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QUANTITATIVE RUNGE APPROXIMATION AND INVERSE PROBLEMS

ANGKANA RÜLAND AND MIKKO SALO

Abstract. In this short note we provide a quantitative version of the classical Runge ap-
proximation property for second order elliptic operators. This relies on quantitative unique

continuation results and duality arguments. We show that these estimates are essentially op-

timal. As a model application we provide a new proof of the result from [Fat07], [AK12] on
stability for the Calderón problem with local data.

1. Introduction

In this note we study quantitative Runge type approximation properties for elliptic equations. If
D1, D2 are bounded, open Lipschitz sets (e.g. balls) withD1 b D2, a variant of the classical Runge
approximation property for uniformly elliptic equations states that it is possible to approximate
(for instance with respect to the strong L2 topology) solutions to an equation in the smaller
domain by solutions of the same equation in the larger domain.

Let us formulate this more precisely: Let D2 be a bounded Lipschitz domain in Rn, n ≥ 2,
and consider the operator

L := ∂ia
ij∂j + c,(1)

where (aij) ∈ L∞(D2,Rn×n) is a symmetric matrix function, c ∈ L∞(D2), and for some K ≥ 1

(2)

K−1|ξ|2 ≤ aij(x)ξiξj ≤ K|ξ|2 for a.e. x ∈ D2 and for all ξ ∈ Rn,
‖c‖L∞(D2) ≤ K,

and if n ≥ 3 then also ‖∇aij‖L∞(D2) ≤ K.
Here we use the summation convention, and for simplicity we do not consider drift terms. We
note that L is formally self-adjoint: L∗ := ∂ia

ij∂j + c. We also make the standing assumption
that 0 is not a Dirichlet eigenvalue for L in D2, so that the Dirichlet problem for L (and L∗) in
D2 is well-posed.

Further, let D1 be another bounded Lipschitz domain in Rn so that D1 b D2 and D2 \ D1

is connected, and let Γ be a nonempty open subset of ∂D2. We will compare solutions to the
homogeneous equation associated with (1) on the domains D1 and D2, where additionally the
boundary value of the solution on D2 vanishes outside Γ. We introduce the following spaces:

S1 := {h ∈ H1(D1) : Lw = 0 in D1},

S2 := {h ∈ H1(D2) : Lw = 0 in D2, w|∂D2
∈ H̃1/2(Γ)}.

The notation w|∂D2
∈ H̃1/2(Γ) is defined in Section 2, and it implies that supp(w|∂D2

) ⊂ Γ.
In this notation, the classical Runge approximation due to Lax [Lax56] and Malgrange [Mal56]
asserts the following density property:

Theorem 1 ([Lax56], [Mal56]). Let L be the operator from (1) and let D1, D2,Γ and S1, S2 be
as above. Then for any ε > 0 and any h ∈ S1 there exists u ∈ S2 such that

‖h− u|D1‖L2(D1) ≤ ε.
1
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A prototypical example of such an approximation result is given by harmonic functions, which,
by analyticity, can always be approximated by harmonic polynomials. Extensions of Theorem 1
to a much more general class of operators were considered for instance in [Bro62b], [Bro62a].

As the main result of this note, we derive a quantitative version of Theorem 1: Given an error
threshold ε > 0 and a solution h ∈ S1, we estimate the size of a solution in S2 that approximates
h in D1 up to error ε.

Theorem 2. Let L be the operator from (1) and let D1, D2,Γ and S1, S2 be as above. There
exist a parameter µ > 0 and a constant C > 1 (depending on D1, D2,Γ, n, K) such that for each
function h ∈ S1 and each error threshold ε ∈ (0, 1), there exists a function u ∈ S2 with

‖h− u|D1
‖L2(D1) ≤ ε‖h‖H1(D1), ‖u‖H1/2(∂D2) ≤ CeCε

−µ
‖h‖L2(D1).(3)

We remark that up to the precise power µ > 0 the exponential bound in ε is optimal, which
can be seen by considering spherical harmonics (see Section 5). However, if h is assumed to be
a solution in a slightly larger domain, one obtains polynomial bounds instead:

Theorem 3. Let L, D1, D2, Γ, and S2 be as above. Let also D̃ be a bounded Lipschitz domain
with D1 b D̃ b D2. There exist C, µ ≥ 1 (depending on D1, D2, D̃, Γ, n, K) such that for each

h̃ ∈ H1(D̃) with Lh̃ = 0 in D̃ and for each ε ∈ (0, 1), there exists u ∈ S2 with

‖h̃|D1 − u|D1‖L2(D1) ≤ ε‖h̃‖H1(D̃), ‖u‖H1/2(∂D2) ≤ Cε−µ‖h̃|D1‖L2(D1).(4)

As in [RS17], which studied quantitative approximation properties for nonlocal equations, the
argument for Theorems 2 and 3 relies on a quantitative unique continuation result for a “dual
equation”, see Proposition 3.1, combined with a functional analysis argument which we borrow
from control theory [Rob95].

This work is partly motivated by applications to inverse problems, where qualitative Runge
type approximation results have successfully been applied in various contexts. Focusing particu-
larly on Calderón type problems, we mention [KV85, Isa88] related to determination of piecewise
analytic or discontinuous conductivities, the probe method [Ike98, Ike13] and oscillating-decaying
solutions [NUW05] for inclusion detection, local data results when the conductivity is known near
the boundary [AU04], and monotonicity based methods [Geb08] involving localized potentials
that are closely related to Runge approximation.

We will use Theorem 3 to provide a new proof of the result from [Fat07], [AK12] on the
stability of the result in [AU04] for the Calderón problem with local data. While this stability
result itself is not new, we view the problem as a model setting that demonstrates the strength
of quantitative Runge approximation in connection with inverse problems. We hope that the
method might be useful in other settings as well.

Organization of the article. The remainder of the note is organized as follows: Section 2
recalls the argument for qualitative Runge approximation (Theorem 1). In Section 3 we discuss
a quantitative unique continuation principle, which is proved as a consequence of results in
[ARRV09]. Section 4 proves the quantitative approximation results (Theorems 2 and 3) by
reducing them to quantitative unique continuation via a functional analysis argument. In Section
5 we consider a spherically symmetric set-up proving the optimality of the bounds in (3). Finally,
in Section 6, as a model application of the quantitative Runge approximation, we discuss stability
for the Calderón problem with local data.

Acknowledgements. A.R. gratefully acknowledges a Junior Research Fellowship at Christ
Church. M.S. was supported by the Academy of Finland (Finnish Centre of Excellence in Inverse
Problems Research, grant number 284715) and an ERC Starting Grant (grant number 307023).
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2. Qualitative Runge Approximation

In this section, we recall for completeness the proof of Theorem 1. For the proof, we also
introduce some notation and facts that will be useful later. We begin with a standard lemma
concerning weak solutions in Lipschitz domains. Here and below, we write ( · , · )L2 both for the
L2 inner product and for the distributional pairing between a distribution and a test function.

Lemma 2.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with Lipschitz boundary. Let L be of
the form (1) where (aij) is symmetric, and for some M ≥ 1 one has M−1|ξ|2 ≤ aijξiξj ≤M |ξ|2
a.e. on Ω and ‖c‖L∞(Ω) ≤M . Assume that 0 is not a Dirichlet eigenvalue of L in Ω.

Then for any F ∈ L2(Ω) and g ∈ H1/2(∂Ω), the problem

Lu = F in Ω, u = g on ∂Ω

has a unique solution u ∈ H1(Ω) satisfying

‖u‖H1(Ω) ≤ C(‖F‖L2(Ω) + ‖g‖H1/2(∂Ω).

The conormal derivative ∂νu ∈ H−1/2(∂Ω) is defined in the weak sense via

(∂νu, g̃)L2(∂Ω) := (aij∂iu, ∂jEg̃)L2(Ω) + (F − cu,Eg̃)L2(Ω)

where g̃ ∈ H1/2(∂Ω), and E : H1/2(∂Ω)→ H1(Ω) is any bounded extension operator. (Formally
∂νu := νia

ij∂ju, where ν : ∂Ω → Rn is the unit outer normal to ∂Ω). If Ω′ b Ω is another

Lipschitz domain, ∂νu|∂Ω′ is well defined and may be computed from Ω′ or Ω \ Ω
′
. Moreover,

(5) (Lu,w)L2(Ω) − (u, L∗w)L2(Ω) = (∂νu,w)L2(∂Ω) − (u, ∂νw)L2(∂Ω)

whenever w ∈ H1(Ω) satisfies L∗w ∈ L2(Ω). Additionally, there is p > 2 such that if g = 0, then
‖∇u‖Lp(Ω) ≤ C‖F‖L2(Ω). The constants C and p only depend on Ω, n, and M .

Proof. The last statement follows from [Mey63, Theorem 1] (Lipschitz domains are admissible
by [JK95, Theorem 0.5]). The other statements are standard (see for instance [McL00]). �

We will next prove Theorem 1. Define the space

H̃1/2(Γ) = closure of {g ∈ H1/2(∂D2) ; supp(g) ⊂ Γ} in H1/2(∂D2).

Then H̃1/2(Γ) is a closed subspace of H1/2(∂D2), and its dual space may be identified with
H−1/2(Γ) (similarly as in [CWHM17, Theorem 3.3]). Let X be the closure of S1 in L2(D1), and
consider the mapping

A : H̃1/2(Γ)→ X ⊂ L2(D1),

g 7→ u|D1 ,
(6)

where u ∈ S2 has boundary data g. The operator A may be written as Ag = Pg|D1
where P is

the Poisson operator for L in D2. Its Banach space adjoint is given by the operator

A′ : X ⊂ L2(D1)→ H−1/2(Γ),

h 7→ ∂νw|Γ,
(7)

where w and h are related through

L∗w =

{
h in D1,
0 in D2 \D1,

w = 0 on ∂D2.(8)

In fact, the above notions are well defined by Lemma 2.1, and (7) follows from the computation

(9) (Ag, h)L2(D1) = (u, L∗w)L2(D2) = (g, ∂νw)L2(∂D2)

for g ∈ H̃1/2(Γ) and h ∈ L2(D1), where we have used (5).
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Proof of Theorem 1. It is enough to show that the range of A is a dense subspace in X. By the
Hahn-Banach theorem, this will follow if we can show that any h ∈ L2(D1) that satisfies

(10) (Ag, h)L2(D1) = 0 for all g ∈ H̃1/2(Γ)

must also satisfy (v, h)L2(D1) = 0 for all v ∈ S1. But if w is the solution of (8), then (9) and (10)
imply that ∂νw|Γ = 0. Thus w solves

L∗w = 0 in D2 \D1, w|∂D2
= ∂νw|Γ = 0.

Since D2\D1 was assumed connected, the unique continuation principle (for instance the version
in [ARRV09, Theorem 1.9]) implies that w = 0 in D2 \D1. It follows that

h = L∗(w|D1) where w|∂D1 = ∂νw|∂D1 = 0.

Now if v ∈ S1, we use (5) to conclude that

(v, h)L2(D1) = (v, L∗(w|D1))L2(D1) = (Lv,w|D1
)L2(D1) = 0.

Thus h is L2-orthogonal to S1, which proves the theorem. �

3. Quantitative Unique Continuation

In the sequel, we argue that the validity of an approximation result as in Theorem 2 is closely
related to a quantitative unique continuation result. To this end, we first show that Theorem 2
entails a quantitative unique continuation result.

Proposition 3.1. Let L be the operator from (1) and let D1, D2,Γ, S1, S2 be as in Section 1.
Let h ∈ S1 and define w as a solution of the equation

L∗w =

{
h in D1,
0 in D2 \D1,

w = 0 on ∂D2.(11)

Assume that the result of Theorem 2 holds. Then,

‖h‖L2(D1) ≤ CeCε
−µ
‖∂νw‖H−1/2(Γ),(12)

whenever ε > 0 satisfies ε‖h‖H1(D1) ≤ 1
2‖h‖L2(D1).

Proof. The argument for (12) follows from Green’s theorem (5), which asserts that

(u, h)L2(D1) = (g, ∂νw)L2(∂D2),(13)

where the functions h, w are assumed to be related as in the formulation of the proposition,
while the functions u, g are connected through

Lu = 0 in D2, u = g on ∂D2.

In particular, this implies that

‖h‖2L2(D1) = (h− u, h)L2(D1) + (g, ∂νw)L2(∂D2).

Assuming that in the sense of (3) u is an approximation to h ∈ S1 for a given choice of ε > 0,

where g = u|∂D2 ∈ H̃1/2(Γ), we infer that

‖h‖2L2(D1) ≤ ‖g‖H1/2(∂D2)‖∂νw‖H−1/2(Γ) + ‖u− h‖L2(D1)‖h‖L2(D1)

≤ CeCε
−µ
‖h‖L2(D1)‖∂νw‖H−1/2(Γ) + ε‖h‖H1(D1)‖h‖L2(D1).

Dividing by ‖h‖L2(D1) and choosing ε > 0 such that ε‖h‖H1(D1) ≤ 1
2‖h‖L2(D1) implies (12). �
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Remark 3.2. Let us comment on this quantitative unique continuation result: At first sight a
result like this seems impossible, as for a general solution to (11) unique continuation from the
boundary clearly only implies that if ∂νw|Γ vanishes, then w = 0 in D2 \D1. In particular, in
general it does not imply that w = 0 in D1.

However, in the present situation we have two strong additional assumptions: Firstly, h itself
is an element of S1. Secondly, we assume that (3) holds. This corresponds to the assumption
that S2|D1 is dense in S1. If ∂νw|Γ = 0, (13) therefore yields

(u, h)L2(D1) = 0 for all u ∈ S2.(14)

By density of S2|D1
in S1 this then implies that (14) also holds for all functions u ∈ S1. Setting

u = h, we therefore indeed obtain h = 0 in accordance with (12). This resolves the initial
“paradox”.

Next, we derive a quantitative unique continuation result. As in the qualitative proof of
the Runge approximation property, we will exploit this in deducing the quantitative results of
Theorem 2 and 3.

Proposition 3.3. Let L be the operator from (1) and let D1, D2,Γ, S1, S2 be as in Section 1.
Let h ∈ S1 and define w : D2 → R as a solution to

L∗w =

{
h in D1,
0 in D2 \D1,

w = 0 on ∂D2.

Then there exist a parameter µ > 0 and a constant C > 1 (depending on D1, D2,Γ, n,K) such
that

‖w‖H1(D2\D1) ≤ C
‖h‖L2(D1)

log

(
C

‖h‖L2(D1)

‖∂νw‖H−1/2(Γ)

)µ .(15)

Moreover, if G is a bounded Lipschitz domain with G b D2 \D1, then

‖w‖H1(G) ≤ C‖h‖L2(D1)

(‖∂νw‖H−1/2(Γ)

‖h‖L2(D1)

)δ
,(16)

where C ≥ 1 and δ ∈ (0, 1) depend on D1, D2, G,Γ, n,K.

Proof. We write Ω = D2 \D1. Since

L∗w = 0 in Ω,

the quantitative unique continuation result of (15) follows for instance from [ARRV09]. Indeed,
[ARRV09, Theorem 1.9] implies that whenever E ≥ ‖w‖H1(Ω) and η ≥ ‖∂νw‖H−1/2(Γ), one has

(17) ‖w‖L2(Ω) ≤ (E + η)ω

(
η

E + η

)
,

where ω(t) ≤ C(log 1
t )
−µ for 0 ≤ t ≤ 1 and where C, µ > 0 only depend on the quantities in the

statement of this proposition.
We wish to obtain an analogous statement for ∇w. To do this, set

Ωr = {x ∈ Ω : dist(x, ∂Ω) > r}.

Denoting the right hand side of (17) by B, Caccioppoli’s inequality yields

‖∇w‖L2(Ωr) ≤ Cr−1‖w‖L2(Ωr/2) ≤ Cr−1B.
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On the other hand, for any q > 1 sufficiently close to 1, and with 1
q + 1

q′ = 1, we have

‖∇w‖L2(Ω\Ωr) ≤ ‖∇w‖L2q(D2)|Ω \ Ωr|
1

2q′ ≤ C‖∇w‖L2q(D2)r
1

2q′ .

Choosing q = p/2 with p as in Lemma 2.1 gives ‖∇w‖L2q(D2) ≤ C‖h‖L2(D1). Combining the
above facts leads to

‖∇w‖L2(Ω) ≤ Cr−1B + C‖h‖L2(D1)r
1

2q′ .

Now choosing r > 0 so that both terms on the right are equal, we get

(18) ‖∇w‖L2(Ω) ≤ CBα‖h‖1−αL2(D1)

where α ∈ (0, 1) only depends on q. Using the fact that ‖w‖H1(D2) ≤ C‖h‖L2(D1), we may take
E = C‖h‖L2(D1). Choosing also η = ‖∂νw‖H−1/2(Γ), we have η ≤ CE and thus (15) follows by

combining (17) and (18).
To prove (16), we invoke instead [ARRV09, Theorem 1.7] which states that

‖w‖L2(G) ≤ C(E + η)1−δηδ

for some C ≥ 1 and δ ∈ (0, 1). Arguing as above, we obtain a similar estimate for ‖∇w‖L2(G),
which yields (16) for some new δ ∈ (0, 1). �

4. Quantitative Runge Approximation

We next seek to show that the quantitative unique continuation estimate (15) from Proposition
3.3 implies the approximation result (3). To this end, recall from Section 2 the space X which
is the closure of S1 in L2(D1), the mapping

A : H̃1/2(Γ)→ X ⊂ L2(D1),

g 7→ u|D1 ,
(19)

where u ∈ S2 has boundary data g, and its Banach space adjoint A′ : X ⊂ L2(D1)→ H−1/2(Γ),
h 7→ ∂νw|Γ, where w and h are related through (8).

From general functional analysis (see Remark 3.5 in [RS17]), the Hilbert space adjoint A∗ of
A then becomes A∗ := RA′, where

R : H−1/2(Γ)→ H̃1/2(Γ)(20)

denotes the Riesz isomorphism between a Hilbert space and its dual space. In particular, we
have that ‖A∗h‖H1/2(∂D2) = ‖A′h‖H−1/2(Γ).

We seek to argue via a singular value decomposition as in [RS17, Section 3] or [Rob95]. To
that end, we begin by studying the operator A from (19).

Lemma 4.1. The operator A in (19) is a compact, injective operator H̃1/2(Γ) → X. Its range

is dense. Further, there are orthonormal bases {ϕj}∞j=1 of H̃1/2(Γ) and {ψj}∞j=1 of X, such that
Aϕj = σjψj where σj > 0 are the singular values associated with the operator A.

Proof. For compactness, if (gj) is a bounded sequence in H̃1/2(Γ), then ‖Agj‖H1(D1) ≤ C. Thus

a subsequence of (Agj) converges to some h ∈ H1(D1) weakly in H1(D1) and strongly in L2(D1)
by Rellich’s theorem. By weak convergence, h solves Lh = 0 in D1, showing that h ∈ X and that
A is compact. The injectivity of A follows from the unique continuation principle since D2 \ D̄1

is connected, and the qualitative Runge approximation (Theorem 1 and its proof) shows that A
has dense range in X.
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Therefore, the operator A∗A : H̃1/2(Γ)→ H̃1/2(Γ) is a compact, self-adjoint, positive definite
operator. The spectral theorem thus yields the existence of an orthonormal basis {ϕj}∞j=1 of

H̃1/2(Γ) and a sequence of positive eigenvalues {µj}∞j=1 such that

A∗Aϕj = µjϕj .

We define σj = µ
1/2
j and set ψj = σ−1

j Aϕj ∈ X. We claim that {ψj}∞j=1 is an orthonormal basis
of X. As orthonormality follows by definition, it suffices to prove completeness of this set. This
follows again from the qualitative Runge approximation result of Theorem 1. Indeed, if v ∈ X
is such that (v, ψj)L2(D1) = 0 for all j, then by density of ϕj in H̃1/2(Γ) this however entails

that (v,Ag)L2(D1) = 0 for all g ∈ H̃1/2(Γ). But since A has dense range in X, this however
implies that (v, h)L2(D1) = 0 for all h ∈ X. Choosing h = v implies v = 0, which concludes the
completeness proof. �

With these preliminary results at hand, we proceed to the proof of Theorems 2 and 3.

Proof of Theorem 2. Let h ∈ S1 ⊂ X, and write h =
∞∑
j=1

βjψj . For α > 0, we define

Rαh :=
∑
σj≥α

βj
σj
ϕj ∈ H̃1/2(Γ).

By orthonormality, we in particular obtain that

‖Rαh‖2H1/2(∂D2) =
∑
σj≥α

β2
j

σ2
j

≤ 1

α2

∑
σj≥α

β2
j ≤

1

α2
‖h‖2L2(D1).(21)

For the function h ∈ S1 from above, we set rα :=
∑
σj<α

βjψj and define wα as the solution of

L∗wα =

{
rα in D1,
0 in D2 \D1,

wα = 0 on ∂D2.

By orthogonality and integration by parts using (5), we infer that

‖A(Rαh)− h‖2L2(D1) = ‖rα‖2L2(D1) = (h, rα)L2(D1) = (h, L∗wα)L2(D1)

= (Lh,wα)L2(D1) − (∂νh,wα)L2(∂D1) + (h, ∂νwα)L2(∂D1).

Now Lh = 0 in D1 and L∗wα = 0 in D2\D1. Using trace estimates for solutions in the respective
domains, combined with the quantitative unique continuation result of Proposition 3.3, this leads
to

‖A(Rαh)− h‖2L2(D1) ≤ ‖∂νh‖H−1/2(∂D1)‖wα‖H1/2(∂D1) + ‖h‖H1/2(∂D1)‖∂νwα‖H−1/2(∂D1)

≤ C‖h‖H1(D1)‖wα‖H1(D2\D1)

≤ ‖h‖H1(D1)

C‖rα‖L2(D1)

log

(
C

‖rα‖L2(D1)

‖∂νwα‖H−1/2(Γ)

)µ .
Using the relation between A∗ and A′, the fact that A∗ψj = σjϕj , and orthogonality, we have
‖A∗rα‖H1/2(∂D2) ≤ α‖rα‖L2(D1) and

1

log

(
C

‖rα‖L2(D1)

‖∂νwα‖H−1/2(Γ)

) =
1

− log

(
C
‖A∗rα‖H1/2(∂D2)

‖rα‖L2(D1)

) ≤ 1

− log (Cα)
.
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Defining α so that ε = C| log (Cα) |−µ and dividing by ‖A(Rαh) − h‖L2(D1) = ‖rα‖L2(D1) con-
cludes the proof. �

Proof of Theorem 3. Let h̃ ∈ H1(D̃) satisfy Lh̃ = 0 in D̃, and define h := h̃|D1
. Then also

h ∈ S1, and we may define Rαh, rα, and wα as in the proof of Theorem 2. Now

‖A(Rαh)− h‖2L2(D1) = ‖rα‖2L2(D1) = (h, rα)L2(D1) = (h̃, L∗wα)L2(D̃)

= −(∂ν h̃, wα)L2(∂D̃) + (h̃, ∂νwα)L2(∂D̃).
(22)

Define G = U \ D̃ where U is a Lipschitz domain with D̃ b U b D2 and ∂G = ∂D̃ ∪ ∂U (U can

be obtained by enlarging D̃ slightly). Using that Lwα = 0 in G, trace estimates together with
(16) yield

‖A(Rαh)− h‖2L2(D1) ≤ ‖∂ν h̃‖H−1/2(∂D̃)‖wα‖H1/2(∂D̃) + ‖h̃‖H1/2(∂D̃)‖∂νwα‖H−1/2(∂D̃)

≤ C‖h̃‖H1(D̃)‖wα‖H1(G)

≤ C‖h̃‖H1(D̃)‖rα‖L2(D1)

(‖∂νwα‖H−1/2(Γ)

‖rα‖L2(D1)

)δ
.

Repeating the argument in the proof of Theorem 2 gives ‖A(Rαh)− h‖L2(D1) ≤ C‖h̃‖H1(D̃1)α
δ.

Since also ‖Rαh‖H1/2(∂D2) ≤ α−1‖h‖L2(D1), choosing α = (ε/C)1/δ finishes the proof. �

5. Optimality

In order to infer optimality of the result of Theorem 2 we consider the simplest possible case
of harmonic functions. For these we easily obtain optimality of the bounds in (3). The idea
is to consider boundary values given by spherical harmonics on ∂B1, so that the corresponding
harmonic functions will decay rapidly toward the interior.

Proposition 5.1. Let L = ∆ and set D1 = B1/2, D2 = B1, and Γ = ∂B1. There exists a
sequence (hj) ⊂ S1 with ‖hj‖H1(D1) = 1 such that

for any u ∈ S2 with ‖hj − u‖L2(D1) ≤ (10j)−1, one has ‖u‖H1/2(∂D2) ≥ cecj .

Proof. Let Hl be the subspace of L2(∂B1) consisting of spherical harmonics of degree l, associated
with the eigenvalue λl = l(l + n − 2) of the spherical Laplacian. Working in polar coordinates
x = rθ where θ ∈ ∂B1, any u ∈ H1(B1) solving ∆u = 0 in B1 may be written as

u(rθ) =

∞∑
l=0

rlul(θ), ul(θ) =

Nl∑
m=1

clmψlm(θ) ∈ Hl

where {ψl1, . . . , ψlNl} is an orthonormal basis of Hl. If ũ =
∑
rlũl(θ) is another such function,

then by orthogonality

(23) (u, ũ)L2(BR) =

∞∑
l=0

ˆ R

0

r2l+n−1(ul, ũl)L2(∂B1) dr =

∞∑
l=0

R2l+n

2l + n
(ul, ũl)L2(∂B1).

We define hl in B1 by

hl(rθ) := αlgl(rθ), gl(rθ) := rlψl1(θ),

where αl := ‖gl‖−1
H1(D1). Then hl is harmonic and hl|D1

∈ S1. By (23),

‖gl‖2L2(D1) = (2l + n)−12−2l−n
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and using integration by parts

‖∇gl‖2L2(D1) = (∂rgl, gl)L2(∂B1/2) = l22−2l−n.

We obtain

(24) ‖gl‖L2(D1) = (2l + n)−1/22−l−n/2, ‖gl‖H1(D1) = (4l + (2l + n)−1)1/22−l−n/2.

Let now u ∈ S2. Choosing c so that cαl = ‖gl‖−2
L2(D1)(u, gl)L2(D1), we may write

u = cαlgl + v in B1, (v, gl)L2(D1) = 0.

If additionally ‖u − hl‖L2(D1) ≤ (10l)−1, it follows that |c − 1|αl‖gl‖L2(D1) ≤ (10l)−1. Since

v also solves ∆v = 0 in B1, we may write v =
∑
rkvk(θ) where vk ∈ Hk, and the condition

(v, hl)L2(D1) = 0 implies by (23) that vl =
∑Nl
m=2 dlmψlm(θ) (i.e. the coefficient for ψl1 is zero).

Combining these facts shows that u|∂B1 satisfies

u(θ) = cαlψl1(θ) + w(θ), (w,ψl1)L2(∂B1) = 0.

Therefore, since |cαl − αl| ≤ (10l)−1‖gl‖−1
L2(D1), the formulas (24) yield that for l large

‖u‖H1/2(∂B1) ≥ (1 + λ
1/2
l )1/2|cαl| ≥ l1/2(αl − (10l)−1‖gl‖−1

L2(D1)) ≥ cn2l/2

which implies the claimed lower bound. �

6. Application to the Calderón Problem with Local Data

As an application of the quantified version of the Runge approximation, we demonstrate its
applicability in inverse problems by providing a new stability proof for the partial data problem
for the Schrödinger equation assuming that the potentials agree near the boundary (see [AU04]).
Although the result itself is not new (it had first been derived in [Fat07] for the Schrödinger
and in [AK12] for the conductivity equation), we believe that the ideas which are used in our
proof differ from the ones in [Fat07], [AK12] (although not surprisingly quantitative unique
continuation and propagation of smallness play a central role in all these results) and could be
useful in other inverse problems.

In order to state our main result, let Ω ⊂ Rn be a bounded Lipschitz domain, let q ∈ L∞(Ω),
and assume that 0 is not a Dirichlet eigenvalue of −∆+q in Ω. Let Γ be a nonempty open subset
of ∂Ω. We consider the associated local Dirichlet-to-Neumann map

ΛΓ
q : H̃1/2(Γ)→ H−1/2(Γ), g 7→ ∂νu|Γ,

where u ∈ H1(Ω) is the solution of the problem

(−∆ + q)u = 0 in Ω,

u = g on ∂Ω.

We also write

‖ΛΓ
q ‖∗ = ‖ΛΓ

q ‖H̃1/2(Γ)→H−1/2(Γ).

With this notation at hand, we will prove the following stability estimate. The proof is based
on quantifying the argument of [AU04] by using Theorem 3.

Proposition 6.1 (Stability). Let n ≥ 3, let Ω ⊂ Rn be bounded a Lipschitz domain, and suppose
that q1, q2 ∈ L∞(Ω) are such that zero is not a Dirichlet eigenvalue of −∆ + qj in Ω and

‖qj‖L∞(Ω) ≤M <∞ for j = 1, 2.
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Assume further that q1 = q2 in Ω \ Ω
′

where Ω′ b Ω is another bounded Lipschitz domain such

that Ω \ Ω
′

is connected. Then

‖q1 − q2‖H−1(Ω) ≤ ω(‖ΛΓ
q1 − ΛΓ

q2‖∗)

where ω(t) = C| log(t)|−σ for t ∈ [0, 1], and C > 1, σ > 0 only depend on Ω,Ω′,Γ, n,M .

Proof. We will construct complex geometrical optics solutions uj solving (−∆ + qj)uj = 0 in Ω
(see [SU87]). Fix k ∈ Rn, choose unit vectors l,m ∈ Rn with k · l = k ·m = l ·m = 0 (here we
use the assumption n ≥ 3), and for τ ≥ |k|/2 define the complex vectors

ρ1 = τm+ i

(
−k

2
+

√
τ2 − |k|

2

4
l

)
, ρ2 = −τm+ i

(
−k

2
−
√
τ2 − |k|

2

4
l

)
.

By [SU87], if τ ≥ 1 is large enough, there exist uj ∈ H1(Ω) solving (−∆ + qj)uj = 0 in Ω and
having the form

uj = ex·ρj (1 + ψi(x, ρj)), j ∈ {1, 2},
where

‖ψj‖L2(Ω) ≤
C

τ
‖qj‖L2(Ω), ‖ψj‖H1(Ω) ≤ C‖qj‖L2(Ω).

Given an error threshold ε > 0, whose precise value will be fixed later, we use Theorem 3
(with D1 = Ω′, D̃ being a slight fattening of Ω′ and D2 = Ω) to find ũj ∈ H1(Ω), j ∈ {1, 2},
solving (−∆ + qj)ũj = 0 in Ω with ũj |∂Ω\Γ = 0, such that one has

‖ũj − uj‖L2(Ω′) ≤ ε‖uj‖H1(D̃), ‖ũj‖H1/2(∂Ω) ≤ Cε−µ‖uj‖L2(Ω′).

Since q1 = q2 in Ω \ Ω
′
, integration by parts using (5) gives thatˆ

Ω′

(q1 − q2)ũ1ũ2 dx =

ˆ

Ω

(q1 − q2)ũ1ũ2 dx = (∆ũ1, ũ2)L2(Ω) − (ũ1,∆ũ2)L2(Ω)

= (∂ν ũ1, ũ2)L2(∂Ω) − (ũ1, ∂ν ũ2)L2(∂Ω) = (ΛΓ
q1 ũ1, ũ2)L2(∂Ω) − (ũ1,Λ

Γ
q2 ũ2)L2(∂Ω)

= ((ΛΓ
q1 − ΛΓ

q2)ũ1, ũ2)L2(∂Ω).

Here we used that (ΛΓ
q g, h)L2(∂Ω) = (g,ΛΓ

q h)L2(∂Ω) (this follows from (5)). Hence,ˆ

Ω′

(q1 − q2)e−ik·x dx = −
ˆ

Ω′

(q1 − q2)e−ik·x(ψ1 + ψ2 + ψ1ψ2) dx+

ˆ

Ω′

(q1 − q2)(u1 − ũ1)u2 dx

+

ˆ

Ω′

(q1 − q2)(u2 − ũ2)ũ1 dx+ ((ΛΓ
q1 − ΛΓ

q2)ũ1, ũ2)L2(∂Ω).

As a consequence, if qj are extended by zero to Rn,

|F(q1 − q2)(k)| ≤ C(Ω)M(‖ψ1‖L2(Ω) + ‖ψ2‖L2(Ω) + ‖ψ1‖L2(Ω) ‖ψ2‖L2(Ω))

+ 2M‖u2‖L2(Ω)‖u1 − ũ1‖L2(Ω′) + 2M‖ũ1‖L2(Ω′)‖u2 − ũ2‖L2(Ω′)

+ ‖ΛΓ
q1 − ΛΓ

q2‖∗‖ũ1‖H1/2(∂Ω)‖ũ2‖H1/2(∂Ω)

≤ C

τ
+ Cε(‖u2‖L2(Ω)‖u1‖H1(Ω) + (‖u1‖L2(Ω) + ε‖u1‖H1(Ω))‖u2‖H1(Ω))

+ ‖ΛΓ
q1 − ΛΓ

q2‖∗Cε
−2µ‖u1‖L2(Ω)‖u2‖L2(Ω)

≤ C

τ
+ Cετ2eCτ + Cε−2µeCτ‖ΛΓ

q1 − ΛΓ
q2‖∗
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where C and µ depend on Ω,Ω′,Γ, n,M . Therefore, for any ρ ≥ 1,

‖q1 − q2‖2H−1(Ω) ≤
ˆ

|k|<ρ

|F(q1 − q2)(k)|2(1 + |k|2)−1 dk +

ˆ

|k|≥ρ

|F(q1 − q2)(k)|2(1 + ρ2)−1 dk

≤ Cρn−2

(
1

τ2
+ ε2eCτ + ‖ΛΓ

q1 − ΛΓ
q2‖

2
∗ε
−4µeCτ

)
+

1

1 + ρ2
‖q1 − q2‖2L2(Ω)

≤ Cρn−2

(
1

τ2
+ ε2eCτ + ‖ΛΓ

q1 − ΛΓ
q2‖

2
∗ε
−4µeCτ

)
+
C

ρ2
.

Choosing ρ = τ
2
n , ε = ‖ΛΓ

q1 − ΛΓ
q2‖

2
2+4µ
∗ and τ = C−1| log(‖ΛΓ

q1 − ΛΓ
q2‖

2
2+4µ
∗ )| then implies the

desired result. �

Remark 6.2. Alternatively, one could use Theorem 3 to give an easy proof of an analogue of
[AK12, Theorem 3.1]: if D̃ is a suitable Lipschitz domain with Ω′ b D̃ b Ω in the setup of

Proposition 6.1, and if Λ∂D̃q is the Dirichlet-to-Neumann map on the full boundary of D̃, then

‖Λ∂D̃q1 − Λ∂D̃q2 ‖H1/2(∂D̃)→H−1/2(∂D̃) ≤ C‖Λ
Γ
q1 − ΛΓ

q2‖
β
∗

for some β ∈ (0, 1). Combining this with [Ale88] would imply Proposition 6.1.
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