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Abstract—Many-objective optimization problems (MaOP) con-
tain four or more conflicting objectives to be optimized. A number
of efficient decomposition-based evolutionary algorithms have
been developed in the recent years to solve them. However,
computationally expensive MaOPs have been scarcely investi-
gated. Typically, surrogate-assisted methods have been used in
the literature to tackle computationally expensive problems,
but such studies have largely focused on problems with 1-3
objectives. In this study, we present an approach called HSMEA
to solve computationally expensive MaOPs. The key features
of the approach include (a) the use of multiple surrogates to
effectively approximate a wide range of objective functions, (b)
use of two sets of reference vectors for improved performance
on irregular Pareto fronts, (c) effective use of archive solutions
during offspring generation and (d) a local improvement scheme
for generating high quality infill solutions. Furthermore, the
approach includes constraint handling which is often overlooked
in contemporary algorithms. The performance of the approach
is benchmarked extensively on a set of unconstrained and
constrained problems with regular and irregular Pareto fronts.
A statistical comparison with the existing techniques highlights
the efficacy and potential of the approach.

Index Terms—multiobjective optimization , metamodels, refer-
ence vectors, computational cost

I. INTRODUCTION

EAL-world problems often require simultaneous optimiza-
tion of multiple conflicting objectives. A few (of numer-

ous) application areas include control system design [1], auto-
motive design [2] and aviation [3]. Such problems are referred
to as multi-objective optimization problems (MOPS). MOPs
with four or more objectives can be further sub-categorized
as many-objective optimization problems (MaOPs) due to
additional challenges they pose to optimization methods [4].

Multi-objective evolutionary algorithms (MOEAs) are a
common choice to solve MOPs owing to their versatility
in handling problems that typically do not possess smooth
mathematical properties [5], Le, are highly non-linear, non-
differentiable, discontinuous or even black—box in nature.
Being population-based means that they generate a set of
trade-off solutions; referred to as a Pareto front (PF) in the

objective space and Pareto set (PS) in the decision space.
However, MOEAs in general require several generations and
consequently excessive number of function evaluations in or-
der to converge to satisfactory solutions. This evidently makes
their application untenable for problems where each function
evaluation requires a computationally expensive simulation [6]
such as computational electro-magnetics (CEM), computa-
tional fluid dynamics (CFD), finite element analysis (FEA).
Despite a proliferation of studies on MaOPs in the recent
years, very few have considered problems, where the number
of function evaluations are to be severely restricted in order
to obtain a solution in a reasonable amount of time.

On the other hand, there have been substantial efforts in
the surrogate—assisted optimization domain in handling com-
putationally expensive problems [6]. In a surrogate assisted ap-
proach, an expensive function is replaced by a surrogate model
(also known as a metamodel or an approximation model)
which is cheap to evaluate. Predominantly, such approaches
have been developed for single—objective optimization [6].
Recently, there has been an increasing number of studies
exploring their use for MOPs [7], but most of the strategies
are not efficiently scalable for MaOPs. Only recently have
dedicated techniques for dealing with MaOPs emerged [8—
10] that use surrogates such as Kriging, neural networks or a
combination of different types of surrogates. The approaches
have typically dealt with so called “regular” problems. Reg-
ularity in this case entails that when using decomposition-
based optimization techniques, the PFs of such problems can
be well mapped using a set of uniformly sampled points (and
corresponding reference vectors (RVs)) generated through the
normal boundary intersection (NBI) method [1 1]. However, as
discussed in recent studies [12], a simple inversion of the PF
can deteriorate the performance of this strategy significantly.
Hence, there is a further need to design and test algorithms
across a range of problems with a greater variety in the nature
of PFs.

In order to address the above research gaps, this study is
set out with an aim of developing an efficient decomposition-



based algorithm for solving real-world MaOPs where the
shape of the PF is unknown using a very limited number
of function evaluations. The key developments undertaken in-
clude the use of multiple surrogates, two sets of RVs and local
improvement for an effective identification of infill solutions
selected to undergo actual function evaluation. Further, the
algorithm efficiently uses an archive of evaluated solutions
when generating offspring solutions and includes constraint
handling which is lacking in existing algorithms.

Next, the background and related work are discussed in
Sec. 11, followed by a description of our algorithm in Sec. III.
Numerical experiments are detailed in Sec. IV and include
benchmarking against existing algorithms on an extensive set
of unconstrained (conventional and inverted) and constrained
problems as well as three practical MaOPs. Conclusions and
future directions are discussed in Sec. V.

II. BACKGROUND

In this section, we review the works that are relevant to
our study with a focus on three key areas. The first relates
to surrogate-assisted optimization, in particular the choice of
surrogate model(s), selection of training data, use of multiple
surrogate models and the choice of the performance metric(s)
during the evolutionary search. The second relates to the
adaptation (of RVs, aggregation functions) within the context
of decomposition-based algorithms in order to handle irregular
PFs. The last one relates to a local improvement of infill
solutions, i.e., measures taken to increase the probability that
a new solution selected for evaluation will lead the search in
a favorable direction.

A. Surrogate-assisted MOEAs
As mentioned previously, surrogate-assisted approaches are

a popular choice for handling computationally expensive opti-
mization problems [6, 13]. They reduce the runtime of the op-
timization task significantly by approximating the underlying
expensive function(s). The surrogate models can be combined
with evolutionary algorithms to yield surrogate—assisted evolu-
tionary algorithms (SAEA) [14] that have been often employed
to solve single objective expensive optimization problems [6].
Recently, there has been a growing trend towards employing
surrogate models within MOEA frameworks, as evident from
the review papers [7, 15].

Surrogate models can be employed for solving MOPs in
various ways. Some prominent approaches include predicting
the Pareto-rank of a solution [16, 17], pair-wise dominance
comparison [18], approximating individual or scalarized func-
tions [19, 20]. For approximating individual objective/con-
straint function(s), Gaussian process regression/Kriging [21]
has been a popular choice, despite the computational overhead
in its training time with an increasing number of data points
and decision variables. The popularity can be attributed to the
fact that besides predicting the value, Kriging also provides the
associated confidence bounds (or limit of uncertainty) which
can, in-turn, be used to calculate the probability of improve-
ment (PI) and the expected improvement (El) metrics [22]. El
maximization based efficient global optimization (EGO) has
been successfully implemented in MOEA/D-EGO [23] and

ParEGO [20] for solving MOPs. Both of these methods use
a Chebyshev method [24] to compute a aggregated function
value along a given RV. The former one runs MOEA/D in the
background to maximize the E1 of the aggregated objective
along a particular RV and the Kriging model is updated to
obtain a set of ND solutions from which a predefined number
of infill solutions is selected. ParEGO maximizes the E1 of the
aggregated function along a randomly chosen RV to obtain a
single infill solution in each iteration.

Apart from Kriging based approaches, there have been
studies which used other surrogate models like neural net-
works (NN) [25], k—nearest neighbor based NN (kNN) [26],
support vector regression (SVR) [27], polynomial re-
sponse surface method (RSM) [28] and radial basis func-
tions (RBF) [29]. While the above-mentioned studies employ
only a single type of surrogate model for function approxima-
tion in the multi-objective context, there have also been studies
that fit the best among multiple surrogate models for function
approximation. For instance, [30] used Kriging, RSM and
RBF while [31] employed RBF with different basis functions
as multiple surrogate models. Recently, in [19], a novel ap-
proach utilizing Kriging, RBF, multi-layer perceptrons (MLP)
and RSM was proposed which adaptively constructs spatially
distributed surrogate models depending on the accuracy of a
particular surrogate model within a design neighborhood in
order to capture the function landscape accurately. The al-
gorithm has been recently extended to many-objective (MaO)
domain [10] with a decomposition based approach. There have
also been studies that used multiple surrogate models as an
ensemble to approximate the function, such as [32].

Although in principle, some of the prominent existing
approaches, such as MOEA/D—EGO [23], ParEGO [20], CPS-
MOEA [26] and SMS-EGO [33] can be applied to solve
MaOPs, scarce attention has been paid towards develop-
ing dedicated algorithms to handle MaOPs so far. A few
works have emerged recently to handle this challenge, such
as classification—based approach using a feed-forward neural
network (CSEA) [9] and Kriging-based K-RVEA [8] (which
has a constrained version cK—RVEA [34]). In Table I, we
summarize the strengths and limitations of the algorithms and
the problems they have been tested with. The key limitations
of the above methods include absence of constraint handling,
use of Pareto ranking (not efficient for MaOPs), use of
computationally expensive metrics such as HV, use of a single
set of RVs (not very successful for irregular problems [35])
and a number of additional user-defined parameters.

B. Adaptation for dealing with irregular PFs

Recently, there has been a growing trend towards adapt-
ing RVs during the course of search in order to closely
approximate different shapes of the PF such as “regular”,
disconnected, degenerated, inverted or strongly convex/con-
cave PFs. Adaptation can be on the aggregation function or
the RVs itself. A notable implementation of an adaptation of
aggregation functions can be found in [40], while studies on
RV adaptation appear in [2, 41—43]. However, limited work
has been done regarding the effect of the reference p0int(s)
on the search performance. The term “reference point” has



TABLE I: Summary of notable existing works involving surrogate—assisted multi/many-objective optimization approach.

Algorithm Strengths Limitations Problems studied

ParEGO [20] The MOP is scalarized using Chebyshev method
into a single—objective problem along a randomly
selected RV in each generation. Kriging surrogate
model is trained on the scalarized function. Since
the surrogate models are not built for each in—
dividual objective function. the algorithm is less
memory intensive, quick to run and extendable to
MaOPs

Slow convergence due to a steady—state nature,
random selection of RV in each generation may
not assure required diversity and use of a fixed
number of training points to limit computational
cost in model building is problem dependent and
more so when the overall budget is limited, no
constraint handling method is discussed

KNOl (2—variables, 2 objectives),
OKAl—2 (3 variables, 2 objectives),
VLMOP2—3 (2 variables, 2 and 3
objectives), DTLZla (modified, 6
variables, 2 objectives), DTLZ2a,
DTLZ4a and DTLZ7a (modified, 8
variables, 3—objectives)

SMS—EGO [33] The use of S—metric is somewhat beneficial in
enhancing convergence by promoting the offspring
with the higher HV contribution calculated from
the predicted objective values from Kriging

HV calculation is itself computationally pro—
hibitive for MaOPs, no constraint handling method
is discussed

OKA2 (2 variables, 3 objectives),
R_ZDT1 (6 variables, 2 objectives),
R_ZDT4,.ulax (3 variables, 2 objec—
tives) and R_DTLZ2 (6 variables, 3 and
5 objectives)

MOEA/D—EGO [23] Scalable to MaOPs, clustering is done in the
decision space to reduce training samples in model
building

Depends on various user—defined parameters, with
a limited computing budget, training surrogate
models in different overlapping clusters may in—
troduce unnecessary computational overhead with
no enhanced prediction accuracy. no constraint
handling method is discussed

KNOl (2 variables, 2 objectives),
ZDTl—4.6 (8 variables, 2 objectives),
Fl—F4 [36] (8 variables, 2 objectives)
and DTLZ2 (6 variables, 3 objectives)

CPS—MOEA [26] Scalable to MaOPs, classifier based pre—selection
excludes evaluation of potential worse offspring
solutions

Inherits the drawbacks of ND sorting when ex—
tended to MaOPs, classifier performance depends
on the number of neighboring solutions during
prediction which is a user defined parameter, no
infill selection mechanism is adopted to limit
the number of function evaluations, no constraint
handling method is discussed

Fl—lO [37] (30 variables, 2 objectives)

K—RVEA [8]/ cK—
RVEA [34]

Less memory intensive due to limited training set
which is equal to the initial population, novel and
efficient infill selection technique which utilizes
the Kriging’s prediction error confidence bound to
select infill solutions from less explored regions

Relies on several user defined parameters, fixed
number of training points is arguable with a lim—
ited computational budget, limitations in solving
problems with inverted fronts due to employment
of a conventional RV guided approach

DTLZl—7 (10 variables, 3—10 objec—
tives), WFG1—9 (9—11 variables, 3—10
objectives), free—radical polymerization
of vinyl acetate [38] (4 variables, 3
objectives)

CSEA [9] Less memory intensive due to training only a
single classifier to predict good or bad (closer
or away from PF) solutions instead of training
surrogate models for each objective or constraint
function

Several user—defined parameters, lower accuracy in
solving MaOPs clue to radial projection in lower
objective space, shares the similar drawbacks of
ND sorting based approaches for MaOPs, no con—
straint handling method is discussed

DTLZl—7 (10 variables, 3—10 objec—
tives), WFGl—9 (9—11 variables, 3—10
objectives), MaFl—S (10 variables, 3—10
objectives) and a car cab design prob—
lem [39] (ll variables, 9 objectives)

been used in different ways in the literature. For example,
in [39] it refers to the points generated on the hyperplane
through NBI, whereas in [44] it refers to the point from
which the RVs originate. Here, we refer to the latter meaning.
While the common practice is to use a set of RVs originating
from the ideal point (formed by best objective function values
available), it is mostly effective when the solution diversity
is relatively easy to maintain [12]. The effect of reference
point specification in the context of MOEA/D was studied
in [44]. Some attempts have also been made to use the nadir
point (formed by worst objective function values in the current
ND set) as a reference point for generating RVs [45] which
proved to be effective for solving problems with “inverted”
PFs. Recently, some studies have suggested to use two sets
of RVs, one originating from the ideal and the other one
emerging from the nadir point [35, 46—48]. These studies
demonstrate the usefulness of a dual set of RVs compared to
some of the most popular algorithms (having only a set of RVs
originated from the ideal point) without RV adaptation e.g.
MOEA/D [49], NSGA-III [39], 9-DEA [50] among others and
with RV adaptation e.g. MEAD/D-AWA [41] and RVEA [51].

It is also important to note that all such schemes have their
own considerations and additional parameters; for example,
how often to adapt the directions, whether to consider deletion
of one RV at a time or more, whether to have a mechanism to
bring back/reinstate original RVs if they are incorrectly deleted
etc. Most importantly, it takes a significant amount of time to

adapt the RVs to resemble the true shape of the PF, since the
adaptation typically progresses by insertion/deletion of only
up to a few RVs at a time.

Beside the adaptation of the RVs, there is another class
of algorithms which focuses on complicated PF shapes with
degenerated and disconnected PFs. These algorithms focus on
identifying redundant objectives via principal component anal-
ysis 0r linear/nonlinear correlation between objectives [52],
Pareto corner sorting [53], clustering [54] or a probability
model based estimation of distribution algorithms which are
able to discover regularity models in the solution space besides
the objective space [37, 55, 56]. However, to be able to
discover the correlation among different objectives or for dis-
covering the regularity model in the decision space, the models
need to be trained with a large number of samples i.e. actually
evaluated Pareto optimal solutions. Additionally, the works
[52, 53, 57] are more focused on objective reduction (instead
of directly solving the problem in the original .M-objective
space), whereas the studies in [37, 55, 58] focus on only up
to 3—objective problems while only [56] recently extended the
study of [37] into a many—objective domain.

None of the above studies, however, consider the problem
to be computationally expensive, which subsumes that a rea-
sonable amount of time (i.e., function evaluations) is generally
available for learning and adaptation. Hence, employing RV
adaptation strategies or employing objective reduction/esti-
mation of distribution algorithms for solving computationally



expensive problems is not straightforward as they need to be
substantially customized to suit the low computation budget
paradigm.

C. Local search

Within the general framework of evolutionary algorithms,
there are some studies which capitalize on a local improve-
ment/search mechanisms for achieving faster convergence. The
prominent choices/challenges include whether to improve all
solutions or some of the solutions, how to select the solutions,
and the local search strategy itself. Hybridization for decom-
position based MOPs are aimed at improving solutions of a
particular sub-problem with the help of a certain aggregation
method.

Local search was used to improve all generated offspring
solutions in [59, 60]. Some studies have attempted to improve
a few promising solutions with the choice guided by prob-
ability in [61] and objective space Clustering in [62]. Other
approaches include use of local search at initial stages and use
of EA based search when the solutions are sufficiently closer to
the PF [63], use of stand-alone state-of-the-art multi-objective
non-linear simplex search [64, 65] and use of local search
guided by various forms of fitness approximations [32, 66, 67].
However, a majority of these studies only focuses on MOPs,
except [10, 62, 63] which discuss problems with up to 4
objectives [62, 63] and 10 objectives [10].

III. PROPOSED ALGORITHM

In this paper, we propose an algorithm called HSMEA (Hy-
brid Surrogate-assisted Many-objective Evolutionary Algo-
rithm). The key driving factor in the design of HSMEA is
the assumption that each function evaluation is computation-
ally expensive. The implications of this assumption are that
the algorithmic “overheads”, such as recombination/selection
operators, training of surrogates, local search on surrogates,
etc. (which could take, e.g., a few minutes) are considered
negligible compared to a true function evaluation (which could
take, e.g., hours or days).

Consequently, the number of true function evaluations that
can be done during the search is very limited1 and is the
predominant indicator of the optimization runtime. Therefore,
the components of HSMEA are designed to use the archive of
already existing solutions efficiently and employ a number of
mechanisms (discussed shortly) to improve the possibility that
the next solution(s) selected for evaluation bring significant
improvements in the objective functions. At the same time,
HSMEA is also intended to deal with problems with a range
of PF shapes instead of being specialized to regular PFs, as
well as deal with both unconstrained and constrained MaOPs.
Therefore, it also includes strategies to deal with these features
of MaOPs efficiently. In achieving these goals, some inspira-
tions are taken from existing works that have addressed parts
of the problem; such as K-RVEA [8], MOEA/D-SQA [60] and
MOEA/D-MR [35]. The notable features of HSMEA include:

1The exact quantification of “limited” can vary upon the time taken for
a function evaluation and the total time available for optimization for a given
problem.

0 Multiple types of surrogates are used to approximate
the objectives in order to strengthen the ability to ap-
proximate a wide(r) range of functions, compared to the
existing MaOP algorithms where only a single type of a
surrogate is used. At any given point in the search, the
surrogate that most closely approximates the current data
set is used for prediction.

. Two sets of RVs are used. Solutions are assigned to each
set of RVs separately and the set which results in a better
s—energy (a measure of diversity) is chosen. This is done
in order to make the algorithm more flexible in dealing
with irregular PFs compared to existing algorithms which
use only a single set of RVs.

. A local improvement scheme (utilizing local search sub-
ject to angle constraints) is employed to improve the infill
solutions, based on the Euclidean distance (ED) metric.
This is done in order to improve the likelihood of the
offspring exhibiting an improved performance when truly
evaluated (since each evaluation is expensive).

. An 6—constraint handling is embedded in the algorithm to
deal with constraints.

0 Lastly, the algorithm uses the solutions from an archive
A of truly evaluated solutions effectively to generate
offspring solutions.

Now we can present the problem formulation considered
and describe the details of the approach. Formally, a generic
MOP can be defined as:

111111331261 (f1($)7 f2($)a - - - 7 fM($)),
subject to:

00L S 06 S 00th (I)
ga(I)Sov a=1,...,p,
hb(:c) =0, b=1,...,q.

where m 6 RD where, D is the number of variables of
the problem, 13L and m; are upper and lower bounds of
the variables, f1, f2. . . . , fM are A! objective functions to be
optimized subject to p inequality and q equality constraints.

For solving the above defined problems, an overview of
HSMEA is shown in Algorithm 1, followed by the details of its
key components. The pseudo-codes for different components
of HSMEA are presented in Sec. V of the supplementary file
provided.

A. Generation of reference vectors and initialization of
population

As mentioned before, this algorithm uses a dual set of
RVs. The first set of RVs WT" is generated using the
NBI method [11] with the origin as the ideal point (best
objective values of the population, denoted as Zmn throughout
the paper) with minimum value of each objective for all
feasible solutions in the population (0M in the normalized
objective space). The set WOW” consists of NW points on the
hyperplane with a uniform spacing d : 1/H for any number
of objectives M with H unique sampling locations along each
objective axis. Similarly, the second set of RVs, W371” is
constructed from the point with co-ordinates as the maximum
value (worst objective value of the population, denoted as
zmaw throughout the paper) of each objective for all feasible
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Algorithm 1
Input: FEm”: Maximum numberof function evaluations, NW:
Number of RVs in the two sets WW" and Wm”, NM”: Number
of initial solutions, Nis= Maximum number of infill solutions,
N59,: Number of surrogate models.
Output: Non—dominated solutions from Archive

: Generate two sets of RVs, WOW" and WT” using NBI method.
: Initialize population PM“. where, IBM-t]: Nimt.

FE : |P,-m-t|.
: Update Archive A of the actually evaluated solutions and al-

lowable constraint violation for epsilon level comparison, ecv.

t
H

>

5: Construct NW, surrogate models for each objective (and con-
straint function if expensive) based on A.

6: Update the minimum and maximum objective values zmm and
2mm based on the feasible solutions in the current population.
Retain the previous Values of zmm and zmaz if there is no
feasible solution.

7: Adapt l Em" and Mom” using 2mm and 2mm resulting in
lm and Wm”.

8: Parent solutions P = Pm“.
9: while (FE g FEW”) do

10: Generate offsprings C from P, where, |C| 2 NW.
11: Predict objective values and compute constraint violations

(CV) for C.
12: Current population R : P + C.
13: Update 2mm 2m” and Ecv.
14: Adapt WW” and [ll/"”11 using 2mm and 2",”.

/.

. / /\Reference viactor W
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,n ,
O , rl/viy/Unit hyperplane ‘

""’ Kore _

RefTeTenge vector/or, , ,,

l sampled point00

Fig. 1: Sets of RVs originating from m and 2",”.

is calculated considering all the constraints. Next, the average
constraint violation of the population is calculated by taking

151 (17R) = InfillSd€Cfi0n(Ni37 R, Wm", Wm”, 2mm 2mm ECVlhe mean of all individual CV. Finally, the allowable CV, i.e.,
/"< I is the set of infill solutions */

16: Evaluate solutions in I.
17: R = R + I .
18: FE=FE+|I|.
19: Update Archive A.
20: Update Surrogate of all objectives and predictions of all

solutions in R.
21: Update 2mm, 2mg... and 50V.
22: Adapt W"’”:’" and W""“"" using z,,,,,;,,, and z,,,,.,,,,,..
23: P = EnvironmentalSelection(NW, R, A, lm, Wm”, Ecv)
24: end while

solutions in the population (1M in the normalized objective
space). Please take note that the objective space is normalized
based on the minimum and maximum objective values of the
population and not the estimated nadir point.

For a 3-objective problem, the two sets of RVs are shown in
Fig. 1. For problems with more than 6 objectives, a 2-layered
approach is followed for both Wgn’i" and [VJ’L‘W as proposed
in [39]. We use the abbreviation DR to refer to a dual reference
set (from tn and 2m“) and SR to refer to a single reference
set (from 23mm).

The size of the initial population is predefined by the
user (Nimt). Solutions are initialized within the variable
bounds employing Latin hypercube sampling (LHS) with a
“maximin” criterion [68].

B. Constraint handling
An epsilon level comparison as introduced in [69] is used

in this study for constraint handling as its performance is
often better than that of the feasibility first scheme [70].
A feasibility ratio (FR) is first calculated as the proportion
of feasible solutions in the current population. Then, the
constraint violation (CV) of each solution in the population

60V is computed with the help of the mean CV and the
FR of the population. The solutions having no more than the
allowable CV are compared based on their objective values.
The CV and the say are calculated as follows:

I) q
0v.- = Z maz(9t_u(r). 0) + Z maz<Ih.-,b(z) , 6|. 0)

b=1
NW

CVmean : 1/NW 2 CW (2)

i=1
FR : (no. of feasible solutions in population of size NW)/NW

a:1

€CV = CVHLL‘LL’IL X FR,

Where 10'3 S 5 S 10'6 (we have used 6 = 10’5 in this study).
C. Construction/update of the surrogate models

Upon evaluating the initial population, surrogate models are
constructed for each objective function. In this study we have
used Kriging, RSM with polynomial degree of l and 2 (RSMl
and RSM2, respectively) and RBF. However, other surrogate
models can be considered too. To construct the surrogate
models, 80% of the samples are used for training and the
remaining 20% of the samples are used for validation, in—line
with the previous studies using multiple surrogates [19, 71].
As we are dealing with a very small archive (maximum of
300 solutions), we are only performing training and testing
here. We have arbitrarily chosen the percentage training and
testing, as there is no rule of thumb. The surrogate model
with the minimum root mean-squared error (RMSE) value is
Chosen as the representative surrogate model for a particular
objective function. The RMSE is calculated as follows:

Ntebt
l/Ntest Z (9" (It) _ g“- (1‘))2 (3)

71:1

RIVISE =
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where tst is the number of test points for RMSE calculation
and gym (.T), 33,,(33) are the actual and predicted values of the
nth test point, respectively.

The surrogate models are re-trained and all predictions
are updated whenever the archive is updated with new truly
evaluated solutions. If constraint functions are expensive to
evaluate, surrogate models are needed for them as well.
However, in the computational experiments in this study, we
consider constraints cheap to evaluate for a fair comparison
with the other compared algorithm2

D. Adaptation of reference vectors
RVs are adapted following the scheme suggested in [51].

However, unlike [51], they are adapted in every generation,
thus eliminating the need for an user defined parameter i.e.,
the update frequency. The update scheme for the ith RV is
presented below:

Vl/Hlfll'n, Ill/6:2”, G (Zmaz _ Zm'in)
, z __— i=1,...NVV, (4)

”Wain G) (Zmarr, _ Z'm/in)
‘ 7

where im and W677" are the ith adapted and initially
generated (refer to Algorithm 1) RV of the RV set WW",
respectively. Besides, (2mm 7 2mm) is the difference between
the best and worst feasible objective values of the current
population and G) is the Hadamard product [72] for element-
wise multiplication of two vectors of equal size. Furthermore,
WW” is updated similarly, for which, Zmin and zmam are
interchanged.

E. Offspring generation
In each generation, NW offspring solutions are generated

using simulated binary crossover (SBX) [5] and differential
evolution (DE) operator [73] with an equal probability. For the
former, two random parents are chosen, while for the latter
three parents are randomly chosen. The resulting offspring
solution3 undergoes polynomial mutation (PM) [5] and the
process is repeated until NW offsprings are generated.

F Assignment
The assignment of solutions to RVs is done for feasi-

ble solutions only. For assigning the feasible solutions of
the current population to W'W'”, the objective values of
the solutions of the current population are translated i.e.,
fig-(1'71) 2 fatty) —zmm]., where, fj(;L',-) is the value of the jth
objective of the ith solution in the population and zmmj is the
minimum value of the jth objective in the current population.
Thereafter, the acute angle between a solution and all RVs is
calculated [51]. A solution is assigned to the RV which has the
smallest acute angle with that solution. This process divides
the population into different sub-populations. The assignment
process is illustrated in Fig. 2 for a 2—objective case for three
RVs originating from m- The same principle is applied
for assigning solutions to RVs originating from 2mm. Each

2Note that this is not the limitation of the presented approach itself. Pro-
visions have been kept within the proposed framework for the consideration
of expensive constraints in future studies.

3DE+PM generates a single offspring solution, but SBX+PM generates
two offspring solutions and one of them is chosen with an equal probability.

solution is thus, assigned twice, i.e., to an RV in WW" and
I/VTTLGAE

Fig. 2: Assignment of solutions to RVs (W’mm).

G. Selection of infill solutions (InfillSelection)

For computationally expensive MOPs with a limited budget,
it is imperative that solutions be carefully selected for eval-
uation. With surrogates in place, it is in principle possible
to improve each offspring through a local search [60]. In
this study, however, instead of attempting to improve every
offspring solution, the attempts are limited to improve at
most Ni, solutions corresponding to both RV sets (Vm and
IVm”). Such an approach is adopted to reduce the overhead
of local searches. Moreover, to limit the number of actual
function evaluations, the local search operation is done using
the predicted values from the surrogate models. The entire
process involves three key steps presented below and further
elaborated subsequently.

0 For both RV sets, identify at most Ni, solutions as
candidates for further improvement via local search.

. For each of the above selected solutions, use a local
search to improve its performance i.e., minimize or
maximize the selection metric based on the RV set under
consideration. In this study, Euclidean distance (ED) is
used as the selection metric. For Wm", the ED is
minimized towards Zmin while for WW”, the ED is
maximized away from 2m”.

. From the solutions identified in steps above for both set
of RVs, select at most N7-”, solutions for actual evaluation
with expensive functions.

In the first step, for any RV set, if all the members of the
population (parents and offspring combined) are infeasible,
Ni, solutions are selected based on CV. If the number of
feasible solutions (whose CV is not more than Ecv) is less
or equal to Nis, these solutions are selected as candidates
for local search. If the above selection results in fewer than
Ni, solutions, the remaining solutions are selected based on
CV. If the number of feasible solutions is greater than Nis,
the feasible solutions among them are assigned to both RV
sets. After the assignment, some RVs might end up with
more than one solution while some RVs might remain empty
with no solutions assigned to them. The non-empty (with
at least one solution assigned to it) RVs are clustered to a
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maximum of Nib. clusters and the best solution is selected
from each cluster based on the ED. A solution from each
cluster is selected which has the minimum ED from 2mm
for W777” and maximum ED from zmw for WW7”. The
widely used K-means method is employed for clustering [74].
Fig. 3 shows the RV clustering process for 5 RVs for the
WW” RV set. Here, RVs VVlmi” to IV?” form cluster-l
while Ill/5mm belongs to cluster-2 with a single member. The
fourth RV, Win” is empty and hence excluded from the
clustering process.
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Fig. 3: Selecting infill solutions with the help of Wm”.

The above step will result in the identification of a max-
imum of Ni, solutions for each RV set. These solutions are
the initial infill solutions. For all initial infill solutions that are
feasible, a local search is conducted with ED optimization (we
have used interior—point algorithm based on [75, 76]
in MATLAB® built-in function fmincon in the numerical
experiments, but other suitable optimizers could also be used).
As mentioned above, every solution has an assigned RV based
on the acute angle. The angle between the assigned RV and its
closest RV is used as an angle constraint during local search
to restrict the improved solution to be in the vicinity of the
RV its initial solution was assigned to. If some of the selected
solutions are infeasible, they are improved via a local search
minimizing their CV. Fig. 4 illustrates an example where the
direction of local search and the angle constraint is highlighted
for WW”. The similar process is applied for WW” as well.
The only difference is that for the RV set Ill/7mm, ED is
minimized towards 2mm while for the RV set WW”, the ED
is maximized away from em” as mentioned above.

The above-mentioned steps will lead to a maximum of Ni,
solutions for each RV set. Solutions identified for improvement
and the improved solutions obtained from both the RV sets
are combined resulting in a set of a maximum size of 4N,-S
solutions. If the number of feasible solutions is no more than
Nis, they are all selected as infill solutions for evaluating with
the expensive functions. If there are more than Ni, feasible
solutions, ND sorting is applied on them. The solutions in the
first front (ND rank-l) are first selected. If there are more than
Nis such solutions, they are partitioned into Ni, clusters and
the ones closest to the cluster medoid are selected as infill
solutions for evaluation with the expensive functions. If there

—. Adapted ret. vectors
09 mm Infill solutions .

W W2 . lnnll solution undergoing
local searcn

0.8 O Restoltne solutions
— Direction ol local searcn

Local search oound0.7 0 W.

0.6
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0.1

0 ) .nn.
0 0.2 0.4 0.6 0.8 1

f1

Fig. 4: Local improvement of an initial infill solution along
Wgnm. The shaded region is the feasible region of the angle
constraint.

are fewer than Ni, solutions in the first front, they are directly
selected (no clustering required) for actual evaluation.

To visually illustrate this, in Fig. 5, two different scenarios
are presented for different numbers of ND rank-l solutions
for Nis = 5. In scenario—1, we have 10 solutions divided into
3 ND fronts. There are 3 rank—l solutions which is less than
N“. Hence, these solutions are selected as infill solutions. On
the other hand, in scenario-2, there are 20 solutions among
which 16 are rank—1 solutions and 4 solutions are rank—2. The
16 ND rank-l solutions are divided into 5 clusters by the K-
means algorithm and later, the 5 medoids are selected as infill
solutions.

H. Selecting parent solutions for the next generation (En-
vironmentalSelection)

Environmental selection identifies solutions to be carried to
the next generation as parents. Besides considering the parent
and offspring solutions, the solutions in the archive A are
considered in environmental selection in our algorithm. If all
solutions in the combined set (i.e., the parents, offspring and
archive A) of solutions are infeasible, they are sorted based on
their CV If the number of feasible solutions is no greater than
NW, they are chosen as parents and the rest of the solutions
are chosen based on their CV to make NW parents (as the
population size is fixed in our algorithm equal to the number
of RVs). On the other hand, if the number of feasible solutions
is more than NW, we need to limit the number of parents to
NW. For this, we need to select one solution for each RV As
we have two RV sets WW" and Wm”, first, the combined
set of solutions is assigned to one of the updated RV sets (say,
WW") as mentioned in Section III-F. The assignment process
may lead to some of the RVs being empty (as discussed
before). For the non—empty RVs, one solution is selected from
each of them based on the selection metric (ED). Next, the
non-empty RVs are removed and the combined set of solutions
are assigned to the previously empty RVs and the same process
of selection is followed to select a total of NW solutions as
parents with the help of NW RVs. A similar process can
be followed in case of Wm” to obtain another set of NW
solutions.
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Fig. 5: Two different infill selection scenarios are presented
here for N15 2 5. (a) Scenario-1: No of ND rank-1 solutions
is 3, hence, all solutions are selected as infill solutions. (b)
Scenario-2: No. of ND rank-1 solutions is 16 and the indicated
cluster medoids are selected to achieve diversity.

Now, there are two sets of potential parent populations (ob-
tained from Im and VVm‘“, respectively), one of which
must be selected as the parent population for the next gen-
eration. The choice between these two sets is based on the
s-energy [77] metric defined as follows:

E(F,s>= Z ||f(Tri,)’f(-Tk)”7§a s>0
lslékSNw (5)

feRM, F={f<m,z=1.,2.,....Nw},
where F is the set of objective values of the solutions in the
population, .|| is the l2-norm of the difference between the
objective values of ith and km solutions and the parameter 5
is set to be 1%-l, where M is the number of objectives.

Here, s-energy is chosen for its simplicity of calculation
and most importantly, it is not dependent on a reference
set (preferably, uniformly distributed points on the true or
best known PF for mathematical and real-world problems
respectively) unlike some other metrics such as IGD and R2-
indicator. A lower value of s-energy indicates a better diversity.
Therefore, the set of solutions (out of the two discussed above)
that results with the lowest s-energy is selected as the parent
population of the next generation.

IV. NUMERICAL EXPERIMENTS

The performance of HSMEA is quantitatively assessed us-
ing the well studied unconstrained DTLZ [78] and WFG [79]
problems and their inverted (“minus”) versions proposed
in [12], as well as constrained test problems (Cl_DTLZl,
C2_DTLZ2 and C3_DTLZ4 [2]) with 3, 4, 6, 8 and 10
objectives. Furthermore, three real—world engineering de-
sign optimization problems i.e., a 3-objective car side im-
pact (CSI) problem [2], a 5—objective water resource manage-
ment (WRM) problem [80] and a lO-objective general aviation
aircraft (GAA) [3] design optimization problems are solved.
The number of variables for all unconstrained and constrained
DTLZ problems is set to 10. For WFG problems, the numbers
of variables are set as 10, 10, 9, 9 and 11 for 3, 4, 6, 8 and
10 objective problems, respectively. The performance of the
proposed algorithm is compared with contemporary state-of-
the—art surrogate assisted evolutionary algorithms for MaOPs
CSEA [9], K—RVEA [8], MOEA/D-EGO [23], ParEGO [20]
and CPS-MOEA [26] for all unconstrained problems and with
cK-RVEAI (the best performing approach reported in [34])
for all constrained/engineering design optimization problems.
The parameter settings for numerical experiments are listed in
Table II.

A. Performance metrics

Inverted generational distance (IGD) [81] and HV [82]
are used as the metrics for benchmarking. The reference
sets for IGD calculation are obtained from the PlatEMO
framework [83] for the DTLZ and WFG problems as well
as constrained Cl_DTLZl, C2_DTLZ2 and C3_DTLZ4 prob-
lems while for the minus DTLZ and WFG problems they
were derived by inverting these sets as suggested in [12].
For the engineering design problems, the reference sets have
been taken from [84]. The spacings in different layers of the
RVs, i.e., H1 and H2 values are presented in Table III for
different objectives While the numbers of points in the sets
are listed in Table IV. To statistically assess the performance
of the algorithms, a Wilcoxon Rank-sum (WRS) test [85] is
performed on the results obtained from the median runs (out
of 25 independent runs) of all problems across all objectives
for all algorithms with a 5% confidence level.

The overall performance is also visually presented using
performance profile [86] plots. A performance profile is gener-
ally used as a statistical tool for observing the performance of
different algorithms, i.e., to assess how well/how fast and what
percentage of problems were solved by the given algorithms
relative to each other. In this study, the performance profiles
are plotted on the median of the IGD values obtained for
the set of all problems for all objectives studied. The X-
axis of a performance profile plot represents the goal value,
7’ (which in this case represents the ratio of the median
best IGD of a particular algorithm compared to the best
performing algorithm for a specific problem), while the y-
axis (p, (7')) denotes the cumulative distribution of the median
best IGD (i.e., the percentage of problems an algorithm is able
to solve within a factor 7’ with respect to the best algorithm).
Hence, different algorithms can be compared on a given level



TABLE II: Parameter settings for the compared algorithms.

Global parameters Parameters for HSMEA
Parameters for CSEA

(as suggested in [9])
Parameters for K-RVEA/cK-RVEAl

(as suggested in [8] and [34])
a) N0. of initial solns., Ninir:
11D71 (taken from literature
[8, 20, 23] and for a fair compar—
ison with other algorithms) for
unconstrained and 50 for constra-
ined problems (for fair comparis-
on with [34]).

b) Maximum no. of function
evaluations, FEmax: 300 for
all problems.

0) N0. of RVs, NW generated
using a single layer NBI (for
< 6 objectives) or double layer—
ed approach (2 6 objectives).

d) For SBX:

Pcrossover = 09’
77crossover = 30;

For DE:
CR 2 1, F = 0.5;

For PM :

pmutation
”mutation

= 1/D,
= 20.

a) N0. of infill solns. in each
generation, Nis = 5 (at most,
for a fair comparison with
compared algorithms).

b) Stopping criterion for local
search using surrogate models
is 1000 evaluations (in—line with
MATLAB‘s default setting
of 10D.
As most of the problems in this
study use 10 decision variables,
we have chosen a fixed value here
However, during the experiments,
we have observed that most of the
local searches converged well
within this limit).

a) No. of reference solns., k = 2.

b) Maximum epochs for training
the FNN, T = 500.

c) No. of hidden neurons, H = 2D
(at most).

d) No. of iterations for each
learning is 800.

a) RVEA parameter, a = 2.

b) No. of infill solns. in each
generation, |u| = 5.

c) Maximum no. of solutions for
training Kriging models, NI = 11D71.

(1) Parameter for updating the Kriging
models, 6 = 0.05NW.

e) No. of gens before updating
the Kriging models, Wmax = 20.

Parameters for MOEA/D-EGO
(as suggested in [23])

Parameters for ParEGO
(as suggested in [20])

Parameters for CPS-MOEA
(as suggested in [26])

a) MOEA/D parameters:
probability of choosing parents
locally, 6 = 0.9 and maximum no.
of solns. replaced by each of the
offsprings, nr = 2.

b) The no. of function evaluations
at each generation, KE = 5.

0) Maximum no. of surrogate-
assisted fitness approximations
before the surrogate update is
20x(11D71).

d) The maximum no. of points
used for building a local model,
L1 = 80.

e) The minimum no. of points
used for building a local model,
L2 = 20.

a) No. of infill solns. in each
generation is l.

b) Augmentation coefficient in
Chebyshev function, p = 0.05.

c) Maximum no. of solns. for
updating Kriging models is
1 1D—1 +25.

d) Maximum no. of surrogate-
assisted fitness approximations

before the surrogate update is 104.

a) Population size is 50.

b) Number of nearest neighbors, k = 5.

of goal value 7’ and the winner is the one which reaches a
value of T : 1 first.

B. Influence of multiple surrogate models, dual set of
reference vectors and local search

We first investigate the effect of using multiple types of
surrogates over a single surrogate. Kriging is chosen as a

TABLE III: H1 and H2 values for the number of reference
vectors, NW for different numbers of objectives M.

M (H1,
3
4
6
8

.—

(13,0)
(7,0)
(4,1)
(3,2)

0 (3,2)

H2) NW
l05

l20

l32

156

275

under study.

TABLE IV: Number of points in reference sets for IGD
calculation over different values of M for different problems

Number of points in reference sets
DTLZ7/

DTLZ7’ 1
WFG2/WFG2 7 1 C2_DTLZ2

6084
10648
59049
78125
19683

0
0

0
w

.— O

4101
10708
32191
66342
115610

2932
6466
10623
8934
13451

Other
problems

0
0

0
w

.— O

5050
10660
33649
50388
92378



representative single surrogate model given its popularity in
the literature. For this analysis, we use the proposed HSMEA
algorithm with only a single set of RVs (from 2mm) for
simplicity; and compare the two versions, one with multiple
surrogates and another with just Kriging. A summary of the
results of WRS tests for IGD metric based on 25 independent
runs across all unconstrained (DTLZ and WFG standard and
minus problems) and constrained problems with different
objectives is presented in Table V. Detailed statistical results
are available in Tables VI—VIII of the supplementary file for
unconstrained standard and minus DTLZ and WFG problems
as well as constrained DTLZ problems. In Table V, we list
the total numbers of problem instances (11), wins (w), losses
(1) and ties (t) of HSMEA with multiple surrogate models
against HSMEA with Kriging.

Looking at the values of wins and losses from Table V, one
can conclude that the performance of the multiple surrogate
approach is similar for standard (19 wins and 18 losses) and
constrained problems (3 wins and 1 loss) but significantly
better for minus problems (24 wins and 8 losses). Thus in
light of offering greater flexibility of representation, the choice
of multiple surrogates over a single surrogate (Kriging in this
case) is beneficial. Although training multiple surrogates in-
curs additional computational cost, as discussed in Section III,
it is considered negligible in relation to the computational cost
of the actual function evaluations.

Having established the benefits of using multiple surrogates,
we investigate whether DR (dual set of RVs) offers any benefit
over SR (single set of RVs). A summary of results of WRS
tests for IGD metric based on 25 independent runs across all
unconstrained (DTLZ and WFG standard and minus problems)
and constrained problems with different objectives is presented
in Table VI comparing baseline HSMEA with DR agains
baseline HSMEA with SR (detailed results are available in
Tables IX—XI of the supplementary file). The symbols n, w, l
and t are the same as above indicating number of instances,
wins, losses and ties for HSMEA with DR.

Looking at the values of wins and losses overall, one can
conclude that the performance of DR on standard problems
is worse (15 wins and 39 losses), but once again for minus
problems, the performance is significantly better (40 wins
and 10 losses). For the constrained problems, DR offers a
similar performance to SR. Hence, for black-box problems
with unknown PF shapes, using DR offers marginally im-
proved performance (a total of 55 wins and 49 losses). The
effectiveness of the use of a dual set of adaptive RVs is
further substantiated by implementing two existing popular RV
adaptation strategies RVEA* [51] and A-NSGA-III [2] within
the HSMEA framework and comparing their performances
with the proposed HSMEA. The results comprehensively
demonstrate the usefulness of the proposed approach. The
study is included in Sec. VI of the supplementary file due
to space limitations.

Finally, we investigate the effectiveness of local search. For
this, we have compared the performance of baseline HSMEA
having multiple surrogate models, DR and local search with
the variant of baseline HSMEA with multiple surrogate models
and DR only. The summary of WRS test results on IGD is

presented in Table VII (detailed IGD statistics are presented in
Tables XII—XIV of the supplementary file for standard, minus
and constrained problems, respectively).

From Table VII it can be observed that the local search
scheme is beneficial for all problem types under study. The
usefulness of local search is reflected in the WRS test results
for the standard unconstrained problems as the HSMEA vari-
ant with local search scores 56 wins, 13 losses and 11 ties
compared to the HSMEA variant without local search among
80 problem instances. For minus problems it yields 31 wins,
19 losses and 15 ties among 65 problem instances, while for
constrained problems, it scores 12 wins, 3 losses and 1 tie
compared to its counterpart without local search.

C. Results and benchmarking

The results reported so far establish the potential benefits
of using multiple surrogates, dual set of RVs and local search.
Subsequently, we compare the performance of HSMEA with
state—of—the-art approaches i.e., CSEA, K—RVEA, MOEA/D-
EGO, ParEGO and CPS-MOEA. The summary of WRS tests
is presented in Table VIII for unconstrained standard DTLZ
and WFG test problems and corresponding minus problems.
More detailed results are available in Tables XII—XIII of the
supplementary file. In the tables, the symbols n, w, l and t
are as before indicating now HSMEA performed compared to
each of the other algorithms.

The results clearly support the View that HSMEA (with a
dual set of RVs, multiple surrogates and local improvement
of infill solutions) shows significantly better performance for
standard and at—par performance on minus problems while
being compared with the recently proposed algorithm CSEA.
The WRS test results for IGD metric show 50 wins, 18 losses
and 12 ties (on a total of 80 problem instances) for HSMEA in
standard problems while in minus problems it scores 26 wins
and losses with 13 ties (on a total of 65 problem instances).
When HSMEA and K-RVEA are compared, the observations
are quite opposite. While HSMEA shows significantly better
performance for minus problems, it shows similar performance
for standard problems. More specifically, HSMEA achieves 35
wins and losses and 20 ties in standard problems while for
minus problems it scored 43 wins and 22 losses with no ties.
These results indicate that none of the studied algorithms is
capable of fully handling all problem types. To further clarify,
the HSMEA loss percentages from Table VIII (i.e. the win
percentages of the compared algorithms) on the total number
of problem instances (for the standard and minus problems,
respectively) is presented in Table IX. From the table, it is ap-
parent that none of the peer algorithms is able to successfully
handle all types of Pareto fronts. The best performing peer
algorithms in each type of problems is not able to outperform
HSMEA and the best performing peer algorithm in one type of
problem is not the best performing peer algorithm in another
problem type. For example, K-RVEA is the best performing
peer algorithm for solving standard problems which shares
43.75% wins with HSMEA while solving minus problems,
HSMEA is no worse than K-RVEA in 66.16% of the problem
instances. On the other hand, CSEA is the best performing
algorithm for handling minus problems which shares 40%



TABLE V: WRS test results for IGD
metric for baseline HSMEA with mul-
tiple and single surrogate for different
numbers of objectives.

Standard
Problems

Constrained
Problems

Minus
M Problems

TABLE VI: WRS test results for IGD
metric for baseline HSMEA with dual
and single set of RVs for different
numbers of objectives.

Standard
Problems
(n/w/l/t)

Minus
Problems
(n/w/l/t)

Constrained
Problems
(n/w/l/t)

TABLE VII: WRS test results for
IGD metric for baseline HSMEA (DR)
with local search and without local
search for different numbers of objec-
tives.

Standard Minus ConstrainedM(n/W/l/t) (n/w/l/t) (n/w/l/t) Problems Problems Problems
16/4/6/6
16/4/7/5

16/2/12/2
16/4/6/6
16/1/8/7

16/4/3/9
16/7/2/7
16/2/2/12
16/2/4/10 13/5/0/8

10 16/4/7/5 13/5/0/8

13/4/1/8
13/6/7/0
13/4/0/9

3/0/0/3
3/0/0/3
3/1/0/2
3/1/0/2
3/1/1/1 10

3
0

0
.5

9
)

o
ca

xh
w 13/5/3/5

13/8/2/3
13/9/1/3
13/9/2/2
13/9/2/2

3/0/2/1
3/0/2/1
3/1/1/1
3/2/0/1
3/2/0/1

(n/w/l/t)
3 16/9/3/4
4 16/10/3/3
6 16/12/2/2
s 16/12/2/2 13/9/2/2

(n/w/l/t)
13/4/7/2
13/2/5/6
13/7/2/4

(n/w/l/t)
3/2/1/0
3/2/1/0
3/2/1/0
3/3/0/0

Total: 80/19/18/43 65/24/8/33 15/3/1/11 Total: 80/15/39/26 65/40/10/15 15/5/5/5

TABLE VIII: Test results with the IGD metric based on 25
runs across standard DTLZ and WFG problems over different
numbers of objectives.

10 16/13/3/0 13/9/3/1
Total: 80/56/13/11 65/31/19/15

3/3/0/1
15/12/3/1

TABLE X: Test results for IGD metric obtained by HSMEA
and cK—RVEAl for constrained problems. The best mean
results are highlighted in bold.

Problem Types M CSEA
(n/w/l/t)

16/12/3/13
4 16/8/5/3
6
8

K-RVEA MOEA/D-EGO ParEGO CPS-MOEA
(n/w/Ut) (n/w/l/t) (n/w/l/t) (n/w/l/t)
16/11/4/1 16/16/0/0 16/16/0/0 16/16/0/0

16/8/3/5 16/14/0/2 16/16/0/0 16/15/0/1

16/5/9/2 16/13/0/3 16/16/0/0 16/13/0/3
16/10/3/3 16/6/10/0 16/14/1/1 16/16/0/0 16/13/0/3

10 16/10/3/2 16/5/9/2 16/13/1/2 16/16/0/0 16/12/2/2

Total = 80/50/18/12 80/35/35/10 80/70/2/8 80/80/0/0 80/69/2/9

3 13/5/5/3 13/8/5/0 13/4/5/4 13/10/1/2 13/5/5/3

4 13/4/8/1 13/8/5/0 13/7/6/0 13/13/0/0 13/5/7/1
Minus 6 13/2/7/4 13/9/4/0 13/10/1/2 13/13/0/0 13/6/4/3

Problems 8 13/7/3/3 13/9/4/0 13/10/0/3 13/13/0/0 13/11/2/0

10 13/8/3/2 13/9/4/0 13/12/0/1 13/13/0/0 13/11/2/0
Total = 65/26/26/13 65/43/22/0 65/43/12/10 65/62/1/3 65/38/20/7

Standard
Problems

16/10/4/2

wins with HSMEA, however, if we observe its performance
in standard problems, it wins in only 22.50% of the problem
instances. Hence, based on the problems studied, the proposed
algorithm HSMEA is preferable for its robustness of handling
problems with standard or inverted Pareto fronts. Another
observation from Table VIII is that in comparison with K-
RVEA, the performance of HSMEA is inferior for the standard
6, 8, 10 objective problems and needs further algorithmic
improvements to address this gap.

TABLE IX: Summary of the combined test results for all
objectives with the IGD metric based on 25 runs across
standard and minus DTLZ and WFG problems.

CSEA K-RVEA MOEAID-EGO ParEGO CPS-MOEA
80/50/18/12 80/35/35/20 80/70/2/8 80/80/0/0 80/69/2/9

22.50% 43.75% 2.50% 0.00% 2.50%
65/26/26/13 65/43/22/0 65/43/12/10 65/62/1/3 65/38/20/7

40.00% 33.84% 18.46% 1.50% 30.77%

Problem Type

Standard Problems n/W/l/t
HSMEA Loss

n/w/l/t
HSMEA Loss

Minus Problems

Next, the performance of HSMEA is compared with CK-
RVEAl on constrained DTLZ and constrained engineering
design problems. The statistics of the IGD metric across
25 independent runs are presented in Table X. The table
also includes WRS test results for the algorithms presented.
Here, T, 1 and % indicates whether HSMEA is statistically
significantly better, worse or equivalent to cK-RVEAl. As
before, 11, w, 1 and t are indicating the number of instances,
wins, losses and ties of HSMEA according to the WRS test
compared to cK-RVEAl.

From Table X, it can be observed that HSMEA com-
prehensively outperforms cK-RVEAl in most of the prob-

Prob. M HSMEA
Min Mean Max Min

0.0378 0.0430 0.0504 0.0431
0.0602 0.0739 0.0938 0.0911
0.1131 0.1362 0.1657 0.1314
0.1647 0.1878 0.2142 0.1488
0.1857 0.2214 0.2474 0.1629
0.0725 0.0853 0.1098 0.1481
0.1729 0.2040 0.2560 0.2622
0.2640 0.3025 0.4003 0.3596
0.2885 0.3319 0.4538 0.4422
0.3125 0.3466 0.5463 0.6117
0.2361 0.4410 0.8810 0.2971
0.4873 0.6257 0.9289 0.4492
0.5991 0.7302 0.8615 0.6273
0.6289 0.6934 0.7780 0.7827
0.6903 0.7261 0.7698 0.8292 0.8862 0.9383
0.2744 0.2932 0.3232 0.3337 0.4725 0.6423

24973.8499 28969.2517 39621.3171 47806.5140 83425.4210 1233706562
0 25.4959 49.9513 [21.5041 53.9196 113.8283 264.7349

_/_/_ 18/13/2/3

cK-RVEAI
Mean Max
0.0703 0.1094
0.1339 0.1844
0.1697 0.2173
0.1851 0.2151
0.1855 0.2190
0.1854 0.2161
0.3020 0.4104
0.4534 0.5999
0.6069 0.7897
0.7230 0.8962
0.4018 0.6147
0.5517 0.8156
0.7249 0.8302
0.8436 0.9498
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lem instances. For constrained DTLZ problems C1_DTLZl,
C2_DTLZ2 and C3_DTLZ4, HSMEA scores 10 wins, 2 losses
and 3 ties among 15 problems instances while, it was the clear
winner (3 wins and no losses or ties in 3 problem instances)
in all engineering design problems.

For completeness, the performance profile plots on median
IGD values (of all problems with different numbers of ob-
jectives) are presented in Fig. 6. Here, it can be observed
that in the standard unconstrained problems, HSMEA solves
all problems before any other compared approach (reaching
to p5(7) first) except K—RVEA. HSMEA dominates K—RVEA
for the first @50% of the problems after which, K—RVEA
shows a slightly improved performance for the next @30% of
the problems and thereafter, HSMEA again dominates for the
next @20% of the problems reaching p3(7') : 1 first. CSEA,
MOEA/D-EGO, CPS-MOEA and ParEGO follow next. On the
other hand, although according to the WRS test, HSMEA and
CSEA are comparable in minus problems, the performance
profile plot shows that HSMEA is better than CSEA for first
m45% of the problems. After this both the algorithms show
competitive performance and for the last m15% of problems,
HSMEA dominates CSEA reaching ps(7') : 1 first, followed
by MOEA/D-EGO, CPS-MOEA, K-RVEA and ParEGO.

For completeness, all algorithms have also been compared
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Fig. 6: Performance profile plots considering the median IGD values of 25 independent runs.

using HV. Due to space limitations, the results are included
in Sec. I of the supplementary file, where the summary
of the WRS test results are presented in Tables I and II
for standard and minus unconstrained problems, respectively.
The best, mean and worst values and WRS test results are
presented in Table III for constrained and engineering de-
sign problems. Subsequently, the statistical results for both
types of unconstrained problems are shown in Tables IV and
V of the supplementary file. The relative performances are
largely consistent with the observations based on IGD above.
Moreover, analysis of the performance of the algorithms under
study with fewer numbers function evaluations have also been
included in Sec. III of the supplementary file. An investigation
is done to observe if there are considerable differences in the
performance of HSMEA across different types of problems
when compared with the five peer algorithms mentioned
above. Once again, the observations are in-line with the results
presented here with a maximum of 300 function evaluations.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this paper, a hybrid surrogate-assisted many-objective
evolutionary algorithm (HSMEA) is proposed to solve com-
putationally expensive many-objective optimization problems
with a very limited function evaluation budget. In this algo-
rithm, objective functions are approximated using a number of
surrogate models (Kriging, RSMl, RSM2 and RBF) and the
best one based on a minimum root mean-squared error is cho-
sen in order to approximate different types of functions closely.
Furthermore, the algorithm employs RVs for decomposition.
Two sets of RVs are used in order to provide flexibility
of dealing with different PF shapes. A local improvement
mechanism is incorporated to identify better infill solutions
for faster convergence. Furthermore, the information of the
complete archive of evaluated solutions is utilized to generate
better offspring.

The performance of HSMEA is tested on a wide range of
unconstrained test problems including the standard DTLZ and
WFG test suites as well as their minus variants, in addition to
constrained problems and engineering design problems. From
the results, it is observed that the proposed algorithm is able
to perform significantly better than two recently proposed

approaches CSEA and K—RVEA in either of the problem
types (i.e., standard or minus) and shows similar performance
in the other type of problems. This indicates its reliability in
dealing with a wide range of problems. HSMEA outperforms
MOEA/D-EGO, ParEGO and CPS—MOEA for both types of
problems. Thus, overall, HSMEA shows significant promise in
solving computationally expensive MaOPs of different types
which indicates the potential suitability of this algorithm for
real-world problems for which the shape of the Pareto fronts
are unknown.

Some future research directions include improving the per-
formance for problems with higher number of variables/objec-
tives, extending the study to consider the expensive constraints,
adaptation of RVs/introduction of RV assisted objective re-
duction or estimation of distribution methods to deal with
generic irregular Pareto Fronts (such as; degenerate, discon-
nected, highly convex/concave etc.) and developing methods
to incorporate preferences of an expert or a decision maker in
the solution process.
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