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ABSTRACT

Eskelinen, Matti

Computational methods for hyperspectral imaging using Fabry—Perot interferom-
eters and colour cameras

Jyvaskyla: University of Jyvdskyld, 2019, 44 p. (+included articles)

(JYU Dissertations

ISSN 2489-9003; 168)

ISBN 978-951-39-7967-6 (PDEF)

Recent research into new technologies for hyperspectral imaging has produced
small imagers capable of very fast capture of spectral and spatial information. A
design based on an electronically tunable Fabry—Perot interferometer combined
with existing camera technology has been developed by VIT and is being utilized
in novel applications, such as drone based and handheld hyperspectral imaging.
The design allows very fast capture of hyperspectral image cubes with great spatial
resolution using either a monochromatic or a colour filter array image sensor. The
latter allows imaging speed and wavelength range to be further extended by
computing multiple narrowband images from a single exposure.

This research describes the process of computing spectroscopic data using
these types of imagers and introduces software tools developed by the author
for this purpose. The included articles present solutions developed during the
research for building analysis software for hyperspectral imaging using high
level languages. They also document computational challenges that need to
be considered when utilizing colour filter arrays for hyperspectral imaging and
demonstrate the feasibility of this type of imager for use in drone based imaging
and laboratory conditions. The software libraries produced during the research
are made publicly available under free licenses to facilitate development of new
hyperspectral imaging applications using this technology.

Keywords: Hyperspectral imaging, colour filter array, Fabry—Perot interferometer,
software development, data analysis, machine learning



TIIVISTELMA (ABSTRACT IN FINNISH)

Eskelinen, Matti

Laskennallisia menetelmid hyperspektrikuvantamiseen Fabry—Perot -interferometrien
ja varikameroiden avulla

Jyvéaskyla: University of Jyvaskyld, 2019, 44 s. (+artikkelit)

(JYU Dissertations

ISSN 2489-9003; 168)

ISBN 978-951-39-7967-6 (PDEF)

Viime aikoina uusiin hyperspektrikuvantamisen teknologioihin kohdistunut tutki-
mus on tuottanut nopeita ja pienid spektrikameroita. Suomessa VTT on kehittanyt
sdhkoisesti ohjattavia Fabry—Perot -interferometrejd ja olemassaolevia kameratek-
nologioita yhdistavid spektrikameroita, joita on sovellettu uusissa lennokkipohjai-
sissa ja kdsivaraisissa spektrikuvantamisalustoissa. Tekniikalla voidaan kuvata
spektrikuutioita nopeasti kdyttdmalld joko monokromaattisia tai varisuodattimil-
la varustettuja kamerakennoja. Jdlkimmaisten avulla useita aallonpituuskaistoja
voidaan kuvata yhdelld valotuksella, miké lisdd kuvantamisnopeutta ja kasvattaa
kuvattavissa olevaa aallonpituusaluetta.

Tama teos kdy ldpi tekijan tdhdn tarkoitukseen kehittiméat menetelmiit ja
ohjelmistotyokalut. Liitetyissa artikkeleissa esitellddn tutkimuksen aikana kehitet-
tyja ratkaisuja spektridataa analysoivien ohjelmistojen rakentamiseen kadyttaen
korkean tason ohjelmointikielid. Tamén lisdksi artikkeleissa kdyddan lapi las-
kennallisia haasteita, joita varisuodattimilla varustettujen kennojen kaytto tassa
yhteydessi aiheuttaa, ja osoitetaan niilld toteutettujen kameroiden soveltuvuus
lennokki- ja laboratoriosovelluksissa. Tutkimuksessa tuotettujen ohjelmistojen
avoimella julkaisulla pyritddn edesauttamaan teknologian kayttoa tulevissa hy-
perspektrikuvantamisen sovelluksissa.

Avainsanat: Hyperspektrikuvantaminen, varisuodatinmatriisi, Fabry—Perot inter-
terometri, ohjelmistokehitys, data-analyysi, koneoppiminen
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1 INTRODUCTION

1.1 Background

The light that reaches our eyes and presents us with a view of the world around
us is the result of countless interactions between the matter and photons, the
particles that transmit the electromagnetic force. Photons are mainly created by the
movement of electric charge — electrons or protons — in various ways, whether
in the form of current flowing through a conductor or an electron dropping
from an energy level to another as it zips around the nucleus of an atom, each
event resulting in a photon of a wavelength corresponding to the lost energy.
The multitudes of ways photons can be born give rise to the full electromagnetic
spectrum, containing everything from gamma rays and radio waves to the photons
of light that we detect as colours in the world around us, as well as the ultraviolet
and infrared we do not. Ordered by wavelength, the range of visible light extends
approximately from 400 to 700 nanometers as depicted in figure 1.

400 nm 700 nm 1000 nm 2500 nm
uv Visible Near Infrared Short wave infrared

FIGURE 1 The wavelength range of light. Image from Ilkka P6lénen.

As photons interact with matter, they are absorbed, transmitted and reflected
in various ways depending on the substances and wavelengths of the photons
involved. This interaction is what results in us perceiving different materials
as having different colours, opacities and reflectivities, as our eyes and brains
interpret the distribution of photons received from different surfaces. However,
our eyes not only discern just a fraction of the electromagnetic spectrum, they
reduce the billions of different photons to mixes of just three colours, losing much
of the information carried by the photons of the processes that created them. The
same is true of most cameras, as they are built to imitate the human vision.

Spectral imaging is the combination of spectroscopy and imaging, the first
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FIGURE 2 Left: Stack of images. Right: A wavelength spectrum. Image from Ilkka
Polonen.

being the study of information in the wavelength (or energy) domain and the latter
in the spatial domain. By finding ways to control the passage of light through
the camera based on its wavelength, the full spectrum and the information it
contains can be recorded and analysed. A way to enact such separation of white
light into it’s component wavelengths by using a prism was first discovered by
Newton and published in his treatise “Opticks” in 1704. This finding eventually
lead to the understanding of the properties of light that we have today, and since
then many more methods have been devised to better study light. The methods
of capturing images for later use have also evolved from exposing expensive
and single-use silver-halide films that need to be analysed by hand to using
photoelectric materials to record electronic signals that can be directly passed to a
computer for automated processing, leading to the development of miniaturized
cameras that enable high-resolution photography with the press of a button.
(Nakamura, 2006)

Using three filters with different spectral responses to capture a colour image
is the most rudimentary form of spectral imaging. Increasing the number of filters
and narrowing their spectral responses leads to multispectral imaging, with the
filters usually precisely tuned to give the most information about the phenomena
under study. The most flexible imaging devices to date are hyperspectral cameras
(or imaging spectrometers), which can capture and separate light into tens or
hundreds of bands, forming a nearly continuous spectrum at each pixel. During
the past half-century, multiple types of spectral imagers have been developed
using different techniques. These can be roughly classed to spatially scanning,
spectrally scanning and snapshot cameras.

So-called pushbroom and whiskbroom imagers imitate Newton’s methods
of observing the spectrum by using a slit to select a narrow beam of light that is
passed to a prism or grating, which then disperses the light to different parts of
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the focal plane of the sensor based on its wavelength. The image is formed by
scanning the aperture of the imager across the imaged subject, either by moving
the imager or the subject. These types of imagers have been used for remote
sensing studies of the Earth since 1980’s using airplane-mounted sensors such
as Jet Propulsion Laboratory’s AVIRIS (Vane et al., 1993) or recently in satellites,
for example the MSI on the European Space Agency’s Sentinel-2 mission (Drusch
et al., 2012).

Exchangable and tunable filters allow the capture of all the spatial informa-
tion at a single wavelength at a time, but need to capture each wavelength at a
separate point in time. While electronically tunable filters have allowed much
faster imaging then rotating filter wheels, existing designs have still been relatively
slow and low resolution (Gat, 2000). Snapshot cameras that can capture both the
spatial and spectral information in a single exposure have also been developed
using clever optical and computational methods, but they likewise are generally
very costly to manufacture or have low resolution (Gao and Wang, 2016).

A recently developed method for producing a more versatile tunable filter is
based on the use of electrically tunable Fabry—Perot interferometer (FPI). Imagers
based on this technology have been built by VIT Technical Research Centre
of Finland, first with piezo-actuated and later using MEMS FPI devices. The
combination of these filters with colour filter array sensors allows the capture of
multiple narrow bands with a single exposure, allowing for faster spectral scanning
than existing tunable filter designs (Saari, Aallos, et al., 2009; Saari, P6lonen, et al.,
2013). The degree of miniaturization and ability to use commoditised imaging
components has made the technology an attractive and affordable choice for some
novel applications such as nanosatellites (Mannila et al., 2013).

1.2 Research environment

The author’s research has been carried out as part of the activities of the spectral
imaging laboratory of the Faculty of Information technology, headed by Dr. Ilkka
Polonen. These activities have included application-focused work using data from
Fabry—Perot interferometer colour cameras, either from collaborators outside the
university or gathered using the VI T-provided spectral imagers housed at the
laboratory. The application studies (especially the less successful ones) have then
prompted investigations into the computational characteristics of the imagers,
leading to the questions and results presented in this thesis.

The main hardware the author has been working with are prototype FPI
colour cameras manufactured by VTT, one using a piezo-actuated FPI device
(tigure 3, left) with a PointGrey (now FLIR) machine vision camera and another
with a MEMS FPI device (figure 3, right) combined with a Basler machine vision
camera. The latter is shown assembled with the camera and optics on the left in
tigure 7 in section 2.4. Both FPI devices are controlled through a serial interface by
passing in a voltage value to set the FPI air gap. The machine vision cameras are
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both GenlCam compatible with RGB Bayer filters, though with different patterns.

FIGURE 3 Fabry-Perot interferometer devices. Left: Piezo-actuated FPI device with
controller. Right: MEMS FPI device. Images from Heikki Saari, VTT.

Originally the first prototype camera was only usable through the VTT-
provided Labview interface and additional post processing and analysis were
performed using Matlab. As research progressed, the deficiencies and closed
nature of both platforms were felt to be an obstacle both for the efficiency and
accessibility of research. This motivated a move to develop a new set of tools using
the Python programming language, as it was both open and freely available, and
had gathered a good ecosystem of machine learning libraries which we wished to
be able to utilise. The migration to Python has also allowed for more structured
software development than either Matlab or Labview, which is evident in the
libraries presented in this work.

1.3 Main research questions

This thesis and the included articles answer the following questions that have
arisen during the author working with hyperspectral cameras using the Fabry-
Perot interferometer as their wavelength discriminating element:

1. What data is required to compute spectroscopic radiances from a Fabry—Perot
imaging system with a colour camera back-end?

2. Can the process be implemented in a general purpose computing environ-
ment?

3. Is data from such imagers usable for hyperspectral analysis?

1.4 OQOutline of the thesis

Chapter 1 provides a short introduction to the history of hyperspectral imaging
and introduces the thesis.
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Chapter 2 of the thesis provides a short overview of the physics and tech-
nology of colour cameras and that of Fabry—Perot interferometers when used
for wavelength filtering. This is provided to establish conventions and serve as
reference material for the later parts of the thesis.

Chapter 3 of this thesis presents a short overview of the results of the included
articles and the software libraries published during the research.

Chapter 4 extends the included articles with a detailed description of the
steps needed for the acquisition and post-processing of hyperspectral data us-
ing FPI colour camera imagers and documents the algorithms and solutions to
computational problems that are implemented in the fpipy library.

Finally, chapter 5 presents conclusions drawn from the research and discusses
the future of hyperspectral imaging research using FPI imagers.



2 THEORY AND BACKGROUND

This chapter will guide the reader through the theory of radiometry, digital imag-
ing and Fabry—Perot interferometers to highlight the computationally relevant
characteristics of the imager components and the data that can be gathered using
them.

2.1 Radiometry

Radiometry is the study of radiation, and as such covers far too wide a breadth
of human knowledge to be condensed in a section of this thesis. Defining the
quantities that are being measured by the imaging system is however useful,
and for that purpose the relevant definitions of spectral radiance and reflectance
are presented here following those of Nicodemus et al., 1977 and Manolakis,
2016. For a comprehensive view of the definitions of the geometry of reflectance
measurements, one should consult the review of confusions about reflectance
given by Schaepman-Strub et al., 2006.

Wavelength in the context of radiometry refers to the wavelength of the
photons or light in question and is denoted by the Greek letter A. In the context
of hyperspectral imaging, these usually fall into the visible and near-infrared
(VNIR) or short-wave infrared range (SWIR) of the spectrum and explicit values
are usually reported in units of nanometres.

The fundamental quantity of study in radiometry is the radiance, denoted
by L and defined as the radiant flux (power) per unit projected area per unit solid
angle. Given a radiant flux ®(x, y, 0, ¢) in the direction of (6, ¢) on the sphere on
or from the point (x, y) on the surface, the pointwise radiance can be expressed as
a derivative of the flux as

_ d*P(x,y,0,9)
L(x,y,6,¢) = A dco 1)
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with

dAproj = dAcos(f) and (2)
dw = sin6d0d¢ 3)

the differential projected area in the direction of the flux and the differential solid
angle, respectively.

The definition of spectral radiance follows by substituting the flux in defini-
tion 1 with the spectral flux (or power per wavelength) %, giving

d3®(x,y,0,¢,A)  dL(x,y,0,¢,7)

Lr(x,y, 0,9, A) = dApoidwdh dr ' )

The relevant quantity for determining surface properties is the bidirectional
reflectance factor R, which is a dimensionless quantity defined as a ratio of the
reflected radiant flux ®, from the surface area dA, and the reflected flux <I>£d of
an ideal (non-absorptive and -transmissive) diffuse reflector of the same area.
Denoting the incoming flux direction with (6;, ¢;) and the reflected as (6,, ¢,) gives
the definition as

dq)r(x’ Y, 9i/ (Pl-; 0,, (Pr) dLr(x/y/ Qi/ (Pi; 0y, (Pi’)
R 'Y, Oi/ ir 97’/ r) = j - ‘ .
(o9, 0009330 91) = =35 5, v, 81, ) dLy (x,y, 6, i)

The corresponding spectral quantity can be derived in the same fashion as for the
radiance.

The reflected flux from the ideal reflector is only dependent on the direction
of the incoming light, but a non-diffuse surface under study can have the reflected
flux vary with respect to the viewing direction. Reflectance factors can thus
reach values greater than one for some angles and surfaces. This fact is a cause
of confusion as the measured reflectance factors are often conflated with the
reflectance p, which is defined as a ratio of the reflected and incident fluxes and as
such can never exceed one for a non-emitting surface.

Since they are defined using infinitesimal areas and angles, real measure-
ments can never determine these quantities directly (Nicodemus et al., 1977). In-
stead, integral quantities are measured and the pointwise quantities are estimated
based on knowledge of the measuring geometry and other factors. However, this
difference is not reflected in the use of language and is commonly overlooked in
the literature.

(5)

2.2 Digital image sensors

A digital image sensor is composed of an array of photosensitive elements that are
exposed to light and convert the photons into charge. These are usually pinned
photodiodes (Fossum and Hondongwa, 2014), each of which is referred to as
a pixel. The charges are converted to voltage, which then passes to an analog-
to-digital converter (ADC) which converts it to numbers, referred to as Digital
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Photodiode ADC

Voltage
Photons Charge integration 5 Quantisation PN

FIGURE 4 Diagram of the operation of a digital imaging sensor.

Numbers (DN) or Analog-to-Digital Units (ADU). Figure 4 shows a diagram of
the operations.

The quantum efficiency of a sensor element is the ratio of the number of
electrons produced and the number of photons impacting the element. It is
generally a function of wavelength due to physical properties of the detector
material. When considering colour sensors with a per-pixel varying coating in
this thesis, the quantum efficiency is also considered to include the transmission
of the coating to follow (Saari, P6lonen, et al., 2013). Current sensors are generally
based on either CCD (Charge Coupled Device) or CMOS (Complementary Metal-
Oxide-Semiconductor) technology with assisting circuitry, which differ in the way
in which they are manufactured and the way charges are collected and eventually
converted to numbers. The type of the sensor does not influence the computational
features of the data in the scope discussed in this thesis, but interested readers may
refer to (Nakamura, 2006) for a comprehensive overview of differences between
the sensor types and other factors related to digital imaging. Still, There are
computationally relevant values that do need to be known in order to compute
radiometrically correct data.

In cameras with mechanical shutters, exposure time refers to the length of
time the film or sensor is exposed to incoming light by physically obstructing
the optical path with the shutter for a set period. In digital sensors, the charges
that accumulate in the photosensitive elements during the exposure are always
collected after a set period of time after which the elements are reset to a chargeless
state. This method of exposure is referred to as an electronic shutter, and can be
used either by itself as the sole method of control the amount of charges measured,
or in tandem with a mechanical shutter to allow separate control over the light
exposure and electronic collection.

The gain of a sensor is a value that relates the number of photons that have
hit the photodiode to the generated DN value output of the analog-to-digital
converter during quantization of the signal. In order to generate a given value,
the number of electrons collected in the photodiode must first be converted to a
voltage between a minimum and a maximum voltage acceptable by the ADC. The
ADC then maps this range of voltages to a set of discrete numbers of a given bit
depth B, resulting in a DN value between 0 and 28 — 1. Depending on the camera,
the gain setting controls either the voltage generated by a given number electrons
or the output of the ADC, respectively referred to as analog or digital gain. If the
camera gain is user-adjustable, the relation between the adjustable gain setting
and the output values should be determined.

In addition to the signal generated by the sensor for a given number of
photons, the electronics introduce noise to any given measurement. The noise is
generally composed of so-called hot and cold pixels caused by defects in the sensor,
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read-out noise caused by electronic interference during collection of the charges,
and temperature and exposure-time dependent noise. In laboratory settings, a
common way to correct for this noise is to take a number of frames with the
aperture of the imager covered with an opaque material (often just a lens cap) and
compute a pixelwise median or mean of the signal over these exposures, which is
then subtracted from the measured signal. This is referred to as dark subtraction
or dark correction, though the latter term also more generally applies to methods
for estimating and correcting for noise.

2.3 Colour filter arrays

FIGURE 5 A composite colour image taken by Sergei Mikhailovich Prokudin-Gorskii in
1911 composed of three separate exposures (shown on the right). Image from
the digital collection of the Library of Congress.

A monochromatic sensor does not allow for differentiation of photons of
different wavelengths, only counting the total number of photons that cause elec-
trons to be accumulated in the detector material. Adding a coloured filter in front
of a photodiode allows that pixel to only detect the wavelengths passing through
the filter. Early color cameras functioned in this exact manner (see figure 5): By
taking images with three different filters, one could use the three monochrome
images with suitable pigments to reconstruct a color image. However, changing
the filter takes time, during which the subject needs to stay still or else the three
images will not match up.
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One solution modern cameras use to solve this is the use of a Bayer filter, a
technology patented by Bayer in 1976. Instead of placing a separate filter over the
monochromatic sensor, different filters are placed over the pixels of the sensor in
a set pattern. Patterns composed of 2 x 2 pixels of red, green and blue pixels are
referred to as Bayer patterns. The full tiling of the sensor is called the Bayer filter
or Bayer filter array.

Examples of commonly used patterns are presented in figure 6. As is evi-
dent from the patterns, the green component is usually sampled with twice the
frequency of the red and blue components. This stems from the colour green being
most influential in determining luminance in human vision. As the aim of most
colour camera manufacturers is to capture colours as they are captured by the
human eye, the necessity of accurate capture of the green component is magnified.

FIGURE 6 Bayer filter patterns. The patterns are identified using strings denoting the
colors of the 2 x 2 pattern as read from left to right and top to bottom. The
2 x 2 pattern is repeated across the sensor. From the left: RGGB, BGGR, GRBG
and GBRG patterns.

Patterns with more complicated arrangements and other colours of pixels
also exist. There have also been array types developed specifically for spectral
imaging using more pixel types to achieve better spectral discrimination, such as
presented by Lapray et al., 2014.

In order to reconstruct an RGB image with all three values in each pixel,
interpolation is used to estimate the missing colours in the pixels in which they
are not measured. Arguably the simplest way to interpolate in a 2D plane is
to compute the average of the neighbouring pixels of a given colour at each
missing point. This is referred to as bilinear interpolation, as it is indeed a linear
approximation of the missing values in two dimensions. The linear nature of
the interpolation is useful, as it turns out that it can be computed as a discrete
convolution of the separated colour planes R’, G" and B with zeros in place of each
missing value as

R:KRB*R/
G:KG*G/
B:KRB*Bl
with the kernels
010 1 21
KG: 1 41 /4 and KRB: 2 4 2 /4 (6)
010 1 21
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that take into account the different rate of sampling between the green and red or
blue components.

2.4 The Fabry-Perot interferometer

A Fabry-Perot interferometer (or etalon) consists of two parallel half-mirrors
spaced close together. A beam of light entering the etalon interferes with itself
as it reflects off the mirrors, causing integer multiples of certain wavelengths
to be amplified and transmitted through the mirrors. This allows the use of
the interferometer as a highly sensitive instrument for measuring thicknesses by
observing the interference fringes or examining fine spectral features, as originally
proposed by (Perot and Fabry, 1899), or conversely as a narrow-band wavelength
filter by fine control of the mirror distances given some supporting optics (as
utilized by Saari, P6lonen, et al., 2013).

Transmittance

] UL
400 500 600 700 800
Wavelength [nm]

FIGURE 7 Left: An assembled Fabry-Perot interferometer colour camera. The green
circuit board is a MEMS FPI device, with the camera to the left and lenses
and filters to the right. Image by Ingmar Stuns (VTT). Right: Simulated FPI
transmittance between 400 and 800 nm for an air gap of 2pum and mirror
reflectivity of 0.9. The grey area shows wavelengths that must be blocked by
low- and highpass filters to prevent more than 3 peaks reaching the sensor at
once.

The transmittance of the Fabry—Perot etalon as a function of wavelength A
and a mirror gap length d is approximately

Tm(A)?
1+ Rm(A)2 — 2Rm(A) cos (‘M)

Tep1(A, d) = (7)

with Tp, and Ry, the transmittance and reflectance of the mirrors and 6 the angle
of incidence of the incoming light with respect to the optical axis of the mirrors.
Figure 7 shows a simulated transmittance of the FPI in the visible range for a
single air gap.

By introducing a low- and high-pass filters into the optical path (see figure 7)
the set of transmittance peaks of the FPI through which the light passes on to the
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sensor can be limited to three or less for a range of mirror distances. This allows
the modeling of the pixel responses for each gap d and interference order n of the
FPI as

Amax(d)

Sr(d,n) = /A " TROVT (L) Ty (1) ®)
/\max(d)

Sa(d,n) = /A " TN T (4, ) s (1) )
Amax(d)

So(d,m) = [ () Tern (A, d) Tays(A)dA (10)

respectively for the R, G and B pixels, with 77 the quantum efficiency of the respec-
tive pixel and Tgys the transmittance of the rest of the optical system without the
FPI. The value Apin(d, n) is the midpoint between the transmittance orders n and
n — 1, and conversely Amax(d, 1) is the midpoint between the orders n and n + 1.
The center wavelengths of each order can be approximated as
2d
=, )

allowing the midpoints to be computed from the approximation. (Saari, Aallos,
et al., 2009; Saari, Polonen, et al., 2013)

For a fixed FPI air gap d, the combined RGB signals can be modeled using
the signal responses as a linear combination of three consecutive transmission
peak signals S, = S(d,n) as

SR Srn+2 Sru+1 Sru| [Sn+2
Sc| = |Scn+2 Scn+1 Scn| |Sut+1]| - (12)
SB SBn+2 SBnJrl SBn Sn

Formally, the unknown radiances can be solved from this equation by mul-
tiplying both sides of the equation by the inverse of the sensor response matrix.
Using the calibration procedure outlined by Saari, Aallos, et al., 2009, the coeffi-
cients S;Qll of the inverse transform! can be empirically determined. These allow
the recovery of the unknown radiances given RGB measurements R, G and B as

S(n) =R-Sg'(n)+G-Sg'(n) +B- Sz (n) (13)

As the calibration coefficients Sy} depend on the signal output of the imager
during the calibration procedure, their scale is set by the imaging parameters used
during the calibration, if not normalized afterwards. These include gain, exposure
time and binning and any other modifiable parameters which can affect the overall
signal level output of the imager for a given radiance. As such, the recovered
signal cannot be considered to be radiometrically correct radiance without explicit
corrections if the parameters used during imaging do not correspond with the
calibration. Given linearity of the sensor response (which should preferably be

1 S;(}Z denoting the element of the inverse matrix in the same position as Sx; in eq. 12
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calibrated rather than assumed), the uncorrected values should still be usable for
computing reflectances or transmittances as direct ratios if the parameters between
the subject and reference images are the same.



3 OUTLINE OF RESULTS

This chapter presents an overview of the main results of the research in the
included papers and a description of the main software libraries that have been
developed by the author during the thesis project.

3.1 PI: Remote Sensing of 3-D Geometry and Surface Moisture of
a Peat Production Area Using Hyperspectral Frame Cameras
in Visible to Short-Wave Infrared Spectral Ranges Onboard a
Small Unmanned Airborne Vehicle (UAV)

This article evaluated the use of an FPI colour sensor imager in the estimation
of peat moisture over large areas using a drone camera platform. For this article
the author performed the moisture analysis starting from the measured spec-
tral reflectances and ground truth data on the moisture. The analysis included
bandwise correlation analysis, support vector machine (SVM) training and evalua-
tion and visualization of the results, which were carried out using Matlab. The
FPI data showed good correlation with the moisture content using the expected
wavelengths. The SVM analysis was able to predict peat moisture on average
to within 10 percent of the actual value, demonstrating the feasibility of using
a drone-mounted imager to provide usable data for machine learning applica-
tions. Experience from the study provided the motivation for the exploration
and development of the software tools presented in later papers, as considerable
programming effort was needed to carry out and visualise results of the analysis
using the available tools.
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3.2 PII: Software Framework for Hyperspectral Data Exploration
and Processing in MATLAB

This article introduces the hsicube library developed by the author for the ex-
ploratory analysis of hyperspectral images using a high-level language. The
presented software tools are a direct consequence of the frustration experienced
with the existing tools, aimed at reducing the mental effort needed in the devel-
opment of hyperspectral analysis algorithms by automating common operations
and providing abstractions for chaining workflow tasks. This is demonstrated in
the paper by comparison of the code needed to perform these tasks using existing
Matlab methods and the new object-oriented methods.

3.3 PIII: Practical Approach for Hyperspectral Image Processing in
Python

Article PIII expands upon PII by exploring ways to achieve the same analysis
workflow using existing software tools in a general purpose, high-level program-
ming language. The presented tooling was evaluated by the authors during a
lab-wide push to switch programming environments and found to be a good basis
for further development, considering availability of existing tools and expected
development effort to convert workflows. The presented exploration workflows
and the implementation of the spectral index library pyspindl demonstrated that
workflows such as the one in PI could be achieved with less effort than with
existing tools.

3.4 PIV: Miniature MOEMS hyperspectral imager with versatile
analysis tools

This article presents miniaturized spectral imaging hardware and a software
framework for acquiring and analyzing hyperspectral imagery from FPI imagers
using a general-purpose programming language. The software framework is built
around the data structures and tools presented in article PIII, expanded with tools
for hardware control of cameras and FPI devices respectively with the camazing
and spectracular libraries, and the user facing CubeView software. The main
contribution of the author is the fpipy library, which is used by the FPI control
software to determine the calibrated FPI gap lengths for a given image, and the
CubeView software for performing the interpolation and computing radiances
and reflectances from the raw data. The combined software stack demonstrated
the ability for the framework to capture, process and analyze hyperspectral images
from a novel sensor that is also easily extendible with new algorithms and allows
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interoperation with existing machine learning tools.

3.5 PV:Dangers of Demosaicing : Confusion From Correlation

In this article we demonstrated a potential source of bias in the interpolation meth-
ods used to process raw data from colour cameras when used together with FPI
tilters. For this article the author collaborated with Jyri Himaldinen to build a simu-
lation framework for assessing the result quality of different interpolation methods
as used in the fpipy library. The findings indicated that demosaicing methods in-
tended for use with normal colour cameras can introduce wavelength-dependent
errors when used with FPI hardware. This study motivated the development of
the algorithm presented in section 4.3 as part of the workflow, and demonstrates
concerns that need to be taken into account when using existing image processing
algorithms for hyperspectral images.

3.6 hsicube Matlab package

The hsicube Matlab package presented in PII is a collection of tools for hyper-
spectral analysis. The central piece of the package is the Cube data type which
allows object-oriented handling of hyperspectral data including wavelength infor-
mation and other metadata that without it would have to managed by juggling
multiple arrays and indices manually. The Cube class also includes algorithms for
content-aware visualizations and thresholding. The package is available under
the MIT license at github.com/silmae/hsicube.

3.7 fpipy Python library

The fpipy library contains Python implementations of algorithms that are needed
to process a dataset of raw camera frames and metadata into spectral radiances. It
utilises a number of existing open source libraries for most of the heavy lifting, and
combines them with implementations of the hyperspectral processing detailed in
sections 4.2, 4.3 and 4.4. It also includes programmatically available conventions
for the spectral data structures, which are used to provide consistent and testable
data handling from image acquisition back-ends to user-facing applications. The
software is available under the MIT license at github.com/silmae/fpipy.


https://github.com/silmae/hsicube
https://github.com/silmae/fpipy

4 HYPERSPECTRAL IMAGING USING A
FABRY-PEROT INTERFEROMETER AND COLOUR
FILTERS

This chapter provides an overview of the computational and workflow steps
needed for efficient acquisition and post-processing of hyperspectral data using an
imager composed of a Fabry—Perot interferometer and a colour filter array sensor.

4.1 Image acquisition

In order to acquire hyperspectral data using the VIT FPI colour camera imagers
three software components were developed during the research by the author and
coauthors of article PIV:

1. Programmable camera interface (camazing)
2. FPI controller interface (spectracular)
3. Post-processing software for computing radiances (£pipy)

The manufacturer calibration of the FPI device determines the set of gap lengths
that need to be scanned in order to capture a given hyperspectral data cube.
During imaging, the FPI controller library sets the FPI to a given air gap and
passes control to the camera interface, which then returns the image and other
gathered data to the controlling software. The FPI is then set to the next position
for the capture of the next frame, and the process is repeated until all selected FPI
settings have been imaged.

The image needs to be accompanied by a set of metadata in order for the post-
processing software to be able to reconstruct the spectral radiances. Table 1 lists
all the necessary data with typical types and dimensions that need to be passed
to the post-processing software in order to produce a single frame of radiance
information with all the data listed in table 2.
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The software components utilize the xarray Python library (Hoyer and
Hamman, 2017) to collect the data into a dataset that can be passed around in
memory or serialised to disk while containing all the necessary data in a single
variable or file. Of the necessary data, the inversion coefficients used for radiance
calculation must be first determined for the device using the calibration procedure
described in section 2.4. If the device allows different passband filters to be used to
select the range of imaged wavelengths, care must be taken to use the calibration
information corresponding to the filter in use.

TABLE1 Data for computing spectral radiance given a single air gap with expected
types and dimensions for numerical arrays. Npeaxs is the number of FPI orders
between the low- and high-pass filters, and Nojours the number of colours
present on the Bayer filter matrix. Ny and Ny are the number of pixels in the
given dimension of the sensor.

Data field Type Dimensions
Npeaks int 1
Neolours int 1
Inversion coefficients (S;Qll float  Npeaks X Neolours
Peak wavelengths float Npeaks
Peak widths float Npeaks
Bayer pattern string -
Pixel format string -
Exposure time float 1
Gain value float 1
Raw image data unsigned int Nx X Ny

TABLE 2 Radiance data computed from a single frame with a given FPI air gap. The
dimensions Npeaks, Nx and Ny correspond to those in table 1.

Data field Type Dimensions
Peak wavelengths  float Npeaks
Peak widths float Npeaks
Radiance bands float  Npeaks X Nx X Ny

When using a GenlCam (EMVA, 2019) compatible camera as the imaging
backend, the Bayer pattern, pixel format, gain and exposure time can be queried
using the GenICam API. The gain value and exposure time should in general be
stored for each frame, even if they are constant during the cube capture. This
allows data dimensions to be consistent and simplifies processing of the data, as
no ragged arrays are needed. Similarly, if the number of peaks is not constant for
all the settings in the set of air gaps, the inversion coefficients, peak wavelengths
and peak widths should be stored in arrays with size max; Npeaxs instead of the
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settings-specific number of peaks to enable the complete set to be stored as a
non-ragged array.

If the camera interface is set to decode the camera native pixel format to
a specified range instead of storing the DN values directly to a possible larger
container format, the pixel format information should be retained so the actual
range and packing of the data can be determined. Alternatively, the information
can be stored explicitly in some format, for instance using the NetCDF attribute
conventions to indicate data value scaling.

In order to compute reflectance or transmittance factors, reference images
of the reflectance standard or illumination should be taken using the same FPI
settings. If only the rational quantities are needed for the analysis, gain and
exposure information is not strictly necessary for their measurement, as they
cancel out when computing the ratios (assuming that the reference and subject
frames use the same gain and exposure).

4.2 Dark correction

As detailed in section 2.2, the output of the digital sensor may be nonzero even
when no light from the aperture is allowed to hit it due to thermal and electronic
noise. Without correction this noise will introduce bias to any computed quantities,
especially in the case of FPI colour camera imaging since the computed radiances
are highly sensitive to the ratios between the RGB component measurements.
Given a frame I from the imager and an estimate D of the dark current (including
all additive noise components), the true signal is in principle computed as I — D.
This simple subtraction can however introduce computational complications, if
the estimate violates either of the following assumptions.

1. D<,
2. D is of the same numeric type as I.

Averaging dark frames to produce an estimate of the dark current can easily pro-
duce estimates which violate both assumptions depending on the implementation
of the mean or median used. Due to the inherent randomness of the dark current,
it is likely that dark pixels in the actual illuminated frames will contain values
lower than the estimate, and taking either the mean or the median of multiple
values can cause the estimate to be represented as either floating point or larger
integer types than the original frames. Breaking the first assumption forces the
choice of either clamping the result values to nonnegative ones or allowing the
result to contain negative values.

The first option is sensible given the nature of imaging, as negative values
are clearly unphysical. It must then however be taken into account when building
a model of the imager performance, since clamping complicates the statistical
description of noise actually subtracted from the data. Clamping is currently
implemented in fpipy by multiplying each value with a boolean mask with each
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def subtract_clamp (x, y):
return (x > y) * (x —y)
LISTING 4.1 Zero-clamping dark subtraction implementation using numpy. Original
implementation courtesy of Sampsa Kiiskinen.

using numpy (listing 4.1). This prevents integer rollover while not forcing a cast
of the data to a larger signed integer or floating-point type, which would be
undesirable. However, upcasting of the results still occurs if the either parameter
is of a larger type, which ensures no precision is lost due to forced downcasting.

The other option of allowing negative values would also force casting the
result to either a larger signed integer type or floating point with the associated
memory cost. This also causes problems for post processing steps if they assume
nonnegativity of the data, which for the author resulted in many interesting hours
of debugging before the implementation of clamping. Given the possible problems
that integer rollover or negative values can cause, it is surprising that the issues
are not mentioned in descriptions of dark correction methods in either textbooks
(Manolakis, 2016, Section 1.4.1) or articles on radiometric corrections (Minafik,
Langhammer, and Hanus, 2019, Section 2.3.2).

4.3 Demosaicing

Demosaicing (i.e. interpolation) of the Bayer mosaic in some form is necessary for
the recovery of the radiance signal from imagers using colour sensors with tunable
filters. In contrast to monochromatic sensors for which bandwise reflectances or
transmittances can be computed directly by division without converting the DN
values to radiances, mixed-peak radiances must first be separated. Cameras that
can output full RGB images directly have firmware that performs the demosaicing,
but this comes with the caveat that the output is then scaled to the 8 bit range
usual for digital color images.

As detailed in article PV, various demosaicing methods have been developed
for colour cameras with the aim of reducing interpolation artifacts. However, most
methods rely on assumed inter-channel correlations to improve the result quality.
This makes them unsuitable for use with sensors using narrowband filtering
due to the nonuniformity of the colour component responses and correlation
across the range of imaged wavelengths. The same concern has been raised with
interpolation methods used with multispectral colour filters (Mihoubi et al., 2017).
In the case of FPI colour cameras the correlations are a function of both the FPI
air gap and the transmittances of the colour filters, which complicates the issue
of determining the best method for demosaicing. In principle, gradient-corrected
interpolations such as the method of Malvar et al., 2004 (notably used in Matlab,
see Mathworks, 2019) could be optimized for each setting of the FPI air gap
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FIGURE 8 Scaling 12-bit data in a 16-bit container for interpolation using right bitshifts
(top) and left bitshifts (bottom), corresponding respectively to division and
multiplication by 4. Grey blocks indicate bits containing measured data. The
center-packed form allows bitshifts by 2 to either direction without loss of
precision.

using the original procedure for finding the best-fit coefficients for each air gap.
This procedure would however require a concentrated effort to produce suitable
ground truth and simulated or measured datasets for the optimization, which so
far has not been attempted.

Bilinear interpolation is data-agnostic and can be implemented computa-
tionally efficiently as a 2D convolution. An additional advantage can be gained
for image sensors with 12-bit ADCs, since interpolation can then be performed
without loss of precision using only unsigned 16 bit integers. Given a Bayer filter
mosaic image I with a set pattern, the first step is to separate it into appropriately
padded colour layers. The padding should be performed first on the actual mosaic,
since if it is performed on the separated layers more complicated padding methods
need to be applied in order to preserve the correct sampling for each component.

Bilinear interpolation consists only of multiplications or additions totaling
up to a maximum value of 4 x 212, and division by at most 4. Given the 4 extra
bits of precision in the 16-bit container format, any 12-bit data can be scaled such
that it occupies the 12 center bits (see figure 8). As all the needed coefficients
are multiples of two, additional performance can be squeezed out by performing
the multiplications and divisions using bit shifts. Listing 4.2 shows the Python
implementation of the computation in fpipy. The implementation utilises the
numpy Python library for array padding and indexing, and uses the non-padded
array as an accumulator to minimize the array copies needed.

If data about the pixel format of the imaging device is present with the data,
the scaling can also be automatically performed by the post processing software
performing the demosaicing. If the data is eventually stored in a floating-point
or other format with extra precision, the scaling can then be reversed to obtain
values equal to the non-scaled procedure without loss of precision.
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4.4 Radiance computation

Once full RGB information is available, pseudoradiances can be computed for
each calibrated FPI transmission peak with center wavelength A as the dot product
of the RGB values and the relative peak coefficients S~! (1) using the equation 13.

Given the exposure time and a strictly multiplicative gain value, the pseudo-
radiance can then be further divided with them to obtain a physically representa-
tive radiance value, giving the equation

L) = R-Sg'(M) ;G-ngl()\) +B- Sgl(/\).

gain * Texposure

(14)

4.5 Averaging reflectance factors

As defined in equation (5) in section 2.1, the bidirectional reflectance factor can be
expressed as the ratio of radiance measurements of the surface under study and a
reflectance reference surface. Given measurements of the surface and reference
using the same imaging geometry and parameters, the reflectance factor for a pixel
(x,y) in the image can be calculated following the definition as
dL:(x,y)
R(x,y) = ———=, 15

(x,y) dLH(x, y) (15)
considering the measured values at each pixel as estimates of the pointwise radi-
ance measurements.

As single pixels are often noisy, it is common for the hyperspectral analyst
to compute an average reflectance of some number N of pixels from an image in
order to smooth out noise with the assumption that the reflectance is constant
across the pixels and any noise is due to the measurement. This is then usually
computed by taking the mean of the previously computed pixel reflectance factors

as
1 1 Li(x,y)
R==YR(xy ==Y 22 (16)
N LRV =N LT,y

However, taking a look at the definition raises questions similar to those
raised by (Schaepman-Strub et al., 2006) on the confusion of definitions. If we
wish to integrate R over an area in order to compute an average, and start by
manipulating it to the form (omitting this time the angles)

dLi(x,y)R(x,y) = dL(x,y), (17)

making the same assumption as before about R being constant across the area and
integrating over it gives us the result

[ dLe(x,y)dxdy

R = _ }
fA dLid(x,y)dxdy

(18)
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This results in a equation for the reflectance measured over a given area,

. Zx,y Lr (x, ]/)

R= = 7
Yy Lid(x,y)

(19)

which is clearly a different quantity from the one in equation (16) if the reflected
radiance from the ideal reflector is not constant across all the pixels. A visualisation
of the difference is presented in figure 9.

This difference should have no real significance in applications where av-
eraging is used as a noise reduction technique. However, the averaged values
are also used to compare reflectances from instruments with differing pixel sizes
in terms of the surface area they image, such as when comparing spectrometer
measurements to imager output. In that case, the difference between the equations
means that averaging should be performed at the radiance level to provide a
more accurate estimate of the reflectance seen by the instrument with the larger
pixel size. The author has found no mention of this discrepancy in the literature
or consensus on the matter in discussions with colleagues (including some at
metrology institutes), and as such the matter should be further investigated.
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FIGURE 9 Different reflectance factors R computed from the same simulated pairs of val-
ues of L, and L;; between 0 and 1 in arbitrary units. Left: The reflectance factor
of the collection of points is the slope of the line (orange) passing through
the mean of the simulated values (purple). Right: The mean reflectance is
the average of the slopes of the lines passing through the simulated points
(purple). A line with the average slope (orange) is plotted for comparison.
The values given by equations (16) and (19) differ for these points by 0.02.
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def demosaic_12bit_centered (cfa, masks):
rgb = cfa * masks
padded = np.pad(
res,
[((0, 0), (1, 1), (1, 1)],
mode="reflect’

)

rgb = rgb << 2

rgb [0, ] += padded|O, -2, 1:.—-1] << 1
rgb [0, ] += padded]|O, 2:, 1:—-1] << 1
rgb [0, ] += padded[0, 1:—-1, :-2] << 1
rgb[0, ::] += padded[0, 1:-1, 2:] << 1
rgb[0, ::] += padded[0, :—2, :-2]
rgb[0, ::] += padded[O, 2:, :—2]
rgb [0, ] += padded[0, :-2, 2:]
rgb [0, ] += padded]O, 2:, 2:]
rgb[1, ] += padded|[1, -2, 1:—1]
rgb[1, ] += padded|[1, 2:, 1:—1]
rgb[1, ] += padded[1, 1:-1, :-2]
rgb[1, ] += padded[1, 1:-1, 2:]
rgb[2, ] += padded[2, :-2, 1:-1] << 1
rgb[2, ] += padded|[2, 2:, 1:—-1] << 1
rgb[2, ] += padded[2, 1:-1, :-2] << 1
rgb[2, ] += padded[2, 1:-1, 2:] << 1
rgb[2, ] += padded[2, :-2, :-2]
rgb[2, ] += padded[2, 2:, :=2]
rgb[2, ] += padded[2, :-2, 2:]
rgb[2, ] += padded[2, 2:, 2:]

return rgb >> 2

LISTING 4.2 Demosaicing of 12-bit data within a 16-bit format. The function takes as
parameters a colour filter mosaic cfa with size x X y from the camera and
a 3 x x X y array of bit masks corresponding to the Bayer pattern of the
mosaic.



5 CONCLUDING REMARKS AND FUTURE STUDY

The development of miniaturized hyperspectral imagers combining Fabry—-Perot
interferometers and machine vision cameras promises to enable many new appli-
cations for hyperspectral imaging, as they are both cheaper and more versatile
than most existing solutions. The development of open source post-processing
and analysis software libraries in a general purpose language such as Python
marks a departure from many standard industry tools which are either proprietary
or use more specialised programming languages such as Matlab or IDL (used by
the ENVI software). This enables interoperability between hyperspectral imaging
software and the much larger ecosystem of open source software tools for ma-
chine learning and application development, which together with the hardware
developments should make hyperspectral imaging much more attractive as a tool
to both industry and academia. The raw data format used as input by the fpipy
library defines a minimal set of data that needs to be gathered from the calibration
and camera to effectively compute radiance data from FPI colour cameras for any
given FPI and camera combination, answering research question 1. The software
implementations presented in PIV conclusively answer research question 2 by al-
lowing the complete workflow from camera to analysis to be performed in Python.
The author hopes that the developed software libraries also find use in future
studies and applications.

The FPI imagers are still a new technology, and as such are not as well charac-
terized or understood as other sensor types when it comes to their radiometric and
spectral performance. Recent studies at national metrology institutes (Hakala et al.,
2018; Pekkala et al., 2019) have found issues with insufficient factory calibrations
of devices using the FPI technology, leading to spectral inaccuracies and signal
leakage from extraneous interference peaks of the FPI passing through to the
sensor. While the usability of the FPI colour cameras has been demonstrated in PI,
both in terms of being able to capture data and utilizing it in a machine learning
application, the various issues with the signal quality do limit the imagers in com-
parison to many other imager types with more established calibration procedures.
While research question 3 can be considered solved for applications that do not
require absolute radiometric calibration, further research should be done to im-
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prove the signal quality and reliability of the imagers and enable their use in more
demanding applications. Besides radiometric calibration, improvements in signal
quality could also be obtained through the development of better demosaicing
methods or by utilizing the programmable camera control to tune the exposure
time based on the FPI air gap to increase light capture at wavelengths with little
light. The use of the raw mosaic data in applications by itself also presents an
interesting area of study, as bypassing the need for radiance calculation would
decrease the computational requirements considerably and enable much faster
analysis of the data.
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YHTEENVETO (SUMMARY IN FINNISH)

Viitoskirjatyossa tutkittiin Fabry—Perot-interferometrien ja varikameroiden avulla
toteutettuja hyperspektrikameroita ja kuvantamiseen vaadittavia laskennallisia
menetelmid. Kuvannuslaitteistossa interferometria kdytetdan aallonpituussuoti-
mena, jonka avulla kameran kennolle voidaan pédastdad kerrallaan joukko kapeita
aallonpituuskaistoja. Kuvattavia aallonpituuksia voidaan vaihtaa muuttamalla
interferometrin peilien etdisyyttd. Mikéli kennolle saapuva valo koostuu korkein-
taan kolmesta aallonpituuskaistasta, eri kaistojen tuottamat signaalit voidaan
erotella kdyttden kuluttajavarikameroissa yleisesti kdytettyd varisuodatinmatriisia
ja tarkoitukseen kehitetyn kalibraatiomenetelmén avulla laitteistolle maaritettyja
kertoimia. Tahdn tekniikkaan perustuvia VIT:n valmistamia laitteita on hyodyn-
netty esimerkiksi lennokki- ja satelliittisovelluksissa. Véitoskirjan ensimmaéisessa
julkaisussa osoitettiin ettd lennokkiin liitetyn kameran kuvista voidaan arvioida
koneoppimismenetelmilld turpeen kosteutta.

Hyperspektrikuvien ohjelmallinen késittely vaatii paljon kirjanpitoa, jotta
eri kameroista saatavien kuvien vertailu ja datan kdytto analyysissa on mahdollis-
ta. Ensimmadisessd julkaisussa esitetyn analyysin toteuttaminen olemassaolevilla
tyokaluilla Matlab-ympaéristossa osoitti tarpeen kehittdd parempia tyokaluja tut-
kimustyon avuksi. Tdmén kehitystyon tuloksena kehitetyt ohjelmistokirjastot
Matlab- ja Python-ympéristoille on esitelty toisessa ja kolmannessa julkaisussa.
Mainitun signaalierottelun suorittaminen useille kuville vaatii erikoistettuja al-
goritmeja, jotta laskenta saadaan suoritettua tehokkaasti ja ilman ylimédaraista
laskennasta johtuvaa epatarkkuutta. Viidennessa julkaisussa osoitettiin simulaa-
tioilla, ettd varisuodatinkuvien kisittelyyn kehitetyt interpolointialgoritmit voivat
aiheuttaa aallonpituudesta riippuvaa epatarkkuutta, mikali niitd kdytetdan aallon-
pituussuotimia kdyttavan kuvannusjdrjestelman datankésittelyssa. Vaitoskirjassa
esitetddn tekijan kehittdmaét ratkaisut kuvien mustan tason korjaukseen ja inter-
polointiin, jotka on julkaistu vapaasti saataville osana tekijan kehittdimaa fpipy-
ohjelmistokirjastoa. Vaitoskirja esittelee myos yleisemmin hyperspektrikuvanta-
miseen liittyvid laskennallisia ongelmia liittyen spektridatan keskiarvoistamiseen
ja vertailukelpoisuuteen.

Kameroihin liittyd laskennallisten menetelmien tutkimus on tehty Jyvéaskylan
yliopiston spektrikuvantamislaboratoriolla hyddyntdaen VIT:n toimittamia proto-
tyyppilaitteita, jotka kadyttavat erikoisvalmisteisia interferometreja ja kaupallisesti
saatavilla olevia konendkokameroita. Kameroiden pieni koko ja tekniikalla saavu-
tettava kuvausnopeus mahdollistavat niiden kdyton uusissa hyperspektrikuvanta-
misen sovelluksissa. Neljds artikkeli esitteleelaboratoriolla Python-ympérist66n
kehitettyd ohjelmistokokonaisuutta, jonka datankasittely perustuu tutkimuksen
aikana kehitettyihin menetelmiin.
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Abstract—Miniaturized hyperspectral imaging sensors are be-
coming available to small unmanned airborne vehicle (UAV) plat-
forms. Imaging concepts based on frame format offer an attractive
alternative to conventional hyperspectral pushbroom scanners
because they enable enhanced processing and interpretation po-
tential by allowing for acquisition of the 3-D geometry of the
object and multiple object views together with the hyperspectral
reflectance signatures. The objective of this investigation was to
study the performance of novel visible and near-infrared (VNIR)
and short-wave infrared (SWIR) hyperspectral frame cameras
based on a tunable Fabry-Pérot interferometer (FPI) in measur-
ing a 3-D digital surface model and the surface moisture of a peat
production area. UAV image blocks were captured with ground
sample distances (GSDs) of 15, 9.5, and 2.5 cm with the SWIR,
VNIR, and consumer RGB cameras, respectively. Georeferencing
showed consistent behavior, with accuracy levels better than GSD
for the FPI cameras. The best accuracy in moisture estimation was
obtained when using the reflectance difference of the SWIR band
at 1246 nm and of the VNIR band at 859 nm, which gave a root
mean square error (rmse) of 5.21 pp (pp is the mass fraction in
percentage points) and a normalized rmse of 7.61%. The results
are encouraging, indicating that UAV-based remote sensing could
significantly improve the efficiency and environmental safety as-
pects of peat production.
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[. INTRODUCTION

EMOTE sensing using small unmanned airborne vehicles
(UAVs) is a rapidly emerging technology. UAV-based
remote sensing offers possibilities for cost-efficient data collec-
tion with desired spatial and temporal resolutions, which opens
up completely new remote sensing applications and new possi-
bilities to perform scientific studies in our environment [1], [2].
An appropriate sensor is a fundamental component of a
UAV remote sensing system. The first operational, civil, and
lightweight UAV imaging systems typically used commer-
cial video cameras or still cameras operating in three wide-
bandwidth bands in red, green, blue (RGB) and/or near-infrared
spectral regions [3]-[5]. Miniaturized hyperspectral sensors
have become available to UAV platforms, offering enhanced
possibilities for remote sensing applications. Hyperspectral re-
mote sensing employs tens to hundreds of contiguous bands to
accurately reconstruct the spectral signature of the target of in-
terest [6]. The first miniaturized sensors operated in the visible
to near-infrared spectral (VNIR) range extending to approxi-
mately 400-1000 nm. Several pushbroom-type hyperspectral
sensors have recently been implemented in UAVs [7]-[11].
Researchers have also implemented point-based spectrometers
in UAVs [12], [13]. Lately, novel hyperspectral cameras op-
erating in a frame format principle have entered the market,
such as the Rikola Hyperspectral Camera (http://www.rikola.fi),
Cubert UHD 185-Firefly (http://cubert-gmbh.de/), or the IMEC
SM5X5 (http://www2.imec.be). The frame sensors can be fur-
ther classified based on the imaging principle as ones capturing
all bands simultaneously (snapshot imaging) or as those captur-
ing unregistered bands [14]. The methods for capturing images
with unregistered bands include the time-sequential principle or
multiple cameras.
When considering different sensing principles, the advan-
tages of the frame imaging approach include the possibility to
collect image blocks with stereoscopic multiple object views

0196-2892 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. (a) Principle of the optical system of FPI SWIR camera prototype 2014. (b) Components of the FPI SWIR imaging system.

and the geometric and radiometric constraints provided by the
rigid rectangular image geometry and multiple overlapping
images [14], [15]. These can be seen as important advan-
tages in comparison to classical hyperspectral imaging methods
based on the pushbroom scanning technology or on point-based
spectral measurements. This is valuable in particular for UAV
applications, which typically operate under dynamic, vibrating,
and turbulent conditions. Furthermore, in many applications,
3-D information is a significant feature parallel to spectral
information.

This study investigates novel hyperspectral imaging technol-
ogy based on a variable air gap Fabry—Pérot interferometer
(FPI). The FPI technology makes it possible to manufacture
a lightweight frame format hyperspectral imager operating on
the time-sequential principle. The first prototypes of the FPI-
based cameras were operating in the VNIR spectral range
[16]-[18], and recently, a short-wave infrared (SWIR) region
prototype operating in the spectral range of 1100-1600 nm was
presented [19]. The FPI technology has also become commer-
cially available in the VNIR range (http://www.rikola.fi). In the
UAV operation, the camera is operated using photogrammetric
principles, capturing image blocks with stereoscopic overlaps.
It is crucial to emphasize the data postprocessing steps that
are required to transform these huge amounts of images into
products that allow the objects’ geometric and spectral char-
acteristics to be interpreted on a quantitative geometric and
radiometric basis. Recently, the usability of stereoscopic frame
images has improved to a new level due to the development of
the structure-from-motion-based image orientation techniques
[20] and the dense digital matching technologies generating
accurate 3-D point clouds and digital surface models (DSMs)
[21]-[26]. These modern computer vision and photogrammet-
ric techniques are capable of providing high-quality 3-D geo-
metric data in a highly automated way.

Surface moisture is one of the key parameters in various
environmental and hydrological applications, such as agricul-
tural water management and catchment management [27]-[29].
This work investigates the potential of FPI sensors in estimating
surface moisture of a peat production area aiming at improving
the efficiency and safety aspects of peat production. When
harvesting peat for energy production, peat surface moisture
is a critical parameter [30]. Peat is used in energy production
mainly in countries where large mires can be found, such as

Finland, Sweden, Russia, and Ireland. Before using peat in
a burner, it is first ground from the mire surface. When the
peat grind is dry enough, it is harvested in large stacks to
wait for transportation to the heating plant. Peat should be
suitably dry to improve combustion at the heating plant, while
avoiding spontaneous combustion in the stack. Currently, the
moisture measurements are carried out by collecting samples
of peat and measuring the wet and dry weight of the samples,
lasting for at least 24 h. With the UAV remote-sensing-based
method, the speed and efficiency of peat moisture measurement
could be remarkably improved. Previous investigation showed
that peat spectra had several features particularly in the SWIR
region supporting classification of moisture and humification
levels of peat [31]. Thermal imaging is also a potential technol-
ogy for surface moisture estimation. Laboratory measurements
have indicated good potential of this technology, but previous
experimental results with a thermal camera from a manned
aircraft platform showed weak correlation of surface moisture
and temperature [30].

The objective of this investigation was to study the per-
formance of novel FPI-based VNIR and SWIR hyperspectral
frame cameras in generating a DSM and measuring surface
moisture of a peat production area. The expectation was that the
SWIR range data are more suitable for moisture estimation than
the VNIR data, but it was of interest to compare both spectral
ranges. We depict the FPI camera technology in Section II. We
describe the test setup used for the empirical investigation in
Section III, present the empirical results in Section IV, and
discuss them in more detail in Section V.

II. FPI SPECTRAL CAMERA TECHNOLOGY
A. Principle of FPI-Based Spectral Imager

The hyperspectral camera developed at the VTT Technical
Research Centre of Finland (VTT) [16]-[19] is based on the
use of multiple orders of a variable air-gap FPI. When the FPI
is placed in front of the sensor, the wavelength of the light
passing the FPI is a function of the interferometer air gap (see
Fig. 1). By changing the air gap, it is possible to acquire a new
set of wavelengths. The final spectral response is dependent
on the light passing the FPI and the spectral characteristics
of the detector. The spectral bands can be selected according
to the requirements of the remote sensing task. In various
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implementations, three-color [15]-[18] or single-color sensors
have been used (http://www.rikola.fi). The number of transmis-
sion peaks passing the FPI is one to three; thus, exposure with a
single gap width provides one to three different spectral bands,
when a three-color sensor is used [16]-[18]. With a single-color
sensor, one spectral band is obtained for each air-gap value. The
first FPI cameras operated in the VNIR range, and recently,
Mannila et al. [19] presented the first implementation of the
FPI technology in the SWIR range. The first photogrammetric
and remote sensing data analyses with the FPI hyperspectral
imaging technology have shown that it has excellent potential
in remote sensing [15], [32]-[35].

During data collection, a predefined sequence of air-gap
values is applied to capture the full spectral range. The hy-
perspectral data cube is thus formed in the time-sequential
imaging principle. When using this technology on a moving
platform, each band in the data cube exposed to a different
air-gap value has a slightly different position and orientation,
which has to be taken into account in the postprocessing phase.
During the flight, the integration time, gain, and FPI air-gap
information are stored. FPI cameras are equipped with a Global
Positioning System (GPS) receiver that records the exact time
of the beginning of each data cube; furthermore, the sensor
electronics output the synchronization pulse of each exposure
(which have not been utilized thus far). An irradiance sensor
based on the Intersil ISL29004 photodetector with a spectral
sensitivity range of 400-1000 nm is integrated in the camera to
measure the irradiance during each exposure. The sensor is not
calibrated; thus, relative broadband irradiance intensity values
are obtained [15], [36]. The dark signal is collected before the
flight. All data are applied to the images after the flight in the
postprocessing phase, as described in Section I1I-C-E.

B. Cameras Used in This Investigation

The FPI camera prototype 2012b belonging to the Finnish
Geospatial Research Institute was used to capture VNIR images
[15], [18]. It is equipped with custom optics having a focal
length of 10.9 mm and an f-number of 2.8. The camera has
a CMOSIS CMV4000 RGB image sensor with an electronic
shutter. The time difference between adjacent exposures is
0.075 s, giving a time difference between the first and last
exposures in a data cube with 24 bands of 1.8 s. The sensor
is used in a twice binned mode, providing an image size of
1024 x 648 pixels with a pixel size of 11 pm. The field of view
(FOV) is +18° in the flight direction, +27° in the cross-flight
direction, and £+31° at the format corner. The entire camera
system weighs less than 700 g.

The SWIR range spectral imager consists of the commercial
indium gallium arsenide (InGaAs) camera—the Xenics
Bobcat-1.7-320, the imaging optics, the FPI module, control
electronics, a battery, a GPS sensor, and an irradiance sensor
(see Fig. 1) [19]. The Xenics Bobcat-1.7-320 is an uncooled
InGaAs camera, with a spectral band of 0.9—1.7 ym and 320 x
256 pixels and a pixel size of 20 x 20 pm. The FPI, optics, and
electronics are designed and built at VTT. The focal length of
the optics is 12.2 mm, and the f-number is 3.2; the FOV is £13°
in the flight direction, £15.5° in the cross-flight direction,

=== VIS/NIR and RGB flight line
— SWIR flight line 3
peat samples
A ground control points
reflectance panels
~ | wetland

RGB orthoimage

Fig. 2. Flight lines, ground control points (GCPs), and distribution of peat
samples.

and +20° at the format corner. The time between adjacent
exposures is 10 ms plus exposure time; capturing single data
cube with 32 bands and using 2-ms exposure time takes 0.384 s.
The mass of the spectral imager unit is approximately 1200 g.

III. MATERIALS AND METHODS
A. Test Area and Flight Campaign

Test flights were carried out in Okssuo in southern Finland
(60°49'24.534”, 23°56/12.325") on 11 September 2014. The
study site is the peat production area of Vapo Oy, having a
flat topography with parallel ditches and covered by spectrally
homogeneous peat (see Fig. 2). The size of the area of interest
was about 150 m x 150 m. Weather conditions were sunny,
clear, and windless.

Image blocks with six image strips (see Fig. 2) were collected
using three different cameras: the FPI VNIR camera prototype
2012b, the new FPI SWIR camera prototype, and a commercial
RGB camera, the Samsung NX300. Samsung NX300 has a
23.5 x 15.7 mm CMOS RGB sensor with 20.3 megapixels
and a 16-mm lens; it was used to collect high-spatial-resolution
stereoscopic data for comparison and reference purposes.

For the FPI SWIR camera, we used an 8-rotor UAV, based on
the MikroKopter autopilot and the Droidworx AD-8 extended
frame with a 1.5-kg payload capacity. The camera was rigidly
mounted to the landing gear of the UAV [see Fig. 3(a)]. The
Samsung NX300 and FPI VNIR cameras were simultaneously
operated using a hexacopter with a Tarot 960 foldable frame
with Tarot 5008 (340 KV) brushless electric motors having a
4-kg payload capacity. The autopilot was Pixhawk equipped
with Arducopter 3.15 firmware. Both cameras were rigidly
mounted to the payload rails of the hexacopter [see Fig. 3(b)].
In practical operation, it is recommended to install the cameras
on stabilized mount to compensate for impacts of the platform
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Fig. 3. (a) Lightweight SWIR camera installed in an octocopter UAV. (b) VNIR
and Samsung NX300 cameras installed in a hexacopter UAV.

TABLE 1
DETAILS OF THE IMAGE BLOCKS. F: FLIGHT DIRECTION;
CF: CROSS-FLIGHT DIRECTION; FOV: FIELD OF VIEW

Sensor SWIR VNIR RGB
Spectral sensitivity (nm) 1100-1600 500-900 R,G,B
Flight height (m) 89 94 94

GSD (m) 0.15 0.095 0.025
Exposure time (ms) 2 15 0.5
Footprint f; cf (m) 38,47 67; 106 90; 135
Overlap f, cf (%) 77,43 76; 78 92; 83
FOV f, cf (°) +13°£15.5°  +20; +29 +26; +36
Flight Speed (m/s) 4 4 4
Number of images 157 117 235
Time (UTC +0) 11:48-12:00 11:19-11:28  11:19-11:28
Sun elevation; azimuth (°)  31; 208 32; 199 32; 199

vibrations and fast movements in the image quality. The use of
stabilized mount was not possible in this investigation due to
experimental setups.

The photogrammetric block setup was designed for the
SWIR camera at a flying height of 90 m above ground level.
The resulting ground sample distance (GSD) was 15 cm for the
SWIR camera, 9.5 cm for the VNIR camera, and 2.5 cm for
the RGB camera. In the case of the SWIR camera, the size of
the image footprint was 38 m x 47 m, the forward overlap was
77%, and the side overlap was 43% on average. For the FPI
VNIR camera and the RGB camera, the overlaps were larger
(see Table I).

The spectral settings of the FPI VNIR and SWIR cameras
were selected so that the spectral range was covered quite
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evenly (see Table II). A total of 32 spectral bands were collected
by the FPI SWIR camera in the spectral range 1100-1600 nm
with the full width of half maximum (FWHM) ranging from
20 to 30 nm and with an exposure time of 2 ms. With the
VNIR camera, 38 bands were collected on a spectral range of
500-900 nm having an FWHM of 11-31 nm and an exposure
time of 15 ms. The long exposure time was used to obtain
a good dynamic range in the relatively dark peat surface
(reflectance < 0.3). The bright reflectance panels with the nom-
inal reflectance of 0.5 were saturated with this setting; hence,
it is not suitable for applications having reflectance values
brighter than 0.5, for example, vegetation remote sensing. The
long exposure time could also cause image quality reduction
due to motion blur. However, the movement of the platform
was less than the GSD during the exposure, and the weather
conditions were excellent, i.e., low winds and no turbulence;
thus, no significant motion blur was expected. Visual inspection
of images did not show noticeable motion blur.

B. Ground Reference

We deployed 13 GCPs targeted with circular targets with
a diameter of 30 cm (see Fig. 2). Their coordinates were
measured using the virtual reference station real-time kinematic
GPS (VRS-GPS) method with accuracy levels [root mean
square error (rmse)] of approximately 3 cm in X and Y and
4 c¢cm in Z coordinates [37].

For reflectance transformation purposes, reflectance panels
of size I m x 1 m and with nominal reflectivity of 0.03, 0.1,
and 0.5 were installed in the area. Materials of the panels were
carefully selected to provide uniform reflectance properties and
low anisotropy; black and dark gray panels were made of car-
pet, whereas the brightest panel was a painted panel [38]. The
reference reflectance values were measured in a laboratory with
an estimated accuracy level of 2%-5% using the FIGIFIGO
goniospectrometer [39].

Altogether, 44 peat samples of size 0.05 m x 0.05 m x
0.03 m were taken and measured for reflectance and moisture in
the laboratory. Spatial locations of samples (XYZ coordinates)
were measured with VRS-GPS. Moisture content (MC [%]) of
the samples was determined based on wet weight (wye) and
dry weight (wqry), i.e.,

MC =100 wwet/(wdry + wwet)[%}‘ (1)

Sample moisture varied from 50.0% to 78.4%, and the
average moisture was 67.4%.

C. Data Processing

Hundreds of small-format UAV images were collected to
cover the area of interest. Rigorous processing was required to
derive quantitative information from the imagery. The process-
ing of FPI camera images is similar to any frame format
camera images; the major difference is the processing of the
nonoverlapping spectral bands. The FPI data processing line for
MC estimation contained the following steps:

1) applying laboratory calibration corrections to the images;
2) determination of the geometric imaging model, including
interior and exterior orientations of the images;
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TABLE II
SPECTRAL SETTINGS OF THE FPI VNIR AND SWIR CAMERAS. LO: CENTRAL WAVELENGTH; FWHM: FULL WIDTH AT HALF MAXIMUM;
DT: TIME DIFFERENCE TO THE START OF THE DATA CUBE; DS: COMPUTATIONAL SPATIAL DISTANCE TO THE START OF THE DATA CUBE

VNIR LO (nm): 507.6, 509.5, 514.5, 520.8, 529.0, 537.4, 545.8, 554.4, 562.7, 574.2, 583.6, 590.4, 598.8, 605.7, 617.5, 630.7, 6442, 657.2, 670.1,
677.8, 691.1, 698.4, 705.3, 711.1, 717.9, 731.3, 738.5, 751.5, 763.7, 778.5, 794.0, 806.3, 819.7, 833.7, 845.8, 859.1, 872.8, 885.6

VNIR FWHM (nm): 11.2, 13.6, 19.4, 21.8, 22.6, 20.7, 22.0, 22.2, 22.1,21.6, 18.0, 19.8, 22.7, 27.8, 29.3, 29.9, 26.9, 30.3, 28.5, 27.8, 30.7, 28.3,
25.4,26.6,27.5,28.2,27.4,27.5,30.5, 29.5, 25.9, 27.3, 29.9, 28.0, 28.9, 32.0, 30.8, 27.9

VNIR dt to start of the data cube (s): 0.9, 0.975, 1.05, 1.125, 1.2, 1.275, 1.35, 1.425, 1.5, 1.575, 1.65, 1.725, 1.8, 0, 0.075, 0.15, 0.225, 0.3, 0.375,
0.45, 0.525, 0.6, 0.675, 0.75, 0.825, 0.9, 0.975, 1.05, 1.125, 1.2, 1.275, 1.35, 1.425, 1.5, 1.575, 1.65, 1.725, 1.8

VNIR ds to start of the data cube (m): 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6,63, 6.6, 6.9, 7.2, 0,0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3, 3.3, 3.6,

39,4.2,45,48,5.1,54,5.7,6,6.3,6.6,6.9,7.2

SWIR LO (nm): 1154.1, 1168.6, 1183.7,1199.2, 1214.3, 1228.2, 1245.7, 1261.2, 1281.7, 1298.6, 1312.9, 1330.7, 1347.2, 1363.2, 1378.7, 1396.7,
1408.1, 1426.3, 1438.5, 1452.6, 1467.0, 1479.4, 1491.8, 1503.8, 1516.7, 1529.3, 1541.6, 1553.3, 1565.5, 1575.5, 1581.9, 1578.3
SWIR FWHM (nm): 27.0, 27.0, 26.5, 26.1, 26.7, 27.0, 26.4, 26.3, 26.2, 26.5, 26.6, 25.8, 25.8, 25.6, 26.5,27.4, 26.9, 28.2,27.2, 27.1, 28.6, 27.7,

279,272,288, 28.5,28.9,29.8,30.4, 27.5, 20.5, 20.1

SWIR dt to start of the data cube (s): 0, 0.012, 0.024, 0.036, 0.048, 0.06, 0.072, 0.084, 0.096, 0.108, 0.12, 0.132, 0.144, 0.156, 0.168, 0.18, 0.192,
0.204, 0.216, 0.228, 0.24, 0.252, 0.264, 0.276, 0.288, 0.3, 0.312, 0.324, 0.336, 0.348, 0.36, 0.372
SWIR ds to start of the data cube (m): 0, 0.05, 0.10, 0.14, 0.19, 0.24, 0.29, 0.34, 0.38, 0.43, 0.48, 0.53, 0.58, 0.62, 0.67, 0.72, 0.77, 0.82, 0.86, 0.91,

0.96, 1.01, 1.06, 1.10, 1.15, 1.2, 1.25, 1.30, 1.34, 1.39, 1.4, 1.49

3) using dense image matching to create a DSM;

4) determination of a radiometric imaging model to trans-
form the digital numbers (DNs) data into reflectance;

5) calculating the hyperspectral image mosaics;

6) estimating surface moisture.

The processing of FPI VNIR images is a well-developed
process [15], whereas the FPI SWIR sensor is a new proto-
type, and the processing required additional development. In
the following sections, the geometric (2, 3) and radiometric
(1, 4, 5) processing steps and estimation process (6) used in
this investigation are described.

D. Geometric Processing

Geometric processing determines the image orientations and
creates point clouds and DSMs. Because the orientation of each
band of the FPI data cube (typically 2040 bands) would be
computationally heavy, we have developed an approach that
determines the orientations of selected reference bands and
uses a less demanding band-matching procedure for the rest
of the bands [15]. The reference bands are selected so that
the temporal range of the images is covered as uniformly as
possible. Different subsets of data were processed as follows.

1) Single FPI VNIR camera channel 16 (central wavelength
of the band: LO = 631 nm; spatial difference to the be-
ginning of the data cube: ds = 0.6 m) was processed to
study the geometric performance of single FPI camera
band data (118 images).

2) The RGB images and three FPI VNIR camera bands 4
(LO =521 nm; ds =4.5 m), 12 (LO =590 nm; ds =
6.9 m), and 16 (LO =631 nm; ds = 0.6 m) were si-
multaneously processed to provide the most accurate
orientations for the FPI reference bands (589 images).

3) Five bands of the FPI SWIR camera were simulta-
neously processed to provide orientations for the SWIR
data cubes and SWIR DSM (983 images). The bands
were 3 (LO = 1184 nm; ds = 0.1 m), 8 (LO = 1261 nm;
ds =0.3m), 11 (LO = 1313 nm; ds = 0.5 m), 24 (LO =
1504 nm; ds = 1.1 m), and 28 (LO = 1553 nm; ds =
1.3 m).

4) The RGB images were used to create an accurate
DSM that was used as reference for other data sets
(235 images).

Agisoft PhotoScan Professional commercial software
(AgiSoft LLC, St. Petersburg, Russia) was used to determine
the image orientations and to generate dense point clouds over
the object area. Its excellent performance has been validated
in previous studies [24], [35]. PhotoScan performs photo-
based 3-D reconstruction using feature detection and dense
matching. In each data set, the images were automatically
oriented without a priori orientation information. The GPS
flight trajectory information could also be used to provide the
approximate orientations, which could make the processing
faster. In the orientation processing, the PhotoScan quality
setting was set to “high”; settings for the number of key points
per image were 40000 and those for the final number of tie
points per image were 1000; an automated lens calibration was
simultaneously performed. According to our experiences, these
settings are suitable for the FPI images to provide accurate
results and reasonable processing time. An automatic outlier
removal was performed using the tools of the software on
the basis of the reprojection error (10% of points with the
largest errors were removed) and reconstruction uncertainty
(10% of points with the largest errors were removed). Finally,
some points were manually removed from a sparse cloud,
particularly points up in the air or underground. This pro-
cessing provided the orientation of the images and sparse point
clouds in the internal coordinate system of the software.

The object reference coordinate system information was used
to transform the image orientations into the desired coordinate
system. We used different control data configurations to eval-
uate if the system has a consistent geometric performance and
to study optimal georeferencing configurations: 1) 13 GCPs;
2) positions for images measured by the autopilot’s GPS and
no GCPs; 3) GPS and one GCP close to the takeoff location;
4) GPS and four GCPs in block corners; 5) GPS and five GCPs
(four in block corners and one in the center of the block); 6) four
GCPs in block corners; and 7) five GCPs (four in block corners
and one in the center of the block). In practical operation,
the configurations with a minimum number of GCPs are the
most efficient. The standard deviation settings for the GCPs
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were ogcep_xyz = 0.001 m, and for the GPS coordinates, we
used a standard deviation of ogps_xyz = 3 m. The projection
accuracy was set to 0.1 pixels, and tie point accuracy was
set to 4 pixels. The outputs of the final self-calibrating block
adjustment were the camera calibrations, and the image exterior
orientations and sparse point clouds in the ETRS TM35FIN
coordinate system.

In the dense point cloud generation process, for VNIR and
SWIR camera images, the full-resolution images were used,
and for the RGB point cloud generation, four times downscaled
images were used. Depth filtering was used to filter out outliers
in the point clouds. For the SWIR data, the PhotoScan quality
setting “mild” was used, performing the least filtering. For
the VNIR data and for the RGB data, the setting “moderate”
was used, assuming a flatter object and to eliminate more
height points.

A band-matching procedure was used for the bands that
were not included in the orientation processing. Band matching
was carried out using a feature-based matching algorithm, and
an affine transformation was used to map the bands to the
reference bands. In the previous investigations, the accuracy
of this approach has been shown to be on the level of a pixel
in flat areas [15]. In this matching, the spatial difference to the
reference band (derived from ds; Table II) is an important factor
impacting the quality of band matching. For the VNIR camera,
we used the reference band for each major spectral color range
corresponding to the bands that were oriented by PhotoScan:
band 4 (LO = 521 nm; ds = 4.5 m), band 16 (LO = 631 nm;
ds = 0.6 m), and band 29 (LO = 764 nm; ds = 4.5 m). For the
SWIR camera, we used the same five reference bands (3, 8,
11, 24, and 28) that were oriented in the PhotoScan processing
and matched each unoriented band to the temporally closest
reference band. For the noisiest bands in the atmospheric ab-
sorption region (bands 15-21; LO 1379-1467 nm), we interpo-
lated the orientations from the orientation trajectory determined
photogrammetrically in the PhotoScan processing because the
matching would not have provided a reliable result.

The geometric accuracy was evaluated by using independent
check points and evaluating the DSMs. The 3-D point deter-
mination accuracy was assessed using the GCPs that were not
included in the georeferencing and VRS-GPS coordinates of
the peat sample points as check points. Height accuracy and
deformations of the VNIR and SWIR DSMs were assessed by
using the RGB DSM as reference. The accuracy of alignment of
bands of final image mosaics was evaluated by using an image
correlation technique, by matching all the bands to a reference
band, and by calculating discrepancies.

E. Radiometric Modeling and Reflectance Mosaic Generation

Radiometric modeling includes the sensor corrections, the
atmospheric correction, correction for the illumination changes
and other nonuniformities, and the normalization of illumina-
tion and viewing-direction-related nonuniformities by utiliz-
ing the bidirectional reflectance distribution function (BRDF)
correction.

The sensor corrections for the FPI images include spectral
smile correction, photon response nonuniformity correction
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(PRNU), and dark signal correction [15], [16]. The PRNU
and smile corrections were determined at the laboratory of
VTT [16]. The dark signal correction is calculated using a
black image collected right before the data capture. In this
investigation, all these correction steps were used for the
FPI VNIR camera. For the FPI SWIR camera, only the dark
signal correction was used; developing laboratory calibration
procedures for the prototype sensor was not possible in this
investigation. As the SWIR images showed significant sensor-
related nonuniformities, we developed a series of empirical
corrections, as described in Section III-E1.

The reflectance transformation was carried out using the
empirical line method [40] with the aid of the reflectance
panels in the area. For the SWIR images, all panels with
nominal reflectance of 0.03, 0.10, and 0.5 were used. For the
VNIR images, the brightest panel was not used because it was
saturated in most of the bands. The model was

DN = aabsRefl + babs (2)

where aabs and baps are the parameters for the empirical line
model for transforming the reflectance (Refl) to DN. The
transformation was calculated using the image where the pan-
els were the closest to the image center to avoid impacts of
reflectance anisotropy in the reference reflectance.

To correct for the atmospheric instability and the impacts
of BRDF, a radiometric block adjustment approach was used
[15]. The basic principle of the approach is to use the DNs
of the radiometric tie points in the overlapping images as
observations and to determine the parameters of the radiometric
model indirectly via the least squares principle. The model for
aDNis

DN = Qrel_j (aabs Rjk(eia 0, QO) + babs) (3)

where Rji(6;,0,,¢) is the bidirectional reflectance factor of
the object point, k, in image j; 6; and 6, are the illumination
and reflected light (observation) zenith angles; ; and ¢, are
the azimuth angles, respectively; ¢ = ¢, — ; is the relative
azimuth angle; and a,|_ is the relative image-wise correction
parameter. The linear BRDF model by Walthall [41] was used
to correct the BRDF effects. The estimated nadir reflectance

(Rnadir) is

Ryadir = (DN/arel_j - babs)/ (aabs (algz +b/97" cos -+ 1))
“)
where a’ and b’ are adjustable BRDF model parameters.
Homogeneous distribution of radiometric tie points was gen-
erated, with approximately 70 tie points in each image; the DN
observation of tie points was calculated in an image window of
size 3 m x 3 m (see details in [15]).

In this investigation, the final image output was a reflectance
mosaic. Image mosaics were resampled with a 20-cm GSD
from the image block data with the aid of the image orientations
and DSM and applying the radiometric model. The reflectance
values were taken for each mosaic pixel from the image where
the image ray had the smallest difference to the vertical di-
rection. For the VNIR images, we used the full model (4) to
calculate reflectance values. We carried out several empirical
corrections for the SWIR images (see below), and because
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(a) (b)

Fig. 4. Sample images of FPI SWIR bands (a) 21 and (b) 30.

of this, it was feasible to estimate only the relative parame-
ters (el ;) in the radiometric block adjustment. It was not
possible to solve the BRDF parameters because the empirical
corrections strongly correlated with the BRDF effects; thus, de-
fault values ' = &' = 0 were used. The irradiance observations
could be used to calculate the ar_j parameters [36], but in this
study, the irradiance values were not used.

1) Empirical Radiometric Calibration of the FPI SWIR
Camera: The first analysis of the spectra and image mo-
saics calculated of the FPI SWIR camera images without any
corrections indicated that the radiometric calibration was not
accurate enough. The mosaics were not homogeneous due to
the missing lens falloff calibration. Second, there appeared a
decrease in image intensity during the flight and negative DN
values. The most probable reason for this distortion was the
change in the dark signal during the flight due to sensor cooling.
Furthermore, there was a relatively high level of noise in the
images (see Fig. 4).

A series of empirical corrections was applied to the images to
eliminate these distortions. These corrections were calculated
by assuming that the target area had uniform reflectance on
average in each spectral band. The wetland area in the northern
part of the area was not included in these calculations. All the
corrections were calculated separately for each band. To elimi-
nate the impacts of the changes in the dark signal, a strip-wise
additive dark current correction was calculated by assuming
that the average reflectance of each strip should be the same.
The correction was calculated based on the average DNs of each
strip in comparison to the average DN of the reference strip (in
this case, the first strip). A median-image-based approach was
used to eliminate the lens falloff. The assumption was that the
median image calculated using all images (except the wetland
area) should show uniform intensity, whereas the nonunifor-
mity of the median image indicates systematic radiometric
distortions. A multiplicative pixel-wise correction coefficient
LFC(l,m) with respect to the central pixel of the median
image (med_image(row,, col.)) was calculated for each pixel
(I,m),ie.,

LFC(l, m)=med_image(row,, col.) /med_image(l, m). (5)
The corrected DN is

DNear(l,m) = LFC(L,m)DN (I, m). (6)

F. Remote Sensing of Surface Moisture

The albedo of peat is known to decrease nonlinearly on
wetting, with additional changes in the shape of the spectrum

TABLE 111
STATISTICS OF GEOMETRIC PROCESSING: NUMBER OF IMAGES, TIE
POINTS, AND PROJECTIONS; REPROJECTION ERROR AND NUMBER
OF POINTS AND POINT DENSITY IN DENSE POINT CLOUD

Re- Dense point
N N Tie . r0j. cloud:

Dataset ima. points N Proj. Il;rr-(lJr N points;

(pix) points/m2
SWIR 983 61018 238888  0.323 3.8 ¢6;45
VNIR ch 16 118 6914 37344 0.480 9.0e6; 111
RGB 235 10264 154985  0.994 13.5¢6; 103
RGB + VNIR 589 14538 260353 0.893 -

particularly near the water absorption features. However, in
the range of MCs measured, the changes in albedo could
be expected to be approximately linear [31]. We studied the
usefulness of spectral features for moisture estimation by cal-
culating linear correlations between the features and moisture
and by employing machine learning for the study of nonlinear
dependence relations. The data sets used in the study of peat
moisture estimation were the VNIR mosaic with BRDF and
relative image-wise corrections; the SWIR mosaic with dark
signal correction, median-image-based calibration, and relative
image-wise corrections; and the RGB mosaic with standard
PhotoScan processing scaled to range 0—1 by dividing the DNs
by 255.

Single-pixel reflectance spectra were collected from the mo-
saics from the locations corresponding to the collected samples
(20 cm x 20 cm area); tests using larger sample areas showed
reduced correlation with the measured moisture. Reflectance
differences (R; — R;) and ratios (R;/R;) were calculated for
each pair of bands of the concatenated RGB, VNIR, and SWIR
spectra of each sample. Linear correlation of the individual
bands, band differences, and ratios to the MC was examined
using the MATLAB function corr to calculate the Pearson cor-
relation for each set of features. A machine-learning approach
based on a support vector machine (SVM) was employed for
moisture estimation to take into account possible nonlinearities.
A leave-one-out approach was used to estimate the performance
of different data sets for the SVM machine learning model gen-
eration. The SVM was trained for each set of feature vectors and
moistures corresponding to 43 samples and then used to predict
the moisture of the remaining sample. The process was repeated
for each sample with the individual prediction errors collected
together and used to calculate the performance statistics for
each data set. SVM training and prediction was performed
using »—SVR (support vector regression) with 1ibSVM [43].
Optimum C and ~ parameters for the SVM were determined for
a grid of parameters in the log, C x log, 7 space, and selecting
for each data set the parameters that resulted in the lowest mean
square error in the procedure.

IV. RESULTS
A. Geometric Performance

Statistics of the geometric processing indicated accurate
results (see Table III). The reprojection errors were on the level
of 5-7 pm in image coordinates for all calculations (about
0.5 pixels for the FPI VNIR, 0.3 pixels for FPI SWIR, and
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TABLE 1V
ERROR STATISTICS OF THE VARIOUS GEOMETRIC PROCESSING CONFIGURATIONS FOR FPI VNIR IMAGES. N GCP: NUMBER
OF GCPs; GPS: YES = GPS SUPPORT USED, NO = GPS SUPPORT NOT USED; N CP: NUMBER OF CHECK POINTS

N GCP; N Mean (m) Standard deviation (m) RMSE (m)
GPS cp X Y Y4 X Y z X Y Y4
0; yes 13 -0.019 0.034 -0.765 0.171 0.217 0.081 0.166 0.211 0.769
1; yes 12 0.473 0.279 -0.436 0.297 0.344 0.376 0.552 0.432 0.566
4; yes 9 -0.011 0.001 -0.008 0.019 0.025 0.045 0.021 0.024 0.043
5; yes 8 -0.012 -0.026 -0.026 0.016 0.022 0.050 0.019 0.033 0.053
4; no 9 -0.014 0.002 0.163 0.020 0.025 0.105 0.023 0.023 0.191
5; no 8 -0.014 -0.024 -0.031 0.016 0.021 0.057 0.021 0.032 0.061
N 04 points as check points, the height rmses were approximately
S g 10-12 cm, at best, for all of the materials (see Table V). The
g 0.2 E mean errors showed a moderate negative bias of 9-11 cm,
5 B which could be due to the difference in measuring the height
° of the peat surface in the field and from the image. The height
. standard deviations were on the level of 4 cm for the RGB and
§ § FPI VNIR cameras and about 8 cm for the FPI SWIR camera.
Q o 2 Height rmses were 2-5 cm for the GCPs, indicating that the
© © DSM fitted very well to these points. One potential explanation
0. for the better height accuracy results with the GCPs is the better
258300 @ 233500 E 33300 ®) e E measurement accuracy of the well-defined surface of the GCP.

Fig. 5. Differences to the reference DSM in meters: (a) RGB—VNIR and
(b) RGB—SWIR.

one pixel for RGB cameras). The point densities in dense point
clouds were about 100 points/m?> for RGB and FPI VNIR
cameras and 45 points/m? for FPI SWIR camera. Processing
of the SWIR images was less stable than processing of VNIR
and RGB cameras, which was due to the poorer block structure,
smaller image format, and worse image quality.

The 3-D point determination accuracy of an FPI VNIR data
set processed with different georeferencing configurations was
studied using the GCPs that were not included in the orientation
as check points (see Table IV); the visibility of GCPs was poor
in SWIR images because of the larger GSD and the noisier
image quality; thus, SWIR images were not analyzed. The best
rmse was on the level of 2-3 cm in the X and Y coordinates
and 5-6 cm in height. This accuracy level was obtained when
using four GCPs with the autopilot’s GPS support or five or
more GCPs without the GPS support. The case with the GPS
support and no GCPs was of quite low geometric quality, with
an rmse of about 0.2 min X and Y and 0.8 m in Z.

The results of DSM accuracy assessment are shown in
Fig. 5 when using all 13 GCPs in georeferencing and no GPS
support; these results represent the best achievable accuracy.
The results suggested that the VNIR DSM had a slight tilt
(less than 20 cm) to the reference surface; the west side was
higher than the east side [see Fig. 5(a)]. The SWIR DSM had
more deviation from the reference surface with south—north-
aligned distortion, which was less than 40 cm [see Fig. 5(b)].
In particular, the VNIR DSM was not significantly deformed
in the area surrounded by GCPs. When using the peat sample

Analysis of the impact of the ground control configuration in
the DSM height error is presented in Figs. 6 and 7. In the case
of the SWIR data set, the DSM did not show significant defor-
mation [see Figs. 5(b) and 6(f)] when using the configurations
with 5 or 13 GCPs and no GPS support; these cases provided
also a good height rmse in the peat sample points, on the level of
11 cm (see Table V). In all cases with the GPS support, the
SWIR DSM surface was deformed [see Fig. 6(a)—(e)], and
the height rmses were large, 0.35-3 m in check points (see
Table V); the most likely explanation for the poor results is
the low quality of the autopilot GPS solution during the SWIR
flight. For the VNIR data, the different GCP configurations pro-
vided consistent results with the previous analysis when using
GCPs as reference (see Tables IV and V and Fig. 5). The DSM
did not show deformations in the cases where the rmses were
low [see Figs. 5(a) and 7(c), (d), and (f)]; for the cases with poor
rmses, the DSMs were deformed [see Fig. 7(a), (b), and (e)].

Assessment of the quality of alignment of individual spectral
bands of the mosaics showed good results. For the VNIR data,
the mosaic of band 4 was used as reference for all the bands.
The discrepancies in the X and Y coordinates were less than
1 pixel in 90%-99% of the matched points in bands 1-34
and in 85%-90% of the matched points in bands 35-38. For
the SWIR data, mosaics of bands 3 and 28 were used as
reference. In most of the bands, the discrepancies were less
than 1 pixel in X and Y coordinates in 80%—99% of matched
points; in bands 1214, the discrepancies were less than 1 pixel
in 70%—-80% of matched points. In the bands in the atmospheric
absorption region for which the orientations were interpolated
(bands 15-21), a majority of discrepancies were on the level of
3 pixels and less. These results showed that the individual bands
were well aligned.
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TABLE V
STATISTICS OF THE DSM ASSESSMENT FOR THE VARIOUS GEOMETRIC PROCESSING CONFIGURATIONS WHEN USING THE 44 INDEPENDENT
CHECK POINTS (CP) AND 13 GCPS AS THE REFERENCE. MEAN, STANDARD DEVIATION (STD), AND RMSE OF ERRORS
(ERROR = REFERENCE — INTERPOLATED FROM DSM). N GCP: NUMBER OF GCPs;
GPS: YES = GPS USED, NO = GPS NoT USED

N GCP;

Data set GPS meancp (m) stdcp (m) RMSEp (m) meangcp (m) stdgep (M) RMSEgcp (m)
RGB 13; no -0.109 0.040 0.116 0.010 0.020 0.021
VNIR 13; no -0.092 0.041 0.100 0.013 0.058 0.057
4;no 0.406 0.048 0.417 -0.106 0.134 0.167
5;no -0.120 0.046 0.129 0.023 0.050 0.053
0; yes 0.567 0.053 0.569 0.760 0.108 0.767
1; yes 0.412 0.151 0.438 0.394 0.370 0.531
4; yes -0.140 0.049 0.148 0.009 0.054 0.053
5; yes -0.130 0.045 0.137 0.024 0.048 0.052
SWIR 13; no -0.086 0.077 0.115 -0.002 0.030 0.029
4; no 0.923 0.197 0.943 0.443 0.599 0.726
5;no -0.072 0.083 0.110 0.000 0.068 0.065
0; yes 2.255 0.543 2.318 2.598 1.132 2.816
1; yes -0.043 0.526 0.522 0.363 1.370 1.365
4; yes -0.310 0.216 0.376 0.039 0.386 0.373
5; yes -0.403 0.198 0.448 -0.020 0.371 0.357
GPS, 0 GCP,. 5 GPS, 1 GCP 3 GPS, 4 GCP 15 GPS, 5 GCP 15 15
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B. Radiometric Processing

The incomplete radiometric calibration was visible in the
SWIR mosaics without any radiometric corrections (see Fig. 8,
left). The dark signal change was visible particularly in band
21 [see Fig. 8(a)]. The dark signal correction and the median-
image-based lens falloff correction compensated for most of the
mosaic nonuniformity (see Fig. 8, center). However, some part
of the nonuniformity still remained. This could be due to the
fact that the strip-wise dark signal correction was not accurate
(most likely the dark signal changed continuously due to the
temperature changes). After the radiometric block adjustments
using the relative image-wise corrections (aye1 ;), the mosaics
were uniform (see Fig. 8, right) and suitable for the following
remote sensing analysis. A three-band SWIR mosaic is shown
in Fig. 9(a).

The BRDF correction and the relative image-wise correc-
tions (ayel_j) were used when calculating the VNIR mosaics.

The relative corrections were on the level of 10%. The view
angle range in the FPI VNIR images is 0 to £31° from the
nadir, which is expected to cause BRDF effects in images. The
hemispherical directional reflectance factor plot of an area of
about 150 m x 150 m with a point interval of 10 m indicated
that the peat surface was backward scattering with decreasing
reflectance toward a forward scattering direction (see Fig. 10).
The reflectance anisotropy was about 10% with a view angle
range of 0 to +25° and about 20% from maximum to minimum.
The output mosaics of VNIR data had uniform data quality [see
Fig. 9(b) and (c)].

C. Peat Spectra and Moisture Estimation

The use of spectral information in the assessment of the peat
moisture is based on the fact that the more moist the peat is,
the darker it is. Some fluctuations appeared in the peat spectra,
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Fig. 8. Examples of reflectance mosaics with different processing options for
SWIR bands (a) 21 and (b) 30. Processing versions from left: original images
without corrections; dark signal correction and median image calibration; dark
signal correction, median image calibration, and relative correction.

Fig. 9. Hyperspectral reflectance mosaic from (a) SWIR data (bands at
1184, 1331, and 1553 nm) and (b) VNIR data (bands at 520.80, 630.70, and
763.70 nm). (c) 3-D perspective visualization of the VNIR mosaic.

but the overall form of the spectra was consistent, showing an
increase from green toward NIR wavelengths, a drop at the
water absorption region (1350-1450 nm) and a linear increase
toward longer wavelengths [see Fig. 11(a)]. Assessment of the
reflectance spectra of individual bands with respect to the target
moisture indicated correlations of up to 0.63 at highest for
SWIR band 7 at 1246 nm; typical correlations were 0.5-0.6
with VNIR and SWIR data sets [see Fig. 11(b)]. For the RGB
camera, the correlations were lower, i.e., less than 0.5. The

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Reflectance Factor

EPDFEFEPS
3835808808

20
[ [ s
W\ e on
Zogior® ® o™
Fig. 10. Reflectance factor observations as the function of the view and
illumination angles (left) and fitted BRDF surface (right) for near-infrared band
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Fig. 11. (a) Spectra of peat samples with the minimum, maximum, and median
MC. (b) Reflectance spectra of all the samples and the correlations of each
band with the measured MC for the RGB, VNIR (FPI), and SWIR data sets.
The rows and columns correspond, respectively, to different samples and bands.
The spectra in each data set are normalized to fill the interval [0, 1], and the
samples are arranged by their measured MC.

plot shows quite consistent darkening as the MC increased.
In cases where correlation is high (such as SWIR band 7),
there appeared quite linear change in reflectance. In the water
absorption region (1350-1450 nm), the spectra appeared noisy,
and the correlations were low.

The correlation coefficients and the associated P-values of
the MC and the reflectance differences (R; — R;) and ratios
(Ri/R;) were collected into square matrices and color coded
(see Fig. 12). The highest correlations (with 7 =0.66, p < 1075)
were obtained using the reflectance difference of SWIR band 7
(LO = 1246 nm) and VNIR band 36 (LO = 859 nm).

Table VI lists the results of the remote sensing analysis of
surface moisture by the SVM. The data sets RGB, VNIR,
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Fig. 12. Pearson correlation coefficients and associated P-values between the
MC and (a) band differences R; — R; and (b) band fractions R;/R; calculated
using the RGB, VNIR (FPI), and SWIR data sets. Black lines were added to
separate the bands corresponding to different data sets.

TABLE VI
RESULTS OF THE SVM LEAVE-ONE-OUT ANALYSIS. THE ERROR IS
COMPUTED FOR EACH SAMPLE AS THE DIFFERENCE OF THE REFERENCE
AND THE PREDICTED MC (MCggr — MCprep; IN PERCENTAGE
POINTS PP). THE STATISTICS INCLUDE MEAN ERROR, STANDARD
DEVIATION, RMSE, AND NRMSE (RMSE NORMALIZED
BY THE MEAN MEASURED MC)

Data Mean Standard RMSE NRMSE

(pp) deviation (pp) (%)
(pp)

RGB+VNIR+SWIR -0.41 5.79 5.74 8.52

RGB -1.38 6.31 6.39 9.48

FPI -0.44 5.92 5.87 8.71

SWIR -0.25 5.74 5.68 8.44

SWIR7- VNIR36 0.16 5.21 5.15 7.65

and SWIR refer to the spectral vectors for each sensor. The
RGB+VNIR+SWIR data set is the set of concatenated spectral
vectors from the respective data sets. The SWIR7-VNIR36
data set is the vector of reflectance differences of SWIR
band 7 (LO = 1246 nm) and VNIR band 36 (LO = 859 nm)
for each sample. The best accuracy was obtained when using
the reflectance difference of SWIR band 7 and VNIR band 36,
which gave the rmse of 5.21 pp (pp is the mass fraction in
percentage points) and a normalized rmse (nrmse) of 7.61%.
When using individual cameras, the rmses were 6.39, 5.87, and
5.68 pp, and the nrmses were 9.48%, 8.71%, and 8.44% for the
RGB, VNIR, and SWIR cameras, respectively.

V. DISCUSSION

This investigation studied the performance of two novel
lightweight frame format hyperspectral cameras onboard a
small UAV in measuring the 3-D surface model and surface
moisture of a peat production area. The VNIR FPI camera was

shown to be operational in previous studies [15], [32]—{35]. The
SWIR FPI camera [19] was a completely new prototype cam-
era. The UAV system was also equipped with a high-spatial-
resolution customer RGB camera. Data sets were captured over
a peat production area using a flying height of 90-94 m with
GSDs of 2.5, 9.5, and 15 cm for the RGB, VNIR, and SWIR
cameras, respectively.

A. Considerations on Geometric Performance

As the FPI-based imager captures spectral data cubes using
the time-sequential principle, the individual bands of the data
cubes are unregistered. We used a methodology where several
bands of the set of unregistered data cubes were simultaneously
oriented in the self-calibrating bundle block adjustment. The
success of this approach is dependent on the invariance of
the matching algorithm to the spectral differences in im-
ages. The commercial Agisoft PhotoScan software was quite
tolerable to the spectral differences within visible range
(400-650 nm) and SWIR range (1100-1600 nm) and provided
accurate integrated orientation result. The procedure is based on
interest points, which are stable under viewpoint and lighting
variations and their descriptors based on each points’ local
neighborhood. Other software programs have similar algo-
rithms [24], and they are expected to be functional as well;
however, each method needs to be confirmed. The use of several
bands in the processing simultaneously made the processing
more robust by providing better overlaps between the images
of the block. The bands that were not included in the block
adjustment were successfully registered to the oriented bands
by a band-matching process. A majority of the discrepancies
between the bands were one pixel or less; these results were
consistent with previous studies performed with the VNIR
camera in areas with flat topography [15].

We validated the geometric performance of the FPI cameras
by using different sets of ground reference data, including vari-
able configurations of GCPs and autopilots’ GPS observations.
The detailed analysis using the accurate targeted XYZ control
points was possible for VNIR imagery. The best results were
on the level of 2-3 cm in X and Y coordinates and 5-6 cm
in height. The cases based only on the autopilot’s GPS data
showed quite low geometric accuracy, which is in line with
expected quality when using navigation-grade GPS reference
[44]. The best height accuracy levels were approximately
10-12 cm for all of the data sets in the independent check
points located in the swamp surface. This estimate included the
uncertainty of peat surface measurement and the quality of the
measurement method.

The geometric performance of the SWIR data set was worse
than that of other cameras, which was due to the poorer block
structure (lower image and strip overlaps), potentially lower
accuracy of the autopilot’s GPS data, smaller image size, and
lower image quality. In this investigation, the block structure
was optimized for the SWIR camera, flat object, and mosaic
calculation; thus, the overlap of 40%-45% was used between
the image strips; as the flight trajectory was the same for the
RGB and VNIR cameras that had larger FOVs, the resulting
block geometry was better for those data sets. The assessment



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

showed that the FPI-based sensors were capable of providing
good DSMs. When concerning with the geometric performance
of the new sensors, the potential deficiency with hyperspec-
tral cameras in comparison to good-quality customer digital
color cameras is the smaller number of pixels (poorer spatial
resolution), smaller image size, and lower signal-to-noise ratio
(because of measuring narrower spectral bands). Furthermore,
in the SWIR range, the decreasing level of solar illumination
sets additional demands on the sensor when a high signal-
to-noise ratio is anticipated [42]. In the end, the propagation
of errors will follow the photogrammetric theories [45]. Most
importantly, the block structure (overlaps, cross-strips, GCPs)
and the quality of the direct orientation observations impact the
accuracy of orientations, and the level of signal-to-noise ratio
impacts the quality of matching [22], [46]. To obtain high DSM
quality, the overlaps within and between the strips should be
at least 80% and 60%, respectively, and crossing flight strips
are advantageous. In the practical operation, the recommended
approach is to integrate a high-spatial-resolution RGB camera
with a hyperspectral sensor, to obtain the most accurate DSM
and desired spectral properties, if this is possible with the UAV
platform in use.

B. Aspects of Spectral Measurement Quality

The new SWIR prototype had some shortcomings in the
spectral measurement quality, which will be improved in the
next versions of the camera. These included the missing PRNU
calibration as well as the change in the dark signal during
the flight. For the miniaturized sensors, temperature calibration
together with a correction algorithm based on a model of the
sensor behavior is likely the best approach to eliminate tem-
perature effects, since stabilization of sensor temperature might
be challenging due to the weight limitations. Several other
researchers have also pointed out the importance of calibrating
small hyper- and multi-spectral cameras accurately [7], [9],
[14], [34], [47]. Dark signal correction based on the dark image
collected before the flight appeared to be inaccurate because
of the changes in the sensor temperature during the flight. A
simple improvement to this procedure would be to capture
the dark image before and after the campaign. More rigorous
approaches would be determining the temperature impacts on
the dark image in controlled conditions or integrating dark
signal measurement to the data capture process. The empirical
processing steps tailored for this data set were capable of
compensating for these limitations and provided suitable data
quality for further processes. The radiometric block adjustment
approach was functional in eliminating the remaining radiomet-
ric nonuniformities in the image mosaics [15]. The accurate
radiometric processing in difficult conditions will be an im-
portant step in the UAV-based hyperspectral remote sensing. In
the future, the radiometric quantities in UAV remote sensing
need to be carefully considered [42], [48], for example, are the
images processed to reflectance or some other quantities and
are the anisotropic reflectance effects compensated for. Fur-
thermore, comprehensive studies concerning the performance
of different radiometric correction approaches should be
carried out.
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In comparison to conventional pushbroom technology, the
interesting feature of the frame format hyperspectral cameras
is the possibility to collect hyperspectral image blocks with
stereoscopic multiview overlaps. On the other hand, for the
first-generation frame format hyperspectral cameras, the spec-
tral resolution is still poorer (FWHM on the level of 10-30 nm),
and the number of spectral bands is lower (20-40) than that of
more mature pushbroom techniques, which typically provide
hundreds of spectral bands with FWHMs of 2—10 nm [7]-[11].
The spectral performance of the FPI cameras is expected to
improve in future systems, and the latest commercial cameras
already offer improved performance (www.rikola.fi).

C. Remote Sensing of Surface Moisture

We evaluated the performance of UAV remote sensing with
the RGB camera and the FPI-based VNIR and SWIR cameras
in the measurement of surface moisture of a peat production
area. The results indicated good agreement of the reflectance
signatures in images with the moisture of the object. The peat
moisture estimation was more accurate with the FPI SWIR
camera than with the FPI VNIR or traditional RGB camera.
The best accuracy was obtained when using the reflectance
difference of SWIR band 7 (LO = 1246 nm) and VNIR band
36 (LO = 859 nm), which gave an rmse of 5.21 pp and an
nrmse of 7.61%. Based on our experiences in using a series
of peat samples with controlled moisture levels in a labo-
ratory setting, higher accuracy moisture estimation from the
spectra should be possible. In particular, the low reflectance
and the noisiness of the UAV SWIR spectra near the main
water absorption at 1400-nm feature limited the accuracy of the
estimation.

Here, the training of the SVM was based on samples from the
imaged mire. Due to the nonlinear effects of humification and
the differences in the chemical composition of the peat [31],
[49], it is not expected that an empirical model trained on one
mire is generalizable to other mires. The next steps in research
would be gathering a series of training material from different
humification levels of peat and performing laboratory testing to
separate the effects of humification and moisture on the spectra.
To summarize, the major uncertainty components in our ex-
periment included sample gathering, accuracy of positioning,
accuracy of moisture measurement system, and humification
level. When these factors are well controlled, we assume that
the general accuracy of estimation is higher.

The presented technology allows many further improve-
ments. We did not utilize the gathered 3-D geometry in the
moisture estimation; it is expected that the topographic infor-
mation would support the estimation of the surface and below-
surface moisture in the peat mire. We used the most nadir
approach in the analysis of the reflectance data, but in the future,
the multiview information should be used more efficiently.
The potential of multidirectional observations (BRDF) and
a physical-radiative-transfer-based approach in estimating the
MC needs further study, to develop general methods that do not
require in situ reference. The future autonomous UAV systems
are feasible for repetitive data acquisition and multitemporal
analyses, which might improve the estimation accuracy levels.
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Moreover, the potential of other spectral ranges, particularly
multitemporal thermal imaging, should be studied [29], [30].

D. Outlook

Based on the results, the FPI hyperspectral technology
follows the principles of central perspective imaging, thus
enabling the utilization of latest innovations in mainstream
computer vision and photogrammetric technologies in devel-
oping highly automatic and autonomous applications [1], [2],
[20]-[26]. In this investigation, the geometric, radiometric, and
peat surface moisture reference were based on field measure-
ments. It will be important to develop reliable methods that do
not require interactive field measurements to allow automatic
and autonomous operation in the future. These methods will re-
quire accurate geometric and radiometric calibration of sensors
[9], [14], [34], accurate satellite positioning methods [2], [25],
automatic radiometric correction, and detailed understanding of
the remote sensing task. When small differences in object char-
acteristics, such as the MC, are of interest, the requirements for
the spectral and geometric quality of the remote sensing data are
high. This means that the spectral and topographic information
has to be accurate and unbiased; the detailed requirements for
the data quality need to be studied in the future investigations.

Peat production areas form an environmental risk factor due
to the threat of self-ignition. Furthermore, efficiency of peat
production could be improved if using efficient remote-sensing-
based techniques in estimating optimal time for harvesting
and managing the area. Our results indicated that the UAV
techniques could be an efficient tool for further optimizing and
monitoring of the environmental impacts of peat production. In
addition to monitoring peat production areas, the presented ap-
proach can be applied for any other application requiring repet-
itive monitoring in relatively flat surfaces, such as in precision
agriculture [15]. The technology has also been demonstrated in
large areas (several km?) (unpublished results) and in a complex
3-D environment in forest [35]; the technology is also suitable
in these applications, but in complex environments, a more
complicated overall solution is required.

VI. CONCLUSION

This paper has studied the performance of two novel light-
weight FPI-based hyperspectral frame format cameras in mea-
suring the 3-D surface model and surface moisture of a peat
production area. The SWIR range camera was a new proto-
type, whereas the visible to near-infrared range camera was
more mature technology. Moreover, a high-spatial-resolution
consumer RGB camera was used. More rigid image geometry
as well as the possibility for stereoscopic measurements and
multiple object views are important advantages of the frame
format geometry in comparison to conventional hyperspectral
imaging technology based on pushbroom geometry.

The results were promising, indicating that UAV-based re-
mote sensing could significantly improve the efficiency and the
environmental safety aspects of peat production. In addition to
monitoring peat production areas, the technology is functional
in various remote sensing applications. As the FPI technology

follows the theories of central perspective imaging, it is also
well suited for developing automatic and autonomous appli-
cations utilizing the latest innovations in photogrammetry and
computer vision.
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ABSTRACT:

This paper presents a user introduction and a general overview of the MATLAB software package hsicube developed by the author for
simplifying the data manipulation and visualization tasks often encountered in hyperspectral analysis work, and the design principles
and software development methods used by the author. The framework implements methods for slicing, masking, visualization and
application of existing functions to hyperspectral data cubes without the need to use explicit indexing or reshaping, as well as enabling
expressive syntax for combining these operations on the command line for highly efficient data analysis workflows. It also includes
utilities for interfacing with existing file reader scripts for easy access to files using the framework. The hsicube framework is released
as open source to promote the free use and peer review of the code and enable collaborative development.

1. INTRODUCTION

Hyperspectral imaging data presents a challenge for data explo-
ration due to it’s high dimensionality, size and very application-
specific features of interest. Programming algorithms and pro-
cessing pipelines for analysis and visualization of hyperspectral
data requires the programmer to keep track of multiple variables
besides the data, such as wavelength information and regions of
interest. Care must be taken when translating between data ex-
ploration and batch processing workflows to ensure correct re-
sults, and again when visualizing results of the batch processing
to prevent erroneous presentations. Automation of the steps of
such workflows — while highly desirable — is often a complex
programming task due to the management of many datasets of
different dimensions along with their metadata. Consider for ex-
ample the following workflow:

1. Read a hyperspectral cube and its metadata from disk,

2. Extract data for region(s) of interest,

3. Select data in a specific wavelength region(s),

4. Compare select spectra visually with reference data,

5. Apply a model on the selected data and collect the results,

6. Visualize the results overlaid on the original dataset.

Steps 1 and 5 are cases that existing MATLAB libraries such as
ENVIreader/writer (Totir and Howat, 2010) and Hyperspec-
tral ToolBox (Gerg, 2016) are built to tackle, while the rest
of the steps are usually constructed piece-by-piece using the ba-
sic MATLAB functionality. However, since MATLAB does not
provide any smart datatypes for combining metadata with multi-
dimensional arrays, manual bookkeeping is necessary in many of
the steps if one wishes to keep the metadata synchronized with the
operations done to the array. Such bookkeeping is a major source
of errors and a large time expenditure for the programmer, and

easily results in repetetive code if not properly abstracted. This
in turn makes working inside a REPL (read-eval-print-loop) such
as the MATLAB command line or iPython prohibitively cum-
bersome, which is detrimental to rapid prototyping of new algo-
rithms.

Object-based datatypes that encapsulate both the data and meta-
data along with methods to operate on the data are a common
abstraction for problems of this kind in many languages. For ex-
ample, open source solutions like Spectral Python (Boggs, 2016)
or xarray (Hoyer and Hamman, 2017) exist for manipulating hy-
perspectral or general multidimensional data in Python, but no
similar datatype implementations exist for MATLAB.

This paper showcases a framework for simplifying hyperspectral
data analysis workflows in a similar way using MATLAB. The
framework package is mostly feature complete for the author’s
current workflow and a development version has already been
used for the hyperspectral analysis in (Salmi et al., 2017). Gen-
eral design principles of the framework are detailed in section 2,
with the internal implementation along with the main properties
of the class listed in section 3. The implemented methods for
simplifying the steps of the example workflow are presented in
section 4. Section 5 contains a note about the testing methodol-
ogy used for ensuring code quality, and section 6 has notes on
acquiring and using the code.

2. GENERAL DESIGN

The guiding principle in the access to the internal object prop-
erties is that of minimal privilege, meaning that the programmer
using the data type is purposely unable to access the object in a
way that could de-synchronize the metadata and the data (at least
without considerable effort). This is a design choice of the author
to favor data integrity over malleability, and in contrast with the
approach taken by many libraries which often allow most unsafe
operations, but recommend not using them. However, the author
feels that recommendations rarely deter programmers looking to
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Table 1. Data type object properties

Property Description Example content
Data Data array ones(10,10,100)
Files File(s) of origin {’data.hdr’}
Quantity Quantity of the data ’Reflectance’
WavelengthUnit ~ Unit of the wavelengths ~ ’nm’

‘Wavelength Vector of wavelengths [400 ... 500]
FWHM Vector of FWHMs [3, 4, 3, ..., 3]
History History of operations {’Read from file’}
Version Class version ’0.8.0°

do the easy thing instead of the right thing, and as such prefers
the implemented technical solution.

Following from this, all the object properties are accessible read
only, and can only be assigned new values during after object con-
struction through the object various object methods that validate
the input for the specific purpose. In addition, methods that ma-
nipulate the data but cannot generate meaningful default metadata
for the results, require the user to supply valid metadata instead
of generating non-meaningful defaults.

There has also been some effort to standardize the format of class
method arguments to improve the user experience. As a notable
divergence from the usual MATLAB syntax, the class methods
use the syntax [x,y] for indexing horizontal and vertical pixel
coordinates instead of the usual MATLAB syntax of [y,x]. This
makes it easier to relate indices to the MATLAB image visualiza-
tions.

3. INTERNALS

The main content of the software package is a MATLAB object
class named Cube which contains as properties the hyperspec-
tral data and relevant metadata and provenance for the data. The
properties implemented in the current version are listed in table 1.
The properties are read-only after the creation of the object, and
can only be changed using the object methods to ensure validity
and synchronization during operations.

The object class is implemented as a MATLAB value class, which
means that each object method returns a copy of the object instead
of a reference (along with any other return values). This makes
the state of the object easier to reason about, but relies on the
MATLAB memory management to optimize memory use. The
internal object methods do however try to minimize the creation
of temporary extra copies of the data where possible.

The argument parsing for the Cube class constructor (see 4.1)
is implemented flexibly using the class CubeArgs, which is sub-
classed from the MATLAB InputParser class. Due to the amount
of development effort required to implement this kind of func-
tionality in MATLAB, the “Name, value” syntax is currently only
implemented for the constructor method.

Some utility functions, which are not specific to, but used by
the Cube class are separated into a separate namespace in the
static class Utils. ENVI file format reading functionality is sim-
ilarly implemented as a static class ENVI which contains wrap-
pers around the existing ENVIreader/writer functions.

4. FUNCTIONALITY

This section will detail some of the main features of the class
and provide examples of their usage. It is not intended as a full

API reference, but as more of cursory look at common MATLAB
operations on multidimensional data and their implementation in
the Cube class.

4.1 Constructing Cubes

Given a hyperspectral data cube (or any 3-dimensional array),
the construction of a Cube object is straightforward. For a simple
example, the syntax

¢ = Cube(ones(10,10,16));

creates a Cube object with the given array and default metadata
(vector of band indices 1 to 16 for Wavelength, vector of zeros
for FWHM, and Quantity set to the string “Unknown”). Metadata
can be specified to the constructor using the usual “Name, value”
syntax used by many MATLAB functions. As an example, one
could construct a mockup radiance Cube with actual wavelength
metadata as
mockup = Cube (ones(10,10,25),

’qty’, ’Radiance’,

wlu’, ’nm’,

*wl’, 501:525, ..

>fwhm’, 5*ones(1,25));

The possible arguments can be found from the documentation
of the Cube () constructor method or by directly inspecting the
argument parser class CubeArgs.

4.2 Slicing

Instead of the usual MATLAB slicing syntax for multidimen-
sional matrices, the Cube class implements different methods for
slicing different dimensions. While slightly more verbose, this
makes code much more readable, especially when combining mul-
tiple operations on a single line.

e For spatial slicing, the current implementation has the method
crop(tl,br), which takes in the top left and bottom right
corners of the desired area as 2-element vectors of the pixel
coordinates, and returns the rectangular region defined by
the corners. For more advanced region selection, users should
employ the mask and unmask functionality shown in sec-
tion 4.5. For a simple spatial crop of 20 pixels on each side
of the image, one could supply the following syntax:

cropped = cube.crop(...

[20,20],
[cube.Width-20, cube.Height-20])

Note here the usage of the Cube properties Width and Height
to extract the dimensions, which makes the code very read-
able at only a slight cost to terseness.

e The method px ([x,y]) selects individual pixels based on
their pixel coordinates. It is possible to supply multiple co-
ordinates, in which case the resulting Cube will be a list
(N x bands matrix) of the spectra in those coordinates.

e For band selection, the method bands () takes in a vec-
tor of band indices (between 1 and the number of bands
in the data) and returns a Cube object with the specified
bands. The syntax allows for some more manipulations be-
sides just selection of existing bands: For instance, it is pos-
sible to replicate bands by supplying the same index multi-
ple times. There is currently no direct support for selecting
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wavelengths explicitly. Instead, bands () also accepts log-
ical vectors for selecting bands, which allows selection of
certain wavelengths by e.g. the following syntax using the
Wavelength property of the Cube:

longer_wavelengths = ...
cube.bands (cube.Wavelength > 1000);

Both syntaxes will result in Cubes that have their other properties
appropriately modified, with only the wavelength and FWHM in-
formation corresponding to the selected band left preserved in the
metadata.

For comparison, listing 1 demonstrates the amount bookkeep-
ing required for selecting wavelengths from a dataset without the
Cube class, and keeping the metadata synchronized at the same
time. It also demonstrates the namespace pollution that is hard
to avoid without more specialized data containers that reduce the
need for separate variables for in-memory data management.

Listing 1. Selecting data by wavelength with plain MATLAB

wl = 501:1000; % mock wavelengths
fwhm = 5%ones (500); % mock fwmh data
g = rand (100, 100, 500); % random datacube

% Selecting bands corresponding to 600-800 nm range
idx = wl >= 600 & wl <= 800;

g2 = g(:, :, idx);

wl2 = wl(idx);

fwhm2 = fwhm(idx);

4.3 Arithmetic

Basic arithmetic (namely the operators +, -, *, /) is currently im-
plemented by overloading the operators for the Cube class. The
Quantity parameters of the argument cubes are by default naively
combined to denote the new quantity, i.e. dividing a radiance
cube by a radiance cube will produce a cube with quantity “ra-
diance / radiance”. However, since MATLAB allows extra ar-
guments to overloaded functions, it is possible to use the syntax
oper(a,b,quantity) to supply the result quantity as an extra
argument. As an example with the radiance Cubes, one might
wish to calculate reflectance using the following syntax:

refl_cube = div(cube, white_ref_cube,
’Reflectance’);

The resulting Cube would then contain the data in cube divided
elementwise by that of white_ref_cube, with the Quantity set
to the string “Reflectance”.

In the current implementation, the operators are explicitly re-
stricted to Cubes of the exact same dimensions (also erroring on
any arrays that are not Cubes). This is in contrast to the nor-
mal MATLAB operators on numerical arrays, which in the 2017a
version do automatic expansion of the argument arrays (using
bsxfun). This is due to the fact that bsxfun does not necessarily
replicate the arguments along a dimension that is sensible for a
hyperspectral data cube. For instance, if one were to add a con-
stant vector (like a bandwise correction to the spectrum) to a full
data cube, the correctness of the result would depend on which of
the three dimensions of the cube would match the length of the
vector first, and could result in errors for cubes with two dimen-
sions with the same length.

Other mathematical operations that one might want to apply on
a single cube (such as multiplication by a scalar, logarithms etc.)
can be applied by using the existing functions with the family of
map functions detailed in section 4.4.

4.4 Function application

For more functionally inclined programmers, the Cube class im-

plements methods for applying given functions on the Cube data

without the need for explicit deconstruction of the Cube object.

For applying functions expecting various dimensions of data, three
different functions are implemented:

e The method map(f, ...) may be used to apply a given
function £ on the whole data cube. If the function changes
the data in a meaningful way, the user is expected to supply
the new metadata for the result as separate parameters using
the Name, value syntax of the Cube constructor.

e mapSpectra(f, ...) applies the function £ on the data
after reshaping the hyperspectral data cube into a list of
the spectra, and after application reshapes the result into
the original spacial dimensions of the data (with possible
change in the number of bands). This is equivalent to the
functionality demonstrated in section 4.5, but using the full
data cube instead of selected parts of it.

e mapBands (f) applies the function £ to each band of the data
cube by looping through each layer in turn, applying £ and
collecting the results. This provides an easy way to apply fil-
tering operations that are not dependent on the wavelength,
but due to the looping (which there is in this general form no
easy way to avoid), it may be preferable to implement more
costly filter directly on cubes and apply them using map.

4.5 Masking and unmasking

For selecting regions of interest (especially non-rectangular ones)
from a Cube, the class implements a method called mask. Given a
binary mask image (logical matrix) with a size matching the spa-
tial dimensions of the Cube, it reduces the Cube to a N x bands
matrix of pixel spectra selected by the mask, with /N the number
of True pixels in the mask image. The rationale for the list form of
the output is compatibility with machine learning due to the fact
that the N x bands matrix is of the form samples X features
expected by most existing machine learning applications, which
makes it very fast to use mask () to extract data for classification
tasks.

The unmask () method is used for applying the reverse transfor-
mation: Given a mask image with NV True pixels, it reorganizes an
N x bands (or samples X features) Cube into a full Cube with
the spatial dimensions of the mask image, with zeros in the False
mask regions and the data in the True region. If the data in the
list is in the same order as returned by the corresponding mask ()
operation, applying unmask () after mask() with the same mask
image results in having a mask applied on a data cube by zeroing
any False entries on each layer.

This along with the map () methods (4.4) allows for very con-
cise applications of existing algorithms on hyperspectral cubes.
For instance consider the example workflow of applying PCA to
masked part of the image in listing 2. For comparison, the same
workflow without the abstractions provided by the Cube class is
also shown.

Listing 2. Performing PCA on a subset of pixels

% g is a datacube with the h*w pixels and b bands
[h, w, bl = size(g);
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% Construct a Cube from the data

c = Cube(g);

% Dummy mask that selects the diagonal
im = eye(c.Height, c.Width);

% Application of PCA using masks and map
c_scores = c.mask(im).map(scores).unmask(im);

% Helper function to extract the scores from PCA
function [y] = scores(x)

[, y1 = pca(x);
end

4.6 File operations

For convenience, the implementation includes a separate class
for wrapping ENVIreader/writer operations with those of the
Cube class. The included ENVI class has methods for reading
and writing ENVI files directly to Cube objects, filling in all the
Cube metadata fields directly from the ENVI header file. A write
wrapper method has also been implemented for directly writing
both the data and metadata from a Cube object to an ENVI file.
Other file formats can easily be added using similar wrappers for
existing functionality.

4.7 Visualization

For visualization, the class implements a few plotting and image
viewing methods to make data exploration easier. The main ad-
vantage over using the MATLAB visualizations directly is that
the Cube class can utilize its metadata to assign most axis ticks,
labels and titles appropriately in the produced figures. If found in
path, they also employ the MATLAB version of Colorbrewer (Co-
beldick, 2017) colormaps for better representation of the data.
The main visualizations are provided by the following methods:

e The method im(b) displays a single band b as an image
using the MATLAB function imagesc.

e rgb(r,g,b) displays the bands at indices r, gand b as a
three-color image using MATLAB imshow.

e plot() plots the spectra using MATLAB plot (). It also
automatically restricts the number of spectra to display in
order to prevent MATLAB from freezing when trying to plot
too many curves at once.

e hist () calculates histograms of each band layer in the Cube,
combines them and displays them using surf in combina-
tion with a colormap for a versatile visualization.

The visualizations always return the Cube they were visualizing,
which makes it easy to both extract the result of a Cube operation
and visualize it using a single line of code. For example, the
following line would visualize the first band of the cube, apply a
crop and then display the same band in the cropped image in a
new figure, while also extracting the result as a new Cube:

tl = [20,20]; % top left

br = [100, 100]; % bottom right
cropped = c.im(1).crop(tl, br).im(1);

This generally makes data exploration effortless and easy to inte-
grate with follow-up scripting.

4.8 Provenance

Apart from the visualizations, all the Cube methods that oper-
ate on the data append a string representation of their action to
the History property of the returned Cube. This allows those
of us with less-than perfect memory of our command line usage
to inspect the operations performed on the Cube objects in the
MATLAB workspace by simply looking at the strings stored in
the property of each object. In the current implementation, there
is however no inbuilt way to store the history of each Cube in a
file apart from saving the whole object to a file, which is in gen-
eral a fragile procedure due to the way MATLAB handles object
loading.

5. TESTING

The class constructor and methods have unit tests written for the
using the MATLAB unit testing framework. Integration testing
of method and constructor interoperations has not yet been im-
plemented apart from some individual cases. The tests are in-
cluded in the release version of the package, and can be run by
users on their MATLAB installation to ensure compatibility with
their given version of MATLAB. People interested in the frame-
work are invited to submit test cases and bug reports to the au-
thor (preferably through pull requests to the Github repository,
see section 6).

6. OBTAINING THE CODE

At the time of writing, version 0.8.0 of the hsicube framework
is available from the authors Github page' under the MIT license.
The package contains the methods needed to directly read ENVI
files under the ENVI module, however this functionality requires
one to have the ENVIreader/writer (Totir and Howat, 2010)
in their MATLAB path, which is not included in the package and
must be acquired separately. Similarly, for the nicer Colorbrewer
colormaps (Cobeldick, 2017) the required package needs to be
acquired separately and placed in path before utilizing the visu-
alizations.
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ABSTRACT:

Python is a very popular programming language among data scientists around the world. Python can also be used in hyperspectral
data analysis. There are some toolboxes designed for spectral imaging, such as Spectral Python and HyperSpy, but there is a need for
analysis pipeline, which is easy to use and agile for different solutions. We propose a Python pipeline which is built on packages xarray,
Holoviews and scikit-learn. We have developed some of own tools, MaskAccessor, VisualisorAccessor and a spectral index library.
They also fulfill our goal of easy and agile data processing. In this paper we will present our processing pipeline and demonstrate it in

practice.

1. INTRODUCTION AND MOTIVATION

Python is a go-to programming language of many scientists and
it could also be good programming language for hyperspectral
data analysis. It has advantage of being actively developed, free,
open source programming language. In addition, since it looks
like pseudocode, it is easy to learn and write. There are Python
tools and packages for all kinds of users, and especially for sci-
entists. There are specialized open source tools for hyperspectral
data analysis like Spectral Python (Boggs, n.d.) and HyperSpy
(de 1a Pena et al., 2017), but the scope of potential usage may be
too narrow and the structure of such an specialized tool can be too
strict for some purposes, for example for transferring data to ma-
chine learning algorithm and developing tools that work together
with them.

In this paper, we utilize some general open source tools for dif-
ferent aspects of hyperspectral data analysis and determine if they
are useful for analysing and visualising hyperspectral images. We
also introduce some new tools and packages, which are our own
work. We aim at providing the reader with a modular set of tools
that can be used in many contexes. These tools are reusable ele-
ments, which work fine on their own and can be used for building
more complex tools. The packages and tools will be evaluated
using following questions: How easy is it to use? How agile is it?
What can we do with it?

2. DIFFERENT ASPECTS OF HYPERSPECTRAL DATA
ANALYSIS

In this section we will go through different aspects of hyperspec-
tral data analysis and an example of how the selected tools can be
used in these subjects. The example is divided into smaller ex-
amples and what has been done on previously is assumed to hold
on to the new example. We go through the example in figures
and in text, and the source code is included in the figures. The
example problem is that we have a hyperspectral image of a for-
est and a dataset of two tree species, birch and pine, in that forest,
and we want to use machine learning to differentiate one from the

*Corresponding author

other. First we of course need to import all of the packages, like
in figure 1.

import xarray as xr

import numpy as np

import pandas as pd

import holoviews as hyv

from sklearn import svm

import sklearn

from sklearn.model_selection import GridSearchCV
import visacc

import maskacc

hv.notebook_extension( matplotlib’)

Figure 1. Importing all necessary packages and declaring that
Holoviews should use Matplotlib backend.

2.1 Handling hyperspectral data

For handling hyperspectral data, we recommend the xarray'
package (Hoyer and Hamman, 2017). It provides multidimen-
sional arrays and datasets with metadata. It is an actively devel-
oped open source project by the pydata team. The basic usage
of xarray is relatively easy and for more advanced users it offers
plenty of options for handling the data. Xarray’s basic idea is to
have netCDF (Rew et al., 1997) compatible multidimensional ar-
ray object in Python. NetCDF stands for network Common Data
Form and the basic idea is that the netCDF file describes itself
to the reader. Xarray is also easily extendable, which means that
one can add new properties as they are needed.

Xarray supports reading spectral image formats like ENVI or
TIFF, and other formats. For reading it uses Rasterio (Gillies
et al., 2013-), which in turn uses GDAL (GDAL Development
Team, 2018). Rasterio is a python toolbox developed solely
to read and write geospatial data, and it does it well. GDAL
(Geospatial Data Abstraction Library) is a lower level C++ li-
brary that translates geospatial raster and vector data.

When xarray has read dataset from file (see figure 2), it is either
DataArray or Dataset. There are differences between the two, but

! Xarray can be installed with pip (pip install xarray) or conda
(conda install xarray) Python package managers.
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from now on we will assume that the data is in DaraArray format.
DataArray has following properties (see figure 3):

e data, N-dimensional NumPy (Oliphant, 2006) or Dask
(Dask Development Team, 2016) array,

e coords, dictionary of coordinate arrays, one array for each
dimension of the data,

e dims, names of the dimensions,
e attrs, dictionary keeping track of other metadata,

e name, the name of the DataArray,

which follow the netCDF specification. These properties help in

cube = xr.open_dataarray (
'C:/Users/lealanna /DATAA/vvkk2 .nc’
)
wavelength = [507.60, 509.50, 514.50, 520.80,
529.00, 537.40, 545.80, 554.40,
562.70, 574.20, 583.60, 590.40,
598.80, 605.70, 617.50, 630.70,
644.20, 657.20, 670.10, 677.80,
691.10, 698.40, 705.30, 711.10,
717.90, 731.30, 738.50, 751.50,
763.70, 778.50, 794.00, 806.30,
819.70, 833.70, 845.80, 859.10,
872.80, 885.60]
cube.coords [’ wavelength’] = (’band’, wavelength)
cube = cube.swap_dims({ band’: ’wavelength’})
cube.values|[cube.values <O]=np.nan

Figure 2. Here we read the cube, attach wavelength data to it and
remove non-physical negative values.

print (cube)

<xarray .DataArray (wavelength: 38, y: 4120, x: 3930)>
array ([[[ nan, mnan, ..., mnan, nan],

[ nan, nan, ..., nan, nan],

[ nan, mnan, ..., nan, nan],

[ nan, nan, ..., nan, nan]],

[ nan, nan, ..., nan, nan],

[ nan, mnan, ..., nan, nan]],

[ nan, mnan, ..., nan, nan],

[ nan, nan, ..., nan, nan]]],

dtype=float32)
Coordinates :
* longitude (longitude) float64 6.804e+06
* latitude (latitude ) float64 3.983e+05
band (wavelength) int32 1 2 3 45 6 7 ...
* wavelength (wavelength) float64 507.6 509.5...

Attributes :
res: [ 1. —1.]
is_tiled: 1
transform: [1.00000000e—01 0.00000000e+00
ncols: 3930
rows : 4120
xllcorner: 398296
yllcorner: 6804299
cellsize: 0.1

Figure 3. Simple print-command to see what the cube holds
inside.

extracting data from the DataArray, since the user can use either
index based lookups or label based lookups. For example, if we
only had NumPy? array, we would only know the dimensions by

2NumPy is in practice the Python standard array library.

index, but with DataArray we have names like latitude, longitude
and wavelength®. Then we can extract data from DataArray like
in figure 4 by telling it that we want to see data where latitude is
between 39° N and 40° N, longitude is between 116° E and 117°
E, and wavelength is between 400 nm and 700 nm.

cube.sel(latitude=slice (39,40),
longitude=slice (116,117),
wavelength=slice (400,700))

Figure 4. Here we use xarray’s sel-method to extract the data we
want.

There are also other useful functionalities of xarray DataArray.
For example two or more arrays can be attached to each other
with easy one line command, where the user only has to align the
arrays by common dimension. Generally speaking, xarray han-
dles dimensions well and altering and extracting data using them
is generally quite easy. Xarray also handles missing data well and
there is possibility to use Dask arrays to parallel compute.

Xarray fullfills our criteria of being easy to use and agile. It has
a lot of functionality, enough to keep basic and advanced users
satisfied most of the time.

2.2 Visualisation

For visualizing the xarray data, one excellent solution is
Holoviews* (Stevens et al., n.d.). Holoviews is a visualization
library that uses Bokeh (Bokeh Development Team, 2014), Mat-
plotlib (Hunter, 2007) or Plotly (Plotly Technologies Inc., 2015)
for showing images. All figures in this paper are produced with
Holoviews using Bokeh or Matplotlib visualisation backends.

Basic idea of Holoviews is that visualizing of data should be easy
and simple. If user wants to see anything, it should not take many
lines of code. In our opinion, Holoviews succeeds in that goal.
As we move on, one will see that all images in this paper are
produced with less than four lines of code. One basic example
of producing Holoviews image is to look at one band of a hyper-
spectral image like in figure 5.

Now that we have figured out how to visualise a single chan-
nel of an image, the next logical step is to want to visualise the
entire multidimensional dataset. This is also easy. Holoviews
supports multidimensional datasets very well and there are data
backends that support multiple different data formats including
xarray. As we can see in figure 6, more complex visualisation is
easy to make. In the example we make a Holoviews dataset out of
xarray DataArray, and tell Holoviews to make a series of images
out of the dataset.

One of the properties of Holoviews is that one can make inter-
active figures using the Bokeh backend with no extra effort. By
having Bokeh backend selected user can right away use interac-
tive tools like zooming the image either by scrolling or drawing
boxes on the image. A little more work is required for using
hover, tapping or selection tools, which all can be programmed to
do what the user wants them to do. An example of usage of tap-
ping and selection tools are using them to select data for further
analysis or activating other visualisation with them.

3Note, that the user can freely name the dimensions. The user is not
stuck with these names.

4Holoviews can be installed with pip (pip install holoviews)or
conda (conda install holoviews) Python package managers.
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cube = xarray.DataArray (...)
hv.Image(cube.sel(wavelength=800,
method="nearest’))

6804300

6804200

6804100

longitude

6804000

6803900

6803800

399200 399300 399400 399500 399600
latitude

Figure 5. Here we produce a very simple Holoviews
visualisation by telling Holoviews Image to use the xarray data
we provide it. This is an image of a Finnish forest.

A good platform for using Holoviews is Jupyter Notebook
(Kluyver et al., 2016). Jupyter Notebook is a web application
where user can code in Python and output images and write nar-
ratives between code blocks. The user has to activate Holoviews
by importing it and declaring the visualisation backend like in
figure 1. When one is visualising figures in Jupyter Notebook,
it is possible to fine tune figures, by using output cell magic and
Holoviews opts. We use output cell magic and opts in figure 6,
where lines starting with % or %% are the cell magic lines. In the
example of the figure we tune the size of the font and the size of
the image. This fine tuning is absolutely necessary if one needs
to produce figures for a publication or needs good looking images
for any reason. Matplotlib backend is better suited for publication
quality figures.

Holoviews is purely a visualisation library. The user can make
data move between two images in the same visualisation, but the
developers have not build a way to get this data for further use
and the only way of getting a data output is by coding it. How-
ever, once coded, these background processes are relatively easy
to attach to an image. Holoviews is an open source project and it
is developed by the ioam team. Holoviews is easy to use and it
can be bended to do many things. It makes beautiful images, and
in all is an excellent choise for visualisation.

2.3 Masking and visualizing xarray

Using xarray and Holoviews together is made easy by Holoviews
developers.  Xarray is one of the available backends for
Holoviews. That means, one can easily produce an image from
xarray using Holoviews. There is still some difficulties involved,
and to address those difficulties, we use xarrays extendability.
Making an extension to xarray in figure 7 is done by making a
Python class and declaring it as dataset or DataArray accessor.

J%opts Image [fontsize={{ title :15, \

*xlabel 7:15, \
“ylabel 7:15, \
“ticks T:15}},\

fig_size=350]

ds = hv.Dataset(cube,
vdims=[’Value’])
ds.to (hv.Image,
kdims=["x", ’y’],
dynamic=True)

wavelength: 794

6804300

6804200

6804100

longitude

6804000

6803900

6803800 SR
399200 399300 39900 399500 399600
latitude
wavelength:
507.6

Figure 6. Here we make a more complicated Holoviews
visualisation by using Holoviews dataset. From using Dataset,
we get a slider that goes through the wavelength bands.

These extensions are relatively easy to make and can extend xar-
ray’s functionalities to anything one might want it to do, within
reasonable limits.

@xr.register_DataArray_accessor(’cat’)
class CatAccessor(object):
def __init__(self, xarray_-obj):
self._obj = xarray_obj
self.cat = "a_cat’

Figure 7. Extending xarray with a simple Accessor. Here we
declare that CatAccessor is a DataArray accessor and define it.

‘We have developed two DataArray accessors, MaskAccessor and
VisualisorAccessor’. The reason for developing both of these
tools is that we want to use more complicted background interac-
tivity tracking with Holoviews and get the data out of the visual-
isation.

MaskAccessor is a general masking tool for xarray, and the main
function of it is to help collect data points to further analysis,
such as machine learning or modelling. It provides an interface

5These tools are available at our groups github page http://
github.com/silmae
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for selecting pixels in n-dimensional datasets. In figure 8 we see
that the accessor is initiated when one imports the xarray and the
accessor. After that every DataArray has the property, and the
user can use the accessor by calling it by name.

import xarray as xr
import maskacc

cube = xr.DataArray (...)
cube .M. dims

Figure 8. When the accessor is imported, every xarray
DataArray created after that has the accessor attribute.

The mask dimensions are set at the initialisation to be the first two
dimensions of the DataArray, but there is the reset method that is
used to change the dimensions, as we see on figure 9. One can
also initialise the mask here or just assign a new mask afterwards.
The MaskAccessor class checks that the shape of the mask is
correct.

import numpy as np
cube .M. reset (dims=["a’, ’b’],
matrix=[[0,1,0,1],
[1,0,1,0],
[0,1,0,11])

# OR

cube .M. reset (dims=["a’, ’b’])

cube .M.mask = np.array ([[0,1,0,1],
[1,0,1,0],
[0,1,0,11])

Figure 9. Different ways of assigning a specific matrix as the
mask.

On figure 10 one can see four different selection methods to set
mask on individual points.

# Select
cube .M. select ([0,0])
cube M. select ([(0,2),(1,1)])

# Unselect
cube .M. unselect ([(0,2),(1,1)])

# All to ones
cube .M. selected_ones ()

# All to zeros
cube .M. selected_zeros ()

Figure 10. Different selection methods for MaskAccessor.

Finally, on figure 11 there is three different methods to get the
mask or masked data.

# Get the mask as xarray.DataArray
cube .M. mask_as_xarray ()

# Get the masked points as xarray.DataArray
cube .M. where_masked ()

# Get the masked points as a list
cube M. to_list ()

Figure 11. Methods for getting data out of MaskAccessor and
underlyind DataArray.

VisualisorAccessor is a hyperspectral imaging specific visualis-
ing tool for xarray and MaskAccessor. It is designed to make ba-
sic visualizations of xarray DataArray and MaskAccessor mask

with easy one-line commands. For example the image in figure
6 can now be produced with the one line code of figure 12. It is
also easy to add visualisations like this to the VisualisorAccessor.

cube.visualize.basic(sliders = [’wavelength’])

Figure 12. The visualisation on figure 6 can be done with one
line code with VisualisorAccessor.

‘We have implemented three chooser functions, which access the
mask and select or unselect pixels. They are called Point Chooser,
Box Chooser and Spectre Chooser. Spectre Chooser and Box
Chooser use Bokeh’s box drawing tools for selecting which pixels
are chosen and Point Chooser uses tap tool. Example uses of the
Choosers is on figure 13, and screenshots of the Choosers are on
figures 14 (Point Chooser), 15 (Box Chooser) and 16 (Spectre
Chooser).

layout_box = cube.visualize.box_chooser ()
layout_point = cube. visualize.point_chooser ()
layout_spectre = cube.visualize.spectre_chooser ()

Figure 13. VisualisorAccessor has three different chooser tools.
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Figure 14. Screenshot of the point chooser.

Finally there is a histogram method (figure 17), that calculates
histograms for each bands and shows those histograms side by
side. This is translated from hsicube (Eskelinen, 2017) MATLAB
package to Python.

2.4 Machine learning

Machine learning can be handled using scikit-learn® package (Pe-
dregosa et al., 2011). The main idea of scikit-learn is to make

6Scikit-learn can be installed with pip (pip install sklearn) or
conda (conda install sklearn) Python package managers.
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Figure 15. Screenshot of the box chooser.
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Figure 16. Screenshot of the spectre chooser.

simple and efficient tools for data analysis. Part of the simplic-
ity is documentation, and with scikit-learn it is done well. There
is flowchart for finding a suitable estimator, and every estimator
is documented so well, that one can easily learn to use them de-
cently.

Another thing we want to point out is the variety of implemented
algorithms. Every well established machine learning algorithm
can be found. Still, there are no duplicates, and the user does not
have to worry about competing implementations, and the API is
consistent through the algorithms.

Other useful properties are flows, parallel computing, fine tuning.
The user can relatively easily make a workflow, that preprosesses
data, does cross-validation on desired estimators with desired pa-
rameters and returns the estimator, that seems to produce the best
result. The basic forms of the estimators are simple, but there are
multiple parameters that one can use to fine tune the estimator.

The usage is simple since the algorithms are well documented
and their API is simple, yet agile. Scikit-learn is also free and
open source, and it is developed by scikit-learn team. It fullfills

result = cube.visualize.histogram(band_.dim = ’band’)
hist.image = result[0]

hist_counts = result[1]

bin_edges = result[2]

hist_image

Counts
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20
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Figure 17. Visualisation of the histogram. The histogram tool
returns an image of the histogram, the values of the histogram
and the bin edges.

our criteria of being easy to use. It is agile in a way that user can
make own flows through the algorithms and the user can fine-tune
the algorithms as much as is needed.

Now we can use machine learning on our example problem. First,
in figure 18 we use pandas’ (McKinney, 2010) for reading the tree
dataset and plot it over one of the bands in our cube.

Now we can use the tree coordinates to train a machine learning
algorithm to recognise birch from pine. We take 30 * 30 box
around every tree and calculate histogram of the box. These his-
tograms are used to train the algorithm. We also have to make
nan-values zero for this. In figure 19 we use VisualisorAcces-
sor to make the histograms and goal vector and prepare them for
machine learning.

In figure 20 we train the machine learning algorithm. For this
example we are using support vector machine algorithm. We also
do cross-validiation with GridSearchCV. Both of these functions
are functions from scikit-learn. Then we print out the results, and
that tells us the best accuracy score® and the best parameters.

In figure 21 use the predictor to predict the species of a 30x30 his-
togram, that is made from a hyperspectral image of a tree. From
the result we could then interpret wheter the estimator estimates
the histogram as a pine or a birch.

“Pandas is in practice the Python standard for tabular and Excel type
data.

8Note, that the score should not be taken too seriously, since this is a
toy example, and birch and pine are really easy to recognise from eatch
other.
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trees_panda = pd.read_csv(’trees_panda_kuva_.2’,
index_col=0)
trees_panda = trees_panda.sort_values(”1”7). \

drop_duplicates ([”1”, "P"],
keep=""first”)

points = hv.Points(trees_panda ,
kdims=["1",’P"])
hv.Image(cube[20]) * points

6804300

6804200

6804100

gitude

6804000

lon

6803900

6803800

399200 399300 399400 399500 399600
latitude
Figure 18. Visualisation of the trees over the image. In this

block we read tree data as pandas DataFrame and visualise the
trees on the top of one band of the cube.

cube.values = np.nan_to_num (cube. values)
X_list = []

size = 30

cellsize = float(cube. attrs[ cellsize’])
add = cellsize * size / 2

bin_edges = np.arange(0, 1, 1/20)

i =0

for puu in trees_panda.values:

print (i)

i =i+l

x_coord = puul[l]

#print(x_coord)
y-coord = puu[2]
#print(y-coord)
cropped = cube.sel (y=slice (y_coord + add,
y-coord — add),
x=slice (x_coord—add,
x_coord+add))
_, hist, _ = cropped.visualize.\
histogram (
bin_edges=bin_edges ,
flag="linear’,
show_plot=False ,
band_dim="wavelength”

hist_flat = np.array (hist). flatten ()
X _list.append (hist_flat)

X = np.array (X_list)

y = np.array(trees_panda[’pl’])

Figure 19. Calculating histograms and preparing data for
machine learning algorithm.

2.5 Other aspects

Other notable libraries for hyperspectral data analysis are al-
ready mentioned Bokeh for advanced visualisation, scikit-image
(van der Walt et al., 2014) for image data analysis and Tensor-

sve = svm.SVC()

parameters = { kernel :[’linear’,
‘poly’,
“rbf
*sigmoid '],

'C’:[10%x1i for i in range(—5,4)]}
clf = GridSearchCV (svc, parameters, n_jobs=20)
clf . fit(X,y)
clf _best = clf.best_estimator_
print(clf.best_score_)
print(clf.best_estimator_)

0.965723612622

SVC(C=0.1, cache_size=200, class_weight=None,
coef0=0.0, decision_function_shape="ovr’,
degree=3, gamma="auto’, kernel="poly’,
max_iter=—1, probability=False,
random_state=None, shrinking=True,
tol=0.001, verbose=False)

Figure 20. Here we train the machine learning algorithm and
print out the result. caption=Results of the training. Here we see
that best estimator predicts correctly 96.6% of the time.

tree_l_pred = clf_best.predict(X.new.reshape(l, —1))

Figure 21. Here we use the estimator.

Flow (Abadi et al., 2015) and Keras’ (Chollet et al., 2015) for
deep learning.

Bokeh is a package that has been on the rise in 2017. Bokeh
makes interactive Python visualisations, using JavaScript. It is a
backend of Holoviews, and if one wants to understand Holoviews
deeply, this is one place to look at. Bokeh visualisations are gen-
erally quite beautiful, but it comes with expence of computational
complexity and increased memory usage.

Scikit-image is a sister package of scikit-learn. Scikit-image is
focused on computer vision and image processing. The same ad-
vantages as with scikit-learn apply here. The API is consistent
and simple and the wide variety of algorithms is well curated.

TensorFlow and Keras are deep learning libraries. TensorFlow is
considered to be the state of the art at this field, but the syntax is
difficult and learning curve extremely steep. Keras uses Tensor-
Flow as a backend, and offers simpler syntax. If one is a beginner
on deep learning, Keras is a library to more easily get started, but
as one is becoming more advanced user, TensorFlow’s flexibility
and increased tuning possibilities start becoming more attractive.

3. CONCLUSIONS AND FURTHER WORK

We have gathered and further developed an agile and easy to use
pipeline for hyperspectral data analysis in Python. The tools we
have investigated have wide range of advantages such as simple
APL:s, variety of different implementations, back ends and tools
and extendibility.

In addition to that, Python programming language has large user
base and active developer community, which guarantees that
Python keeps up with needs of scientists. The packages men-
tioned in this paper are all actively developed and thoroughly
tested.

9These tools can also be installed with pip or conda.
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Also, especially xarray and Holoviews are good Python tools for
hyperspectral data processing and visualisation. These tools seem
like they are made for this use, but they still provide the generality
of non-specialised tools. Compared to HyperSpy end Spectral
Python our solution is much more modular and open to extending
with new blocks.

Finally we would like to suggest, that in the context of using
Python in hyperspectral data analysis, there is need for devel-
oping a graphical user interface that uses these tools and finding
out best practises for utilising deep learning algorithms. We are
starting to develop the graphical user interface in this summer.

Deep learning algorithms are becoming more and more attractive
when there is more and more computational power available. The
algorithms are computationally intense, but when they are used
correctly they provide strikingly good results. These algorithms
can be applied on many of the problems on the field of hyperspec-
tral data analysis, such as object recognition, classification or for
example analysing the health of a crop.

On this specific toolset there is work to do with parallelisation,
since the datasets are huge and paralellisation would make the
computations faster.

We have also started to develop a Python library for spectral in-
dices, and are quite far in it already. The leading principle of
our implementation is to make a simple implementation of every
index on website indexdatabase.de, and wrap the implementation
lightly with features that help in the usage. The point was to make
the indices easily computable, so that the user could easily use a
loop to go through the indices.

One thing we need to define was the API for selecting bands. For
many of the indices, they are not defined for exact wavelengths
like 745nm, but rather for red light and user needs to define this
as he/she wishes. This is for now done by declaring the defaults
in form of a Python dictionary. The other thing to consider is how
is a band selected. Is it selected only if there is a clear match, the
indice wants wavelength 500nm and our data has exactly that or
is there room for approximation? If the used data is in format of
xarray DataArray or Dataset, then it is possible to use the xarrays
nearest neighbor -selection like in figure 5, otherwise one needs
to implement their own selector. Once the index library is ini-
tialised like in figure 22, one can loop through the indices and
find all the indices that can be computed on the dataset like in fig-
ure 23. Then the user can plot all possible indices with Holoviews
like in figure 24.

from pyspindl import Indices, selectors
defaults = {'NIR’: 815.7,
"GREEN’ : 544.2,
'RED’: 595.3}
defaults.update (
{k: defaults[’RED’] for k in [’Red’, 'R’]}
)

defaults['G’] = defaults [ GREEN’ ]
#Without defaults , we can not calculate some indices.
indices = Indices(selectors.from_xarray (
*wavelength’,
method="nearest’,
tolerance =8.0

),
defaults=defaults)

Figure 22. The initialisation process of spectral indices library.
This is still work in progress.

Other thing we we are considering in developing this package is
bands. How are they defined? There is big difference between a

camera that has the same response on a interval around the mid-
dle value and camera that has more gaussian response. These
differences should somehow be accounted for with software. The
response function could be used in selection, and inbetween val-
ues coud be interpolated from two or more bands based on their
responses. The response function is definately important in presi-
cion applications and this problem needs to be solved.

matches = dict ()
for iname, ifunc in indices.items ():
try:
matches[iname] = ifunc(cube_cropped)
# The following is necessary to
# remove indices that result
# only in +inf, —inf and NaN
if not np.any(np.isfinite (matches[iname])):
matches . pop(iname)
continue
# We have now built a dictionary
# of index names and corresponding data.
matches[iname ]. coords [ index_name’] = iname
# We also want to clean up
# unnecessary coordinates
for coordinate in [’band’,
*fwhm
*wavelength’ ]:
if coordinate in matches|[iname ].coords:
matches[iname] = matches[iname]. \
drop(coordinate )
except (KeyError, TypeError, NameError):
pass
print(str (len(matches))+ .matching._indices._found. ")

if any remaim

Figure 23. We loop through the indices, and take those that are
sensible.

Y%output size = 250
9%%opts Image [invert_-yaxis=True] (cmap=’Spectral’)
dataset = hv.Dataset(prettyfield ,
kdims=[’index_name’, ’'x’, 'y’],
vdims="1Index ")
dataset.to(hv.Image,
kdims=[’x", ’y’1],
dynamic=True ). hist ()

Index

7
X 4399265

index_name:

NDVI750_650

Figure 24. All indices in a dropdown menu. Dropdown menu
comes from the use of Holoviews Dataset.
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ABSTRACT

The Fabry-Perot interferometers (FPI) are essential components of many hyperspectral imagers (HSI). While
the Piezo-FPI (PFPI) are still very relevant in low volume, high performance applications, the tunable MOEMS
FPI (MFPI) technology enables volume-scalable manufacturing, thus having potential to be a major game
changer with the advantages of low costs and miniaturization. However, before a FPI can be utilized, it must
be integrated with matching optical assembly, driving electronics and imaging sensor. Most importantly, the
whole HSI system must be calibrated to account for wide variety of unwanted physical and environmental
effects, that significantly influence quality of hyperspectral data. Another challenge of hyperspectral imaging
is the applicability of produced raw data. Typically it is relatively low and an application specific software is
necessary to turn data into meaningful information. A versatile analysis tools can help to breach the gap between
raw hyperspectral data and the user application. This paper presents a novel HSI hardware platform that is
compatible with both MFPI and PFPI technologies. With an MFPI installed, the new imager can have operating
range of A = 600 — 1000 nm with FWHM of 15 — 25 nm and tuning speed of < 2 ms. Similar to previous imager
in Ref. 1, the new integrated HSI system is well suited for mobile and cloud based applications due to its small
dimensions and connectivity options. In addition to new hardware platform, a new hyperspectral imaging analysis
software was developed. The new software used in conjunction with the HSI provides a platform for spectral
data acquisition and a versatile analysis tool for a processing raw data into more meaningful information.

Keywords: Fabry-Perot interferometer, hyperspectral imager, MOEMS, VNIR, data analysis

1. INTRODUCTION

The advances in Fabry-Perot (FPI) interferometer technology has led the development of new miniaturized micro-
spectrometers. These micro-spectrometers can be integrated in portable mobile devices, such as smartphones and
tablets as well as specialized industrial equipment. The possibility to non-intrusively analyze spectral information
of objects with mass producible mobile hyperspectral device is something that has applications in many different
areas, such as agriculture, medicine, remote sensing and waste recycling.

The typical way of developing FPI based spectrometers involves selection FPI that offers best performance
for the particular use case. The mechanics, optics and electronics are designed to adapt to selected FPI and
imaging sensor. Unlike the previous imagers the new hardware described in this paper can be configured by
interchanging FPIs and optics. With this feature, the capabilities of HSI hardware are extended and the same
hardware platform can be used in more applications. Another challenge of hyperspectral imaging is the analysis
of hyperspectral data cubes. The hyperspectral data cube contains the information about reflectance of light
in certain wavelength range, yet unique spectral features might not be immediately apparent to the user. Each
pixel in image has its own spectral response, but it is difficult to visualize and perceive such large amounts of
data at once. In addition the spectra of each pixel might not even be relevant in most cases. Instead the user is
typically interested in abundance or just existence of certain unique spectral features and the spatial information.
This makes use of microspectrometers more challenging. It is not clear if the raw hyperspectral data contain

Further author information: (Send correspondence to Roberts Trops*)
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any meaningful information. Furthermore, if there are any unique spectral features it is important to visualize
in which ares of image these features occur.

Overall, it is clear that the emerging technologies for microspectrometers require a versatile and low cost
hardware development platform as well as a data analysis tool, that would help the user to easily extract the
most significant information out of hyperspectral data.

2. FABRY-PEROT INTERFEROMETER

Fabry-Perot interferometer is a type of optical measurement device, that utilizes two parallel mirrors to produce
certain spectral response. There two main types of FPIs that VIT is developing. These types are MOEMS
FPI (MFPI) and Piezo-actuated FPI (PFPI) both of which posses different inherent advantages, when used in
hyperspectral imaging applications. Both types are electrically tunable, yet each of them employ a different
actuation method. Typically the selection of FPI type for HSI is based on their general features. These features
are summarized in table 1 and described in Ref. 2. Overall, the PFPIs with larger optical apertures are better
for high performance applications where high signal-to-noise ratio (SNR) is essential. In contrast, MFPIs are
excellent for volume scaling and applications where low sensor cost is necessary.

Table 1: General features of MFPI and PFPI technologies.

Technology PFPI MFPI

Mass-producible wafer-level

processes scalable to volume
manufacturing

Assembled structure for

Manuf: i .
anutacturing small-to-medium volumes

Up to 24 (mm) allow
high throughput of light
Wide tuning range and Tuning range determined

easy mirror customization by mirrors

Optical apertures Optical apertures of 2-4 (mm)

Passband tuning

The MEMS FPI has a near-zero loss quartz substrate for visible range (wavelengths approximately 400 — 800
nm). The figure 1 shows the structure of an MFPI chip. A drive voltage is applied to electrodes of MFPI to
change the passband. If the drive voltage is exceeded, the mirrors in MFPI are pulled together by attractive
electrostatic force created by the electric field between mirrors. This is called pull-in and it is typically non-
reversible or not easily reversible state, depending on the conditions the pull-in occurred. Even chips that are
manufactured on the same wafer will likely have different maximum drive voltage values. For practical purposes
pull-in means that for the MFPI can no longer be used. This is typically avoided by charecterizing MFPI chips
and settings hardware or software limits on voltage applied to the MFPI.?

Unlike the PFPIs the MFPIs can be mass-produced by using modern semiconductor fabrication techniques.
This allows the chips to be made at much lower price. The MFPI chips are first manufactured on wafers,
then diced and finally packaged. Figure 2 shows diced MFPI chips in a tray and a single packaged PFPI. The
packaging adds mechanical protection, electrical interface and additional circuitry for FPIs.

= TEOS = Quarliz == Ag mm Al = ALO,

Figure 1: Structure of the MFPI. A: Contact pads; B: Actuation electrode; C: Upper movable mirror; D: Lower
fixed mirror; E: Optical aperture.®



Figure 2: Unpackaged 5x5 mm MFPI chips (left) and packaged PFPI (right).

3. HYPERSPECTRAL IMAGER CONCEPT

This section describes a hyperspectral imaging hardware platform, that was developed based on MFPI and PFPI
technologies. This platform is developed to be pseudo-autonomous system, that has integrated embedded Linux
computer, that handles data acquisition, pre-processing, storage and transferring of data. In addition, the Linux
computer has Ethernet, USB and WiFi connectivity, which can be used to add additional instruments or transfer
image data. In addition to interchangeable FPIs, the hardware allows different optical assemblies.

3.1 Electronics

The new hyperspectral imager electronics design is partly based on previous hand-held imager design described
in Ref. 1. The main components are camera module, which has MT9P031 5MP 12-bit CMOS sensor, Linux
embedded computer and FPI controller. The camera module is connected to Linux computer via USB. The
images are acquired using Python API. Similar to previous camera, the new design uses a controller board to
interface between processing unit and respective FPI installed in imager.

3.2 Mechanics and optics

The optomechanical part of imager seen in figure 3 consists of aluminum baseplate, that holds optics, MFPI and
sensor. In addition, it provides a way to focus and adapt the optics for different applications. The 3D printed
case of imager can be seen in 4. It was designed to allow easy access to optomechanics, enclose electronics and
provide tripod mounting interface. The table 2 summarizes two different PFPI and MFPI configurations, which
the new HSI concept supports. These parameters are the most commonly used to describe FPIs, as well as select
them for certain application, therefore having a hardware platform that is compatible with both types is a major
advantage.

3.3 System calibration

After assembling HSI, it is necessary to perform system calibration. The monochromator setup shown in figure 5
is used to measure and calculate the spectral response of each pixel in camera sensor by gradually changing the
wavelength of monochromatic light and the passband of FPI. Light from halogen lamp is passed into monochro-
mator. Then, monochromatic light is passed into a integrating sphere, which has a reference detector and HSI
attached. The passband of FPI and monochromator output are changed by software script running on PC. In
addition, PC captures the images and calculates values for calibration table.



Table 2: Hardware configurations of HSI.

FPI type PFPI MFPI
Spectral range (nm) 450 — 850 600 — 1000
Spectral resolution (nm) 7 —25 @ FWHM 15 —25 @ FWHM
Settling time* (ms) 10 2

Clear aperture (mm) 14 2.5

*Settling time for small wavelength steps (typ. <10 nm).

3.4 Measurement calibration

In order to capture a valid hyperspectral data cube, first it is necessary to perform measurement calibration
sequence. The calibration sequence consists of capturing the dark reference and a white reference. Measurement
calibration has to be repeated in case of changes in the light source or significant changes in the temperature of
imaging sensor and FPI. White reference target is typically a diffused target, that has uniformly high reflectance
over whole measured wavelength range. The dark reference target is typically a highly absorbing material, that
is used to fully cover the aperture of imager, while dark signal level is recorded.

ﬂ\
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)

Figure 3: Interchangeable optomechanics mounted to baseplate.

Figure 4: 3D CAD model and assembled version of hyperspectral imager.
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Figure 5: Monochromator calibration setup for HSI.

4. CUBEVIEW SOFTWARE

CubeView is a software, created by the Spectral Imaging Laboratory from the University of Jyvéskyld, Finland.
It’s main purpose is to offer an easy to use and simple, but scientifically accurate interface for spectral imaging
and spectral analysis. Software will be released under MIT license and one of the main strengths compared to
other similar softwares is the compatibility with GeniCam standard. Other worth to mention features are the
different ways to use CubeView: with devices it provides easy and fast imaging and without devices it can be
used for analyzing an existing spectral data cubes.

4.1 Functionality

The essence of CubeView is the deep understanding of user requests and needs by using design thinking methods
through the development phases. User requests and needs were based on Spectral Imaging Laboratory’s past
and ongoing research. The core of CubeView uses Spectral Imaging Laboratory’s python libraries, fpipy,*
pyspindl® and spectracular. CubeView has three main functionalities: LiveView, CubeView (imager) and
CubeView Analyze.

LiveView is part of LiveView imager and it’s main function is to offer video stream from the hyperspectral
camera. LiveView has camera settings tool (based on spectracular), and some helpful functionalities to adjust
imaging session settings. CubeView uses mainly fpipy and provides the view over captured cubes. Users
can easily slide through raw, reflectance or radiance cubes, check radiance pixel spectra, or select frames by
wavelengths to closer attention. CubeView uses matplotlib back-end with visualizations and saves and reads
data from netCDF format.

CubeView Analyze analysis tool is created so that users can customize it according to their wishes and needs.
Selected algorithms, including spectral unmixing based on vertex component analysis and fast least-squares
approach, spectral angle mapper, principal component analysis and library of spectral indices are integrated to
the basic version of CubeView Analyze. Users own analysis algorithms are easy to add to tool.

4.2 Algorithm

In spectral unmixing we assume that spectra are a linear mixture of some spectra, which are characteristic to
the image and present in it. Now, let X be list of imaged spectra. Then linear mixture can be expressed in



matrix form following way

X=YM, (1)
where M C R**" is the mixing matrix and Y € R%** are characteristic spectra, which are called endmembers.
Here n is number of spectra in image, d is number of spectral bands and k is number endmembers. To solve M
from the equation it is necessary to determinate the endmembers Y.

There are different ways to approach to determinate Y from the imaged data. If we rely on data’s geometry,
we can project data to the low dimensional space and try to determinate convex hull, which is covering all or
majority of data points. Now, vertices of this hull are considered as endmembers. There are several methods,
which are developed to detect these vertices, such as the vertex component analysis (VCA)® or Pixel-Purity
Index (PPI).” Our implemented unmixing method uses VCA to determinate endmembers.

As evident there are several ways to determinate M after endmember detection. If we discard some boundary
conditions, most easiest way to solve M is to use least-square method with pseudoinversion.® It holds that
-1
YTy) v'X =M. (2)
This quite simple matrix operation solves M for us.

Spectral angle mapper is relatively simple measurement to compare similarity of two spectra.” We measure
angle between spectra x and y by calculating angle between these two vectors. Spectral angle

o Xy
0=cos ' ———, (3)
1[I - Iy
where ||, || is euclidean norm of the vector. By selecting some threshold for the angle 6 is SAM actually a binary

classificator. In analysis example user has to select reference spectra from the spectral image.

With principal component analysis (PCA) it is possible to search those components which are causing most
of the variance within recorded spectra. The difference between PCA and spectral unmixing is that PCA doesn’t
take account any physical meaning. Thus we will just see which areas of the image is causing variance, while
spectral unmixing can actually tell us, which spectra’s are present in the data cube. PCA’s implementation is
straight forward. First, we center data around origo by extracting mean of each spectra. Then we calculate
covariance matrix. At last singular value decomposition is done on the covariance matrix. As a results we will
get singular values and singular vectors. Here singular values tell’s us how much of the variance is explained
by corresponding principal components. Now, principal components are calculated by multiplying spectra with
singular numbers.

Spectral indices are ratios, sums or different arithmetic combinations of spectral bands. They return single
map, which can correlate with some properties of the images object. For example, in the remote sensing of
vegetation indices such as normalized difference vegetation index (NDVI) or modified chlorophyll absorption in
reflectance index (MCARI). NDVI is calculated as

NIR — RED (4)

NIR+ RED’
where NIR is some near infrared band (between 0.7 to 1 pm) and RED is band from red region of the visible
light (between 0.65 to 0.7 pum). MCARI is defined as

(Rs50 — R730 — 0.2 X (Rsz0 — Rs70))
= , 5)
730

where R; denotes to reflectance on wavelength i. Implemented indices library includes almost 300 different
spectral indices.

The development focus was mainly on workflow and processes that produces magic behind the curtains: the
least amount of effort is three clicks from start to whole spectral cube and one click more to start analyzing.
What CubeView offers, is an effective and new way to capture cubes, show analysis results and produce quick
demos to the researchers, corporate decision makers and even to consumers. It brings new innovations, wraps
algorithms and scientific research in to easily approached and partly productized form.

Spectral Imaging Laboratory will release mentioned libraries and first standalone versions of CubeView during
the spring 2019.



5. RESULTS

A measurement was done to test a hyperspectral imager and the new CubeView software. The selected imaging
target was plastic leaves of a non-organic plant and one real leaf from a healthy plant. Without close examination
both types of leaves appear to be organic to naked eye. The target was illuminated by a broad band light source
to ensure that whole wavelength range of measurement is covered. The parameters of PFPI that was used in
HSI for this measurement are summarized in table 2. The figure 6 shows the resulting PCA and abundance
maps, as well as endmembers, which correlate to certain unique material features of the target. The measured
wavelength range was 450 — 850 nm with camera set to analog gain of 10x and exposure to 120 ms. The figure 7
shows the output of spectral angle mapper. It can be seen in figure 7, that with threshold value of 0.1 the real
plant leaf is highlighted, indicating a strong similarities in spectra with the real plant. Finally, the figure 8 shows
a comparison of regular RGB-composite image and a NDVI image. It can be seen, that NDVI is much higher
for real plant as it is expected due to chlorophyll absorption.
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Figure 6: Results of principal component analysis (PCA) (left), and vertex component analysis (VCA) (middle
and right).

Spectral angle Angle smaller than 0.1

Figure 7: Spectral angle as compared to a pixel spectra from the real plant (left) and thresholded spectral angle
(right).
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Figure 8: NDVI-index (left) and RGB-composite of three selected bands (right).

6. SUMMARY AND CONCLUSIONS

This paper presented a way to mitigate two common problems that are associated with hyperspectral imagery.
The first is the unavailability of flexible and affordable imager hardware platform. The other is the raw spectral
data, that are typically unusable for most of applications without an analysis algorithm. It was shown that it
is possible to develop compact, low cost, portable, hyperspectral imager, that supports both MFPI and PFPI
technologies. As result, the hardware platform can be used in wider range of applications, further reducing costs
and increasing availability of hyperspectral imaging. In addition to the hardware, the newly developed software
tool was tested with a hyperspectral camera system and it was shown, that it is possible to use PCA analysis to
find and highlight the unique spectral features within raw data cube. Therefore, the user is given quick access
to more visually understandable spectral information.
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ABSTRACT

Images from colour sensors using Bayer filter arrays re-
quire demosaicing before viewing or further analysis. Ad-
vanced demosaicing methods use empirical knowledge of
inter-channel correlations to reduce interpolation artefacts in
the resulting images. These inter-channel correlations are
however different for standard RGB cameras and hyperspec-
tral imagers using colour sensors with added narrow-band
spectral filtering.

We study the effects of conventional demosaicing meth-
ods on hyperspectral images with a dataset originally col-
lected without a colour filter array. We find that using ad-
vanced methods instead of bilinear interpolation results in an
overall increase of 9-14 % in absolute error and a decrease
of 1-3 % in PSNR, but also observed a decrease in MSE of
11-13%.

For the corresponding RGB images, the advanced meth-
ods improved fidelity as expected. The results also demon-
strate that the reconstruction methods that take advantage of
correlation transport noise present in a single component to
other reconstructed layers.

Index Terms— Hyperspectral imaging, Fabry-Perot, In-
struments, Bayer pattern, Colour filter array (CFA) interpola-
tion, Demosaicing, Algorithms

1. INTRODUCTION

Modern hyperspectral “snapshot” imagers based on Fabry-
Perot interferometers as their filtering technique can use ei-
ther monochromatic or Bayer-filtered sensors as their imag-
ing component. The latter case allows imaging of multiple
narrow wavebands with a single exposure, as the radiances
for each single wavelength can still be reconstructed based on
the known quantum efficiencies of the different pixel filters
for the given wavelengths [1]. However, since only a mea-
surement of a single colour filter is available at each location,
interpolation (or demosaicing) has to be used to approximate
the other filter responses at each location in order to solve for
spectral radiances.

This research is in part funded by the Jane and Aatos Erkko foundation
(grant 170015) and in part by the Finnish Funding Agency for Innovation
(TEKES) (grant 1711/31/2016).

Much work has been put into the development of demo-
saicing methods due to the prevalence of Bayer filters in digi-
tal consumer cameras. Reducing interpolation artefacts with-
out sacrificing too much computational efficiency is a prob-
lem that has provided us with a wealth of existing literature.
Many approaches are based on utilising the correlation of the
luminosity and chromaticity in natural images to improve the
SNR of the reconstruction [2, 3]. We give a short summary of
the methods under comparison in section 2.

The correlations are partially reliant on the fact that the
colour filters of the typical Bayer filter array are approximat-
ing human vision and thus have overlapping transmittances
across a range of wavelengths. However, for hyperspectral
imagers using the Bayer filter reconstruction technique with
narrow-band filtering, the correlation between the signals of
different colour filters is dependent on the wavelengths trans-
mitted by the narrow-band filter. While demosaicing methods
have been developed also for imagers with multispectral filter
configurations [4], there is little literature on the applicability
of existing methods in use cases related to spectral imaging.

To study the effect this discrepancy has on the resulting
data, we construct a benchmark for the radiance reconstruc-
tion using radiances from data taken using a more traditional
filter system. The procedures used are detailed in section 3.
We use the benchmark to compare the more advanced meth-
ods against bilinear filtering — which does not rely on correla-
tions — and present our findings in section 4.

2. DEMOSAICING METHODS

A CFA image is a matrix composed of three (or more) differ-
ent kinds of pixels in a given pattern. An example of a typical
Bayer “RGGB” pattern is given in figure 1, with R, G and B
referring to the red, green and blue filters respectively. Demo-
saicing entails the computation of a full-size layer of values
for each of the component types, with the missing values in
other locations filled in using interpolation.

We compared three demosaicing methods that had read-
ily available software implementations, specifically those im-
plemented by the “Colour - demosaicing” Python library [5].
What follows is a brief summary of each, for the readers dis-
inclined to wade through the references.



Fig. 1. Example of an RGGB Bayer filter pattern.

2.1. Bilinear interpolation

Bilinear interpolation fills each missing value with the aver-
age of its nearest neighbours. Interpolation is done on each
component plane independently, without any assumptions of
correlations between the components. While it can be im-
plemented highly efficiently using a discrete convolution, it
causes highly visible artefacts in the resulting image. [6]

2.2. Malvar (2004)

The method of Malvar, He and Cutler [2] is similar to the sim-
ple bilinear interpolation, but adds to each interpolated value a
correction based on the estimated gradients of the other com-
ponents, depending on the location of the pixel with respect to
the pattern. Like bilinear interpolation, it is also implemented
as a linear convolution, making it computationally efficient. It
is familiar to many as the default demosaicing method in the
MATLAB Image Processing Toolbox [7].

The precise weights used for the convolution implemen-
tation of their algorithm are the result of an experimental fit
to find the best reconstruction of the Kodak colour image
dataset, with a constraint on the divisibility to find an efficient
binary representation.

2.3. Menon (2007)

The method of Menon, Adriani and Calvagno [3] utilizes di-
rectional filtering and a posteriori selection of the best inter-
polation of the green component. The other colour compo-
nents in the green locations are reconstructed using bilinear
interpolation.

The directional information in the green layer is then used
to help reconstruct the colour difference layers (R — B) and
(B — G), which are then used to recreate the red and blue
components at other locations, along with corrections based
on frequency filtering. The approach relies heavily on the cor-
relation between the channels, and is roughly 3-5 times more
computationally intensive then the bilinear interpolation.

3. TEST METHODOLOGY

3.1. Radiance dataset

In order to study the effect of demosaicing on hyperspectral
images we needed data with a similar structure to the output
of Fabry-Perot imagers, but which has been collected without
a Bayer filter. The data could then be converted to a mosaic
trough simple omission and the results of demosaicing could
be reliably compared to the original without having to worry
about any systematic error arising from previous reconstruc-
tion methods.

We decided to use as the base data the publicly available
radiance images of natural scenes by Foster, Nascimento and
Amano [8], which were acquired using a full-frame imager
with a tunable filter and a monochromatic (non-array) sensor.
The characteristics of the natural scenes also resemble those
of the Kodak dataset often used in demosaicing studies, with
varying edge features and spectral signatures. Each of the
thirty images had 33 radiance bands evenly distributed be-
tween wavelengths of 400 nm and 720 nm with a band width
of 10 nm.

The dataset also included an RGB image of each scene
reconstructed from the radiance using the CIE standard ob-
servers. These were used as-is to test the performance of the
methods for this dataset.

3.2. Mosaic construction

For each of the 33 band radiance cubes in the dataset, we
constructed a corresponding mosaic cube of 11 CFA images
with an RGGB pattern with each image having its R, G and B
pixels sampled from different wavelength bands of the cube.
The wavelengths used for each mosaic layer are listed in ta-
ble 1. The choice of the specific pattern was arbitrary. While
we did not verify it experimentally, the different orderings
of the colour components should produce equivalent results
since none of our fidelity measures use directional quantities
which might change under different patterns.

The wavelengths were selected by simply dividing the set
of radiance bands into three equal parts, and using the longer
wavelengths for the red, the medium for green and shorter
for blue in consecutive triplets, such that no triplet contained
bands near each other in wavelength. Since there is no sensor-
induced correlation in the different radiance values, the or-
dering of the bands should not matter; We opted to match
the wavelengths roughly to the colour components they af-
fect the most. This way any correlations between the radi-
ances present in the natural scenes due to spectral properties
of the specific scene should be roughly similar to those in
true-colour images.

This method of construction approximates the structure of
data from a spectral imager using a scanning Fabry-Perot in-
terferometer with three of the transmission peaks in the range



Table 1. Wavelength bands from of the base image used for
the different pixels in each mosaic layer of the corresponding
test dataset.

# A Ag  Ar
1 400 510 620
2 410 520 630
3 420 530 640
4 430 540 650
5 440 550 660
6 450 560 670
7 460 570 680
8 470 580 690
9 480 590 700
10 490 600 710
11 500 610 720

of sensor sensitivity at once. It is simplified in that the dif-
ferent transmission peaks are not mixed at all in the R, G and
B pixels unlike in a real imager, where the response of each
pixel to the peaks would be dependent on the wavelength.

We decided against the modelling of a more realistic situ-
ation for this study, since the choices needed for the construc-
tion of the more realistic mosaics would complicate interpre-
tation of any results and proper analysis would have taken
more time then was available for the preparation of this pa-
per.

3.3. Fidelity criteria

Since perceptual metrics based on human vision do not make
sense for the radiance data directly, we consider only objec-
tive fidelity measures based on the numerical difference of the
original and the reconstructed image. Following [6], we mea-
sure the fidelity of the demosaiced images with X x Y pixels
for each band b using the mean absolute error,

) 1 X—-1Y-1 )
MAE,(I,I') = ol 22 Loy — I,
mean square error,
) 1 X—-1Y-1 ) )
MSE(I,I') = % 22 (Ioy — 1.,

and peak signal-to-noise ratio

max(1p)?
PSNRb(I, I/) =10- loglo <1\/[SE)b((Ib)II)>

with the original radiance images I and the reconstructions I’.
The same metrics were also calculated for the RGB images
and their reconstructions using colour components in place of
radiance bands.

Table 2. Average fidelities of the Malvar and Menon methods
relative to bilinear filtering on the radiance and RGB images.

Radiance RGB
Malvar Menon Malvar Menon
MAE 1.09 1.14 0.97 1.15
MSE 0.79 0.77 0.54 0.66
PSNR 0.99 0.97 1.15 1.11

The three fidelity measures were averaged over the dataset
for each band and ordered to match the structure of the orig-
inal radiance data. The metrics for each method were also
divided by the corresponding metric for bilinear interpolation
to get a touch on their relative performance. Corresponding
values were also calculated for the RGB reconstructions to
verify that the methods perform as expected for the kind of
images they were designed for.

4. RESULTS

Figures 2, 3 and 4 show the MAE, MSE and PSNR for the dif-
ferent methods. The metrics were calculated for each wave-
length band and averaged over the test dataset. The abso-
lute values show a significantly worse reconstruction for the
first band in all the cases. This is due to the high noisiness
of the data in the 400nm band, which was known for the
dataset and confirmed by us with a visual inspection. This
noisiness carries over to the relative metrics for the Malvar
and Menon methods, in that the reconstruction of 510nm and
620nm bands included in the same mosaics with the noisy
waveband suffer with the methods using correlation. This
was also visually apparent in the reconstruction of the given
bands.

The relative fidelities of the Malvar and Menon methods
over all the bands are presented in table 2 for both the radiance
and RGB reconstructions. For comparison, Malvar, He and
Cutler report an increase of 5.68 dB in PSNR for their method
over the bilinear interpolation [2], while Menon, Adriani and
Calvagno claim an increase of 9.69 dB [3]. Their tests were
conducted respectively on sets of 15 and 20 RGB colour im-
ages from the Kodak dataset.

5. CONCLUSIONS AND FUTURE WORK

The relative fidelity measures demonstrate that introducing a
correlation-based correction in the interpolation also has the
side effect of carrying over any noise present in the bands to
the other interpolated layers, which is to be expected. Similar
effects are present in the reconstruction of radiance measure-
ments from actual Fabry-Perot hyperspectral imagers in the
bands where correlation is introduced by the mixing of the
different narrow-band radiances on the sensors (though dif-
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Fig. 3. (a) Average MSE over the full dataset for each wavelength band. (b) Average MSE compared to the bilinear interpolation.

ferent in magnitude to the usual correlation of the R, G and
B pixels).

All the measures also show generally worse performance
for the Malvar and Menon methods in the noisy band, which
is most likely due to their use of gradients (which are gen-
erally sensitive to noise). However, the advanced methods
perform slightly better in the bands with lower noise. While
we did not comprehensively study the effect of the ordering
of the bands, some tests ran after the calculation of the main
results suggest that the ordering does not significantly change
the overall performance, although some differences arise on
the single bands. This suggests that the methods are not very
sensitive to the chromatic correlations in the natural scenes,
but that differences arise based on the exact band used for the
better sampled component (usually the green one).

The relative fidelities in table 2 show that the overall fi-

delity of the advanced reconstruction is decreased by a few
percent compared to the bilinear interpolation. The results on
reconstructed RGB images show that when the assumptions
of the algorithms are fulfilled, the fidelity of the reconstruc-
tion should increase significantly for this specific dataset.

While we did not evaluate any perceptual metrics, vi-
sual inspection of some of the reconstructions suggested that
while the advanced methods generally did not cause notice-
able degradation in the radiance images, localised artefacts
were generated for certain materials (spectral signatures) in
the scenes. More comprehensive study comparing spectral
differences using e.g. spectral angle or correlation would be
needed to quantify these effects.
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