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Interactive Inverse Modeling Based
Multiobjective Evolutionary Algorithm

Karthik Sindhya* and Jussi Hakanen

Abstract An interactive version of the inverse modeling based multiobjective evo-
lutionary algorithm is presented. Instead of generating a representation of the whole
Pareto optimal front, the algorithm aims at producing solutions in the regions where
the decision maker is interested in. This is facilitated through an interactive solution
process where the decision maker iteratively evaluates a set of solutions shown to
her/him and the preference information obtained is used to adapt the search process
of the algorithm.

1 Introduction

Recently, preference-based multiobjective evolutionary approaches have become an
important research topic among evolutionary multiobjective optimization (EMO,
see e.g. [4]). Instead of approximating the whole Pareto front, that is, the set of all
Pareto optimal solutions in the objective space, it is typically of interest to approxi-
mate only some region of the Pareto front that the decision maker (DM) is interested
in (see e.g. [1]). In order to enable the DM to learn about the behaviour of the prob-
lem considered and about his/her own preferences, (s)he should be able to change
her/his preferences based on the solutions obtained during the solution process. This
can be achieved by using interactive methods on top of preference-based multiob-
jective evolutionary approaches [8]. More information on interactive multiobjective
optimization methods in general can be found in [10]. Interactive EMO algorithms
are especially useful for problems having more than three objectives when the tra-
ditional EMO algorithms are no longer efficient [6].
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Several interactive multiobjective evolutionary algorithms have been proposed in
the literature. For an extensive review of these interactive algorithms refer [11]. Here
we present some prominent ones. In [5], a novel interactive optimization tool called
I-EMO was proposed. Here first a set of Pareto optimal solutions were generated
using an EMO algorithm and then a DM was helped through a graphical user inter-
face to find her/his preferred solution(s) among them. Thiele et. al ([12]) proposed
a preference based evolutionary algorithm for multiobjective optimization, wherein
the DM progressively provided preference information in every generation as de-
sirable objective function values and directed the search towards only preferable
regions of the Pareto optimal front. In [6], Deb et al. proposed a progressively inter-
active EMO algorithm called PI-EMO. In PI-EMO algorithm, the DM is asked to
provide preference information after every fixed interval of generations. The prefer-
ence information is provided as a ranking of selected solutions shown in the current
generation, which is subsequently used to construct an utility function. This utility
function is further used to direct the search towards preferable solutions of the DM.

An emerging approach in EMO is estimation of distribution algorithms which
instead of traditional reproduction operators build probabilistic models estimating
the distribution of promising candidate solutions, New solutions are then produced
by sampling the obtained distributions. A recent example of such an algorithm is
the inverse modeling based multiobjective evolutionary algorithm (IM-MOEA) [3]
which builds inverse Gaussian process based models from the objective space to the
decision space in order to approximate the distribution of promising solutions. This
enables generating new candidate solutions via sampling directly in the objective
space.

This paper introduces an interactive IM-MOEA algorithm where the DM is able
to guide the search towards her/his preferred regions of the Pareto front. To facilitate
this, a decision making module is added to the IM-MOEA algorithm which takes
into account the preferences of the DM for a prefixed number of interactions during
the search. Through the decision making module, the DM is shown a number of
solution candidates among which (s)he needs to select one, select two (that is, define
a region in the Pareto front) or disregard all the solutions. Based on her/his actions,
the search mechanism of the algorithm is adjusted accordingly.

The rest of the paper is divided into two parts. First, the proposed interactive IM-
MOEA algorithm is described along with the necessary description of the original
IM-MOEA algorithm. Then, the paper ends with a brief description of the numerical
experiments and some concluding remarks.
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2 Interactive IM-MOEA algorithm

2.1 IM-MOEA

The main idea of the IM-MOEA algorithm presented in [3] is to enable sampling in
the objective space instead of the decision space. This is implemented by introduc-
ing Gaussian process based inverse mapping from the objective functions to the de-
cision variables. When sampling in the objective space, the corresponding decision
variable values are obtained by using the approximated inverse mapping. To ease the
computation, the multivariate inverse model is decomposed into several univariate
inverse models. The number of inverse models is reduced by using a random group-
ing strategy where some of the decision variables are assigned to a specific objective
function. In practice, inverse modelling is performed inside sub populations created
from the whole population with the help of fixed number of uniformly distributed
reference vectors in the objective space. More information can be found in [3].

2.2 Incorporation of decision maker preferences through adapting
reference vectors

The original IM-MOEA method [3] uses K uniformly distributed reference vectors
to divide the population into sub populations. Each individual of the population
is assigned to the closest reference vector and the solutions that are assigned to
the same reference vector form a sub population resulting in K sub populations. In
order to improve the performance for problems with discontinuous Pareto fronts, an
adaptive reference vector scheme was proposed in [2]. In each generation, one of
the reference vectors will be replaced by another randomly generated vector. In the
beginning of the solution process, that is the exploration phase, the vector which has
the most solutions assigned will be replaced. As opposed to that in the exploitation
phase, the vector with the lowest number of solutions assigned will be replaced.
More details of the adaptive version of the IM-MOEA algorithm can be found in
[2].

The main idea of the interactive IM-MOEA algorithm presented here is to take
advantage of the adaptive reference vector generation suggested in [2] and gener-
ate solutions that are desirable to the DM. Here, instead of replacing the reference
vectors with randomly generated ones, such reference vectors will be added that
can yield solutions reflecting the preferences expressed by the DM. The proposed
interactive IM-MOEA algorithm consists of a decision making module attached to
the original IM-MOEA algorithm. The interactive algorithm follows the general al-
gorithm of IM-MOEA (see [3]) except the interaction step (step 4 shown in the
Algorithm 1). The interaction step is executed not in each generation but only when
interaction with the DM is needed. This can be determined, for example, based
on how many times the DM wants to interact during the solution process (value
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of this parameter can come from the decision). In that case, generations when the
interaction is needed can be determined based on the number of interactions and
the maximum number of function evaluations. Additionally, the crowding distance
measure used for selection in [3] is replaced by a distance based selection in order
to favour more solutions preferred by the DM. The details of the decision making
module will be described in the next subsection.

Algorithm 1 The pseudo code of interactive IM-MOEA
1: initialization
2: while termination condition is not satisfied do

3: partition of the combined population
4: if interaction required then decision making module
5: non-dominated sorting and selection
6: for k = 1 to K do

7: inverse modeling
8: reproduction

9: end for
10:update the combined population

11: end while

2.3 Decision making module

In this subsection we extend the IM-MOEA algorithm with the addition of a decision
making module, which can be conveniently used to handle DM’s preferences. As
mentioned earlier, the decision making module presented in Algorithm 2 is based
on the idea of adaptive reference vectors presented by Cheng et al. [2]. In addition
to the parameters inherited from the original IM-MOEA algorithm, interactive IM-
MOEA has two additional parameters, i.e. the number of interactions the DM wishes
to have with the interactive IM-MOEA algorithm and the number of solutions (s)he
wishes to see in each interaction. It must be noted that the DM has the freedom to
change these two parameters during any interaction.

The decision making module is classified into four steps, i.e. classification of
reference vectors, generate solutions for the DM, preference information from the
DM and adjustment of reference vectors. In the first step, the current set of reference
vectors are classified into active and inactive reference sets. The reference vectors
with associated individuals form an active reference set and reference vectors with
no associated individuals form an inactive reference set. In addition, the reference
vector having the most solutions associated with is identified as the lead reference
vector vlead. In the second step, the active reference set is clustered into NDM clusters
and one representative reference vector from each cluster is chosen. Next for each
NDM reference vectors, an individual that makes minimum angle with it is chosen.
Thus NDM individuals are shown as candidate solutions to the DM, based on which
the DM provides her/his new preference information. The value for the parameter
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Algorithm 2 Decision making module
Step 1: Classification of reference vectors:

• For each reference vector vi, i = 1, . . . ,K, calculate the number of individuals (nsoli) of the
population associated with it.

• The set of all reference vectors with no associated individuals form an inactive reference set
IR and the rest of the reference vectors form an active reference set AR.

• From the set AR, the reference vector with maximum number of associated individuals is
termed as lead reference vector vlead.

Step 2: Generate candidate solutions for the DM

• Cluster the elements of AR into NDM clusters (If |AR| < NDM , then NDM = |AR|). From
every cluster choose one reference vector as a representative index of the corresponding
cluster. Subsequently, for every reference vector among all associated solutions, a solution
zi is chosen whose position in the objective space has minimum angle with the reference
vector. Thus zi, i = 1, . . . ,NDM candidate solutions are shown to the DM.

Step 3: Preference information from the DM. DM follows one of the following three paths:

• disregards all NDM solutions shown to her/him and wishes to explore more. Go to Step 4a.
• chooses one solution among NDM solutions as his preferred solution zpref. Go to Step 4b.
• identifies a preferred region defined by two solutions (zpref and zpref+1) to explore further.

Go to Step 4c.

Step 4: Adjustment of reference vectors

• Step 4a: Replace vlead with a new randomly generated reference vector.
• Step 4b: The whole set of reference vectors is updated as follows: If this is not the last

interaction, the extreme reference vectors ei = (0, . . . ,1, . . . ,0)T , that is, unit vectors, are
included. Then, the reference vector vnear having the minimum angle with the reference
vector associated with zpref (vpref) is added. Accordingly, the vector vref that is obtained
by reflecting vnear with respect to vpref is also added. The remaining reference vectors are
uniformly distributed between vnear and vref. The procedure is illustrated in Figure 1.

• Step 4c: The whole set of reference vectors is updated as follows: If this is not the last
interaction, the extreme reference vectors ei are included as in Step 4b. Then, the reference
vectors associated with zpref and zpref+1 are added and the rest of the reference vectors are
equally distributed between these two vectors.

NDM can be asked from the DM (that is, how many different solutions the DM wants
to see at a time) or, otherwise, a default value can be used.

In step 3, the decision maker can either choose to explore further without choos-
ing any solution, choose one solution or choose a preferred region identified by two
different solutions. Based on what the decision maker chooses, different actions are
taken in step 4. If the DM disregards all solutions shown to her/him in step 3, the
lead reference vector vlead is replaced by a randomly generated reference vector in
step 4a. Alternatively, if the decision maker chooses one solution, all reference vec-
tors other than the vpref (i.e. the one that the preferred solution is associated with)
are deleted. The entire set of reference vectors is regenerated between the reference
vector vnear that is the closest with the vpref and its reflected counterpart vref with
respect to vpref as shown in Figure 1. This is done in order to bias the search towards



6 Karthik Sindhya* and Jussi Hakanen

Fig. 1 Illustration of reference vector generation in step 4b of the Algorithm 2.

region of interest to the decision maker. Finally, if the decision maker prefers two
solutions (i.e. is interested in the region between them), the set of reference vectors
is generated between the two reference vectors that the preferred solutions indicated
by the DM are associated with. Additionally, at each interaction (except the final),
the extreme reference vectors are included to be able to allow changes in preference
information and maintain diversity in the population. They are not included in the fi-
nal interaction in order to guarantee convergence according to preferences specified
by the DM. Note that the number of the reference vectors remains fixed throughout
the search.

3 Numerical experiments

The performance of the interactive IM-MOEA algorithm consisting of the proposed
decision making module in conjunction with the IM-MOEA algorithm is demon-
strated here by using two and three objective problems. The problems selected are
bound constrained problems F2 (two objective problem, modified from the ZDT2
problem) and F4 (three objective problem, modified from the DTLZ2 problem) from
[3], both having 30 decision variables. The population size used was 50 for both
problems and the maximum number of function evaluations was 50000 and 100000
for F2 and F4, respectively. The number of reference vectors was set to K = 10
for both problems as suggested in [3]. The random group size was set little higher
(L= 10) than proposed in [3] in order to get more accurate results. Clustering in step
2 of the decision making module is performed by using K-means clustering [7]. The
interaction between the DM and the interactive IM-MOEA algorithm for both prob-
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lems F2 and F4 are summarized in Table 1. In every interaction the solutions chosen
by the DM are marked in bold font.

3.1 Example with a biobjective problem

In the first example, problem F2 with a nonconvex Pareto front will be used. The
DM wants to interact four times (Nia = 4) and he wants to see five solutions at each
interaction (NDM = 5). Initially, his preferences are to get as close to f1 = 0.5 as
possible. In the first interaction, the candidate solutions shown to him are presented
in Table 1. Note that there are only four candidate solutions since only four of the
reference vectors are active (i.e., have associated solutions) at this phase.

The range of the solutions shown for f1 is [0.000,0.415] and, according to his
preferences, he selects candidate solution number 4 as the preferred one. Figure
2 shows the candidate solutions, a solution selected by the DM and the updated
set of the reference vectors where the bounding reference vectors are highlighted.
Note that it is only possible to show this kind of visualization to the DM when the
number of objective functions is two or three. For problems with more objectives,
other types of visualization techniques need to be used (see e.g. [9]). In addition,
reference vectors are not meant to be shown to the DM but are in this paper included
for illustrative purposes. Based on the preferences, the candidate solutions shown to
the DM for the second interaction are presented in Table 1. This time, there are five
candidate solutions since at least five reference vectors have associated solutions.

Candidate solution 1 has a value very close to the initial preferences of the DM
( f1 = 0.507). Next, he wants to see more solutions between candidate solutions 1
and 2 and selects them as preferred solutions. Figure 2 shows the candidate solu-
tions, solutions selected by the DM and the updated set of the reference vectors
where the bounding reference vectors are highlighted. Note that now the spread of
the reference vectors is smaller when the DM wants to zoom in to a specific region
in the Pareto front. Based on those preferences, the next five candidate solutions are
shown in Table 1.

Now all the candidate solutions except number 1 are very close to the initial
preferences of the DM. Having examined the solutions in more detail, he is not in-
terested in them anymore but wants to improve f1 further. To zoom out from the
region of his initial preferences, he selects the candidate solutions 1 and 3 as he
wants to examine the region for lower f1 values. Accordingly, Figure 2 shows the
candidate solutions, solutions selected by the DM and the updated set of the refer-
ence vectors where the bounding reference vectors are highlighted. Note that now
the spread of the reference vectors is bigger since the DM wants to zoom out. The
resulting candidate solutions are now shown in Table 1.

Based on the candidate solutions shown, the DM was able to move towards a
region where f1 values are smaller than 0.5. This is now the final interaction and
he wants to focus in the area between candidate solutions 2 and 3. Figure 2 shows
the candidate solutions, solutions selected by the DM and the updated set of the
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Fig. 2 Interactions with the DM for Problem F2

reference vectors where the bounding reference vectors are highlighted. Note that
after the last interaction, the extreme reference vectors are not anymore included
since the focus is now on converging according to the last preferences. The set
of final solutions obtained is shown in Figure 2 along the final set of reference
vectors. As can be seen, the solutions obey nicely to the final set of reference vectors
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that are based on the last preferences of the DM. In addition, the interactive IM-
MOEA algorithm showed in this example that it can follow the changes in the DM’s
preferences.

Table 1 Candidate solutions shown to DM during four interactions for problems F2 and F4

Interaction
Solution
number

Candidate solutions (problem F2)
( f1, f2)

Candidate solutions (problem F4)
( f1, f2, f3)

1

1 (0.000, 1.000) (0.146, 41.3, 0.012)
2 (0.122, 0.988) (0.000, 6.81, 27.8)
3 (0.267, 0.932) (73.9, 0.022, 0.002)
4 (0.415, 0.830) (4.95, 6.27, 9.39)
5 (26.8, 0.000 33.2)

2

1 (0.507, 0.747) (0.553, 0.602, 1.01)
2 (0.475, 0.788) (0.000, 0.000, 1.37)
3 (0.354, 0.878) (0.001, 12.7, 0.000)
4 (0.312, 0.907) (19.0, 1.56, 0.000)
5 (0.000, 1.000) (5.33, 1.04, 5.90)

3

1 (0.000, 1.000) (0.000, 0.000, 1.03)
2 (0.482, 0.770) (0.297, 0.747, 0.718)
3 (0.471, 0.780) (0.015, 1.54, 0.212)
4 (0.502, 0.751) (0.654, 0.353, 0.750)
5 (0.492, 0.761) (4.79, 0.000, 1.05)

4

1 (0.000, 1.000) (0.413, 0.889, 0.282)
2 (0.361, 0.873) (1.67, 0.000, 0.101)
3 (0.224, 0.953) (0.002, 1.03, 0.000)
4 (0.149, 0.980) (0.000, 0.000, 1.02)
5 (0.471, 0.780) (0.649, 0.603, 0.569)

5

1 (0.000, 0.000, 1.06)
2 (0.587, 0.693, 0.495)
3 (0.656, 0.558, 0.553)
4 (1.02, 0.000, 0.002)
5 (0.049, 1.00, 0.008)

3.2 Example with a three objective problem

To illustrate the behavior of the interactive IM-MOEA algorithm in three objective
problems, we use the problem F4 from [3]. In this case, the DM wants to interact
five times (Nia = 5) and, again, he wants to see five solutions at each interaction
(NDM = 5).

Initially, his preferences are to get as well balanced solution between the three
objectives as possible. In the first interaction, the candidate solutions shown to him
are presented in Table 1. None of the candidate solutions are acceptable for the DM
(they are still very far from the Pareto front) and, thus, the DM does not select any of
the solutions. This means that only one of the reference vectors is updated according
to step 1 in Algorithm 2.
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Fig. 3 Interactions 2-4 with the DM for Problem F4
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Fig. 4 Interaction 5 with the DM and final solutions for Problem F4

The candidate solutions for the second interaction are shown in Table 1. Although
many solutions are still not acceptable, the candidate solution number 1 seems to
be best of them for the DM and, therefore, he selects that one. Figures 3 and 4
show the candidate solutions, solutions selected by the DM and the updated set
of the reference vectors where the bounding reference vectors are highlighted. In
addition, the real Pareto front is also illustrated here to ease the visualization of the
performance. For practical problems, the Pareto front is not known and, therefore,
can not be visualized to the DM. The resulting candidate solutions for the third
interaction are shown in Table 1.

Since most of the candidate solutions start to be in the ranges acceptable for the
DM, next he wants to aim at finding a good balance between the objectives. There-
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fore, he selected candidate solutions 3 and 4 and the Figure 3 shows the candidate
solutions, solutions selected by the DM and the updated set of the reference vectors
where the bounding reference vectors are highlighted. As can be seen in Figure 3,
he tries to aim towards the middle region of the Pareto front. The resulting candidate
solutions are shown in Table 1.

Based on the candidate solutions obtained, number 5 seems to represent a good
compromise between the objectives so that is selected by the DM next. Again, the
resulting data is shown in Figure 4 and the resulting candidate solutions for the last
interaction can be seen in Table 1.

Among the resulting candidate solutions, three (1, 4 and 5) represent solutions
where one of the objectives has not so good value and the other two (2 and 3)
represent good balance between all the objectives. Therefore, the DM chose 2 and 3
(see Figure 4 for illustration). The final solutions obtained are shown in Figure 4 and
it can be seen that they approximate balanced compromises between the objectives.

4 Conclusions

In this paper we have proposed a novel interactive IM-MOEA algorithm that pro-
gressively considers the preference information of the DM and finally generates a
set of solutions desirable to the DM. This algorithm strives to minimize the cogni-
tive burden on the DM by providing the DM flexibility to decide on the number of
solutions (s)he wishes to investigate and how many times (s)he wishes to interact.
The algorithm presented considers a simple approach of generating reference vec-
tors in the regions preferable to the DM, thereby generating preferred solutions. The
results indicate the ease with which the DM was able to direct his search using the
interactive IM-MOEA algorithm and find her/his preferred solution.

Our future research topics include enhancing reference vector adaptation for
problems having more than two objectives and adding constraint handling to the pro-
posed algorithm. In addition, testing the algorithm with real-world problems having
larger number of objectives is required, for example, the General Aviation Aircraft
problem [13].
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