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ABSTRACT

Aizenbud, Yariv
Random Projections for Matrix Decomposition and Manifold Learning
Jyväskylä: University of Jyväskylä, 2019, 26 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 2489-9003; 165)
ISBN 978-951-39-7965-2 (PDF)

The thesis focuses on solving problems that are related to the behavior of random
variables in high-dimensional spaces. The main motivation comes from the un-
derstanding that many of the scientific challenges involve large amounts of high-
dimensional data. It is known that there are always a small number of “hidden”
parameters that encode the “interesting” part of the data. The question is, how do
we identify and extract these parameters? This thesis is focused on two different
aspects of data analysis: Numerical linear algebra and manifold learning.

Numerical linear algebra is a major component for data analysis. It includes
matrix factorization algorithms such as SVD and LU. SVD is considered to be the
single most important algorithm in numerical linear algebra. However, due to the
computational complexity of classical SVD algorithms, they cannot be applied in
practice to huge datasets. One possible solution to this problem is to use low-rank
methods. The idea of low-rank methods is the fact that in many cases there are
dependencies and redundancies within the data. Therefore, the data can be well
approximated and processed by utilizing its low-rank property which results in
a faster processing of smaller data. In this thesis, Low-rank SVD and LU approx-
imation algorithms are presented. They create a trade-off between accuracy and
computational time. We improve on the state-of-the-art algorithms for Low-rank
SVD and LU approximation. Since matrix factorization algorithms play a central
central role in almost any modern computation, this part of the thesis provides
general tools for many of the modern big data, and data analysis challenges.

Understanding high-dimensional data via manifold learning. Many data
analysis problems are formulated in the language of manifold learning. A typical
assumption is that the data is on (or near) some unknown manifold embedded in
high dimensions, and the goal is to “understand” the structure of this manifold.
The thesis presents two result on this subject. First, a connection between two of
the most classical methods in manifold learning, PCA and least squares, is pre-
sented. Secondly, a method for regression over manifold is presented. It allows to
interpolate functions defined on manifolds given only the values of the function
in several sampled points, without knowing the manifold on which the function
is defined. The ability to solve regression problems over manifolds, can enable us
to gain new insights from complex sampled data.

Keywords: Matrix decompositions, Random projections, SVD, LU, manifold learn-
ing, Regression over manifolds



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Aizenbud, Yariv
Satunnaisprojektiot matriisin tekijöihin jakamisessa ja monisto-oppimisessa
Jyväskylä: University of Jyväskylä, 2019, 26 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 2489-9003; 165)
ISBN 978-951-39-7965-2 (PDF)

Väitöskirja keskittyy ratkaisemaan ongelmia, jotka liittyvät satunnaisten muut-
tujien käytökseen korkeaulottuvuuksissa avaruuksissa. Päämotivaatio tulee siitä
ymmärryksestä, että monet tieteelliset haasteet sisältävät suuria määriä korkeau-
lottuvuuksellista dataa. Samalla tiedetään, että pieni määrä ”piilossa pysyviä”
parametreja määrittää datan ”mielenkiintoisia” osia. Kysymys kuuluukin, kuin-
ka pystymme tunnistamaan ja uuttamaan nämä parametrit. Tämä väitöskirja kes-
kittyy data-analyysin kahteen alueeseen: Numeeriseen lineaariseen algebraan ja
”manifold learning” eli ”monisto-oppimisen” termillä tunnettuun lähestymista-
paan.

Tässä väitöskirjassa esitellään Low-rank SVD ja LU approksimaatioalgorit-
mit. Ne muodostavat kompromissin tarkkuuden ja laskenta-ajan välillä. Nämä
metodit parantavat nykyaikaisia algoritmeja Low-rank SVD ja LU approksimaa-
tioille. Uudet tulokset poistavat rajoitteita, jotka liittyvät ratkaistavissa olevien
haasteiden kokoon ja tarkkuuteen. Koska matriisin tekijöihin jakaminen on kes-
kiössä melkein kaikessa nykyaikaisessa laskennassa, tämä väitöskirjan osio tar-
joaa yleisesti hyödynnettäviä työkaluja moneen nykyaikaiseen suuren datan ja
data-analyysin ongelmanratkaisuun.

Väitöskirjan tulokset todistavat satunnaisprojektioiden tehokkuuden erilai-
sissa matriisin tekijöihin jakamisen metodeissa, sekä antavat uuden näkökulman
korkeiden ulottuvuuksien data-analyysille. Nämä kaksi aluetta ovat useiden tut-
kimusongelmien ytimessä. Tällä tutkimuksen alueella on yhä useita vastaamat-
tomia kysymyksiä, joiden tutkimuksessa satunnaisprojektiot voivat olla avuksi.

Avainsanat: Matriisien tekijöihin jakaminen, Satunnaisprojektiot,SVD, LU, monisto-
oppiminen, regressio monistoja hyödyntäen
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1 INTRODUCTION

In the modern world, many of the problems that concern scientists both in academia
and industry have to do with how to manipulate large amounts of data. A sim-
ple familiar example is provided by the ranking of web pages when searching
the Internet. There are billions of pages and each page has many parameters
that determine its content. The problem is to understand which parameters or
combinations of parameters are more relevant for ranking and which should be
considered as “noise". It is known for many years that there is always a small
number of parameters that encode the important part of the data. The question
is how do we extract them? In many cases, an equally important question is how
to extract them efficiently.

It is useful and illuminating to think that many of the phenomena in nature
that we do not understand are related to characterizing and understanding ran-
dom processes. Modeling a phenomenon via the properties of random variables
is a challenging task, but in many cases, such modeling can lead to important
new results. Maybe the simplest example is that averaging of many samples of
a signal with additive random noise with zero mean will be close to the clean
signal. This observation and its generalizations can help us denoise multidimen-
sional data with a low computational cost. Another example is the use of random
matrices. Random matrices can be used as a powerful tool in analyzing high di-
mensional big data problems. While processing raw data from high dimensional
problems is difficult and in many cases seems like an impossible task, the usage
of random matrices can reformulate the task to become feasible. Random matrix
theory is an active field of research that deals with the structure of matrices with
random entries. A fascinating new aspect of the advancements in this area is that
we can learn a lot about questions related to the “behavior" of data by the way
our data “interacts" with a random matrix. This idea leads to new and astonish-
ing results in many areas. Random matrices are applicable in numerous areas
such as thermodynamics, quantum chaos and structural biology.

The theses focuses on two areas, which at first sight looks very different,
but in each of which, deep understanding of random behavior can result in novel
theories and algorithms superior to existing approaches:
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1. Random projections for matrix factorization (see Section 1.1).
In this section we present two results:

(a) Randomized LU decomposition (based on [PI])
(b) Matrix Decompositions Using sub-Gaussian Random Matrices (based

on [PII])

2. Manifold Learning (see Section 1.2).
In this section we present two results:

(a) Approximating the Span of Principal Components via Iterative Least-
Squares (based on [PIII])

(b) Approximation of Functions over Manifolds: A Moving Least-Squares
Approach (based on [PIV])

1.1 Random projections for matrix factorization

Recently, developments that are based on random matrix theory resulted in new
algorithms for some of the classical building blocks of numerical linear algebra
(a recent review is given in [8, 32]). These algorithms provide an approximate
answer for several basic problems in numerical linear algebra while allowing to
adjust the trade-off between speed and precision for matrix decomposition re-
lated problems.

More formally, the idea of randomized decomposition algorithms is that
given a matrix A of size m× n (assume m ≥ n) and a random matrix G of size
n × k, the product AG is computed to obtain a smaller matrix that potentially
captures most of the range of A. In most of these applications, k is set to be much
smaller than n to obtain a compact approximation for A. The core of this idea
stands on the Johnson-Lindenstrauss Lemma (JL) [10]. The JL Lemma shows that
there is a random distribution of linear dimensionality reduction operators that
preserves, with bounded error and high probability, the norm of a set of vectors.
For example, Gaussian random matrices satisfy this property.

Matrix factorizations play an important role in many applications. There
are several ways to decompose a matrix that provide different insights into the
matrix/operator structure. We will focus on the Singular Value Decomposition
and the LU decomposition.

The Singular Value Decomposition (SVD) factorizes a real or complex
matrix. It generalizes the eigendecomposition of a positive semidefinite normal
matrix i.e., a symmetric diagonalizable matrix with positive eigenvalues, to any
m× n matrix. Formally, the singular value decomposition of an m× n matrix A
is a decomposition of the form

A = UΣV∗

where U ∈ Mm×m and V ∈ Mn×n are real or complex unitary matrices and Σ ∈
Mm×n is a rectangular diagonal matrix with non-negative real numbers on the
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diagonal. The values on the diagonal of Σ are called singular values.
Intuitively, SVD enables us to represent a matrix as a composition of a ro-

tation, scaling (different scaling in each axis) and another rotation. The singular
values tell us how much scaling is done in each axis. Large singular values tell us
that there are directions (vectors) which, after applying A, get much larger. The
largest singular value of A is exactly the operator norm (L2-norm) of A. Small
singular values tell us about directions/vectors that after application of A almost
or completely vanish. In many cases, small singular values are considered as
“noise" and are discarded.

As mentioned above, SVD has a strong connection to eigendecomposition.
Indeed, from a theoretical point of view, if we consider the positive semi-definite
matrix AA∗, then by using the SVD decomposition we can write

AA∗ = UΣV∗VΣU∗ = UΣ2U∗

which is exactly the eigendecomposition of AA∗. Another, perspective of SVD
provides us the Principal Component Analysis (PCA). The PCA of a matrix pro-
vides the principal components which are the directions in which the “data" has
the largest variance. These directions are exactly the rows of U (or rows of V,
depending if the “data" is written as rows or columns of the matrix A) in the
SVD.

Efficient computation of the SVD or eigendecomposition is a problem of
great importance. Unfortunately, there is no closed-form formula for computing
these decompositions (for matrices larger than 5× 5). Finding the eigenvalues
of a matrix of size n × n is equivalent to finding the roots of a polynomial of
degree n. Therefore, having a closed-form algorithm to find the eigenvalues of a
general matrix will result in an algebraic expression for the roots of a polynomial
of any given degree, which contradicts Abel-Ruffini’s Theorem [9].

Most of the known approaches for solving the eigenproblem are generaliza-
tions of the Power Iterations [28, 30]. The basic idea behind the Power Iteration
algorithm is to apply repeatedly A on some initial vector u, where in each iter-
ation the output is normalized. The limit of the iterations is the most dominant
eigenvector - see Algorithm 1. For a more rigorous and comprehensive treatment
see [28]. The random projection approach is similar in nature, but a careful analy-
sis shows that in many cases, a single application of the matrix on a set of random
vectors will provide enough information to recover the leading singular values.

Lower–Upper (LU) decomposition factors a matrix A ∈ Mm×n as the prod-
uct of a lower triangular matrix and an upper triangular matrix. The product
sometimes includes permutation matrices as well. Explicitly,

A = LU or PA = LU or PAQ = LU,

where L ∈ Mm×m is a lower triangular matrix with ones on the diagonal, U ∈
Mm×n is an upper triangular matrix, and P and Q are permutation matrices. LU
decomposition can be viewed as the matrix form of Gaussian elimination. LU
decomposition can also be considered as an extension of the Cholesky decompo-
sition for non-symmetric positive-definite matrices.
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Algorithm 1 Power Iterations

1: Input: A ∈ Rp×p, u ∈ Rp, where u is the first guess for the leading eigenvec-
tor (can be chosen at random).

2: Output: v ∈ Rp - the leading eigenvector of A.
3: v = u
4: repeat
5: vprev = v
6: z = Av
7: v = z

‖z‖
8: until ‖v− vprev‖ < ε

There are numerous applications for the LU decomposition. In many cases,
when machines solve systems of linear equations, and LU decomposition is used.
Many problems require to solve a system of linear equations (and thus compute
an LU decomposition) such as in optimization, circuit designing, and many more.
LU decomposition is also a critical component when inverting a matrix or com-
puting its determinant.

1.2 Data analysis and manifold learning in high dimensions

Manifold learning, high-dimensional data analysis, and regression over mani-
folds have been very active research fields for the past two decades. Big high-
dimensional datasets are common in many areas nowadays. The trend of bigger
and bigger datasets continues due to increasing availability of technology and
continuous technological advances. Typically, in large modern datasets, both
the number of observations as well as the number of features that are used are
large. The number of features in a dataset is considered the dimension of the
data, since each observation corresponds to a vector whose coordinates are de-
termined by these features. Analyzing these directly poses many challenges for
machine learning and data analysis methods, which are referred to as the “curse
of dimensionality”. The main common theme of “curse of dimensionality” prob-
lems is the relation between the high dimension of a dataset and the volume taken
by its data points in the space defined by data features. As the dimension of the
dataset increases, the data points occupy an increasingly smaller portion of the
space. As a result, the high dimensional representation of the data becomes too
sparse to directly obtain practical useful information from it.

Principle component Analysis (PCA) is a classic, yet key method in data
analysis. PCA has two equivalent interpretations: first, it finds the directions
in which the variance of the data is maximal, these directions are the ones that
“carry" the information in the data. The other directions, where the variance
is small, are considered as noise. The second interpretation is that PCA finds
linear space that approximate the data, and thus it can be thought of as linear
dimensionality reduction technique. PCA is also connected to the SVD described
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in Section 1.1. The generality and simplicity of the PCA also contribute to its
fame.

Unfortunately, in most cases, PCA does not answer all the questions in data
analysis. In many cases the data in not on a linear subspace, but rather on some
low-dimensional manifold. With the exception of deep neural nets, whose the-
oretical behavior is not well understood, the vast majority of algorithms in this
field are based on embedding the data into a low-dimensional space, either linear
as in PCA, or non-linear as in LLE, Isomap, Laplacian eigenmaps, diffusion maps.
These embeddings necessarily introduce distortions and errors, even if the data
were sampled from a manifold without noise, let alone in the noisy case. In most
cases no theory allows to analyze these distortions, and so there are no bounds
for the error introduced by the embedding.

One possible approach to “Learning a manifold", which does not require di-
mensionality reduction, is based on the Moving Least-Squares (MLS) framework.
The MLS approximation was originally designed for the purpose of smooth-
ing and interpolating scattered data, sampled from some multivariate function
[14, 16, 21, 22]. Then, it evolved to deal with surfaces (i.e., n − 1 dimensional
manifolds in Rn), which can be viewed as a function locally rather than globally
[3, 17]. This has been generalized lately in [27] to the Manifold Moving Least-
Squares (MMLS), which deals with manifolds of an arbitrary dimension d em-
bedded in Rn.



2 CONTRIBUTION

2.1 Contributions of the thesis to matrix factorization

The work in [PI], introduces a new algorithm for a fast randomized LU decom-
position that provides a low rank approximation for the LU decomposition (see
Algorithm 2. Formally, given an m× n matrix A and an integer r, the presented
LU decomposition algorithm generates matrices P, Q, L and U such that

‖PAQ− LU‖2 ≤ C(m, n, r)σr+1 (1)

with a negligible failure probability. C(m, n, r) depends on the size of the matrix
A and on r and also on the desired success probability. P and Q are orthogonal
permutation matrices, L is an m× r lower triangular matrix, U is a r × n upper
triangular matrix and σr+1 is the (r + 1)th singular value of A. This algorithm, as
in randomized SVD algorithms [8, 20, 33], projects the original (huge) matrix into
a randomized low-dimensional space and then calculates the decomposition in
this low-dimensional space. This approach results in a fast decomposition with
proven accuracy bounds. The randomized LU has the following advantages over
other randomized decompositions for low-rank approximation. First, since it is
based on LU decomposition, it is faster, uses less memory since computations are
done in-place, suitable to process sparse data and is fully parallelizable. See Fig-
ure 1 for running time comparison with other randomized decomposition meth-
ods. Second, the algorithm can run on a GPU with no GPU-CPU memory transfer
making it 10 times faster than the same algorithm that runs on a powerful eight-
core CPU. See Figure 2 for performance comparison between 8-core CPU and a
GPU . Third, the approximation error of the algorithm is close to the error ob-
tained using the randomized SVD. The analysis done in this chapter, in addition
to proving the performance bounds for the presented algorithm, also improves
the existing bounds for the randomized SVD decomposition. The algorithm was
later improved in [2].

The work in [PII], is concerned with the Singular Value Decomposition (SVD).
Formally, the SVD of an m×n matrix A is a decomposition of the form A = UΣV∗
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Algorithm 2 Randomized LU Decomposition
Input: A matrix of size m × n to decompose, k desired rank, l ≥ k number of
columns to use.
Output: Matrices P, Q, L, U such that ‖PAQ− LU‖ ≤ O(σk+1(A)) where P and Q
are orthogonal permutation matrices, L and U are the lower and upper triangular
matrices, respectively.

1: Create a matrix G of size n× l whose entries are i.i.d. Gaussian random vari-
ables with zero mean and unit standard deviation.

2: Y ← AG.
3: Apply rank revealing LU decomposition to Y such that PYQy = LyUy.
4: Truncate Ly and Uy by choosing the first k columns and the first k rows, re-

spectively, such that Ly ← Ly(:, 1 : k) and Uy ← Uy(1 : k, :).
5: B← L†

yPA.
6: Apply LU decomposition to B with column pivoting BQ = LbUb.
7: L← LyLb.
8: U ← Ub.

FIGURE 1 The execution times of different algorithms: Randomized SVD [20], Ran-
domized ID [20] (QR and LU [PI]) and Randomized LU [PI] running on a
single core CPU.
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FIGURE 2 The execution times from running the randomized LU algorithm on different
computational platforms: CPU with 8 cores and GPU.

where U ∈ Mm×m and V ∈ Mn×n are real or complex unitary matrices and
Σ ∈ Mm×n is a rectangular diagonal matrix with non-negative real numbers on
the diagonal. The values on the diagonal of Σ are called singular values. Efficient
computation of the SVD is a problem of great importance. Unfortunately, there is
no closed-form formula for computing these decompositions (for matrices larger
than 5× 5).

Most of the classical approaches for calculating the SVD are generalizations
of the Power Iterations [28, 30]. The recently developed random projection ap-
proach is similar in nature, but a careful analysis shows that in many cases, a
single application of the matrix on a set of random vectors (with JL distribution)
will provide enough information to recover the leading singular values with high
accuracy.

The work in [PII] presents an algorithm for low-rank SVD approximation
that is based on sub-Gaussian random projections (see Algorithm 3). Formally,
given an m × n matrix A and an integer r, the sub-Gaussian randomized SVD
results in matrices U, Σ and V, such that U and V are orthogonal matrices, Σ is a
diagonal matrix with real positive values on the diagonal. U, Σ and V satisfies

‖A−UΣVT‖2 ≤ C(m, n, r)σr+1

with a very high success probability. C(m, n, r) depends on the size of the ma-
trix A and on r, but also on the desired success probability. σr+1 is the (r + 1)th
singular value of A. The sub-Gaussian randomized SVD, in many cases, for the
same accuracy, is faster than the state-of-the-art low-rank approximation algo-
rithms. The proof that guarantees the high accuracy with high probability of the
presented algorithm relies on the fact that the used distribution of the random
projections has metric conserving properties. Thus, as a by-product, we show
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that an i.i.d. sub-Gaussian matrix with a large probability of having null entries
is metric conserving. This result is used in the SVD approximation algorithm, as
well as to improve the performance of the previously proposed approximated LU
decomposition algorithm.

Algorithm 3 Sub-Gaussian-based Randomized SVD
Input: Matrix A of size m × n to decompose, r desired rank, k1, k2, l number of
columns to use.
Output: Matrices U, Σ, V such that ‖A−UΣV∗‖2 ≤ Oσ(σr+1(A)), where U and
V are matrices with orthonormal columns and Σ is a diagonal matrix.

1: Create a random sub-Gaussian matrix Ω1 of size k1 × n.
2: Create a random Gaussian matrix Ω′1 of size l × k1.
3: Compute B = AΩ∗1Ω′∗1 (B ∈ Mm×l).
4: Compute the QR decomposition: B = QR, Q ∈ Mm×l with orthonormal

columns, R ∈ Ml×l is a full rank upper triangular matrix.
5: Create a random sub-Gaussian matrix Ω2 of size k2 ×m.
6: Compute Ω2Q, Ω2A and (Ω2Q)†.
7: Compute the SVD of (Ω2Q)†Ω2A = Ũ1Σ1V∗1 .
8: U1 ← QŨ1.
9: U ← U1(:, 1 : r).

10: Σ← Σ1(1 : r, 1 : r).
11: V ← V1(:, 1 : r).

2.2 Contributions of the thesis to data analysis

The work in [PIII], explores the relation between two of the essential building
blocks of data analysis: The PCA and the Linear least squeres. Although PCA is
normally addressed as a statistical tool aiming at finding orthogonal directions
on which the variance is maximized, its first introduction by Pearson at 1901 was
done through defining a non-linear least-squares minimization problem of fit-
ting a plane to scattered data points. Thus, it seems natural that PCA and linear
least-squares regression are somewhat related, as they both aim at fitting planes
to data points. This Chapter presents a new way to find the space spanned by
the leading PCs of a given matrix through an iterative least-squares procedure.
Apparently, the iterative least-squares algorithm in [PIII] coincides with the well
known Subspace Iterations algorithm. As a consequence each iteration of Sub-
space (or Power) Iterations, can be interpreted as a solution to a least-squares
problem. In other words, solving a least-squares problem is equivalent to multi-
plying a basis with the sample covariance matrix. Even-though, computationally,
it is not more efficient than the alternatives, this approach leads to a new and use-
ful geometrical interpretation of the omnipresent PCA (e.g., see [PIV, 27]).

In the last three decades, there has been a rapid development of mathemati-
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cal frameworks aiming to deal with complexity challenges, originating from high
dimensional data. In many works, there exists an underlying assumption that
the high dimensional domain of a sample set (i.e., point cloud) has a lower in-
trinsic dimension (e.g., [1, 5, 7, 11, 12, 13, 23, 24, 29]). In other words, the data
points {ri}N

i=1 ⊂ Rn are samples of a lower dimensional manifoldMd, where d
is the intrinsic dimension ofM and d� n. Therefore, a natural way of reducing
the effective number of parameters (in case of a parametric estimation) as well as
computation complexity, would be to harvest this geometric relationship among
the points. The framework of dimension reduction proposes to embed the data
into a lower dimension Euclidean domain while maintaining some sort of local
distances (for a survey see [15]). Then, the lower dimensional representations
can be utilized to perform function approximation over the data. However, such
methods inherently introduce distortion to the input data, as, for example, the
curvature information is lost after performing such an embedding. In addition,
performing out-of-sample extensions, in most of these methods, will require the
re-computation of the embedding. Another effective framework, dealing with
such problems is the Support Vector Machine based methods [26, 25], which in
some sense are another way of performing non-linear dimension reduction prior
to performing regression.

A somewhat different approach, designed to deal with a more general defi-
nition of low dimensionality, is the Geometric Multi-Resolution Analysis (GMRA),
introduced in a series of papers [4, 6, 18, 19]. The GMRA utilizes a local affine rep-
resentation of the data, in order to store the data in a multi-resolution dictionary.
Thus, it does not project the data onto a lower dimensional Euclidean domain,
but creates a tree-like representation of the original data based upon partitioning
and performing local Singular Value Decomposition. This approach, leads to a
faithful, locally sparse, representation of the input data in case the original tree
was built from clean samples. Subsequently, these representations can be used
to approximate functions over the original input data (e.g., [31]). However, this
approach does not aim at yielding smooth or even continuous approximations.

The work in [PIV], presents a new method for performing regression over
manifolds. The method is utilizing only noisy function values at locations sam-
pled from the manifold with noise. Explicitly, LetM be a d dimensional manifold
and ψ :M→ Rn some function. Then, suppose we have a set of noisy samples of
ψ, and we are interested in evaluating ψ in some new point r ∈ M. Convergence
results, under some noise module, are presented. To produce the approximation,
the method does not require any knowledge regarding the manifold other than its
dimension d. The resulting approximant is shown to be a function defined over a
neighborhood of a manifold, approximating the originally sampled manifold. In
other words, given a new point, located near the manifold, the approximation can
be evaluated directly on that point. Also, the proposed algorithm has linear time
complexity with respect to the ambient-space’s dimension. Thus, we can avoid
the computational complexity, commonly encountered in high dimensional ap-
proximations, without having to perform non-linear dimension reduction, which
inevitably introduces distortions to the geometry of the data.



3 CONCLUSION

The Thesis has contributions in two areas: It shows the power that random pro-
jections have in different matrix decomposition methods, and gives a different
perspective for high dimensional data analysis. These two areas stand in the
heart of many research problems, and there are still many open questions that
need to be answered, and in many cases looking at these questions with the "eye
of random projections" can help us find the solutions.

Matrix decomposition methods are a basic building block in almost any
computational task. The datasets in the modern world are getting larger, and
of higher dimension. Although there is a continues progress in the development
of matrix decomposition algorithms there are still several significant open prob-
lems, the solution of which, together with these existing techniques, will have
great significance in diverse scientific fields:

1. How do we know when it is useful to apply such randomized algorithms
instead of the classical ones? What is the expected error (not asymptoti-
cally)? What are the optimal (or near optimal) choices of parameters? After
running an algorithm, suppose we are not satisfied with the accuracy of the
results, can we improve them at some reasonable cost? Constructive solu-
tions will make these new class of algorithms widely applicable.

2. In many important applications matrices have special structures that can
be utilized in order to improve general approaches. For example, in the
Filter Diagonalization Method (FDM) used in nuclear magnetic resonance
(NMR) applications, a generalized eigenvalue problem needs to be solved,
where one of the matrices in known to be nearly unitary. This information
can help us solve the problem more efficiently. In some quantum chemistry
applications, it is required to compute singular values of a large matrix. Its
entries are sampled from a smooth function. Again, this special structure
can help us solve the problem more efficiently.

Manifold Learning, high dimensional data analysis and regression over mani-
folds are very active fields of research in the last two decades. During this time
numerous approaches have been proposed. In addition to deep neural nets,



22

whose theoretical behaviour is not well understood, the vast majority of the so-
lutions are based on embedding the data into a low-dimensional linear space
where linear (PCA, ICA, etc.) or non-linear (LLE, ISOMAP, Laplacian eigenmaps,
diffusion maps, etc) embedding is used. In the case of regression, after the em-
bedding, the manifold regression becomes a regular regression. On one hand,
these embeddings necessarily introduces distortions and errors even if the data
were sampled from a manifold without noise, let alone in the noisy case. These
distortions are difficult to analyze and thus we are unable to bound the error of
the resulting dimensionality reduction methodology compared with the (not nec-
essarily existing) “ground truth”. On the other hand, today, these are the leading
methods for analyzing high dimensional data. These methods allow us to derive
conclusions from datasets which otherwise where incomprehensible.

The next step of this research research is to develop a new framework that
“learns” the manifold directly in the ambient space, while keeping the compu-
tations dependent only linearly on the ambient space dimension. This frame-
work can lead to many new insights of the latent activities in the ambient space.
It paves a way to reconstruct a manifold without (asymptotically) introducing
errors, to denoise sampled datasets, to solve regression problems with statisti-
cal guarantees, to be able to follow geodesic lines (and thus creates a “natural”
smooth transition between data points) and many more. All these problems are
key in many AI and big data problems. This new approach can also be used as
a preliminary step for existing dimensionality reduction algorithms that improve
their performances. The ideas used in the manifold regression algorithm [PIV]
are a first step in this direction, and further research looks very promising. The
connection between this framework and the behaviour of random variables in
high dimensions is two-fold: First, the data points are scattered on the manifold
in a random fashion, and our goal is to achieve the best possible approximation
relying on as few samples as possible. Second, the analysis has to utilize under-
standing of the noise behaviour which is a high dimensional random process. The
understanding of the behaviour of these processes is essential for this framework
to achieve breakthrough in the areas mentioned above.
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YHTEENVETO (SUMMARY IN FINNISH)

Väitöskirja keskittyy ratkaisemaan ongelmia, jotka liittyvät satunnaisten muut-
tujien käytökseen korkeaulottuvuuksissa avaruuksissa. Päämotivaatio tulee siitä
ymmärryksestä, että monet tieteelliset haasteet sisältävät suuria määriä korkeau-
lottuvuuksellista dataa. Samalla tiedetään, että pieni määrä ”piilossa pysyviä”
parametreja määrittää datan ”mielenkiintoisia” osia. Kysymys kuuluukin, kuin-
ka pystymme tunnistamaan ja uuttamaan nämä parametrit. Tämä väitöskirja kes-
kittyy data-analyysin kahteen alueeseen: Numeeriseen lineaariseen algebraan ja
”manifold learning” eli ”monisto-oppimisen” termillä tunnettuun lähestymista-
paan.

Numeerinen lineaarinen algebra on tärkeä osakomponentti data-analyysissa.
Se sisältää matriisin tekijöihin jakamisen algoritmit, kuten SVD (Singular value
decomposition), eli Pääakselihajotelma, ja LU (lower–upper decomposition), eli
LU-hajotelma. SVD koetaan tärkeimmäksi yksittäiseksi algoritmiksi lineaarisessa
algebrassa. Kuitenkin, johtuen klassisten SVD-algoritmien laskennallisesta moni-
mutkaisuudesta, niitä ei pystytä hyödyntämään käytännönläheisesti suurissa da-
tajoukoissa. Yksi mahdollinen ratkaisu tämän ongelman ohittamiseksi on käyttää
low-rank metodeja. Ajatus onnistuneiden low-rank metodien takana perustuu
siihen, että useissa tapauksissa data sisältää riippuvuuksia ja päällekkäisyyksiä.
Siten, data pystytään hyvin approksimoimaan ja prosessoimaan hyödyntämällä
sen low-rank ominaisuutta, joka johtaa nopeampaan pienemmän datan proses-
soimiseen.

Tässä väitöskirjassa esitellään Low-rank SVD ja LU approksimaatioalgorit-
mit. Ne muodostavat kompromissin tarkkuuden ja laskenta-ajan välillä. Nämä
metodit parantavat nykyaikaisia algoritmeja Low-rank SVD ja LU approksimaa-
tioille. Uudet tulokset poistavat rajoitteita, jotka liittyvät ratkaistavissa olevien
haasteiden kokoon ja tarkkuuteen. Koska matriisin tekijöihin jakaminen on kes-
kiössä melkein kaikessa nykyaikaisessa laskennassa, tämä väitöskirjan osio tar-
joaa yleisesti hyödynnettäviä työkaluja moneen nykyaikaiseen suuren datan ja
data-analyysin ongelmanratkaisuun.

Korkeaulottuvuuksisen datan ymmärtämisessä ”Manifold learning” –me-
todia käyttäen, tyypillinen olettamus on, että data on jollain (tai on lähellä) mat-
riisin tuntemattomalla korkeiden ulottuvuuksien sisällä olevalla monistolla. Pää-
määränä on ”ymmärtää” moniston rakenne. Väitöskirja esittää kaksi vastausta tä-
hän aiheeseen. Ensin esitetään yhteys kahden klassisimman monisto-oppimisen,
pääkomponenttianalyysin (PCA, Principal component analysis) ja Pienimmän
neliösumman menetelmän, välillä. Yhteys tuo esille uutta ja parempaa ymmär-
rystä mainituista metodeista. Seuraavaksi esitetään moniston regression meto-
di. Se sallii useiden monistolla määritettyjen funktioiden regression vaatien ai-
noastaan funktion arvot useissa esimerkkipisteissä, ilman vaadittua tuntemusta
funktion määrittävästä monistosta. Kyky ratkaista regressio-ongelmia monisto-
jen kautta sallii uuden ymmärryksen kompleksisesta näytedatasta.
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