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Abstract. In this paper, a clustering based surrogate is proposed to
be used in offline data-driven multiobjective optimization to reduce the
size of the optimization problem in the decision space. The surrogate is
combined with an interactive multiobjective optimization approach and
it is applied to forest management planning with promising results.
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1 Introduction

Recently, emphasis on optimization has been shifting from model-based to data-
driven optimization where the optimization problem is formulated based on avail-
able data. The size of the data can sometimes be large which means that the
optimization problem(s) to be solved become large as well increasing their solu-
tion times. This is especially challenging in multiobjective optimization having a
large number of objective functions. In more details, this is because interaction
with a human decision maker (DM) is required to find satisfactory solutions to
such problems and long solution times can make the interaction less efficient.
Surrogate-assisted optimization approaches are often used to solve compu-
tationally expensive optimization problems both for single and multiobjective
problems (see, e.g., [2,4]). Typically, computational expensiveness is considered
as the time taken to evaluate objective and/or constraint functions since that
can take a long time for e.g. simulation or experiment-based models. In data-
driven optimization, the expensiveness is typically not in evaluating the objective
function values, but in the size of the problems solved (in the decision and/or
objective space). The main idea in surrogate-assisted optimization is to use a
relatively small sample of expensive function evaluations to train surrogate func-
tions that approximate the expensive functions but are faster to evaluate [2,4].
In this paper, we introduce a surrogate-assisted approach for data-driven
multiobjective optimization problems that are based on large data sets motivated



by a case study in forest management described later. We assume that all data
is available at the beginning of optimization and no new data can be obtained
(often referred to as offline data-driven optimization [15]). Further, we consider
linear problems with discrete decision space. The method uses clustering in the
decision space as a surrogate to decrease the size of the optimization problem by
reducing the number of similar variables. The resulting optimization problems
are not as accurate as the original problem but are faster to solve. The proposed
surrogate is combined with an interactive multiobjective optimization approach
that iteratively utilizes preferences of a DM in finding a most preferred solution
for the multiobjective problem considered.

In the literature, one approach has been presented that is somewhat similar
to what we present, in [15] where the design of a trauma system was optimized.
Due to the large amount of data available, the data was first clustered and the
cluster centers were then used as data in evolutionary optimization of finding
non-dominated solutions for a bi-objective problem. In our approach, we use
mathematical programming together with interaction with a DM to find the
most preferred PO solution. Furthermore, hierarchical clustering was used in
[15] to represent the real hierarchy of the data which is not necessary in our case
study. Further, functional analysis of variance decomposition was used in [12] to
decompose a multiobjective optimization problem both in objective and decision
spaces. Then, solution of the original problem was constructed by solutions of
the decomposed problems. A different approach from ours was presented in [1]
where clustering was used to find versatile solutions after finding a set of non-
dominated solutions by multiobjective optimization. To summarize, there does
not exist similar approach in the literature as far as we know.

As a case study to demonstrate the developed approach, we consider a boreal
forest management problem where both the economical and biodiversity related
objectives are considered. The underlying data gathered from around 30 000
forest stands simulated 50 years into future (with seven management options)
was used to formulate a four objective combinatorial optimization problem which
was then solved by interacting with an expert DM. Previous considerations of
similar problems have included directly using the combinatorial optimization
problem together with the epsilon constraint method which optimizes only one
of the objectives while considering others as constraints [9,13,14]. When using
our proposed approach, it is possible to 1) consider larger problems (i.e., more
stands and/or management options) with comparable results in fewer time, and
2) more conveniently handle the conflicting objectives and inherent trade-offs
while interacting with an expert DM.

The rest of the paper is organized as follows. First some background infor-
mation is given in Section 2, while the proposed clustering based optimization
approach is described in Section 3. Our case study and the obtained results
are described in Sections 4 and 5, respectively. Finally, conclusions and future
research ideas are given in Section 6.



2 Background

2.1 Multiobjective optimization

When multiple conflicting objectives are concerned, the optimal solutions are
often called Pareto optimal (PO) which means none of the objective values can
be improved without impairing some other ones [6]. In this paper, we consider
multiobjective integer linear programming problems of the form
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The problem includes k objective functions to be maximized. Further, i €
{1,2,...,n} denotes index for the ith decision variable while j € {1,2,...,m}
denotes index for different values for the decision variables. Note that categor-
ical variables having several possible values in the original problem have been
converted into binary variables, i.e., z;; € {0,1}. Coefficients cﬁj denote the ob-
jective values for the decision variable values x;; for the Ith objective function
and they are attained from data.

A feasible solution x* for problem (1) is called PO if there does not exist
another feasible solution x such that f;(z) > fi(z*) for all « = 1,...,k and
fi(x) > fj(x*) for at least one j. Note that there can exist infinitely many PO
solutions that are mathematically equally good, i.e., none of them is better than
others without any additional preference information.

Many different approaches have been developed over the years for solving
multiobjective optimization problems (see, e.g. [3,6]). In this paper, we will con-
centrate on interactive approaches [7], where a DM provides preference informa-
tion in order to find the most preferred solution for the problem considered. The
general idea of interactive approaches is that first some PO solution is computed
and shown to the DM for evaluation. The DM indicates how that solution should
be improved if she is not satisfied with it by providing preference information.
The type of preference information depends on the interactive method used.
Then, the preference information is taken into account and new PO solution(s)
is computed and again shown to the DM for evaluation. This iterative process
continues until the DM is satisfied.

To solve problem (1) with the help of a DM, we will use a surrogate ap-
proach based on clustering (described in more details in Section 3) combined
with the synchronous NIMBUS method. Synchronous NIMBUS [8] is an inter-
active method based on classification where preference information is indicated
by classifying objective functions into different classes at the current PO solution.
More precisely, an objective function can be classified either 1) to be improved
as much as possible, 2) to be improved until a given aspiration level z**?, 3) to
retain its current value, 4) to be allowed to impair until a given bound 24, or 5)



to change freely (i.e., not interesting at this iteration). A feasible classification is
such that there should be at least one objective function in the first two classes
and in the last two classes since if any improvements are required, some impair-
ments have to be allowed. Then, the original multiobjective problem together
with the preference information are used to formulate up to four different single
objective scalarized subproblems that are then solved by using a suitable single
objective optimizer. The resulting solutions are proven to be PO [8].

2.2 Forest management

In Fennoscandia, much of the countries are dominated by Boreal forests, which
provide a wide range of ecological, economic, and social values. Most of these
forests can be considered to be semi-natural, where limited silvicultural and
management actions are done infrequently throughout the development of each
forest stand (a relatively homogeneous parcel of forest). A forested stand in
Fennoscandia follows rather similar development following a clear felling (the
removal of the trees in a specific area). Depending on the site, trees are either
planted, seeded, or allowed to grow through natural regeneration (where seeds
provided from the forests surrounding the stand, and specific trees left within the
stand for this specific purpose). Following this, within 5 to 10 years, tending of
the stand may be required to remove grasses and shrubs. Once the forest stand
is established it is left to grow. Throughout the forest stands development the
forest stand can be thinned (the selected removal of specific trees) several times
prior to clear felling, where the process is repeated.

From a forest management perspective, the specific actions conducted in a
forest stand can vary according to intensity and timing. For instance, thinnings
may or may not be performed, and final felling can be delayed, done years prior
to the expected maturity or delayed indefinitely. Each management decision will
impact the quantity of timber provided, and ecosystem services provided from
the forest stand. At a landscape (500-5000 ha) or regional scale (500-20000 km?)
managing forests becomes a combinatorial optimization problem where the deci-
sion variables describe the number of stands and the number of options allowed
to for managing each forest stand. Managing the use of forests involves significant
conflicts between different objectives. Economic objectives conflict with ecologi-
cal objectives, and conflicts can arise between different ecological objectives. The
quantification of the economic and ecological objectives is done through forecast-
ing future forest growth through forest simulators. In Fennoscandia, there are
multiple varieties of forest simulators available, and each software package utilize
over four hundred empirically based models to predict forest development and
growth.

3 Clustering based interactive multiobjective
optimization approach

The main idea of the developed surrogate is to cluster the decision variables in
such a way that similar variables are represented in the optimization problem



through a representative one within the cluster, thus, reducing the size of the
optimization problem. In this paper, we consider only discrete decision variables,
but our approach can also be extended to mixed variables. To solve the resulting
multiobjective optimization problem, we utilize here the synchronous NIMBUS
method as already mentioned, which leads us to solve a series of single objective
subproblems. By reducing the number of decision variables, the resulting sub-
problems are easier/faster to solve which reduces the time that the DM needs
to wait between interactions.

3.1 Clustering as a surrogate

The core of forming the surrogate is clustering the discrete decision variables
using some hard clustering method: original n variables are assigned to K < n
clusters according to their similarity in values. To guide how the clustering is
performed, it is important to define a similarity measure, i.e., how the similarity
of variables is defined. Even though clustering using expert knowledge is possible,
the numerical similarities of the variables in each cluster are more important.
As the method is used to reduce the computational burden, manual clustering
would require extreme human effort due to large number of decision variables.

The clustering based surrogate is built on a large number of round clusters
used to approximate the decision space. In the traditional clustering, the number
of clusters K is supposed to match the real number of different classes in the
data, and it is one of the most important elements of clustering. However, in
the clustering based surrogate this aspect is not as important but the focus
of designing clusters should be the ability to compress and represent the data
accurately and to be sufficient for its purpose. On occasions, it could be profitable
to use more clusters than compared to what would be otherwise optimal to
improve accuracy.

In traditional clustering, the shapes of the clusters are supposed to capture
and separate different classes from the data. In the clustering based surrogate,
this does not need to be the case as the focus could be on appropriately approx-
imating and compressing the data. Especially when the number of clusters is
“too large”, the most suitable shape for clusters is rounded. This enables that
all the clusters can be handled similarly as local approximations.

When the n variables have been assigned into K clusters, the most “repre-
sentative” variable x; is selected from each cluster i € {1,2,..., K} as a proxy
variable. As the clusters are rounded, the most representative should be the
center of each cluster. If the chosen clustering method is not using existing vari-
ables as centers, then the variable closest to the center can be used as proxy. The
proxy variables that are representing all the variables of individual clusters are
then already existing variables. Note that if variables in the same cluster have
different numbers of discrete value alternatives, the proxy variable’s ability to
represent all the variables in the cluster is greatly impaired.

The chosen proxy variable x; is denoted by y; and it is assigned a weight w;
according to the proportion of the variables in the given cluster i. For example, if
there are 356 variables in a single cluster 4, its corresponding weight is w; = %.



In addition, the coefficients céj are renamed to d ;» and the previously presented

multiobjective integer linear programming problem (1) is transformed to
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where ¢ € {1,2,..., K}, denotes index for proxy variable, j € {1,2,...,m} index
for discrete value alternatives for each proxy variable i, and w; the weighting
coefficient for the proxy variable. Value déj denotes the lth objective value of the
proxy ¢ when the jth discrete value alternative is chosen. For ith proxy variable,
yi; has value 1 if jth value is chosen for proxy variable i, and otherwise 0. The
parameter n is the number of original variables. As can be seen, if K = n, then
w; = % for all i € {1,2,..., K} and this formulation is identical with problem (1).
Thus, this guarantees the validity of this approach of combining the described
surrogate and optimization.
Building the cluster-based surrogate is summarized as follows:

(2)

1. Cluster n decision variables into K clusters by using some clustering method.

2. For each K clusters, choose the center of the cluster as the proxy variable if
the center is an existing variable. Otherwise, choose the variable closest to
the center as the proxy variable.

3. Solve multiobjective optimization problem (2) by using the values of the ith
proxy variable for all the variables in the ith cluster.

The proposed surrogate is based only on local approximations of the decision
space, so the results of the clustering based multiobjective optimization prob-
lem naturally include some approximation error. Due to the structure of the
surrogate, the larger the number of the clusters used the more accurate is the
surrogate and, thus, the result of optimization. On the other hand, since the
idea of clustering is to reduce the number of decision variables, the amount of
reduction is dependent on the number of clusters, so that the less clusters there
are, the lighter the computational burden. It is thus evident, that the accuracy
and the ability to compress the decision space are contradicting features.

In multiobjective optimization, the different objectives are typically contra-
dicting with each other and this is likely to show in the clustering also. In prac-
tice, this means that depending on the chosen clustering paradigm, approxima-
tion errors for different objectives may be different. When using the clustering
based surrogate in multiobjective optimization, this problem becomes more ev-
ident as different objectives may reach their real optima to different degrees.

As the scalarized subproblems of problem (1) used here are linear [8] with in-
teger variables, the resulting values in the objective space may be discontinuous
in its original state. When using the clustering based surrogate and combining
several decision variables, this trait will be emphasized and there will be “bigger
holes” in the PO front (i.e. the set of all PO solutions in the objective space).



Finding the most preferred PO solution from this kind of PO front can be quite
challenging depending on the multiobjective method used. Therefore, we have
decided to use the synchronous NIMBUS method, which uses up to four scalariz-
ing functions [8] that can be used for any kind of PO fronts, even discontinuous,
to find different PO solutions using the same preference information. To sum-
marize, we are much more likely to find an acceptable solution even from such
a challenging PO front.

For the scalarizing functions used in the synchronous NIMBUS method it
is important to attain ranges for all the objectives within the PO front, i.e.,
to calculate ideal and nadir vectors. This is usually done by computing the
optimal solutions for all the single objective optimization problems (forming the
ideal objective vector) and then estimating the nadir values by using a so-called
pay-off table [6]. When using the clustering based surrogate, these values can
be calculated with optimization using the surrogate, but if possible, the optima
based on the original variables and problem should be used instead. Even though
the scalarizing functions in synchronous NIMBUS were used with the clustering
based surrogate, it would still be better to use the original ideal and nadir values
in their formulations. The reason is that the surrogate based ideal and nadir
values are more averaged because of the approximations used in the surrogate.

The interactive solution process itself remains the same even when using the
clustering based surrogate in optimizations. The DM gives her/his preferences,
explores different PO solutions, and finally chooses the most preferred PO solu-
tion as usual with interactive approaches. The main effect of using the surrogate
is that it reduces the computational burden significantly and so enables more
seamless and less delayed interaction during the iterative solution process.

When the preferred PO solution is found using the clustering based surro-
gate, it would be good to know how far it is from the real PO front, i.e., what
is the approximation error introduced by using the proposed surrogate. This
is required as the usage of any surrogate always introduces some error, which
may misguide optimization and, thus, also the selection of the most preferred
solution. To overcome this problem, the values of the chosen surrogate based
optimal solution can be used as a reference point for the achievement scalarizing
function (see, e.g., [8]) and optimize it with the original objective functions. As
this would require using the original uncompressed decision space and be poten-
tially computationally very expensive, it may not always be possible to solve the
optimization problem in a reasonable time.

3.2 Implementation

The clustering based surrogate approach is not dependent on a specific clustering
algorithm, a similarity metric, or a way of choosing the most representative
variable, as these are always case specific. As an example, in the following case
study the clustering based surrogate is constructed using commonly known K-
means algorithm with cosine distance and the variable closest to the Euclidean
center of each cluster is chosen as the representative one.



The actual clustering was implemented and verified using Python libraries
and Jupyter Notebooks®. To solve the resulting multiobjective problem, IND-
NIMBUS [10], an implementation of the synchronous NIMBUS method, was
used. The single objective subproblems produced were solved with the CPLEX
optimizer. Note that all solutions produced by synchronous NIMBUS are PO if
the single optimal subproblems are solved to optimality [8].

A screenshot of the graphical user interface of IND-NIMBUS is shown in
Figure 1. On the left hand side, the current PO solution is shown in the Classifi-
cation panel as a bar chart. Each horizontal bar represents an objective function
and the end points denote the nadir and ideal values, respectively. For maxi-
mized objective functions the colored part starts from right and, thus, the less
color the better the value. In this case, all objectives are to be maximized. The
DM can indicate preferences by clicking different parts of the bars. If one clicks
on the colored part, it means that the objective needs to be improved. On the
other hand, if one clicks on the non-colored part, it means that the objective is
allowed to impair. All the PO solutions computed during the solution process
are shown in the top right panel called Alternatives while the most interesting
ones found so far can be dragged to the Best candidates panel in bottom right.

Classifier | Generate Aftematives | Messages|

Classificati] Afternatives
1860 Timber revenue
o g
1 2 3 4 5
s 8 W = 3

59 Carbon Storage

mgC

B¢ . p

. 8 ‘= 8 s
2 65 Dezdwood
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029

0.18 0.29

Best candidates
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Fig. 1. A screenshot of IND-NIMBUS showing interaction with the DM.

4 Case study: Multiobjective forest management

A forest landscape from Central Finland is used as a demonstrative exam-
ple of the clustering approach. Information on the current state of the for-
est was collected by the Finnish Forest Center through field measurements.
The forest information represents 68700 ha, organized as 29666 stands. To pre-
dict the future forest resources, a forest simulator (MOTTI [11]) was used.
The forest simulator predicted forest growth for a 50-year period, according
to a pre-determined set of management alternatives. Depending on the initial

3 Code available in https://github.com/josejuhani/gradu-code



stand characteristics, a range of seven management alternatives were generated.
These alternatives ranged from setting the forest aside (doing nothing), con-
ducting the typical management (business as usual), with a variety of extending
/ shortening the final harvest and including or excluding the option to thin
the forest prior to final harvesting. The simulated data is openly available at
https://dvn. jyu.fi/dvn/dv/Boreal_forest, and more detailed descriptions
of the data and simulations can be found in [9,13,14].

Following the simulation of the set of different management alternatives, in-
dicators representing a range of values were extracted. This set of indicators rep-
resented economic and ecological interests, and the set was selected to represent
potential interests of specific stakeholders. The set of indicators (i.e., objective
functions) was: timber revenue, carbon storage, deadwood volume, and a species
habitat availability. The timber revenue was measured as the net present value
revenue using a 3% discount rate. Carbon storage was measured as the tonnes
of carbon contained within the forest (including the carbon in the soil, in the
deadwood and in the standing trees). The deadwood volume was evaluated as
a diversity weighted index: this is ecologically justifiable proxy for deadwood-
inhabiting biodiversity [5]. The species habitat availability is evaluated as done
in [9] which aggregates high quality habitat for six indicator species.

The multiobjective optimization problem was formulated as follows:

o n 7 n 7 n 7 n 7
maximize § > > Tijzig, > > Cijwiz, Yo > DijTij, Y Y Sijij
i=14=1 i=14=1 i=1j=1 i=1j=1
Y ‘ (3)
st. Yxy=1Vi=1,...,n,
j=1
Tij € {0, 1},

where Tj; is the timber revenue, C;; is the amount of carbon in storage, D;; is
the volume of deadwood, S;; is the habitat availability, each provided by stand %
from management alternative j. Note that all the objective values are presented
as per hectare. The decision variable values x;; denote the jth management
alternative selected for stand i. The total number of stands n = 29666.

This forest management problem has been solved earlier, focusing on various
conservation related issues. In [9] the focus was on understanding the impacts
conservation has on the profitability of forest management. The range of com-
promise solutions and the conflicts between various solutions has been explored
in [13] and [14]. The common feature between these earlier solutions is the lack
of integration with the DM.

For solving this forest management problem, the implementation of the clus-
tering based surrogate presented in Section 3.2 was used. When empirically
tested, the accuracy of the surrogate increased linearly with the increase of the
number of clusters. Based on this, it was decided to choose 600 clusters for the
surrogate as that amount kept the time between interactions in about 10 sec-
onds. For the case study, the ideal and nadir values were obtained by using the
original functions as previously suggested. These were verified with the previous
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research in [14]. For the chosen clustering, the optimal solutions for the four indi-
vidual objective functions differed from the known real optima by 0.15%, 0.47%,
2.67% and 1.38%. Further, the usefulness of clustering was verified by comparing
the approach against random clustering. The accuracy with random clustering
in optimizing each objective individually varied between 3.2%—17.8% indicating
poor performance of random clustering (results based on 10 independent runs).

5 Results and discussion

The interactive solution process was performed by using the implementation
described in Section 3.2. The DM involved has significant experience in both
research and implementation of forest management solutions. To start the so-
lution process, a neutral compromise solution with values (2710, 58.3,2.76,0.26)
(obtained by using the midpoint between ideal and nadir values as a reference
point), i.e., a solution where all the objectives were balanced, was shown to the
DM. Starting from that solution, the DM wanted in the second iteration to im-
prove carbon storage and habitat suitability while allowing timber revenue and
deadwood volume impair. Based on those preferences, four fairly similar new al-
ternative solutions were produced as shown in Table 1. From the new solutions
obtained, the DM deduced that he would like to improve timber revenue.

Iter Issue Timber Carbon Deadwood Habitat
Revenue [€] Storage [mgC]  Volume [m?] Suitability
Ideal 3640.0 64.8 3.18 0.29
Nadir 450.0 41.2 1.16 0.17
1 Init. Sol. 2710.0 58.3 2.76 0.26
Cur. Sol.  2710.0 58.3 2.76 0.26
Classif — 2t"% = 2070.0 25° = 59.2 25nd =219 2P =0.28
2070.0 60.4 3.02 0.28
2180.0 60.0 2.92 0.28
2250.0 59.9 2.92 0.28
2150.0 60.1 2.91 0.28
3 Cur. Sol. 2070.0 60.4 3.02 0.28
Classif 29 = 2500.0 25™¢ = 59.9 2 =219 25" =028
2280.0 59.9 2.99 0.28
2420.0 59.3 2.83 0.27
4 Cur. Sol. 2420.0 59.3 2.83 0.27
Classif  2t"% = 2400.0 25°" = 59.5 25nd =281 2P =0.28
2380.0 59.4 2.87 0.28
5 Cur. Sol. 2380.0 59.4 2.87 0.28
Classif 29°P = 3640.0 25" = 41.2 2 =116 24" =0.17
3630.0 41.2 1.16 0.17
3630.0 41.8 1.53 0.19
Final Sol. 2380.0 59.4 2.87 0.28

Table 1. Results of iterations in solving the multiobjective problem.
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As the current solution for the third iteration, the DM chose the first solution
(2070,60.4, 3.02,0.28). He wanted to see how solution changes if timber revenue
is desired to improve until 2500 and the others left to reach for the values set
already in the previous iteration except for small increase for carbon storage.
Now, the DM wanted to see two new solutions (i.e. use only two scalarizations)
and optimization produced two new alternative solutions shown in Table 1.

The DM was quite happy with both the solutions, slightly preferring the
second one which had higher timber revenue (2420) when compared to the first
one (2280). He also realized that deadwood volume was not changing much.
However, he wanted to see how would a solution in between these too look like
and, thus, gave preferences as (2400,59.5,2.81,0.28). After optimization, the
solution (2380, 59.4,2.87,0.28) was obtained which the DM was happy with. It
had a moderate amount of timber revenue and quite high carbon storage and
overall it was focusing more on the ecological aspects of forest management.

Finally, the DM wanted to still see what happens to ecological objectives
if the timber revenue is maximized while letting the other values change freely.
That should produce an alternative solution focusing on the monetary aspect and
enable comparison with the preferred solution already found. As expected, the
two solutions found maximizing the timber revenue had poor values for all the
ecological objectives and, thus, supports the selection of the balanced solution
having objective values (2400, 59.5,2.81,0.28). The DM was now satisfied and
the solution process was finished.

6 Conclusions

Using the developed cluster-based surrogate approach to find nearly optimal so-
lutions, a quick interactive decision process was enabled. Although the DM only
went through a small number of iterations, the process was quick enough to
maintain interest in the decision making process until a final acceptable solution
was found. By using the implemented decision support tool, the DM was able
to conveniently steer the solution process towards a final solution emphasizing
ecological values while still having moderate amount of timber revenue. In addi-
tion, the nature of the conflicts between different objectives considered became
more clear to him.

While this forest management problem has been solved in the extensive form
earlier, it can be made more realistic. In this case, only a limited number of
predefined management alternatives were used, which prevented the problem
from being too large. Additionally, we did not explore the temporal sequence of
planning outcomes, nor were spatial relationships maintained. As future research
is concerned, the proposed cluster-based approach will be extended to mixed
variables. In addition, it will be tested with larger and more realistic data sets
in forest management as well as applied to different types of applications.
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