7 else
8 lastFigName = figFiles(end).name;
9

10 lastFigNameSplited = strsplit(lastFigName, ’_’);
11

12 lastIndex = ...
13 str2double(cell2mat(lastFigNameSplited(1)));
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14 end
15 end

APPENDIX 2.2 Implementation of UPOs stabilization in the Lorenz
system

LISTING 2.16 lorenzSystD.m – function determines the Lorenz system (24) with addi-
tional time-delayed feedback component (see Eq. (39)).

1 function dydt = lorenzSystD(t, y, Z, r, sigma, b, R, nLag,
eps, K, lambda0_c, lambdaInf_c, lambda_r)

2

3 F = (y(2) - Z(2,1));
4

5 for iLag = 1 : nLag
6 F = F + R^iLag * (Z(2, iLag) - Z(2, iLag+1));
7 end
8

9 dydt = zeros(4,1);
10

11 restrPerturbCond = abs(F) < eps;
12

13 if restrPerturbCond
14 F_u = F + y(4);
15 else
16 F_u = 0;
17 end
18

19 dydt(1) = -sigma * (y(1) - y(2));
20 dydt(2) = r * y(1) - y(2) - y(1) * y(3) - K * F_u;
21 dydt(3) = - b * y(3) + y(1) * y(2);
22

23 if restrPerturbCond
24 dydt(4) = lambda0_c * y(4) + (lambda0_c -

lambdaInf_c) * F;
25 else
26 dydt(4) = -lambda_r * y(4);
27 end
28 end

LISTING 2.17 lorenzStabUPO.m – main function for period-1 UPO stabilization by the
Pyragas UDFC method for the Lorenz system (24).

1 function lorenzStabUPO
2
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3 r = 28; sigma = 10; b = 8/3;
4

5 R = 0.7; nLag = 100; eps = 3; K = 3.5;
6

7 lambda0_c = 0.1; lambdaInf_c = -2; lambda_r = 10;
8

9 dde = @(t, y, Z) lorenzSystD(t, y, Z, r, sigma, b, R, nLag,
eps, K, lambda0_c, lambdaInf_c, lambda_r);

10

11 tau = 1.558615;
12

13 lags = tau * (1 : (nLag+1));
14

15 initPoint = [2; 2; 2; 0];
16

17 tEnd = 200;
18

19 acc = 1e-6; RelTol = acc; AbsTol = acc;
20 ddeOpt = ddeset(’RelTol’, RelTol, ’AbsTol’, AbsTol);
21

22 solDDE = dde23(dde, lags, initPoint, [0, tEnd], ddeOpt);
23

24 figure(1); hold on;
25 plot3(solDDE.y(1,:), solDDE.y(2,:), solDDE.y(3,:), ’Color’,

[0, 0, 1]);
26 hold off;
27 grid on; axis on;
28 xlabel(’x’); ylabel(’y’); zlabel(’z’);
29 view(3);
30

31 figure(2);
32 plot(solDDE.x, solDDE.y(4,:), ’Color’, [0, 0, 1]);
33 grid on; axis on;
34 xlabel(’t’);
35 ylabel(’w(t)’);
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1. INTRODUCTION

The emergence of the theory of differential inclusions is usually associated with works by French
mathematician A. Marchaud [1,2] and Polish mathematician S.K. Zaremba [3,4]. However, the de-
velopment of the theory of differential inclusions was furthered not only by the research in the field
of abstract mathematics but also by the studies of particular problems in mechanics (plasticity, dry
friction, control with relay elements, tribology, etc.; see, for example, [5–33]). That is to say, along
with general considerations and attempts to understand how the notion of derivative is introduced
for differential inclusions, there were other trends, related to particular needs of applied problems.
First, let us describe this concrete research and then switch to the general definitions of solutions
to differential inclusions. In what follows, we consider the classical Vyshnegradskii and Kalman
problems and prove theorems on the stability and instability in the large.

1.1. Hartog Model

So, in 1930, J.D. Hartog [34] considered the following equation:

mẍ + kx + F0sgn (ẋ) = 0, (1)

where m, k, F0 are positive parameters.
Equation (1) can be reduced to the following two-dimensional system:

ẋ = y,

ẏ = − k

m
x − F0

m
sgn (y).

(2)

Let us consider the question of how a solution to the system in Eq. (2) should be understood
and how the value of sgn (y) can be defined at y = 0. Let us show that choosing a fixed value for
sign at y = 0 is incorrect, as in this case, the solution, as a rule, will not exist.

For y = 0 the right-hand sides of the system in Eq. (2) are continuous and we can take advantage
of the classical notion of solution. For example, for y > 0 the system takes the form

ẋ = y,

ẏ = − k

m
x − F0

m
,

(3)

and for y < 0 :
ẋ = y,

ẏ = − k

m
x +

F0

m
.

(4)

1 (Reg. No. 1301, 11.2.2017)
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Suppose that at some time moment t0, the trajectory of a continuous system in Eq. (3) or (4)
falls on the straight line y = 0, i.e., y(t0) = 0. If kx < −F0, the trajectory can be extended naturally
into half-space y > 0 by virtue of system (3), as the value of dy/dt, found from the second equations
in systems (3) and (4), is positive. Similarly, if y(t0) = 0 and kx > F0, then the trajectory can be
continued into half-space y < 0. In other words, the thus-constructed trajectories weave through
ray y = 0, kx < −F0 toward increasing y and ray y = 0, kx > F0 toward decreasing y.

However, should the trajectory fall into interval y = 0, k|x| < F0 at time moment t = t0,
the above reasoning is no longer applicable. Indeed, it is impossible to “release” a trajectory into
either half-space y > 0 (as the derivative dy/dt determined from the second equation in the system
in Eq. (3) is less than zero) or half-space y < 0 (as the derivative dy/dt determined from the second
equation in the system in Eq. (4) is greater than zero). Thus, the trajectories of systems (3), (4) do
not “weave” through interval y = 0, k|x| < F0 but “dock” on it instead. Therefore, such a trajectory
remains within interval y = 0, k|x| < F0 while k|x| < F0. Hence it follows that dy/dt = 0, and,
therefore, if we want our solution to satisfy the system in Eq. (2), we should equate the right-hand
side of the second equation in this system to zero. In other words, sgn (0) = −kx/F0 for k|x| < F0,
with the value at y = 0 being inconstant.

For definiteness, let us adjoin the boundary k|x| = F0, y = 0 to our interval.
According to the above reasoning, instead of the system in Eq. (2), we now consider the system

ẋ = y,

ẏ = − k

m
x − F0

m
ξ(x, y),

(5)

where

ξ(x, y) =






1 for y > 0 or for y = 0, kx < −F0,

−1 for y < 0 or for y = 0, kx > F0,

−kx/F0 for y = 0, k|x| ≤ F0.

(6)

Now let us find the equilibrium state of the system in Eq. (5). By equating the right-hand sides
of Eqs. (5) to zero, we arrive at the relations |x| ≤ F0/k, y = 0. That is to say, for y = 0 this system
has a rest segment [−F0/k, F0/k] that consists entirely of the equilibrium state of the system.

The phase portrait of the system in Eq. (5) is shown in Fig. 1.
It is worth mentioning that in 1944, V.M. Keldysh [35] studied a two-dimensional model of

damping flutter in aircraft control systems with dry friction, and this model also led to a similar
behavior near the discontinuity.

1.2. Autopilot Model

!

"

-k/F0 k/F0

Fig. 1. Phase portrait of system (1). Trajectories tend toward the rest segment {|x| ≤ F0/k, y = 0}.

DIFFERENTIAL EQUATIONS Vol. 53 No. 13 2017(Reg. No. 1301, 11.2.2017)
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0

F

Fig. 2. Nonlinear characteristic of servomotor. The case with no zone of insensitivity.

Later, in 1940s, independent works were published by A.I. Lurie and V.N. Postnikov [36],
B.V. Bulgakov [37], and A.A. Andronov1 and N.N. Bautin [38, 39] in which all of them consid-
ered one and the same problem about heading hold of a neutral airplane using autopilot with
a constant servomotor speed.

The equations of motion of the system have the following form [38–41] :

φ̈ + M φ̇ = −Nη,

η̇ = F (ψ),

ψ = φ + βψ̇ − 1

a
η,

(7)

where F (ψ) = Ksgn ψ for ψ = 0.
Here φ is airplane’s yaw angle; η is the rudder angle; ψ is the argument of a servomotor that

controls the rudder; β is the so-called artificial damping coefficient; 1/a is the feedback factor; M ,
N , and K are positive constants that characterize, respectively, the natural damping of airplane
and the rudder and steering gear; and F (ψ) is a nonlinear characteristic of the servomotor.

In [38,40], the authors considered the characteristic depicted in Fig. 2, which corresponds to the
lack of insensitivity.

Using the transformation (dots here denote differentiation with respect to tnew; told and ψold are
t and ψ from Eq. (7))

t ≡ tnew = Mtold,

z =
M3

NK
φ̈,

u =
M 3

NK
(φ̇ + φ̈),

ψ ≡ ψold =
M 3

NK
ψold

(8)

and renaming

Mβ = A,
M 2

Na
= B,

1 A.A. Andronov was a student of L.I. Mandelstam. In 1946, A.A. Andronov was elected a member of the Academy
of Sciences of the USSR in Department of Technical Sciences to become the first academician in control theory.

DIFFERENTIAL EQUATIONS Vol. 53 No. 13 2017 (Reg. No. 1301, 11.2.2017)
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we reduce the system in Eq. (7) to the form

ż = −z − ξ(z, u, ψ),

u̇ = −ξ(z, u, ψ),

ψ̇ = u + (A − 1)z − Bξ(z, u, ψ),

(9)

where ξ(z, u, ψ) = sgn ψ for ψ = 0.
Using a reasoning similar to the above for the system considered by Hartog, we can extend the

definition of ξ(z, u, ψ) to ψ = 0. Let us write down this extension [38,40]

ξ(z, u, ψ) =






1 for ψ > 0 or for ψ = 0, u + (A − 1)z − B > 0

or for ψ = 0, u + (A − 1)z − B = 0, u > A + B,

−1 for ψ < 0 or for ψ = 0, u + (A − 1)z + B < 0

or for ψ = 0, u + (A − 1)z + B = 0, u < −(A + B),
1

B
[(A1)z + u] for ψ = 0, |u + (A − 1)z| < B

or for ψ = 0, u + (A − 1)z − B = 0, u > −(A + B)

or for ψ = 0, u + (A − 1)z + B = 0, u < A + B.

(10)

The system in Eq. (9) has only one equilibrium state z = 0, u = 0, ψ = 0, which is a stable
node for (A + B)2 ≥ 4B (see Fig. 3) or a stable focus for (A + B)2 < 4B (see Fig. 4).

It should be noted that system trajectories that pass through points ψ = 0, u+(A−1)z−B > 0
and ψ = 0, u + (A− 1)z −B < 0 cross the plane ψ = 0 in directions ψ > 0 and ψ < 0, respectively.
Trajectories tending to the manifold ψ = 0, |u+(A−1)z| < B on both sides have opposite directions
and join on the manifold. Such a manifold is called the sliding mode manifold. A trajectory that is

z

u ȥ

u=-(A-1)z-B

u=-(A-1)z+B

0

A+B

-(A+B)

Fig. 3. Phase portrait of system (9) in the case where the equilibrium state z = 0, u = 0, ψ = 0 is a stable
node. Here plane ψ = 0 is in the drawing plane, and trajectories moving from and toward an observer are
marked with the crosses and circles, respectively.

DIFFERENTIAL EQUATIONS Vol. 53 No. 13 2017(Reg. No. 1301, 11.2.2017)
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z

u ȥ

u=-
(A-1

)z+B

u=-
(A-1

)z-B

0

A+B

-(A+B)

Fig. 4. Phase portrait of system (9) in the case where the equilibrium state z = 0, u = 0, ψ = 0 is a stable
focus. Here plane ψ = 0 is in the drawing plane, and trajectories moving from and toward an observer are
marked with the crosses and circles, respectively.

0

F

0

0

Fig. 5. Nonlinear characteristic of a servomotor with insensitivity zone.

trapped on it either tends to the unique equilibrium state of the system without leaving the limits
of the manifold or escapes into half-space ψ > 0 or ψ < 0 upon reaching the edge of this manifold.

The point transformation method was used in [38,40] to derive conditions under which a control
process converges. In particular, it was shown that for

A + B > )11(1

the control process converges for any initial conditions (i.e., the equilibrium state φ = φ̇ = η = 0
of the system in Eq. (7) is stable in the large).

In [39,41], it is considered the characteristic shown in Fig. 5, which corresponds to the presence
of an insensitivity zone, i.e.,

F =






K for ψ > 0,

−K for ψ < 0,

0 for −ψ0 < ψ < ψ0,

a(φ̇ + βφ̈) for ψ = −ψ0, ψ = ψ0.

(12)

DIFFERENTIAL EQUATIONS Vol. 53 No. 13 2017 (Reg. No. 1301, 11.2.2017)
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Assuming A = Mβ > 0, B =
M

Na
> 0 and introducing

t = Mt, z =
M3

NK

d2φ

dt 2
,

u =
M 3

NK

dφ

dt
+

d2φ

dt 2
,

we reduce system (7) to the form
dz

dt
= −z + f(u, z, ψ),

du

dt
= f(u, z, ψ),

dψ

dt
= g(u, z, ψ),

(13)

where

f ≡ −1, g ≡ u + (A − 1)z − B if ψ > ψ0,

f ≡ 1, g ≡ u + (A − 1)z + B if ψ < ψ0,

f ≡ 0, g ≡ u + (A − 1)z if |ψ| < ψ0,

f ≡ − 1

B
u +

1 − A

B
z, g ≡ 0





if ψ = ψ0, 0 < u + (A − 1)z < B,

if ψ = −ψ0, −B < u + (A − 1)z < 0.

In what follows, we provide a study of solutions to the system in Eq. (13) that is defined by
the requirement for u(t ), z(t ), ψ(t ) to be continuous at the points of discontinuity of f(u, z, ψ)
and g(u, z, ψ). In particular, we consider the sliding mode manifolds

σ : ψ = ψ0, 0 < u + (A − 1)z < B,

σ : ψ = −ψ0, −B < u + (A − 1)z < 0.
(14)

The system in Eq. (13) with insensitivity zone has the rest segment ψ̇ = η = 0, −σ0 ≤ ψ ≤ σ0.
In [39,41], the stability of this segment was not studied due to complexity of calculations involved
in the method of point maps. However, it was shown in [42] that under the condition in Eq. (11),
the above rest segment is stable in the large. In other words, the presence of insensitivity zone
in the nonlinear characteristic of a servomotor does not alter the stability domain (11), obtained
for the case with no insensitivity zone.

Along with the works [38,39], an independent study [36] was published in which it is continued
the study of the control system, considered in [37],

m
dv

dt
+ kv = Q,

dr

dt
= v,

dQ

dt
= −qf∗(µ),

(15)

where r stands for the deviation of a controlled parameter from its value in the equilibrium state; v
denotes the rate of change of this parameter; and Q is the coordinate of the control system. In the
last equation (servomotor equation), the quantity µ,

µ = av + br + cQ,

DIFFERENTIAL EQUATIONS Vol. 53 No. 13 2017(Reg. No. 1301, 11.2.2017)
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is the opening of a valve that controls the servomotor movement. Quantities m, k, q, a, b, and c
are constant coefficients, while f∗(µ) is the nonlinear characteristic with a symmetric insensitivity
zone and is similar to the characteristic shown in Fig. 5.

Performing the change of variables

x1 =
m

qT 2
v − 1

qT
Q,

x2 =
1

qT
Q,

x3 =
mµ

aqT 2
,

we reduce the system in Eq. (15) to the form

x1

dτ
= −x1 + f(x3),

x2

dτ
= −f(x3),

x3

dτ
= (α − 1)x1 + αx3 − rf(x3),

(16)

where τ =
kt

m
, α =

bT

a
, r =

cm

aT
, f(x3) = f∗(µ).

In [36], the second Lyapunov method was used, and Lyapunov functions of the “quadratic form
plus integral of nonlinearity” type were employed for the first time. Let us write them out here.
For the case α > 1, r + 1 − α > 0, it is considered the Lyapunov function of the form

V =

x3

0

f(x3)dx3 +
α

2
x2

2 +
α − 1

2
x1

2.

The derivative of V , by virtue of system (16), is as follows:

V̇ = −(α − 1)[f(x3) − x1]
2 − (r + 1 − α)[f(x3)]

2.

In the case where 0 < α < 1, r > 0, they considered the Lyapunov function of the form

V =

x3

0

f(x3)dx3 +
1 − α

2
x1

2 +
α

2
x2

2.

In this case, the derivative of V , by virtue of system (16), has the form:

V̇ = −(1 − α)x2
1 − r[f(x3)]

2.

This made it possible to derive the following condition for the control process to be stable:

r > 0, α > 0, α − 1 − r > 0. (17)

It should be noted that by performing the change of variables z = −x1, u = x2, ψ = x3,
the system in Eq. (16) can be reduced to system (9), where A = 2 − α and B = r.

Thus, the same problem on heading hold for a neutral airplane using autopilot with a constant
servomotor speed was considered in [36–39]. In this case, the problem in [36] was the first problem
on absolute stability [43]. Results obtained by A.I. Lurie, V.N. Postnikov, and N.N. Bautin gave
impetus to the development of not only the theory of absolute stability but also the general theory of
discontinuous systems [42,44–49]. A.A. Andronov and N.N. Bautin were the first to rigorously treat

DIFFERENTIAL EQUATIONS Vol. 53 No. 13 2017 (Reg. No. 1301, 11.2.2017)
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the main peculiarities of discontinuous systems using the example of a three-dimensional system.
They described the sliding mode manifold and the way the system behaves when crossing the dis-
continuity manifold.2 In turn, generalizing the Lyapunov-type theorems and the absolute stability
for discontinuous systems (see, for example, the works by A.Kh. Gelig and G.A. Leonov [42,50,51])
and using the Lyapunov function of the “integral of nonlinearity plus quadratic form” type, which
was proposed for the first time in the work by A.I. Lurie and V.N. Postnikov, one can consider the
problem in a more general form without partitioning trajectories into pieces [42].

1.3. Vyshnegradskii Model

The central problem in the direct control theory was posed by I.A. Vyshnegradskii in 1877.
He considered a machine–control system (governor) that can be written as follows [52] :

ẍ + Bẋ + Ax = y − 1

2
sgn ẋ, ẏ = −x. (18)

The first equation describes the motion of the governor with Coulomb and dry frictions, while
the second describes the dynamics of the machine. Parameters A and B are referred to as “the
Vyshnegradskii parameters” (or “the chief parameters of the direct control theory”).

The system in Eq. (18) can be written in the form of the third-order system

u̇ = Pu + qϕ(σ), σ = r∗u, ϕ(σ) =
1

2
sgn (σ),

u =




x

y

z



, P =




0 0 1

−1 0 0

−A 1 −B



, q =




0

0

−1



, r =




0

0

1



.
(19)

In his work [52], I.A. Vyshnegradskii pointed out that given no Coulomb friction (i.e., with
ϕ(σ) ≡ 0), the linear system in Eq. (19) is asymptotically stable if the following relations hold
true :

A > 0, B > 0, AB > 1. (20)

To study the dynamics of the nonlinear system in Eq. (19), A.A. Andronov and A.G. Majer [53],
on the discontinuity plane

S = {u : r∗u = 0 = 0}, (21)

based on the physical properties of Coulomb friction, extended the definition of the nonlinearity

ϕ̂(u) =





ϕ(r∗u) =

1

2
sgn (r∗u) for u /∈ S,

ϕ̂S(u) for u ∈ S,

ϕ̂S(u) = ϕ̂S(x, y, z) =






1 for Ax + y >
1

2
,

− 1 for − Ax + y <
1

2
,

− 2Ax + 2y for |− Ax + y| ≤ 1

2
,

(22)

and considered the system
u̇ = Pu + qϕ̂(u). (23)

Here, trajectories that pass through the points of the half-planes {z = 0,−Ax + y > 1/2} and
{z = 0,−Ax + y < −1/2} “pierce” plane z = 0 toward z > 0 and toward z < 0, respectively.

2 It is worth mentioning that in 1944, M.V. Keldysh [35] provided a nonrigorous description for the behavior of
a fourth-order system with a more complex discontinuous nonlinearity.
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y

x z

-Ax + y = 1/2
u=-(A-1)z-B

0

-Ax + y = -1/2

0.5-0.5

Fig. 6. Phase portrait of system (23). Here, plane z = 0 is in the drawing plane, and trajectories moving
from and toward an observer are marked with the crosses and circles, respectively.

Domain {z = 0, |Ax + y| ≤ 1/2} is a sliding mode manifold. Trajectories that approach this
manifold on both sides have opposite directions. Let us consider in details the trajectories of
sliding mode manifold. It can be easily seen that such trajectories are described by the differential
equations

ẋ = 0, ẏ = −x, ż = 0, (24)

i.e., the sliding mode solutions are straight lines x(t) = x0, y(t) = −x0t + y0, z(t) = 0, x0, y0 ∈ R.
The trajectories of the system in Eq. (23) leave the manifold {z = 0, |Ax + y| ≤ 1/2} via half-line

{−Ax + y = 1/2, y < 0, z = 0},

heading for half-space z > 0, or via half-line

{−Ax + y = −1/2, y > 0, z = 0},

heading for half-space z < 0 (see Fig. 6).
It follows from the extension of definition of ϕ̂(u) that the equilibrium states of the system in

Eq. (23) are points x = 0, y = y0, z = 0, where y0 ∈ [−1/2, 1/2], i.e., the equilibrium states of the
system in Eq. (23) belong to the sliding mode manifold

D = {u : r∗u = 0, −r∗Pu/r∗q ∈ [ϕ(0−), ϕ(0+)]} (25)

and fill the rest segment

Λ = {u = P−1qs, s ∈ [ϕ(0−), ϕ(0+)]} = {x = z = 0, y ∈ [ϕ(0−), ϕ(0+)]},

which is marked in Fig. 6 by the thick line.
One of the results obtained in [53] was the following condition on the absolute stability of the

system:
AB > 1. (26)

The control process converges in this case for any initial conditions, and the curve with equation
AB = 1 is known as the Vyshnegradskii hyperbola (see Fig. 7).

DIFFERENTIAL EQUATIONS Vol. 53 No. 13 2017 (Reg. No. 1301, 11.2.2017)
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0.5

B

1 1.5 2
A

2.5

2.5

2

1.5

0.5

1

AB=1

0

Fig. 7. Domain of parameters of stable systems described by Eqs. (19).

2. DIFFERENTIAL INCLUSIONS. DEFINITIONS OF SOLUTIONS

Let us consider the system

u̇ = f(t, u), t ∈ R, u ∈ Rn, (27)

where f : R × Rn → Rn is a piecewise-continuous function with the set of discontinuity points of
zero measure.

Most definitions of solutions can be introduced in the following manner: for every point (t, u) in
a domain G, we define a set F (t, u) (extending the definition of the discontinuous right-hand side)
in the space of dimension n. If f is continuous in (t, u) then set F (t, u) consists of one point and
coincides with f at this point. If (t, u) is the point of discontinuity of function f , then F (t, u) is
defined one way or another, depending on the definition, i.e., instead of Eq. (27), we consider the
differential inclusion

u̇ ∈ F (t, u), (28)

where F (t, u) is a multi-valued function.
Mathematicians usually pose the problem of defining a multi-valued function F using a given

function f , whereas in mechanics, the multi-valued function F is often given.

Definition 1. A solution to the system in Eq. (27) or the counterpart differential inclusion
in Eq. (28) is an absolutely continuous3 vector-function u(t), defined on interval I, for which the
derivative exists almost everywhere on I and

u̇(t) ∈ F (t, u(t)). (29)

3 Let I ⊂ Dt ⊂ R be a time interval. A function u(t) : I → Rn is called absolutely continuous on I if for any positive ε
there exists a positive δ such that for any finite sequence of nonoverlapping subintervals (t1k, t2k) from I, where
t1k, t2k ∈ I, satisfying

k

(t2k − t1k) < δ,

we have

k

||u(t2k) − u(t1k)|| < ε.

It is well known that an absolutely continuous vector-function u(t) defined on interval I is differentiable almost
everywhere on I. Hereinafter, we imply that the expression “almost everywhere on I” means “for all t ∈ I for which
u̇(t) exists” (see [54, p. 60]).
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As mentioned in the introduction, the development of the theory of differential inclusions is
usually associated with the works by French mathematician A. Marchaud and Polish mathematician
S.K. Zaremba, published in 1934–1936 [1–4]. They studied equations of the form

Du ⊂ F (t, u), (30)

where t ∈ Dt ⊂ R, u ∈ Du ⊂ Rn and F (t, u) is a multi-valued vector-function that puts every point
(t, u) in a certain domain D = Dt × Du in correspondence with a set F (t, u) of points from Rn.
Marchaud and Zaremba introduced the notions of contingency and paratingency for operator D.

Definition 2. The contingency of a vector-function u(t) at a point t0 is the set Cont u(t0) of

all limit points of sequences
u(ti) − u(t0)

ti − t0
, ti → t0, i = 1, 2, . . .

Definition 3. The paratingency of a vector-function u(t) at a point t0 is the set Parat u(t0) of

all limit points of sequences
u(ti) − u(tj)

ti − tj
, ti → t0, tj → t0, i = 1, 2, . . .

T. Wazewski continued Marchaud and Zaremba’s research and proved [55] that if u(t) is a so-
lution to the differential inclusion in Eq. (30) in the Marchaud sense (i.e., it is a solution to the
equation in contingencies) then vector-function u(t) is absolutely continuous.

Introducing the property of absolute continuity for solution u(t) played a key role in the devel-
opment of the theory of differential inclusions and equations with a discontinuous right-hand side,
as it made it possible to avoid using artificial constructions in Definition 2 and Definition 3 and
consider ordinary derivative almost everywhere. In what follows, we will consider three possible ap-
proaches to extending the definition of discontinuous systems and defining their solutions (various
other approaches are discussed, for example, in [47,54,56–59]).

2.1. Filippov’s Approach

In 1960, A.F. Filippov published his works [44,60], where he had considered absolutely continu-
ous functions as solutions to a differential equation with a discontinuous right-hand side. Filippov’s
approach is one of the most popular among other definitions of solutions to systems with discon-
tinuous right-hand side. Following [44], let us consider the system in Eq. (27).

Definition 4. A vector-function u(t), defined on interval I, is called a solution to the system
in Eq. (27) if it is continuous and almost for all t ∈ I, vector u̇(t) belongs to the minimum closed
convex set that contains all f(t, u ) when u runs over almost entire δ-neighborhood of point u(t)
in Rn (for a fixed t), i.e.,

u̇(t) ∈
δ>0 µN=0

conv f(t, B(u(t), δ) − N). (31)

Here, the right-hand side in Eq. (31) is called Filippov’s extension of the right-hand side of the
discontinuous system (27).

Let us consider the case where the system in Eq. (27) is autonomous and vector-function f(u)
is discontinuous on a certain smooth surface S in Rn and continuous in the vicinity of this surface.
Let there exist right- and left-hand limits f+(u) and f−(u) of vector-function f(u) as point u
approaches surface S from one or the other side. Suppose that both vectors f+(u) and f−(u)
point toward the discontinuous surface S. Then a sliding mode emerges. According to Definition 4
(see the formula in Eq. (31)), the definition of the sliding-mode vector field on a discontinuous
surface can be extended as follows. Let us construct a plane tangent to surface S at a point u and
a segment l that joins the endpoints of vectors f+(u) and f−(u). Then, it is possible to construct
a vector originating from point u and ending at the point of intersection of the segment and the
tangent plane, f0 = f0(u). According to Definition 4, vector f0(u) defines the vector field at point u.

The derived solution to the system in Eq. (27) satisfies Definition 4, but there is a number of
important applied problems where Definition 4 cannot be applied. As an example of such a problem,
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let us consider the problem of synthesizing controls s1 and s2 that are bounded, |s1| ≤ 1, |s2| ≤ 1,
and optimally quickly map each point (u1(0), u2(0)) of the system

u̇1 = u2s1, u̇2 = s2 (32)

to the zero. It is well known [61] that synthesizing such a control is possible on the entire
plane (u1, u2). For example, in the first quadrant of the plane, the optimum control will be the
control

s1 =





1 for u1 < 0.5u2

2,

−1 for u1 ≥ 0.5u2
2,

s2 =





−1 for u1 ≤ 0.5u2

2,

1 for u1 > 0.5u2
2.

(33)

In particular, the trajectory u1 = 0.5u2
2 is optimum. For this trajectory, the system in Eq. (32)

takes on the form u̇1 = −u2, u̇2 = −1. Let us take a point u = (u1, u2) on this trajectory and
start approaching this trajectory from the side u1 < 0.5u2

2. The limit value of the right-hand
side of the system in Eq. (32) has the form f+(u) = (u2,−1). If we approach the trajectory from
the side u1 > 0.5u2

2, then the limit f−(u) = (−u2, 1). As f+(u) = −f−(u), then, in this special
case, segment l intersects point u, i.e., f0(u) = 0, and, according to Definition 4, the solution
in the sliding mode is an equilibrium state. At the same time, (−u2,−1) is the velocity vector of
the optimum trajectory. Thus, the optimum trajectory is not a solution in the sense of Definition 4,
proposed by Filippov.

2.2. Aizerman–Pyatnitskii’s Approach

Let us consider the approach to defining the solutions of discontinuous systems in terms of
approximations by the solutions of continuous systems. This approach was developed in [27,45,46]
and others.

M.A. Aizerman and E.S. Pyatnitskii [45] suggested a different definition of the solution to
equations with discontinuous right-hand side. This definition makes it possible to use ordinary
derivative. Let us consider the approach that these authors proposed in a special case when f(t, u)
is discontinuous on surface Σ. We consider the sequence of continuous vector-functions fε(t, u) that
coincides with f(t, u) outside of the ε-neighborhood of surface Σ and tends to f(t, u) as ε → 0 at
every point that does not belong to Σ. Let uε(t) be a solution to the system

u̇ = fε(t, u). (34)

Definition 5. A solution to the system in Eq. (27) in the Aizerman–Pyatnitskii sense is said
to be the limit of any uniformly converging subsequence of solutions uεk

(t), viz.

uεk
(t) ⇒ u(t).

Generally speaking, there may exist more than one such limit. Note that this definition exten-
sion, introduced in [45], does not always pertain to applied problems.

For example, let us consider the system

u̇ ∈ Au + bφ(σ), σ = c∗u, (35)

where φ(σ) is the characteristic of dry friction shown in Fig. 8 or Fig. 9, i.e.,

φ(σ) =





sgn σ for σ = 0,

[−1, 1] for σ = 0,
or φ(σ) =





sgn σ for σ = 0,

[−α, α] for σ = 0.
(36)

Since the definitions proposed by Filippov and Aizerman–Pyatnitskii only account for nonlin-
earities for which σ = 0, solutions to the system in Eq. (35) with the dry-friction characteristics
presented in Figs. 8 and 9 coincide. This result does not represent the physics of this phenomenon.
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0

-1

1

Fig. 8. Dry friction model: the friction of rest does not assume values that are greater in magnitude that
sliding friction.

0

-1

1

Fig. 9. Dry friction model: the friction of rest may assume values that are greater in magnitude that
sliding friction.

In order to take dynamics on the discontinuity surface into account, one needs to consider
a more adequate approach, where instead of the system with the discontinuous right-hand side (27),
a system with multi-valued right-hand side is studied, i.e., the differential inclusion in Eq. (28) is
considered.

2.3. Gelig–Leonov–Yakubovich Approach

As has been demonstrated above, Filippov’s definition may yield incorrect results for certain
problems in physics, i.e., we should consider a more general class of multi-valued functions F (t, u).
One of such generalizations was considered by A.Kh. Gelig, G.A. Leonov, and V.A. Yakubovich
in [42]. Further, in order to construct the theory, we should also assume that the multi-valued
function F (t, u) is semicontinuous.

Definition 6. A function F (t, u) is said to be semicontinuous (upper semicontinuous,
β-continuous) at a point (t0, u0) if for any ε > 0 there exists δ(ε, t, u), such that set F (t, u) is
contained in the ε-neighborhood of set F (u0, u0) when point (t, u) runs over the δ-neighborhood of
point (t0, u0).

Definition 7. A vector-function u(t), defined on a segment (t1, t2), is called a solution to
Eq. (28) if the multi-valued function F (t, u) is semicontinuous and ∀(t, u) ∈ D the set F (t, u) is
convex, closed, and bounded.

Unlike in Filippov’s extension of definition, here the set F (t, u) is not required to be minimum.
The following local theorem on the existence of solutions to a differential inclusion holds true [42].
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Theorem 1. Suppose that a multi-valued function F (t, u) is semicontinuous for all points (t1, u1)
from the domain

D1 ⊂ D : |t1 − t0| ≤ α, |u1 − a| ≤ ρ,

and set F (t1, u1) is bounded, convex, and closed. In addition, let us assume

sup |y| = c for y ∈ F (t1, u1), (t1, u1) ∈ D1.

Then for |t − t0| ≤ τ = min(α, ρ/c), there exists at least one solution u(t) with the initial data
u(t0) = a that satisfies Eq. (28) in the sense of Definition 1.

Let us also provide here a theorem on the continuability of a solution that stays within a bounded
domain [42].

Theorem 2. If ∀t ∈ [0, T ) a solution to the system in Eq. (28) belongs to a certain compact
domain G from Rn, then x(t) is defined on [0, T ] and x(t) ∈ G.

Thus, the solution to the system in Eq. (28) is continuable as long as it is finite.

Let us consider the case of the autonomous Eq. (28), which is rather important for applications,
specifically, for

du

dt
∈ F (u). (37)

The following theorem holds true.

Theorem 3. Let the ω-limit set Ω of trajectory u(t, b) for the system in Eq. (37) be bounded.
Then at least one u(t, a), defined for t ∈ (−∞, +∞) and consisting entirely of ω-limit points, passes
through any ω-limit point a ∈ Ω, i.e., u(t, a) ⊂ Ω for t ∈ R1.

The proofs of Theorems 1, 2, and 3 are available in [42].
Various other theorems of the qualitative theory also hold true for the differential inclusion in

Eq. (28) (see, for example, [42, 54,62]).
Now let us consider Eq. (29) with F (t, u(t)) = Pu(t) + qφ(r∗u(t)), i.e.,

u̇(t) ∈ Pu(t) + qφ(r∗u(t), t )83()

for almost all t (here we assume that F (t, u(t)) satisfies the conditions in Definition 7, i.e., F (t, u(t))
satisfies the conditions 1; therefore, hereinafter we assume that solution exists for almost all t ∈ I).
Here P , q, and r are constant matrices and φ(r∗u(t), t) is a multi-valued function.

If a matrix q∗q is nonsingular then

(q∗q)−1q∗ [u̇(t) − Pu(t)] ∈ φ(r∗u(t), t )93()

for almost all t.
The left-hand side in Eq. (39) is called a selector

ξ(t) = (q∗q)−1q∗ [u̇(t) − Pu(t )04(])

and is a single-valued function that “concretizes” the multi-valued function φ(r∗u(t), t) for solu-
tion u(t). In other words, the problem in Eq. (38) becomes as follows:

u̇(t) = Pu(t) + qξ(t) for almost all t )14(,

ξ(t) ∈ φ(r∗u(t), t). (42)

For any solution u(t) there exists a corresponding extension ξ(t). As shown above, if the matrix
q∗q is nonsingular then ξ(t) is defined by the relation in Eq. (40) for almost all t and ξ(t) is
measurable.
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Is there a measurable selector ξ(t) in the case where det q∗q = 0? The following theorem on the
existence of a measurable selector, proved by B.M. Makarov specially for [42], plays an important
role in studying differential inclusions as it makes it possible to replace a differential inclusion with
a differential equation in a fairly general case while retaining the structure of the right-hand side.

Let F (t, u, ξ) be a vector-function defined for t ∈ I, u ∈ Rn, ξ ∈ Rm with values in Rn. Suppose
that σ(t, u) is a continuous vector-function defined on I × Rn with values from Rl, and let φ(t, σ)
be a multi-valued function defined on I × Rl with values that are subsets of Rn. The following
theorem holds [42].

Theorem (Makarov’s theorem, [42]). Let a function F be continuous and φ be semicontinuous,
with its values being subsets from Rn. Let u0(t) be an absolutely continuous vector-function on
I ⊂ Dt that satisfies the following conditions :

u̇0(t) ∈ {F [t, u0(t), ξ]|ξ ∈ A(t)} for almost all t ∈ I,

where
A(t) = φ[t, σ(t, u0(t))].

Then there exists a Lebesgue measurable vector-function ξ0 in I such that the following relations
are valid :

u̇0(t) = F [t, u0(t), ξ0(t)], ξ0(t) ∈ A(t) for almost all t ∈ I.

3. VYSHNEGRADSKII PROBLEM

Applying the method of point maps to the qualitative study of piecewise-linear discontinuous
systems often proves labourious. Below we will show how the Vyshnegradskii problem can be
qualitatively studied by developing the classical Lyapunov’s ideas for the case of discontinuous
systems.

By using the above theory of differential inclusions, passing from the system in Eq. (19) to the
system in Eq. (23) in the work [53] can be substantiated as follows. Proceeding from the phys-
ical meaning of a discontinuous nonlinearity, let us perform a procedure of regularization of the
discontinuous right-hand side of the system in Eq. (19), following Filippov’s approach (see Defi-
nition 4) and replacing vector-function f(u) = Pu + qϕ(r∗u) with a semicontinuous multi-valued
vector-function F (u) with values that coincide with f(u) outside of discontinuity points and are
a minimum convex closed bounded set containing all possible limit points of f(u) as u tends to S
at the discontinuity points. Here F (u) can be represented in the form

F (u) = Pu + qΦ(u), Φ(u) =
ϕ(r∗u), r∗u = 0,

[ϕ(0−), ϕ(0+)], r∗u = 0
(43)

and we can switch from the system in Eq. (19) to the differential inclusion

u̇ ∈ F (u) = Pu + qΦ(u). (44)

For any initial data u0 the differential inclusion in Eq. (44) has a solution (see Theorem 1)
u(t) = u(t, u0), u(t0, u0) = u0 (generally speaking, not unique) on a certain time interval I = [t0, t1)
(while the solution stays bounded) such that u(t) is an absolutely continuous function and has
a derivative u̇(t) for almost all t ∈ I = [t0, t1) for which we have

u̇(t) ∈ Pu(t) + qΦ(u(t)). (45)

Outside of the discontinuity plane S, the behavior of the solution u(t) is uniquely determined by
the continuous vector field of the system in Eq. (19). For initial data in the discontinuity plane
u0 ∈ S (or when the solution falls into the discontinuity plane at the time moment t0), the behavior
of the system may not be unique and the dynamics of the vector field can be refined, based on
the vector-field dynamics near the discontinuity point and on the requirement for the solution to
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be absolutely continuous. The solution with initial data in the discontinuity plane stays in that
plane on a certain (maximum) time segment or the infinite interval u(t) ∈ S, t ∈ [t0, t1]. Here, the
case of t0 = t1 corresponds to the crossing of the discontinuity surface, while the case of t0 < t1
corresponds to a sliding mode.

According to Theorem 4, for a solution u(t) there exists such a extended nonlinearity
ϕ̂(t) = ϕ̂(t) that for almost all t ∈ [t0, t1] (where derivate u̇(t) exists), we have the relation

u̇(t) = Pu(t) + qϕ̂(t), ϕ̂(t) ∈ Φ(u(t)). (46)

If u0 ∈ S then while relation 0 ≡ r∗u̇(t) = r∗Pu(t) + r∗qϕ̂(t) holds true, the solution slides along
the discontinuity plane r∗u = x = 0. Here, for the sliding to take place, it is necessary that
ϕ̂(t) = ϕ̂S(u(t)) = −r∗Pu(t)/r∗q = y(t) ∈ Φ(u(t))|r∗u(t)=0 = [ϕ(0−), ϕ(0+)] and, thus, sliding is
possible in a band D. As matrix P is nonsingular, the sliding band contains the rest segment

Λ = {u = P−1qs, s ∈ [ϕ(0−), ϕ(0+)]}.
In the case of the crossing (that is, where a trajectory crosses the discontinuity plane) of the
discontinuity plane at t = t0, the extension of the definition of the vector field is inessential and,
for definiteness, we can define Φ(u(t0)) based on the continuity of

ϕ̂S(u) =
ϕ(0−), r∗u = 0, −r∗Pu/r∗q/ρ < ϕ(0−),

ϕ(0+), r∗u = 0, −r∗Pu/r∗q > ϕ(0+).
(47)

Note that the vector field in the vicinity of the sliding band D prevents the sliding trajectory from
hopping off the band before reaching the band edge ∂D. It follows from the construction in Eq. (31)
that for initial data from ∂D, the velocity vector is determined uniquely and the solution may not
slide along ∂D.

Thus, for all initial data in the system, we have forward uniqueness (as time increases) and the
construction in Eq. (31) makes it possible to pass from the differential inclusion in Eq. (44) to the
system in Eq. (23) with a discontinuous right-hand side that describes the system dynamics both
outside of and on the discontinuity surface.

3.1. Construction of Lyapunov Functions
for the Global Stability and Instability Analysis

To simplify the nonlinear analysis, following [63], we perform linear changes of coordinates and
time and pass to the system

ẋ = y − ax − ϕ(x), ẏ = z − x, ż = −ax, a =
1

A
√

A
, ϕ(x) = a(BA − 1)x +

1

2
√

A
sgn (x),

which can be rewritten in the form

u̇ = Pu + qϕ(σ), σ = r∗u, ϕ(σ) = ϕ(x) = a(BA − 1)x +
1

2
√

A
sgn (x),

u =




x

y

z



, P =




−a 1 0

−1 0 1

−a 0 0



, q =




−1

0

0



, r =




1

0

0



.

Here, the transfer function of the system has the form

W (s) = r∗(P − sI)−1q =
s2

s3 + as2 + s + a
=

s2

(s2 + 1)(s + a)
.

The corresponding discontinuity surface, sliding mode band, and rest segment take the form

S = {u : r∗u = x = 0},
D = {u : r∗u = x = 0, −r∗Pu/r∗q = y ∈ [ϕ(0−), ϕ(0+)]},
Λ = {u : u = −P−1qs, s ∈ [ϕ(0−), ϕ(0+)]} = {x = z = 0, −P−1q = y ∈ [ϕ(0−), ϕ(0+)]}.

(48)
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The extended nonlinearity has the form

ϕ̂(u) =
ϕ(r∗u) for u /∈ S,

ϕ̂S(u) for u ∈ S,

ϕ̂S(u) = ϕ̂S(x, y, z) =






ϕ(0+) for y = −r∗Pu/r∗q > ϕ(0+),

ϕ(0−) for y = −r∗Pu/r∗q < ϕ(0−),

− r∗Pu/r∗q = y − ax for y = −r∗Pu/r∗q ∈ [ϕ(0−), ϕ(0+)].

(49)

Let

h = P ∗r =




−A

1

−B



, ρ = r∗q = −1.

Let us consider the Lyapunov function

V (u) = V (x, y, z) =
1

2
(z − x)2 +

1

2
(y − ϕ̂(x, y, z))2 + axϕ̂(x, y, z) − a

x

0

ϕ(s)ds ≥ 0,

which is discontinuous.4 Outside of the discontinuity plane S, function V (x, y, z) is smooth and
has the form

V (x, y, z) =
1

2
(z − x)2 +

1

2
(y − ϕ(x))2 + axϕ(x) − a

x

0

ϕ(s)ds ≥ 0,

and its derivative along the trajectories of the system in Eq. (43) obeys

V̇ (x(t), y(t), z(t)) = −ϕ (x(t))(y(t) − ax(t) − ϕ(x(t)))2 ≤ 0, x(t) = 0. (50)

Note that the form of the system implies that there is no time interval t ∈ (t1, t2) such that
x(t) ≡ const. Hence, here we have V (x(t1), y(t1), z(t1)) < V (x(t2), y(t2), z(t2)).

On the trajectories with the initial data u0 = (x0, y0, z0) on the sliding band D, function
V (x, y, z) has the form

V (0, y(t), z(t)) =
1

2
z(t)2 +

1

2
(y(t) − ϕ̂S(u(t)))2 ≡ z2

0 . (51)

In this case, if the trajectory leaves the band after time t then we have the continuity

V (0, y(t), z(t)) ≡ z2
0 = lim

t+→t
V (x(t+), y(t+), z(t+)).

The crossing of the discontinuity surface x = 0 occurs for

x = 0, y /∈ [ϕ(0−), ϕ(0+)], (52)

and at the moment of intersection t, for the vector field we have

ẋ(t) > 0, y(t) > ϕ(0+) ≥ 0,

ẋ(t) < 0, y(t) < ϕ(0−) ≤ 0,

ẏ(t) = z(t),

ż(t) = 0.

(53)

4 Other examples of using discontinuous Lyapunov functions are discussed in [20,64].
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In this case, for t− > t > t+, we have

y(t) > ϕ(0+) ≥ 0,
1

2
(y(t) − ϕ(0−))2 ≥ 1

2
z(t)2 +

1

2
(y(t) − ϕ(0+))2 = lim

t+→t
V (t+),

y(t) < ϕ(0−) ≤ 0, lim
t−→t

V (t−) =
1

2
z(t)2 +

1

2
(y(t) − ϕ(0+))2

≥ 1

2
z(t)2 +

1

2
(y(t) − ϕ(0−))2 = lim

t+→t
V (t+).

(54)

It follows from the above that function V (u) possesses the following properties.

I. For any trajectory u(t, a) function V (u(t, a)) is a nonincreasing function of t.

II. It follows from V (u(t, u0)) = const at t ≥ 0 that u(t, u0) ∈ D for t ≥ 0.

III. For u ∈ Λ we have V (u) = 0, and for u /∈ Λ we have V (u) > 0.

Following [51], let us take a trajectory u(t, u0) and let uω
0 be an arbitrary ω-limit point u(t, a).

Suppose that uω
0 /∈ D. Then, taking advantage of the continuity of function V (u) outside of D and

property I, we arrive at
lim

t→+∞
V (u(t, u0)) = V (uω

0 ). (55)

Point uω
0 is visited by a trajectory u(t, uω

0 ) that consists of the ω-limit points of the trajec-
tory u(t, u0). For each ω-limit point uω

0 there exists a subsequence tk → +∞ such that
u(tk, u0) → uω

0 . Hence, Eq. (55) implies the equality V (u(t, uω
0 )) ≡ V (uω

0 ). The above and II imply
that uω

0 ∈ D. Thus, all ω-limit points of the system are situated in D and, therefore, are ω-limit
points of the system. However, the set of ω-limit points belonging to D coincides with the segment
of rest Λ. Therefore, for all u0, we have

lim
t→+∞

min
v∈Λ

u(t, u0) − v = 0. (56)

Now let us prove the local stability of Λ. In the proof, we cannot benefit from the known
reasoning by A.M. Lyapunov in view of function V (u) being discontinuous. However, we will show
that there exists such a subsequence of δ-neighborhoods of Λδ of the stationary set Λ that collapse
to Λ as δ → 0 and such a sequence of times τδ (limδ→0 τδ = 0) that

lim
δ→0

V [u(τδ, u0)] = 0 ∀u0 ∈ Λδ. (57)

This assertion implies stability in the small. Indeed, let us fix an arbitrary neighborhood Λε. Based
on ε, let us select a number δ > 0 so that the following relations hold true :

u(t, u0) ∈ Λε/2 ∀t ∈ [0, τδ], u ∈ Λδ,

sup
u0∈Λδ

V [u(τδ, u0)] < inf
u∈Γε

V (u), (58)

where Γε is the boundary of Λε. Property III of function V (u) and the relation in Eq. (57) imply
that such δ always exists. Property I of function V (u) and the relations in Eq. (58) imply that
u(t, u0) ∈ Λε for all t ≥ 0, and, therefore, the rest segment Λ is locally stable.

Now let us prove the relation in Eq. (57). For uω
0 ∈ Λ and satisfying h∗uω

0 = −ρϕ(+0), function
V (uω

0 ) is continuous with respect to set L+ = {u| r∗uω
0 ≥ 0} and the following estimate holds :

V [u(0, u0)] ≤ rα,

where
u0 ∈ Uα(uω

0 ) ∩ L+, limα→0 rα = 0.
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By Uα(uω
0 ) we denoted the α-neighborhood of point uω

0 . It can be easily seen from considering the
qualitative picture of the phase space that for a sufficiently small α all trajectories with initial data
from set Uα(uω

0 ) ∩ {x : r∗r < 0} will fall into subspace L+ within period τα. Thus, we have

V [u(τα, u0)] ≤ rα, (59)

where u0 ∈ Uα(uω
0 ), limα→0 rα = 0.

The estimate in Eq. (59) is proved similarly for the case of uω
0 ∈ Λ and h∗uω

0 = −ρϕ(−0).

Let us consider the case where uω
0 ∈ Λ∩

◦
D, where

◦
D is the interior of set D. It can be easily seen

that for a sufficiently small αa that all trajectories with initial data from Uαa(u
ω
0 ) will fall onto the

sliding mode surface D within time period ταa . However, by virtue of the continuity of function
V (u) with respect to D, we have

V [u(ταa , u0)] ≤ rαa ,

where
u0 ∈ Uαa(u

ω
0 ), lim

αa→0
ταa = 0, lim

αa→0
rαa = 0.

Sets Uαa(u
ω
0 ) and Uα(uω

0 ) form a cover of a certain closed neighborhood Λδ of the segment of
rest Λ. Having selected a finite subcover, based on the Heine–Borel theorem, we define τδ as the
maximum of all ταa , τα from the subcover. Then we similarly construct rδ. Thus, the relation in
Eq. (57) is proved.

Let A > 0, B > 0, AB < 1. Then the discriminant of the cubic equation

∆ = −4B3 + 1 − 4A3 + 18 − 27 = −4(B3 + C3 + 2) < 0,

and, therefore, the equation has one real and two complex conjugate roots −γ, α± iω. In this case,
the product of the roots is −1 and, hence, the real root is negative (i.e., γ > 0), while the complex
conjugate ones have negative real part (i.e., α > 0) due to violation of the stability condition
AB > 1. Then the system in Eq. (19) can be reduced with a nonsingular transformation to the
form

P =




α ω 0

α −ω 0

0 0 −γ



, q =




q1

q2

q3



, r =




r1

r2

r3



. (60)

Let us consider the Lyapunov function V (x, y, z) = x2 + y2. For the derivative along the solutions
of the system, we obtain

V̇ (x(t), y(t), z(t)) = 2α(x2(t) + y2(t)) + q1xϕ(σ(t)) + q2yϕ(σ(t)) ≥ εV − c,

where c, ε are some positive constants. For sufficiently large x2 + y2 > R, this implies that
V (x(t), y(t), z(t)) → +∞ as t → +∞ and, therefore, there is no global stability.

We have thus proved the following assertion.

Theorem. Let A > 0, B > 0. If AB > 1, then the system in Eq. (19) is globally stable
(all the solutions of the system tend to the rest segment , which is Lyapunov-stable). If AB < 1
then the system in Eq. (19) is not globally stable.

3.2. Numerical Modeling

The forward uniqueness (as time increases) of the system makes it possible to perform the
efficient numerical analysis. Let us provide some examples of modeling the discontinuous system
in Eq. (19) with the MATLAB package.

4. HIDDEN ATTRACTORS IN THE CHUA SYSTEM

Let us provide an example of modeling discontinuous systems numerically that is based on the
Aizerman–Pyatnitskii approach and compare it with the modeling based on the Filippov approach.
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−
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+
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0
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0

Mst
−

Mst
+

Fig. 10. Two symmetric hidden chaotic attractors Ahid
+ and Ahid

− in the classical Chua system. Trajectories
from the unstable manifold Munst

0 of saddle points F0 are pulled toward locally stable equilibrium states S±;
trajectories from the stable manifolds M st

0 , M st
+ , and M st

− are attracted toward F0 or S±.

Let us consider the following discontinuous system—a modified Chua system with a discontin-
uous characteristic [65–67] :

ẋ = −α(m1 + 1)x + αy − α(m0 − m1)sgn (x),

ẏ = x − y + z,

ż = −βy − γz,

(61)

where α, β, γ, m0, m1 are system parameters.
It was shown in the paper [68] that with the parameters α = 8.4, β = 12, γ = −0.005,

m0 = −1.2, and m1 = −0.05, the classical Chua system (system (61) in which sgn (x) is re-

placed with sat(x) =
1

2
(|x + 1| − |x − 1|)) has the so-called hidden attractor5 (see Fig. 11 and

Fig. 10). In the system considered, there are also the zero equilibrium state of the saddle-focus

5 To visualize an attractor, it is necessary to choose an initial point in attractor’s basin of attraction and observe
how the trajectory starting from this initial point after a transient process visualizes the attractor. Thus, from
a computational point of view, it is natural to suggest the following classification of attractors, based on the sim-
plicity of finding the basin of attraction in the phase space: an attractor is called a self-excited attractor if its basin
of attraction intersects with any open neighborhood of a stationary state (an equilibrium); otherwise, it is called
a hidden attractor. Hidden attractors are attractors in the systems without equilibria (see, e.g., electromechanical
systems with the Sommerfeld effect [75, 76]), and in the systems with only one stable equilibrium (see, e.g. coun-
terexamples [72, 77] to the Aizerman’s and Kalman’s conjectures [75, 76]). One of the first related problems is the
second part of Hilbert’s 16th problem [80] on the number and mutual disposition of limit cycles in two-dimensional
polynomial systems where nested limit cycles exhibit hidden periodic oscillations [72, 81, 82]. For the multidimen-
sional systems, the corresponding problem [83] is to determine the number and mutual disposition of attractors
and repellers (e.g., in dependence on the degree of polynomials in the right-hand side of the system).

The classification of attractors as being hidden or self-excited was introduced in connection with the discovery
of the first hidden Chua attractor [65, 69–71, 84, 85] and then has captured attention of scientists from around the
world (see, e.g. [86–116]). By now, hidden attractors have been discovered in various physical, mechanical, and
electronic models [117–123].
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F0

S+

S−

Ahid
−

Ahid
+

Ahid
limCyc

Fig. 11. Co-existence of a hidden periodic attractor (a stable limit cycle Ahid
limCyc) and two symmetric

hidden chaotic attractors (Ahid
+ and Ahid

− ).

y

x
0

m1-m0

m0-m1

Fig. 12. Behavior of trajectories of system (61) near x = 0 for a fixed z = z0, z0 ∈ R; unstable manifold
of sliding modes: x = 0, |y| ≤ m1 − m0.

type with a one-dimensional unstable manifold and two symmetric stable equilibrium states S± of
the focus-node type:

S± = ± m1 − m0

m1 + β
β+γ

,
γ(m1 − m0)

(γ + β)m1 + β
,− β(m1 − m0)

(γ + β)m1 + β
. (62)

Now let us revert to considering the modified Chua system in Eq. (61). Let us write down the
extension of ξ for sgn x, by repeating the reasoning similar to that for the above-considered systems,
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y

z x

0 m1-m0m0-m1

Fig. 13. Phase portrait of system (61) : plane x = 0 is in the drawing plane, and trajectories moving from
and toward an observer are marked, respectively, with the crosses and circles.

viz.

ξ(x, y) =






1 for x > 0 or for x = 0, y > m1 − m0,

−1 for x < 0 or for x = 0, y < m0 − m1,
y

m0 − m1
for ψ = 0, |y| < m1 − m0.

(63)

Similar to the classical Chua system, there are two symmetric stable equilibrium states S± of the
saddle-focus type in the system in Eq. (61). The system in Eq. (61) also has the zero equilibrium
state, which is situated on an unstable manifold of sliding modes x = 0, |y| ≤ m1−m0 (see Fig. 12)
and is also a locally stable focus (see Fig. 13).

It proved possible to find a hidden periodic attractor for the system in Eq. (61). In modeling
by the Filippov approach, we used a special numerical method described in [124]. To model by the
Aizerman–Pyatnitskii approach, one can replace sgn (x) with

satε(x) =
1

2

x

ε
+ 1 − x

ε
− 1 ,

where ε > 0. Decreasing parameter ε makes it possible to obtain the Aizerman–Pyatnitskii solution
(satε(x1) ⇒ sgn (x1) as ε → 0, see Fig. 14).

Figure 15 displays hidden attractors modeled by using the Filippov (the “dark” color) and
Aizerman–Pyatnitskii (the “light” color) approaches. It can be easily seen that as ε decreases,
the two attractors virtually coincide. Also, in this case the Filippov approach coincides with the
Gelig–Leonov–Yakubovich approach. These results agree with the assertion of a theorem proved
in [67, 125]. Note that unlike in the Vyshnegradskii problem, forward uniqueness is violated due
to the presence of an unstable manifold of sliding modes for the system in Eq. (61). Therefore,
when modeling on a discontinuity, a necessity arises to use the numerical method based on the
Aizerman–Pyatnitskii approach.
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Fig. 15. Hidden attractor in the Chua system. Comparing Filippov and Aizerman–Pyatnitskii approaches.

5. COUNTEREXAMPLE TO THE KALMAN CONJECTURE

The Kalman problem [79] is one of the actual and complicated problems in control theory.
It appeals to many due to its simplicity and the clarity of its statement, which we provide below.

Suppose we have the system

ẋ = A x + b ϕ(σ), σ = c∗x, (64)

where A is a constant n × n-matrix, b and c are constant n-dimensional columns, with all values
being real; ∗ is the sign of transposition; and ϕ is a smooth scalar function, ϕ(0) = 0, satisfying
the condition

k1 ≤ ϕ (σ) ≤ k2, σ ∈ (−∞, +∞), (65)

where k1 is a number or −∞ and k2 is a number or +∞.
In 1957, R.E. Kalman formulated the following conjecture [79] : if a linear system ẋ =

A x + k b c∗x, k ∈ [k1, k2], is globally asymptotically stable , then the system in Eq. (64) is also
globally asymptotically stable. Let us recall that a system is globally asymptotically stable if its
zero solution is Lyapunov-stable and lim t→+∞ |x(t, x0)| = 0 for any x0 ∈ Rn.
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This conjecture is known to be true for the case of n = 1, 2, 3 [72, 126]. The first attempts to
construct a counterexample to this conjecture were made in Fitts’ paper [127], where he performed
the computer simulation of system (64) for n = 4 with the transfer function

W (p) =
p2

((p + β)2 + 0.92) ((p + β)2 + 1.12)
(66)

and the cubic nonlinearity ϕ(σ) = Kσ3. As a result of the modeling, Fitts discovered periodic
solutions of the system in Eq. (64) for the values of parameters K = 10 and β ∈ (0.01, 0.75).
However, later N.E. Barabanov showed [126] that the results of the experiments were incorrect
for a part of the parameters that Fitts considered, specifically, for β ∈ (0.572, 0.75). The Kalman
conjecture was further discussed and doubts in the counterexamples [127] and [126] were raised
in [128–130].

Numerical modeling of Fitts’ counterexample, i.e., the system in Eq. (64) with the transfer func-
tion in Eq. (66) and the cubic nonlinearity ϕ(σ) = 10 σ3, could be a challenging task. For example,
for β = 0.01 it was shown [72] that the discovered periodic solution has a very small basin of
attraction.

Let us use Eq. (66) to consider an approach to constructing counterexamples to the Kalman
conjecture based on the ideas of discontinuous systems. Consider the system in Eq. (64) with n = 4,
defined by the transfer function in Eq. (66) with a nonlinearity of the type ϕ(σ) = ψ0(σ) = sgn σ,
as the limiting case of the system in Eq. (64) with a “saturation”-type nonlinearity

ϕ(σ) = ψm(σ) ≡






−1, σ ≤ −m,
1

m
σ, −m ≤ σ ≤ m,

1, σ ≥ m,

(67)

where 0 < m ≤ N , N is a sufficiently small positive number. If a local attractor of the system
with ϕ(σ) = ψ0(σ) does not belong to the sliding mode manifold, then the system in Eq. (64)
with ϕ(σ) = ψm(σ) of type (67) possesses an attractor close to that local attractor. In this case,
the trajectories of systems with nonlinearities ψ0(σ) and ψm(σ) can be computed analytically as
solutions of linear systems by using Andronov’s point mapping method [131].

x 1 x 4

x 3

100 110 120 130 140 150 160 170 180 190 200
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0.2

0.4

0.6

0.8
x 3

t

σ(t) = −x 3(t)

ϕ(σ) = ψ
0
(σ) ≡ sign σ

Fig. 16. Strange attractor of system (68) at β = 0.1 and ϕ(σ) = ψ0(σ) = sgn σ.
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Fig. 17. Strange attractor of system (68) at β = 0.1 and ϕ(σ) = ψm(σ), m = 0.005.
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Fig. 18. Strange attractor of system (68) at β = 0.1 and ϕ(σ) = ψm(σ), m = N = 0.01.

Further, let us take advantage of the numerical continuation method [72, 77, 132, 133]. Consid-
ering the system from Fitts’ example with the nonlinearity

ϕ(σ) = χε(σ) ≡ ψN(σ) + ε (tanh(σ/N) − ψN(σ))

and varying parameter ε from 0 to 1, we can switch from the system with a piecewise-differentiable
nonlinearity ϕ(σ) = ψN(σ) to the system with a smooth nonlinearity ϕ(σ) = tanh(σ/N).

Deriving the system based on the transfer function in Eq. (66), we arrive at [134]

ẋ1 = x2, ẋ2 = x3, ẋ3 = x4,

ẋ4 = −a0x1 − a1x2 − a2x3 − a3x4 + ϕ(σ),
(68)

where a0 = (1.12 + β2)(0.92 + β2), a1 = 2β(1.12 + 0.92 + 2β2), a2 = 1.12 + 0.92 + 6β2, a3 = 4β,
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Fig. 19. Strange attractor of system (68) at β = 0.1 and ϕ(σ) = χε(σ) ≡ ψN (σ)+ε (tanh(σ/N) − ψN (σ)),
N = 0.01, ε = 0.5.
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Fig. 20. Strange attractor of system (68) at β = 0.1 and ϕ(σ) = χε(σ) ≡ ψN (σ)+ε (tanh(σ/N) − ψN (σ)),
N = 0.01, ε = 1.

σ = −x3. The system in Eq. (68) can be represented in matrix form (64) with the matrices

A =





0 1 0 0

0 0 1 0

0 0 0 1

−a0 −a1 −a2 −a3




, b =





0

0

0

1




, c =





0

0

−1

0




.

For β = 0.1 and ϕ(σ) = ψ0(σ) = sgn (σ), the system possesses a local attractor (Fig. 16). This
attractor retains after replacing in Eq. (68) the nonlinearity ϕ(σ) = ψ0(σ) with the nonlinearity
ϕ(σ) = ψm(σ) of form (67) at 0 < m ≤ N , N = 0.01 (for m = 0.005 see Fig. 17; for m = N = 0.01
see Fig. 18).

Using the nonlinearity ϕ(σ) = χε(σ) ≡ ψN(σ) + ε (tanh(σ/N) − ψN(σ)) for ε increasing from 0
to 1 with the step 0.1, we can arrange the transition from the piecewise-differentiable nonlinearity in
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Eq. (67), which corresponds to ϕ(σ) = χ0(σ) = ψN(σ), to the smooth nonlinearity ϕ(σ) = χ1(σ) =
tanh(σ/N). Here, the local attractor obtained at the previous steps is retained (Figs. 19, 20).

Thus, a hidden attractor takes place in the system in Eq. (64) with ϕ(σ) = tanh(σ/N) for
sufficiently small N , and the Kalman conjecture fails for k1 < 0 and k2 = +∞.

6. CONCLUSION

In this paper various approaches to define the solutions of differential equations with discontin-
uous right-hand sides and differential inclusions have been described. The theory of such systems
started to develop actively once in the middle of the 20th century it became clear that their so-
lutions are absolutely continuous vector-functions and the sliding modes are typical effects for
discontinuous systems.

The method of Lyapunov functions proves to be an efficient mathematical tool for the global
analysis of discontinuous systems. We have demonstrated how discontinuous Lyapunov functions
can be applied to discontinuous systems in the classical Vyshnegradskii problem. It has been
revealed that the method of discontinuous approximations and Aizerman–Pyatnitskii ideas are
useful when constructing counterexamples to the Kalman problem.
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,etilibisnesni’denozàteetnatsnocessetivnu C. R. (Dokl.) Acad. Sci. URSS, 1945, vol. 46, no. 4,
pp. 143–146.

40. Andronov, A.A. and Bautin, N.N., Theory of stabilization of a neutral plane by an autopilot with
a constant velocity of the actuator: I, Izv. Akad. Nauk SSSR, Ser. Tekh. Nauk, 1955, no. 3, pp. 3–32.

41. Andronov, A.A. and Bautin, N.N., Theory of stabilization of a neutral plane by an autopilot with
a constant velocity of the actuator: II, Izv. Akad. Nauk SSSR, Ser. Tekh. Nauk,, 1955, no. 6, pp. 54–71.

42. Yakubovich, V. A., Leonov, G.A., and Gelig, A.Kh., Stability of Stationary Sets in Control Systems
with Discontinuous Nonlinearities, Singapore: World Sci., 2004.

43. Aizerman, M.A. and Gantmakher, F.R., Absolyutnaya ustoichivost’ reguliruemykh sistem (Absolute
stability of Control Systems), Moscow: Akad. Nauk SSSR, 1963.

44. Filippov, A.F., Differential equations with discontinuous right-hand side, Mat. Sb., 1960, vol. 51, no. 1,
pp. 99–128.

45. Aizerman, M.A. and Pyatnitskii, E.S., Foundations of a theory of discontinuous systems: I, Autom.
Remote Control, 1974, vol. 35, pp. 1066–1079.

46. Aubin, J.P. and Cellina, A., Differential Inclusions: Set-Valued Maps and Viability Theory, Berlin:
Springer-Verlag, 1984.

47. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., and Wolenski, P.R., Nonsmooth Analysis and Control Theory,
Berlin: Springer-Verlag, 1998.

DIFFERENTIAL EQUATIONS Vol. 53 No. 13 2017(Reg. No. 1301, 11.2.2017)



GLOBAL PROBLEMS FOR DIFFERENTIAL INCLUSIONS    29

48. Leine, R.I. and Nijmeijer, H., Differential Inclusion, Dynamics and Bifurcations of Non-Smooth Me-
chanical Systems, Berlin: Springer-Verlag, 2004.

49. Smirnov, G.V., Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics,
vol. 41, Providence: Amer. Math. Soc., 2002.

50. Gelig, A.Kh., Investigation of stability of nonlinear discontinuous automatic control systems with
a nonunique equilibrium state, Autom. Remote Control, 1964, vol. 25, pp. 1413–148.

51. Leonov, G.A., Stability of nonlinear controllable systems having a nonunique equilibrium position,
Autom. Remote Control, 1971, vol. 32, no. 10, pp. 1547–1552.

52. Vyshnegradskii, I.A., On direct action controllers, Izv. S.-Peterb. Tekhnol. Inst., 1877, pp. 21–62.

53. Andronov, A.A. and Maier, A.G., Vyshnegradskii problem in direct control theory: I, Avtom. Telemekh.,
1947, vol. 8, no. 5, pp. 314–334.

54. Filippov, A. F., Differential Equations with Discontinuous Righthand Sides, Dordrecht: Kluwer, 1988.
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Abstract. We discuss advantages and limitations of the harmonic balance method and the locus 
of a perturbed relay system (LPRS) method in the problem of finding periodic oscillations. In this 
paper we present the results of using harmonic balance method and LPRS method while 
investigating a 3rd order dynamic system in Lurie form. In this system a symmetric periodic 
oscillation is found, while other two asymmetric periodic motions are not found using both 
methods. 
Keywords: global stability, harmonic balance method, periodic oscillations. 

1. Introduction 

The necessity of studying stability and limiting dynamical regimes (attractors) arises in 
classical theoretical and applied problems. In [1] the classification of oscillations as being hidden 
or self-excited was proposed: self-excited oscillations can be visualized numerically by a 
trajectory starting from a point in a neighborhood of unstable equilibrium. In contrast, the basin 
of attraction for a hidden oscillation is not connected with equilibria and, it is necessary to develop 
special analytical and numerical methods to find initial points for their visualization. For nonlinear 
systems with a unique equilibrium and bounded solutions, the question that arises is how to find 
a class of systems for which the condition of the impossibility of generation of self-excited 
oscillations implies the absence of hidden oscillations. 

Among engineers, one of the most widely used methods for searching and analyzing 
oscillations in nonlinear control systems is the harmonic balance method. It was developed in the 
1920-1930s in the works of van der Pol [2] and Krylov and Bogolyubov [3] and later developed 
in the works of their followers (see [4-6]). It is known [1] that the harmonic balance method is an 
approximate method for determining the frequency and amplitude of periodic solutions.  
Moreover, the harmonic balance method may not predict hidden periodic oscillations [1]. 

The latter is true for the locus of a perturbed relay systems approach (LPRS method), that was 
developed in [7, 8] for Lurie systems with relay nonlinearities, despite the fact that the LPRS 
method makes it possible in many cases to predict oscillations not discoverable by the harmonic 
balance method. 

In this article, using the example of known dynamical system with coexisting self-excited 
periodic oscillations, we will show that these methods may not reveal self-excited oscillations. 

2. Oscillations in relay systems  

Consider the following system with one scalar relay nonlinearity in the Lurie form: 𝐱ሶ =  𝐀𝐱 + 𝐁 sign(𝜎),    𝜎 = −𝐂𝐱, (1)
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where 𝐱 ∈ ℝ௡  is a state vector, 𝜎 ∈ ℝଵ , 𝐀 ∈ ℝ௡×௡ , 𝐁 ∈ ℝ௡×ଵ , 𝐂 ∈ ℝଵ×௡  are matrices, all 
quantities are real. We consider the solution of system Eq. (1) in the Filippov sense [9]. 

2.1. Harmonic balance method 

The classical harmonic balance method (e.g., see [10]) for system Eq. (1) computes a periodic 
oscillation 𝑎 cos 𝜔଴𝑡 in the following way: introduce a linearization coefficient 𝑘 so that matrix 𝐀 + 𝑘𝐁𝐂  has purely imaginary eigenvalues ±𝑗𝜔଴ (𝜔଴ > 0) , with the rest of its eigenvalues 
having negative real parts. Values of 𝜔଴ and 𝑘 can be found from equations: 𝐼𝑚 𝑊(𝑗𝜔଴) = 0,    𝑘 =  −൫𝑅𝑒 𝑊(𝑗𝜔଴)൯ିଵ , (2)

where 𝑊 is the transfer function of system Eq. (1). 
Finally, the amplitude 𝑎 can be found from the following harmonic balance equation: 

න (sign(𝑎 cos 𝜔଴𝑡) − 𝑘 𝑎 cos 𝜔଴𝑡)𝑎 cos 𝜔଴𝑡 𝑑𝑡ଶగఠబ଴ = 0. (3)

Solving equation Eq. (3), we get: 𝑎 =  4𝜋𝑘. (4)

2.2. LPRS method 

Consider another method of analysis of periodic motions in relay feedback systems. The locus 
of a perturbed relay system (LPRS) method [7, 8] can be considered as a further development of 
Tsypkin’s ideas [11] on exact analysis of discontinuous systems. The basic concept of the method 
is as follows. 

For system Eq. (1), following [8], we define a function 𝐽(𝜔) which contains information on 
the frequency and amplitude of periodic oscillations. In this paper we apply a matrix state-space 
description approach to construct LPRS function for system Eq. (1): 

𝐽(𝜔) =  −0.5𝐂 ቈ𝐀ିଵ + 2𝜋𝜔 ൬𝐈 − 𝑒ଶగఠ 𝐀൰ିଵ 𝑒 గఠ𝐀቉ 𝐁 + 𝑗 𝜋4 𝐂 ቀ𝐈 + 𝑒 గఠ𝐀ቁିଵ ቀ𝐈 − 𝑒 గఠ𝐀ቁ 𝐀ିଵ𝐁 . (5)

Suppose we have computed the LPRS of a given system. Then there is a finite number of 
points of intersection of the LPRS and the horizontal axis. The following equation defines a 
frequency of a possible symmetric periodic solution of system Eq. (1): 𝐼𝑚 𝐽(𝜔଴) = 0. (6)

Therefore, an actual periodic motion can be found only among these candidate points. Note 
that formula Eq. (6) is a necessary condition for the existence of the frequency of symmetric 
periodic motion in the system (the actual existence of a periodic motion depends on a number of 
other factors [8]). 

3. Example: Atherton’s system 

Consider a relay control system in Lurie form, introduced by D. Atherton in [12], with the 
following matrices: 
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𝐀 = ൭ 0 1 00 0 110𝑑 2𝑑 − 10 𝑑 − 2൱ ,     𝐁 = ൭001൱ ,     𝐂 = ൭100൱், (7)

where 𝑑 is a parameter. 
The linear part of system Eq. (7) is defined by the transfer function: 𝑊஺௧௛(𝑠) = 1(𝑠 − 𝑑)(𝑠ଶ + 2𝑠 + 10), (8)

and the stationary set is as follows: 

Λ஺௧௛ = ቊ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) ∈ ℝଷ| 𝑥ଶ = 𝑥ଷ = 0,   𝑥ଵ ∈ ൜− 110𝑑 , 110𝑑ൠቋ. (9)

From Eq. (2) we get value of 𝜔଴: 

𝐼𝑚 𝑊஺௧௛(𝑗𝜔଴) = 0 ⟺  𝐼𝑚 −1𝑗𝜔଴ଷ + (2 − 𝑑)𝜔଴ଶ − (10 − 2𝑑)𝑗𝜔଴ + 10𝑑 = 0 ⟺     ⟺ 𝜔଴ଷ − (10 − 2𝑑)𝜔଴(𝜔଴ଷ − (10 − 2𝑑)𝜔଴)ଶ + ൫(2 − 𝑑)𝜔଴ଶ + 10𝑑൯ଶ = 0 ఠబஷ଴ሯልሰ     ఠబஷ଴ሯልሰ 𝜔଴ଶ = 10 − 2𝑑 ఠబவ଴ሯልሰ 𝜔଴ = √10 − 2𝑑, (10)

and from: 

𝑅𝑒 𝑊஺௧௛(𝑗𝜔଴) = − (2 − 𝑑)𝜔଴ଶ + 10𝑑(𝜔଴ଷ − (10 − 2𝑑)𝜔଴)ଶ + ൫(2 − 𝑑)𝜔଴ଶ + 10𝑑൯ଶ, (11)

we get 𝑘 = 2𝑑ଶ − 4𝑑 + 20. 
Next, from Eq. (4) we get value of amplitude 𝑎: 

𝑎 =  4𝜋𝑘 ⟺ 𝑎 = 2𝜋(𝑑ଶ − 2𝑑 + 10). (12)

For the value 𝑑 = 1.2 we find frequency 𝜔௛௕  of a periodic solution as 2.75681. Now using 
formula Eq. (5) we build LPRS for system Eq. (7) (see Fig. 1). 

 
Fig. 1. The LPRS for system Eq. (7) for 𝑑 = 1.2 and 𝜔 ∈ [0.5, 10] 
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Solving equation Eq. (6) using MATLAB function “vpasolve()” with a given tolerance 10-8, 
we find frequency of periodic solution as 𝜔௅௉ோௌ = 2.739991399. Initial data this periodic solution 
is given in Table 1. 

We can examine orbital stability of the oscillations using the following approach proposed in 
[13] and generalized for the linear parts containing delays and integrators in [8]. It is formulated 
as the following theorem: 

Theorem 1. Periodic motions in system Eq. (1) are locally orbitally asymptotically stable if 
and only if all eigenvalues of the matrix: 

Φ଴ = ቎𝐈 − 𝐯 ቀ𝑇2 − 0ቁ 𝐂𝐂𝐯 ቀ𝑇2 − 0ቁ቏ 𝑒𝐀ଶ், (13)

where 𝑇 = 2𝜋 𝜔⁄  is the period of the oscillations, 𝐯 is the value of the velocity matrix at the time 

of the relay switch, in the periodic motion, 𝐯 ቀଶ் − 0ቁ = 2 ቀ𝐈 + 𝑒𝐀೅మቁିଵ 𝑒𝐀೅మ𝐁, have magnitudes 
less than one. 

For system Eq. (7) the corresponding eigenvalues are 𝜆ଵ = 1.457, 𝜆ଶ = 0.279, 𝜆ଷ = 0. Since 
one of eigenvalues has magnitude greater than 1, the motion is not orbitally stable. Therefore, a 
symmetric periodic solution exists but it is orbitally unstable and cannot reveal itself as an 
oscillation. 

3.1. Numerical modeling 

Using special computational package [14] and initial data from Table 2 we can visualize two 
self-excited (with respect to rest segment) asymmetric periodic solutions (see Fig. 2), that cannot 
be found using harmonic balance method and LPRS method. 

Table 1. Parameters of two asymmetric  
solutions of system Eq. (7) 𝜔 2.608029064355592 𝑇 2.409169971705080 𝜆 0.296489410929823 

 

Table 2. Initial data of two asymmetric  
solutions of system Eq. (7) 𝑥ଵ ±0.000000000312706 𝑥ଶ ∓0.110095383325227 𝑥ଷ ±0.037742341170832 

 

 
Fig. 2. Trajectories with initial data from Table 3 
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4. Conclusions 

In this paper it is shown that the harmonic balance method and the LPRS method may not 
predict the existence of all self-excited oscillations. A symmetric periodic solution exists but it is 
orbitally unstable and cannot reveal itself as an oscillation. Although the LPRS does not detect 
hidden and self-excited asymmetric oscillations, it would be possible to develop a certain 
extension to the LPRS method to solve these problems. 
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Abstract: In the paper counterexamples to the Kalman conjecture with smooth nonlinearity basing on
the Fitts system, that are periodic solution or hidden chaotic attractor are presented. It is shown, that
despite the fact that Kalman’s conjecture (as well as Aizerman’s) turned out to be incorrect in the case
of n > 3, it had a huge impact on the theory of absolute stability, namely, the selection of the class of
nonlinear systems whose stability can be studied with linear methods.
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1. INTRODUCTION

In the middle of the past century the theory of absolute sta-
bility was rapidly developed [Lurie and Postnikov, 1944, Bul-
gakov, 1943, Aizerman, 1949, Letov, 1965, Pliss, 1958, LaSalle
and Lefschetz, 1961, Yakubovich, 1958, Aizerman and Gant-
makher, 1963, Andronov et al., 1966, Gelig et al., 1978].history

For continuous and discontinuous nonlinearities one of the
challenging problems is the selection of classes of systems for
which it is possible to obtain a necessary and sufficient condi-
tion for absolute stability. The history of attempts to solve this
problem is connected with the Aizermans’ [Aizerman, 1949]
and Kalmans’ [Kalman, 1957] conjectures about absolute sta-
bility of control systems with nonlinearity satysfying Routh-
Hurwitz criterion. In the present paper the differences in the
behavior of systems with continuous and discontinuous nonlin-
earities that are counterexamples to the Kalman conjecture are
considered.

Aizerman’s conjecture was complitely investigated in two-
dimensional case [Malkin, 1952, Erugin, 1952, Krasovsky,
1952]. It turned out to be true except for the special case when
trajectories tend to infinity.

In 1957 R.E. Kalman, being unaware of Aizerman’s research,
proposed a statement concerning restrictions on the derivative
of nonlinearity to be in the Hurwitz angle.

Kalman conjecture is more rigorous than Aizermans’ one, so
it turned out to be valid for two- and three-dimensional cases
[Leonov et al., 1996]. These cases are natural for applied
mechanical problems, so it is necessary to emphasize Kalmans’
scientific intuition.

Unlike the continuous-time case, Kalman conjecture is false
in general for two-dimensional discrete-time systems [Alli-Oke
et al., 2012].
� This work was supported by the grant NSh-2858.2018.1 for the Leading
Scientific Schools of Russia (2018-2019).

By now Kalman conjecture remains unsolved in the general
case.

2. KALMAN CONJECTURE

Consider the following system with one scalar non-linearity in
the Lur’e form

ẋ = Ax+bϕ(σ), σ = c∗x, (1)
where A is a constant n × n matrix, b and c - constant n-
dimensional vectors, all quantities are real, ∗ is the sign of
transposition, ϕ is a smooth scalar function with ϕ(0) = 0 and
the following condition is satisfied at differentiability points:

k1 ≤ ϕ ′(σ) ≤ k2, σ ∈ (−∞,+∞), (2)
where k1 is a number or −∞, k2 is a number or +∞.

In 1957, R.E. Kalman formulated the following conjecture:
if a linear system ẋ = Ax + kbc∗x, k ∈ [k1,k2], is globally
asymptotically stable, then the system (1) is also globally
asymptotically stable. Let us recall that a system is globally
asymptotically stable if its zero solution is Lyapunov stable and
limt→+∞ |x(t,x0)| = 0 for any x0 ∈ Rn.

3. HISTORY

The first counterexample to the Kalman conjecture were ob-
tained due to experiments by Fitts [1966], who studied oscilla-
tions in nonlinear feedback systems.

Further attempts to construct counterexamples were mainly
related to the consideration of systems with discontinuous
piecewise-linear nonlinearities and integration of such systems
in sections of linearity [Andronov et al., 1966].

In the beginning of the past century the concept of discontin-
uous system appeared in study of various applied mechanical
problems, e.g. vibrations in a mechanical model with dry fric-
tion [den Hartog, 1930], damping flutter in aircraft control sys-
tems with dry friction [Keldysh, 1944], autopilot construction
problem [Andronov and Bautin, 1955].
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which it is possible to obtain a necessary and sufficient condi-
tion for absolute stability. The history of attempts to solve this
problem is connected with the Aizermans’ [Aizerman, 1949]
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1952]. It turned out to be true except for the special case when
trajectories tend to infinity.

In 1957 R.E. Kalman, being unaware of Aizerman’s research,
proposed a statement concerning restrictions on the derivative
of nonlinearity to be in the Hurwitz angle.

Kalman conjecture is more rigorous than Aizermans’ one, so
it turned out to be valid for two- and three-dimensional cases
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mechanical problems, so it is necessary to emphasize Kalmans’
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Jyväskylä, Finland

Abstract: In the paper counterexamples to the Kalman conjecture with smooth nonlinearity basing on
the Fitts system, that are periodic solution or hidden chaotic attractor are presented. It is shown, that
despite the fact that Kalman’s conjecture (as well as Aizerman’s) turned out to be incorrect in the case
of n > 3, it had a huge impact on the theory of absolute stability, namely, the selection of the class of
nonlinear systems whose stability can be studied with linear methods.

Keywords: Kalman conjecture, Fitts system, Barabanov system, point-mapping method, hidden
attractor

1. INTRODUCTION

In the middle of the past century the theory of absolute sta-
bility was rapidly developed [Lurie and Postnikov, 1944, Bul-
gakov, 1943, Aizerman, 1949, Letov, 1965, Pliss, 1958, LaSalle
and Lefschetz, 1961, Yakubovich, 1958, Aizerman and Gant-
makher, 1963, Andronov et al., 1966, Gelig et al., 1978].history

For continuous and discontinuous nonlinearities one of the
challenging problems is the selection of classes of systems for
which it is possible to obtain a necessary and sufficient condi-
tion for absolute stability. The history of attempts to solve this
problem is connected with the Aizermans’ [Aizerman, 1949]
and Kalmans’ [Kalman, 1957] conjectures about absolute sta-
bility of control systems with nonlinearity satysfying Routh-
Hurwitz criterion. In the present paper the differences in the
behavior of systems with continuous and discontinuous nonlin-
earities that are counterexamples to the Kalman conjecture are
considered.

Aizerman’s conjecture was complitely investigated in two-
dimensional case [Malkin, 1952, Erugin, 1952, Krasovsky,
1952]. It turned out to be true except for the special case when
trajectories tend to infinity.

In 1957 R.E. Kalman, being unaware of Aizerman’s research,
proposed a statement concerning restrictions on the derivative
of nonlinearity to be in the Hurwitz angle.

Kalman conjecture is more rigorous than Aizermans’ one, so
it turned out to be valid for two- and three-dimensional cases
[Leonov et al., 1996]. These cases are natural for applied
mechanical problems, so it is necessary to emphasize Kalmans’
scientific intuition.

Unlike the continuous-time case, Kalman conjecture is false
in general for two-dimensional discrete-time systems [Alli-Oke
et al., 2012].
� This work was supported by the grant NSh-2858.2018.1 for the Leading
Scientific Schools of Russia (2018-2019).

By now Kalman conjecture remains unsolved in the general
case.

2. KALMAN CONJECTURE

Consider the following system with one scalar non-linearity in
the Lur’e form
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Andronov et al. [1966] introduced the idea of trajectory
“sewing” and developed all the necessary “ingredients” of dis-
continuous systems theory. Later, the elements of the discontin-
uous systems theory were rigorously formulated in [Wazewski,
1961, Filippov, 1988].

At first the development of the theory of absolute stability was
related to the names of its founders Lurie and Postnikov [1944].
They tried to solve the problem of absolute stability of auto-
matic control systems using Lyapunov function method. Popov
[1961, 1973] developed original and effective criterion in the
form of frequency sufficient condition for absolute stability.
The conjecture that sufficient conditions of absolute stability,
obtained by using of frequency methods, are also necessary
conditions was refuted by Yakubovich [1967], who constructed
an absolutely stable system, for which the Popov’s frequency
condition is not satisfied, and later by Pyatnitsky [1973]. Impor-
tant results by Yakubovich [1962] and Kalman [1963] resulted
in a well-known Kalman-Yakubovich-Popov lemma (see [Bara-
banov et al., 1996]).

Also it was natural to generalize various concepts of Lya-
punov’s stability theory and frequency approach to the discon-
tinuous systems theory. The first corresponding results and new
different approaches were obtained by representatives of the
scientific school of V.A. Yakubovich ([Yakubovich, 1967, 1975,
Gelig et al., 1978, Barabanov et al., 1996]).

Mention that similar results independently obtained in [Shevitz
and Paden, 1994].

Later results given in [Gelig et al., 1978] were developed
and new methods of stability analysis of discontinuous control
systems were presented. Note that only sufficient conditions for
absolute stability of discontinuous systems were stated [Gelig
et al., 1978].

Now let us consider two counterexamples to Kalman conjecture
and verify the fulfillment of analytical sufficient conditions for
global asymptotic stability of corresponding systems.

4. FITTS COUNTEREXAMPLE

As already mentioned, the first counterexample to the Kalman
conjecture was proposed by Fitts [Fitts, 1966], who performed
the computer simulation of system (1) with the transfer function

W (p) =
p2

((p+β )2 +0.92)((p+β )2 +1.12)
(3)

and the cubic nonlinearity ϕ(σ) = Kσ3. As a result of the
simulation, Fitts discovered periodic solutions of the system
(1) for the values of parameters m1 = 0.9, m2 = 1.1, K = 10
and β ∈ (0.01, 0.75). However, later N.E. Barabanov showed
in [Barabanov, 1988] that the results of the experiments were
incorrect for a part of the parameters that Fitts considered,
specifically, for β ∈ (0.572,0.75). The Kalman conjecture was
further discussed and doubts in the counterexamples of Fitts
and Barabanov were raised in [Bernat and Llibre, 1996, Glut-
syuk, 1998, Meisters, 1996].

4.1 Fitts’ counterexample variation

Let us present the following novel variation of Fitts’ coun-
terexample. Consider system (1) with n = 4 defined by transfer
function (3) from Fitts’ counterexample with the nonlinearity

x1

x2 x3= x4= 0

a
0 x

1  + a
1 x

2 = 1

0 1/a0-1/a0

a
0 x

1  + a
1 x

2 = -1

Fig. 1. Sliding mode manifold {(x1,x2,x3,x4) ∈ R4
∣∣ x3 = x4 =

0,−1 ≤ a0x1 +a1x2 ≤ 1} for the Fitts system (4). Arrowed
lines define the motion on the surface, thick green line
defines the rest segment.

ϕ(σ) = sign(σ). Deriving the system from transfer function
(3), one obtains [Leonov, 2001]:

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = x4,
ẋ4 = −a0x1 −a1x2 −a2x3 −a3x4 + sign(−x3),

(4)

where a0 = (m2
1 + β 2)(m2

2 + β 2), a1 = 2β (m2
1 + m2

2 + 2β 2),
a2 = m2

1 +m2
2 +6β 2, a3 = 4β .

Here

A =




0 1 0 0
0 0 1 0
0 0 0 1

−a0 −a1 −a2 −a3


 ,b =




0
0
0
1


 ,c =




0
0

−1
0


 . (5)

Sliding mode manifold for the system (4) is given by:

Dfitts = {(x1,x2,x3,x4) ∈ R4 ∣∣ x3 = x4 = 0,

−1 ≤ a0x1 +a1x2 ≤ 1},

Moreover, a sliding mode is described by the equations
ẋ1 = x2, ẋ2 = 0, ẋ3 = 0, ẋ4 = 0, (6)

so for the point (x01,x02,0,0) ∈ Dfitts one gets x1(t) = x02t +
x01,x2(t) ≡ x02. The rest segment is

Λfitts = {(x1,x2,x3,x4) ∈ R4 ∣∣ x2 = x3 = x4 = 0, (7)

− 1
a0

≤ x1 ≤ 1
a0

}. (8)

4.2 Stability of Rest Segment

If there are trajectories that tend to some periodic solution of
the system or infinity, then one can say that the system is not
globally asymptotically stable.

Hidden and self-excited classification. Since is not proven
that system (4) is globally asymptotically stable, one can expect
the existence of a nontrivial attractor in the phase space. First
let us recall the definition of attractor.

Consider system
ẋ = f (x, t), (9)

where x ∈ Rn, f : Rn → Rn Define by x(t,x0) a solution of (9)
such that x(0,x0) = x0.
Definition 1. For system (9), a bounded closed invariant set K
is

(i) a (local) attractor if it is a locally attractive set (i.e.
limt→+∞ dist(K,x(t,x0)) = 0 ∀x0 ∈ K(ε), where K(ε) is
a certain ε-neighborhood of set K),
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(ii) a global attractor if it is a globally attractive set (i.e.
limt→+∞ dist(K,x(t,x0)) = 0 ∀x0 ∈ Rn),

where dist(K,x) = infv∈K ||v−x|| is the distance from the point
x ∈ Rn to the set K ⊂ Rn (see, e.g. [Leonov et al., 2015]).

Since the whole phase space is a global attractor and any
finite union of attractors is again an attractor, it is reasonable
to consider only minimal global and local attractors, i.e. the
smallest bounded closed invariant set possessing the property
(ii) or (i).

Localization and analysis of attractors is one of the main tasks
of the investigation of dynamical systems. While trivial attrac-
tors (stable equilibrium points) can be easily found analytically,
the search of periodic and chaotic attractors can turn out to be a
challenging problem. For numerical localization of an attractor
one needs to choose an initial point in the basin of attraction
and observe how the trajectory, starting from this initial point,
after a transient process visualizes the attractor. Leonov and
Kuznetsov introduced in [Leonov et al., 2011, Leonov and
Kuznetsov, 2011, Kuznetsov and Leonov, 2014] a classification
of attractors based on the simplicity of finding the basins of
attraction in the phase space.
Definition 2. An attractor is called a self-excited attractor if its
basin of attraction intersects with any open neighborhood of an
equilibrium, otherwise, it is called a hidden attractor.

Self-excited attractors can be easily visualized because its basin
of attraction is connected with an unstable equilibrium and,
therefore, can be localized numerically. For a hidden attractor,
its basin of attraction is not connected with equilibria and, thus,
the search and visualization of hidden attractors in the phase
space may be a difficult task.

Further using a special computational package [Piiroinen and
Kuznetsov, 2008] and Andronov’s point-mapping method [An-
dronov and Maier, 1947], it will be shown that in system (4), for
certain values of the β parameter it is possible to localize hidden
attractors. Also it will be shown that this hidden attractors
coexist with periodic solutions.

4.3 Trajectories computation

We performed numerical simulation in the vicinity ε = 0.1
of the rest segment (7) in the subspace (x1,x4) while x2 =
x3 = 0. In our experiment for integration of solutions we used
computational package from [Piiroinen and Kuznetsov, 2008].
Trajectories with initial point in the vicinity tended to a periodic
solution (see Fig. 2).

4.4 Trajectories sewing

Let’s write down the solutions of linear systems ẋ = Ax + b
and ẋ = Ax−b given by (5) in the corresponding regions Σ+ =
{x = (x1,x2,x3,x4) ∈ R4 | x3 < 0}, Σ− = {x = (x1,x2,x3,x4) ∈
R4 | x3 > 0}. Trajectories of (4) in three regions of phase
space as the solutions of the linear systems may be obtained
analytically without using numerical methods for solving or-
dinary differential equations and sewing them when switch-
ing modes. This gives the trajectory released from the point
(x01,x02,x03,x04) = (10,10,10,10) for parameters values m1 =
0.9,m2 = 1.1,β = 0.03 on the time interval t ∈ [0,500] and
precision of 32 digits. Calculation shows that this trajectory
attracts to the periodic orbit (see Fig. 3).

Fig. 2. Trajectory (gray) released from the point (-
1.105017,0,0,0.05) (yellow) from vicinity of rest segment
Λfitts tends to periodic solution (blue). β = 0.03
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Fig. 3. Modeling of the system (4) for β = 0.03. Trajectories
of the system ẋ = Ax + b (red) are being sewed with the
trajectories of the system ẋ = Ax−b (blue) at the switching
mode points (black).

4.5 Point-mapping method

This result can be clarified using Andronov’s point-mapping
method [Andronov and Maier, 1947]. Note that periodic so-
lution of the system (4) consists of two parts: x+(t,x+

0 ) ∈ Σ+,
t ∈ [0,T sw

+ ] (mode I) and x−(t,x−
0 ) ∈ Σ−, t ∈ [0,T sw

− ] (mode
II). Wherein x±(0,x±

0 ) = x±
0 = (x±

01,x
±
02,0,x±

04), where x+
04 < 0,

x−
04 > 0 and x±(T sw

± ,x±
0 ) = x∓

0 . Therefore the following equality
holds:

x−(T sw
− ,x−

0 ) = x+
0 = x+(−T sw

+ ,x−
0 ). (10)

By the analogy with Sec. 4.4 for solutions x±(t,x±
0 ), the so-

lution can be found analytically. For parameters m1 = 0.9,
m2 = 1.1, β = 0.03 the values, found with the help of MATLAB
software, are given in Tab. 1. Using the coordinates of the initial
point (x−

01,x
−
02,0,x−

04) we can localize orbitally asymptotically
stable periodic solution (see Fig. 8). Note that this periodic
solution coexists with periodic solution obtained in 4.3.

4.6 Strange attractor

Now we are going to use continuation method for numerical
localization of nonperiodic strange attractor in the system (4).
It is often used for hidden attractors localization [Leonov et al.,
2010, Bragin et al., 2011, Leonov and Kuznetsov, 2011, 2013].
In this method, a sequence of systems is considered and each
corresponds to a specially chosen parameter with values in a
certain interval. It is assumed that for the first (initial) sys-
tem the initial data for numerical localization of periodic (or
chaotic) solutions can be obtained analytically. Thus, we can
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after a transient process visualizes the attractor. Leonov and
Kuznetsov introduced in [Leonov et al., 2011, Leonov and
Kuznetsov, 2011, Kuznetsov and Leonov, 2014] a classification
of attractors based on the simplicity of finding the basins of
attraction in the phase space.
Definition 2. An attractor is called a self-excited attractor if its
basin of attraction intersects with any open neighborhood of an
equilibrium, otherwise, it is called a hidden attractor.

Self-excited attractors can be easily visualized because its basin
of attraction is connected with an unstable equilibrium and,
therefore, can be localized numerically. For a hidden attractor,
its basin of attraction is not connected with equilibria and, thus,
the search and visualization of hidden attractors in the phase
space may be a difficult task.

Further using a special computational package [Piiroinen and
Kuznetsov, 2008] and Andronov’s point-mapping method [An-
dronov and Maier, 1947], it will be shown that in system (4), for
certain values of the β parameter it is possible to localize hidden
attractors. Also it will be shown that this hidden attractors
coexist with periodic solutions.

4.3 Trajectories computation

We performed numerical simulation in the vicinity ε = 0.1
of the rest segment (7) in the subspace (x1,x4) while x2 =
x3 = 0. In our experiment for integration of solutions we used
computational package from [Piiroinen and Kuznetsov, 2008].
Trajectories with initial point in the vicinity tended to a periodic
solution (see Fig. 2).

4.4 Trajectories sewing

Let’s write down the solutions of linear systems ẋ = Ax + b
and ẋ = Ax−b given by (5) in the corresponding regions Σ+ =
{x = (x1,x2,x3,x4) ∈ R4 | x3 < 0}, Σ− = {x = (x1,x2,x3,x4) ∈
R4 | x3 > 0}. Trajectories of (4) in three regions of phase
space as the solutions of the linear systems may be obtained
analytically without using numerical methods for solving or-
dinary differential equations and sewing them when switch-
ing modes. This gives the trajectory released from the point
(x01,x02,x03,x04) = (10,10,10,10) for parameters values m1 =
0.9,m2 = 1.1,β = 0.03 on the time interval t ∈ [0,500] and
precision of 32 digits. Calculation shows that this trajectory
attracts to the periodic orbit (see Fig. 3).

Fig. 2. Trajectory (gray) released from the point (-
1.105017,0,0,0.05) (yellow) from vicinity of rest segment
Λfitts tends to periodic solution (blue). β = 0.03
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Fig. 3. Modeling of the system (4) for β = 0.03. Trajectories
of the system ẋ = Ax + b (red) are being sewed with the
trajectories of the system ẋ = Ax−b (blue) at the switching
mode points (black).

4.5 Point-mapping method

This result can be clarified using Andronov’s point-mapping
method [Andronov and Maier, 1947]. Note that periodic so-
lution of the system (4) consists of two parts: x+(t,x+

0 ) ∈ Σ+,
t ∈ [0,T sw

+ ] (mode I) and x−(t,x−
0 ) ∈ Σ−, t ∈ [0,T sw

− ] (mode
II). Wherein x±(0,x±

0 ) = x±
0 = (x±

01,x
±
02,0,x±

04), where x+
04 < 0,

x−
04 > 0 and x±(T sw

± ,x±
0 ) = x∓

0 . Therefore the following equality
holds:

x−(T sw
− ,x−

0 ) = x+
0 = x+(−T sw

+ ,x−
0 ). (10)

By the analogy with Sec. 4.4 for solutions x±(t,x±
0 ), the so-

lution can be found analytically. For parameters m1 = 0.9,
m2 = 1.1, β = 0.03 the values, found with the help of MATLAB
software, are given in Tab. 1. Using the coordinates of the initial
point (x−

01,x
−
02,0,x−

04) we can localize orbitally asymptotically
stable periodic solution (see Fig. 8). Note that this periodic
solution coexists with periodic solution obtained in 4.3.

4.6 Strange attractor

Now we are going to use continuation method for numerical
localization of nonperiodic strange attractor in the system (4).
It is often used for hidden attractors localization [Leonov et al.,
2010, Bragin et al., 2011, Leonov and Kuznetsov, 2011, 2013].
In this method, a sequence of systems is considered and each
corresponds to a specially chosen parameter with values in a
certain interval. It is assumed that for the first (initial) sys-
tem the initial data for numerical localization of periodic (or
chaotic) solutions can be obtained analytically. Thus, we can
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Table 1. Coordinates of the point on the periodic
solution of the system (4) for β = 0.03 and the

duration of the modes I and II.

x−
01 −0.62520516260693109534342362490723

x−
02 −3.7324097072650610465825278562594

x−
04 3.4754169728697120793989274111636

T sw
+ 6.0861163299591904401929427933543

T sw
− 3.2558143241394617470571435917368

consider a system with an initial self-excited attractor as an
initial system. Then we can numerically trace the transforma-
tion of the initial solution in the transition from one system to
another. At the same time, the initial data for the solution of
the next system is the endpoint of the solution of the previous
system. The latter system corresponds to a system for which
a hidden attractor is sought. As a result, if there is no loss of
stability bifurcation, then it is possible to find hidden attractor.

Consider an interval β ∈ [0.03,0.1] and choose the partition
with the step 0.0175. For fixed m1 = 0.9, m2 = 1.1 and for
each β = β j = 0.03 + 0.0175 j, j = 0, . . . ,4 we will integrate
the solution x j(t) of the system (4) on the time interval [0,T ],
T = 2000.

We use as initial data for the system with β = β j+1 the endpoint
of the solution with β = β j, i.e. x j+1(0) := x j(T ). Here we can
integrate the solutions both using the procedure described in
Sec. 4.3 and special computational package described in [Pi-
iroinen and Kuznetsov, 2008] for modeling solutions in Filip-
pov sense. Using the second option and performing the contin-
uation method we localized strange nonperiodic attractor (see
Fig. 6,Fig. 7). Also note that this attractor coexist with periodic
solution (see Fig. 9, Fig. 10).

This strange attractor (as well as periodic solution for β = 0.03)
remains under the reverse scenario of discontinuous Aizerman
– Pyatnitsky approximation [Aizerman and Pyatnitskiy, 1974],
i.e. transition from nonlinearity ϕ(σ) = ψ0(σ) = signσ to
ϕ(σ) = ψN(σ) nonlinearity where

ϕ(σ) = ψN(σ) ≡





−1, σ ≤ −N,
1
N σ , −N ≤ σ ≤ N,

1, σ ≥ N
(11)

for sufficiently small values of N (e.g. for N = 0.05) in the
system (4).

Then using continuation method we consider nonlinearity
ϕ(σ) = χε(σ) ≡ ψN(σ) + ε (tanh(σ/N)−ψN(σ)) for ε in-
creasing from 0 to 1 with the step 0.1 to implement transition
from piecewise-differentiable nonlinearity (11) (corresponding
to ϕ(σ) = χ0(σ) = ψN(σ)) to smooth nonlinearity ϕ(σ) =
χ1(σ) = tanh(σ/N). During this transition the local strange
attractor obtained in the previous steps is preserved (see Fig. 4–
5).

Thus in the system (1) with ϕ(σ) = tanh(σ/N) for sufficient
small values of N there is strange attractor and for k1 < 0 and
k2 = +∞ Kalman conjecture is wrong.

5. BARABANOV SYSTEM

In 1988 N.E. Barabanov constructed the following counterex-
ample to the Kalman conjecture:

x 1 x 4

x 3
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0

0.2

0.4

0.6

x 3

t

σ(t) = −x 3(t)

ϕ(σ) = χ
0.5

(σ)

Fig. 4. Strange attractor in the system (4) for β = 0.1 and
ϕ(σ) = χε(σ) ≡ ψN(σ) + ε (tanh(σ/N)−ψN(σ)), N =
0.01, ε = 0.5.
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Fig. 5. Strange attractor in the system (4) for β = 0.1 and
ϕ(σ) = χε(σ) ≡ ψN(σ) + ε (tanh(σ/N)−ψN(σ)), N =
0.01, ε = 1.
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Fig. 6. Projection of the strange attractor in the system (4) for
β = 0.1 in the subspace (x1,x2,x3).
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Fig. 7. Projection of the strange attractor in the system (4) for
β = 0.1 in the subspace (x1,x3,x4).

ẋ1 = x2,
ẋ2 = −x4,
ẋ3 = x1 −2x4 −ϕ(x4),
ẋ4 = x1 + x3 − x4 −ϕ(x4),

(12)

where ϕ = sign(σ). In this case
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Fig. 8. Periodic solution of the system (4) for β = 0.03.

Fig. 9. Coexisting periodic solution and chaotic attractor in (4)
for β = 0.1 in the subspace (x1,x3,x4)

Fig. 10. Coexisting periodic solution and chaotic attractor in (4)
for β = 0.1 in the subspace (x2,x3,x4)

A =




0 1 0 0
0 0 0 −1
1 0 0 −2
1 0 1 −1


 , b =




0
0

−1
−1


 , c =




0
0
0
1


 .

Sliding mode manifold for system (12) is

Dbar = {(x1,x2,x3,x4) ∈ R4 ∣∣ x4 = 0, x2 = C1,

x1 = C1t +C2, x3 = C3e−t , −1 ≤ x1 + x3 ≤ 1}

Rest segment for the system (12) is

Λbar = {(x1,x2,x3,x4) ∈ R4 ∣∣ x2 = x3 = x4 = 0,

−1 ≤ x1 ≤ 1}.

Fig. 11. Trajectory (black) released from the point (0,0,0,ε)
(green) and tends to the periodic solution (red) in the
subspace (x1,x3,x4). T = 5000.

5.1 Trajectories computation

For the Barabanov system the trajectories released from the
vicinity of the rest segment have been numerically found by
a simulation. In our experiment vicinity radius is ε = 0.1 in
the space (x1,x4) (in this case we take x2 = x3 = 0). Resulting
trajectories tended to the periodic solutions of the system (12),
see Fig. 11.

6. CONCLUSION

In this paper we presented counterexamples to the Kalman con-
jecture with smooth nonlinearity basing on the Fitts system, that
are periodic solution or hidden chaotic attractor. However, de-
spite the fact that Kalman’s conjecture (as well as Aizerman’s)
turned out to be incorrect in the case of n > 3, it had a huge
impact on the theory of absolute stability, namely, the selection
of the class of nonlinear systems whose stability can be studied
with linear methods.
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Abstract: The Aizerman and Kalman conjectures played an important role in the theory of
global stability for control systems and set two directions for its further development – the search
and formulation of sufficient stability conditions, as well as the construction of counterexamples
for these conjectures. From the computational perspective the latter problem is nontrivial, since
the oscillations in counterexamples are hidden, i.e. their basin of attraction does not intersect
with a small neighborhood of an equilibrium. Numerical calculation of initial data of such
oscillations for their visualization is a challenging problem. Up to now all known counterexamples
to the Kalman conjecture were constructed in such a way that one locally stable limit cycle
(hidden oscillation) co-exists with a locally stable equilibrium. In this paper we demonstrate
a multistable configuration of three co-existing hidden oscillations (limit cycles) and a locally
stable equilibrium in the phase space of the fourth-order system, which provides a new class of
counterexamples to the Kalman conjecture.

Keywords: global stability, hidden attractors, multistability, Kalman conjecture, periodic
oscillations

1. INTRODUCTION

The necessity to study stability and limit dynamical
regimes (attractors) arises in classical theoretical and ap-
plied problems. One of the first such problems is related to
the design of automatic control systems, which ensure the
transition of the controlled object to the operating regime
and its stability with respect to external disturbances. The
first dynamical models of control systems were constructed
in a way that the operating regime corresponded to the
unique globally stable equilibrium state. After that models
with oscillating operating regimes (periodic attractors)
and chaotic regimes (chaotic attractors) were obtained.
Later on, multistable models with different co-existing
regimes (attractors) were discovered. Control of system
states and their transfer into the basin of attraction of a
desired attractor is the subject for study of the oscillation
control theory (see e.g. [Fradkov and Pogromsky, 1998,
Fradkov and Evans, 2005]). One of the first theoretical
problems on multistability is the second part of the famous
Hilbert’s 16th problem on the number and mutual dispo-
sition of coexisting periodic attractors in two-dimensional
polynomial systems. For chaotic multidimensional dynam-
ical systems a similar problem on the number and mutual
disposition of chaotic attractors and, in particular, their
dependence on the degree of polynomials in the model
is discussed in [Leonov and Kuznetsov, 2015, Kuznetsov
et al., 2018].

For nonlinear systems with a unique equilibrium and
bounded solutions, the question arose: how to find a class
of systems for which the condition for the absence of the
possibility for birth of self-excited oscillations implies the
absence of hidden oscillations 1 and the global stability
of the equilibrium. This problem has its origins in the
Watt governor stability studies. In 1877, I.A. Vyshne-
gradsky [Vyshnegradsky, 1877] for the closed dynamic
model ”machine + governor” studied an approximate lin-
ear mathematical model without dry friction and proposed
the stability conditions of the desired operating regime
corresponding to the equilibrium state (trivial attractor).
However, the question about a rigorous proof of the Vysh-
negradsky problem on the validity of the linearization
procedure for a system by discarding dry friction remained
open. In 1885, M.H. Léauté showed [Léauté, 1885] the

1 In 2009, G.A. Leonov and N.V. Kuznetsov proposed the classi-
fication of oscillations as being hidden or self-excited and laid the
foundations of the theory of hidden oscillations, which reflects the
modern stage of development of the A.A. Andronov’s theory of
oscillations. Self-excited oscillations can be visualized numerically by
a trajectory starting from a point in a neighborhood of an unstable
equilibrium. In contrast, the basin of attraction for a hidden oscilla-
tion is not connected with equilibria and, thus is necessary to develop
a special analytical-numerical methods to find initial points for their
visualization. The current progress in the development of theory of
hidden oscillations was recently presented at a plenary lecture at the
5th IFAC Conference on Analysis and Control of Chaotic Systems
(see https://chaos2018.dc.wtb.tue.nl).



possibility of the appearance of limit periodic oscillations
in dynamical models of control systems with dry friction.
After that, publications appeared (see e.g. [Zhukovsky,
1909, p. 6]), which criticized Vyshnegradsky approach and
questioned his conclusions. In response to this criticism,
A.A. Andronov and A.G. Maier [Andronov and Maier,
1944] provided a rigorous global analysis of the nonlinear
model of the Watt governor with dry friction and proved
the sufficiency of the Vyshnegradsky conditions for the
absence of limit oscillations and global stability of the
operating regime 2 (i.e. the existence of a rest segment
that attracts trajectories from any initial data). Further
development and generalization of the results by Vyshne-
gradsky, Andronov and Maier were done by G.A. Leonov
in [Leonov, 1971] (see also survey [Leonov et al., 2017]).

In 1949, inspirited by the discussion of the work [Andronov
and Maier, 1944] at the Andronov’s scientific seminar in
the Institute of Automation and Remote Control (USSR
Academy of Sciences, Moscow) [Bissell, 1998], M.A. Aizer-
man formulated a new problem. His question was whether
the sufficient conditions of global stability of a class of
nonlinear Lurie systems with a unique equilibrium coincide
with the necessary stability conditions when the smooth
nonlinearity belongs to the sector of linear stability [Aizer-
man, 1949]. Independently, a similar conjecture was later
advanced by R.E. Kalman in 1957, with the additional re-
quirement that the derivative of nonlinearity belong to the
linear stability sector [Kalman, 1957]: ”If ϕ(σ) in Fig. 1 is
replaced by constants k corresponding to all possible values
of ϕ′(σ), and it is found that the closed-loop system is
stable for all such k, then it is intuitively clear that the
system must be monostable; i.e. all transient solutions will
converge to a unique, stable critical point.”

φ(σ)σ G(s)φ∑
+ –

Fig. 1. Nonlinear control system. G(s) is a linear trans-
fer function, ϕ(σ) is a single-valued smooth func-
tion [Kalman, 1957].

Kalman’s statement can be reformulated in the following:

Conjecture 1. (The Kalman Conjecture). Consider the fol-
lowing control system in the Lurie form

ẋ = Ax + bϕ(σ), σ = c∗x, (1)

where A is a constant n×n matrix, b and c are constant n-
dimensional columns, with all values being, sign ∗ denotes
the transpose, and ϕ is a smooth scalar function with
ϕ(0) = 0, satisfying the condition

k1 < ϕ′(σ) < k2, σ ∈ (−∞,+∞), (2)

where k1 is a number or −∞, and k2 is a number or +∞.
If the linear system ẋ = Ax + kbc∗x, with k ∈ (k1, k2) is
asymptotically stable, then system (1) is stable in large
(i.e. a zero solution of system (1) is asymptotically stable
and any solution tends to zero as t→ +∞).

2 This result was specially remarked when in 1946 A.A. Andronov
was elected to the Academy of Sciences of the USSR where he became
the first academician in control theory.

The Aizerman and Kalman conjectures played an im-
portant role in the theory of global stability for control
systems and set two directions for its further develop-
ment – the search and formulation of sufficient stability
conditions (see pioneering works [Popov, 1961, Kalman,
1963, Gelig et al., 1978]), as well as the construction
of counterexamples for these conjectures. From the com-
putational perspective, the latter problem is nontrivial,
since the oscillations in counterexamples are hidden, i.e.
their basin of attraction does not intersect with small
neighborhood of an equilibrium. Numerical calculation of
initial data of such oscillations for their visualization is a
challenging problem. Up to now all known counterexam-
ples to the Kalman conjecture were constructed in such a
way that one locally stable limit cycle (hidden oscillation)
co-exists with a locally stable equilibrium. In this paper
we demonstrate a multistable configuration of three co-
existing hidden oscillations (limit cycles) and a locally
stable equilibrium in the phase space of the fourth-order
system, which provides a new class of counterexamples to
the Kalman conjecture.

2. PREVIOUS COUNTEREXAMPLES TO KALMAN
CONJECTURE

First known attempt to construct counterexamples to the
Kalman conjecture was made by R.E. Fitts [Fitts, 1966],
who experimentally studied a fourth-order system with
a cubic nonlinearity. As a result, Fitts experimentally
observed a periodic solution of considered system. Later
on, N.E. Barabanov [Barabanov, 1988] claimed that some
Fitts’ results are not true and suggested to use discontinu-
ous nonlinearity sign(·) to derive counterexamples analyt-
ically. His work also raised critical discussions in [Bernat
and Llibre, 1996, Meisters, 1996, Glutsyuk, 1998]. In par-
ticular, Bernat and Llibre [1996] pointed out the necessity
to rigorously analyze non-local bifurcations while smooth-
ing discontinuous nonlinearities. They suggested to start
the procedure for constructing counterexamples with a
piecewise linear nonlinearity sat(·). In [Bragin et al., 2010,
2011, Leonov and Kuznetsov, 2011], it was introduced
an effective approach for construction of counterexam-
ples to the Kalman conjecture relying on an analytical-
numerical search for periodic solutions by applying har-
monic balance and numerical continuation methods and
using smooth nonlinearity tanh(·). For discrete-time sys-
tems Heath et al. [2015] demonstrated that Kalman conjec-
ture is false even for second-order systems using counterex-
amples with stable periodic solutions 3 . Also construction
of counterexamples to the Kalman conjecture is discussed
in [Burkin and Khien, 2014].

3. COEXISTING LIMIT CYCLES

To construct numerically a new counterexample to the
Kalman conjecture providing three co-existing limit cy-
cles we combined Fitts’ linear system, Barabanov’s idea
3 Remark that the difference between the dimensions of the phase
spaces of a discrete-time system and a continuous-time system
defined by autonomous ODE, for which the Kalman conjecture is
not true, is equal to 2. This value coincides with the difference
between the dimensions of the spaces in which chaos can occur (for
discrete-time systems the dimension is equal to 1, for continuous-time
systems – 3).



of considering sign(·), and the idea from [Leonov and
Kuznetsov, 2011] to use numerical continuation procedure
while passing from sign(·) to tanh(·).
Consider the control system in the Lurie form (1) with

A=

 0 1 0 0
0 0 1 0
0 0 0 1
−a0 −a1 −a2 −a3

, b =

 0
0
0
1

, c =

 0
0
−1
0

, (3)

and a0 = (m2
1+β2)(m2

2+β2), a1 = 2β(m2
1+m2

2+2β2), a2 =
m2

1 + m2
2 + 6β2, a3 = 4β, m1 = 0.9,m2 = 1.1, β = 0.03,

ϕ(σ) = tanh(σ/ε), ε = 0.01. The linear part of system (1)
is defined by the transfer function

W (p) =
p2

((p+ β)2 +m2
1) ((p+ β)2 +m2

2)
. (4)

Initial data for visualization of periodic oscillations were
obtained using Andronov point mapping method [An-
dronov et al., 1966] 4 for system (1), (3) with non-linearity
ϕ(σ) = sign(σ) and numerical continuation method 5 for
smoothing the discontinuous nonlinearity (see e.g. [Leonov
and Kuznetsov, 2013, Leonov et al., 2017]). Corresponding
initial points for each stable limit cycle are presented below
in Table 1. In system (1), (3) with the smooth nonlinearity
ϕ(σ) = tanh(σ/ε), ε = 0.01 for obtained initial points
the trajectories were numerically integrated, which after
the transient process allows us to visualize three hidden
periodic attractors (see Fig. 2 and Table 2 with initial
data). For each periodic attractor, an additional analysis
of the local basin of attraction was carried out by choosing
a grid of points in the vicinity of the periodic attractor and
checking the attraction of all the trajectories with initial
data from these points to the periodic attractor.

Table 1. Initial data for modeling of the three
periodic attractors for system (1), (3) with

nonlinearity ϕ(σ) = sign(σ).

1st and 2nd 3rd

x1 ±0.62520516260693109 −2.113517446278802
x2 ±3.73240970726506105 0.664336179538623
x3 0 0.891912878629890
x4 ∓3.47541697286971208 0.278600965570120

Table 2. Initial data for modeling of the three
periodic attractors for system (1), (3) with

nonlinearity ϕ(σ) = tanh(σ/ε), ε = 0.01.

1st and 2nd 3rd

x1 ±0.625216695745867 −2.11395731851229
x2 ±3.73239217905780 0.663680374961913
x3 0 0.891701229667371
x4 ∓3.47341560599714 0.279201499188914

4 Other methods for searching periodic oscillations of dynamical
models with sign(·) nonlinearity can be found e.g. in [Tsypkin, 1984,
Boiko, 2008].
5 The idea is to consider system (1), (3) with the nonlinearity
ϕ(σ) = sign(σ) + µ(tanh(σ/ε) − sign(σ)), µ ∈ [0, 1] and to switch
from the system with nonlinearity sign(·) to the system with a
smooth nonlinearity tanh(·) by varying the parameter µ from 0 to 1
with some small step. During the switching on each next step, the
initial point for a trajectory to be integrated is chosen as the last
point of the trajectory integrated on the previous step.

3.1 Sector of linear stability

It can be seen that the eigenvalues of the Jacobi matrix at
the zero equilibrium are

−β ±m1i, −β ±m2i,

and, thus this equilibrium is locally stable.

Consider the matrix

A+ kbc∗ =

 0 1 0 0
0 0 1 0
0 0 0 1
−a0 −a1 −a2 − k −a3

 . (5)

Characteristic polynomial of the matrix (5) is

λ4 + a3λ
3 + (a2 + k)λ2 + a1λ+ a0. (6)

Using Routh-Hurwitz criterion it is possible to show that
for each β > 0 the linear system ẋ = Ax + k b c∗x, given
by matrices (3), is globally asymptotically stable for

k ∈
(
− 4β2 − (m2

1−m
2
2)

2

2(2β2+m2
1+m

2
2)
,+∞

)
.

All the roots of the characteristic polynomial (6) have
negative real parts, iff all the leading principal minors

∆1 = a3 = 4β, ∆2 = a3(a2 + k)− a1,
∆3 = a1a3k − a21 + a1a2a3 − a0a23, ∆4 = a0∆3

of the Hurwitz matrix a3 a1 0 0
1 a2 + k a0 0
0 a3 a1 1
0 1 a2 + k a0


are positive. This implies the inequality k >

a0a
2
3+a

2
1−a1a2a3
a1a3

,
which defines a sector of linear stability.

3.2 Describing function method and Popov criterion

Let us show that the application of the classical describing
function method 6 and Popov method to system (1), (3)
demonstrates the necessity of their further development to
be able to obtain the necessary and sufficient conditions
for the birth of oscillations and stability.

Suppose system (1), (3) has periodic solution with ampli-
tude a and frequency ω0. Hence, according to the harmonic
balance method, frequency of this solution can be found
from the following equality ImW (iω0) = 0 and, there-

fore, ω0 =

√
β2 +

m2
1+m

2
2

2 > 0. Also, from the equality

ReW (iω0) = 0 we can get a coefficient of harmonic lin-
earization

khl = − 1

ReW (iω0)
= −

(
4β2 +

(m2
1 −m2

2)2

2(2β2 +m2
1 +m2

2)

)
< 0.

The describing function is defined as follows:

6 Describing function method belongs to the approximate methods
of analysis of control systems and there exist various examples of
systems for which it leads to incorrect results in both prediction of
stability (see e.g. [Bragin et al., 2011, Leonov and Kuznetsov, 2013])
and prediction of the existence of oscillations (see e.g. [Leonov and
Kuznetsov, 2018a,b]).
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Fig. 2. Co-existence of a stable equilibrium (light green) and three hidden limit cycles, two large symmetric ones (red
and purple), and a small one (dark green), in the phase space of system (1), (3) with ϕ(σ) = tanh(σ/ε), ε = 0.01.

Φ(a) =

2π
ω0∫
0

tanh(cos(ω0t)a) cos(ω0t)dt−

−akhl

2π
ω0∫
0

(cos(ω0t))
2dt ≥ −πakhl

ω0
.

(7)

If a 6= 0, then Φ(a) > 0 and there is no such a that
Φ(a) = 0. Therefore, there are no periodic solutions in the
system (1) according to the describing function method.

Consider the Popov criterion on the absolute stability (see
e.g. [Popov, 1961, p. 961],[Yakubovich et al., 2004, p. 79])
for system (1), (3) and non-linearity ϕ(σ) = tanh(σ).
First two conditions of the Popov criterion, i.e. asymptotic

stability of the linear part and 0 ≤ tanh(σ)
σ ≤ ∞, σ 6=

0, tanh(0) = 0, are satisfied. The third condition of the
Popov criterion has the following form:

Re[(1 + iωϑ)W (iω)] = ReW (iω)− ωϑ ImW (iω) ≥ 0⇔

− ω2(ω4 − ω2a2 + a0) ≥ 2ϑω4β

(
−2ω2 +

a1
2β

)
.

If ω = 0, then this inequality holds. Else, if ω 6= 0, then
this condition takes the form:

(4ϑβ − 1)ω4 − (ϑa1 − a2)ω2 − a0 ≥ 0. (8)

Note that since a0 > 0, then for each ϑ ≥ 0 there exists
small enough ω > 0 such that (8) is not true. Therefore,
the conditions of the criterion are not satisfied.

4. CONCLUSION

Thus, the results obtained here show the limits of applica-
bility of existing analytical methods and demonstrate the
difficulty of identifying classes of systems for which it is
possible to match the necessary and sufficient conditions
for global stability.

In the general case, when considering various nonlinear-
ities, it is possible to synthesize systems with a large
number of coexisting attractors (equilibria, limit cycles,
chaotic attractors), see e.g. [Wang and Chen, 2013, Zhang
and Chen, 2017, Stankevich et al., 2017, Kuznetsov et al.,
2017, Chen et al., 2017]. However, in these examples
the nonlinearities were non-scalar, or the derivatives of
the nonlinearities changed their signs. Therefore, these
nonlinearities did not satisfy the conditions of Kalman
conjecture. In this article, we demonstrate new counterex-



ample to the Kalman conjecture with three co-existing
stable limit cycles. The mutual disposition of co-existing
attractors in counterexamples to the Kalman conjecture
(depending on the dimension of the system) and possibility
of managing the number of attractors (e.g. finding the
maximum possible number of attractors) are open prob-
lems for the further study.
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Harmonic Balance Method and Stability of
Discontinuous Systems

Kudryashova E. V., Kuznetsov N. V., Kuznetsova O. A.,

Leonov G. A., and Mokaev R. N.

Abstract The development of the theory of discontinuous dynamical systems and

differential inclusions was not only due to research in the field of abstract mathe-

matics but also a result of studies of particular problems in mechanics. One of first

methods, used for the analysis of dynamics in discontinuous mechanical systems,

was the harmonic balance method developed in the thirties of the 20th century. In

our work the results of analysis obtained by the method of harmonic balance, which

is an approximate method, are compared with the results obtained by rigorous math-

ematical methods and numerical simulation.

1 Introduction

The development of the theory of discontinuous dynamical systems and differential

inclusions was not only due to research in the field of abstract mathematics in the

thirties of the last 20th century but also a result of studies of particular problems in

mechanics. In the thirties and forties of the 20th century J. Hartog, A. Andronov,

N. Bautin, M. Keldysh were among the first who rigorously treated the mathemat-

ical peculiarities of discontinuous dynamical models [1, 2, 3] on the examples of

mechanical models. One of first methods, used for the analysis of stability and os-

cillations in discontinuous dynamical models, was the harmonic balance method

(or the describing function method) developed in the thirties of the 20th century
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[4]. This method is not strictly mathematically justified and is one of approximate

methods of analysis of oscillation in nonlinear systems. Nowadays we can apply

various rigorous analytical and reliable numerical methods, which have been devel-

oped from that time till now: mathematical theory of differential inclusions (see,

e.g. [5, 6, 7, 8, 9] and others), direct Lyapunov method and frequency methods (see,

e.g. [6, 10]), special numerical approaches for solving differential inclusions (see,

e.g. [11, 12, 13]).

In our work for the Hartog, Keldysh and modified Fitss models we compare the

results of analysis obtained by the method of harmonic balance with the results

obtained by rigorous mathematical methods and numerical simulation.

2 Hartog model

In 1930, J. Hartog studied vibrations in a mechanical model with dry friction1 de-

scribed by the following equation [1].

mẍ+ kx =−ϕ(ẋ), ϕ(ẋ) = F0sign(ẋ) (1)

where m > 0 is a mass, k > 0 is spring stiffness, F0 > 0 is the dry friction coefficient.

Following the mechanical sense, Hartog defined sign(0) as a value from [−F0,F0]
and, thus, the discontinuous differential equation (1) has a segment of equilibria

(rest segment).

Follow the theory of differential inclusion, for the model (1) we consider the

discontinuity manifold: S = {ẋ : ẋ = 0} on the phase space (x, ẋ), define ϕ(ẋ) on S
as the set [−F0,+F0], and get differential inclusion

mẍ+ kx ∈ −ϕ̂(ẋ), ϕ̂(ẋ) =
{

ϕ(ẋ), if ẋ �= 0,
[−F0,+F0], if ẋ = 0.

(2)

The solutions of (2) are considered in the sense of Filippov [5]. Remark that here

solutions cannot slide on the discontinuity manifold S, but can tend to the rest seg-

ment:

Λ = { −F0/k ≤ x ≤ F0/k, ẋ = 0} ⊂ S,

or pierce the manifold S\Λ . The phase portrait of (2) is shown in Fig. 1.

For equation (2), the harmonic balance methods states that there is no periodic

oscillations for any values of the parameters. This result can be rigorously justified

by the analog direct Lyapunov method for differential inclusions [6, Lemma 1.5,

p.58]. Consider Lyapunov function

V (x, ẋ) =
1

2
(mẋ2 + kx2). (3)

1 The history of the dry friction law can be found, e.g, in [14].
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x

y

-F /k0 F /k0

Fig. 1 Phase portrait of system (1): trajectories tend toward the rest segment {|x| ≤ F0/k, y = 0}.

Then we have

V̇ (x, ẋ) =−F0ẋsign(ẋ)< 0, ∀ẋ /∈ S

and the equality V (x(t), ẋ(t))≡ const can hold only for x ∈Λ . Thus, any solution of

(2) converges to the rest segment Λ .

3 Two-dimensional Keldysh model

M. Keldysh, in 1944, studied a two-dimensional model of damping flutter in aircraft

control systems with dry friction [3]

Jẍ+ kx =−μ ẋ−ϕ(ẋ), μ = λ −h, ϕ(ẋ) = (F0 +κ ẋ2)sign(ẋ), (4)

where J > 0 is the moment of inertia, k > 0 is sprig stiffness, hẋ is an excitation

force proportional to the angular velocity ẋ, f (ẋ) = λ ẋ+ϕ(ẋ) is the nonlinear char-

acteristic of hydraulic damper with dry friction, F0 > 0 is the dry friction coefficient,

λ > 0 and κ > 0 are parameters of the hydraulic damper.

Using the harmonic balance method, Keldysh formulated the following result: If

−2.08
√

F0κ = δK < μ

then all trajectories of (4) converge to the rest segment; If μ < −2.08
√

F0κ then
there are two periodic trajectories (limit cycles) ≈ a± cos(ωt) with amplitudes
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a±(μ) =
3

8κ

√
J
k

(
πμ ±

√
π2μ2 − 32

3
κF0

)
; (5)

Other trajectories behave as follows. The trajectories, emerging from infinity, tend
to the external limit cycle. The domain between two limit cycles is filled with trajec-
tories unwinding from the internal (unstable) limit cycle and winding onto external
(stable) limit cycle. The stability domain bounded by the internal limit cycle is filled
with trajectories tending to one of the possible equilibrium on the rest segment.

By analogy with the above consideration of the Hartog model, we transform the

Keldysh model to the differential inclusion

Jẍ+ kx+μ ẋ ∈ −ϕ̂(ẋ), ϕ̂(ẋ) =
{

ϕ(ẋ) ẋ �= 0,
[−F0,+F0] ẋ = 0,

(6)

consider Lyapunov function (3) with m = J, and get

V̇ (x, ẋ) =−μ ẋ2 − ẋϕ(ẋ)< 0, ∀ẋ /∈ S.

Thus, if ẋϕ(ẋ)> 0 for ẋ �= 0, i.e.

−2
√

F0κ < μ,

then any solution of (6) converges to the rest segment Λ [15]. Here the estimate

obtained by direct Lyapunov method is close to the Keldysh estimate obtained by

the harmonic balance method.

To check the second part of Keldysh’s result we use numerical simulation [13].

The qualitative behavior of trajectories in the case of two coexisting limit cycles is

shown in Fig. 2.

-1.5 -1 -0.5 0 0.5 1 1.5 2
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0

0.5

1
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2

-2 -1 0 1 2
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-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 2 Numerical experiment with F0 = 0.2,J = 1,k = 1,κ = 1. Outer trajectory winds onto stable
limit cycle, inner trajectory unwinds from unstable limit cycle and winds onto the stable limit
cycle (hidden attractor). Left subfigure: μ =−1.3967δK : a+(μ)>>a−(μ)>F0. Right subfigure:
μ =−1.7847δK : a+(μ)>>F0>a−(μ).
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Here the largest limit cycle is a hidden attractor [16, 17, 18, 19, 20, 21, 22, 23]

and corresponds to the flutter. Fig. 3 shows the bifurcation of collision of the limit

cycles and the rest segment. In the right subfigure of Fig. 3, both limit cycles have

disappeared and trajectories tend to the rest segment while the second part of the

Keldysh estimate is valid.

-4 -2 0 2 4
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0

1

2

3

4
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-3

-2

-1

0

1

2

3

4

Fig. 3 Numerical experiment with F0 = 3,J = 1,k = 1,κ = 1. Left subfigure: μ = −1.0713δK ,
a+(μ) � F0 > a−(μ); outer trajectory winds onto stable limit cycle, internal unstable limit cycle
is not revealed numerically (due to stiffness). Right subfigure: μ = −1.0076δK , F0 � a+(μ) >
a−(μ) (dash circles); outer trajectory approaches the stationary segment, both limit cycles have
disappeared.

4 Discontinuous modification of the Fitts counterexample

It is known that the harmonic balance method may lead to wrong conclusion on the

global stability. For example, it states that the Aizerman and Kalman conjectures on

the global stability of nonlinear control systems are valid, while various counterex-

amples with hidden attractors have been found (see, e.g. [24, 25, 26, 27, 28, 29, 30,

16, 31, 32]). Consider a modification of one of first counterexamples to the Kalman

conjecture [33]

ẋ1 = x2, ẋ2 = x3, ẋ3 = x4,

ẋ4 ∈ −a0x1 −a1x2 −a2x3 −a3x4 + ϕ̂(−x3), ϕ̂(ẋ) =
{

sign(−x3) x3 �= 0,
[−1,1] x3 = 0,

(7)

where ai > 0.

The sliding mode surface for the system (7) is given by

D = {(x1,x2,x3,x4) ∈ R
4
∣∣ x3 = x4 = 0,−1 ≤ a0x1 +a1x2 ≤ 1}
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and the rest segment is

Λ = {(x1,x2,x3,x4) ∈ R
4
∣∣ x2 = x3 = x4 = 0,− 1

a0
≤ x1 ≤ 1

a0
}.

x1

x2 x3= x4= 0

a
0 x

1  + a
1 x

2 = 1

0 1/a0-1/a0

a
0 x

1  + a
1 x

2 = -1

Fig. 4 Sliding mode surface {(x1,x2,x3,x4) ∈R
4
∣∣ x3 = x4 = 0,−1 ≤ a0x1 +a1x2 ≤ 1} for system

(7). Arrowed lines define the motion on the surface, thick line defines the rest segment.

This system has infinite sector of the linear stability and, thus, the harmonic bal-

ance method can not reveal any periodic solutions [16]. However, for parameters

a0 = 0.981919, a1 = 0.121308, a2 = 2.0254, a3 = 0.12 it can be found numerically

periodic solution (see Fig. 5) with initial data [34, 33]

(x0
1,x

0
2,x

0
3,x

0
4) = (−0.62520516260693109534342362490723,

−3.7324097072650610465825278562594, 0,

3.4754169728697120793989274111636)

Using the continuation procedure and passing from parameters a0 = 0.981919,
a1 = 0.121308, a2 = 2.0254, a3 = 0.12 to parameters a0 = 1.0004, a1 = 4.08, a2 =
2.08, a3 = 0.4 it is possible to localize non-periodic oscillating solution (see Fig. 6).

Conclusions

While harmonic balance method is widely used for study of stability and oscillations

of nonlinear dynamical systems, it may lead to wrong results. Some limitations of

the use of harmonic balance method for the study of systems with dry friction and

rest segment are demonstrated.
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Fig. 5 Periodic solution of system (7) for parameters a0 = 0.981919, a1 = 0.121308, a2 = 2.0254,
a3 = 0.12. Thick dark gray line defines the projection of the sliding mode surface on the corre-
sponding three-dimensional hyperspace (x1,x3,x4) (or (x2,x3,x4)), light gray line (or dot) defines
the projection of the rest segment.
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Fig. 6 Non-periodic oscillating solution of system (7) for parameters a0 = 1.0004, a1 = 4.08,
a2 = 2.08, a3 = 0.4 Thick dark gray line defines the projection of the sliding mode surface on
the corresponding three-dimensional hyperspace (x1,x3,x4) (or (x2,x3,x4)), light gray line (or dot)
defines the projection of the rest segment.
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ẋ = f1(x, y, z, ϕ) = α1

(
β4(y − x)− (A+B + g(ϕ) +G)x

)
,

ẏ = f2(x, y, z, ϕ) = α2

(
β2

(
β3y − z

)− β1y − β4(y − x)
)
,

ż = f3(x, y, z, ϕ) = α3

(
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(
β3y − z

))
,

ϕ̇ = f4(x, y, z, ϕ) = x.
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E = {(x, y, z, ϕ) ∣∣x = y = z = 0, ϕ ∈ R)}. -:1
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+ α1α3 ((A+Bg(ϕ0) +G+ β4)β2) + α2 α3 β2 (β1 + β4) ,

P0 = α1α2α3 β2

(
(A+Bg(ϕ0) +G+ β4) (β1 + β4)− β2

4

)
.

 %"
&���������  $" ����
���� ���� ��� 
����
�������
 �������� �� ��
��� ������

J ��� � 
��� ��'������� ���� 
�����������' ��'����
��� (0, 0, 0, 1)∗� ��� �����
����
��� ��'��������� ���
� ��� 
������ �������� �� ��
� ����������� p ∈ E ��
���
�� �� ��� ���� �� ���������� E� ��
�� �	����
� �� ��� ��������� �	���� ���� p
�� ���
����� �	 ��� ��
�� �	����
� �� �������
�� �	����  ���� ��'� �������������	�


��
����� �
�����	� (%) ��� ������� �������"� #���� �� p ��� ����� ��'�������� ����
��'����� ���� ������ ���� �� �� ��
���	 �������

*

�����' �� ��� +�����������
 
�������� �� ��������	� ��� ��� ����
��� ��'���
������ ��  $" ���� ��'����� ���� ������ �, P2 > 0� P0 > 0 ��� P2P1 − P0 > 0�
��������� ���� �� ��� ������ ���������	 ��� ��� ���� �� ��������
 ���������

P2 P1 − P0 = Q2 ν
2 +Q1 ν +Q0  -"

���� �����
� �� ν = α1Bg(ϕ0)� �����

Q2 = α2 (β1 − β2 β3 + β4) + α3β2,

Q1 = Q2
2 + α1

(
2 (A+G+ β4)Q2 − α2β

2
4

)
,

Q0 = α1

(
(A+G+ β4)Q2 − α2β

2
4

)
((A+G+ β4)α1 +Q2)

+ α2α3β2

(
α1β

2
4 + (β1 + β4)Q2

)
.

 ."
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 ����

��� ������ �

��� ������	�
�
� 
� ��� ��� ��� �
��
��
� �
�	�

D =
(
Q2

2 + α1α2 β
2
4

)2 − 4α2 α3 β2 Q2

(
(β1 + β4)Q2 + α1β

4
4

)
. ���

�
� ��������� 
� ��� �
�
�� 

 ��� ��
� 
� ���������� ���� ��� ���
���� 
� �����
��
�� ��� ��� �
 �� �������� �������� � � ��� �
�������� Q2 > 0 �� 
����� !�
��
ν = α1Bg(ϕ0) ≥ 0 �
� ��� ϕ0 ∈ R� �
 ������� ��� �
�������� P2P1 − P0 > 0 �� ��

�������� �
� ��"���
� �
 ��#� ������ 

 ���� �

�� �� � D < 0�� 
� ��� 
�����#�
�

�� 
� ��� �� ��� ��� ������ �

����

 �� �����$��� �% D ≥ 0� Q1 > 0� Q0 > 0 
&
���������� P2 > 0� P0 > 0 ��� �����$�� �
� ��� ϕ0 ∈ R� �%

(P2 ≥) α1 (A+G+ β4) + α2 (β1 − β2 β3 + β4) + α3β2︸ ︷︷ ︸
=κ1

> 0,

(P0 ≥) α1α2α3 β2

(
(A+G+ β4) (β1 + β4)− β2

4

)
︸ ︷︷ ︸

=κ2

> 0.
�'(�

����� �� �� �
������ �
 �
�	����� ��� �
��
��
� �����	�
�

����� �� �� ��� ���	�
 �� ��
�����

 α1,2,3� β1,2,3,4� A� B� G �
� 
	�� ����

��� ���������
 κ1 > 0� κ2 > 0� Q2 > 0� ���

D ≥ 0, Q1 > 0, Q0 > 0, �
 D < 0 �''�

����� ���� ���� ����� �� ��� ���� �� ��	����
�� E �
 ������� ����	��� 
�������

� ������ ����	�	�
 ����
�	�

&
 
���� �
 ����� ��� ��
��� ��������� 
� ��� ��
� ��� ��� �� �

����� ��� �
��
��
�
)����

# ��
���

�

V = 1
2

(
x2

α1
+ y2

α2
+ z2

α3

)
, �'*�

����� ��� ��� �
��
��
� ����#���#� ��

� ��� �
����

� 
� �����	 �*��

V̇ = −(β4+A+Bg(ϕ)+G)x2+2β4xy−(β1−β2β3+β4)y
2+(β2(β3−1))yz−β2z

2

= −γ1

(
x− β4y

γ1

)2

− γ2

(
y − 1

2
β2(β3−1)z

γ2

)2

− γ3z
2, �'��

�����

γ1 = β4+A+Bg(ϕ)+G, γ2 = β1−β2β3+β4

(
1−β4

γ1

)
, γ3 = β2

(
1−β2(β3−1)2

4γ2

)
.

�'+�

� �
	 ��� ε > 0 ���	� ���
�
 δ > 0� 
��� ����� �� |u(0)− ueq| < δ� ���� |u(t)− ueq| < ε
�
 ����� �
	 ��� t > 0� ������ ���� ����� �����	�	
� �	��
�
	� 
� ueq ����
 ���� ueq �


�
����� ������
� 
����� ��� ��

 ���	� ���
�
 δ > 0� 
��� ���� �� |u(0) − ueq| < δ�
���� limt→∞ |u(t)−ueq| = 0� ���
� ��� �
 ��� �
�
�� ��� 
���� 
� ��� ���
���� �
���

�
��� �	��� ��
�� ��� ���� 
� � �����	���



� �� �����	
�� �	 
��

����� B > 0� �� �	
�

γ1 ≥ β4 +A+G︸ ︷︷ ︸
=μ1

, γ2 ≥ β1 − β2β3 + β4

(
1− β4

μ1

)
︸ ︷︷ ︸

=μ2

, γ3 ≥ β2

(
1− β2(β3−1)2

4μ2

)
︸ ︷︷ ︸

=μ3

.

��
�
����� �� �� �������� �� ������	�� ��� ��������� ��	������

����� �� �� ��� ���	�
 �� ��
�����

 α1,2,3� β1,2,3,4� A� B� G �
� 
	�� ���� ���
���������
 μ1 > 0� μ2 > 0� μ3 > 0 ����� ���� ��� ���� �� ��	����
�� E �
 ��
������
�������� 
������ ���� ��
 ��� �����
����� �������
 ε = V (x, y, z) ������ �� ���� ����
� 
	�������� 
���� 
���	
 ε ��� ��
 ��� �
������
� �
�� �	�
��� �� ���
� ���
�

� ������ �� ���� T ����
 ����� ��� �
������
� ����

 ��� �������
 ��� 
�����
���
� �
��� ���� � !"�

� ������� ���	����	


��� �	�	������ α1 = 108� α2 = α3 = 5 · 107� β1 = β2 = 4 · 10−5� β3 = 2.5�
β4 = 2.22 · 10−5� A = 0.0676� B = 0.3682� G = −0.0677 ��	���� 	���	����� �
�
�	� �� ����� �� � ���� ��� ���� ���! ��! ����� 	���	����� 	�� ����"�#����� ����
���� ������� �� ���� ����	��� ������ �� ��� ���� �� �$�������	 E 	�������� �� ���
��%������ ���� �&'�(�! )���
�� ����� ����� �� 	 ��������� �� ����	��� �$�������	
�� E� ��� ����	��� �	������ �� ����� �	 ���� 	���	������ ��� ��
�	���� �� 	��
��"�#������ 	���	����� �� 	 ��	�������� �	�*� 	��� ����� 	���	����� �� ���� � �����
��������� 	�� 	��� �	���� +������,! ��� ����� ��	��� ��� �	� ���� �!�!� 
	�����
�
�������	� 	��������� ��-� �
�! ��� ��	��� �� 	�� ��"�#������ 	���	����� 	�� ��"
������	���� �� ����� ����	� ����������� �� � �	���	� � ����� �	� �� ���	���� 	�
	 �����	��.	���� ��/� �� ��� ������ �	�� �� )������0� �/�� ������� �� ��� ������
	�� ����	� ����������� �� ����� � ���� �� ���"���������	� ��� ����	� � �����!
1��	�*� ��	� ����� ����� �� 	� ��������� ���� �� �$�������	 E �� � ���� ���� ���
�	� �� �������� � �������	� 	�������� ���� 	�� ��������� 	���	�����!

2�� �	� ��� ��	� ��� ������ �� �	�	������ ��
�� � ��� ���������� �� 3���	 �
���� ��� �������� ���� ��� ������ �� �	�	������ ������������� �� ��� ����������
�� 3���	 �! 4��� 	�� �$�������	 	�� ���	�� ��	���� ��� ��������� �	��� 	�� ��
��������5

�	� � ���� ��� �	� �� �	���	�� ����	�� ��	��� ���� 	�� ��	6�������� ���� �� ���
���� �� �$�������	 E7

��� � ���� ��� �	 �	
� ������ 	���	����� ���� ������� �� E7
��� � ���� ��� �	� �� ���������� ����� ��	6�������� �	� ���� �� ��%��� �� ���

(x, y, z) �����	���!

4��� ���� �� ��� �$�������	 �� E 	�� ����	���� ��� ��������� �	��� 	�� �� ��������5

�	� � ���� ��� �	� �� ��	�����"��*� ��!�! ���� 	�� ��	6�������� �#���� ����	���
�$�������	 ���� �� ��� ��	��� �$�������	 �� E�7

��� � ���� ��� �	� �� �	���	�� ������	��
� �	�� ��	6�������� �� ��� ��	
� 	� 	�"
������� � ������7 �� ���� �	�� � ���� ��� �	� �	
� ����"�#����� 	���	������7

��� � ���� ��� �	� �� ����������!
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xy

ϕ

E

��� ������� ����� u0 =

(10−2, 0, 0, 0)	

xy

ϕ

E

��� ������� ����� u0 =

(10−2, 0, 0, 5 · 10−4)	

xy

ϕ

E

��� ������� ����� u0 =

(10−2, 0, 0,−5 · 10−4)	
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�����
 �����
���� ��	��� �� ������ ��� 
�� ���������� α1 =
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In this article using analytical method called Fishing principle we obtain the region of param-
eters, where the existence of a homoclinic orbit to a zero saddle equilibrium in the Lorenz-like
system is proved. For a qualitative description of the different types of homoclinic bifurcations, a
numerical analysis of the obtained region of parameter is organized, which leads to the discovery
of new bifurcation scenarios.
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1. Introduction

In 1963, famous meteorologist E. Lorenz discovered [Lorenz, 1963] a strange attractor in the following
Rayleigh-Bénard convection model: 




ẋ = −σ(x− y),

ẏ = rx− dy − xz,
ż = −bz + xy,

(1)

where d = 1, σ > 0 is a Prandtl number, r > 0 is a Rayleigh number, b > 0 is a parameter that determines
the ratio of the vertical and horizontal dimensions of a convection cell. Equations (1) are also encountered in
other mechanical and physical problems, for example, in the problem of fluid convection in a closed annular
tube [Rubenfeld & Siegmann, 1977], for describing the mechanical model of a chaotic water wheel [Tel &
Gruiz, 2006], the model of a dissipative oscillator with an inertial nonlinearity [Neimark & Landa, 1992],
and the dynamics of a single-mode laser [Oraevsky, 1981].
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Later on, for d 6= 1 it was suggested various Lorenz-like systems, such as Chen system [Chen & Ueta,
1999] (d = −c, c > σ

2 , r = c − σ), Lu system [Lu & Chen, 2002] (d = −c, c > 0, r = 0), and Tigan-
Yang systems [Tigan & Opris, 2008; Yang & Chen, 2008] (d = 0), which have dynamics differing in certain
aspect form the Lorenz system dynamics (see corresponding discussions e.g. in [Leonov & Kuznetsov, 2015;
Barboza, 2018]).

Using the following smooth change of variables (see, e.g. [Leonov, 2016]):

η := σ(y − x), ξ := z − x2

b (2)

one can reduce system (1) to the form




ẋ = η,

η̇ = −(σ + d)η + σξx+ σ(r − d)x− σ
b x

3,

ξ̇ = −bξ − (2σ−b)
bσ xη.

(3)

Then, by changing

t :=
√
σ(r − d)t, x :=

x√
b(r − d)

, ϑ :=
η√

bσ(r − d)
, u :=

ξ

r − d
system (3) can be reduced to the form





ẋ = ϑ,

ϑ̇ = −λϑ− xu+ x− x3,

u̇ = −αu− βxϑ,
(4)

λ =
(σ + d)√
σ(r − d)

, α =
b√

σ(r − d)
, β =

2σ − b
σ

.

Using the following change of variables (see, e.g. [Leonov, 2013]):

ν := y, u := z − x2

the well-known Shimizu-Morioka system [Shimizu & Morioka, 1980; Leonov et al., 2015a]




ẋ = y,

ẏ = (1− z)x− λy,
ż = −α(z − x2)

(5)

with β = 2 can be also transformed to form (4).
The following Lorenz-like system from [Ovsyannikov & Turaev, 2017]:





Ẋ = Y,

Ẏ = X − λY −XZ −X3,

Ż = −αZ +BX2

(6)

can be also reduced to the system of form (4) by using the following change the variables:

X :=
√

α
B+α x, Y :=

√
α

B+α y, Z := z + B
B+αx

2, (7)

and if β = 2B
B+α < 2.

Thus, in this article it is convenient for us to consider and study system (4). Its equilibria have the
following form:

S0 = (0, 0, 0), S± = (±1, 0, 0). (8)

It is easy to show that for positive α, β, λ the equilibrium state S0 is always a saddle, and S± are stable

equilibria if β < λ(λα+α2+2)
(λ+α) .
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The seminal work [Lorenz, 1963] initiated the development of chaotic dynamics and, in particular,
the description of scenarios of transition to chaos. An important role in such scenarios plays a homoclinic
bifurcation, when in the phase of dynamical system a homoclinic orbit appear. This bifurcation is related to
global changes of system’s dynamics, such as changes in basins of attraction of attractors and the emergence
of chaotic behavior [Wiggins, 1988; Shilnikov et al., 1998, 2001; Homburg & Sandstede, 2010; Afraimovich
et al., 2014], and is applied in various fields of science, for instance, in mechanics, chemistry and theory
of population (see, e.g, [Kuznetsov et al., 1992; Champneys, 1998; Argoul et al., 1987]). Difficulties in
studying of dynamics in the vicinity of a homoclinic orbit was noted by Poincaré [Poincare, 1892, 1893,
1899]. In this paper for the Lorenz-like system (4) we analytically prove the existence of a homoclinic orbit
and make an attempt to study the various scenarios of homoclinic bifurcation numerically.

2. Existence problem of homoclinic orbit. Analytical method.

Definition 2.1. The homoclinic orbit x(t) of an autonomous system of differential equations

ẋ = f(x, q), t ∈ R, x ∈ Rn (9)

for a given value of parameter q ∈ Rm is a phase trajectory that is doubly asymptotic to a saddle equilibrium
x0 ∈ Rn, i.e.

lim
t→+∞

x(t) = lim
t→−∞

x(t) = x0.

Here f(x, q) is a smooth vector-function, Rn = {x} is a phase space of system (9). Let γ(s), s ∈ [0, 1] be a
smooth path in the space of the parameter {q} = Rm. Consider the following Tricomi problem [Tricomi,
1933; Leonov, 2012] for system (9) and the path γ(s): is there a point q0 ∈ γ(s) for which system (9) with
q0 has a homoclinic orbit?

Consider system (9) with q = γ(s) and introduce the following notions. Let x(t, s)+ be an outgoing
separatrix of the saddle point x0 (i.e. lim

t→−∞
x(t, s)+ = x0) with a one-dimensional unstable manifold. Define

by xΩ(s)+ the point of the first crossing of separatrix x(t, s)+ with the closed set Ω:

x(t, s)+ 6∈ Ω, t ∈ (−∞, T ),

x(T, s)+ = xΩ(s)+ ∈ Ω.

If there is no such crossing, we assume that xΩ(s)+ = ∅ (the empty set).
Now let us formulate a general method for proving the existence of homoclinic trajectories for sys-

tems (9) called the Fishing principle [Leonov et al., 2015c; Leonov, 2012, 2013, 2014].

Theorem 1. Suppose that for the path γ(s) there is an (n − 1)-dimensional bounded manifold Ω with a
piecewise-smooth edge ∂Ω that possesses the following properties:
(i) for any x ∈ Ω \ ∂Ω and s ∈ [0, 1], the vector f(x, γ(s)) is transversal to the manifold Ω \ ∂Ω;
(ii) for any s ∈ [0, 1], f(x0, γ(s)) = 0, the point x0 ∈ ∂Ω is a saddle;
(iii) for s = 0 the inclusion xΩ(0)+ ∈ Ω \ ∂Ω is valid;
(iv) for s = 1 the relation xΩ(1)+ = ∅ is valid (i.e. xΩ(1)+ is an empty set);
(v) for any s ∈ [0, 1] and y ∈ ∂Ω \ x0 there exists a neighborhood U(y, δ) = {x ∈ Rn | |x− y| < δ} such

that xΩ(s)+ 6∈ U(y, δ).
If conditions (i)–(v) are satisfied, then there exists s0 ∈ [0, 1] such that x(t, s0)+ is a homoclinic orbit

of the saddle point x0.

For the further investigation of system (4) we prove several auxiliary statements using the Lyapunov
function

V (x, ϑ, u) = ϑ2 − u2

β
− x2 +

x4

2
, (10)

which has the following derivative along the solutions of system (4):

dV

dt
= (gradV, f) = 2

(
−λϑ(t)2 +

α

β
u(t)2

)
. (11)
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Lemma 1. Let λ = 0 and β > 0. Then the separatrix

lim
t→−∞

x(t) = lim
t→−∞

ϑ(t) = lim
t→−∞

u(t) = 0

starting from the saddle x = ϑ = u = 0 tends to infinity as t→ +∞.

Proof. Assume the contrary. Then in this case the separatrix has an ω-limit point x0, ϑ0, u0. From (11)
we can obtain that the arc of trajectory x̃(t), ϑ̃(t), ũ(t), t ∈ [0, T ] with initial data x̃(0) = x0, ϑ̃(0) = ϑ0,
ũ(0) = u0 also consists of ω-limit points and satisfies the relation ũ(t) = 0, ∀ t ∈ [0, T ]. Then from the third
equation of (4) we can obtain that ϑ̃(t)x̃(t) = 0, ∀t ∈ [0, T ]. This implies the following:

(x̃(t)2)• = 2 x̃(t) ϑ̃(t) = 0, ∀t ∈ [0, T ].

Thus, x̃(t) = const, ϑ̃(t) = 0, ũ(t) = 0, ∀ t ∈ [0, T ]. Then it is easy to see that x̃(t), ϑ̃(t), ũ(t) are an
equilibrium point. From (11) and the relation V (0, 0, 0) = 0 > −1/2 = V (±1, 0, 0) it follow that x̃(t) =
ϑ̃(t) = ũ(t) ≡ 0. But in this case the trajectory x(t), ϑ(t), u(t) is a homoclinic one and V (x(t), ϑ(t), u(t)) ≡ 0.

Then from (11) it follows that u(t) ≡ 0. Repeating the arguments that we held earlier for x̃(t), ϑ̃(t), ũ(t),
we get that x(t) = ϑ(t) = u(t) ≡ 0. The latter contradicts the assumption that x(t), ϑ(t), u(t) is a separatrix
of the saddle x = ϑ = u = 0.

Thus, the separatrix x(t), ϑ(t), u(t) has no ω-limit points and tends to infinity as t→ +∞. �

Consider system (4) with λ ≥ 0, β > 0, and assume that

α(
√
λ2 + 4 + λ) > 2(β − 2). (12)

Inequality (12) implies that there exists a number L > 0, such that

L >

√
λ2 + 4− λ

2
,

βL

α+ 2L
< 1. (13)

Introduce the notions K = βL
α+2L < 1 and M = 1−K.

Consider the separatrix x+(t), ϑ+(t), u+(t) of the zero saddle point of system (4), where x(t)+ > 0,
∀t ∈ (−∞, τ), τ is a number, and lim

t→−∞
x(t)+ = 0 (i.e. positive outgoing separatrix is considered).

Lemma 2. Let the following inequality holds:

x+(t) ≥ 0, ∀ t ∈ (−∞, τ ] (14)

and M > 0. Then there exists a number R > 0 (independent of parameter τ) such that x+(t) ≤ R,
|ϑ+(t)| ≤ R, |u+(t)| ≤ R for all t ∈ (−∞, τ ].

Proof. Define the manifold Φ as follows:

Φ =

{
x ∈ [0, x0], ϑ ≤ min

{
Lx,

√
ϑ2

0 + x2 − M
2 x

4

}
, u ≥ −Kx2

}
.

Here ϑ0 is an arbitrary positive number (e.g., ϑ0 = 1), and x0 is a positive root of the equation

ϑ2
0 + x2 − M

2
x4 = 0. (15)

Inequalities (13), K > 0 and ϑ ≤ Lx in a small vicinity of x = ϑ = 0 implies that at a certain
time interval (−∞, τ1), τ1 < τ the separatrix x+(t), ϑ+(t), u+(t) belongs to Φ. In order to prove that the
separatrix belongs to Φ for all t ∈ (−∞, τ ] consider the parts of the boundary of Φ ∩ {x > 0} and show
that they transversal. These boundaries are the following surfaces or the parts of surfaces:

δ1Φ =
{

(x, ϑ, u) ∈ R3
∣∣ x ∈ (0, x0), ϑ = Lx, u ≥ −Kx2

}
,

δ2Φ =
{

(x, ϑ, u) ∈ R3
∣∣ x ∈ (0, x0), ϑ2 = ϑ2

0 + x2 − M
2 x

4, u ≥ −Kx2
}
,

δ3Φ =
{

(x, ϑ, u) ∈ R3
∣∣ x ∈ (0, x0), ϑ < Lx, u = −Kx2

}
,

δ4Φ =
{

(x, ϑ, u) ∈ R3
∣∣ x = x0, ϑ < 0

}
.
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Consider a solution x(t), ϑ(t), u(t) of system (4), which at the point t is on the surface δ1Φ. From (13)
it follows that

dϑ

dx
= −λ+

1− x2 − u
L

< −λ+
1−Mx2

L
< −λ+

1

L
, ∀x ∈ (0, x0].

Thus, we have

dϑ

dx
< L, ∀x ∈ (0, x0], v = Lx, u ≥ −Kx2.

So the surface δ1Φ is transversal and if x(t), ϑ(t), u(t) is on the surface δ1Φ, then for this solution there
exists a number ε(t) such that ϑ(τ)− Lx(τ) < 0, ∀τ ∈ (t, t+ ε(t)).

Now consider a solution x(t), ϑ(t), u(t) of system (4), which at the point t is on the surface δ2Φ and
consider the function V (x, ϑ) = ϑ2 − x2 + M

2 x
4. On the set δ2Φ the following relations hold

V = 0, V̇ (x, ϑ) = −2λϑ2(t)− 2ϑ(t)x(t)
(
u(t) +Kx2(t)

)
< 0.

This implies transversality of δ2Φ and if x(t), ϑ(t), u(t) is on the surface δ2Ω, then for this solution there
exists a number ε(t) such that V (x(τ), ϑ(τ)) < 0, ∀τ ∈ (t, t+ ε(t)).

Consider a solution x(t), ϑ(t), u(t) of system (4), which at the point t is on the surface δ3Φ. Then

(u+Kx2)• = −αu− βxϑ+ 2Kxϑ = x((−β + 2K)v + αKx) =
αβx

α+ 2L
(Lx− v) > 0.

This implies transversality of δ3Φ and if x(t), ϑ(t), u(t) is on the surface δ2Φ, then for this solution there
exists a number ε(t) such that u(τ) +Kx2(τ) > 0, ∀τ ∈ (t, t+ ε(t)). Transversality of δ4Φ is obvious.

From the relations proved above and the obvious inequality ẋ(t) < 0 for x(t) = x0, ϑ(t) < 0 it follows
that the separatrix (x+(t), ϑ+(t), u+(t)) belongs to Φ for all t ∈ (−∞, τ ].

Notice that the third equation of system (4) yields the relations

(u+
β

2
x2)• + α(u+

β

2
x2) =

αβ

2
x2.

Taking into account the boundedness of x+(t), i.e. x+(t) ∈ (0, x0) for all t ∈ (−∞, τ ], it follows the
boundedness of u+(t) on (−∞, τ ]:

u+(t) +
β

2
(x+(t))2 ≤ β

2
x2

0, ∀t ∈ (−∞, τ ].

Hence, we have the estimate

u+(t) ≤ β

2
x2

0, ∀t ∈ (−∞, τ ]. (16)

The second equation of system (4) and boundedness of x+(t) and u+(t) on (−∞, τ ] yields the bound-
edness of ϑ+(t) for λ > 0 and boundedness of ϑ̇+(t) for λ = 0. From the first equation of the system (4)
and from the boundedness of x+(t) and ϑ̇+(t) it follows the boundedness of ϑ+(t) on (−∞, τ ]. This implies
the assertion of the lemma. �

Lemma 3. Suppose inequality (12) and the following inequality:

λ2 > 4
[(

1 + β
2

)
x2

0 − 1
]

(17)

hold, where x0 – is the positive root of equation (15). Then x+(t) > 0, ∀ t ∈ (−∞,+∞).

Proof. Here the conditions of Lemma 2 are satisfied. Therefore, if x+(t) > 0, ∀ t ∈ (−∞, τ), then x+(t) ∈ Ω,
∀ t ∈ (−∞, τ) and relation (16) holds. If x+(τ) = 0, then there exists a time moment T < τ such that for
any P > 0 we have

ϑ+(T ) = −Px+(T ), ϑ+(t) > −Px+(t), ∀ t ∈ (−∞, T ). (18)
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For the relation ϑ(T ) = −Px(T ) we have the following:

dϑ

dx
> −λ+ D

P , D =

(
1 +

β

2

)
x2

0 − 1.

It is clear that if P = λ
2 +

√
λ2

4 −D, then

d

dx
(ϑ+ Px) > P − λ+ D

P = 0 (19)

on Ω. Here we use condition (17).
From (19) it follows that

(ϑ(T )+)• + P (x(T )+)• > 0.

It follows that there is no T < τ , such that v+(T ) = −P x+(T ), which contradicts relations (18). This
implies Lemma 3. �

The obtained lemmas and the Fishing principle (see Theorem 1) allows us to formulate for system (4)
the following result.

Theorem 2. Consider a smooth path λ(s), α(s), β(s), s ∈ [0, 1) in the parameter space of system (4). Let

λ(0) = 0, lim
s→1

λ(s) = +∞,
lim sup
s→1

α(s) < +∞, lim sup
s→1

β(s) < +∞ (20)

and the following condition holds:

α(s)(
√
λ(s)2 + 4 + λ(s)) > 2(β(s)− 2), ∀s ∈ [0, 1). (21)

Then there exists s0 ∈ (0, 1) such that system (4) with α(s0), β(s0), λ(s0) has a homoclinic orbit.

Proof. Here we present the sketch of the proof using the Fishing principle (Theorem 1), and Lemmas 1,
2, 3. We choose the set Ω as follows:

Ω =
{

(x, ϑ, u) ∈ R3
∣∣ x = 0, ϑ ≤ 0, ϑ2 + u2 ≤ R2

}
,

where R is a sufficiently large positive number. Conditions (i) and (ii) in Theorem 1 are satisfied for any
s ∈ [0, 1).

Lemmas 1 and 2 imply that, for s = 0 condition (iii) in Theorem 1 holds, while Lemmas 1 and 3 imply
that, for s = s1 sufficiently close to 1 condition (iv) in Theorem 1 is satisfied.

Condition (v) holds, since system (4) has the solution

x(t) ≡ ϑ(t) ≡ 0, u(t) = u(0) exp(−αt),
which satisfies

lim
t→−∞

u(t) =∞.

Consequently, for large |t|, t < 0, the solutions with initial data from a small neighborhood of the point
x = ϑ = 0, u = u0 leave the cylinder

{
(x, ϑ, u) ∈ R3

∣∣ ϑ2 + u2 ≤ R2
}

, where R is a sufficiently large positive
number. Therefore, by Lemma 1, condition (v) in Theorem 1 holds.

Hence, a path with s ∈ [0, s1] satisfies the conditions of Theorem 1, and therefore there exists s0, for
which the assertion of the Theorem 2 holds. �

Corollary 2.1. If β(s) ∈ (0, 2) and conditions (20) hold for any s ∈ [0, 1), then there exists s0 ∈ (0, 1) such
that system (4) with α(s0), β(s0), λ(s0) has a homoclinic orbit.

The statement of Corollary 2.1 was proved previously in [Leonov, 2016].
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Corollary 2.2. Of particular interest to this study is the following path:

λ(s) =
s√

1− s, α(s) = δ
√

1− s, β(s) ≡ β ∈ (0, 2 + δ), s ∈ [0, 1), δ > 0. (22)

This path satisfies all conditions of Theorem 2, and therefore there exists a number s0 ∈ (0, 1) such that
system (4) with parameters (22) and s = s0 has a homoclinic orbit.

In this case, conditions (22) describe the region of the parameters Bδ,β = { (δ, β)
∣∣ δ > 0, β ∈ (0, 2 + δ)} in

the parameter plane (δ, β) (see Fig. 1). The eigenvalues and eigenvectors of the matrix of the linear part

0.2 0.4 0.6 0.8
0

1

2

3

1.1 δ

β

10

0.5

1.5

2.5 β < 2 + δ

Bδ,β

Figure 1. Region of parameters Bδ,β (light green) in the plane (δ, β), for which there exists a homoclinic orbit in system (4).

of (4) at the saddle S0 have the following form:

λs = −α = −δ
√

1− s, vs = (0, 0, 1),

λss = 1
2

(
−
√
λ2 + 4− λ

)
= − 1√

1−s , vss =
(
−
√

1− s, 1, 0
)
,

λu = 1
2

(√
λ2 + 4− λ

)
=
√

1− s, vu =
(

1√
1−s , 1, 0

)
,

(23)

where vs, vss, vu are mutually perpendicular and the saddle value σ0 = λu +λs = (1− δ)
√

1− s is negative
if δ > 1, zero if δ = 1, and positive if δ ∈ (0, 1). The equilibrium S0 has stable and unstable local invariant
manifolds dimW s

loc = 2 and dimW u
loc = 1, respectively, intersecting at S0.

Remark 2.1. The result of Corollary 2.2 for path (22) with β ∈ (0, 2) and δ = 1 was proved in [Leonov,
2015, 2016] and later repeated in [Ovsyannikov & Turaev, 2017] (taking into account transformation (7)).

All the homoclinic bifurcations observed previously in [Leonov, 2012, 2013, 2016] during the variation
of bifurcation parameter s within the interval (0, 1) are described by the following two scenarios: either the
change of attracting equilibria for separatrices of the saddle zero equilibrium (this case is related to the
classical Lorenz system with parameters σ = 10, b = 8/3 and r ≈ 13.926), or the collision of two stable
limit cycles with a saddle equilibrium and merging into one stable limit cycle (see description of these
scenarios e.g. in [Sparrow, 1982; Wiggins, 1988; Shilnikov et al., 2001]). Here, using numerical simulations,
we describe for δ < 1 several new homoclinic bifurcation scenarios.

3. Numerical analysis of a homoclinic bifurcation in the Lorentz-like system

Homoclinic bifurcation phenomena is related to the mathematical description of the transition to chaos
called in literature as Shilnikov chaos. Numerical analysis and visualization of Shilnikov chaos is a difficult
task, since it requires the study of unstable structures that are sensitive to errors in numerical methods.
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3.1. Numerical experiments

In this article, to study numerically scenarios of homoclinic bifurcations with different signs of the saddle
value σ0 we consider the region of parameters Bδ,β = { (δ, β)

∣∣ δ ∈ (0, 1.1], β ∈ (0, 2 + δ)} in the δβ-plane,
which satisfies conditions (22), and for points filling the region Bδ,β calculate an approximate interval
[s , s] ⊂ (0, 1), such that within it there exist a homoclinic orbit. We select a grid of points Bgrid ⊂ Bδ,β
with the predefined partitioning steps δgrid = βgrid = 0.01 and for each point (δcurr, βcurr) ∈ Bgrid we choose
the partition 0 < s0

step < 2s0
step < . . . , (N − 1)s0

step < 1 of the interval (0, 1) with step s0
step = 1

N = 0.001.
For the system (4) with parameters δcurr, βcurr, λ(scurr), α(scurr) we integrate numerically the separatrix
(xsepa(t), ϑsepa(t), usepa(t)) of the saddle equilibrium S0 of system (4) on the chosen time interval t ∈
[0, Ttrans] using the ode45 solver in MATLAB with best available values of relative and absolute tolerances.

To determine possible existence of limit sets (stable limit cycles, or chaotic attractors) and ex-
clude transient process we also numerically integrate trajectories xlim(t), ϑlim(t), ulim(t) with initial data
(xlim(0), ϑlim(0), ulim(0)) = (xsepa(Ttrans), ϑsepa(Ttrans), usepa(Ttrans)) on the chosen interval t ∈ [0, Tlim].
Resulting trajectories (xsepa(t), ϑsepa(t), usepa(t)) and (xlim(t), ϑlim(t), ulim(t)) are colored according to the
gradient between blue to red colors, corresponding to the integration time interval (this helps us to de-
tect possible untwisting of trajectories). Note that due to symmetry of the system (4) it is sufficient to
integrate only one separatrix Γ+(t) = (xsepa(t), ϑsepa(t), usepa(t)) and the second one can be expressed as
Γ−(t) := (−xsepa(t),−ϑsepa(t), usepa(t)). When equilibria S± are saddle-foci, we also integrate the separatrix
of the S+ in the described above manner.

In numerical integration of trajectories via ode45 we use the event handler ODE Event Location to
detect the following events:
• separatrix Γ+(t) tends to infinity. For the values of parameter s close to 0 system (4) is not dissipative

in the sense of Levinson, and the separatrix of the saddle equilibrium S0 slowly untwists to ”infinity”. If
the separatrix leaves the ball with the big enough radius Rinf , the integration is terminated.
• separatrix Γ+(t) tends to equilibrium S+ (or Γ−(t) to S−), towards which it is released. If for some s = scr

the separatrix tends to nearest equilibrium state, then for s > scr there will be no other bifurcations. At
this point it is possible to terminate the variation of parameter s and skip the next pair (δ, β) ∈ Bgrid.
To verify the attraction to the equilibrium state we detect the event of falling into its small vicinity of
the radius εeq.

If for a fixed pair (δ, β) ∈ Bgrid during the scanning of the interval (0, 1) with the step s0
step there

are two consecutive values s, s ∈ (0, 1) such that the behavior of the separatrices Γ±(t) changes as we go
from the parameters λ(s), α(s) to the parameters λ(s), α(s), then the segment [s , s] is also scanned with
the si+1

step = 0.1sistep, i = 0, 1, . . .. This consecutive reduction of the partitioning step allows us to find the
boundary values s, s which specify a bifurcation with a certain accuracy s − s > εthreshold. All the values
parameters of the described numerical procedure are outlined in Table 3.1.

Table 1. Values of the parameters of the numerical procedure for scanning the re-
gion Bδ,β .

δgrid βgrid s0step εthreshold Ttrans Tlim Rinf εeq

10−2 10−2 10−3 10−12 4 · 103 103 100 10−1

After the described scanning of the region Bδ,β for each grid point (δ, β) ∈ Bgrid the values s, s ∈ (0, 1)
are found numerically, such that the change of the parameter s on the interval [s , s] ⊂ (0, 1) specifies a
homoclinic bifurcation. Further, the type of homoclinic bifurcation is refined by numerical analysis of the
behavior of the Poincaré map on the corresponding sections Σin, Σout, chosen in the neighborhood of the
saddle S0 (Fig. 2). The section Σin is chosen perpendicular to the vector vs at a distance of εin from S0,
the section Σout – is perpendicular to the vector vu and is located at a distance of εout from S0. On the
section Σin a rectangular grid of points Σin

grid with sides collinear to the vectors vu and vss is chosen. We

match the color according to the color scale (from blue to red) to each row of grid points, starting with
the row that lies at the intersection of Σin and the plane {vs, vss}, and paint the grid in this way (Fig. 3).
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S0

vs

vss

Σin

Σout

Πloc

Πglob

−vss

−vu vu

Figure 2. Poincaré sections Σin and Σout in the neighborhood of the saddle S0 = (0, 0, 0) of the system (4).

Next, the evolution of the Poincare map Π = Πglob ◦ Πloc : Σin → Σin of the given grid of points Σin
grid is

numerically studied. In our experiment, the maps Πloc : Σin → Σout and Πglob : Σout → Σin are simulated in
MATLAB using numerical procedure ode45 and built-in event handler ODE Event Location to determine
the moment of hitting on the corresponding section. To accelerate the described calculations we also use
the MATLAB Parallel Computing Toolbox.

During the numerical simulations we found that for a sufficiently small rectangle after the first Poincaré
map its image falls inside its domain. Therefore, from the rectangular grid of points it is possible to ”cut
out” the middle part and to consider the half frame in the experiment. The size of the cutted-out part
is chosen in such a way that the intersection point of the separatrix Γ+(t) released from the saddle S0

with the section Σin belongs to it along with its small neighborhood. This approach allows us to avoid the
simulation of trajectories which are close to the homoclinic loop and which require calculations over large
time intervals.

Numerical studies show that in the region covered by the given grid points, there are 4 regions with
different homoclinic bifurcations (Fig. 4). In the yellow region marked with by (I) before bifurcation
separatrices Γ±(t) were attracted to the opposite equilibria S∓ and after bifurcation – to the nearest ones,
i.e. to S±. In this case, during the inverse bifurcation (i.e. while moving in the direction from s = 1 to
s = 0), two unstable limit cycles are born from the homoclinic butterfly. This scenario corresponds to
the case of the homoclinic bifurcation in classical Lorenz system [Lorenz, 1963] with parameters σ = 10,
b = 8/3, r ≈ 13.926 (see e.g. [Sparrow, 1982; Wiggins, 1988; Shilnikov et al., 2001]).

In the blue region marked by (II) during the bifurcation, one large stable ”eight”-type limit cycle
collides with the saddle equilibrium S0 and splits into two stable limit cycles around S±. Numerical analysis
of the separatrices behavior for all δ ∈ [1, 1.1], β ∈ (0, 2 + δ) within the chosen partition and the dynamics
analysis of the grid points Σin

grid on the Poincaré section Σin under the successive action of Poincaré map

Π : Σin → Σin give us a reason to think that there is no chaotic attractors in the vicinity of the homoclinic
bifurcation in the case of zero and negative saddle values σ0.

Also, two new scenarios of homoclinic bifurcation, which was not described in [Leonov, 2012, 2013,
2016], are found. In the red area marked with (III), depending on values of parameters δ, β, two symmetric
limit cycles Θ± around S± coexist with either one stable ”eight”-type limit cycle, or a strange attractor
which attract the separatrices Γ±(t). Then this attractor (periodic or strange) loses stability and sepa-
ratrices Γ±(t) are attracted to the opposite limit cycles Θ∓. After the bifurcation the separatrices Γ±(t)
are attracted to the nearest limit cycles Θ±. As in the case of classical Lorenz system, in this case during
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S0
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vss

Σin

Σout

Σin
grid

Πloc Σin
grid

−vss

−vu vu

(a) Πloc : Σin → Σout maps rectangular grid of points Σin
grid to

a ”half bowtie” shape grid Πloc(Σin
grid

)
.

S0

vs

vss

Σin

Σout

Σin
grid

Πloc Σ in
grid

−vss

−vu vu

Πglob

(b) Πglob : Σout → Σin shrinks Πloc(Σin
grid

)
into a ”stick”

shape grid Πglob(Σin
grid

)
.

Figure 3. Rectangular grid of points Σin
grid and its image Πglob(Σin

grid

)
on the Poincare section Σin.
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Figure 4. Different types of homoclinic bifurcations in the system (4).

the inverse bifurcation scenario, two unstable limit cycles are born from the homoclinic butterfly, but here
they separetes two stable cycles Θ±. For example, for parameter values δ = 0.9, β = 0.2, the dynamics of
separatrices in the phase space is shown in Fig. 5 and the dynamics of the grid of points Σin

grid before and

after bifurcation is presented in Fig. 9 and Fig. 10), respectively. For parameter values δ = 0.5, β = 2.2
the case of coexistence of two symmetric limit cycles Θ± around S± with a strange attractor defined by
the separatrix Γ+(t) is presented in Fig. 6. Note that here one could consider two types of vicinities of the
bifurcation point in the parameter space: [s, s] and [s′, s], where [s, s] ⊂ [s′, s]. In the vicinity [s, s] a simple
bifurcation is observed in which, as described just above, there is a change in attracting limit cycles Θ±

for the separatrices Γ±(t) of the saddle S0. At the same time, on the interval [s′, s) the chaotic behavior
of the separatrices Γ±(t) can be observed, which can make one to think that the homoclinic bifurcation is
embedded in the strange attractor.

In the green region marked with (IV), when an unstable homoclinic orbit occurs, one strange attractor
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xv

u

S0

S+S−

(a) s = 0.060131460578

xv

u

S0

S+S−

(b) s = 0.060131460581

Figure 5. Homoclinic bifurcation for δ = 0.9, β = 0.2.

(a) s′ = 0.7979407438278198 (b) s ∈ [0.7979407447814941, 0.8059291805341841]

Figure 6. Behavior of separatrix Γ+(t) of saddle S0 and separatrices of saddle-foci S± before homoclinic bifurcation for
δ = 0.5, β = 2.2. Homoclinic bifurcation occurs on the interval s ∈ [s, s], where s = 0.8059291805416346.

split into two (or, if we track the change in the parameter s from 1 to 0, then we can say that two strange
attractors merge into one strange attractor). For example, for parameter values δ = 0.9, β = 2.899, the
dynamics of separatrices in the phase space is shown in Fig. 7 and the dynamics of the grid of points Σin

grid

before and after bifurcation is presented in Fig. 11 and Fig. 12), respectively.
For numerical verification of the behavior of the Poincaré map Π : Σin → Σin for the case of splitting

attractors we perform the following test. Consider the grid of points Σattr
grid corresponding to the inter-

section between one of the attractors and the Poincaré section Σin and color it according to the scale
(from blue to red). We save the coordinates of grid points assuming that approximately this grid rep-
resents the line segment. Next, we calculate the image of Σattr

grid under the action of the Poincaré and

after that for each point x0 ∈ Σattr
grid we compare its coordinate with the coordinate of Π(x0). As a re-

sult of this experiment, we have obtained that, under the indicated assumptions, the Poincaré map be-
haves approximately the same way as the know one-dimensional tent map with parameter ≈ 2 (Fig. 8).
Using special methods for finite-time Lyapunov exponents and finite-time Lyapunov dimension estima-
tions (see e.g. [Leonov et al., 2015c,b; Kuznetsov et al., 2018a]), we calculate the corresponding val-
ues of the largest finite-time Lyapunov exponent, LE1(tend, x0) = 0.0316 > 0, and local finite-time
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Figure 7. Homoclinic bifurcation of the two merging attractors at δ = 0.9, β = 2.899.

x

v

x

v

stretching folding

Figure 8. Behavior of the Poincaré map Π : Σin → Σin before the homoclinic bifurcation of merging attractors for system (4)
with δ = 0.9, β = 2.899.

Lyapunov dimension, LD(tend, x0) = 2.0131 for one of the attractors along the trajectory1 with initial

1Remark that in numerical studying of long-term behavior of trajectories of nonlinear systems one usually could face the
following problems. On the one hand, the result of numerical integration of trajectories via approximate methods is strongly
influenced by round-off errors in the general case accumulate over a large time interval and do not allow tracking the ”true”
trajectory without the use of special methods and approaches [Galias & Zgliczyński, 1998; Tucker, 1999; Liao & Wang,
2014; Lozi & Pchelintsev, 2015; Kehlet & Logg, 2017]. On the other hand, the problem arises of distinguishing between the
established behavior defined by the sustain limit sets (periodic orbits, strange attractors) from the so-called transient behavior
corresponding to a transient set in phase space, which nevertheless can exist for a long time [Grebogi et al., 1983; Lai & Tel,
2011; Chen et al., 2017; Kuznetsov et al., 2018a].
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data x0 = (−0.0479075467563750, 8.41428910156156, 13.7220943173008) and time interval [0, tend = 1000].
These numerical experiments give us a reason to think that the considered attractor (and the symmetric
one) is strange.

Numerical simulations of separatrices outside the region Bδ,β (i.e. for the case β > 2 + δ) show that
system (4) in this region is not dissipative in the sense of Levinson and separatrices tend to infinity. Thus,
numerically we obtain that outside the region Bδ,β there are no homoclinic bifurcations.

Remark that according to the description of the numerical experiments on the study of homoclinic
bifurcation scenarios all the attractors (periodic and chaotic) obtained here for system (4) are self-excited,
i.e. they could be revealed numerically by the integration of trajectories, started in small neighborhoods
of unstable equilibria. However, there may also exist hidden attractors2, which basins of attraction are not
connected with equilibria and which are “hidden” somewhere in the phase space. The search for hidden
attractors may be a challenging task, especially in the case when dynamical system is not dissipative in the
sense of Levinson and so it is necessary to consider an unbounded set of initial data for their visualization.

The classical Lorenz attractor in system (1) with σ = 10, r = 28, and b = 8/3 is a self-excited
one with respect to all equilibria, and it is still an open question3 [Kuznetsov, 2016a, p. 14] whether for
some parameters there exists a hidden Lorenz attractor (see corresponding discussion, e.g. in [Leonov &
Kuznetsov, 2015; Leonov et al., 2015c; Chen et al., 2017; Sprott & Munmuangsaen, 2018; Kuznetsov &
Mokaev, 2019]). However, there are a number of physical dynamical models representing generalizations
of the Lorenz system, which possess hidden chaotic attractors (see e.g. [Leonov et al., 2015b,c; Kuznetsov
et al., 2018a; Chen et al., 2017]).

4. Conclusion

In the papers [Leonov et al., 2015c; Leonov, 2012, 2013], it is suggested the effective analytical approach,
called Fishing principle, which allows one not only to prove the existence of a homoclinic orbit to a saddle
equilibrium in the phase space of dynamical system, but also to organize a convenient analytical-numerical
study of homoclinic bifurcation scenarios, which are observed while changing the particular bifurcation
parameter s within the Fishing principle (see Eq. (22)).

However, subsequent studies [Leonov & Mokaev, 2018; Leonov, 2018] have shown the practical difficul-
ties of the numerical implementation of this approach related to the calculations with finite accuracy and
round-off errors. In this paper we overcome these difficulties as much as possible while remaining within
the framework of standard calculations in MATLAB.

We prove analytically the existence of homoclinic orbit to a saddle zero equilibrium in the Lorenz-like
system (4) and perform a numerical scanning of the corresponding parameter region Bδ,β, where during the
variation of parameter s ∈ (0, 1) homoclinic bifurcations occur. As a result, classical Lorenz scenarios of
homoclinic bifurcations were observed as well as two new scenarios of homoclinic bifurcations in system (4)
were found numerically, e.g., the homoclinic bifurcation of two merging strange attractors.

It is the beginning of study of these types of homoclinic bifurcations. Further studies and refinements of
the obtained numerical results may require consideration of general numerical approaches for the analysis of
homoclinic bifurcations (see e.g. [Champneys et al., 1996; Homburg & Sandstede, 2010; Doedel & Oldeman,
2012]).
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(a) i = 0 (b) i = 1

(c) i = 25 (d) i = 50

(e) i = 75 (f) i = 100

Figure 9. Dynamics of the half-frame of points Σin
grid on the section Σin under repeated applications of the Poincaré map

Πi : Σin → Σin, i = 1, 2, . . . , for δ = 0.9, β = 0.2, s = 0.060131460578 (before bifurcation).
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(a) i = 0 (b) i = 1

(c) i = 25 (d) i = 50

(e) i = 75 (f) i = 100

Figure 10. Dynamics of the half-frame of points Σin
grid on the section Σin under repeated applications of the Poincaré map

Πi : Σin → Σin, i = 1, 2, . . . , for δ = 0.9, β = 0.2, s = 0.060131460581 (after bifurcation).
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(a) i = 0 (b) i = 1

(c) i = 25 (d) i = 50

(e) i = 75 (f) i = 100

Figure 11. Dynamics of the half-frame of points Σin
grid on the section Σin under repeated applications of the Poincaré map

Πi : Σin → Σin, i = 1, 2, . . . , for δ = 0.9, β = 2.899, s = 0.7955 (before bifurcation).
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(a) i = 0 (b) i = 1

(c) i = 25 (d) i = 50

(e) i = 75 (f) i = 100

Figure 12. Dynamics of the half-frame of points Σin
grid on the section Σin under repeated applications of the Poincaré map

Πi : Σin → Σin, i = 1, 2, . . . , for δ = 0.9, β = 2.899, s = 0.7958 (after bifurcation).
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In this short report, for the classical Lorenz attractor we demonstrate the applications of the
Pyragas time-delayed feedback control technique and Leonov analytical method for the Lyapunov
dimension estimation and verification of the Eden’s conjecture. The problem of reliable numerical
computation of the finite-time Lyapunov dimension along the trajectories over large time intervals
is discussed.

I. LORENZ ATTRACTOR AND PYRAGAS
STABILIZATION OF EMBEDDED UNSTABLE

PERIODIC ORBITS

Consider the classical Lorenz system [1]




ẋ = −σ(x− y),

ẏ = rx− y − xz,
ż = −bz + xy,

(1)

with physically sound parameters σ, r > 0, and b ∈ [0, 4].
For r < 1 it has only one globally stable equilibrium
S0 =

(
0, 0, 0

)
, and for r > 1 the equilibrium S0 turns

into a saddle, while two new symmetric equilibria appear:

S± =
(
±
√
b(r − 1), ±

√
b(r − 1), r − 1

)
, (2)

which stability depends on the values of parameters.
System (1) is dissipative in the sense of Levinson (see

e.g. [2]), i.e. there exist a global bounded absorbing set
containing global attractor Aglob, and in some cases this
attractor exhibits chaotic behavior. For some values of
parameters, it is possible to observe a case of multista-
bility, when the global attractor consists of several local
attractors. To get a visualization of such attractors one
needs to choose an initial point in the basin of attrac-
tion of a particular attractor and observe how the tra-
jectory, starting from this initial point, after a transient
process visualizes the attractor: an attractor is called a
self-excited attractor if its basin of attraction intersects
with any open neighborhood of an equilibrium, other-
wise, it is called a hidden attractor [2–5]. It was discov-
ered numerically by E. Lorenz that in the phase space
of system (1) with parameters r = 28, σ = 10, b = 8/3
there exist a chaotic attractor A, which is self-excited
with respect to all equilibria S0, S±.

The ”skeleton” of a chaotic attractor comprises embed-
ded unstable periodic orbits (UPOs) (see e.g. [6–8]), and
one of the effective methods among others for the com-
putation of UPOs is the delay feedback control (DFC)

∗ Corresponding author: nkuznetsov239@gmail.com

approach, suggested by K. Pyragas [9] (see also discus-
sions in [10–12]). This approach allows Pyragas and his
progeny to stabilize and study UPOs in various chaotic
dynamical systems. Nevertheless, some general analyt-
ical results have been obtained [13], showing that DFC
has a certain limitation, called the odd number limitation
(ONL), which is connected with an odd number of real
Floquet multipliers larger than unity. In order to over-
come ONL, later Pyragas suggested a modification of the
classical DFC technique, which was called the unstable
delayed feedback control (UDFC) [14].

Rewrite system (1) in a general form

u̇ = f(u). (3)

Let uupo(t, uupo10 ) be its UPO with period τ > 0, uupo(t−
τ, uupo10 ) = uupo(t, uupo10 ), and initial condition uupo10 =
uupo(0, uupo10 ). To compute the UPO and overcome ONL,
we add the UDFC in the following form:

u̇(t) = f(u(t)) +KB
[
FN (t) + w(t)

]
,

ẇ(t) = λ0cw(t) + (λ0c − λ∞c )FN (t),

FN (t) = C∗u(t)− (1−R)

N∑

k=1

Rk−1C∗u(t− kT ),

(4)

where 0 ≤ R < 1 is an extended DFC parameter, N =
1, 2, . . . ,∞ defines the number of previous states involved
in delayed feedback function FN (t), λ0c > 0, and λ∞c <
0 are additional unstable degree of freedom parameters,
B,C are vectors and K > 0 is a feedback gain. For initial
condition uupo10 and T = τ we have

FN (t) ≡ 0, w(t) ≡ 0,

and, thus, the solution of system (4) coincides with the
periodic solution of initial system (3).

For the Lorenz system (1) with parameters r = 28,
σ = 10, b = 8/3 using (4) with B∗ = (0, 1, 0), C∗ =
(0, 1, 0), R = 0.7, N = 100, K = 3.5, λ0c = 0.1, λ∞c =
−2, one can stabilize a period-1 UPO uupo1(t, u0) with
period τ1 = 1.5586 from the initial point u0 = (1, 1, 1),
w0 = 0 (see Fig. 1). Results of this experiment could be
repeated using various other numerical approaches (see
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Figure 1: Period-1 UPO uupo1(t) (red, period τ1 = 1.5586) stabilized using UDFC method, and pseudo-trajectory
ũ(t, uupo10 ) (blue, t ∈ [0, 100]) in system (1) with parameters r = 28, σ = 10, b = 8/3.

e.g. [15–17]), and are in agreement with similar results on
the existence of UPOs embedded in the Lorenz attractor
[18, 19]. However, the Pyragas procedure, in general, is
more convenient for UPOs numerical visualization.

For the initial point uupo10 ≈
(−6.2262,−11.0027, 13.0515) on the UPO uupo1(t) =
u(t, uupo10 ) we numerically compute the trajectory of
system (4) without the stabilization (i.e. with K = 0) on
the time interval [0, T = 100] (see Fig. 1b). We denote
it by ũ(t, uupo10 ) to distinguish this pseudo-trajectory
from the periodic orbit u(t, uupo10 ). One can see that on
the initial small time interval [0, T1 ≈ 11], even without
the control, the obtained trajectory ũ(t, uupo10 ) traces
approximately the ”true” periodic orbit u(t, uupo10 ). But
for t > T1, without a control, the trajectory ũ(t, uupo10 )
diverge from uupo1(t, uupo10 ) and visualize a local chaotic
attractor A.

Remark that in numerical computation of trajectory
over a finite-time interval it is also difficult to distinguish
a sustained chaos from a transient chaos (a transient
chaotic set in the phase space, which can persist for a
long time) [20]. This challenging task is related to an
open problem about the existence of a hidden chaotic
attractor in the Lorenz system (1) (see e.g. discussions
in [2, 21–23]).

II. LYAPUNOV DIMENSION ESTIMATION
AND EDEN CONJECTURE

Following [24, 25], let us outline the concept of the
finite-time Lyapunov dimension, which is convenient for
carrying out numerical experiments with finite time.

For a fixed t ≥ 0 let us consider the map u(t, ·) :
R3 → R3 defined by the shift operator along the solu-
tions of system (1): u(t, u0), u0 ∈ R3. Since system

(1) possesses an absorbing set, the existence and unique-
ness of solutions of system (1) for t ∈ [0,+∞) take place
and, therefore, the system generates a dynamical system(
{u(t, ·)}t≥0, (R3, | · |)

)
.

Consider linearization of system (1) along the solu-
tion u(t, u0) and its 3×3 fundamental matrix of solu-

tions Φ(t, u0): Φ̇(t, u0) = Df((u(t, u0))Φ(t, u0), where
Φ(0, u0) = I is a unit 3× 3 matrix. Denote by
σi(t, u0) = σi(Φ(t, u0)), i = 1, 2, 3, the singular val-
ues of Φ(t, u0) (i.e. the square roots of the eigenval-
ues of the symmetric matrix Φ(t, u0)∗Φ(t, u0) with re-
spect to their algebraic multiplicity)1, ordered so that
σ1(t, u0) ≥ σ2(t, u0) ≥ σ3(t, u0) > 0 for any u0 ∈ R3 and
t > 0.

Consider a set of finite-time Lyapunov exponents at
the point u0:

LEi(t, u0) =
1

t
lnσi(t, u0), t > 0, i = 1, 2, 3. (5)

Here, the set {LEi(t, u0)}3i=1 is ordered by decreasing (i.e.
LE1(t, u0) ≥ LE2(t, u0) ≥ LE3(t, u0) for all t > 0). The
finite-time local Lyapunov dimension [24, 25] can be de-
fined via an analog of the Kaplan-Yorke formula with
respect to the set of ordered finite-time Lyapunov expo-
nents {LEi(t, u0)}3i=1:

dimL(t, u0) = j(t, u0) +
LE1(t,u0)+··+LEj(,u0)(t,u0)

|LEj(t,u0)+1(t,u0)| , (6)

where j(t, u0) = max{m :
∑m
i=1 LEi(t, u0) ≥ 0}. Then

the finite-time Lyapunov dimension of dynamical system
with respect to a set A is defined as:

dimL(t,A) = sup
u0∈A

dimL(t, u0). (7)

1 Symbol ∗ denotes the transposition of matrix.
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The Douady–Oesterlé theorem [26] implies that for any
fixed t > 0 the finite-time Lyapunov dimension on a com-
pact invariant set A, defined by (7), is an upper estimate
of the Hausdorff dimension: dimHA ≤ dimL(t,A). The
best estimation is called the Lyapunov dimension [24]

dimLA = inf
t>0

sup
u0∈A

dimL(t, u0) =

= lim inf
t→+∞

sup
u0∈A

dimL(t, u0).

We use the adaptive algorithm for the computation of
the finite-time Lyapunov dimension and exponents for
trajectories on the local attractor A [25]. In order to dis-
tinguish the corresponding values for the stabilized UPO
u(t, uupo10 ) with a period τ1 = 1.5586 and for the pseudo-
trajectory ũ(t, uupo10 ) computed without Pyragas stabi-
lization in our experiment we use the following notations
for finite-time Lyapunov dimensions: dimL(u(t, ·), uupo10 )
and dimL(ũ(t, ·), uupo10 ), respectively.

The comparison of the obtained values of finite-time
Lyapunov dimensions computed along the stabilized
UPO and the trajectory without stabilization gives us
the following results. On the initial small part of the time
interval, one can indicate the coincidence of these values
with a sufficiently high accuracy. For the UPO and for
the unstabilized trajectory the finite-time local Lyapunov
dimensions dimL(u(t, ·), uupo10 ) and dimL(ũ(t, ·), uupo10 )
coincide up to the 4th decimal place inclusive on the in-
terval [0, t1m ≈ 7τ1]. After t > t1m the difference in val-
ues becomes significant and the corresponding graphics
diverge in such a way that the part of the graph corre-
sponding to the unstabilized trajectory is lower than the
part of the graph corresponding to the UPO (see Fig. 2b,
Fig. 3).

The Jacobi matrix at the saddle-foci equilibria S± has
simple eigenvalues, which give the following: dimL S± =
2.0136. The UPO uupo1 with period τ1 = 1.5586 has the
following Floquet multipliers: ρ1 = 4.7127, ρ2 = 1, ρ3 =
−1.19 · 10−10 and corresponding Lyapunov exponents:
{ 1
τ1

log ρi}3i=1. Thus, for the local Lyapunov dimension

of this UPO we obtain: dimL u
upo1 = 2.0678 / 2.0679 =

dimL(u(100, ·), uupo10 ).
Using an effective analytical technique, proposed by

Leonov [24, 27], which is based on a combination of
the Douady-Oesterlé approach and the direct Lyapunov
method, it is possible to obtain [28, 29] the exact formula
of the Lyapunov dimension for the global attractor Aglob

of the Lorenz system (1):

dimLAglob = 3− 2(σ+b+1)

σ+1+
√

(σ−1)2+4σr
(8)

for the case, when rσ > (σ + b)(b+ 1).

III. CONCLUSION

In this note, for the Lorenz system (1) with classical
values of parameters r = 28, σ = 10, b = 8/3 we have

studied the Eden conjecture [30, p.98] and obtained the
following relations:

dimLAglob = dimL S0 = 3− 2(σ+b+1)

σ+1+
√

(σ−1)2+4σr
=2.4013 >

> dimLA ≥ dimL u
upo1 = 2.0678 > dimL(ũ(100, ·), uupo10 )

= 2.0621 > dimL S± = 2.0136.

Here, since the global Lorenz attractor contains a
period-1 UPO: Aglob ⊃ uupo1 , we have the follow-
ing lower-bound estimate for the Lyapunov dimension:
dimLAglob ≥ 2.0678 = dimL u

upo1 . Similar experiment
and results for the Rössler system [31] are presented in
[32, 33].

Concerning the time of integration, remark that while
the time series obtained from a physical experiment are
assumed to be reliable on the whole considered time inter-
val, the time series produced by the integration of math-
ematical dynamical model can be reliable on a limited
time interval only due to computational errors (caused
by finite precision arithmetic and numerical integration
of ODE). Thus, in general, the closeness of the real tra-
jectory u(t, u0) and the corresponding pseudo-trajectory
ũ(t, u0) calculated numerically can be guaranteed on a
limited short time interval only.

In our experiment, if we continue computation over
a long time interval [0, 10000] of FTLD along the sta-
bilized UPO and the pseudo-trajectory obtained with-
out Pyragas stabilization, as a result, completely dif-
ferent values will be obtained (see Fig. 3). Evolu-
tion of dimL(u(t, ·), uupo10 ) along the stabilized UPO
will tend to the analytical value dimL u

upo1 = 2.0678,
computed via Floquet multipliers, while evolution of
dimL(ũ(t, ·), uupo10 ) along the pseudo-trajectory will con-
verge to the value 2.06222. These results are in good
agreement with the rigorous analysis of the time inter-
val choices for reliable numerical computation of trajec-
tories for the Lorenz system: the time interval for re-
liable computation with 16 significant digits and error
10−4 is estimated as [0, 36], with error 10−8 is estimated
as [0, 26] (see [47, 48]), and reliable computation for a
longer time interval, e.g. [0, 10000] in [49], is a challeng-
ing task that requires significant increase of the precision
of the floating-point representation and the use of super-
computers. Analytical aspects of this problem are related
to the shadowing theory (see e.g. [50]).

2 The following results on the dimension of the Lorenz attrac-
tor with parameters r = 28,σ = 10,b = 8/3 can be found
in the literature. In [34, p. 193] and [35, p. 3529] the fractal
(box-counting, capacity) dimension is estimated as 2.06± 0.01.
For the correlation dimension the following results are known:
2.05± 0.01 in [34, p. 193] and [36, p. 456]; 2.06± 0.03 in [37,
p. 47]; 2.049± 0.096 in [38, p. 1874]; 2.05 in [39, p. 80]. For
the Lyapunov dimension the following values have been com-
puted: 2.063 in [40, p. 92] and [41, p. 1957]; 2.05 in [42, p. 267];
2.062 in [38, p. 1874], [43, p. 115] and [44, p. 53]; 2.06215 [45,
p. 033124-3] and [39, p. 83]. Also, let us mention estimates for
the global attractor: 2.401 ≤ dimLAglob ≤ 2.409 [46, p. 170]
and dimLAglob ≈ 2.401... in [42, p. 267].
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Figure 2: Evolution of FTLDs dimL(u(t, ·), uupo10 ) (red) and dimL(ũ(t, ·), uupo10 ) (blue) computed on the time
interval t ∈ [0, 100] along the UPO uupo1(t) = u(t, uupo10 ) (red) and the trajectory ũ(t, uupo10 ) (blue) integrated

without stabilization, respectively. Both trajectories start from the point uupo10 = (−6.2262,−11.0027, 13.0515).
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naratne, I. Procaccia, Exploring chaotic motion through
periodic orbits, Physical Review Letters 58 (23) (1987)
2387.
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