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ABSTRACT

Wang, Deqing
Extracting Meaningful EEG Features Using Constrained Tensor Decomposition 
Jyväskylä: University of Jyväskylä, 2019, 61 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 169)
ISBN 978-951-39-7968-3 (PDF)

Electroencephalography (EEG) is a powerful technique for the study of human 
brain and cognitive neuroscience. Nowadays, more and more EEG data are or-
ganized in high-dimension form, which is called tensor. Tensor decomposition 
is just the suitable tool to exploit the multiway data and extract EEG features 
that are linked to cognitive processes. Since the high-dimension EEG tensor often 
contains a large amount of data points, highly efficient tensor decomposition al-
gorithm is desired. In addition, EEG tensor are sometimes nonnegative and the 
intrinsic features usually have some special properties, such as sparse. In order to 
extract meaningful feature components, it is necessary to incorporate constraint 
and regularization to tensor decomposition algorithm.

In this dissertation, we study the CANDECOMP/PARAFAC (CP) tensor de-
composition with both nonnegative constraint and sparse regularization, which is 
abbreviated as sparse NCP. An inexact block coordinate descent (BCD) framework 
is employed for the non-convex sparse NCP problem. Five optimization methods 
are employed to solve the sparse NCP, including multiplicative update (MU), al-
ternating nonnegative least squares/quadratic programming (ANLS/ANQP), hi-
erarchical altering least squares (HALS), alternating proximal gradient (APG) and 
alternating direction method of multipliers (ADMM), all of which are carefully 
tailored to the sparse regularization problem. In order to improve the stability, we 
also utilize proximal algorithm particularly for ANLS/ANQP and HALS.

Applications on real-world EEG datasets are carried out. First, we use NCP 
to decompose a fifth-order event-related potential (ERP) tensor, which was col-
lected by proprioceptive stimuli on human hands. Next, ongoing EEG tensors are 
analyzed using sparse NCP. The data were collected by naturalistic and contin-
uous music stimulus. Finally, we analyze two modalities of ongoing EEG tensor 
and music signals simultaneously by N-way partial least square (N-PLS).

In conclusion, our designed tensor decomposition methods with constraint 
and regularization are able to decompose high-order tensor data efficiently and 
extract meaningful EEG features linked to cognitive processes.

Keywords: Tensor decomposition, nonnegative CANDECOMP/PARAFAC,
sparse regularization, block coordinate descent, EEG data analysis



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Wang, Deqing
Oleellisten piirteiden irrottaminen EEG-datasta rajoitetun tensorihajotelman avulla 
Jyväskylä: University of Jyväskylä, 2019, 61 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 169)
ISBN 978-951-39-7968-3 (PDF)

Elektroenkefalografia (EEG) on tehokas tapa tutkia ja mitata ihmisaivojen toimin-
taa ja edistää kognitiivista neurotiedettä. EEG-mittauksilla saatu data tallennetaan 
yhä yleisemmin moniuloitteisiin tietorakententeisiin eli tensoreihin. Hajottamalla 
tensori sen tekijöihin voidaan tutkia monikanavaista dataa ja irrottaa siitä ne EEG-
tekijät, jotka liittyvät kognitiivisiin prosesseihin. Koska EEG-tensoreissa on usein 
paljon data-alkioita monissa ulottuvuuksissa, oleellisten data-alkioiden irrottami-
seen tarvitaan tehokas algoritmi tensorin tekijöiden hajottamiseen. Lisäksi EEG-
tensorit ovat joskus ei-negatiivisia ja erottamattomasti rakenteeltaan harvoja. Jotta 
tensorista voitaisiin irrottaa oleelliset piirteet, tensorin hajottamiseen soveltuvaan 
algoritmiin tulee liittää rajoitteita ja säännönmukaistamista.

Tässä väitöskirjassa tutkitaan CANDECOMP/PARAFAC (CP) hajoittamis-
menetelmää, joka sisältää sekä ei-negatiivisen rajoituksen että harvan säännön-
mukaistamisen (sparse NCP). Epäkonveksin harvan säännönmukaistamisen on-
gelman ratkaisuun käytetään epäeksaktia koordinaattiakselien suuntaisen opti-
moinnin viitekehystä (block coordinate descent). Harvaan säännönmukaistami-
seen käytetään viittä seuraavaa optimointimenetelmää: MU (multiplicative upda-
te), ANLS/ANQP (altering nonnegative least squares/quadratic programming), 
HALS (hierarchical altering least squares), APG (alternating proximal gradient) 
ja ADMM (alternating direction method of multipliers), joista jokainen on tarkoin 
suunniteltu harvan säännönmukaistamisen ongelmaan. Stabiliteetin parantamisek-
si hyödynnetään ANLS/ANQP- ja HALS-menetelmissä myös nk. lähialgoritmia.

Menetelmiä evaluoitiin todellisilla EEG-aineistoilla. Ensinnäkin NCP:tä käy-
tettiin hajottamaan viidennen asteen herätevastetensori (event-related potential, 
ERP), joka oli koottu ihmiskäden asentoaistiärsykkeistä. Toisekseen harvaa NCP:tä 
käytettiin analysoimaan meneillään olevan EEG-mittauksen tuottamia tensoreita, 
jotka kuvasivat luonnollisia ja jatkuvia, musiikinkuuntelun aiheuttamia ärsykkeitä. 
Kolmanneksi analysoitiin kahden meneillään olevan EEG-mittauksen tuottamia 
tensoreita käyttämällä N-PLS-menetelmää.

Suunniteltujen menetelmien avulla voidaan tehokkaasti hajottaa monimut-
kaista tensoridataa sen tekijöihin ja irrottaa kognitiivisiin prosesseihin liittyviä 
EEG-tekijöitä.

Avainsanat: tensorin hajottaminen tekijöihin, ei-negativiinen CANDECOMP/
PARAFAC, harva säännönmukaistaminen, koordinaattiakselien
suuntainen optimointi, EEG-data-analyysi
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1 INTRODUCTION

Electroencephalography (EEG) is a powerful technique for noninvasively study-
ing the electrophysiological dynamics of human brain (Cohen, 2017). EEG signals
are the electrical activities generated by the firing of neurons in human brain,
which can be measured and recorded via electrodes placed on the scalp. Since
the recording equipment of EEG is cheaper and more flexible than that of fMRI
and MEG, EEG is more common for brain research. EEG has several advantages
for studyding cognitive neuroscience (Cohen, 2014):

• EEG is a high-temporal-resolution technique, which is well suited to capture
fast, dynamic, and temporally sequenced cognitive events.

• The voltage fluctuations that are measured by EEG are direct reflections of
biophysical phenomena at the level of populations of neurons.

• EEG signal is multidimensional, which provides many possibilities for spec-
ifying and testing hypothesis that are rooted in both neurophysiology and
psychology.

EEG data consist mainly of three categories according to the external stim-
uli (Cong et al., 2015b): spontaneous EEG, which is measured without external
stimuli, for example, in a resting state; event-related potential (ERP), which is
recorded by controlled, short, rapidly repeated stimuli; ongoing EEG, which is
collected by natural and continuous stimuli, such as dialog, music and movie. The
analysis of EEG data is essentially to answer the following question (Cohen, 2017):
what are the neural microcircuit functional/anatomical configurations that pro-
duce the various spatial/spectral/temporal EEG features that have been linked
to cognitive processes? In order to answer this question, many methods had been
proposed to extract meaningful EEG features in the past decades (Handy, 2005;
Sanei and Chambers, 2007; Luck, 2014; Cong et al., 2015b). Moreover, nowadays,
with the popularity of EEG and the increase of computer storage capacity, more
EEG signals appear as multidimensional and big data. Therefore, it is necessary
to develop advanced signal processing and data analysis methods to exact more
meaningful EEG features that are related to cognitive processes.
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1.1 EEG Signal Processing Methods

EEG data have rich information in many data domains, such as space, frequency,
time, subject and experimental condition. In this section, we briefly introduce
some popular methods for EEG signal processing related to these domains.

1.1.1 Conventional Methods

EEG signals can be represented by time series, spectrum, and spectrogram. Con-
ventionally, EEG signal processing methods include time domain, frequency do-
main and time-frequency domain method.

1.1.1.1 Time Domain

Averaging is a fundamental time domain method, especially for ERP data anal-
ysis. The recorded EEG data contain not only the brain’s responses to the stim-
ulus but also other activities that are unrelated to the stimulus, such as spon-
taneous EEG and noise. By averaging multiple single-trial EEG waveforms, an
averaged ERP waveform that contains consistent response elicited by the stim-
ulus will be created, meanwhile those signals unrelated to the stimulus will be
suppressed (Luck, 2014). The averaging process is usually conducted separately
for each electrode site and each stimulus type, yielding a separate average ERP
waveform for each situation (Luck, 2014).

1.1.1.2 Frequency Domain

Many brain activities exhibit constant variations and rhythmic dynamics (Cohen,
2019). The variant and dynamic temporal structure embedded in the time series
of EEG can be extracted and quantified using Fourier transform or other spectral
analysis method in frequency domain. However, Fourier transform requires the
assumption of signal stationarity. In fact, most EEG data are non-stationary. Hence,
simple frequency domain method has limitation for EEG data analysis.

1.1.1.3 Time-Frequency Domain

Time-frequency representation (TFR) is a suitable method to analyze non-
stationary EEG signals. The primary assumption of TFR is that the signal is
roughly stationary over some short (sliding) time window (Cohen, 2019). By
time-frequency transform, a time series of EEG data will be represented by a
spectrogram, which contains both time and frequency dimension. Three most
commonly used TFR methods are short time Fourier transform (SIFT), com-
plex wavelet transform (CWT) and band-pass filtering with Hilbert transform
(filter-Hilbert) (Cohen, 2019, 2014). The time-frequency analysis of EEG can be
interpreted in terms of neurophysiological mechanisms of neural oscillations
(Cohen, 2014). EEG oscillations are very important to analyze brain functions.
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TABLE 1 EEG oscillations

Name Frequency Bands
delta band < 4 Hz
theta band 4 − 8 Hz
alpha band 8 − 13 Hz
beta band 13 − 30 Hz

gamma band > 30 Hz

According to the frequency bands, EEG oscillations are mainly classified into five
groups as listed in Table 1. More information on time-frequency analysis of EEG
data can be found in Herrmann et al. (2014) and Cohen (2019, 2014).

1.1.2 Matrix Methods

As mentioned previously, EEG data are recorded via electrodes on the scalp.
The recorded EEG series at a electrode site is the sum (mixture) of all source
series multiplied by weighting factors (Kappenman and Luck, 2012). Let
S = [s1 , s2 , . . . , s N ] ∈ RT×N denote the source signal matrix, X =
[x1 , x2 , . . . , x P ] ∈ RT×P denote the recorded scalp signal matrix and
A ∈ R P×N denote the mixing matrix, where T , N , P represent the number
of samples in series, number of sources and number of sensors respectively.
The mixing process can be expressed by

X T = AS T . (1)

Here,

A =




a11 a12 . . . a1 N
a21 a22 . . . a2 N

...
... . . . ...

a P1 a P2 . . . a P N




contains the weighting factors that map the signals from source space to electrode
space. The mixing process and the relationship between the source signals and
the recorded scalp signals are illustrated in Figure 1.

In fact, the mixing matrix A is always unknown. An important task is to
recover the underlying source components by computing an unmixing matrix
that reverses the mixing process. The unmixing process is called blind source
separation (BSS) (Comon and Jutten, 2010). According to the properties of the
desired unmixed components, there are several types of BSS methods.

1.1.2.1 Independent Components Analysis

If the separated components are statistically independent to each other and
have non-Guassian structure, this type of BSS is called independent compo-
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FIGURE 1 Relationship between the source signals and the recorded scalp signals. s j
denotes the source signal series, x i denotes the recorded signal series and a i j
denotes the weighting parameter.

nent analysis (ICA) (Hyvärinen and Oja, 2000; Hyvärinen, 2013). Let Y =[
y1 , y2 , . . . , y N

]
∈ RT×N denote the separated source matrix that contains mu-

tually independent components (IC activations), and let W denote the unmixing
matrix. The ICA process can be represented by

Y T = W X T . (2)

Equivalently, we can write the inverse process as

X T = W −1 Y T . (3)

Here, the unmixing matrix W is a matrix of spatial filters learned by ICA from
the EEG scalp data, and the mixing matrix W −1 is a matrix of scalp maps as-
sociated with each of the independent components. In addition, don’t confuse
the mixing matrix A in (1) and the mixing matrix W −1 in (3). A is the projec-
tion matrix of weights from brain sources to EEG scalp data, which is unknown
and usually difficult to compute without source localization method. Whereas
W −1 is the projection matrix of weights from independent components to EEG
scalp data, which can be learned by ICA algorithm.

ICA has been widely used in EEG signal processing. One important role of
ICA is artifact detection and removal (Delorme et al., 2007; Radüntz et al., 2017).
Since the mixed EEG matrix X consists of two dimensions of space and time,
ICA can be performed in two different ways (Zhou et al., 2016): temporal ICA that
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takes the data points in temporal dimension as variables and extracts independent
time series; spatial ICA that takes the data points in spatial dimension as variables
and extracts independent spatial maps. Because of the high temporal resolution,
temporal ICA is more common for EEG. More information about ICA for EEG
signal processing can be found in Makeig and Onton (2012). Latest tutorials on
ICA algorithm can be found in Shlens (2014a) and Tharwat (2018).

1.1.2.2 Principal Components Analysis

Principal component analysis (PCA) is a fundamental dimension reduction
method based on singular value decomposition or eigenvalue decomposi-
tion. Brief tutorials on PCA can be found in Shlens (2014b) and Smith (2002).
Using PCA, the separated components are orthogonal and uncorrelated to
each other. PCA also includes two types (Dien, 2012): temporal ICA and
spatial PCA. The application of PCA to ERP data analysis can be found in
Dien et al. (2005) and Dien (2012).

PCA dimension reduction is a common practice for EEG data in the pre-
processing procedures, which is usually followed by ICA (Delorme and Makeig,
2004). However, recently, it is reported that PCA dimension reduction might af-
fect both the dipolarity and stability of independent components (ICs) extracted
from high-density EEG data, and degrade the overall capability of ICA to separate
functionally identifiable brain and non-brain (artifact) source activities (Artoni et
al., 2018, 2019). It seems that PCA-based dimension reduction of EEG should be
carefully considered and tested before data preprocessing for ICA decomposition.

1.1.2.3 Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a constrained BSS method, by which
the separated components are required to be nonnnegative. Since in many real-
world applications both the data and the intrinsic components are negative, NMF
is a very important signal processing method in many areas (Cichocki et al., 2009;
Wang and Zhang, 2013; Zhou et al., 2014; Gillis, 2015). NMF was mainly popular-
ized by the paper of Lee and Seung (1999), and had been applied to a wide range of
applications, such as image processing (Lee and Seung, 1999), document clustering
(Xu et al., 2003; Cai et al., 2011), hyperspectral unmixing (Jia and Qian, 2009; Qian
et al., 2011), microarray data analysis (Kim and Park, 2007; Esposito et al., 2019).

EEG data analysis is also one typical application of NMF (Lee and Choi,
2009; Mørup et al., 2006). One time series of EEG data can be converted into
a nonnegative two-dimension spectrogram, which can be further reshaped
into a one-dimension vector. By joining the vectorized spectrograms from dif-
ferent channels, a nonnegative matrix is generated with two dimensions of
space and reshaped spectrogram. Afterwards, NMF can be applied, by which
the extracted components in space dimension are the topographies and the
extracted components in reshaped spectrogram dimension can be reshaped
back to two-dimension spectragrams.
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8.5 minutes

Short-Time Fourier Transform
(STFT)

(a)

(b)

FIGURE 2 Tensor representation of ongoing EEG data. (a) shows the transformation
of one channel EEG time series to a spectrogram using short-time Fourier
transform. (b) shows the generation of a third-order tensor from 64 channels
of EEG times series.

In this section, we mainly introduce one-way (vector-based) and two-way
(matrix-based) methods for EEG data analysis. In the next section, we will intro-
duce the multiway (tensor-based) representation of EEG data.

1.1.3 Tensor Representation of EEG

Tensor is a representation of multiway (multidimensional) data. The two-way
EEG data recorded on the scalp only contain two modes of channel and time.
By time-frequency representation, the time series on each channel can be trans-
formed into a two-way spectrogram with two modes of time and frequency. After
gathering the spectrograms of all channels, a third-order (three-way) tensor is gen-
erated, which has three modes of channel, frequency and time. The generation of
a third-order ongoing EEG tensor is illustrated in Figure 2. If EEG data consist
of more categories of information, a higher-order tensor will be generated. In an
experiment, especially ERP experiment, the data can be possibly represented by
a higher-order tensor including several modes such as channel/space, frequency,
time, trial, subject, condition and group (Cong et al., 2015a).

For high-order EEG data, tensor decomposition is just the right way to ex-
tract intrinsic components that are linked to cognitive processes, whereas conven-
tional methods and matrix-based methods are far inferior to tensor decomposition
(Cong et al., 2015a; Wang et al., 2018b). The advantage of tensor decomposition
will be introduced in the following section.
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FIGURE 3 Decomposition of a third-order ongoing EEG tensor using NCP. The extracted
nonnegative components are related to some brain activities: the spatial com-
ponents are the topographies that indicate the locations on the scalp; the
spectral components are the spectra that reveal the most prominent frequency
bands; the temporal components are the envelopes that exhibit the temporal
evolution series.

1.2 Research Motivation

Tensor decomposition, as a versatile tool for signal processing and machine
learning (Cichocki et al., 2015; Sidiropoulos et al., 2017), has become more
and more popular for EEG data processing and cognitive neuroscience in re-
cent years (Cong et al., 2015a; Zhou et al., 2016; Mahyari et al., 2017; Idaji
et al., 2017; Wang et al., 2018a,b).

If EEG tensor is generated by time-frequency representation, the multiway
data must be nonnegative. In the nonnegative tensor, the intrinsic components
sometimes are also nonnegative. Therefore, nonnegative constraint should be
incorporated into the tensor decomposition. The nonnegative CANDECOMP/
PARAFAC (NCP), as a fundamental decomposition method, is just suitable
to analyze this type of nonnegative tensor. Figure 3 illustrates the results of
NCP decomposition on a third-order ongoing EEG tensor, which includes
three modes of channel, frequency and time. The extracted nonnegative EEG
components using NCP are related to some brain activities and have specific
meanings: the spatial components are the topographies that indicate the ac-
tivation locations on the scalp; the spectral components are the spectra that
reveal the most prominent frequency bands; the temporal components are the
envelopes that exhibit the temporal evolution series.

One major advantage of tensor decomposition for high-order data analy-
sis is that the interactive information among all modes can be well-preserved.
By observing Figure 3 carefully, it can be found that one group of components
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are composed of three parts including spatial component, spectral component
and temporal component. In fact, these components in one group explain some
brain activity from different perspectives. Specifically, the EEG tensor in Fig-
ure 3 has three modes of channel, frequency and time, which interact with each
other in the tensor form. Therefore, tensor decomposition will extract three com-
ponents from all the three modes, which preserve the interactive information
that is linked to cognitive process in the brain. If the tensor is reshaped into a
two-way matrix, for example by keeping mode of space and merging modes of
frequency and time, the interaction information of space-to-frequency, space-to-
time and time-to-frequency will be lost.

On the other hand, it is clear to see from Figure 3 that some components,
such as the spectra, are not only nonnegative but also sparse. Hence additional
regularization, such as sparsity, will enhance the extraction of meaningful compo-
nents. Tensor decomposition can be improved by additional regularization items.

However, there are many problems for high-order EEG tensor decompo-
sition, which need careful consideration and further investigation. We list four key
issues below.

• The first issue is what type of regularization item should be incorporated
into the tensor decomposition model, e.g. the concrete mathematical norm
for sparse regularization, which is from the structural point of view.

• The second is which optimization method should be used to guarantee the
convergence and stability of the designed decomposition model, which is
from the mathematical point of view.

• The third is how to process large-scale tensor data efficiently, which is from
the computational point of view.

• The fourth is whether the extracted EEG features are related to concrete
brain activities of cognitive processes, which is from the perspective of real
applications in brain research and cognitive neuroscience.

Finding the solutions to the above four issues is the motivation of the study
in this dissertation.

1.3 Research Approaches

In this section, we introduce our proposed approaches to solve the issues men-
tioned in previous section.
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1.3.1 Constraint and Regularization

According the nonnegative and sparse properties of the EEG components, we
construct the CP decomposition with both nonnegative constraint and sparse
regularization, which is abbreviated to sparse NCP. We employ l1-norm as the
sparse regularization item, which can yield strong sparsity (Donoho, 2006).

1.3.2 Optimization methods

In this dissertation, The main framework for solving sparse NCP is block coordi-
nate descent (BCD) (Bertsekas, 2016; Xu and Yin, 2013; Kim et al., 2014), which is a
popular method to solve large-scale tensor decomposition problem. In BCD frame-
work, tensor decomposition is optimized by updating each factor matrix alterna-
tively as a subproblem. We investigated five popular and latest optimization meth-
ods to solve the subproblem of tensor decomposition, which are listed as follows:

Abbreviation Full Name

MU Multiplicative Update

ANLS/ANQP
Alternating Nonnegative Least Squares
Alternating Nonnegative Quadratic Programming

HALS Hierarchical Altering Least Squares

APG Alternating Proximal Gradient

ADMM Alternating Direction Method of Multipliers

MU has a significant influence on nonnegative matrix factorization (NMF)
in the past decades (Lee and Seung, 1999), and is still popular today (Cai et al.,
2011; Jiang et al., 2019). Hence we extend MU to solve the constrained and reg-
ularized tensor decomposition problem.

ANLS/ANQP and HALS are very efficient methods for tensor decompo-
sition (Cichocki et al., 2009; Kim and Park, 2012; Kim et al., 2014). In order to
improve the stability, we incorporate proximal algorithm (Li et al., 2013; Wang
et al., 2019) into ANLS/ANQP and HALS.

APG and ADMM are also popular for solving tensor decomposition (Xu
and Yin, 2013; Zhang et al., 2016; Huang et al., 2016). Both the two methods have
proximal operator in the optimization process, which is very flexible to handle a
lot of differentiable and non-differentiable regularization items.

1.3.3 Inexact Block Coordinate Descent Scheme

Because of the large scale of many EEG tensor data, an algorithm with efficient
computation and low time cost is favorable. One the one hand, an excellent
optimization algorithm will improve the computational performance of tensor
decomposition. On the other hand, some implementation schemes will further



24

Time

Frequency

C
h

a
n

n
e

l

......

.....
.

......

EEG Tensor Decomposition

Real-World EEG Applications

Nonnegative & Sparse

Optimizaton Methods

Topography

Temporal Envelope

Time Points (n)

Spectru
m

Frequency (H
z)

MU

ANLS/ANQP

HALS

APG

ADMM

Inexact Block Coordinate Descent

FIGURE 4 Diagram of research approaches in this dissertation.

increase the running speed. Using a optimization method, the subproblem in
BCD framework can also be iterated by a limited number of times without yield-
ing a precise solution. This scheme is called inexact block coordinate descent
(inexact BCD) (Vervliet and Lathauwer, 2019; Gillis and Glineur, 2012). In this
dissertation, we implement all the five optimization methods introduced in sec-
tion 1.3.2 by the inexact BCD scheme.

1.3.4 Real-World EEG Applications

In this dissertation, we apply the constrained and regularized tensor de-
composition to several real-world EEG datasets collected in cognitive neu-
roscience experiments. Our purpose is to extract meaningful EEG features
that are linked to cognitive processes.

Firstly, NCP is utilized to decompose a fifth-order event-related potential
(ERP) tensor, which was collected by proprioceptive stimuli on human left and
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right hand. Many groups of EEG components in five modes, including space,
frequency, time, subject and condition, will be extracted. Using the interactive
information among the five modes, we search for those EEG features that are
obviously elicited by the stimuli on hands.

Secondly, we analyze a set of ongoing EEG tensors using sparse NCP. The
data were collected by naturalistic and continuous music stimulus. After decom-
position, nonnegative and sparse EEG components will be extracted. Using Monte
Carlo method and permutation tests, we select those EEG features whose tempo-
ral series are significantly correlated with music features. These components are
assumed to be the brain activities elicited by music.

Finally, we analyze two modalities of ongoing EEG tensor and music signals
simultaneously by N-way partial least square (N-PLS).

The diagram of all research approaches in this dissertation is shown in Fig-
ure 4.

1.4 Structure of Dissertation

The rest of this dissertation is organized as follows.
Chapter 2 presents the theoretical aspects of constrained tensor decom-

position, especially the sparse NCP.
Chapter 3 describes the applications of the constrained tensor decom-

position on real EEG tensor analysis, in which meaningful EEG components
linked to some brain activity are extracted.

Chapter 4 lists the contribution of each attached paper in this dissertation.
Chapter 5 concludes the whole research work of this dissertation.



2 NONNEGATIVE TENSOR DECOMPOSITION

A tensor is a multiway data form or multidimensional array. Nowadays, with the
widespread use of multisensor technology and the fast increase of data size, more
and more data appear as multiway form. Tensor decomposition is a powerful
tool to analyze multiway data and extract intrinsic components from them (Kolda
and Bader, 2009; Sidiropoulos et al., 2017). In real-world applications, many ten-
sor data are nonnegative, such as hyperspectral data (Veganzones et al., 2016),
electroencephalograph (EEG) data (Cong et al., 2015a; Wang et al., 2018b), fluo-
rescence excitation-emission matrix (EEM) data (Elcoroaristizabal et al., 2015; Vu
et al., 2017), neural data (Williams et al., 2018), and many other multiway tensor
data (Mørup, 2011; Acar and Yener, 2009). In most cases, the intrinsic components
in the nonnegative tensor are also nonnegative. For example, the spectral com-
ponents in EEG data and the sample concentration components in EEM data are
nonnegative. In order to extract meaningful nonnegative component, nonnegative
constraint is necessary to be incorporated into tensor decomposition. Nonnegative
CANDECOMP/PARAFAC (NCP) is one of the most important decomposition
methods for processing nonnegative tensor data.

In this chapter, basic algorithms and computations of tensor decomposition
will be introduced firstly. Moreover, we will introduce our contributions to NCP,
whose mathematical model is combined with regularization items.

2.1 Preliminary

In this dissertation, a vector is denoted by boldface lowercase letter, such as x;
a matrix is denoted by boldface uppercase letter, such as X ; and a high order
tensor is denoted by boldface Euler script letter, such as X. Operator ◦ repre-
sents outer product of vectors, � represents the Khatri-Rao product, ∗ repre-
sents the Hadamard product that is the elementwise matrix product, 〈 〉 repre-
sents inner product, J K represents Kruskal oprator and [ ]+ represents nonneg-
ative projection.‖ ‖ F denotes Frobenius norm, and‖ ‖1 denotes l1-norm. Basics
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of tensor computation and multi-linear algebra can be found in review papers
by Kolda and Bader (2009) and Sidiropoulos et al. (2017). Some basic and use-
ful computations are introduced below.

Mode-n matricization: An nth-order tensor is usually represented by X ∈
R I1× I2×·· ·× I N , where In is the mode-n size, n = 1, . . . , N . The mode-n matri-
cization will reshape tensor X into a matrix X (n ) ∈ R

In×∏ N
ñ=1, ñ 6=n I ñ .

Kronecker product: Given matrices A ∈ R I× J and B ∈ RK×L , the Kro-
necker product A ⊗ B ∈ R I K× J L is computed by

A ⊗ B =




a11 B a12 B . . . a1 J B
a21 B a22 B . . . a2 J B

...
... . . . ...

a I 1 B a I 2 B . . . a I J B




=
[

a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 . . . a J ⊗ b L−1 a J ⊗ b L

]
.

Khatri-Rao product: Given matrices A ∈ R I×K and B ∈ R J×K , the Khatri-
Rao product A � B ∈ R I J×K is computed by

A � B =
[

a1 ⊗ b1 a2 ⊗ b2 · · · a K ⊗ b K

]
.

Hadamard product: Hadamard product is the elementwise matrix product.
Given matrices A ∈ R I× J and B ∈ R I× J , the Khatri-Rao product A ∗ B ∈ R I× J

is computed by

A ∗ B =




a11 b11 a12 b12 · · · a1 J b1 J
a21 b21 a22 b22 · · · a2 J b2 J

...
... . . . ...

a I 1 b I 1 a I 2 b I 2 · · · a I J b I J




One interesting property is that (A � B )T (A � B ) =
(

A T A
)
∗
(

B T B
)

.
In the following, we will introduce two fundamental tensor decomposition

methods.
CANDECOMP/PARAFAC (CP) Decomposition: The CP decomposition

has several names and associated abbreviations, such as canonical polyadic
decomposition (CPD), canonical decomposition (CANDECOMP), parallel factor
analysis (PARAFAC) and CANDECOMP/PARAFAC (CP) Decomposition (Kolda
and Bader, 2009; Liavas and Sidiropoulos, 2015). The last one is suggested by
Kolda and Bader (2009) and will be used in the whole of this dissertation.

Given an Nth-order tensor X ∈ R I1× I2×·· ·× I N , CP decomposition is to
solve the following minimization problem:

min
A (1) , . . . , A (N )

1
2

∥∥∥X − J A (1) , . . . , A (N ) K
∥∥∥

2

F

s.t. A (n ) for n = 1, . . . , N ,
(4)
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where A (n ) ∈ R In×R for n = 1, . . . , N are the estimated factor matrices in
different modes, and R is the selected rank-1 tensor number (component num-
ber). The estimated factor matrices in Kruskal operator can be represented by
the sum of R rank-1 tensors in outer product form:

J A (1) , . . . , A (N ) K =
R

∑
r=1

X̃ r =
R

∑
r=1

a (1)
r ◦ · · · ◦ a (N )

r , (5)

where a (n )
r represents the rth column of A (n ) .

The mode-n unfolding of the estimated tensor in Kruskal operator

J A (1) , . . . , A (N ) K can be written as A (n )
(

B (n )
)T

, in which

B (n ) =
(

A (N ) � · · · � A (n+1) � A (n−1) � · · · � A (1)
)
∈ R∏ N

ñ=1, ñ 6=n I ñ×R .

Tucker Decomposition: Given an Nth-order tensor X ∈ R I1× I2×·· ·× I N , a
rank-(R1 , R2 , . . . , R N ) Tucker decomposition is to solve the following minimiza-
tion problem:

min
A (1) , . . . , A (N )

1
2

∥∥∥X − JG ; A (1) , . . . , A (N ) K
∥∥∥

2

F

s.t. G ∈ R R1×R2× . . .×R N

A (n ) ∈ R In×R n for n = 1, . . . , N ,

(6)

where Rn is the n-mode rank, n = 1, . . . , N .
The work in this dissertation is mainly based on CP decomposition. More

knowledge of tensor computation and multilinear algebra can be found in review
papers by Kolda and Bader (2009) and Sidiropoulos et al. (2017).

2.2 Nonnegative CANDECOMP/PARAFAC Decomposition (NCP)

If the intrinsic components in tensor data are nonnegative, nonnegative con-
straints should be incorporated into tensor decomposition. Nonnegative CAN-
DECOMP/PARAFAC Decomposition (NCP) is one of the most important
model of constrained tensor decomposition.

2.2.1 Mathematical Model

Given a nonnegative Nth-order tensor X ∈ R I1× I2×·· ·× I N , NCP is to solve
the following minimization problem:

min
A (1) , . . . , A (N )

1
2

∥∥∥X − J A (1) , . . . , A (N ) K
∥∥∥

2

F

s.t. A (n ) > 0 for n = 1, . . . , N .
(7)

The above optimization problem of NCP is usually solved by block coor-
dinate descent (BCD) framework (Xu and Yin, 2013; Kim et al., 2014). In BCD
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framework, factor A (n ) is updated alternatively by a subproblem in every iter-
ation, which equals to the following minimization problem:

min
A (n )

F
(

A (n )
)
=

1
2

∥∥∥∥X (n ) − A (n )
(

B (n )
)T
∥∥∥∥

2

F

s.t. A (n ) > 0.

(8)

Furthermore, the objective function in (8) can be represented using the following
form of trace:

F
(

A (n )
)
=

1
2

tr
[

X T
(n ) X (n )

]
− tr

[(
A (n )

)T
X (n ) B (n )

]

+
1
2

tr
[

A (n )
(

B (n )
)T

B (n )
(

A (n )
)T
]

.
(9)

2.2.2 Partial Derivative

The partial derivative (or partial gradient) of F
(

A (n )
)

with respect to A (n )

is always used during computation,

∂

∂ A (n )
F
(

A (n )
)
= A (n )

[(
B (n )

)T
B (n )

]
− X (n ) B (n ) , (10)

where X (n ) B (n ) is called the Matricized Tensor Times Khatri-Rao Product (MTTKRP)

(Bader and Kolda, 2008). The item
(

B (n )
)T

B (n ) can be computed efficiently by

(
B (n )

)T
B (n ) =

[(
A (N )

)T
A (N )

]
∗ · · · ∗

[(
A (n+1)

)T
A (n+1)

]

∗
[(

A (n−1)
)T

A (n−1)
]
∗ · · · ∗

[(
A (1)

)T
A (1)

]
.

(11)

2.2.3 Stop Condition and Objective Function

The optimization procedures for tensor decomposition are implemented by

iterations. For NCP, a sequence of
{

A (1)
k , . . . , A (N )

k

}∞

k=1
is produced at each

iteration. It is necessary to terminate the iteration until some stopping condi-
tion is satisfied. Common stopping conditions include the following: prede-
fined maximum number of iterations, predefined maximum running time, the
change of objective function value, the change of relative error (data fitting)
(Kolda and Bader, 2009; Xu and Yin, 2013).

2.2.3.1 Objective Function and Relative Error

The computations of objective function value and relative error (data fitting) are
highly correlated. In the kth iteration, the objective function value of NCP problem
(7) is

FNCPk =
1
2

∥∥∥X − J A (1)
k , . . . , A (N )

k K
∥∥∥

2

F
, (12)
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and the relative error (Xu and Yin, 2013) is defined by

RelErrk =

∥∥∥X − J A (1)
k , . . . , A (N )

k K
∥∥∥

F
‖X‖ F

. (13)

Comparing (12) and (13), the relative error can also be computed from the objec-
tive function value directly:

RelErrk =

√
2FNCPk

‖X‖ F
. (14)

Meanwhile, the data fitting can be computed by

Fitk = 1 − RelErrk . (15)

Based on the objective function value and the relative error, the stopping con-
dition can be set by

|RelErrk−1 − RelErrk | < ε (16)

or
|FNCPk−1 − FNCPk | < ε . (17)

The threshold of ε can be set by a very small positive value, such as 1e − 8.

2.2.3.2 Accelerated Computation of Objective Function

By mode-n unfolding of tensor, the objective function of NCP in (12) at the kth
iteration can be represented equivalently as the following:

FNCPk =
1
2

∥∥∥∥X (n ) − A (n )
k

(
B (n )

k

)T
∥∥∥∥

2

F
. (18)

The works of Guan et al. (2012) and Xu and Yin (2013) introduced a convenient
idea to compute the objective function base on the trace computation of matrix.
Inspired by this idea, we further represent the objective function in (18) by

FNCPk =
1
2

tr





[
X (n ) − A (n )

k

(
B (n )

k

)T
]T [

X (n ) − A (n )
k

(
B (n )

k

)T
]


=
1
2



‖X‖

2
F − 2tr

[
A (n )

k

(
X (n ) B (n )

k

)T
]

+ tr

[((
A (n )

k

)T
A (n )

k

) ((
B (n )

k

)T
B (n )

k

)] 
 .

(19)

Furthermore, the objective function equals to

FNCPk =
1
2



‖X‖

2
F − 2

R

∑
j=1

In

∑
i=1

N̂ i , j +
R

∑
j=1

R

∑
i=1

M̂ i , j



 , (20)
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where
N̂ = A (n )

k ∗
(

X (n ) B (n )
k

)
∈ R In×R

and

M̂ =

((
A (n )

k

)T
A (n )

k

)
∗
((

B (n )
k

)T
B (n )

k

)
∈ R R×R .

Here, ∗ is the Hadamard product.
Since tensor data usually consist of a large amount of data points, the com-

putation of the objective function at each iteration will be time consuming by (12)

or (18). For example, in (18) the computational complexity of A (n )
k

(
B (n )

k

)T
is

O (R × ∏ N
n=1 In ). On the other hand, according to (10), we find that the items

of X (n ) B (n )
k and

(
B (n )

k

)T
B (n )

k have been computed in advance in order to up-

date A (n )
k . Therefore, these two items can be employed directly to compute the

objective function by (20). In (20), the computational complexity of N̂ and M̂ is
only O ( In R + R2 ), which has been reduced significantly.

2.3 NCP With Regularization Items

In real applications, adding regularization item to tensor decomposition will
improve the performance and make the extracted components more meaningful.
NCP with regularization item can be expressed in the following minimization
problem:

min
A (1) , . . . , A (N )

1
2

∥∥∥X − J A (1) , . . . , A (N ) K
∥∥∥

2

F
+

N

∑
n=1

λ n φn

(
A (n )

)

s.t. A (n ) > 0 for n = 1, . . . , N ,

(21)

where λn > 0 is the positive regularization parameter. Common regularization
items include Frobenius norm, sparse regularization, graph regularization, rank
regularization, proximal regularization (proximal algorithm), and so on (Cai et
al., 2011; Boyd, 2011; Kim and Park, 2012; Shang et al., 2017).

2.3.1 Frobenius Norm Regularization

The Frobenius norm regularization can improve the stability of NCP and prevent
the elements in factor A (n ) to grow too large (Kim et al., 2014). If let φn

(
A (n )

)
=

∥∥∥A (n )
∥∥∥

2

F
, λ n = αn

2 in (21), the objective function of the subproblem becomes

FFrob

(
A (n )

)
=

1
2

∥∥∥∥X (n ) − A (n )
(

B (n )
)T
∥∥∥∥

2

F
+

α n

2

∥∥∥A (n )
∥∥∥

2

F
, (22)
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The partial derivative of FFrob

(
A (n )

)
to A (n ) is

∂

∂ A (n )
FFrob

(
A (n )

)
= A (n )

[(
B (n )

)T
B (n ) + α n IR

]
− X (n ) B (n ) , (23)

where IR ∈ R R×R is an identity matrix. It is clear to see
[(

B (n )
)T

B (n ) + α n IR

]

is of full rank, which can prevent rank deficiency. Hence, the stability of NCP is
enhanced. However, one disadvantage is that the solution of NCP with Frobenius
regularization is not exactly the same as the solution of original NCP in (7).

2.3.2 Proximal Algorithm

Let φn

(
A (n )

)
=
∥∥∥ Ă (n ) − A (n )

∥∥∥
2

F
and λn = αn

2 in (21), where Ă (n ) ∈
R In×R is the former version of A (n ) in previous iteration. The objective
function of the subproblem becomes

FProx

(
A (n )

)
=

1
2

∥∥∥∥X (n ) − A (n )
(

B (n )
)T
∥∥∥∥

2

F
+

α n

2

∥∥∥ Ă (n ) − A (n )
∥∥∥

2

F
. (24)

The partial derivative of FProx

(
A (n )

)
to A (n ) is

∂

∂ A (n )
FProx

(
A (n )

)
=A (n )

[(
B (n )

)T
B (n ) + α n IR

]

−
[

X (n ) B (n ) + α n Ă (n )
]

.
(25)

The full rank item
[(

B (n )
)T

B (n ) + αn IR

]
also exists in the derivative, which

will guarantee the stability of NCP. What’s more, an attracting property is that the
solution of NCP with proximal algorithm is equivalent to the solution of original
NCP (7) (Li et al., 2013; Wang et al., 2019). There is an intuitive way to understand
this property. After adequate iterations, A (n ) is very close to Ă (n ) . Hence, the

term
∥∥∥ Ă (n ) − A (n )

∥∥∥
2

F
approaches zeros, which makes the solutions of proximal

algorithm version and original version of NCP are equivalent. More theoretical
analysis of proximal algorithm for tensor decomposition can be found in (Li et al.,
2013). The combination of NCP with proximal algorithm can be find in our original
paper PII, which shows significant improvement of efficiency and stability.

2.3.3 Sparse Regularization

Sparse regularization are very popular for NMF and NCP problems. There are
many regularization items that can impose sparsity (Bach et al., 2012). The l1-norm
is one of the most classical and important sparse regularization items. We will
introduce more about NCP with sparse regularization in the following sections.
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2.4 Sparse Nonnegative CP Decompositioin

One contribution in this dissertation is the algorithm development of NCP with
sparse regularization (sparse NCP). In many cases, the extracted components
by NCP are not only nonnegative but also sparse. Take EEG tensor decompo-
sition for example, the extracted spectral components are usually very sparse
(Wang et al., 2018a), which represents the narrow-band frequencies related to
brain activities. However, the sparsity of NCP is not controllable. It is necessary
to add explicit sparse regularization to NCP.

There are mainly two methods for imposing sparsity. One method is to pro-
jecte components into sparse vectors at some sparsity level (Hoyer, 2004). How-
ever, this method keeps all components at the same fixed sparsity level, which is
not in line with the true sparsity level of different components in real-world data.
Another method is to incorporate sparse regularization items into the optimiza-
tion model. The l1-norm is a conventional and effective regularizer to impose
sparsity for signal processing(Bruckstein et al., 2009), since for most underdeter-
mined linear equations the optimization problem with l1-norm regularization
can yield strong sparsity (Donoho, 2006). In addition, the l q-norm (0 < q < 1)
item (Xu et al., 2012; Qian et al., 2011; Sigurdsson et al., 2014) and the trace-norm
based rank regularization item (Shang et al., 2017) also have become favourable
to promote sparsity for NMF in recent years. In this dissertation, we only employ
the classical l1-norm as the sparse regularization for NCP.

2.4.1 Mathematical Model

We describe the sparse NCP model as follows. Given a nonnegative Nth-order
tensor X ∈ R I1× I2×·· ·× I N and a positive number R, the sparse NCP is to
solve the following minimization problem:

min
A (1) , . . . , A (N )

1
2

∥∥∥X − J A (1) , . . . , A (N ) K
∥∥∥

2

F
+

N

∑
n=1

β n

R

∑
r=1

∥∥∥a (n )
r

∥∥∥
1

s.t. A (n ) > 0 for n = 1, . . . , N ,

(26)

In BCD framework, nonnegative factor A (n ) is updated alternatively in each outer
iteration by the following minimization problem:

min
A (n )

F
(

A (n )
)
=

1
2

∥∥∥∥X (n ) − A (n )
(

B (n )
)T
∥∥∥∥

2

F
+ β n

R

∑
r=1

∥∥∥a (n )
r

∥∥∥
1

s.t. A (n ) > 0.

(27)

2.4.2 Inexact Block Coordinate Descent Framework

In addition to the outer iteration in BCD, the subproblem (27) is usually solved
by optimization methods in inner iterations. However, in many cases, there is
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no need to obtain an exact solution of the subproblem (27). For example, at the
beginning of tensor decomposition, all factors are usually initialized by random
numbers. In the first outer iteration, obtaining an exact solution of the subprob-
lem (27) is not very meaningful. Therefore, it is necessary to terminate the inner
iteration with an inexact solution of the subproblem. This is the key idea of inex-
act block coordinate descent (inexact BCD). There are some stopping criteria for
the subproblem in inexact BCD. (Gillis and Glineur, 2012) proposed the stopping
criteria based on the computational complexity. A direct way is to set a maximum
inner iteration number (MAX_ITER_NUM) for the subproblem.

It has been reported that inexact BCD will accelerate the convergence of the
optimization problem (Gillis and Glineur, 2012; Vervliet and Lathauwer, 2019). In
this dissertation, we employ inexact BCD framework to solve sparse NCP prob-
lem. We set MAX_ITER_NUM by 5 to terminate the inner iteration. The inexact
BCD scheme is shown in in Algorithm 1.

Algorithm 1: Inexact BCD Scheme For Sparse NCP

1 Initialization and preparation steps;
2 repeat
3 for n = 1 to N do
4 Basic computations before updating A (n ) ;
5 repeat
6 Update A (n ) by A (n ) = arg min

A (n )>0
F
(

A (n )
)

;

7 until inner termination criterion is reached;
8 end
9 until outer termination criterion is reached;

2.4.3 Optimization methods

A lot of optimization methods have been proposed to solve the subproblem in
both NCP and NMF. Lee et al. proposed the multiplicative update (MU) method
(Lee and Seung, 1999, 2001), which is the most popular and widely applied method
for NMF. Cichocki et al. proposed the hierarchical alternating least squares (HALS)
method for large-scale problems (Cichocki et al., 2009; Cichocki and Phan, 2009).
Xu and Yin (2013) proposed the alternating proximal gradient (APG) method
with detailed mathematical convergence proofs. The similar idea as APG was
also proposed for NMF in Guan et al. (2012) and for NCP in Zhang et al. (2016).
Recently, the alternating direction method of multipliers (ADMM) has become
popular (Boyd, 2011; Huang et al., 2016). In addition, the alternating nonnegative
least squares (ANLS) method was deeply analyzed in Lin’s seminal paper with
strong optimization properties (Lin, 2007), which has a significant influence on
NMF. A general form of ANLS is alternating nonnegative quadratic program-
ming, which can be abbreviated to ANQP. When ANLS/ANQP method is uti-
lized, the subproblems appear as the nonnegative least squares (NNLS) prob-
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lems. Many efficient methods have been devoted to solve the NNLS subprob-
lems, such as Lin’s project gradient method (Lin, 2007), quasi-Newton method
(Zdunek and Cichocki, 2006; Kim and Park, 2007), active-set method (Kim and
Park, 2008), block principal pivoting method (Kim and Park, 2011) and inertial
projection neural network (Dai et al., 2018).

In this dissertation, we investigate five popular optimization methods for
solving sparse NCP, including MU, ANQP, HALS, APG and ADMM. All of these
methods are carefully tailored to sparse NCP problem.

When sparse regularization is imposed, more full-zero components will ap-
pear in the factor matrices. Thus, the factor matrices are not full column rank
(rank deficiency). MU, APG and ADMM can cope with the rank deficiency and
can be used to solve (27) directly. However, ANQP and HALS may suffer from
the rank deficiency and cause the tensor decomposition unstable. As mentioned
previously, it has been proved that the NCP with proximal algorithm can im-
prove the stability and is equivalent to original NCP (Li et al., 2013). Therefore,
instead of solving the subproblem (27), we proposed the improved subproblem
as the following minimization problem:

min
A (n )

Fprox

(
A (n )

)
=

1
2

∥∥∥∥X (n ) − A (n )
(

B (n )
)T
∥∥∥∥

2

F

+
αn

2

∥∥∥A (n ) − Ă (n )
∥∥∥

2

F
+ β n

R

∑
r=1

∥∥∥a (n )
r

∥∥∥
1

s.t. A (n ) > 0,

(28)

in which Ã (n ) is the value of factor A (n ) in previous iteration during updating
and α n are positive regularization parameters in vectors α ∈ R N×1 .

However, the form of the improved subproblem (28) can’t be organized in
least square form due to the l1-norm item. Therefore, we reform (28) into the
nonnegative quadratic programming (NNQP) form:

min
A (n )

In

∑
i=1





1
2

[
A (n )

]
( i , : )

M
[

A (n )
]T

( i , : )
+ N( i , : )

[
A (n )

]T

( i , : )

+
1
2

[
X (n )

]
( i , : )

[
X (n )

]T

( i , : )





s.t. A (n ) > 0,

(29)

where
[

A (n )
]
( i , : )

represents the ith row of A (n ) , M =
(

B (n )
)T

B (n ) + α n IR

and N = β n E − X (n ) B (n ) − α n Ă (n ) . The subproblem (29) can be solved by
optimization methods, such as active-set (AS) and block principal pivoting (BPP).

We summarize the solution of sparse NCP using MU, ANQP, HALS, APG,
ADMM in Table 2. More details about the computations of these five optimization
methods can be found in our attached original paper PI.
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TABLE 2 Updating rules of optimization methods for sparse NCP

Algorithm Updating Rule

MU
[

A (n )
]

i r
=
[

A (n )
]

i r

[
X (n ) B (n )

]
( i ,r )

+ ε
[

A (n )
(

B (n )
)T

B (n ) + β n E
]

( i ,r )
+ ε

.

ANQP-BPP

X (n ) B (n ) ← X (n ) B (n ) + αn Ă (n ) − β n E;(
B (n )

)T
B (n ) ←

(
B (n )

)T
B (n ) + α n IR ;

A (n ) = argmin
A (n )>0

Fprox

(
A (n )

)

= NNQP_BPP(X (n ) B (n ),
(

B (n )
)T

B (n )).

HALS

[
A (n )

]
( : ,r )

=



[
Ă (n )

]
( : ,r )

+

[
X (n ) B (n )

]
( : ,r )
− A (n )

[(
B (n )

)T
B (n )

]

( : ,r )
− β n 1

[(
B (n )

)T
B (n )

]

(r ,r )
+ αn



+

.

APG

Â (n ) is the extrapolated point, Ĝ (n ) is the gradient, and

L (n ) is Lipschitz constant.

A (n ) = max
(

0, Â (n ) − Ĝ (n )

L (n )
− β n E

L (n )

)
.

ADMM

A (n ) , Ã (n ) and Φ (n ) are the primal, auxiliary and dual variable.

Lρ

(
A (n ) , Ã (n ) , Λ (n )

)
is the augmented Lagrangian function.

A (n ) =

[
X (n ) B (n ) + ρn

(
Ã (n ) − Φ (n )

)] [(
B (n )

)T
B (n ) + ρ n I

]−1
;

Ã (n ) = max

{
0, A (n ) + Φ (n ) − β n

ρn
E

}
;

Φ (n ) = Φ (n ) + A (n ) − Ã (n ) .

2.5 Experiment on Synthetic Tensor

We introduce one experiment on synthetic tensor, by which we test and evaluate
the performances of the above five optimization algorithms.

We constructed a synthetic third-order tensor by 10 channels of simulated
sparse and nonnegative signals, as shown in Figure 5(a). The signals come
from the file VSparse_rand_10.mat in NMFLAB (Cichocki and Zdunek,
2006). There are 1000 points in each channel, so the sparse signal matrix is
S (1) = [s1 , . . . , s10 ] ∈ R1000×10 . Two uniformly distributed random ma-
trices A (2) , A (3) ∈ R100×10 were employed as mixing matrices, which were
generated by rand function in MATLAB. Afterwards, we synthesized a third-
order tensor by X = JS (1) , A (2) , A (3) K ∈ R1000×100×100 . Next, nonnegative
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(b) Estimated Sparse Signals
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(a) Original Sparse Signals

FIGURE 5 Sparse and nonnegative signals used in synthetic tensor. (a) shows the orig-
inal ten channels of signals. (b) shows the estimated ten channels of signals
from the synthetic tensor by sparse NCP based on ANQP-BPP method with
β n = 3.

noise was added to the tensor with SNR of 40dB, which was generated by
MATLAB code max(0,randn(size(X))).

We selected a larger value of 20 as the number of components for tensor
decomposition. Since 10 channels of signals are mixed in the tensor, naturally,
10 should be selected as the optimal component number. The number of compo-
nents might also be estimated by some classical methods, such as DIFFIT (Tim-
merman and Kiers, 2000). However, we intend to recover the 10 channels of
true signal just by imposing sparse regularization during decomposition, even
though the exact optimal number of components is unknown. We selected val-
ues of β n = 0, 0.1, 0.5, 1, 2, 3 for all the optimization methods to evaluate
their abilities to impose sparsity. The selection of sparse regularization param-
eters depends on the tensor data. we calculated and evaluated the sparsity level
(Wang et al., 2018a) of the factor matrices by

SparsityA (n ) =
#
{

A (n )
i ,r < Ts

}

In × R
, (30)

where Ts is a small positive number and # { ·} denotes the number of ele-
ments that are smaller than the threshold Ts in factor matrix A (n ) . For this
synthetic data, we select Ts = 1e − 3.

We use the Peak Signal-to-Noise-Ratio (PSNR) (Cichocki et al., 2009) to eval-
uate the accuracy of the extracted sparse factor matrix compared with original
sparse signals. In this experiment, the value of about 85 means an accurate recov-
ery.

After tensor decomposition, the values of objective function value (Obj), rel-
ative error (RelErr), running time in second, iteration number (Iter), the number
of nonzero components (NNC), sparsity level (Spars) and PSNR of the estimated
signal factor matrix were recorded as the performance evaluation criteria. For all
optimization methods with each β n , the sparse NCP was run 30 times, and the
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TABLE 3 Comparison of sparse NCPs on third-order synthetic tensor

Method β n Obj RelErr Time Iter NNC Spars PSNR
0 9.76e+01 0.0082 107.9 2720.2 20.00 0.340 73.63
0.1 5.33e+02 0.0083 78.6 1970.0 16.17 0.431 73.57

MU 0.5 1.65e+03 0.0084 57.5 1449.9 12.90 0.550 79.02
1 2.47e+03 0.0084 74.6 1889.9 11.17 0.694 81.44
2 4.17e+03 0.0084 86.0 2181.5 10.37 0.863 82.50
3 5.91e+03 0.0085 87.3 2212.6 10.10 0.905 83.69
0 9.72e+01 0.0082 8.1 170.9 20.00 0.400 69.74
0.1 5.45e+02 0.0083 8.9 222.8 10.20 0.548 83.21

ANQP 0.5 1.37e+03 0.0083 85.5 2178.0 10.10 0.618 84.26
BPP 1 2.16e+03 0.0083 110.6 2811.1 10.00 0.823 84.49

2 4.00e+03 0.0084 96.1 2435.5 10.00 0.908 85.13
3 5.87e+03 0.0085 83.5 2116.2 10.00 0.912 85.39
0 9.74e+01 0.0082 18.8 458.8 20.00 0.452 79.12
0.1 6.43e+02 0.0083 11.7 287.0 15.70 0.504 79.88

HALS 0.5 1.85e+03 0.0084 38.2 943.4 11.70 0.634 83.27
1 2.28e+03 0.0084 101.1 2516.1 10.20 0.819 84.38
2 4.00e+03 0.0084 95.9 2395.9 10.00 0.913 85.10
3 5.89e+03 0.0085 80.0 2001.8 10.00 0.917 85.42
0 9.73e+01 0.0082 18.0 446.3 20.00 0.378 71.06
0.1 5.52e+02 0.0083 11.2 278.0 11.87 0.519 79.58

APG 0.5 1.39e+03 0.0083 83.1 2083.0 10.03 0.621 84.13
1 2.22e+03 0.0083 94.1 2353.1 10.00 0.823 84.27
2 4.07e+03 0.0084 82.0 2056.3 10.00 0.908 84.89
3 5.95e+03 0.0084 66.1 1663.3 10.00 0.906 84.83
0 9.76e+01 0.0082 88.8 2219.7 20.00 0.358 73.85
0.1 6.05e+02 0.0083 20.4 511.3 18.60 0.505 66.19

ADMM 0.5 1.75e+03 0.0084 50.9 1279.1 11.57 0.623 80.24
1 2.45e+03 0.0084 82.7 2085.3 10.33 0.786 83.99
2 4.02e+03 0.0084 93.9 2378.7 10.00 0.913 85.22
3 5.89e+03 0.0085 80.0 2030.2 10.00 0.916 85.50

Spars = Sparsity level; Ground truth value: Spars=0.9.
NNC = Number of nonzero components.

average values of all criteria were computed. The results are shown in Table 3.
From Table 3, it can be found that all methods can impose sparsity with

proper sparse regularization parameter β n . When β n increases, the sparsity
level of the mode-1 factor matrix is also increased. With certain sparse regu-
larization, 10 nonzero components are retained in the mode-1 factor matrix,
which represent the 10 channels of sparse signals extracted from the synthetic
tensor. One of the recovered sparse signal matrix by ANQP-BPP is shown in
Figure 5(b), in which the PNSR is 85.5251.

The results demonstrate that all the MU, ANQP, HALS, APG and ADMM
methods are effective to impose sparsity on factor matrix and recovery the sparse
components. The methods of ANQP, HALS and APG especially have superior
computational efficiency. More experiments and results about sparse NCP using
different optimization methods can be found in our original paper PI.



3 EXTRACTING MEANINGFUL FEATURES FROM
EEG TENSOR

In this Chapter, We present the application of constrained and regularized tensor
decomposition, especially NCP and sparse NCP, to real-world EEG tensors. These
EEG tensors are collected in real cognitive neuroscience experiments with specific
external stimuli. Using NCP or sparse NCP, the EEG components that are related
to cognitive processes are extracted. These EEG feature components are good
evidences to deeply investigate brain function.

3.1 Event-Related Potential Tensor Decomposition

In this experiment, we decompose a fifth-order ERP tensor using NCP. The data
come from an open preprocessed dataset associated with ERPWAVELAB toolbox
(Mørup et al., 2007), which can be downloaded from www.erpwavelab.org. The
data were collected from a proprioceptive experiment, in which two conditions
(left and right hand) were manipulated with the increment of handhold load. An
important part of the stimuli is the change of applied force on a static muscle
contraction, which is conceived as proprioceptive stimulus (Mørup et al., 2006).
Fourteen subjects participated in the experiment and 64 scalp electrodes were
used to record EEG data. A total of 360 trials (epochs) were obtained from each
subject under each condition. All epochs were transformed into time-frequency
representation (TFR) by complex Morlet wavelet. In the wavelet transform, only
the frequency band from 15 Hz to 75 Hz were analyzed with linear interval of
1Hz. Then, inter-trial phase coherence (ITPC) (Delorme and Makeig, 2004) was
computed as an average spectral estimate across all trials. Since the TFR was first
applied to each trial and then the average was calculated across trials, ITPC can
be seen as induced oscillations of brain (David et al., 2006). Meanwhile, ITPC
only takes values between 0 and 1 (Delorme and Makeig, 2004; Cohen, 2014).
Finally, a fifth-order nonnegative tensor (channel × frequency × time × subject
× condition = 64 × 61 × 72 × 14 × 2) was generated. The 61 frequency points

http://www.erpwavelab.org/
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FIGURE 6 Illustration of the fifth-order ERP tensor decomposition.

represent 15 − 75 Hz, and the 72 time points represent 0 − 346.68 ms.
The detailed EEG data collection and preprocessing procedures are de-

scribed in Mørup et al. (2006).
The meaning of the fifth-order ERP tensor decomposition is illustrated in

Figure 6. Since the tensor has five modes including space, frequency, time, subject
and condition, each group of the extracted components consist of spatial, spectral,
temporal, subject and condition factor. Thus, the interactive information among
the five modes is preserved. For example, the relation between experimental condi-
tion and the brain activity location on the scalp. Based on the interactive informa-
tion, the assumption of the fifth-order tensor decomposition is that the underlying
spatial, spectral, and temporal factors are the same among all subjects only with
differences in subject-dependent and condition-dependent strength.

The NCP algorithm in this experiment is based on APG method. The initial
number of components was set by 20, so 20 components were extracted. In the
results, we discovered many pairs of components with symmetric responses on
topographies. Two pairs of symmetric components are presented in Figure 7. It
is clear to see that left-hand stimuli elicit activities in the right hemisphere, and
right-hand stimuli elicit activities in the left hemisphere.

More experimental details and results can be found in the attached original
paper PIII.

3.2 Ongoing EEG Tensor Decomposition

Cognitive neuroscience has traditionally relied upon relatively simple parametric
tasks using controlled and repeated stimuli. However, these traditional methods
do not resemble the complexity and dynamics of stimuli and behaviours in real-
life. Studying neural processing and network interactions using naturalistic and
dynamic stimuli, such as movie, speech, music and game, may facilitate a deeper
understanding of adaptive human brain function (Sonkusare et al., 2019).

Music is associated with many aspects of people’s personal and social lives.
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Uncovering the neural underpinnings of music processing has become a central
theme in cognitive neuroscience in the past decades (Alluri et al., 2012). Some
researches have studied music and brain function using functional Magnetic Res-
onance Imaging (fMRI) (Alluri et al., 2012) and ongoing EEG (Cong et al., 2013).

In this experiment, a set of ongoing EEG tensors are analyzed, which
were collected by naturalistic and continuous music stimuli of modern tango.
As introduced in Chapter 1, the spectra of the ongoing EEG sometimes
are very sparse, so we decompose the data using sparse NCP. The experi-
ment is briefly introduced below.

3.2.1 Ongoing EEG Data and Music Features

The ongoing EEG were collected from fourteen right-handed and healthy
adults elicited by naturalistic and continuous modern tango music stimu-
lus. Short-time Fourier transform (STFT) was applied to the EEG data, and
a third-order tensor was created for each subject with size of space × fre-
quency × time = 64 × 146 × 510. In this study, we analyze the third-order
EEG tensor of each subject one by one.

The modern tango music lasts for 8.5 minutes. Five long-term acoustic
features, including two tonal features (Mode, Key Clarity) and three rhythmic
features (Pulse Clarity, Fluctuation Centroid, Fluctuation Entro-py), were ex-
tracted from the music signals. STFT was also used for feature extraction, thus
one acoustic feature temporal series contains 510 samples. Detailed acoustic
features can be found in Alluri et al. (2012).

3.2.2 Correlation Analysis

After tensor decomposition using sparse NCP, EEG features will be extracted
including spatial, spectral, and temporal components. Next, we try finding those
features that are assumed to be elicited by music features.

We performed correlation analyses by Pearson’s correlation coefficient be-
tween the time series of long-term acoustic features and the time series of temporal
components from EEG tensor decomposition to find stimulus-related components.
Monte Carlo method and permutation tests were employed to compute the thresh-
old of correlation coefficient (Alluri et al., 2012; Cong et al., 2013). In the results
of EEG tensor decomposition, the temporal components significantly correlated
(at level p<0.05) with any of the five acoustic features, and their corresponding
spectral and spatial components were recorded for further investigations.

3.2.3 Stability Analysis

By correlation analysis, we obtain the meaningful components that are as-
sumed to be stimulus-related features, in which some components are sparse.
Since the sparse regularization is imposed to the tensor decomposition, more
sparse components will be extracted. It is very interesting to evaluate the
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(a) No Sparse Regularization

(b) Sparse Regularization Imposed

FIGURE 8 Stability analysis of ongoing EEG components. This is a group of EEG com-
ponents whose temporal series is highly correlated with fluctuation centroid
music feature. (a) show the components and their stability without sparse
regularization in NCP. (b) shows the results with sparse regularization im-
posed.

stability of the stimulus-related components.
First, one group components is selected as a template, whose temporal com-

ponent is highly correlated with one music features. This template can be rep-
resented by a rank-1 tensor of their outer product:

T = t (Spatial) ◦ t (Spectral) ◦ t (Temporal) (31)

Second, we run the tensor decomposition for M = 100 times. In re-
sults of the mth decomposition, the correlation coefficient of the rth rank-1
tensor and the template T is computed by

ρ (r , m ) =corr(a (Spatial)
r , t (Spatial) ) × corr(a (Spectral)

r , t (Spectral) )

× corr(a (Temporal)
r , t (Temporal) )

(32)

in which, corr( · , · ) is the calculation of Pearson’s correlation coefficient, a is an
extracted feature component, r = 1, . . . , R, and m = 1, . . . , M.

Finally, we count the percentage of ρ (r , m ) > 0.95 in the M runs, which is
record as the stability of the components that are highly related to a music feature.
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Figure 8 presents a group of components whose temporal series is highly corre-
lated with fluctuation centroid music feature. It is clear to see that when sparse
regularization is imposed in NCP, some redundant information in the spectrum
is removed and the stability of this group of components are increased.

After analysis of the fourteen tensors from fourteen subjects, many groups
of components that are significantly correlated with a music feature have
increased stability with sparse regularization. More details and results can
be found in the attached paper PIV.

This experiment on ongoing EEG tensor demonstrated that tensor de-
composition with proper constraint and regularization is able to stably ex-
tract meaningful EEG components.

3.3 N-way Partial Least Squares for Ongoing EEG

In section 3.2.1, we have introduced the ongoing EEG tensor data and music fea-
tures. The third-order ongoing EEG tensor can be represented by X ∈ R I×K×M

with I × K × M = 510 × 146 × 64, and the matrix of music features can be repre-
sented by Y ∈ R I× J with I × J = 510 × 5. If a tensor X and a matrix Y share at
least one mode in common, they can be analyzed simultaneously by N-way partial
least squares (N-PLS). Using N-PLS, tensor X and matrix Y can be decomposed by

X =
R

∑
r=1

t r ◦ p r ◦ q r + EX

Y =
R

∑
r=1

d r r t r c T
r + EY

(33)

where t ∈ R I×1 represents the temporal components that is shared by X and
Y , p r ∈ RK×1 represents the spectral component, q r ∈ R M×1 represents the

spatial components, and d r r = u T
r t r

t T
r t r

with u r = Y c r .
The meaning of analyzing ongoing EEG tensor X and music feature matrix

Y by N-PLS is that common temporal components shared by both the EEG data
and music features can be extracted. After decomposition using N-PLS, many
temporal components will be extracted from the tensor of each subject. Correla-
tion analysis is carried out as introduced in section 3.2.2, then those components
significantly correlated with music features are selected.

We present several components extracted by N-PLS from all subjects in Fig-
ure 9, in which all the temporal series are significantly related with fluctuation
centroid music feature. Their corresponding spectral and spatial components are
also presented. More information about N-PLS for ongoing EEG analysis can
be found in the attached original paper PV.
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(a) (c)

(b)

FIGURE 9 Components extracted by N-PLS from ongoing EEG tensor. (a) shows the tem-
poral components that are significantly correlated with fluctuation centroid
feature, (b) and (c) are the corresponding spectral and spatial components.



4 RESEARCH CONTRIBUTION

The main research works in this dissertation are published in the attached five pa-
pers. The titles, abstracts and author contributions of these papers are introduced
in this chapter.

4.1 Paper PI

Deqing Wang, Xiulin Wang, Tapani Ristaniemi and Fengyu Cong. Sparse Non-
negative Tensor Decomposition in Inexact Block Coordinate Descent Framework.
Submitted to a journal.

Abstract: Nonnegative tensor decomposition is a versatile tool for multiway data
analysis, by which the extracted components are nonnegative and usually sparse.
However, the sparsity is only a side effect, which cannot be controlled without
additional regularization. In this paper, we investigate the nonnegative CANDE-
COMP/PARAFAC (NCP) decomposition with sparse regularization item using
l1-norm (sparse NCP). We design sparse NCP using an inexact block coordinate
descent scheme, which is able to accelerate the convergence. Five optimization
methods in block coordinate descent framework are employed to solve the sparse
NCP, including multiplicative update, alternating nonnegative quadratic program-
ming, hierarchical altering least squares, alternating proximal gradient and alter-
nating direction method of multipliers, all of which are carefully tailored to the
sparse regularization problem. We evaluate all methods by experiments on both
synthetic and real-world tensor data. The experimental results demonstrate that
our proposed sparse NCP methods are able to efficiently impose sparsity to factor
matrices and extract meaningful sparse components.
Contributions:

Deqing Wang proposed all of the algorithms, conducted all experiments
and wrote most of the manuscript.

Xiulin Wang analyzed the computational complexity of the algorithms and



47

revised the manuscript.
Tapani Ristaniemi and Fengyu Cong supervised the whole research

work and revised the manuscript.

4.2 Paper PII

Deqing Wang, Fengyu Cong and Tapani Ristaniemi. Higher-Order Nonnegative
CANDECOMP/PARAFAC Tensor Decomposition Using Proximal Algorithm.
2019 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Brighton, UK, 2019. (Best Student Paper Award)

Abstract: Tensor decomposition is a powerful tool for analyzing multiway data.
Nowadays, with the fast development of multisensor technology, more and more
data appear in higher-order (order > 4) and nonnegative form. However, the de-
composition of higher-order nonnegative tensor suffers from poor convergence
and low speed. In this study, we propose a new nonnegative CANDECOM/
PARAFAC (NCP) model using proximal algorithm. The block principal pivoting
method in alternating nonnegative least squares (ANLS) framework is employed
to minimize the objective function. Our method can guarantee the convergence
and accelerate the computation. The results of experiments on both synthetic and
real data demonstrate the efficiency and superiority of our method.
Contributions:

Deqing Wang proposed the algorithm, conducted all experiments and wrote
the whole manuscript.

Tapani Ristaniemi and Fengyu Cong supervised the whole research
work and revised the manuscript.

4.3 Paper PIII

Deqing Wang, Yongjie Zhu, Tapani Ristaniemi and Fengyu Cong. Extracting
multi-mode ERP features using fifth-order nonnegative tensor decomposition.
Journal of Neuroscience Methods, Volume 308, p.240-247, 2018.

Abstract:
Background: Preprocessed Event-related potential (ERP) data are usually organized
in multi-way tensor, in which tensor decomposition serves as a powerful tool for
data processing. Due to the limitation of computation burden for multi-way data
and the low algorithm performance of stability and efficiency, multi-way ERP data
are conventionally reorganized into low-order tensor or matrix before further anal-
ysis. However, the reorganization may hamper mode specification and spoil the
interaction information among different modes.
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New Method: In this study, we applied a fifth-order tensor decomposition to a set
of fifth-order ERP data collected by exerting proprioceptive stimulus on left and
right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) de-
composition methods implemented by alternating proximal gradient (APG) was
employed. We also proposed an improved DIFFIT method to select the optimal
component number for the fifth-order tensor decomposition.
Results: By the fifth-order NCP model with a proper component number, the ERP
data were fully decomposed into spatial, spectral, temporal, subject and condition
factors in each component. The results showed more pairs of components with
symmetric activation region in left and right hemisphere elicited by contralateral
stimuli on hand.
Comparison with Existing Method(s): In our experiment, more interesting compo-
nents and coherent brain activities were extracted, compared with previous stud-
ies.
Conclusions: The discovered activities elicited by proprioceptive stimulus are in
line with those in relevant cognitive neuroscience studies. Our proposed method
has proved to be appropriate and viable for processing high-order EEG data with
well-preserved interaction information among all modes.
Contributions:

Deqing Wang proposed the main idea, conducted all experiments and wrote
most of the manuscript.

Yongjie Zhu explained the results from the perspective of cognitive neu-
roscience and revised the manuscript.

Tapani Ristaniemi and Fengyu Cong supervised the whole research
work and revised the manuscript.

4.4 Paper PIV

Deqing Wang, Xiaoyu Wang, Yongjie Zhu, Petri Toiviainen, Minna Huotilainen,
Tapani Ristaniemi and Fengyu Cong. Increasing Stability of EEG Components Ex-
traction Using Sparsity Regularized Tensor Decomposition. Advances in Neural
Networks - the 15th International Symposium on Neural Networks (ISNN 2018),
Minsk, Belarus, 2018.

Abstract: Tensor decomposition has been widely employed for EEG signal pro-
cessing in recent years. Constrained and regularized tensor decomposition often
attains more meaningful and interpretable results. In this study, we applied sparse
nonnegative CANDECOMP/PARAFAC tensor decomposition to ongoing EEG
data under naturalistic music stimulus. Interesting temporal, spectral and spa-
tial components highly related with music features were extracted. We explored
the ongoing EEG decomposition results and properties in a wide range of spar-
sity levels, and proposed a paradigm to select reasonable sparsity regularization
parameters. The stability of interesting components extraction from fourteen sub-
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jects’ data was deeply analyzed. Our results demonstrate that appropriate sparsity
regularization can increase the stability of interesting components significantly
and remove weak components at the same time.
Contributions:

Deqing Wang proposed the main idea, conducted all experiments and wrote
the whole manuscript.

Xiaoyu Wang, Yongjie Zhu, Petri Toiviainen, Minna Huotilainen advised on
EEG data analysis and music feature extraction.

Tapani Ristaniemi and Fengyu Cong supervised the whole research
work and revised the manuscript.

4.5 Paper PV

Deqing Wang, Fengyu Cong, Qibin Zhao, Petri Toiviainen, Asoke K. Nandi,
Minna Huotilainen, Tapani Ristaniemi and Andrzej Cichocki. Exploiting ongoing
EEG with multilinear partial least squares during free-listening to music. 2016
IEEE International Workshop on Machine Learning for Signal Processing (MLSP),
Salerno, Italy, 2016.

Abstract: During real-world experiences, determining the stimulus-relevant brain
activity is excitingly attractive and is very challenging, particularly in electroen-
cephalography. Here, spectrograms of ongoing electroencephalogram (EEG) of
one participant constructed a third-order tensor with three factors of time, fre-
quency and space; and the stimulus data consisting of acoustical features derived
from the naturalistic and continuous music formulated a matrix with two factors
of time and the number of features. Thus, the multilinear partial least squares
(PLS) conforming to the canonical polyadic (CP) model was performed on the ten-
sor and the matrix for decomposing the ongoing EEG. Consequently, we found
that brain activity of majority of participants was significantly correlated with the
musical features in time domain, and that such brain activity showed frontal or
central or posterior or occipital distributions along the scalp, and that such brain
activity could be of different oscillation bands in frequency domain.
Contributions:

Deqing Wang implemented music feature extraction and conducted other
experiments with Fengyu Cong. Deqing Wang wrote the first draft and fin-
ished the writing with Fengyu Cong.

Fengyu Cong proposed the main idea.
Qibin Zhao, Petri Toiviainen, Asoke K. Nandi, Minna Huotilainen, Tapani

Ristaniemi and Andrzej Cichocki advised on the experimental methods and re-
vised the manuscript.



5 CONCLUSION

In this dissertation, we investigate constrained and regularized tensor decompo-
sition algorithms and their applications on high-order EEG data analyses that are
related to specific cognitive neuroscience experiments.

5.1 Tensor Decomposition Algorithms

In this research, the design of tensor decomposition algorithm is based on the
properties of EEG tensor data. Because of the popularity of EEG technique in cog-
nitive neuroscience and the fast development of EEG equipment, EEG data are
increasing not only in amount but also in dimension. The high-dimension leads
EEG data to be naturally represented in tensor form. After some preprocessing
procedures, such as time-frequency representation, the EEG tensor becomes non-
negative. What’s more, some intrinsic components are also naturally nonnegative
and even sparse, such as the spectrum, temporal envelope and the subject strength.

According to the nonnegative and sparse properties, we constructed the
nonnegative CANDECOMP/PARAFAC tensor decomposition algorithm with
l1-norm based sparse regularization (sparse NCP). The l1-norm item has been
reported to be able to impose strong sparsity, which is suitable to extract the
intrinsic sparse components in EEG data.

The sparse NCP is a non-convex optimization problem, which can be effi-
ciently solved by block coordinate descent (BCD) method. In BCD framework,
the solution of tensor decomposition is achieved by solving subproblems alterna-
tively. Afterwards, the subproblem is solved by an optimization algorithm. Con-
ventional BCD framework might not consider whether the solution of subprob-
lem is an exact one or not. If the subproblem is iterated for limited times with
an inexact solution, the computation of the whole tensor decomposition will be
increased significantly. This is the key idea of inexact block coordinate descent
scheme, which is a key approach in this dissertation.

In the inexact BCD framework, five optimization methods were employed
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to solve the sparse NCP, including multiplicative update (MU), alternating non-
negative least squares / quadratic programming ( ANLS/ANQP ), hierarchical al-
tering least squares (HALS), alternating proximal gradient (APG) and alternating
direction method of multipliers (ADMM). In addition, we also utilized proximal
algorithm particularly for ANLS/ANQP and HALS in order to improve stability.

Experimental results from synthetic and real-world tensor data demonstrate
that all our sparse NCP methods are effective and efficient to extract nonneg-
ative and sparse components. The methods of ANLS/ANQP, HALS and APG
especially have outstanding performances.

5.2 EEG Tensor Decomposition

We applied the constrained and regularized tensor decomposition to a fifth-order
ERP dataset and an ongoing EEG dataset. The ERP data were collected by propri-
oceptive stimuli on human hands. The results of ERP tensor decomposition show
that many groups of EEG features in five modes, including space, frequency, time,
subject and condition, can be successfully extracted, which are highly related to
the stimuli on hands. The ongoing EEG data were collected by naturalistic and
continuous music stimulus. Using our method, the nonnegative and sparse EEG
components can be extracted, which are highly correlated with music features.
Surprisingly, when sparse regularization is imposed, the stability of the music-
feature-related components are increased. In addition, the two modalities of ongo-
ing EEG tensor and music signals can be decomposed simultaneously by N-way
partial least square (N-PLS), which also yielded meaningful components.

The above analyses on real-world EEG tensors prove that our methods
are able to efficiently process high-order EEG data and extract meaningful fea-
tures that are linked to cognitive processes.

5.3 Limitations and Future Directions

The stability of sparse NCP on ongoing EEG is based on selected templates,
which is a bit heuristic. More sophisticated stability analysis methods for
tensor decomposition are desired.

In future, some latest optimization methods should be considered for the
constrained tensor decomposition. Besides the l1-norm based sparse regulariza-
tion, other regularization item can be incorporated into the tensor decomposition.
For example, the combination of graph regularization and tensor decomposition
might be useful to brain networks analysis.
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YHTEENVETO (SUMMARY IN FINNISH)

Tässä väitöskirjassa tarkasteltiin rajoitettuja ja säännönmukaistettuja algoritmejä
tensoreiden hajottamiseen tekijöihinsä, sekä niiden sovellutuksia korkean asteen
EEG-datan analyyseissä. Analyysit liittyivät kognitiivisen neurotieteen kokeisiin.

Tässä tutkimuksessa suunniteltu algoritmi perustuu EEG-tensoridatan
ominaisuuksiin. Esiprosessointiproseduurien, kuten aika-frekvenssiesityksen,
suorittamisen jälkeen EEG-tensorista tulee ei-negativiinen. Lisäksi jotkin lu-
ontaiset komponentit ovat lähtökohtaisesti ei-negatiivisia ja jopa harvoja
esimerkiksi spektriltään. Tässä tutkimuksessa toteutettiin ei-negatiivinen
CANDECOMP/PARAFAC-algoritmi tensoreiden hajottamiseen käyttäen harvaa
säännönmukaistamista (sparse NCP), joka perustuu l1-normiin. l1-normin on
tutkittu olevan sopiva määräämään vahvaa harvuutta (strong sparsity), joten sitä
voidaan käyttää harvojen komponenttien irrottamiseen EEG-datasta.

Harva NCP on epäkonveksi optimointiongelma, joka voidaan ratkaista
tehokkaasti käyttäen BCD-viitekehystä (block coordinate descent). BCD-
viitekehyksen mukaan tensorin hajottaminen tekijöihinsä saavutetaan ratkaise-
malla osaongelmia eri järjestyksissä. Tämän jälkeen osaongelma ratkaistaan
optimointialgoritmilla. Tavanomainen BCD-viitekehys saattaa jättää huomiotta
ratkaisun eksaktiuden. Jos osaongelmaa iteroidaan tietyn määrän epäeksaktilla
tuloksella, koko tensorin hajottamiseen käytettävä laskentateho kasvaa huomat-
tavasti. Tämä on erityisen tärkeä huomio liittyen BCD-skeemaan, joka on tämän
väitöskirjan keskiössä. Epäeksaktin BCD-viitekehyksen mukaan tässä tutkimuk-
sessa käytettiin viittä optimointimenetelmää harvan säännönmukaistamisen
ratkaisemiseen: MU, ANLS/ANQP, HALS, APG ja ADMM. Stabiliteetin paran-
tamiseksi hyödynnettiin ANLS/ANQP- ja HALS-menetelmissä myös nk. lähialgo-
ritmia.

Kokeellisen tutkimuksen tulokset sekä keinotekoisella että todenmukaisella
tensoridatalla osoittavat, että kaikki tässä tutkimuksessa esitellyt harvan
säännönmukaistamisen menetelmät ovat tehokkaita ei-negatiivisten ja har-
vojen piirteiden irrottamiseen. Erityisesti ANLS/ANQP-, HALS- ja APG-
menetelmien tulokset ovat erinomaisia.

Lisäksi tässä tutkimuksessa käytettiin rajoitettua ja säännönmukaistettua
tensoreiden hajottamismenetelmää viidennen asteen ERP-dataan sekä meneil-
lään olevan EEG-mittauksesta saadun datan reaaliaikaiseen analysointiin. ERP-
dataan liittyvät tulokset osoittavat, että oleellisia piirteitä voidaan irrottaa EEG-
datasta, joka liittyy ihmiskäden asentoaistiärsykkeisiin. Meneillään olevaan EEG-
mittaukseen liittyvä data kerättiin kokeen aikana, jossa tutkittiin luonnolliseen
ja jatkuvaan musiikinkuunteluun liittyviä aistiärsykkeitä. Tässä tutkimuksessa
esiteltyjä menetelmiä käyttäen datasta onnistuttiin irrottamaan ei-negatiiviset
ja harvat EEG-komponentit, jotka liittyivät musiikin kuunteluun. Kun dataan
käytettiin harvaa säännönmukaistamista, musiikinkuunteluun liittyvien kompo-
nenttien stabiliteetti koheni. Lisäksi EEG-tensorin ja musiikkisignaalien modali-
teettien hajottaminen samanaikaisesti onnistui N-PLS-menetelmällä, jonka avulla
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irrotettiin oleellisia piirteitä tensoreista.
Yllä kuvatut analyysit, joissa käytettiin todenmukaisia EEG-tensoreita,

osoittavat että tässä tutkimuksessa kuvatut menetelmät pystyvät tehokkaasti
käsittelemään korkean asteen EEG-dataa ja irrottamaan siitä kognitiivisiin
prosesseihin liittyviä oleellisia piirteitä.
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nonnegative and usually sparse. However, the sparsity is only a side effect, which cannot be controlled without additional
regularization. In this paper, we investigate the nonnegative CANDECOMP/PARAFAC (NCP) decomposition with sparse regularization
item using l1-norm (sparse NCP). We design sparse NCP using an inexact block coordinate descent scheme, which is able to
accelerate the convergence. Five optimization methods in block coordinate descent framework are employed to solve the sparse NCP,
including multiplicative update, alternating nonnegative quadratic programming, hierarchical altering least squares, alternating proximal
gradient and alternating direction method of multipliers, all of which are carefully tailored to the sparse regularization problem. We
evaluate all methods by experiments on both synthetic and real-world tensor data. The experimental results demonstrate that our
proposed sparse NCP methods are able to efficiently impose sparsity to factor matrices and extract meaningful sparse components.

Index Terms—Tensor decomposition, nonnegative CANDECOMP/PARAFAC (NCP), sparse regularization, inexact block coordinate
descent, proximal algorithm

F

1 INTRODUCTION

NONNEGATIVE tensor decomposition is a powerful tool
in signal processing and machine learning [1], [2].

Nonnegative CANDECOMP/PARAFAC (NCP), as an im-
portant decomposition method, has been widely applied
to processing multiway data, such as hyperspectral data
[3], electroencephalograph (EEG) data [4], [5], fluorescence
excitation-emission matrix (EEM) data [6], [7], neural data
[8], and many other multiway tensor data [9], [10]. In
many cases, the extracted components by NCP are not only
nonnegative but also sparse. For example, the spectral com-
ponents from EEG tensor decomposition are usually very
sparse [11], which are the spectra representing the narrow-
band frequencies of some brain activities. For another ex-
ample, after decomposing EEM tensor, a component in the
sample mode denotes the concentrations of a compound
in all samples [12], which is sometimes also sparse. The
nonnegative constraint in NCP will naturally lead to sparse
results. However, this sparsity is only a side effect, which
cannot be controlled to a certain level [13]. Therefore, in or-
der to extract meaningful and accurate sparse components,
additional sparse regularization is necessary for NCP tensor
decomposition.

The design of NCP decomposition with explicit sparse
regularization (sparse NCP) will benefit a lot from the
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methods in nonnegative matrix factorization (NMF) cases.
On the one hand, the method of projecting components into
sparse vectors at some sparsity level has been proposed in
early study of NMF [13]. However, this method keeps all
components at the same fixed sparsity level, which is not
in line with the true sparsity of different components in the
data. On the other hand, incorporating sparse regularization
items into the optimization model is a popular method.
The l1-norm is a conventional and effective regularizer to
impose sparsity for signal processing [14], since for most
underdetermined linear equations the optimization problem
with l1-norm regularization can yield strong sparsity [15]. In
addition, the lq-norm (0 < q < 1) item [16], [17], [18] and
the trace-norm based rank regularization item [19] have also
become favourable to promote sparsity for NMF in recent
years. More information about sparse regularization can be
found in [20]. In a word, the method of incorporating ap-
propriate sparse regularization into the optimization model
is also viable for designing sparse NCP.

After constructing the sparse NCP model, it is necessary
to select an efficient method to solve this optimization
problem. Block coordinate descent (BCD) [21], [22] is an
important framework for solving tensor decomposition es-
pecially constrained decomposition. The advantage of BCD
method is that it is efficient for large-scale data and robust
to noise. In BCD framework, each factor matrix is updated
alternatively as a subproblem. In NMF and NCP studies, a
lot of optimization methods have been proposed to solve the
subproblem. Lee et al. proposed the multiplicative update
(MU) method [23], [24], which is the most popular and
widely applied method for NMF. Cichocki et al. proposed
the hierarchical alternating least squares (HALS) method
for large-scale problems [1], [25]. Xu et al. proposed the
alternating proximal gradient (APG) method with detailed
mathematical convergence proofs [21]. The similar ideas as
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APG were also proposed for NMF in [26] and NCP in [27].
Recently, the alternating direction method of multipliers
(ADMM) has become popular for constrained decomposi-
tion [28], [29], [30]. In addition, the alternating nonnegative
least squares (ANLS) method was deeply analyzed in Lin’s
seminal paper with strong optimization properties [31],
which has a significant influence. When ANLS method is
utilized, the subproblems appear as the nonnegative least
squares (NNLS) problems. Many efficient methods have
been devoted to solve the NNLS subproblems, such as Lin’s
project gradient method [31], quasi-Newton method [32],
[33], active-set method [34], block principal pivoting method
[35], [36] and inertial projection neural network [37]. Most of
the above optimization methods can be naturally extended
to solve sparse NCP problem.

A multitude of works have been devoted to incorporate
sparse regularization to NMF [33], [34], [38], but rare works
can be found for tensor decomposition. As far as we know,
only a few studies had focused on imposing sparsity by
l1-norm regularization to Tucker decomposition [39], [40],
[41]. In this work, we only study the sparse regularization
with NCP decomposition. We design the sparse NCP using
l1-norm, which is the engine to impose sparsity explicitly.
Five typical optimization methods are investigated to solve
sparse NCP, including multiplicative update (MU), alternat-
ing nonnegative quadratic programming (ANQP)1, hierar-
chical altering least squares (HALS), alternating proximal
gradient (APG) and alternating direction method of multi-
pliers (ADMM). These five methods are carefully tailored to
imposing sparsity. Proximal algorithm [42], [43] is utilized
to guarantee the convergence particularly for ANQP and
HALS. Furthermore, it is reported that inexact block coordi-
nate descent scheme could accelerate the convergence [44],
[45]. Specifically, by inexact BCD, the subproblem is iterated
several times for updating one factor matrix. Therefore, we
design all methods of MU, ANQP, HALS, APG and ADMM
using inexact BCD scheme for solving sparse NCP.

In this study, the designed sparse NCP algorithms are
targeted at the following two aspects. First, when the sparse
regularization parameter is increased, the sparse NCP can
increase the sparsity level of factor matrix gradually. Specif-
ically, when sparse regularization is imposed, more weak
components will be removed (more full zero components
will appear) in the factor matrix, and more weak elements
will be suppressed (more zero elements will appear) in
strong components. Second, the extracted sparse compo-
nents should be meaningful and satisfy the properties of
real-world applications. We evaluate all our sparse NCP
methods on both synthetic and real-world tensor data. By
selecting and tuning the sparse regularization properly, we
demonstrate the effectiveness and efficiency of the sparse
NCP methods to impose sparsity to factor matrices.

The rest of this paper is organized as follows. In Section
2, we describe the mathematical model of sparse NCP and
introduce the inexact BCD framework. Section 3 elucidates
the solutions to sparse NCP model using MU, ANQP, HALS,
APG, and ADMM. In Section 4, we introduce the stopping

1. The alternating nonnegative quadratic programming (ANQP) is a
general form of alternating nonnegative least squares (ANLS), which
can also be solved by NNLS optimization methods.

conditions for both outer and inner loop in inexact BCD
framework. Section 5 describes the detailed experiments on
synthetic and real-world datasets. Finally, we conclude our
paper in Section 6.

2 SPARSE NONNEGATIVE CP DECOMPOSITION

In this paper, operator ◦ represents outer product of vec-
tors, � represents the Khatri-Rao product, ∗ represents the
Hadamard product that is the elementwise matrix product,
〈 〉 represents inner product, J K represents Kruskal oprator
and [ ]+ represents nonnegative projection. ‖ ‖F denotes
Frobenius norm, and ‖ ‖1 denotes l1-norm. Basics of ten-
sor computation and multi-linear algebra can be found in
review papers [46], [47].

2.1 Mathematical Model
We present the mathematical model of the designed sparse
NCP in this section.

Given a nonnegative N th-order tensor X ∈
RI1×I2×···×IN and a positive number R, we design the
sparse NCP as the following minimization problem:

min
A(1),...,A(N)

1

2

∥∥∥X− JA(1), . . . ,A(N)K
∥∥∥
2

F
+

N∑

n=1

βn

R∑

r=1

∥∥∥a(n)
r

∥∥∥
1

s.t. A(n) > 0 for n = 1, . . . , N,
(1)

where A(n) ∈ RIn×R for n = 1, . . . , N are the estimated
factor matrices in different modes, βn are positive regu-
larization parameters in parameter vectors β ∈ RN×1, In
is the size in mode-n, a(n)

r represents the rth column of
A(n), and R is the initial number of components. We use
Ftensor (A) = Ftensor

(
A(1), . . . ,A(N)

)
to denote the objec-

tive function in (1).
Let X(n) ∈ RIn×

∏N
ñ=1,ñ 6=n Iñ represent the mode-n un-

folding (matricization) of original tensor X. The mode-
n unfolding of the estimated tensor in Kruskal operator

JA(1), . . . ,A(N)K can be written as A(n)
(
B(n)

)T
, in which

B(n) =
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
∈

R
∏N
ñ=1,ñ 6=n Iñ×R. In BCD framework, factor A(n) is updated

alternatively by a subproblem in every iteration, which
equals to the following minimization problem:

min
A(n)

F
(
A(n)

)
=

1

2

∥∥∥∥X(n) −A(n)
(
B(n)

)T∥∥∥∥
2

F

+ βn

R∑

r=1

∥∥∥a(n)
r

∥∥∥
1

s.t. A(n) > 0.

(2)

The sparse NCP problem in (1) is non-convex. However, the
subproblem (2) with l1-norm is convex [26], which is the key
point to solve (1). The optimization methods introduced in
the introduction will be applied to (2) directly. The partial
gradient (or partial derivative) of F

(
A(n)

)
with respect to

A(n) is
∂

∂A(n)
F
(
A(n)

)

= A(n)

[(
B(n)

)T
B(n)

]
−X(n)B

(n) + βnE,
(3)
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where E ∈ RIn×R is a matrix whose elements are all equal
to 1 and X(n)B

(n) is called the Matricized Tensor Times

Khatri-Rao Product (MTTKRP) [48]. The item
(
B(n)

)T
B(n)

can be computed efficiently by
(
B(n)

)T
B(n) =

[(
A(N)

)T
A(N)

]
∗ · · ·

∗
[(
A(n+1)

)T
A(n+1)

]
∗
[(
A(n−1)

)T
A(n−1)

]

∗ · · · ∗
[(
A(1)

)T
A(1)

]
.

(4)

2.2 Inexact Block Coordinate Descent Method
We solve the sparse NCP model using an inexact BCD
scheme. Specifically, the factor matrices A(n), n = 1, . . . , N ,
are updated alternatively in outer iterations, meanwhile, in
the subproblem (2), one factor A(n) is also updated several
times in inner iterations. It is reported that the inexact BCD
scheme could accelerate the computation [44], [45]. The
procedures are listed in Algorithm 1.

Algorithm 1: Inexact BCD Scheme

1 Initialization and preparation steps;
2 repeat
3 for n = 1 to N do
4 Basic computations before updating A(n);
5 repeat
6 Update A(n) by A(n) = arg min

A(n)>0

F
(
A(n)

)
;

7 until inner termination criterion is reached;
8 end
9 until outer termination criterion is reached;

3 OPTIMIZATION METHODS FOR SOLVING SPARSE
NCP
In this section, we present the solutions to the sparse NCP
problem in (1) by the optimization methods of MU, ANQP,
HALS, APG and ADMM.

3.1 Multiplicative Update
Multiplicative update (MU) was first proposed by Lee et al
for NMF [23], [24]. Cai et al. proposed a straightforword
way using Lagrange multiplier to solve NMF subproblems
[49], where the same update rules as Lee’s method can be
obtained. We extend Cai’s method to tensor case. We rep-
resent tensor factor A(n) elementwisely by A(n) =

[
a
(n)
ir

]

for i = 1, . . . , In and r = 1, . . . , R. Let ψir be the Lagrange
multiplier for constraint a(n)ir > 0, and Ψ = [ψir]. Based on
(2), the Lagrange L is

L = F
(
A(n)

)
+
〈
Ψ,A(n)

〉
. (5)

The partial derivative of L with respect to A(n) is

∂L

∂A(n)
=−X(n)B

(n) +A(n)
(
B(n)

)T
B(n) + βnE + Ψ.

(6)

Using KKT condition ψira
(n)
ir = 0, we obtain the following

equation for a(n)ir :

−
[
X(n)B

(n)
]
(i,r)

a
(n)
ir +

[
A(n)

(
B(n)

)T
B(n) + βnE

]

(i,r)

a
(n)
ir = 0.

(7)

This equation leads to the following multiplicative updating
rule:

a
(n)
ir ← a

(n)
ir

[
X(n)B

(n)
]
(i,r)

+ ε
[
A(n)

(
B(n)

)T
B(n) + βnE

]
(i,r)

+ ε
, (8)

where ε is a small positive value to avoid zero element. With
positive initialization factors, the updating rule (8) is able to
introduce zeros inA(n) (impose sparsity), which is different
from the updating rule in [44] avoiding zeros in A(n). The
implementation of MU method is listed in Algorithm 2.

Algorithm 2: MU for sparse NCP in (1)
Input : X, R, β
Output: A(n), n = 1, . . . , N

1 Initialize A(n) ∈ RIn×R, n = 1, . . . , N , using
positive random numbers;

2 repeat
3 for n = 1 to N do
4 Make mode-n unfolding of X as X(n) and

compute MTTKRP X(n)B
(n);

5 Compute
(
B(n)

)T
B(n) based on (4);

6 repeat
7 for i = 1 to In do
8 for r = 1 to R do
9 Update a(n)ir according to (8);

10 end
11 end
12 until inner termination criterion is reached;
13 end
14 until outer termination criterion is reached;
15 return A(n), n = 1, . . . , N .

3.2 Alternating Nonnegative Quadratic Programming

Alternating Nonnegative Least Squares (ANLS) is an impor-
tant method for NMF and NCP problems [22], [31]. Many
efficient optimization methods were proposed to solve the
nonnegative least squares (NNLS) subproblems, such as
Lin’s projected gradient (PG) [31], active-set (AS) [34], and
block principal pivoting (BPP) [35]. However, when sparse
regularization is imposed, many full zero columns will
appear in the factor matrices A(n). Thus, both A(n) and
B(n) cannot guarantee to be of full rank. Therefore, ANLS
method is prone to rank deficiency.

In order to avoid the rank deficiency and improve the
stability of sparse NCP, we incorporate proximal algorithm
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[42], [43] into the objective function in (2). In this way, we
have the following minimization problem:

min
A(n)

Fprox

(
A(n)

)
=

1

2

∥∥∥∥X(n) −A(n)
(
B(n)

)T∥∥∥∥
2

F

+
αn
2

∥∥∥A(n) − Ă(n)
∥∥∥
2

F
+ βn

R∑

r=1

∥∥∥a(n)
r

∥∥∥
1

s.t. A(n) > 0,

(9)

in which Ă(n) is the value of factor A(n) in previous
iteration during updating and αn are positive regularization
parameters in vectors α ∈ RN×1. It has been proved that
the solution of (9) is equivalent to the solution of (2) [42].
Afterwards, we try solving (9) combining NNLS methods.

In spite of the efficiency of NNLS, the subproblem of (9)
cannot be represented in least squares form due to the l1-
norm item. Luckily, inspired by [50], (9) can be represented
in the nonnegative quadratic programming (NNQP) form
as the following problem:

min
A(n)

In∑

i=1





1

2

[
A(n)

]
(i,:)
M
[
A(n)

]T
(i,:)

+N(i,:)

[
A(n)

]T
(i,:)

+
1

2

[
X(n)

]
(i,:)

[
X(n)

]T
(i,:)





s.t. A(n) > 0,
(10)

where
[
A(n)

]
(i,:)

represents the ith row of A(n), M =
(
B(n)

)T
B(n)+αnIR andN = βnE−X(n)B

(n)−αnĂ(n).
The above mentioned optimization methods for NNLS

can also be used to solve NNQP problem. In this study,
we only use block principal pivoting (BPP) [35] as the
NNQP solver. In fact, NNQP is a general case of NNLS [50].
We name the method to solve tensor decomposition using
NNQP as alternating nonnegative quadratic programming
(ANQP). Algorithm 3 explicates the ANQP method for
sparse NCP.

3.3 Hierarchical Alternating Least Squares

Hierarchical alternating least squares (HALS) is a method
to update each factor column by column. For the sake of
simplification, we use ar and br instead of a(n)

r and b(n)r

in this part, which are the rth column of A(n) and B(n)

respectively. We also use
[
A(n)

]
(:,r)

= ar ∈ RIn×1 to

represent the column of a matrix, and
[
A(n)

]
(i,r)

= a
(n)
ir

to represent an element in a matrix.
In order to improve the stability of HALS, we still em-

ploy the proximal algorithm. The subproblem is the same as
(9). The objective function in (9) can be further represented
as

Fprox

(
A(n)

)
=

1

2

∥∥∥∥∥∥
X(n) −

R∑

r=1

arb
T
r

∥∥∥∥∥∥

2

F

+
αn
2

R∑

r=1

‖ar − ăr‖22 + βn

R∑

r=1

‖ar‖1 ,

(11)

Algorithm 3: ANQP for sparse NCP in (1)
Input : X, R, α, β
Output: A(n), n = 1, . . . , N

1 Initialize A(n) ∈ RIn×R, n = 1, . . . , N , using
nonnegative random numbers;

2 repeat
3 for n = 1 to N do
4 Make mode-n unfolding of X as X(n) and

compute MTTKRP X(n)B
(n);

5 Compute
(
B(n)

)T
B(n) based on (4);

6 X(n)B
(n) ←X(n)B

(n) + αnĂ
(n) − βnE;

7

(
B(n)

)T
B(n) ←

(
B(n)

)T
B(n) + αnIR;

8 repeat
9 Update factor A(n), n = 1, . . . , N , using

NNQP based on BPP method:
10 A(n) = argmin

A(n)>0

Fprox

(
A(n)

)

11 = NNQP_BPP(X(n)B
(n),

(
B(n)

)T
B(n));

12 until inner termination criterion is reached;
13 end
14 until outer termination criterion is reached;
15 return A(n), n = 1, . . . , N .

where ăr is the rth column of Ă(n). The minimization
problem for (11) can be solved iteratively by columnwise
subproblems:

min
ar

Fr =
1

2

∥∥∥Zr − arbTr
∥∥∥
2

F
+
αn
2
‖ar − ăr‖22 + βn‖ar‖1

s.t. ar > 0,
(12)

for r = 1, . . . , R, in which

Zr = X(n) −
R∑

r̃=1,r̃ 6=r
ar̃b

T
r̃ . (13)

The partial derivative of Fr with respect to ar is

∂Fr
∂ar

=
(
arb

T
r −Zr

)
br + αnar − αnăr + βn1,

=
(
bTr br + αn

)
ar − (Zrbr + αnăr − βn1) ,

(14)

where 1 ∈ RIn×1 is a vector with all elements equal to
1. When ∂Fr

∂ar
= 0, nonnegative column vector ar can be

updated as

ar ←
[
Zrbr + αnăr − βn1

bTr br + αn

]

+

, (15)

which is a closed form solution [22].
A fast HALS method was proposed to solve large-scale

problem [1], [22]. We use the same idea to solve the sparse
NCP problem. Zr in (13) can also be represented as

Zr = X(n) −
R∑

r̃=1

ar̃b
T
r̃ + ărb

T
r . (16)

Replacing Zr in (15) by (16), we obtain the new update rule
for ar as shown in (17) in the top of next page.

The procedures of HALS are illustrated in Algorithm 4.
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ar ←




(
X(n) −

∑R
r̃=1 ar̃b

T
r̃ + ărb

T
r

)
br + αnăr − βn1

bTr br + αn



+

=


ăr +

X(n)br −
∑R
r̃=1 ar̃b

T
r̃ br − βn1

bTr br + αn



+

=



ăr +

[
X(n)B

(n)
]
(:,r)
−A(n)

[(
B(n)

)T
B(n)

]

(:,r)

− βn1

[(
B(n)

)T
B(n)

]
(r,r)

+ αn



+

(17)

Algorithm 4: HALS for sparse NCP in (1)
Input : X, R, α, β
Output: A(n), n = 1, . . . , N

1 Initialize A(n) ∈ RIn×R, n = 1, . . . , N , using
nonnegative random numbers;

2 repeat
3 for n = 1 to N do
4 Make mode-n unfolding of X as X(n) and

compute MTTKRP X(n)B
(n);

5 Compute
(
B(n)

)T
B(n) based on (4);

6 repeat
7 for r = 1 to R do
8 Update a(n)

r using (17);
9 end

10 until inner termination criterion is reached;
11 end
12 until outer termination criterion is reached;
13 return A(n), n = 1, . . . , N .

3.4 Alternating Proximal Gradient

The mathematical properties of alternating proximal gradi-
ent (APG) method were thoroughly analyzed in works of
[21], [41] by Xu et al. APG method has exhibited excellent
performances on both NMF and NCP problems [21], [26],
[27], and it is also efficient to cope with l1 sparse regular-
ization [41]. Considering updating A(n) at the kth iteration,
APG is computed as follows.

We take

L
(n)
k−1 =

∥∥∥∥
(
B

(n)
k−1

)T
B

(n)
k−1

∥∥∥∥
2

(18)

as Lipschitz constant, where‖A‖2 is spectral norm of matrix.
The extrapolation weight is computed by

ω
(n)
k−1 =

t
(n)
k−1 − 1

t
(n)
k

, (19)

where t(n)0 = 1, t(n)k = 1
2

(
1 +

√
1 + 4(t

(n)
k−1)

2
)

.

Let

Â
(n)
k−1 = A

(n)
k−1 + ω

(n)
k−1

(
A

(n)
k−1 −A

(n)
k−2

)
(20)

denote an extrapolated point, and let

Ĝ
(n)
k−1 =Â

(n)
k−1

(
B

(n)
k−1

)T
B

(n)
k−1 −X(n)B

(n)
k−1 (21)

represent the gradient at Â(n)
k−1. Factor A(n) at iteration k is

updated by

A
(n)
k = argmin

A(n)>0




〈
Ĝ

(n)
k−1,A

(n) − Â(n)
k−1

〉

+
L
(n)
k−1
2

∥∥∥A(n) − Â(n)
k−1

∥∥∥
2

F
+ βn

R∑

r=1

∥∥∥a(n)
r

∥∥∥
1





=prox βn‖·‖1
L
(n)
k−1


Â(n)

k−1 −
Ĝ

(n)
k−1

L
(n)
k−1
−A(n)


.

(22)

The closed form of (22) can be written as

A
(n)
k = max


0, Â

(n)
k−1 −

Ĝ
(n)
k−1

L
(n)
k−1
− βnE

L
(n)
k−1


 (23)

APG method for sparse NCP can be implemented by
procedures in Algorithm 5.

Algorithm 5: APG for sparse NCP in (1)
Input : X, R, α, β
Output: A(n), n = 1, . . . , N

1 Initialize A(n) ∈ RIn×R, n = 1, . . . , N , using
nonnegative random numbers;

2 for k = 1, 2, . . . do
3 for n = 1 to N do
4 Make mode-n unfolding of X as X(n) and

compute MTTKRP X(n)B
(n)
k−1;

5 Compute
(
B

(n)
k−1

)T
B

(n)
k−1 and L(n)

k−1 based on
(4) and (18);

6 repeat
7 Compute ω(n)

k−1, Â(n)
k−1 and Ĝ(n)

k−1
according to (19), (20) and (21);

8 Update A(n)
k according to (23);

9 until inner termination criterion is reached;
10 end
11 if Ftensor (Ak) > Ftensor (Ak−1) then
12 Update A(n)

k again according to (23) with
Â

(n)
k−1=A(n)

k−1, n = 1, . . . , N ;
13 end
14 if outer termination criterion is reached then
15 return A(n)

k , for n = 1, . . . , N ;
16 end
17 end
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3.5 Alternating Direction Method of Multipliers
In recent years, alternating direction method of multipliers
(ADMM) has been widely applied to signal processing
and machine learning [28]. ADMM is favoured for NMF
and NCP due to its flexibility to handle a wide range of
constraints and regularization items [30], [51]. We introduce
the solution of sparse NCP in (1) using ADMM as follows.

Introducing an auxiliary variable Ã(n) ∈ RIn×R, we
reform the subproblem in (2) by

min
A(n)

1

2

∥∥∥∥X(n) −A(n)
(
B(n)

)T∥∥∥∥
2

F

+ βn

R∑

r=1

∥∥∥ã(n)
r

∥∥∥
1

s.t. A(n) = Ã(n), Ã(n) > 0,

(24)

where ã(n)
r is the rth column of Ã(n). The objective function

in (24) is split by

f
(
A(n)

)
=

1

2

∥∥∥∥X(n) −A(n)
(
B(n)

)T∥∥∥∥
2

F

,

and g
(
Ã(n)

)
= βn

R∑

r=1

∥∥∥ã(n)
r

∥∥∥
1
.

We construct the augmented Lagrangian function of (24) by

Lρ

(
A(n), Ã(n),Λ(n)

)

=f
(
A(n)

)
+ g

(
Ã(n)

)

+
〈
Λ(n),A(n) − Ã(n)

〉
+
ρn
2

∥∥∥A(n) − Ã(n)
∥∥∥
2

F
,

(25)

in which we employ the Lagrange multiplier (dual variable)

Λ(n) ∈ RIn×R and select ρn = tr
[(
B(n)

)T
B(n)

]
/R ac-

cording to the empirical setting in [30].
We update A(n), Ã(n) and Λ(n) by inner iterations as

follows:
1) Updating the primal variable A(n)

A(n) = arg min
A(n)

Lρ

(
A(n), Ã(n),Λ(n)

)
(26)

Supposing Φ(n) = 1
ρn

Λ(n) and computing the partial

derivative ∂Lρ
∂W = 0, we obtain the solution

A(n) =

[
X(n)B

(n) + ρn
(
Ã(n) −Φ(n)

)]

[(
B(n)

)T
B(n) + ρnI

]−1 (27)

where I is the identity matrix.
2) Updating the auxiliary variable Ã(n)

Ã(n) = arg min
Ã(n)>0

Lρ

(
A(n), Ã(n),Λ(n)

)
(28)

Using the proximal operator, we obtain the following
closed form solution

Ã(n) = prox βn‖·‖1
ρn

(
A(n) +

1

ρn
Λ(n)

)

= max

{
0,A(n) + Φ(n) − βn

ρn
E

}
,

(29)

where all the elements in E ∈ RIn×R equal to one.

3) Updating the Lagrange multiplier (dual variable) Λ(n)

Λ(n) = Λ(n) + ρn
(
A(n) − Ã(n)

)
. (30)

With Φ(n) = 1
ρn

Λ(n), we have

Φ(n) = Φ(n) +A(n) − Ã(n). (31)

Algorithm 6 shows the implementation of ADMM.

Algorithm 6: ADMM for sparse NCP in (1)
Input : X, R, β
Output: A(n), n = 1, . . . , N

1 Initialize A(n) ∈ RIn×R, n = 1, . . . , N , using
nonnegative random numbers, and initialize
Φ(n) ∈ RIn×R using zeros ;

2 repeat
3 for n = 1 to N do
4 Make mode-n unfolding of X as X(n) and

compute MTTKRP X(n)B
(n);

5 Compute
(
B(n)

)T
B(n) based on (4);

6 ρn = tr
[(
B(n)

)T
B(n)

]
/R;

7 repeat
8 Update primal variable A(n) using (27);
9 Update auxiliary variable Ã(n) using (29);

10 Update dual variable Φ(n) using (31);
11 until inner termination criterion is reached;
12 A(n) = Ã(n);
13 end
14 until outer termination criterion is reached;
15 return A(n), n = 1, . . . , N .

The above sparse NCP methods in BCD framework
have very good convergence properties. The subproblem
of (2) with l1-norm regularization item is convex [26]. The
proximal algorithm especially guarantees (2) to be strongly
convex and yields unique minimum [52]. Therefore, the
sparse NCP in BCD framework will converge to station-
ary point [52]. The detailed discussion of the convergence
properties of MU, ANQP, HALS, APG and ADMM can be
found in [21], [22], [26], [28], [44]. We don’t deeply analyze
the convergence of above methods in this paper.

We summarize the time complexity of the above five al-
gorithms in Table 1. We only count the multiplicative oper-
ations for mode-n in one outer iteration. The main time cost
of these algorithms is spent on the calculation of MTTKRP
X(n)B

(n), which consists of two parts: khatri-rao product
B(n) and matrix product of X(n) and B(n). The computa-
tional complexity of B(n) reaches R

∏N
ñ=1,ñ 6=n Iñ and that

of X(n)B
(n) reaches R

∏N
n=1 In. The item

(
B(n)

)T
B(n) is

calculated in an efficient way by (4), whose complexity is
R2
∑N
ñ=1,ñ 6=n Iñ. As a summary, the complexity of the inner

loop is listed in Table 1, and K̄ is assumed as the average
iteration number in the inner loop. In Table 1, we can find
that the complexity of these algorithms is highly comparable
to each other. It can be inferred that the time of convergence
is highly related to the number of iterations.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 7

TABLE 1
Computational Complexity of Subproblem (2)

Method X(n)B
(n)

(
B(n)

)T
B(n) Inner loop

MU K̄InR2

ANQP-BPP K̄
(
InR2 +R3

)
R
∏N

ñ=1,ñ 6=n Iñ
HALS K̄InR2

+R
∏N

ñ=1 Iñ
R2
∑N

ñ=1,ñ 6=n Iñ

APG K̄InR2

ADMM K̄
(
InR2 +R3

)

4 STOPPING CONDITIONS

The optimization procedures for tensor decomposition
are implemented by iterations. For NCP, a sequence of{
A

(1)
k , . . . ,A

(N)
k

}∞
k=1

is produced at each iteration. It is
necessary to terminate the iteration until some stopping
condition is satisfied. Common stopping conditions include
the following: predefined maximum number of iterations,
predefined maximum running time, the change of objective
function value, the change of relative error [21], [46].

4.1 Stopping Condition for Outer Loop

We terminate the outer loop according to the change of
relative error during iteration. Relative error is related to
data fitting. In the kth outer iteration, the relative error [21]
of tensor decomposition is defined by

RelErrk =

∥∥∥X− JA(1)
k , . . . ,A

(N)
k K

∥∥∥
F

‖X‖F
. (32)

Based on the relative error, we terminate the outer loop
using the following stopping condition

|RelErrk−1 − RelErrk| < ε. (33)

The threshold of ε can be set by a very small positive value,
such as 1e− 8.

In addition, we also set a maximum running time for the
outer loop.

4.2 Stopping Condition for Inner Loop

In the lth inner iteration, we define the relative residual of
the nth factor matrix A(n) as

r
(n)
l =

∥∥∥A(n)
l −A(n)

l−1

∥∥∥
F∥∥∥A(n)

l

∥∥∥
F

. (34)

We terminate the inner loop by the stopping condition of
r
(n)
l < δ(n), where δ(n) is a dynamic positive threshold. If

there is only one iteration in the inner loop, we update δ(n)

by δ(n) = δ(n)/10. We set the initial value by δ(n) = 0.01.
The ANQP-BPP is an exception, in which the inner loop is
terminated according to the columns in feasible region [35].

Since we employ the inexact BCD framework, we also set
a maximum number of inner iteration (MAX_INNER_ITER)
to terminate the inner loop.

We summarize the stopping conditions for both of the
outer and inner loop in Algorithm 7.

Algorithm 7: The stopping conditions

1 Set δ(n) = 0.01, n = 1, . . . , N ;
2 for k = 1, 2, . . . do

% The outer loop starts here.
3 for n = 1 to N do
4 for l = 1, 2, . . . do

% The inner loop starts here.
5 A(n) = arg min

A(n)>0

F
(
A(n)

)
;

6 if r(n)l < δ(n) or l >MAX_INNER_ITER then
7 Terminate the inner loop;
8 end

% The inner loop ends here.
9 end

10 if l == 1 then
11 δ(n) = δ(n)/10;
12 end
13 end
14 if |RelErrk−1 − RelErrk| < ε then
15 Terminate the outer loop.
16 end

% The outer loop ends here.
17 end

5 EXPERIMENTS AND RESULTS

We carried out the experiments on synthetic tensors, real
ongoing EEG tensor and real event-related potentials (ERP)
tensor. We compared the abilities of sparse NCP methods to
impose sparsity implemented by MU, ANQP-BPP, HALS,
APG, and ADMM.

Many experimental parameters and settings will affect
the performances of a sparse NCP method. Since our pur-
pose in the experiments is only to test the ability of imposing
sparsity, we fix the following settings for all methods.
• Initialization. For ANQP-BPP, HALS, APG, and

ADMM, all factor matrices were initialized using
nonnegative random numbers by MATLAB func-
tion max(0,randn(In, R)). Only MU was initialized
by max(0,randn(In, R))+0.1. All initialized factors

were scaled by A(n)
0 =

A
(n)
0∥∥∥A(n)

0

∥∥∥
F

× N
√
‖X‖F .

• The factor updating order was fixed by 1, 2, . . . , N .
• The maximum inner iteration MAX_INNER_ITER was

fixed by 5.
• For ANQP-BPP and HALS method, the proximal regu-

larization parameter αn was fixed by 1e-4.
The l1-norm regularization parameters of βn, n =

1, . . . , N, in sparse NCP are the key elements to impose
sparsity, which are the most important testing parameters in
the experiments. In order to make it convenient to select and
test the parameters, we kept βn, n = 1, . . . , N, the same in
all modes of the tensor. After selecting the βn, we calculated
and evaluated the sparsity level [11] of the factor matrices
by

SparsityA(n) =
#
{
A

(n)
i,r < Ts

}

In ×R
, (35)

where Ts is a small positive number and # {·} denotes the
number of elements that are smaller than the threshold Ts
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(b) Estimated Sparse Signals
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(a) Original Sparse Signals

Fig. 1. Sparse and nonnegative signals used in synthetic tensor. (a)
shows the original ten channels of signals. (b) shows the estimated ten
channels of signals from the synthetic tensor XSYN1 by sparse NCP
based on ANQP-BPP method with βn = 3. The PNSR is 85.5251
according to (36).

in factor matrix A(n).
In the synthetic tensor experiments, we used prior sparse

matrices to construct the data. After decomposition, the
accurary of the recovered sparse signals should be evalu-
ated. Let S(n) = [s1, . . . , sR] ∈ RL×R denote the mode-n
prior sparse matrix, where R is the real number of com-
ponents and L is the length of a component. Let T (n) =

[t1, . . . , tR̃] ∈ RL×R̃ represent the mode-n estimated sparse
matrix, in which R̃ is the estimated number of nonzero
components. We evaluate the accuracy of the estimated
matrix T (n) compared with original sparse signals S(n) by
Peak Signal-to-Noise-Ratio (PSNR, see Chapter 3 in [1])

PSNR =
1

R̃

R̃∑

r=1

10log10




L
∥∥∥t̂r − ŝc

∥∥∥
2

2


 , (36)

where t̂r is the rth normalized estimated sparse signal, and
ŝc is the normalized reference sparse signal. ŝc comes from
S(n), which has the highest correlation coefficient with t̂r .

All the experiments were conducted on computer with
Intel Core i5-4590 3.30GHz CPU, 8GB memory, 64-bit Win-
dows 10 and MATLAB R2016b. The fundamental tensor
computation was based on Tensor Toolbox 2.6 [48], [53], [54].

5.1 Synthetic Tensor Data
5.1.1 Size 1000× 100× 100 with one sparse factor
In this experiment, we constructed a synthetic third-order
tensor by 10 channels of simulated sparse and nonnegative
signals, as shown in Fig. 1(a). The signals come from the
file VSparse_rand_10.mat in NMFLAB [55]. There are
1000 points in each channel, so the sparse signal matrix
is S(1) = [s1, . . . , s10] ∈ R1000×10. Two uniformly dis-
tributed random matrices A(2),A(3) ∈ R100×10 were em-
ployed as mixing matrices, which were generated by rand
function in MATLAB. Afterwards, we synthesized a third-
order tensor by XSYN1 = JS(1),A(2),A(3)K ∈ R1000×100×100.
Next, nonnegative noise was added to the tensor with
SNR of 40dB, which was generated by MATLAB code
max(0,randn(size(X))).

For all sparse NCP methods, we set ε = 1e − 8 as
the threshold of outer stopping condition in (33). We set
Ts = 1e− 3 in (35). The maximum running time was set by
180 seconds. We selected a larger value of 20 as the number

TABLE 2
Comparison of Sparse NCPs on XSYN1 ∈ R1000×100×100

Method βn Obj RelErr Time Iter NNC Spars PSNR
0 9.76e+01 0.0082 107.9 2720.2 20.00 0.340 73.63
0.1 5.33e+02 0.0083 78.6 1970.0 16.17 0.431 73.57
0.5 1.65e+03 0.0084 57.5 1449.9 12.90 0.550 79.02

MU 1 2.47e+03 0.0084 74.6 1889.9 11.17 0.694 81.44
2 4.17e+03 0.0084 86.0 2181.5 10.37 0.863 82.50
3 5.91e+03 0.0085 87.3 2212.6 10.10 0.905 83.69
0 9.72e+01 0.0082 8.1 170.9 20.00 0.400 69.74
0.1 5.45e+02 0.0083 8.9 222.8 10.20 0.548 83.21
0.5 1.37e+03 0.0083 85.5 2178.0 10.10 0.618 84.26ANQP

BPP 1 2.16e+03 0.0083 110.6 2811.1 10.00 0.823 84.49
2 4.00e+03 0.0084 96.1 2435.5 10.00 0.908 85.13
3 5.87e+03 0.0085 83.5 2116.2 10.00 0.912 85.39
0 9.74e+01 0.0082 18.8 458.8 20.00 0.452 79.12
0.1 6.43e+02 0.0083 11.7 287.0 15.70 0.504 79.88
0.5 1.85e+03 0.0084 38.2 943.4 11.70 0.634 83.27

HALS 1 2.28e+03 0.0084 101.1 2516.1 10.20 0.819 84.38
2 4.00e+03 0.0084 95.9 2395.9 10.00 0.913 85.10
3 5.89e+03 0.0085 80.0 2001.8 10.00 0.917 85.42
0 9.73e+01 0.0082 18.0 446.3 20.00 0.378 71.06
0.1 5.52e+02 0.0083 11.2 278.0 11.87 0.519 79.58
0.5 1.39e+03 0.0083 83.1 2083.0 10.03 0.621 84.13

APG 1 2.22e+03 0.0083 94.1 2353.1 10.00 0.823 84.27
2 4.07e+03 0.0084 82.0 2056.3 10.00 0.908 84.89
3 5.95e+03 0.0084 66.1 1663.3 10.00 0.906 84.83
0 9.76e+01 0.0082 88.8 2219.7 20.00 0.358 73.85
0.1 6.05e+02 0.0083 20.4 511.3 18.60 0.505 66.19
0.5 1.75e+03 0.0084 50.9 1279.1 11.57 0.623 80.24

ADMM 1 2.45e+03 0.0084 82.7 2085.3 10.33 0.786 83.99
2 4.02e+03 0.0084 93.9 2378.7 10.00 0.913 85.22
3 5.89e+03 0.0085 80.0 2030.2 10.00 0.916 85.50

Spars = Sparsity level; Ground truth value: Spars=0.9.
NNC = Number of nonzero components.

of components for tensor decomposition2. The reason is that
we intend to recover the 10 channels of true signal just
by imposing sparse regularization during decomposition,
even though the exact optimal number of components is
unknown. We selected values of βn = 0, 0.1, 0.5, 1, 2, 3
for all the optimization methods to evaluate their abilities
to impose sparsity. The selection of sparse regularization
parameters depends on the tensor data. After tensor decom-
position, the values of objective function value (Obj), relative
error (RelErr), running time in second, iteration number
(Iter), the number of nonzero components (NNC), sparsity
level (Spars) and PSNR of the estimated signal factor matrix
were recorded as the performance evaluation criteria. For
all optimization methods with each βn, the sparse NCP was
run 30 times, and the average values of all criteria were
computed. The results are shown in Table 2. We plot the
objective function values of all sparse NCP methods with
βn = 0, 0.1, 1, 3 within the first 15 seconds as shown in Fig.
2.

5.1.2 Size 1000× 100× 100× 5 with one sparse factor
Using the sparse signals in VSparse_rand_10.mat
again, we synthesized a fourth-order tensor XSNY2 =
JS(1),A(2),A(3),A(4)K ∈ R1000×100×100×5, in which
A(2),A(3) ∈ R100×10 and A(4) ∈ R5×10 are uniformly

2. Since 10 channels of signals are mixed in the tensor, naturally, 10
should be selected as the optimal component number. The number of
components might also be estimated by some classical methods, such as
DIFFIT [56]. However, we selected 20 in order to test the performances
of sparse regularization.
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Fig. 2. The Objective Function Value Curves of Sparse NCPs on Third-order Synthetic Tensor XSYN1 With Fixed Time Limit of 30s.

TABLE 3
Comparison of Sparse NCPs on XSYN2 ∈ R1000×100×100×5

Method βn Obj RelErr Time Iter NNC Spars PSNR
0 1.58e+02 0.0084 712.0 352.5 20.00 0.210 66.64
1 6.30e+03 0.0089 862.2 427.4 12.90 0.693 75.63
2 8.62e+03 0.0091 868.9 430.5 11.53 0.788 79.04

MU 3 1.06e+04 0.0093 836.4 411.2 11.10 0.847 81.37
4 1.26e+04 0.0094 822.8 403.5 11.23 0.864 81.00
5 1.39e+04 0.0094 838.4 408.2 10.77 0.882 82.32
0 1.51e+02 0.0082 69.2 33.5 20.00 0.394 74.66
1 6.90e+03 0.0088 548.3 275.5 10.00 0.787 84.76
2 8.75e+03 0.0089 803.2 403.1 10.00 0.810 87.25ANQP

BPP 3 9.90e+03 0.0089 907.4 456.2 10.00 0.837 88.23
4 1.15e+04 0.0089 959.3 480.3 10.00 0.852 88.67
5 1.28e+04 0.0089 991.6 496.0 10.00 0.855 88.79
0 1.51e+02 0.0082 103.0 51.4 20.00 0.474 79.34
1 8.16e+03 0.0090 394.8 198.3 11.63 0.800 80.59
2 9.64e+03 0.0090 656.4 327.9 10.63 0.824 84.05

HALS 3 1.03e+04 0.0090 868.8 436.8 10.23 0.845 87.14
4 1.20e+04 0.0090 859.2 431.9 10.27 0.861 86.93
5 1.31e+04 0.0090 947.1 474.7 10.17 0.864 87.66
0 1.56e+02 0.0084 140.9 70.6 20.00 0.122 63.19
1 6.67e+03 0.0088 354.5 177.9 10.37 0.764 86.72
2 8.04e+03 0.0088 681.6 339.0 10.17 0.791 88.57

APG 3 9.72e+03 0.0089 781.7 391.2 10.07 0.828 89.26
4 1.21e+04 0.0090 792.5 394.9 10.27 0.849 88.98
5 1.33e+04 0.0089 871.7 433.8 10.00 0.856 89.33
0 1.59e+02 0.0084 254.5 124.8 20.00 0.151 65.74
1 7.41e+03 0.0089 357.7 179.4 12.33 0.782 80.64
2 8.42e+03 0.0089 801.9 401.8 11.10 0.819 87.93

ADMM 3 1.00e+04 0.0089 855.2 427.6 10.63 0.854 88.22
4 1.17e+04 0.0090 908.3 455.9 10.57 0.869 88.45
5 1.34e+04 0.0090 876.7 438.8 10.63 0.871 87.78

Spars = Sparsity level; Ground truth value: Spars=0.9.
NNC = Number of nonzero components.

distributed random matrices. Noise with SNR of 40dB was
added.

We set the outer stopping condition by ε = 1e − 6
and the maximum running time by 1200 seconds. Other
settings are the same as those in previous test. The values of
βn = 0, 1, 2, 3, 4, 5 were tested for all sparse NCP methods.
Afterwards, the average evaluation values of 30 runs were
computed as shown in Table 3.

From Table 2 and Table 3, it can be found that all
methods are able to impose sparsity with proper sparse
regularization parameter βn. When βn increases, the spar-
sity level of the mode-1 factor matrix also increases. After
properly tuning the sparse regularization parameter βn,
weak components will be removed (set to 0), weak elements
in strong components will be prohibited, and the true 10
channels of sparse signals will be recovered.

When βn is increased to a proper value, the PSNR is
also increased significantly. In the above two experiments
of 5.1.1 and 5.1.2, the value of PSNR around 85 means very
good recovery of original sparse components. In Table 2 and
Table 3, it is clear to see that ANQP-BPP, HALS, APG, and
ADMM have higher PSNR with larger sparse regularization
parameters, for example, βn = 2, 3 for XSYN1 and βn =
4, 5 for XSYN2. This means that these four methods recover
the 10 channels of sparse signals more precisely. One of the
recovered sparse signal matrix from XSYN1 by ANQP-BPP is
shown in Fig. 1(b).

For the synthetic data, the objective function values and
relative errors are very similar at the same βn. The conver-
gence speed can be concluded from Table 2, Table 3 and
Fig. 2. MU performs slowly compared with other methods.
ADMM performs slowly with βn = 0, but it becomes fast
with βn > 0. All ANQP-BPP, HALS and APG methods
perform very well. It can also be concluded from Table 2
and Table 3 that the running time is highly related to the
number of outer iterations.

5.1.3 Size 500× 500× 500 with two sparse factors

For this third-order tensor, the factor matrices were gener-
ated using the following codes.

Factor Code Zeros
S(1) ∈ R500×100 max(0,rand(500,100)*10-9); 90%
S(2) ∈ R500×100 max(0,rand(500,100)*2-1); 50%
A(3) ∈ R500×100 rand(500,100); 0%

Afterwards, a third-order tensor was synthesized by
XSNY3 = JS(1),S(2),A(3)K, whose true number of compo-
nents was 100. Noise with SNR of 40dB was added.

We set the outer stopping condition by ε = 1e − 6
and the maximum running time by 600 seconds. 200 was
selected as the initial number of components. The average
performances of all sparse NCP methods after 30 runs were
computed. We only show running time in second, iteration
number (Iter), number of nonzero components (NNC) and
the sparsity level (Spars) of all estimated factors in Table 4.

5.1.4 Size 100× 100× 100× 100 with three sparse factors

For this fourth-order tensor, the factor matrices were gener-
ated using the following codes.

Factor Code Zeros
S(1) ∈ R100×20 max(0,rand(100,20)*10-9); 90%
S(2) ∈ R100×20 max(0,rand(100,20)*4-3); 75%
S(3) ∈ R100×20 max(0,rand(100,20)*2-1); 50%
A(4) ∈ R100×20 rand(100,20); 0%
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TABLE 4
Comparison of Sparse NCPs on XSYN3 ∈ R500×500×500

Method βn Time Iter NNC Spars1 Spars2 Spars3
0 600 356.8 200.00 0.330 0.508 0.011
0.1 595.3 353.6 199.63 0.374 0.506 0.012
0.5 600 332.9 149.07 0.524 0.638 0.265

MU 1 600 345.1 146.27 0.535 0.635 0.280
3 595.2 345.1 127.97 0.626 0.672 0.369
5 593.7 340.5 118.03 0.672 0.686 0.418
0 42.0 19.0 200.00 0.300 0.512 0.027
0.1 51.6 25.5 100.93 0.705 0.749 0.502
0.5 49.9 25.6 100.27 0.828 0.750 0.505ANQP

BPP 1 173.6 97.6 100.00 0.872 0.749 0.506
3 241.3 137.5 100.00 0.933 0.725 0.505
5 282.7 158.9 100.00 0.945 0.682 0.505
0 56.9 32.4 200.00 0.438 0.506 0.014
0.1 80.5 46.3 159.07 0.615 0.623 0.218
0.5 114.5 65.6 123.13 0.746 0.702 0.393

HALS 1 131.1 75.2 110.47 0.790 0.728 0.454
3 305.1 174.9 100.23 0.863 0.735 0.503
5 345.3 195.4 100.03 0.891 0.706 0.504
0 121.7 72.7 200.00 0.156 0.495 0.342
0.1 122.0 72.1 200.00 0.566 0.552 0.372
0.5 140.4 83.2 151.77 0.706 0.621 0.444

APG 1 145.2 85.2 107.80 0.719 0.695 0.466
3 288.9 171.3 100.07 0.766 0.722 0.504
5 440.1 263.5 100.00 0.823 0.699 0.505
0 141.5 80.7 200.00 0.344 0.482 0.086
0.1 125.8 72.7 195.77 0.613 0.471 0.078
0.5 138.7 79.6 128.93 0.821 0.522 0.064

ADMM 1 125.3 73.7 110.53 0.875 0.547 0.054
3 165.9 96.7 100.37 0.939 0.646 0.138
5 247.3 144.0 100.00 0.948 0.690 0.359

Ground truth levels: Spars1=0.95, Spars2=0.75 and Spars3=0.5.
Sparsn = Sparsity level of the mode-n estimated factor.
NNC = Number of nonzero components.

Afterwards, a fourth-order tensor was synthesized by
XSNY4 = JS(1),S(2),S(3),A(4)K, whose true number of
components was 20. Noise with SNR of 40dB was added.

We set the outer stopping condition by ε = 1e − 6
and the maximum running time by 240 seconds. 40 was
selected as the initial number of components. The average
performances after 30 runs were recorded in Table 5.

Table 4 and Table 5 show that all methods are able to
impose sparsity to all factors matrices. ANQP-BPP, HALS,
and APG methods performs very well to extract the true
number of sparse components, which is 100 for XSYN3 and
20 for XSYN4. Surprisingly, the sparsity levels of all extracted
factor matrix by ANQP-BPP, HALS, and APG methods
are also very close to the ground-truth3 values with some
βn. MU and ADMM don’t always work well to reach the
ground-truth factor sparsity levels. On the other hand, MU
shows slower convergence compared with other methods.

5.2 Ongoing EEG Tensor Data

In this experiment, we used a real-world third-order on-
going EEG tensor. The data come from one subject elicited
by natural continuous music stimulus [11]. The size of this
tensor is channel × frequency × time = 64 × 146 × 510. The
64 channel points represent 64 electrodes on the scalp, the

3. Since we use double number of true sparse components as the
initial number of tensor decomposition, the ground truth sparsity of
the factor matrix is computed by (x% + 1)/2. x% is the percentage of
zeros in a simulated matrix.

TABLE 5
Comparison of Sparse NCPs on XSYN4 ∈ R100×100×100×100

Method βn Time Iter NNC Spars1 Spars2 Spars3 Spars4
0 155.0 191.5 40.00 0.177 0.648 0.438 0.012
0.1 87.6 106.7 31.10 0.668 0.769 0.609 0.239
0.5 122.2 144.5 23.40 0.940 0.829 0.708 0.427

MU 1 114.9 135.0 21.40 0.942 0.862 0.731 0.472
2 85.9 101.7 20.50 0.935 0.863 0.735 0.492
3 61.9 73.2 19.43 0.919 0.861 0.737 0.519
0 10.5 12.6 40.00 0.580 0.613 0.434 0.129
0.1 11.3 13.8 20.00 0.831 0.857 0.751 0.504
0.5 95.0 117.5 19.87 0.943 0.864 0.751 0.507ANQP

BPP 1 102.5 126.6 19.63 0.943 0.871 0.749 0.513
2 90.1 111.2 19.23 0.938 0.868 0.748 0.523
3 66.9 82.2 18.27 0.921 0.852 0.739 0.547
0 24.5 30.2 40.00 0.724 0.700 0.473 0.073
0.1 32.3 39.9 24.13 0.817 0.825 0.699 0.405
0.5 84.9 102.7 20.40 0.945 0.861 0.743 0.496

HALS 1 95.1 116.6 19.73 0.944 0.871 0.748 0.510
2 87.9 108.5 19.33 0.941 0.871 0.748 0.520
3 66.0 81.6 18.40 0.923 0.856 0.741 0.543
0 91.3 113.1 40.00 0.212 0.516 0.351 0.213
0.1 51.4 63.6 20.30 0.836 0.710 0.564 0.369
0.5 81.0 100.4 19.93 0.949 0.851 0.736 0.496

APG 1 76.9 95.1 19.30 0.941 0.867 0.748 0.521
2 73.7 91.1 18.67 0.930 0.858 0.745 0.535
3 63.8 78.9 17.03 0.903 0.835 0.731 0.577
0 87.9 108.5 40.00 0.145 0.521 0.385 0.210
0.1 78.0 96.2 26.50 0.814 0.602 0.465 0.284
0.5 77.4 95.7 20.60 0.943 0.728 0.542 0.358

ADMM 1 67.5 83.4 19.83 0.941 0.811 0.598 0.412
2 57.8 71.5 19.30 0.929 0.840 0.671 0.469
3 43.3 53.5 17.60 0.896 0.824 0.701 0.527

Ground truth: Spars1=0.95, Spars2=0.875, Spars3=0.75 and Spars4=0.5.
Sparsn = Sparsity level of the mode-n estimated factor.
NNC = Number of nonzero components.

146 frequency points represent the spectrum in 1-30Hz, and
the 510 time points represent the duration of stimulus of
about 8.5 minutes. The spectra from EEG tensor are usually
sparse. We wish to recover the sparse spectral components
by sparse regularization.

We set ε = 1e − 8 in (33) and Ts = 1e − 6 in
(35). The maximum running time was set by 120 sec-
onds. The initial number of components were set by 40
according to previous studies [4], [11]. The values of βn =
0, 1e5, 5e5, 10e5, 15e5, 20e5 were tested for all methods. All
methods were run 30 times. The averages of performance
criteria are recorded in Table 6. We also plot the ob-
jective function values of all sparse NCP methods with
βn = 0, 1e5, 10e5, 20e5 within the first 10 seconds as shown
in Fig. 3. The results show that all methods are effective
to impose sparsity with βn. ANQP-BPP, HALS, APG, and
ADMM have very good computational efficiency.

We selected three groups of extracted components using
ANQP-BPP method with βn = 0, 5e5, 10e5 respectively as
shown in Fig. 4. These three groups show the same brain
activity. It is very clear to see that the spectra become
sparser and sparser when sparse regularization parameter is
increased. With βn = 5e5, 10e5, more and more redundant
elements are removed in the spectra and only the most
prominent frequency band is retained. Fig. 4 demonstrates
that our methods are effective to extract meaningful sparse
components that are related to some brain activities.
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TABLE 6
Comparison of Sparse NCPs on Ongoing EEG Tensor XEEG ∈ R64×146×510

Method βn × 105 Obj RelErr Time Iter NNC Spars1 Spars2 Spars3
0 2.99e+10 0.2853 106.3 2790.8 40.00 0.077 0.380 0.115
1 3.34e+10 0.2857 101.7 2708.2 40.00 0.104 0.457 0.137
5 4.58e+10 0.2928 89.7 1269.9 39.77 0.191 0.761 0.272

MU 10 5.87e+10 0.3132 103.0 1034.6 31.70 0.364 0.860 0.493
15 6.79e+10 0.3339 94.5 946.6 23.97 0.525 0.901 0.634
20 7.48e+10 0.3505 81.5 883.3 18.10 0.635 0.922 0.720
0 2.98e+10 0.2847 19.2 444.4 40.00 0.085 0.381 0.104
1 3.35e+10 0.2858 34.9 824.1 39.73 0.124 0.475 0.129
5 4.59e+10 0.2957 21.4 540.4 37.30 0.241 0.779 0.292ANQP

BPP 10 5.86e+10 0.3145 17.6 483.9 30.53 0.383 0.872 0.495
15 6.79e+10 0.3342 15.5 448.4 23.57 0.530 0.904 0.633
20 7.46e+10 0.3515 10.5 310.6 17.57 0.638 0.927 0.723
0 2.98e+10 0.2848 14.2 466.9 40.00 0.086 0.376 0.103
1 3.34e+10 0.2852 18.6 601.6 39.97 0.119 0.469 0.122
5 4.58e+10 0.2952 15.1 488.4 37.47 0.238 0.778 0.293

HALS 10 5.86e+10 0.3158 13.1 424.2 29.83 0.399 0.872 0.503
15 6.79e+10 0.3343 15.5 456.7 23.40 0.533 0.906 0.631
20 7.47e+10 0.3514 10.8 355.7 17.53 0.637 0.927 0.720
0 2.99e+10 0.2851 9.5 301.4 40.00 0.084 0.370 0.101
1 3.34e+10 0.2857 21.4 710.9 39.80 0.132 0.475 0.127
5 4.73e+10 0.3117 18.4 621.0 28.37 0.426 0.783 0.445

APG 10 5.92e+10 0.3378 19.5 655.6 19.63 0.598 0.865 0.631
15 6.76e+10 0.3579 15.8 532.8 14.13 0.704 0.904 0.736
20 7.42e+10 0.3681 12.9 436.7 12.20 0.745 0.924 0.781
0 2.98e+10 0.2849 23.0 810.4 40.00 0.081 0.385 0.102
1 3.34e+10 0.2853 20.2 685.2 39.93 0.124 0.460 0.124
5 4.60e+10 0.2978 16.0 546.6 35.93 0.271 0.775 0.326

ADMM 10 5.84e+10 0.3218 15.3 523.7 26.23 0.468 0.860 0.547
15 6.75e+10 0.3394 14.2 486.6 20.93 0.582 0.900 0.662
20 7.43e+10 0.3552 9.9 339.5 15.93 0.669 0.925 0.738

Spars1, Spars2 and Spars3 are the sparsity levels of spatial, spectral and temporal factor.
NNC = Number of nonzero components.
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Fig. 3. The Objective Function Value Curves of Sparse NCPs on Third-order Ongoing EEG Tensor.

5.3 Event-Related Potentials Tensor Data

In this experiment, we utilized a preprocessed fourth-order
event-related potentials (ERP) tensor4. The data size is chan-
nel × frequency × time × subject-group = 9 × 71 × 60 × 42.
The 9 channel points denote the 9 electrodes on the scalp,
the 71 frequency points show the spectrum within 1-15Hz,
the 60 time points illustrate the temporal energy between 0-
300ms, and the 42 subject-group points include 21 subjects
with reading disability (RD) and 21 subjects with attention
deficit (AD) [57].

In this experiment, the values of βn =
0, 10, 50, 100, 200, 300 were tested for all methods. Other
setting parameters were the same as those for the ongoing
EEG. The average values of performance criteria after 30

4. Data website:
http://www.escience.cn/people/cong/AdvancedSP ERP.html

runs are recorded in Table 7. We also recorded the objective
function values of all methods with βn = 0, 10, 50, 100
within the first 30 seconds in Fig. 5. According to the results,
MU performs very slowly and often reach the time limit
of 120s. MU is not sensitive to βn for imposing sparsity in
this case, and has more nonzero components at the same
βn value compared with other methods. If more nonzero
components are retained, the objective function value will
be smaller. Take the results of βn = 300 for example. The
number of nonzero components of MU is 31.10 and the
objective function value is 1.51e+06. While for ANQP-BPP,
the NNC is 15.7 and the Obj is 1.97e+06. This can be further
seen from Fig. 5. ADMM performs slowly with small βn
values (e.g., 0, 10), but its performance can be improved
with large βn values (e.g., 100, 200, 300). As expected, all
ANQP-BPP, HALS, and APG methods perform very well
on both of the effectiveness of imposing sparsity and the
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TABLE 7
Comparison of Sparse NCPs on ERP Tensor XERP ∈ R9×71×60×42

Method βn Obj RelErr Time Iter NNC Spars1 Spars2 Spars3 Spars4
0 4.92e+05 0.1132 120.0 3530.2 40.00 0.437 0.130 0.241 0.217
10 5.47e+05 0.1135 120.0 3525.5 39.97 0.382 0.128 0.235 0.214
50 6.80e+05 0.1151 120.0 3519.3 39.87 0.377 0.141 0.229 0.232

MU 100 8.46e+05 0.1163 120.0 3737.7 39.07 0.438 0.173 0.242 0.239
200 1.19e+06 0.1245 113.8 3386.1 35.17 0.493 0.257 0.309 0.314
300 1.51e+06 0.1346 92.3 2913.0 31.10 0.564 0.330 0.385 0.391
0 4.77e+05 0.1115 24.2 755.8 40.00 0.522 0.141 0.234 0.178
10 6.74e+05 0.1239 31.9 1147.0 33.93 0.576 0.266 0.333 0.291
50 8.57e+05 0.1314 34.5 1261.2 31.03 0.606 0.325 0.384 0.349ANQP

BPP 100 1.07e+06 0.1413 32.7 1205.0 27.70 0.637 0.390 0.446 0.418
200 1.49e+06 0.1636 23.6 883.9 21.00 0.699 0.531 0.568 0.560
300 1.97e+06 0.1911 17.9 681.2 15.70 0.761 0.645 0.658 0.673
0 4.76e+05 0.1114 27.7 1019.7 40.00 0.525 0.139 0.234 0.176
10 6.68e+05 0.1223 26.4 969.2 34.57 0.572 0.254 0.317 0.278
50 8.41e+05 0.1286 32.0 1177.5 32.13 0.586 0.307 0.366 0.329

HALS 100 1.05e+06 0.1381 30.0 1102.8 28.77 0.625 0.373 0.426 0.395
200 1.50e+06 0.1632 22.5 828.6 21.10 0.696 0.530 0.565 0.556
300 1.94e+06 0.1872 16.1 594.5 16.23 0.753 0.631 0.651 0.663
0 4.77e+05 0.1115 19.9 704.5 40.00 0.504 0.132 0.246 0.183
10 6.82e+05 0.1228 19.5 685.1 34.37 0.563 0.253 0.325 0.286
50 1.08e+06 0.1494 21.7 768.5 24.93 0.655 0.446 0.502 0.472

APG 100 1.42e+06 0.1690 19.3 691.2 19.90 0.712 0.547 0.589 0.583
200 1.97e+06 0.1999 17.2 617.9 14.07 0.775 0.676 0.697 0.705
300 2.41e+06 0.2225 16.6 599.7 10.97 0.804 0.745 0.762 0.765
0 4.79e+05 0.1117 53.4 2046.1 40.00 0.519 0.132 0.240 0.178
10 6.20e+05 0.1200 56.4 2097.0 35.57 0.541 0.238 0.303 0.235
50 9.72e+05 0.1435 37.5 1362.3 26.77 0.643 0.411 0.465 0.426

ADMM 100 1.28e+06 0.1604 24.9 922.7 21.87 0.688 0.512 0.554 0.538
200 1.75e+06 0.1870 23.2 859.1 16.33 0.754 0.630 0.648 0.660
300 2.29e+06 0.2164 18.7 694.2 11.73 0.792 0.730 0.747 0.750

Spars1, Spars2, Spars3 and Spars4 are the sparsity levels of spatial, spectral, temporal and
subject-group factor matrix.
NNC = Number of nonzero components.

efficiency of computation.

6 CONCLUSION

In this paper, we investigated the nonnegative CAN-
DECOMP/PARAFAC tensor decomposition with l1-norm
based sparse regularization (sparse NCP). We employed an
inexact block coordinate descent scheme to design sparse
NCP algorithm. The optimization methods of multiplica-
tive update (MU), alternating nonnegative quadratic pro-
gramming (ANQP), hierarchical alternating least squares
(HALS), alternating proximal gradient (APG) and alter-
nating direction method of multipliers (ADMM) in block
coordinate descent framework were carefully investigated
to solve sparse NCP. The experimental results on both
synthetic and real-world tensor data demonstrate that our
sparse NCP methods are able to successfully impose spar-
sity and extract meaningful sparse components. The meth-
ods of ANQP, HALS, and APG especially have outstanding
performances. Our sparse NCP methods can be extended
to many other multiway data applications. In future, it
is interesting to investigate how to separately control the
sparsity levels of different factor matrices using unbalanced
sparse regularization parameters. Moreover, it is worth try-
ing incorporating other types of sparse regularization items
to our sparse NCP framework besides l1-norm.
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ABSTRACT

Tensor decomposition is a powerful tool for analyzing mul-
tiway data. Nowadays, with the fast development of mul-
tisensor technology, more and more data appear in higher-
order (order > 4) and nonnegative form. However, the de-
composition of higher-order nonnegative tensor suffers from
poor convergence and low speed. In this study, we propose a
new nonnegative CANDECOM/PARAFAC (NCP) model us-
ing proximal algorithm. The block principal pivoting method
in alternating nonnegative least squares (ANLS) framework
is employed to minimize the objective function. Our method
can guarantee the convergence and accelerate the computa-
tion. The results of experiments on both synthetic and real
data demonstrate the efficiency and superiority of our method.

Index Terms— Tensor decomposition, nonnegative CAN-
DECOMP/PARAFAC, proximal algorithm, block principal
pivoting, alternating nonnegative least squares

1. INTRODUCTION

In recent years, the widespread application of multisensor
technology and the fast development of advanced signal pro-
cessing methods have promoted the formation of multiway
data as higher-order tensor. For example, in a brain signal
experiment, the event-related potential (ERP) can be repre-
sented even by a seventh-order tensor including modes such
as space, frequency, time, trial, subject, condition and group
[1]. Tensor decomposition, especially nonnegative CANDE-
COMP/PARAFAC (NCP) decomposition, is a favourable tool
to analyze these data [2]. In order to process such higher-
order data efficiently, fast and stable tensor decomposition al-
gorithm is necessary.

Block coordinate descent (BCD) method [3, 4] is a gen-
eral and important framework to solve tensor decomposition,

This work was supported by the National Natural Science Foundation
of China (Grant No. 81471742), the Fundamental Research Funds for
the Central Universities [DUT16JJ(G)03] in Dalian University of Technol-
ogy in China, and the scholarship from China Scholarship Council (No.
201600090043). (Corresponding author: Fengyu Cong)

in which each factor matrix is updated alternatively as a
subproblem. Many conventional methods are proposed in
BCD framework. For example, hierarchical alternating least
squares (HALS) was designed for large scale tense data [5,6],
which showed fast computation. However, the normalization
of factor matrices in HALS will spoil the bound-constrained
property of NCP and complicate the optimization proce-
dures [7]. Alternating nonnegative least squares (ANLS) is
a powerful sub-framwork in BCD for NCP, benefiting from
the efficiency of many nonnegative least squares (NNLS)
methods such as active set (AS) [8] and block principal piv-
oting (BPP) [9]. Nevertheless, ANLS often suffers from
rank deficiency because of the sparse effect introduced by
the nonnegative constraints and the possible appearance of
zero components in factor matrices. In recent year, alternat-
ing proximal gradient (APG) [3, 10, 11] method has gained
in popularity for NMF and third-order tensor decomposition
because of its stable convergence, but it still converges very
slowly for higher-order tensor (order > 4). The challenge
of higher-order tensor decomposition is to design a solving
algorithm that is convergent and efficient.

Recently, proximal algorithm has been applied to uncon-
strained CP decomposition [12,13]. The advantage is that the
combination of BCD framework and proximal algorithm will
satisfy the need for uniqueness of minimum in each subprob-
lem [14]. Therefore, the tensor decomposition will be guaran-
teed to converge to stationary point [14]. We extend proximal
algorithm to the bound-constrained NCP, which had not been
adequately analyzed in previous studies. We also find that
NCP using proximal algorithm is equivalent to a ANLS prob-
lem. Consequently, BPP, as an efficient NNLS method, is em-
ployed to solve the ANLS problem. We conduct experiments
on both fourth-order synthetic and real data to demonstrated
the efficiency and superiority of our method.

2. NCP DECOMPOSITION

In this paper, we denote a vector by boldface lowercase letter,
such as x; a matrix by boldface uppercase letter, such as X;



and a tensor by boldface Euler script letter, such as X. Op-
erator ◦ represents outer product of vectors, ∗ represents the
Hadamard product, 〈 〉 represents inner product, J K represents
Kruskal operator, and‖ ‖F means Frobenius norm.

Given a nonnegativeN th-order tensor X ∈ RI1×I2×···×IN ,
the nonnegative CANDECOMP/PARAFAC (NCP) decom-
position is to solve the following minimization problem:

min
A(1),...,A(N)

1

2

∥∥∥X− JA(1), . . . ,A(N)K
∥∥∥
2

F

s.t. A(n) > 0 for n = 1, . . . , N,

(1)

where A(n) ∈ RIn×R for n = 1, . . . , N are the estimated
factor matrices in different modes, In is the size in mode-n,
and R is the predefined number of components.

Block coordinate descent [3, 4] is an important method to
solve NCP problem, in which the factor matrices of A(n),
n = 1, . . . , N , are updated alternatively. Let X(n) ∈
RIn×

∏N
ñ=1,ñ6=n Iñ represent the mode-n unfolding (matri-

cization) of original tensor X. And the mode-n unfolding of

JA(1), . . . ,A(N)K can be written as A(n)
(
B(n)

)T
, in which

B(n) =
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
∈

R
∏N

ñ=1,ñ 6=n Iñ×R. The updating ofA(n) in the kth iteration is
solved as the following subproblem:

A
(n)
k+1 = argmin

A(n)>0

1

2

∥∥∥∥X(n) −A(n)
(
B

(n)
k

)T∥∥∥∥
2

F

. (2)

Essentially, (2) is a bound-constrained optimization prob-
lem, for which HALS [5, 6], APG [3, 10, 11] and ANLS [7–
9] are popular optimization methods. The nonnegative con-
straint will naturally lead to sparse results, which might in-
troduce zero components to A(n). Thus, A(n) might not be
full column rank. Although many nonnegative leaset squares
(NNLS) methods in ANLS framework usually run very fast,
such as active set (AS) [8] and block principal pivoting (BPP)
[9], they often suffer from the rank deficiency. In order to pre-
vent the rank deficiency, the Tiknonov regularization (squared
Frobenius norm) [15] is always incorporated into NCP as the
following subproblem:

A
(n)
k+1 = argmin

A(n)>0

{
1

2

∥∥∥∥X(n) −A(n)
(
B

(n)
k

)T∥∥∥∥
2

F

+
αn

2

∥∥∥A(n)
∥∥∥
2

F

}
,

(3)

where αn is positive regularization parameter in parameter
vectorα ∈ RN×1. The objective function in (3) can be equiv-
alently rewritten as

F1 =
1

2

∥∥∥∥∥∥

(
XT

(n)

0R×In

)
−
(
B

(n)
k√
αnIR

)(
A(n)

)T
∥∥∥∥∥∥

2

F

,

where I is the identity matrix and 0 is zero matrix. After-
wards, NNLS methods, such as AS and BPP, can be employed
to minimize the subproblem. Nevertheless, the optimal solu-
tion by (3) is not a stationary point of NCP in (1) [13].

APG exhibits efficient convergence properties for third-
order tensor, in which the proximal operator is employed to
update the factor matrices yielding a close form solution [3].
However, APG still shows slow convergence for higher-order
(order > 4) tensor data.

3. NCP USING PROXIMAL ALGORITHM

Proximal algorithm has been successfully utilized in uncon-
strained CP decomposition, which can guarantee that CP con-
verges to stationary point [12, 13]. Inspired by this idea, we
extend the proximal algorithm to the bound-constrained NCP
problem. The NCP using proximal algorithm is

min
A(1),...,A(N)

{
1

2

∥∥∥X− JA(1), . . . ,A(N)K
∥∥∥
2

F

+
N∑

n=1

αn

2

∥∥∥Ã(n) −A(n)
∥∥∥
2

F

}

s.t. A(n) > 0 for n = 1, . . . , N,

(4)

where Ã(n) ∈ RIn×R is the former version of A(n) in previ-
ous iteration. According to block coordinate descent method,
A(n) in the kth iteration can be updated alternatively by the
following subproblem:

A
(n)
k+1 = argmin

A(n)>0

{
1

2

∥∥∥∥X(n) −A(n)
(
B

(n)
k

)T∥∥∥∥
2

F

+
αn

2

∥∥∥A(n)
k −A(n)

∥∥∥
2

F

}
.

(5)

The objective function in (5) can be equivalently rewritten as

F2 =
1

2

∥∥∥∥∥∥∥
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Obviously, (5) is still a nonnegative least squares (NNLS)
problem. Therefore, we employ the block principal pivoting
(BPP) method [9] to solve the subproblem in (5).

Furthermore, we calculate the partial derivative of F2

∂F2

∂A(n)
=A(n)

[(
B

(n)
k
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B
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k
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,

(6)

where X(n)B
(n)
k is called the Matricized Tensor Times

Khatri-Rao Product (MTTKRP) [16], and
(
B

(n)
k

)T
B

(n)
k



Algorithm 1: NCP using proximal algorithm
Input : X, R, α
Output:A(n), n = 1, . . . , N

1 InitializeA(n) ∈ RIn×R, n = 1, . . . , N , using
random numbers;

2 repeat
3 for n = 1 to N do
4 Make mode-n unfolding of X asX(n);
5 Compute MTTKRPX(n)B

(n)
k and

(
B

(n)
k

)T
B

(n)
k based on (7);

6
(
B

(n)
k

)T
B

(n)
k ←

(
B

(n)
k

)T
B

(n)
k + αnIR;

7 X(n)B
(n)
k ←X(n)B

(n)
k + αnA

(n)
k ;

8 Update factorA(n) based on (5) using BPP:

A
(n)
k+1 = argmin

A(n)>0

F2

(
A(n)

)

= NNLS BPP(X(n)B
(n)
k ,

(
B

(n)
k

)T
B

(n)
k ).

9 end
10 until some termination criterion is reached;
11 returnA(n), n = 1, . . . , N .

can be computed efficiently by
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(7)

The proposed NCP using proximal algorithm is summa-
rized in Algorithm 1. Our method has several advantages.
First, the combination of block coordinate descent and prox-
imal algorithm can guarantee that the NCP converges to sta-
tionary point (see Section 3.7.1 in [14]). Second, BPP has
proved to be a very efficient NNLS method [9], which will
improve the performance of NCP significantly.

4. EXPERIMENTS AND RESULTS

We applied the proposed NCP using proximal algorithm
(PROX-BPP for short in the following contents) to both
fourth-order synthetic and real tensor data. Comparison
was made with conventional algorithms of HALS, APG and
ANLS with Frobenius-norm regularization based on BPP
(ANLS-BPP for short).

For all algorithms, the factor matrices were initialized
using nonnegative normally distributed random numbers by
command max(0,randn(In, R)). The stopping condi-
tion was based on the change of relative error [2], in which
the tolerance was set by 1e-8. The maximum running time
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Fig. 1. Simulated signals. (a) shows original signals, and (b)
shows the estimated signals by PROX-BPP with αn =1e-4.
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Fig. 2. Convergence of NCP algorithms on the synthetic data.

was 600s. For PROX-BPP and ANLS-BPP, we kept αn,
n = 1, . . . , N the same in all modes with fixed value during
the iteration. The values of 1, 1e-2, 1e-4, 1e-6, and 1e-8 were
tested for αn. The objective function value, relative error,
running time, iteration, and nonzero component number of
the first factor matrix were used to measure the performance
of the algorithms. The results of 30 independent runs were
recorded and the average was computed.

All experiments were conducted on a computer with Intel
Core i5-4590 3.30GHz CPU, 8GB memory, 64-bit Windows
10 and MATLAB R2016b. The fundamental tensor computa-
tion was based on Tensor Toolbox 2.6 [16–18].

4.1. Fourth-order Synthetic Data

We synthesized a fourth-order nonnegative tensor by 7 chan-
nels of simulated signals, which come from the AC-7 2noi
file in NMFLAB [19] as shown in Fig. 1(a). The ten-
sor was constructed by XSyn = JS(1),A(2),A(3),A(4)K ∈
R1000×100×100×5, in which S(1) ∈ R1000×7 is the signal
matrix, and A(2),A(3) ∈ R100×7,A(4) ∈ R5×7 are random
matrices in uniform distribution. Next, nonnegative Gaussian
noise was added to the tensor with SNR of 40dB.

For all algorithms on this synthetic data, the number of
components is set by 7. The average results of 30 independent
runs are recorded in Table 1. One of the estimated signal ma-
trix by PROX-BPP with αn =1e-4 is shown in Fig. 1(b). We
compare the objective function convergence of all algorithms
within the first 180s with the same initialized factor matrices
as shown in Fig. 2(a), in which we set αn =1e-4 for PROX-
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Fig. 3. One group of components extracted from ERP data by PROX-BPP with αn =1e-4.

Table 1. Performances of NCPs On Synthetic Data
NCP αn Obj RelErr Time Iter Comp

1 1.5391e+03 0.0083 47.4 43.1 7.00
1e-2 1.5391e+03 0.0083 44.2 43.0 7.00

PROX 1e-4 1.5391e+03 0.0083 43.7 42.5 7.00
BPP 1e-6 1.5391e+03 0.0083 43.7 42.6 7.00

1e-8 1.5391e+03 0.0083 44.0 42.9 7.00
1 3.7249e+05 0.0852 264.4 251.0 6.23
1e-2 2.9504e+05 0.0784 65.4 63.8 6.37

ANLS 1e-4 2.1125e+05 0.0633 48.8 47.6 6.53
BPP 1e-6 3.7568e+05 0.0969 50.3 48.9 6.20

1e-8 4.7112e+05 0.1103 52.7 51.1 6.00
APG — 1.5392e+03 0.0083 158.1 149.6 7.00
HALS — 1.5391e+03 0.0083 71.4 67.4 7.00

Table 2. Performances of NCPs On ERP Data
NCP αn Obj RelErr Time Iter Comp

1 4.7781e+05 0.1116 24.7 679.9 40.00
1e-2 4.7803e+05 0.1116 28.2 775.8 40.00

PROX 1e-4 4.7845e+05 0.1117 29.2 805.1 40.00
BPP 1e-6 4.7796e+05 0.1116 27.7 764.4 40.00

1e-8 4.7667e+05 0.1115 29.7 815.2 40.00
1 6.0792e+05 0.1250 28.6 611.1 33.33
1e-2 5.8610e+05 0.1235 26.6 656.2 34.03

ANLS 1e-4 5.9085e+05 0.1240 24.9 676.9 33.80
BPP 1e-6 5.9481e+05 0.1245 28.2 721.9 33.50

1e-8 5.9230e+05 0.1241 30.3 604.8 33.80
APG — 4.8100e+05 0.1120 99.4 2114.7 40.00
HALS — 4.7860e+05 0.1117 51.9 1914.4 40.00

BPP and ANLS-BPP. The objective function convergence of
PROX-BPP with different αn is shown in Fig. 2(b).

4.2. Fourth-order ERP Data

We utilized a set of preprocessed fourth-order event-related
potential (ERP) data (channel × frequency × time × subject-
group = 9 × 71 × 60 × 42). The 9 channel points represent
9 electrodes on the scalp, the 71 frequency points represent
1-15Hz, the 60 time points represent 0-300ms, and the 42
subject-group points include 21 subjects with reading disabil-
ity (RD) and 21 subjects with attention deficit (AD) [20].

For all algorithms, the number of components is set by
40. The experimental procedures are the same as that for the
synthetic data. The results are shown in Table 2 and Fig. 4.
One group of components extracted by PROX-BPP is shown
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Fig. 4. Convergence of NCP algorithms on the real ERP data.

in Fig. 3, which represents typical brain activity [20].

4.3. Discussion

From the results of both fourth-order synthetic data and real
ERP data, we find that our proposed PROX-BPP method out-
performs all other methods with high efficiency and accu-
racy. ANLS-BPP method has high objective function value
and large relative error, and often yields fewer meaningful
components than the predefined ones. Although HALS has
satisfying accuracy, it is inferior to PROX-BPP in running
time. APG, which has excellent performance for third-order
tensor, shows very low convergence for higher-order (order >
4) tensor.

The choice of parameter αn for PROX-BPP is said to be
related the noise level in the data [12, 13]. Surprisingly, our
PROX-BPP is very robust with different αn values. We sug-
gest to select 1e-2 6 αn 6 1e-4, since too large value may
affect the objective function and too small value might still
cause rank deficiency.

5. CONCLUSION

In this study, we proposed a new NCP method using prox-
imal algorithm in block coordinate descent framework. Af-
terwords, one of the efficient NNLS methods implemented
by block principal pivoting (BPP) was employed to solve the
model. The proposed method exhibited high efficiency and
outperformed conventional methods on higher-order (order >
4) tensor data. Our method is very flexible, and can be com-
bined with many other NNLS algorithms.
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Background: Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in
which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation
burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are
conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization
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DECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was
employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-
order tensor decomposition.
Results: By the fifth-order NCP model with a proper component number, the ERP data were fully decomposed
into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs
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hand.
Comparison with Existing Method(s): In our experiment, more interesting components and coherent brain
activities were extracted, compared with previous studies.
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1. Introduction

Tensor decomposition, as a versatile tool for signal processing and
machine learning (Cichocki et al., 2015; Sidiropoulos et al., 2017), has
become more and more popular for EEG data processing and cognitive
neuroscience in recent years (Cong et al., 2015; Zhou et al., 2016;
Mahyari et al., 2017; Idaji et al., 2017; Wang et al., 2018). Event-related
potential (ERP) is a time-locked EEG activity measuring brain response
elicited by perceptual, cognitive or motor events (Handy, 2005). ERP
can be represented naturally in tensor form. In these studies (Zhang
et al., 2013; Idaji et al., 2017; Vanderperren et al., 2012; Niknazar et al.,
2014), ERP data are arranged in channel × time × trial tensor. If ERP
data are transformed into time-frequency representation (by Continu-
ous Wavelet Transform), a new frequency mode will be introduced.
Consequently, the ERP data of single-trial or the average of trials can
be represented by channel × frequency × time tensor (Mørup et al.,
2006a; Weis et al., 2009; Zhao et al., 2011; Cong et al., 2012, 2013).
In an experiment, ERP data can be represented by high-order tensor
including modes such as space, frequency, time, trial, subject, condition
and group (Cong et al., 2015). Afterwards, tensor decomposition can be
performed for the multi-way ERP data.

CANDECOMP/PARAFAC (CP), as a basic tensor decomposition
method (Sidiropoulos et al., 2017), has remarkable advantage in pro-
cessing high-order EEG data, in which a group of related feature factors
can be extracted from each mode (a feature factor refers to a column
of the matrix in some mode after tensor decomposition). When time-
frequency representation is applied on EEG time series, the transformed
data are nonnegative, and nonnegative CANDECOMP/PARAFAC (NCP)
is preferred with nonnegative constraints in each mode (Cichocki et al.,
2009). The rationale for using NCP in time-frequency transformed EEG
tensor is that: after decomposition, (1) the temporal factor representing
temporal envelope is nonnegative; (2) the spectral factor representing
spectrum is nonnegative; and (3) the spatial factor representing topog-
raphy can also be nonnegative. Specifically, for a brain activity, the
temporal envelope exhibits the temporal evolution; the spectrum reveals
the most prominent frequency band; and the topography indicates
the location on the scalp. The meaning of NCP for third-order EEG
tensor (channel × frequency × time) is illustrated in Fig. 1. When
higher-order (> 3) EEG tensor is decomposed by NCP, more feature

factors from different modes (e.g. subject, condition) will be extracted
simultaneously, with the degree of strength given by score vectors being
nonnegative.

In general, the processing of high-order EEG tensor data is time-
consuming, in which the stability and convergence of tensor decom-
position algorithms cannot be guaranteed. Hence high-order EEG data
are often reshaped into low-order tensor by merging several modes
together, or unfolded into two-order matrix. In a study of wavelet trans-
formed ERP (Mørup et al., 2006b), the fifth-order ERP data (channel
× frequency × time × subject × condition) were reorganized into
a third-order tensor (channel × time-frequency × subject-condition).
In (Cong et al., 2012), a fourth-order ERP tensor (channel × frequency
× time × subject-condition) was generated with subject and condition
modes being merged. However, the merging or unfolding of modes can
potentially hamper data interpretation, dismiss mode specification, and
spoil the interaction information among these modes (Cong et al., 2015;
Mørup et al., 2006b).

Mørup et al. applied fifth-order NCP to decompose another fifth-
order ERP data, the condition mode size of which is two (Mørup et al.,
2006a). However, there existed an unreasonable assumption that the
data could only entail a two-component CP model (Mørup et al., 2006a).
The rationale behind this assumption might be that the component
number was no more than the minimal mode size of two. In fact, the
selection of component number for CP model is related to the rank of
tensor. Since the rank of tensor can be larger than the maximal mode
size (Sidiropoulos et al., 2017), a larger component number can be
selected.

In this study, we analyze a set of fifth-order ERP data (channel
× frequency × time × subject × condition) elicited by proprioceptive
stimulus. Fifth-order NCP is applied with a large component number.
The data are fully decomposed in each mode, and the interaction
information among these five modes is retained. One of the latest NCP
models implemented by alternating proximal gradient (APG) method is
employed, which has been proved to be mathematically convergent and
stable (Xu and Yin, 2013).

It is nontrivial to determine the component number by the tensor
rank directly. Some studies have focused on the selection of component
number for multi-way models, such as core consistency diagnostic (COR-
CONDIA) (Bro and Kiers, 2003) and automatic relevance determination

Fig. 1. Tensor decomposition of third-order EEG tensor (channel × frequency × time) by NCP. The time-frequency transformed EEG tensor is nonnegative. After decomposition, the
temporal factor representing temporal envelop is nonnegative, the spectral factor representing spectrum is nonnegative, and the spatial factor representing topography can also be
nonnegative.
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(ARD) (Mørup and Hansen, 2009). Nevertheless, these methods often
indicate very few components, which are not adequate to reveal the
physiological properties of EEG signals (Cong et al., 2015). Conventional
DIFFIT (Timmerman and Kiers, 2000) is a preferred method for compo-
nent number selection in EEG data processing (Cong et al., 2015), but it
usually fails to provide useful information due to fluctuations on DIFFIT
curve. Therefore, we propose an improved smooth DIFFIT method that
can select a proper number of components to make sure that the most
important components are included.

The assumption of the fifth-order analysis is that the underlying
spatial, spectral, and temporal factors are the same among all subjects,
however, with a subject-dependent strength given by the subject score
vector and with a variable strength in all conditions (Mørup et al.,
2006a). Our method satisfies the above assumption and meanwhile
reveals more interesting components and coherent activities compared
with previous study (Mørup et al., 2006b). Our findings are also in
line with related cognitive neuroscience explanations of proprioceptive
stimulus (Herrmann et al., 2004b; Arnfred et al., 2011).

2. Nonnegative CANDECOMP/PARAFAC decomposition

2.1. Notation

In this paper, we denote a vector by boldface lowercase letter,
such as 𝒙; a matrix by boldface uppercase letter, such as 𝑿; and a
high order tensor by boldface script letter, such as X. Operator ◦
represents outer product of vectors, ⟨ ⟩ represents inner product, J K
represents Kruskal operator, and ‖ ‖𝐹 means Frobenius norm. Nonneg-
ative CANDECOMP/PARAFAC decomposition is abbreviated as NCP for
convenience in following contents.

2.2. Mathematical model

Given a nonnegative 𝑁th-order tensor X ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 , NCP is to
solve the following minimization problem:

min
𝑨(1) ,…,𝑨(𝑁)

1
2
‖

‖

‖

X − J𝑨(1),… ,𝑨(𝑁)K‖‖
‖

2

𝐹

s.t. 𝑨(𝑛) ⩾ 0 for 𝑛 = 1,… , 𝑁,
(1)

where 𝑨(𝑛) ∈ R𝐼𝑛×𝑅 for 𝑛 = 1,… , 𝑁 are the estimated factor matrices in
different modes, 𝐼𝑛 is the size in mode-𝑛, and 𝑅 is the selected rank-1
tensor number (component number). The estimated factor matrices in
Kruskal operator can be represented by the sum of 𝑅 rank-1 tensors in
outer product form:

J𝑨(1),… ,𝑨(𝑁)K =
𝑅
∑

𝑟=1
X̃𝑟 =

𝑅
∑

𝑟=1
𝒂(1)𝑟 ◦⋯◦𝒂(𝑁)

𝑟 , (2)

where 𝒂(𝑛)𝑟 represents the 𝑟th column of 𝑨(𝑛).

2.3. Optimization scheme

Conventionally, there are many optimization methods that can be
applied to solve NCP problem, such as multiplicative updating (MU),
alternating least squares (ALS), hierarchical alternating least squares
(HALS) (Cichocki et al., 2009). Recently, Xu and Yin (2013) have
proposed the alternating proximal gradient (APG) method to solve
nonnegative matrix and tensor decomposition problems in block coor-
dinate descend (BCD) framework. APG outperforms many conventional
methods both in accuracy and efficiency. More importantly, it has
better convergence properties. Therefore, APG method is employed to
solve NCP in our study. We don’t make a comparison among different
optimization methods in this study, which might be done in future.

Supposing that 𝑨̂
(𝑛)

is an extrapolated point, 𝑮̂
(𝑛)

is the block-partial
gradient at 𝑨̂

(𝑛)
and 𝐿(𝑛) is a Lipschitz constant, factor matrix 𝑨(𝑛) can

be updated alternatively by

𝑨(𝑛) ← argmin
𝑨(𝑛)⩾0

⟨

𝑮̂
(𝑛)
,𝑨(𝑛) − 𝑨̂

(𝑛)⟩
+ 𝐿(𝑛)

2
‖

‖

‖

‖

𝑨(𝑛) − 𝑨̂
(𝑛)‖
‖

‖

‖

2

𝐹
. (3)

Furthermore, (3) can be rewritten in the closed form

𝑨(𝑛) ← max
(

0, 𝑨̂
(𝑛)

− 𝑮̂
(𝑛)
∕𝐿(𝑛)

)

. (4)

The detailed solution of NCP model (1) using APG and its convergence
analysis can be found in (Xu and Yin, 2013).

3. Component number estimation

Before applying tensor decomposition to EEG data, it is required
to determine a proper component number, which is the rank-1 tensor
number 𝑅 in (2). The component number is closely related to the rank of
tensor. For a two-way matrix 𝑿 ∈ R𝐼×𝐽 , it follows rank(𝑿) ⩽ min(𝐼, 𝐽 ),
but for a multi-way tensor X ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 , rank(X) can be even
larger than max(𝐼1, 𝐼2,… , 𝐼𝑁 ) (Sidiropoulos et al., 2017). Therefore, the
component number for tensor decomposition can be selected with a
large number, which is not restricted by the size in each mode. However,
it is nontrivial to determine 𝑅 by tensor rank. DIFFIT is a conventional
method to determine component number, and has been used in ERP
tensor data decomposition (Cong et al., 2012).

3.1. DIFFIT method

DIFFIT refers to the difference in data fitting, and is calculated based
on relative error/residual and the explained variance (or the explained
sum of squares) (Timmerman and Kiers, 2000; Mørup and Hansen,
2009). The relative error/residual of NCP is defined as

RelErr =
‖

‖

‖

X − J𝑨(1),… ,𝑨(𝑁)K‖‖
‖𝐹

‖X‖𝐹
. (5)

Let component number 𝑅 ∈
[

1,R
]

, where R is the empirically maximal
component number. When 𝑅 is selected, the explained variance of the
estimated 𝑅 components from NCP is

ExpVar(𝑅) = 1 −
‖

‖

‖

X − J𝑨(1),… ,𝑨(𝑁)K‖‖
‖

2

𝐹

‖X‖

2
𝐹

. (6)

In order to obtain a more precise value, NCP model is usually run many
times (e.g. 𝑇 times) for each 𝑅 and the average explained variance is
calculated yielding an averaged sequence

𝒆 =
[

ExpVar(1),… ,ExpVar(𝑅),… ,ExpVar(R)
]

. (7)

Then, calculate the DIF (difference of explained variance) and DIFFIT
as follows:

DIF(𝑅) = ExpVar(𝑅) − ExpVar(𝑅 − 1), (8)

DIFFIT(𝑅) = DIF(𝑅)
DIF(𝑅 + 1)

. (9)

Sometimes, NCP model is run tens or hundreds of times for each
𝑅, which is very time-consuming and even worse for big data or
higher-order tensor. Meanwhile, since the discrete sequence of averaged
explained variances has only R values (usually several tens), there prob-
ably exist serious fluctuations and fake spikes on the final DIFFIT curve.
Then, we propose an improved method named ‘‘smoothed DIFFIT’’.

3.2. Smoothed DIFFIT

Run NCP fewer times (𝑇 = 10,20, or other values according to the
computer’s computation ability) for each 𝑅, and obtain vector 𝒆 based
on (7). From vector 𝒆, a smooth curve is generated by polynomial curve
fitting (PCF) using a 𝑚th-order equation

𝑝(𝑥) = 𝑝1𝑥
𝑚 + 𝑝2𝑥

𝑚−1+,… ,+𝑝𝑚𝑥1 + 𝑝𝑚+1. (10)
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After polynomial curve fitting, the new sequence is

𝒆PCF =
[

ExpVarPCF(1),… ,ExpVarPCF(R)
]

. (11)

We recompute the DIF and DIFFIT as follows:

DIFPCF(𝑅) = ExpVarPCF(𝑅) − ExpVarPCF(𝑅 − 1), (12)

DIFFITPCF(𝑅) =
DIFPCF(𝑅)

DIFPCF(𝑅 + 1)
. (13)

4. Experiments and results

4.1. Data description

The ERP data in our experiment come from an open preprocessed
dataset associated with ERPWAVELAB toolbox (Mørup et al., 2007),
which can be downloaded from www.erpwavelab.org. The data were
collected from a proprioceptive experiment, in which two conditions
(left and right hand) were manipulated with the increment of handhold
load. An important part of the stimuli is the change of applied force
on a static muscle contraction, which is conceived as proprioceptive
stimulus (Mørup et al., 2006b). Fourteen subjects participated in the
experiment and 64 scalp electrodes were used to record EEG data. A
total of 360 trials (epochs) were obtained from each subject under each
condition. All epochs were transformed into time-frequency representa-
tion (TFR) by complex Morlet wavelet. In the wavelet transform, only
the frequency band from 15 Hz to 75 Hz were analyzed with linear
interval of 1 Hz. Then, inter-trial phase coherence (ITPC) (Delorme and
Makeig, 2004) was computed as an average spectral estimate across all
trials. Since the TFR was first applied to each trial and then the average
was calculated across trials, ITPC can be seen as induced oscillations of
brain (David et al., 2006). Meanwhile, ITPC only takes values between
0 and 1 (Delorme and Makeig, 2004; Cohen, 2014). Finally, a fifth-order
nonnegative tensor (channel × frequency × time × subject × condition
= 64 × 61 × 72 × 14 × 2) was generated. The structure of the fifth-order

tensor is shown in Fig. 2. The 61 frequency points represent 15–75 Hz,
and the 72 time points represent 0–346.68 ms.

The detailed EEG data collection and preprocessing procedures are
described in (Mørup et al., 2006b).

4.2. Component number selection

Both the original DIFFIT and our proposed smoothed DIFFIT methods
were tested. The results are shown in Fig. 3.

We tested NCP on the fifth-order tensor data by increasing 𝑅 from
1 to 50 (R = 50). With each selected component number 𝑅, NCP was
run 20 times. The averaged explained variance vector 𝒆, DIF and DIFFIT
curves are shown in Fig. 3(a)–(c). Obviously, many fluctuations appear
on the DIF and DIFFIT curves. From Fig. 3(b) we can find that the DIF
values at 𝑅 = 31 and 𝑅 = 44 are very close to 0. According to (9), this
will cause large DIFFIT values with two long fake spikes in Fig. 3(c) at
𝑅 = 30 and 𝑅 = 43. The DIFFIT curve in Fig. 3(c) entails very limited
useful information.

We fit 𝒆 by a 7th-order polynomial, and the obtained polynomial is

𝑝(𝑥) =2.0486−11𝑥7 − 3.9518−9𝑥6 + 3.0904−7𝑥5

− 1.2586−5𝑥4 + 2.8604−4𝑥3 − 3.6465−3𝑥2

+ 2.6685−2𝑥 + 7.3496−1.

The fitted curve 𝒆PCF is shown in Fig. 3(d). By visual inspection, the
results of 5th and 6th-order polynomials were under-fitting, while 8th
and 9th-order were over-fitting. 7th-order polynomial has the best fitting
for the data in our experiment.

Subsequently, DIFPCF and DIFFITPCF were calculated, as shown in
Fig. 3(e) and (f). In Fig. 3(f), when the DIFFIT value is larger than 1,
DIF curve decreases; when it is smaller than 1, DIF curve increases; and
when it equals to 1, DIF curve doesn’t change. The two local maximums
on DIFFIT curve at 𝑅 = 4 and 𝑅 = 24 indicate two positions on DIF
curve that have fast dropping rate. The values after 𝑅 = 45 can be
ignored due to the poor fitting at the end of the curve. From Fig. 3(e)
and (f) we find that at 𝑅 = 20 the DIF value decreases rapidly again
approaching to a rather low value, which indicates that, after 𝑅 = 20,

Fig. 2. Fifth-order ERP tensor (channel × frequency × time × subject × condition). This tensor has 64 channels, 61 frequency points representing 15–75 Hz, 72 time points representing
0–346.68 ms, 14 subjects and 2 conditions of stimuli on left and right hand.

243



D. Wang et al. Journal of Neuroscience Methods 308 (2018) 240–247

Fig. 3. DIFFIT for component number selection. (a)–(c) represent original DIFFIT method. (d)–(e) represent the proposed smoothed DIFFIT method.

the explained variance doesn’t increase that much. Based on above
analysis, we assume that, at 𝑅 = 20, the estimated factors of tensor
decomposition contain the most important EEG components. Therefore,
𝑅 = 20 is selected as the optimal component number in NCP model for
this fifth-order tensor data. In fact, our smoothed DIFFIT method can
estimate a narrow range of proper component numbers. For example, in
case of 𝑅 = 19 or 21, similar results can be obtained as 𝑅 = 20. However,
if 𝑅 = 30, more unimportant components, such as weak signals or noise,
might be included in the results.

4.3. Tensor decomposition implementation

4.3.1. Factor initialization
All factors of the five modes were initialized using normally dis-

tributed random numbers as in (Xu and Yin, 2013).

4.3.2. Stop criteria
Based on (5), the relative error/residual of NCP at the 𝑘th iteration

was defined as RelErr𝑘 =
‖

‖

‖

X−J𝑨(1)
𝑘 ,…,𝑨(𝑁)

𝑘 K‖‖
‖𝐹

‖X‖𝐹
. We terminated the NCP

decomposition process when the following condition between two
iterations 𝑘 and 𝑘 + 1 was satisfied:

𝑇stop = |RelErr𝑘 − RelErr𝑘+1| ≤ 𝜖,

where 𝜖 = 10−6 in this study.

4.4. Components analysis

In this section, we name the 𝑟th rank-1 tensor X̃𝑟 after decomposition
as the 𝑟th component. A component further contains spatial, temporal,
temporal, subject, and condition factor, which can be represented
by X̃𝑟 = 𝒂(𝑠𝑝𝑎𝑡𝑖𝑎𝑙)𝑟 ◦𝒂(𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙)𝑟 ◦𝒂(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙)𝑟 ◦𝒂(𝑠𝑢𝑏𝑗𝑒𝑐𝑡)𝑟 ◦𝒂(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)𝑟 according
to (2).
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After NCP decomposition, a total of 20 components were obtained.
The assumption of the fifth-order analysis is that the underlying spatial,
spectral, and temporal factors are the same among all subjects only with
differences in subject-dependent and condition-dependent strength. In
the results, we discovered five pairs of components (10 components)
with symmetric responses on topographies, which are shown in Figs. 4
and 5. It is clear that left-hand stimuli elicit activities in the right
hemisphere, and right-hand stimuli elicit activities in the left hemi-
sphere. We also calculated time-frequency representation (TFR) for each
component, which is the outer product of the spectral and temporal
factor. The frequency of TFR is presented in logarithm scale.

Fig. 4 shows the components with frequency oscillations in beta-
band (15–30 Hz). Fig. 4(a) displays a pair of components with symmetric
activities in right and left frontal lobe elicited by contralateral hand
stimuli. Both components appear within 15–20 Hz at 75 ms. This pair

of components was also found in (Mørup et al., 2006b). Fig. 4(b)
shows symmetric activities in right and left temporal lobe within 15–
20 Hz at 75 ms. Activities in Fig. 4(c) appear in right and left frontal
lobe within 25–30 Hz at 60 ms. These beta-band activities emerge
before 100 ms after stimulus onset, which is consistent with previous
study about beta-frequency oscillations of proprioceptive information
processing (Arnfred et al., 2011).

Fig. 5 demonstrates the components with frequency oscillations in
gamma-band (30–75 Hz). Fig. 5(a) shows symmetric activities in right
and left temporal lobe, and they occur within 30–40 Hz at 60 ms. This
pair of components was also found in Mørup et al. (2006b). In Fig. 5(b),
the other two components with the frequency of 40–75 Hz in the region
between parietal and temporal lobe appear respectively at 75 ms and
45 ms. It has been reported in (Mørup et al., 2006b; Arnfred et al.,
2011) that proprioceptive stimulus could elicit gamma-band activities
(GBA, 30–80 Hz). Our fifth-order tensor decomposition can extract

Fig. 4. Components of beta-band oscillations. These components have contralateral brain activities on topographies elicited by left-hand and right-hand stimuli respectively. Activities
in (a) appear in frontal lobe within 15–20 Hz at 75 ms. Activities in (b) occur in temporal lobe within 15–20 Hz at 75 ms. Activities in (c) emerge in frontal lobe within 25–30 Hz at
60 ms.
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Fig. 5. Components of gamma-band oscillations. These components have contralateral brain activities on topographies elicited by left-hand and right-hand stimuli respectively. Activities
in (a) appear in frontal lobe within 30–40 Hz at 60 ms. Activity of the first component in (b) occurs between right parietal and temporal lobes at 40 Hz and 75 ms. Activity of the second
component in (b) occurs between left parietal and temporal lobes within 40–75 Hz at 45 ms.

more gamma-band components compared with previous study (Mørup
et al., 2006b). These gamma-band activities, occurring before 100 ms
after stimulus onset in parietal and temporal region, are in accordance
with the match step of match-and-utilization model (MUM) in cognitive
neuroscience (Herrmann et al., 2004a,b). It is assumed in MUM that the
‘early’ gamma-band response reflects the matching of stimulus-related
information with memory contents that occur rapidly (before 150 ms)
after stimulus onset (Herrmann et al., 2004b). We infer that, when a
weight increment is exerted on subjects’ hand repeatedly during the
experiment, there will be a matching and comparison process between
the new proprioceptive-stimulus-related signals and existing memory
contents. These gamma-band activities in Fig. 5 can be regarded as the
results of the matching and comparison process.

In addition, we also discovered two extra components of high
strength in both left-hand and right-hand conditions. One of the com-
ponents occurs in occipital lobe with the frequency of 22 Hz at 80 ms,
while another occurs at the center of parietal lobe with the frequency
of 28 Hz at 130 ms. Perhaps, these two components were elicited by
non-proprioceptive stimulus.

5. Conclusion

In this study, we applied fifth-order NCP model to decompose a set of
fifth-order ERP tensor data collected by exerting proprioceptive stimulus
on left and right hand. The data were fully decomposed in all modes
(space, frequency, time, subject, condition), and the interaction infor-
mation among these modes was well retained. We also proposed an im-
proved smoothed DIFFIT method to select a proper component number
for NCP with the most important components being well-preserved after
decomposition. Compared with previous study, we discovered more
interesting components with symmetric and coherent activities elicited

by left-hand and right-hand stimuli. Our findings are consistent with the
explanations in related cognitive neuroscience studies. In future studies,
some aspects still need further consideration. From the perspective of
signal processing algorithm, it would be interesting to compare the
performance and stability of NCP tensor decomposition in fifth-order
ERP data implemented by different optimization methods, such as APG,
MU, ALS, and HALS. From the perspective of cognitive neuroscience
methodology, it is worth analyzing experiments results using diverse
data forms, such as fifth-order tensor analysis, reshaped third-order
tensor analysis, subject-based analysis and group-based analysis.
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Abstract. Tensor decomposition has been widely employed for EEG signal 

processing in recent years. Constrained and regularized tensor decomposition 

often attains more meaningful and interpretable results. In this study, we ap-

plied sparse nonnegative CANDECOMP/PARAFAC tensor decomposition to 

ongoing EEG data under naturalistic music stimulus. Interesting temporal, spec-

tral and spatial components highly related with music features were extracted. 

We explored the ongoing EEG decomposition results and properties in a wide 

range of sparsity levels, and proposed a paradigm to select reasonable sparsity 

regularization parameters. The stability of interesting components extraction 

from fourteen subjects’ data was deeply analyzed. Our results demonstrate that 

appropriate sparsity regularization can increase the stability of interesting com-

ponents significantly and remove weak components at the same time. 

Keywords: Tensor Decomposition, Sparse Regularization, Nonnegative Con-

straints, Ongoing EEG, Stability Analysis. 

1 Introduction 

In recent years, tensor decomposition [1] has gained more and more popularity for 

EEG data processing [2]. By time-frequency representation, multi-channel EEG data 

can be converted into a third-order (time × frequency × channel) tensor. In some EEG 

experiments, a seventh-order tensor may be generated potentially [2]. But sometimes 

basic tensor decompositions on EEG data can’t guarantee meaningful factors. For 

example, the third-order EEG tensor mentioned above is a nonnegative tensor essen-

tially. The extracted temporal components should be energy series which are 



2 

nonnegative. The spectral components should be spectra which are nonnegative and 

usually very sparse. The spatial components are topographies which are sometimes 

also sparse. Constrained and regularized tensor decomposition can make the results 

meaningful and interpretable [1]. 

Nonnegativity is often achieved by constrained optimization methods. Nonnegative 

constrains can naturally give sparse results [3], but this sparsity is only a side effect 

and not controllable. 𝑙1-norm regularization is an effective and widely applied method 

to impose sparsity explicitly [4], and has been employed for sparse and nonnegative 

tensor decomposition [5-7]. But these works regarding sparse regularization in tensor 

decomposition [5-7] only tested a few groups of sparsity regularization parameters, 

and demonstrated that their model can successfully impose sparsity on factors. No 

work, as far as we know, has studied how the change of sparsity level affects the re-

sults of tensor decomposition and the physical meanings in real application.  

In this study, ongoing EEG tensor data under naturalistic modern tango music 

stimulus are analyzed. Sparse nonnegative CANDECOMP/PARAFAC decomposition 

is employed to extract groups of interesting components whose temporal components 

are highly correlated with music features and whose spatial components have dipolar 

topographies. In order to reveal a clear picture of EEG components’ properties at 

different sparsity level, a large range of sparsity regularization parameters are tested. 

We propose a method to select reasonable regularization parameters that can best 

balance the data fitting and sparsity. We find that when sparsity regularization is im-

posed on tensor decomposition, the stability of interesting components is increased 

significantly. In our results, appropriate sparsity regularization can also remove weak 

components and elements on nonzero sparse components such as spectra. 

2 Sparse Nonnegative CANDECOMP/PARAFAC 

Decomposition 

2.1 Notation 

In this paper, a boldface lowercase letter, such as 𝒙, denotes a vector; a boldface up-

percase letter, such as 𝑿, denotes a matrix; and a boldface Euler script letter, such as 

𝓧, denotes a high order tensor. Operator ∘ denotes outer product of vectors, and ⟦ ⟧ 

denotes Kruskal operator. ‖∙‖𝐹  represents Frobenius norm, and ‖𝒙‖1  represents 𝑙1 -

norm of vector 𝒙. We call sparse nonnegative CANDECOMP/PARAFAC decomposi-

tion “sparse NCP” and the version without sparsity regularization “NCP” for short. 

2.2 Mathematical Model 

Given a tensor 𝓧 ∈ ℝ𝐼1×𝐼2×⋯×𝐼𝑁, sparse NCP is to solve the following problem: 

 min
𝑨(1),⋯,𝑨(𝑁)

1

2
‖𝓧 − ⟦𝑨(1), ⋯ , 𝑨(𝑁)⟧‖

𝐹

2
+ ∑ 𝛽𝑛 ∑ ‖𝒂𝑗

(𝑛)
‖

1

𝐾
𝑗=1

𝑁
𝑛=1  (1) 

s.t. 𝑨(𝑛) ≥ 0  for 𝑛 = 1, ⋯ , 𝑁, 
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where 𝑨(𝑛) ∈ ℝ𝐼𝑛×𝐾 for 𝑛 = 1, ⋯ , 𝑁 are estimated factors, and 𝒂𝑗
(𝑛)

 represents the 𝑗th 

column of 𝑨(𝑛). 𝛽𝑛 for 𝑛 = 1, ⋯ , 𝑁 are parameters of sparsity regularization items. 𝐾 

is the selected rank-1 tensor number, and the estimated factors in Kruskal operator 

can be represented by sum of 𝐾 rank-1 tensors in outer product form: 

                                        ⟦𝑨(1), ⋯ , 𝑨(𝑁)⟧ = ∑ 𝒂𝑗
(1)

 ∘ ⋯ ∘ 𝒂𝑗
(𝑁)

 𝐾
𝑗=1  (2) 

2.3 Model solution 

Sparse NCP in (1) is a highly nonlinear and nonconvex model, which is non-trivial to 

solve and converge. Recently, Xu applied an efficient alternating proximal gradient 

(APG) method to solve nonnegative matrix and tensor decomposition [8]. Later, Xu 

extended APG method to solve nonnegative Tucker decomposition with 𝑙1 -norm 

sparsity regularizations [7]. Inspired by Xu’s work [7], we utilize the same updating 

method in block coordinate descend (BCD) framework to solve problem (1). 

Supposing 𝑨̂(𝑛) is an extrapolated point, 𝑮̂(𝑛) is the block-partial gradient at 𝑨̂(𝑛) 

and 𝐿(𝑛) is a Lipschitz constant, factor matrix 𝑨(𝑛) is updated by 

    𝑨(𝑛) ← argmin
𝑨(𝑛)≥0

[〈𝑮̂(𝑛), 𝑨(𝑛) − 𝑨̂(𝑛)〉 +
𝐿(𝑛) 

2
‖𝑨(𝑛) − 𝑨̂(𝑛)‖

𝐹

2
+ 𝛽𝑛 ∑ ‖𝒂𝑗

(𝑛)
‖

1

𝐾
𝑗=1 ] (3) 

which can be written in the closed form 

                                      𝑨(𝑛) ← max (0, 𝑨̂(𝑛) −
𝑮̂(𝑛)

𝐿(𝑛) 
−

𝛽𝑛𝟏𝐼𝑛×𝐾

𝐿(𝑛) 
)  (4) 

The detailed solution and convergence properties of APG can be found in [7, 8]. 

3 Materials and methods 

3.1 EEG data and music signal 

Data description. The data in this study are ongoing EEG of fourteen right-handed 

and healthy adults under continuous and naturalistic modern tango music stimulus. 

Short-time Fourier transform (STFT) was applied to the EEG data, and a third-order 

tensor was created for each subject with size of 510×146×64 on temporal, spectral 

and spatial mode respectively. In this paper, we represent the estimated factors of the 

third-order EEG tensor as 𝑨(Temporal), 𝑨(Spectral) and 𝑨(Spatial). 

Acoustic features. Five long-term acoustic features, including two tonal features 

(Mode, Key Clarity) and three rhythmic features (Pulse Clarity, Fluctuation Centroid, 

Fluctuation Entropy), were extracted from the tango music [9]. STFT was also used 

for feature extraction and one acoustic feature temporal series contains 510 samples. 

The detailed data collection experiment paradigm and data preprocessing proce-

dures can be found in [10, 11]. Detailed acoustic features can be found in [9]. 
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3.2 Correlation Analysis 

According to previous studies [9, 10], we hypothesize that acoustic features (tonal and 

rhythmic components) can activate certain brain areas. We performed correlation 

analyses (by Pearson’s correlation coefficient) between the time series of long-term 

acoustic features and the time series of temporal components from EEG tensor de-

composition to find stimulus-related activations. Monte Carlo method and permuta-

tion tests were employed to compute the threshold of correlation coefficient [9, 10]. In 

the results of EEG tensor decomposition, the temporal components significantly cor-

related (at level p < 0.05) with any of the five acoustic features, and their corre-

sponding spectral and spatial components were recorded for further investigations. 

3.3 Sparsity Parameter Selection 

When applying sparse NCP model to decompose EEG tensor, a key point is the selec-

tion of sparsity regularization parameters 𝛽𝑛  in model (1), which balance the data 

fitting and sparsity level. Data fitting at iteration 𝑘 is defined by 

                                             Fit𝑘 = 1 −
‖𝓧−⟦𝑨𝑘

(1)
,⋯,𝑨𝑘

(𝑁)
⟧‖

𝐹

‖𝓧‖𝐹
, (5) 

which is a measure of similarity of estimated factors to original data tensor. The spar-

sity level of estimated factor 𝑨𝑘
(𝑛)

 at iteration 𝑘 is defined by  

                                             Sparsity
𝑨𝑘

(𝑛) =
#{𝑨𝑘

(𝑛)
(𝑖,𝑗)<𝑇𝑠}

𝐼𝑛×𝐾
, (6) 

where #{∙} means the number of elements in factor 𝑨𝑘
(𝑛)

 that satisfy the assumption. 

Strictly speaking, the factor sparsity should be measured by the number of elements 

that equal to zero. But in practice it is better to select a small positive sparsity thresh-

old 𝑇𝑠. In this study, we select 𝑇𝑠 = 1e − 6. 

In order to reveal a broad picture of data properties and results at different sparsity 

levels, we tested a large range of sparsity regularization parameters of 𝛽𝑛s for sparse 

NCP. The procedures are shown in the following steps. 

Step 1. For the temporal and spatial factor, select 𝛽temporal = 𝛽spatial = 𝑒𝝀1 and 

𝛽spectral = 𝑒𝝀2 . 𝝀1  and 𝝀2 contain 𝑁1  and 𝑁2  linearized numbers, then there will be 

𝑁1 × 𝑁2  different groups of parameter combinations [𝛽temporal, 𝛽spectral, 𝛽spacial] . 

𝛽temporal and 𝛽spatial are set by small numbers, and don’t have high sparsity effects. 

They are made the same in order to reduce the parameter group number. 

Step 2. Using each group of parameters, run sparse NCP 10 times, and record the 

average nonzero components number of spectral factor, the average fitting value us-

ing (5), and the average sparsity level of spectral factor using (6). Because the spectral 

components are usually very sparse, only the spectral factor is considered.  

Step 3. Reorder all of groups of results based on spectral factor sparsity level in as-

cend order with in [0,1], and generate the ‘Fit-Sparsity’ curve which reveal the fitting 

change at different spectral sparsity value.  
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Step 4. According to the ‘Fit-Sparsity’ curve, identify the maximum effective spar-

sity level based on the relative fitting change (slope) defined as 

                                     slope =
∆Fit

∆Sparsity
=

Fit(Sparsity1)−Fit(Spasity2)

Sparsity1−Sparsity2
. (7) 

When the slope at some sparsity point is very close to 0.5, the sparsity value and its 

corresponding sparsity parameters group 𝛽𝑛s are selected. We assume that the slope 

should not be less than −0.5, because after that the fitting value become poor dramat-

ically and the tensor decomposition results may be not accurate. 

3.4 Stability Analysis 

By correlation analysis introduced in section 3.2, we can find the interesting compo-

nents which are assumed to be stimulus-related activations. Tensor decomposition 

models of NCP with and without sparsity regularization were evaluated respectively. 

We evaluated the stability of these components using the following steps.  

Step 1. Run sparse NCP 5 times for one subject’s EEG tensor, and record those 

groups of temporal, spectral and spatial components whose temporal courses are sig-

nificantly correlated with any of five music features. Keep those groups of compo-

nents whose topographies (spatial components) are dipolar as templates [10]. We 

assume 5 times or more may yield more accurate templates. One group components 

of template can be represented by a rank-1 tensor of their outer product: 

𝓣 = 𝒕(Temporal) ∘ 𝒕(Spectral) ∘ 𝒕(Spatial) 

Step 2. Based on (2), after the tensor decomposition, 𝐾 rank-1 tensors in outer 

product form will be obtained. Supposing it is the 𝑟th time decomposition,  according 

to [12], the correlation coefficient of the 𝑗th rank-1 tensor and the template is  

𝜌(𝑗, 𝑟) = corr (𝒂𝑗
(Temporal)

, 𝒕
(Tempral)

) × corr (𝒂𝑗
(Spectral)

, 𝒕
(Spectral)

) 

                         × corr (𝒂𝑗
(Spatial)

, 𝒕
(Spatial)

) (8) 

where corr(∙,∙) is the calculation of Pearson’s correlation coefficient, 𝑗 = 1, ⋯ , 𝐾 and 

𝜌(𝑗, 𝑟) ∈ [0,1]. Then, calculate the maximum correlation coefficient [12] of the 𝐾 

rank-1 tensors with the template as: 

                                                      𝛲(𝑟) = max
𝑗=1,⋯,𝐾

𝜌(𝑗, 𝑟) (9) 

Step 3. Run sparse NCP 100 times, and record all 𝛲(𝑟), 𝑟 = 1, ⋯ ,100. Make a 

histogram of the 100 𝛲(𝑟) values. Because 𝛲(𝑟) ∈ [0,1], the number of occurrences 

within [0.95,1] is recorded as stability measurement criterion for further analysis. The 

higher this criterion number is, the more stable sparse NCP performs. 

Step 4. Within the 5 times runs in Step 1 many groups of templates that have very 

similar temporal, spectral and spatial components will be found. The highest criterion 

number of these templates after 100 times test will be kept. 
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4 Experiments and Results 

4.1 Tensor Decomposition Implementation 

Factor Initialization. All the factors were initialized using normally distributed 

rand numbers as in [8]. 

Stop Criteria. We stopped the iteration during tensor decomposition by criterion 

of relative residual change (fit change) according to (5), when the following condition 

between two iterations are satisfied: 

                                                    𝑇stop = |Fit𝑘 − Fit𝑘+1| < ϵ, (10) 

where, ϵ = 1e − 6 in this study. 

Components Number Selection. Before decomposing each participant’s EEG 

tensor, we should determine the components number for sparse NCP (1). A simple 

and convenient way was employed in this study. We made spatial mode unfolding of 

the third-order EEG tensor yielding a 64×74460 matrix where temporal and spectral 

modes were merged. Then we performed PCA along spatial mode on this matrix and 

recorded the principal components number that give 99% explained variance for each 

subject’s EEG tensor. The numbers for 14 subjects’ EEG tensor are listed in Table 1. 

Table 1. Components number selection of 14 subjects’ EEG tensors 

Subject #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 

Number 37 44 52 34 38 34 51 38 45 31 57 40 53 43 

4.2 Sparsity Regularization Parameters 

For the temporal and spatial factor, we selected 𝛽temporal = 𝛽spatial = 𝑒𝝀1 , where 

vector 𝝀1 = [−𝐼𝑛𝑓, −5: 0.2: 0] in MATLAB format; for the spectral factor, we select-

ed 𝛽spectral = 𝑒𝝀2 , where 𝝀2 = [−𝐼𝑛𝑓, −5: 0.2: 1] . The linear ranges of 𝝀1  and 𝝀2 

were selected by try and error method, and can be adjusted for different data. In our 

EEG data test, we found that using exponential form of a linearized vector parame-

ters, the spectral factor sparsity level were approximately uniformly distributed within 

[0,1], which helps to analyze the fitting change at different sparsity levels. Vector 𝝀1 

contains 27 numbers, and 𝝀2 contains 32 numbers, so there will be 27×32=864 groups 

of parameters. We expect to add strong sparsity parameters on spectral factor and 

weak sparsity parameters on temporal and spatial factors. All groups of parameters 

with 𝝀1 > 𝝀2 were removed, and finally, 509 groups were kept for test. 

Each of the 509 parameter groups were tested 10 times on sparse NCP, and the av-

erage nonzero components number of spectral factor, tensor fitting value, and sparsity 

level of spectral factor were recorded. Fig. 1. shows the results of subject #1’s tensor 

data after all the steps in Section 3.4. From Fig. 1. (a) we can find that, when more 

sparsity is added to spectral factor, some components become zeros, which are weak 

signal components. Fig. 1. (b) shows the tensor decomposition fitting changes at 
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Fig. 1. Sparsity regularization parameters selection for subject #1 

Table 2. Results of sparsity regularization parameters selection 

Subject 
Identified 

Sparsity 

Nonzero 

Comps 

Fitting 

Value 
[𝑒𝝀1 , 𝑒𝝀2 , 𝑒𝝀1] [𝝀1, 𝝀2, 𝝀1] 

#1 0.85 20.4 0.6667 [0.0608,1.2214,0.0608] [-2.8,0.2,-2.8] 

#2 0.87 28.5 0.6991 [0.0123,0.3012,0.0123] [-4.4,-1.2,-4.4] 

#3 0.86 42.5 0.6726 [0.0000,2.7183,0.0000] [-Inf,1.0,-Inf] 

#4 0.84 28.7 0.7683 [0.0183,0.2466,0.0183] [-4.0,-1.4,-4.0] 

#5 0.90 18.4 0.7241 [0.0150,0.1653,0.0150] [-4.2,-1.8,-4.2] 

#6 0.86 17.4 0.8084 [0.0123,0.0907,0.0123] [-4.4,-2.4,-4.4] 

#7 0.90 31.8 0.8095 [0.0067,0.1353,0.0067] [-5.0,-2.0,-5.0] 

#8 0.89 24.5 0.6870 [0.0183,1.8221,0.0183] [-4.0,0.6,-4.0] 

#9 0.88 28.8 0.6811 [0.0334,0.3679,0.0334] [-3.4,-1.0,-3.4] 

#10 0.88 19.5 0.7435 [0.0498,0.6703,0.0498] [-3.0,-0.4,-3.0] 

#11 0.93 37.2 0.7188 [0.0498,0.4493,0.0498] [-3.0,-0.8,-3.0] 

#12 0.90 19.8 0.7110 [0.0150,1.4918,0.0150] [-4.2,0.4,-4.2] 

#13 0.92 33.4 0.6992 [0.0224,0.2466,0.0224] [-3.8,-1.4,-3.8] 

#14 0.90 20.4 0.6899 [0.0123,0.6703,0.0123] [-4.4,-0.4,-4.4] 
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different spectral factor sparsity levels. When sparsity increases, fitting value decreas-

es gradually, because some weak components are removed. But after some sparsity 

point, the fitting value drops dramatically. In order to find this point, we smoothed the 

fitting curve in (b) by low-pass filter, as is shown in (c). Next, we computed the slope 

according to equation (7), as is shown in (d). Based on curve (d), the largest sparsity 

level value 0.85 before slope −0.5 was selected. Then we searched in all groups of 

sparsity regularization parameters and found the group [𝝀1, 𝝀2, 𝝀1] = [−2.8,0.2, −2.8] 

could attain the sparsity level 0.85 best. All subjects’ results are shown in Table 2. 

4.3 Sparsity and Stability Comparison 

From Table 2 we identified the sparsity regularization parameters group 

[𝛽temporal, 𝛽spectral, 𝛽spacial] = [𝑒𝝀1 , 𝑒𝝀2 , 𝑒𝝀1]  for each subject’s tensor data, using 

which we run tensor decomposition model (1). In order to make a comparison, we 

also tested the original NCP without any sparsity regularizations by setting 

[𝛽temporal, 𝛽spectral, 𝛽spacial] = [0,0,0]. 

Fig 2 shows two templates of subject #1 whose temporal components are both cor-

related with fluctuation centroid music feature series. One template has sparsity regu-

larization imposed, while another doesn’t. The histograms of stability analyses are 

also included. The template in Fig 2 (a) is selected from the 5th run of NCP and the 

14th rank-1 components, and has the highest stability measurement number (the num-

ber between [0.95,1]  on histogram) than other similar templates in the 5 runs. 
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(a) No sparsity regularization 
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(b) Sparsity regularization imposed 

Fig. 2. Fluctuation centroid templates and their stability analysis from subject #1 
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Table 3. Stability analyses of sparsity regularization for all subjects 

Subject 
Music 

Feature 

No Sparsity Regularization With Sparsity Regularization 

Template Index Stability Template Index Stability 

#1 
PulseClarity [Run#5, Comp#14] 42% [Run#5, Comp#23] 74% 

FlucCentroid [Run#2, Comp#12] 31% [Run#3, Comp#34] 46% 

#4 FlucCentroid [Run#3, Comp#9] 86% [Run#1, Comp#24] 97% 

#7 Key [Run#1, Comp#21] 57% [Run#2, Comp#30] 63% 

#8 

Mode [Run#4, Comp#35] 29% [Run#1, Comp#33] 60% 

Mode [Run#5, Comp#3] 16% [Run#3, Comp#15] 68% 

Key [Run#2, Comp#37] 17% [Run#1, Comp#22] 57% 

#9 Mode [Run#3, Comp#37] 10% [Run#4, Comp#23] 54% 

#10 
PulseClarity [Run#4, Comp#27] 48% [Run#2, Comp#25] 49% 

Key [Run#4, Comp#1] 57% [Run#2, Comp#20] 51% 

#11 
FlucCentroid [Run#5, Comp#55] 14% [Run#3, Comp#40] 55% 

Mode [Run#3, Comp#1] 73% [Run#1, Comp#56] 48% 

#13 

FlucEntropy [Run#2, Comp#17] 29% [Run#1, Comp#34] 58% 

FlucCentroid [Run#1, Comp#5] 16% [Run#5, Comp#52] 37% 

Key [Run#3, Comp#51] 30% [Run#2, Comp#20] 72% 

 

The template in Fig 2 (b) is selected from the 5th run of sparse NCP and the 23th 

rank-1 components. All of the results for 14 subjects are summarized in Table 3 with 

selected templates and stability analyses1. The selected pairs of templates for compar-

ison have very similar topographies and spectra, and appear in both situations with 

and without sparsity imposed on spectral components. 

Comparing the histograms in Fig 2 (a) and (b), we find that, with sparsity regulari-

zation the stabilities of selected templates components have obvious increases. Table 

3 further demonstrates that, for most of the subjects, when sparsity regularization is 

imposed on NCP for EEG data, the stability of extracting interesting components 

highly correlated with some certain music features are improved significantly. 

From Fig 1 (a) we observe that when high sparsity regularization is imposed on 

spectral factor, more components of full zeros appear. This is a general phenomenon 

for all subjects according to the nonzero components number in Table 2 and the se-

lected components numbers in Table 1. By carefully observing the spectrum in Fig 2 

(b) compared to that in (a), we also find that small elements are suppressed when 

sparsity regularization is imposed. We believe adding sparsity regularization not only 

can remove weak components but also help to suppress weak information on nonzero 

components for nonnegative tensor decomposition. 

5 Conclusion 

In this study, we applied sparse nonnegative CANDECOMP/PARAFAC decomposi-

tion to ongoing EEG tensor data collected under naturalistic music stimulus. Interest-

                                                           
1  The stability was measured by number of maximum correlation coefficient within [0.95,1]. 

But there are two exceptions of “#11-FlucCentroid” and “#13-FlucCentroid”, which were 

measured within [0.9,0.95], because no significant value appeared within [0.95,1]. 
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ing temporal components correlated with music features and corresponding spectral 

and spatial components were extracted. Mathematical properties and physical mean-

ings of the decomposition with sparsity regularization were deeply analyzed in a large 

range of sparsity levels. We proposed a method to select reasonable sparsity regulari-

zation parameters based on the derivative of fitting-sparsity curve. It can be concluded 

from our results that appropriate sparsity regularization on tensor decomposition can 

improve the stability of interesting components and suppress weak signals. 

 

Acknowledgements. This work was supported by the National Natural Science Foundation of 

China (Grant No. 81471742), the Fundamental Research Funds for the Central Universities 

[DUT16JJ(G)03] in Dalian University of Technology in China, and the scholarships from Chi-

na Scholarship Council (Nos. 201600090043 and 201600090042). 

References 

1. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., et al.: Tensor decomposition for signal pro-

cessing and machine learning. IEEE Transactions on Signal Processing. 65(13), 3551-3582 

(2017). 

2. Cong, F., Lin, Q.-H., Kuang, L.-D., et al.: Tensor decomposition of EEG signals: a brief 

review. Journal of neuroscience methods. 248, 59-69 (2015). 

3. Lee, D.D. and Seung, H.S.: Learning the parts of objects by non-negative matrix factoriza-

tion. Nature. 401(6755), 788-791 (1999). 

4. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal 

L1‐norm solution is also the sparsest solution. Communications on pure and applied 

mathematics. 59(6), 797-829 (2006). 

5. Mørup, M., Hansen, L.K., and Arnfred, S.M.: Algorithms for sparse nonnegative Tucker 

decompositions. Neural computation. 20(8), 2112-2131 (2008). 

6. Liu, J., Liu, J., Wonka, P., et al.: Sparse non-negative tensor factorization using 

columnwise coordinate descent. Pattern Recognition. 45(1), 649-656 (2012). 

7. Xu, Y.: Alternating proximal gradient method for sparse nonnegative Tucker decomposi-

tion. Mathematical Programming Computation. 7(1), 39-70 (2015). 

8. Xu, Y. and Yin, W.: A block coordinate descent method for regularized multiconvex opti-

mization with applications to nonnegative tensor factorization and completion. SIAM 

Journal on imaging sciences. 6(3), 1758-1789 (2013). 

9. Alluri, V., Toiviainen, P., Jääskeläinen, I.P., et al.: Large-scale brain networks emerge 

from dynamic processing of musical timbre, key and rhythm. Neuroimage. 59(4), 3677-

3689 (2012). 

10. Cong, F., Alluri, V., Nandi, A.K., et al.: Linking brain responses to naturalistic music 

through analysis of ongoing EEG and stimulus features. IEEE Transactions on Multime-

dia. 15(5), 1060-1069 (2013). 

11. Wang, D., Cong, F., Zhao, Q., et al.: Exploiting ongoing EEG with multilinear partial least 

squares during free-listening to music. In: 2016 IEEE 26th International Workshop on Ma-

chine Learning for Signal Processing (MLSP), pp. 1-6. IEEE, Salerno, Italy (2016). 

12. Cong, F., Phan, A.H., Zhao, Q., et al.: Benefits of multi-domain feature of mismatch nega-

tivity extracted by non-negative tensor factorization from EEG collected by low-density 

array. International journal of neural systems. 22(06), 1250025 (2012). 



PV

EXPLOITING ONGOING EEG WITH MULTILINEAR 
PARTIAL LEAST SQUARES DURING FREE-LISTENING TO 

MUSIC

by

Deqing Wang, Fengyu Cong, Qibin Zhao, Petri Toiviainen, Asoke K. 
Nandi, Minna Huotilainen, Tapani Ristaniemi and Andrzej Cichocki 2016

2016 IEEE International Workshop on Machine Learning for Signal 
Processing (MLSP), Salerno, Italy

https://doi.org/10.1109/MLSP.2016.7738849

Reproduced with kind permission of IEEE.



2016 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 13–16, 2016, SALERNO, ITALY 
 

 
EXPLOITING ONGOING EEG WITH MULTILINEAR PARTIAL LEAST SQUARES 

DURING FREE-LISTENING TO MUSIC 
 

Deqing Wang1,2, Fengyu Cong1,2, Qibin Zhao3, Petri Toiviainen4, Asoke K. Nandi5,6, Minna Huotilainen7 
Tapani Ristaniemi2,  Andrzej Cichocki3 

 
1. Department of Biomedical Engineering, Faculty of Electronic Information and Electrical 

Engineering, Dalian University of Technology, China 
2. Department of Mathematical Information Technology, University of Jyväskylä, Finland 

3. Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Japan 
4. Finnish Centre of Excellence in Interdisciplinary Music Research, University of Jyväskylä, Finland 

5. Department of Electronic and Computer Engineering, Brunel University, UK 
6. College of Electronics and Information Engineering, Tongji University, Shanghai, China 

7. Finnish Institute of Occupational Health, Helsinki, Finland 
 

ABSTRACT 
 
During real-world experiences, determining the stimulus-
relevant brain activity is excitingly attractive and is very 
challenging, particularly in electroencephalography. Here, 
spectrograms of ongoing electroencephalogram (EEG) of 
one participant constructed a third-order tensor with three 
factors of time, frequency and space; and the stimulus data 
consisting of acoustical features derived from the 
naturalistic and continuous music formulated a matrix with 
two factors of time and the number of features. Thus, the 
multilinear partial least squares (PLS) conforming to the 
canonical polyadic (CP) model was performed on the tensor 
and the matrix for decomposing the ongoing EEG. 
Consequently, we found that brain activity of majority of 
participants was significantly correlated with the musical 
features in time domain, and that such brain activity showed 
frontal or central or posterior or occipital distributions along 
the scalp, and that such brain activity could be of different 
oscillation bands in frequency domain. 
 

Index Terms— Ongoing EEG, music, multilinear 
partial least squares, tensor decomposition,   
 

1. INTRODUCTION 
 
Electroencephalography is one of the most commonly used 
brain imaging methods since 1920s [1]. The corresponding 
recording by electrodes along the scalp, 
electroencephalogram (EEG), can be divided into three 
categories including spontaneous EEG without any stimulus, 
for example, under the resting state or sleeping [2], event-
related potentials (ERPs) elicited by controlled and rapidly 
repeated stimuli [3], and ongoing EEG during real-world 

experiences [4, 5]. ERPs indeed can be further grouped into 
averaged EEG data over single trials and single-trial EEG 
data, and the former is mainly for cognitive neuroscience 
research [3] and the latter has been largely used in brain 
computer interface [6]. In contrast to spontaneous EEG and 
ERPs, ongoing EEG is not well studied yet, mainly due to 
the difficulty for data processing and analysis, as well as a 
lack of prior knowledge with regard to such data. 

During real-world experience, one of interesting topics is 
to determine the stimulus-relevant brain activity. The most 
straightforward way is to analyze correlation coefficient of 
two temporal courses representing the oscillations of EEG 
data and acoustic features of stimulus data [4].  Actually, 
relationship between two sets of variables representing by 
matrices and vectors can be also revealed by canonical 
correlation coefficient (CCA) [7] and partial least squares 
(PLS) [8] by maximizing coherence and covariance. When 
the two sets of the variables are multi-way data, multilinear 
PLS, the extension of PLS, can provide such an opportunity 
to analyze interactions of all modes directly [9].  

Multilinear PLS can be used for the analysis of one 
tensor and one matrix or two tensors [9].  Spectrograms of 
spontaneous EEG data can be represented by a third-order 
tensor with factors of time, frequency and space. Multilinear 
PLS was used to analyze the EEG data and fMRI data 
represented by a matrix with factors of time and space, and 
related information between two modalities of brain data 
were examined [10]. In another study [11] spontaneous EEG 
and single-trial ERP data were represented by a third-order 
tensor with factors of epoch, feature and space, and the 
feature factor included features of EEG in different domains. 
Multilinear PLS was performed on the tensor and labels of 
different epochs for seizure recognition [11] and also for the 
simultaneous EEG and electromyography (EMG) [12]. 



Hence, like PLS, multilinear PLS can be used as PLS 
correlation and PLS regression in brain imaging [13].  

In this study for each participant in a free-listening 
experiment using a 512-second modern tango, we performed 
multilinear PLS on a third-order tensor (with factors of time, 
frequency and space of ongoing EEG elicited by naturalistic 
and continuous music) and a matrix of musical features. For 
comparison, we also applied PLS on the vectorized brain 
data and stimulus data since it has been applied to analyze 
brain imaging data widely [13]. We found music-associated 
patterns of brain activity of majority of participants in such 
naturalistic and continuous brain data. 
 

2. METHOD 
 
2.1 Data description  
 
Fourteen right-handed and healthy adults aged 20 to 46 
years old in Finland participated in the free-listening 
experiment and none of participants had musical expertise. 
The stimulus was an 8.5-minute long musical piece of 
modern tango by Astor Piazzolla [4]. During the experiment, 
they were told to listen to music and sit as still as possible 
with eyes open. Ongoing EEG data were collected by 10-20 
system with BioSemi bioactive electrode caps (64 electrodes 
in the cap plus 5 external electrodes at the tip of the nose, 
left and right mastoids and around the right eye both 
horizontally and vertically). Between each measuring 
electrode and the Common Mode Sense electrode, the 
direct-current mean value was kept under ±25 µV. The 
reference was the external electrode of the nose, and EEG 
were collected with the sampling rate of 2048 Hz for off-
line processing.  

Ongoing EEG data of our study were first preprocessed 
using EEGLAB [14]. They were down-sampled to 256 Hz 
to reduce the size of datasets without losing important data 
information. Subsequently, the 1 Hz high-pass and 30 Hz 
low-pass filters were applied on data of each participant at 
each channel. Next, the ongoing EEG data were visually 
checked and no obvious artifacts from head movement were 
found. The data were then used for further analysis. In order 
to remove EOG (i.e., eye blinks), independent component 
analysis (ICA) was performed on ongoing EEG data of each 
participant. The application of ICA in this dataset has been 
introduced in [4]. Hereinafter, when ongoing EEG is 
mentioned, it means the preprocessed one.  
 
2.2 Third-order tensor of ongoing EEG 
 
The short-time Fourier transform (STFT) was applied to the 
ongoing EEG in order to obtain the spectrogram, i.e., time-
frequency representation. The duration of the window was 
three seconds, and the overlap between two adjacent 
windows was two seconds. This was consistent with 
acoustical feature extraction [4]. In addition, a Hamming 

window was used to segment the ongoing EEG, and the 
number of points for Fourier transform was 1284 which was 
five times the sampling frequency (i.e., 256 Hz). As the data 
were filtered by 1 Hz high-pass and 30 Hz low-pass filters, 
the spectrogram between 1 Hz and 30 Hz was used for 
further analysis. Later, a third-order tensor of ongoing EEG 
was created for each participant. Factors of the tensor were 
time (510 samples), frequency (146 bins) and space (64 
electrodes).  
 
2.3 Musical features 
 
Five acoustic features [15] were examined as tonal and 
rhythmic musical features here. Acoustical features were 
extracted using a frame-wise approach. The duration of each 
frame was 3 seconds and the overlap between two adjacent 
frames was two seconds. Therefore, one temporal course 
with 510 samples was produced for each feature.  

The five acoustic features can be divided into two groups 
including two tonal and three rhythmic musical features. 
The tonal ones consist of Mode (strength of major or minor 
mode) and Key Clarity (the measure of the tonal clarity), 
while the rhythmic features include Fluctuation Centroid, 
Fluctuation Entropy, and Pulse Clarity [15]. Fluctuation 
centroid is the geometric mean of the fluctuation spectrum.  
It is for the global repartition of rhythm periodicities within 
the range of 0–10, indicating the average frequency of these 
periodicities. Fluctuation entropy is the Shannon entropy of 
the fluctuation spectrum.  It represents the global repartition 
of rhythm periodicities and is a measure of the noisiness of 
the fluctuation spectrum. Pulse Clarity naturally estimates 
clarity of the pulse. Hereinafter, acoustical features of music 
are called musical features.  
 
2.4 Partial least squares  
 
The standard PLS [13] seeks the common latent vectors 
from brain data 𝐗𝐗 ∈ 𝕽𝕽𝐼𝐼×𝐾𝐾 and behavior data 𝐘𝐘 ∈ 𝕽𝕽𝐼𝐼×𝐽𝐽, and 
the constraint is that those latent vectors mostly explain the 
covariance between the brain and the behavior data. Hence, 
the standard PLS reads  

 𝐗𝐗 = 𝐓𝐓𝐏𝐏𝑇𝑇 + 𝐄𝐄𝐗𝐗,                                (1) 
𝐘𝐘 = 𝐔𝐔𝐂𝐂𝑇𝑇 + 𝐄𝐄𝐘𝐘,                                (2) 

where 𝐓𝐓 = [𝐭𝐭1, 𝐭𝐭2,⋯ , 𝐭𝐭𝑅𝑅] ∈ ℜ𝐼𝐼×𝑅𝑅, 𝐓𝐓𝑇𝑇𝐓𝐓 = 𝐈𝐈, 𝐈𝐈 is the identity 
matrix, 𝐓𝐓 includes the extracted orthonormal latent vectors 
from brain data 𝐗𝐗; 𝐔𝐔 = [𝐮𝐮1,𝐮𝐮2,⋯ ,𝐮𝐮𝑅𝑅] ∈ ℜ𝐼𝐼×𝑅𝑅  consists of 
latent vectors from behavior data 𝐘𝐘; 𝐏𝐏 and 𝐂𝐂 correspond to 
loadings; and 𝐄𝐄𝐗𝐗 and 𝐄𝐄𝐘𝐘 represent the residuals from brain 
data 𝐗𝐗  and behavior data 𝐘𝐘 , respectively. By PLS, 𝐔𝐔 
column-wisely has the maximum covariance with 𝐓𝐓, and the 
simplest model to mostly represent 𝐘𝐘 is given by 

𝐔𝐔 ≈ 𝐓𝐓𝐓𝐓,                                  (3) 
where 𝐃𝐃  is a diagonal matrix and its elements are 𝑑𝑑𝑟𝑟𝑟𝑟 =
𝐮𝐮𝑟𝑟𝑇𝑇𝐭𝐭𝑟𝑟 𝐭𝐭𝑟𝑟𝑇𝑇𝐭𝐭𝑟𝑟(𝑟𝑟 = 1,⋯ ,𝑅𝑅)⁄  which are the regression 
coefficients to predict 𝐘𝐘. 



2.5 Multilinear partial least squares  
 
In our study, a third order tensor  𝐗𝐗 ∈ ℜ𝐼𝐼×𝐾𝐾×𝑀𝑀  represents 
brain activity with factors of time, frequency and space, and 
musical stimulus data are denoted by a matrix 𝐘𝐘 ∈ ℜ𝐼𝐼×𝐽𝐽 . 
Multilinear PLS in the form of 𝑁𝑁-way PLS (𝑁𝑁-PLS) [9, 16] 
is used in this study. 𝑁𝑁 -PLS is indeed based on the 
canonical polyadic (CP) model [17].  Thus, the tensor  𝐗𝐗  
and the matrix 𝐘𝐘 in 𝑁𝑁-PLS can be decomposed as below,  

𝐗𝐗 = ∑ 𝐭𝐭𝑟𝑟𝑅𝑅
𝑟𝑟=1 ∘ 𝐩𝐩𝑟𝑟 ∘ 𝐪𝐪𝑟𝑟 + 𝐄𝐄𝐗𝐗                    (4) 

𝐘𝐘 = ∑ 𝑑𝑑𝑟𝑟𝑟𝑟𝐭𝐭𝑟𝑟𝐜𝐜𝑟𝑟𝑇𝑇𝑅𝑅
𝑟𝑟=1 + 𝐄𝐄𝐘𝐘,                       (5) 

where ‘∘’ denotes the outer product of two vectors, 𝐭𝐭𝑟𝑟 ∈
ℜ𝐼𝐼×1 represents the temporal component and is shared by  𝐗𝐗  
and  𝐘𝐘,  𝐩𝐩𝑟𝑟 ∈ ℜ𝐾𝐾×1 is the spectral component, 𝐪𝐪𝑟𝑟 ∈ ℜ𝑀𝑀×1 
denotes the spatial component of ongoing EEG, 𝑑𝑑𝑟𝑟𝑟𝑟 =
𝐮𝐮𝑟𝑟𝑇𝑇𝐭𝐭𝑟𝑟 𝐭𝐭𝑟𝑟𝑇𝑇𝐭𝐭𝑟𝑟(𝑟𝑟 = 1,⋯ ,𝑅𝑅)⁄ , and 𝐮𝐮𝒓𝒓 = 𝐘𝐘𝐜𝐜𝑟𝑟. For simplicity, we 
remove index 𝑟𝑟  and present how each component is 
sequentially optimized. Under 𝑁𝑁-PLS, ∀ 𝑟𝑟, 𝑟𝑟 = 1,⋯ ,𝑅𝑅, the 
vectors 𝐩𝐩, 𝐪𝐪, and  𝐜𝐜 satisfy 

{𝐩𝐩,𝐪𝐪, 𝐜𝐜} = arg max�
𝐩𝐩,𝐪𝐪,𝐜𝐜

[cov(𝐭𝐭,𝐮𝐮)],              (6) 

where s.t. 𝑡𝑡𝑖𝑖 = ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑘𝑘𝑞𝑞𝑚𝑚𝑀𝑀
𝑚𝑚=1

𝐾𝐾
𝑘𝑘=1 , ‖𝐩𝐩‖22 = ‖𝐪𝐪‖22 = 1. 

Multilinear PLS was first implemented through 
alternating least squares (ALS) [9, 16]. Recently, we found 
that the fast higher-order orthogonal iteration (HOOI) based 
higher-order partial least squares (HOPLS) [18] can also be 
used for 𝑁𝑁-PLS due to high computing efficiency. Therefore, 
the latter is applied for 𝑁𝑁-PLS here instead of ALS.  

It should be noted that the variance and polarity of an 
extracted component by multilinear PLS are indeterminate, 
which exists inherently in most of matrix and tensor 
decompositions. In this study, we do not aim to correct such 
indeterminacy since we do not compare power of brain 
activity among different participants.      

 
2.6 Data processing for PLS 
 
In order to reveal the strength of multilinear PLS, the 
standard PLS was applied to decompose the brain data and 
stimulus data here. For PLS, factors of frequency and space 
were vectorized, therefore, the third-order tensor was 
reshaped into a matrix with the factors of time and 
frequency-space. The number of extracted components for 
PLS was referenced to the number for multilinear PLS (see 
the next sub-section). After decomposition, each frequency-
space component represented by a vector was reshaped into 
a matrix with the factors of frequency and space. Then, 
according to the frequency band of each oscillation among 
delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz) and beta (13-
30Hz), the integral over an oscillation frequency band in the 
matrix was applied to produce the spatial component of one 
oscillation. Next, residual dipole variance (RDV) in brain 
imaging was analyzed for each spatial component to 
examine the reliability of the component because reliable 
brain activity is assumed to be dipolar [19].  

2.7 Data processing for multilinear PLS 
 
Based on a tensor representation of brain activity and a 
matrix of the music stimulus data, multilinear PLS was 
performed to extract temporal, spectral and spatial 
components of brain activity given a predefined number of 
components. Then, reliable spatial components were 
selected according to the analysis of RDV. Correspondingly, 
the temporal and spectral components were automatically 
chosen due to the applied CP model for multilinear PLS. 
Next, the selected temporal components were correlated 
with each musical feature of the music stimulus, and the 
threshold for significant correlation coefficients was 
determined. Subsequently, the temporal components 
significantly correlated with musical features were chosen, 
as well as the corresponding spectral and spatial components 
in the CP model. Hence, determining brain activity relevant 
to the music stimulus depended on two criteria: whether its 
spatial map showed dipolar brain activity, and whether its 
temporal component was significantly correlated with any 
of musical features of the music stimulus.  

Following this process, brain activity relevant to the 
music stimulus can be discovered and its multi-factor 
patterns in the time, frequency and spatial domains can be 
known for each participant individually. 
 
2.8 Data decomposition 
 
The number of components in multi-way data 
decomposition is a critical parameter. This study 
implemented the method called DIFFIT (difference of fit) 
[20] to determine it. Here, fits of stimulus data were used for 
DIFFIT and the numbers of components extracted by 
multilinear PLS ranged from 2 to 70. Then, DIFFIT 
suggested one number of components, 𝑅𝑅, for decomposition. 
In this study, before decomposition, each temporal course 
was centered both in brain data and stimulus data. Singular 
value decomposition (SVD) was used to initialize the factor 
matrices for HOOI. Due to this determined initialization, the 
decomposition was only run once in this study, and the first 
𝑅𝑅 temporal components from ongoing EEG, as well as the 
corresponding spectral and spatial components, were used 
for further analysis after the implementation of DIFFIT.   
 
2.9 Residual dipole variances of spatial components 
 
When EEG data are decomposed by linear or multilinear 
transformations, the reliability of an extracted component 
should be examined to determine the appropriateness of the 
decomposition procedure. Recently, reliability of an ICA 
component has been investigated with a single equivalent 
dipole model in brain imaging [19]. It has been assumed that 
brain activity should be dipolar, resulting in low RDV, when 
a spatial component along scalp, i.e., topography, is used for 
source localization. Although the single equivalent dipole 
model may not be accurate enough, many spatial 



components with high RDV can be immediately rejected 
since their possibilities showing real brain activity are very 
low. Furthermore, as mentioned earlier, we do not have 
enough knowledge from ongoing EEG data elicited by 
naturalistic and continuous music. Therefore, such an 
approach can assist us to find relatively reliable spatial 
components. Here, spatial components with RDV less than 
10% were chosen for further analysis, as well as the 
corresponding temporal and spectral components. Such a 
threshold was used in [19]. 
 
2.10 Threshold for correlation coefficient  
 
Statistically, examination of the significance of the 
correlation coefficient between two temporal courses is 
important. One threshold was derived from one musical 
feature and 𝐿𝐿 (𝐿𝐿 is the number of diploe spatial maps among 
𝑅𝑅 extracted spatial components by PLS or multilinear PLS, 
𝐿𝐿 ≤ 𝑅𝑅) temporal courses for each participant with correction 
for multiple comparisons based on Monte-Carlo method [15] 
and the permutation test procedure. Temporal components 
of interest were determined as the ones possessing 
significant correlations (p < 0.001) with musical features. 
 
2.11 Group-level data analysis 
 
Given one musical feature of the music stimulus, the 
temporal components from ongoing EEG (significantly 
correlated with the musical feature) from different 
participants can be found. Subsequently, the similarity and 
dissimilarity of the corresponding spatial components from 
those participants can be revealed, and so do the associated 
spectral components. Here, if more than half of all 
participants possess such temporal components given any 
musical feature, brain activity and the musical feature are 
reported hereinafter.  
 

 

3. RESULTS 
 

3.1 Spectrogram of ongoing EEG 
Fig.1 shows the spectrogram of averaged ongoing EEG over 
14 participants in the experiment at four representative 
electrodes. The alpha oscillation clearly presented at Pz. 
However, the correlation coefficient between the temporal 
courses of EEG oscillations and the temporal courses of 
musical features shown in Fig.2 was not significant for most 
of participants [4]. Thus, no further analysis was done. 
 
3.2 Decomposition of PLS  
As we have mentioned in last section, the number of 
extracted components by PLS was referenced to multilinear 
PLS. For each oscillation, among all 514 (the mean over 14 
participants was about 37 and the standard deviation (SD) 
was about 15) extracted spatial components by PLS for all 
14 participants, the number of spatial components with 
RDV less than 10% was very small. They were 19 (about 4% 
of 514) for delta, 32 (about 6% of 514) for theta, 75 (about 
15% of 514) for alpha, and 21 (about 4% of 514) for beta. 
Since the number of reliable spatial components was not 
considered to be enough for any oscillation, we did not 
analyze the corresponding temporal or spectral components.   
 
3.3 Decomposition of multilinear PLS  
 
Residual diploe variances of spatial components 
The number of spatial components with RDV less than 10% 
was 97 (the mean over 14 participants was about 7 and SD 
was about 4, and each participant had at least one 
component). This means about 19% of all 514 spatial 
components of all participants showed dipolar brain activity. 
Such results were comparable with several blind source 
separation methods for ERPs [19].  
    Then, the 97 spatial components’ corresponding temporal 
components and spectral components were further analyzed.  
 
 

 
Fig.1 Spectrogram of ongoing EEG 

 
Fig.2 Temporal courses of five musical features 



Brain activity relevant to music 
For the musical feature of the music stimulus, Pulse Clarity, 
the number of participants whose temporal components 
significantly correlated with it was five, and was less than 
half of 14 participants. Therefore, the components relevant 
to this feature are not shown hereinafter. For any of other 
four features, the number of participants whose temporal 
components significantly correlated with it was at least eight.   

Figs. 2 and 3 respectively show the five musical features 
and selected temporal components which were significantly 
correlated with the musical feature #2, as well as their 
corresponding spatial and spectral components. It should be 
noted these temporal components were selected from all 514 
components of all 14 participants, and their corresponding 
spatial maps showed dipolar brain activity. Each temporal 
course/component was centered and normalized to its own 
SD. The averaged correlation coefficient between the 
musical feature ‘Fluctuation Entropy’ and the selected 
temporal components was 0.26 (SD: 0.058). For 
‘Fluctuation Centroid’, ‘Mode’, and ‘Key’, they were 0.31 
(SD: 0.058), 0.21 (SD: 0.029), and 0.22 (SD: 0.043), 
respectively. 
 
 

 
(a) 

As for the corresponding spectral components associated 
with the selected temporal components in Fig. 3, power of 
different spectral components from different participants 
maximized at different frequency ranges. In contrast to the 
spectrum of ongoing EEG shown in Fig. 1, brain activity 
relevant to music appeared with higher possibility in higher 
frequency bands by multilinear PLS although power of low 
frequency bands dominated the ongoing EEG in the 
electrode field. 

4. DISCUSSION  
 
We proposed an efficient approach in order to decompose 
ongoing EEG in a free-listening experiment mainly by 
multilinear PLS conforming to the canonical polyadic (CP) 
model. From ongoing EEG of normal adults listening to a 
piece of 512-second modern tango, we found brain activity 
of interest which was significantly correlated with the music 
stimulus. Actually, such coherence between ongoing EEG 
and music can be expected since theta and alpha oscillations 
in an ICA study on the same dataset were found 
significantly associated with the same music [4].  

The proposed approach is different from the previous 
reports where temporal courses of EEG oscillations based 
on spectrogram of ICA components [4]  and  temporal 
components extracted by tensor decomposition from just the 
EEG tenor [5] were correlated with musical features. As 
shown in Eq. (4), the proposed approach using multilinear 
PLS allows examination of spectral components relevant to 
the music stimulus, providing the opportunity to observe the 
spectral structure of brain activity particularly of wider 
frequency band in the frequency domain. Furthermore, 
without surprise, multilinear PLS outperformed standard 
PLS here. If the beta oscillation, which ranges from 13Hz to 
30Hz, was calculated based on the integral of frequency in 
this range in the spectrogram of ongoing EEG, it would be 
unknown in which specific sub-band brain activity could be 
in the frequency domain.   

 

 
(b)                                                                                          (c) 

Fig.3 Selected temporal components (a) which were significantly correlated with four musical feature #2 ‘Fluctuation Centroid’, as 
well as their corresponding spatial (b) and spectral components (c). 



With the proposed data processing approach, patterns of 
brain activity relevant to the music stimulus across majority 
of participants were found diverse both in different 
oscillation bands in the frequency domain and in 
hemispheres and locations along the scalp in the spatial 
domain. Generally speaking, in ERP and spontaneous EEG 
experiments, it is expected that different participants in one 
group can share similar patterns of brain activity in the time, 
frequency, and spatial domains. Such difference between 
ERP/spontaneous EEG and ongoing EEG is assumed to be 
associated with experimental designs. In the free-listening 
experiment, natural brain activity is recorded due to the 
naturalistic and continuous auditory stimulus, and it is 
reasonable that different people respond to the same 
stimulus differently. Indeed, brain activity of different 
participants in the same group shares a similar pattern is 
desired when the goal is to reveal the difference in brain 
activity among different groups. For such a purpose, 
different constraints including independence, nonnegativity, 
and sparsity, and so on, can be exploited when ongoing EEG 
data are decomposed.  
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