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Abstract: We study the thermodynamic properties of a superconductor/normal metal/superconductor
Josephson junction in the short limit. Owing to the proximity effect, such a junction constitutes
a thermodynamic system where phase difference, supercurrent, temperature and entropy are
thermodynamical variables connected by equations of state. These allow conceiving quasi-static
processes that we characterize in terms of heat and work exchanged. Finally, we combine such
processes to construct a Josephson-based Otto and Stirling cycles. We study the related performance in
both engine and refrigerator operating mode.

Keywords: proximity effect; superconductivity; Josephson junction; SNS junction; Josephson
thermodynamics; Maxwell relation; quasi-particles entropy; quantum thermodynamics; quantum
machines; quantum coolers

1. Introduction

Thermodynamic concepts have been recently considered at the nanoscale, conceiving and realizing
systems where quantum coherent properties are mirrored in thermodynamic quantities at mesoscopic
level [1–14] . Furthermore, one of the most impressive examples of quantum features reflected in
macroscopic systems is represented by superconductivity, where quantum coherence is manifested at
a mesoscopic scale. Therefore superconducting systems are interesting platform where investigating
the interplay between thermodynamic concepts and quantum coherences.

Superconducting hybrid systems, i.e., constituted of superconducting parts in electric contact
with normal (non-superconducting) parts, are in practice coherent electron systems with striking
thermodynamic equilibrium/transport properties, resulting in a wide variety of applicative devices:
low-temperature sensitive thermometers [15–19], sensitive detectors [20–32], heat valves [33–43],
caloritronics (heat computing) [11,37,44–48], solid-state micro-refrigerators [18,49–55], solid-state
quantum machines [56–61], thermoelectric generators [62–67].

In this paper, we review the equilibrium thermodynamic properties of a hybrid system based
on a Superconductor/Normal metal/Superconductor (SNS) Josephson Junction in the diffusive limit.
The behavior of such a system is ruled by the proximity effect, which consists in a set of physical
phenomena owing to the propagation of the superconducting electron correlations in the normal
metal [68–70]. In particular, guided by a matter of thermodynamic consistency, we discuss a relation
between the electronic and thermal properties of the proximized system. From this relation, we develop
a basic investigation of the thermodynamic properties of such a system. These results are then exploited
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to investigate quasi-static processes and thermodynamic cycles. We focus within a semi-classical regime
of Josephson coupling, i.e., we neglect non-commutativity between the phase and the number of pairs,
as usually done in the thermodynamic limit.

We remark that, besides the system studied in this paper, many equilibrium thermodynamic
properties have been investigated in different conditions, theoretically and experimentally:
thermodynamics of rings interrupted by insulating Josephson Junction [71–75], heat capacity in SN
systems [76–78], free energy in hybrid SN systems due to boundary effects with approaches different
to the quasi-classical theory [79–81].

The paper is organized as follows. Section 2 describes the proximized system under study and
introduces its thermodynamics, giving also an insight into the underlying microscopical mechanism.
Section 3 studies the thermodynamic processes. Hence, these are combined in Section 4 to investigate
two different thermodynamic cycles. Finally, Section 6 summarizes and discusses the main findings. For
completeness, Appendix A discusses the thermodynamics of a Josephson junction close to the critical
temperature.

2. Thermodynamics of Hybrid Systems

2.1. Model

We consider a system as sketched in Figure 1, constituted by a superconducting ring
interrupted by a Superconductor/Normal metal/Superconductor (SNS) proximity Josephson Junction.
The superconductor gap depending on temperature T is ∆(T) and reaches ∆0 at T = 0. The critical
temperature is Tc. The phase difference ϕ of the superconducting order parameter across the junction is
ruled by the magnetic flux threading the ring, owing to the fluxoid quantization relation ϕ = 2πΦ/Φ0,
where Φ0 = h/2e ≈ 2× 10−15 Wb is the flux quantum.

Figure 1. (a) Sketch of the SNS proximized system. It consists of superconducting ring, LS long, pierced
by a magnetic flux Φ. The ring is interrupted by a normal metal weak link. The electron system of the
whole device is thermally and electrically isolated and at temperature T. The system is connected to
a thermal reservoir at temperature T through a heat valve v. (b) Magnification of the SNS junction.
The normal metal weak, LN long, is in clean electric contact with the superconducting leads. Aj,Nj are
respectively the cross-section and the DoS at Fermi energy of the j = N or S metal. The phase drop ϕ

of the superconducting order parameter takes place across the junction.

We assume that the system is thermally and electrically isolated and at a homogeneous temperature
T, neglecting thermal gradients. We consider only heat exchange with a reservoir at temperature T
through the respective heat channel connected by a heat valve v [33–42], as drawn in Figure 1.

The junction, magnified in Figure 1b, consists in the two S leads in electric contact with an N
weak link. The superconductor has a critical temperature Tc and BCS gap at zero temperature ∆0. The
N weak link and the S leads have respectively cross-sections AN and AS, conductivities σN and σS,
Density of States (DoS) per spin at the Fermi level NN and NS. The length of the weak link is LN ,
resulting in a resistance RN = LN/ANσN . The length of the superconducting ring is LS. The whole
proximized system (ring+junction) volume is V.
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We make the following assumptions about the junction, in order to make simple analytical
predictions within the Kulik-Omel’yanchuk (KO) treatment [82–84]. We consider diffusive charge
transport with diffusivity D for both the S and N parts. This requires that the weak link is longer
than the mean free path Lmfp: LN � Lmfp. The KO treatment holds when the whole junction can be
treated in a quasi-1 dimensional approximation, i.e., when AS, AN � ξ2. The diffusivity defines the
coherence length ξ =

√
h̄D/∆0 [85]. Moreover, we consider a short constriction weak link respect to

the superconducting leads. Quantitatively, using the parameters l = LN/ξ and a = σS AS/σN AN , we
consider a short junction with l . 1 and a constriction with al � 1.

The typical values for this kind of system are the following. The ring can be made of aluminium,
with ∆0 ≈ 180 eV, corresponding to Tc ≈ 1.2K [86–88]. The coherence length for hybrid Al-based
devices is about ξ ≈ 150 nm [89–91]. In the following, we set the Boltzmann constant to kB = 1,
implying that the temperatures have a physical dimension of energy while entropy and specific heat
are dimensionless.

2.2. Hybrid Junction as Thermodynamic System

Before investigating the thermodynamic behavior of our system in detail, we discuss about the
thermodynamic consistency under a general point of view that is valid for any Josephson Junction (JJ).
In particular, we focus on the relation between the current transport and the junction entropy.

In a JJ, the Current Phase Relation (CPR) describes the dissipationless supercurrent I(ϕ, T) flowing
across it as function of the phase difference ϕ and temperature T [70,83]. The precise form of the CPR
depends on the geometry and on the materials of the junction, and can be calculated from the free
energy as

h̄
2e

I(ϕ, T) =
∂F(ϕ, T)

∂ϕ
(1)

where F(ϕ, T) has to be calculated within quantum statistical methods as a function of the state
variables (ϕ, T). The CPR constitutes an equation of state connecting I, ϕ and T. Another equation of
state is given by the entropy S(ϕ, T) as a function of phase difference and temperature

S(ϕ, T) = −∂F(ϕ, T)
∂T

. (2)

The entropy and the CPR are necessarily linked by thermodynamic consistency. Indeed the two
cross derivatives of F are identical, i.e., ∂ϕ∂T F = ∂T∂ϕF, owing to the Schwarz theorem. Hence, the
following Maxwell relation is universally valid

− ∂S(ϕ, T)
∂ϕ

=
h̄
2e

∂I(ϕ, T)
∂T

. (3)

Using this equation, the entropy of the JJ can be expressed as

S(ϕ, T) = S0(T) + δS(ϕ, T) (4)

where S0(T) is the entropy at ϕ = 0 and δS(ϕ, T) is the phase-dependent entropy variation

δS(ϕ, T) = − ∂

∂T
E(ϕ, T) (5)

E(ϕ, T) =
eR0

2π

∫ ϕ

0
I(ϕ′, T)dϕ′ (6)

where E(ϕ, T) is the Josephson energy stored in the junction at a given temperature T, R0 = h/2e2 ≈
12.9 kΩ is the inverse of the quantum of conductance. We note that the prefactor in Equation (6)
is usually expressed as Φ0/2π. We chose the form eR0/2π to allow an easier comparison with the
junction resistance RN .



Entropy 2019, 21, 1005 4 of 33

The entropy S0(T) at ϕ = 0 cannot be determined from the knowledge of the CPR. Indeed, any
function S0(T) of the temperature is dropped by the phase derivative in Equation (3), hence satisfying
the Maxwell equation. The physical solution of S0(T) can be found within a microscopic model that
we show in the next subsection.

2.3. Proximity Induced Minigap

In this subsection, we give an insight into the microscopic mechanism which determines the
entropy in a hybrid junction. In particular, we show that the entropy dependence on temperature and
phase is related to the presence of an induced phase-dependent minigap in the quasi-particle Density of
States (DoS). In a hybrid NS, correlated electrons propagate from the superconductor into the normal
metal, strongly modifying the properties of the latter with a set of phenomena called generically
under the name of proximity effect [68,69,92–97]. Among all possible consequences dictated by the
proximity effect, here we focus on the induced mini-gap in the quasi-particle Density of States, it being
responsible for the phase and temperature dependence of the entropy S in an SNS junction.

Let us consider the N weak link in an SNS junction. When not proximized, the weak link DoS is
homogeneous and approximately constant at its Fermi level value NN in the energy range of interest
of few ∆0 around the Fermi energy. Instead, when proximized by the superconducting leads, the DoS
is no more constant neither on energy nor on position, but is given by NN N(r, ε, ϕ), where N(r, ε, ϕ)

is the normalized local DoS [85,94,98,99] that is a function of the position r, energy ε and the phase
difference ϕ.

One way to calculate the normalized local DoS is provided by the quasi-classical theory of
superconductivity [85,94–96,98–100]. Qualitatively, a result of this theory is that the normalized local
DoS is characterized by an induced gap in the N weak link, whose amplitude ∆̃ is smaller than the S
bulk gap ∆(T). For this reason, ∆̃ is dubbed induced minigap. This induced minigap has the following
properties [85,98]: its width ∆̃ at ϕ = 0 depends on the weak link length LN and reaches ∆̃ → ∆(T)
when LN is well below the coherence length ξ. Moreover, ∆̃ depends on the phase ϕ through a function
that is even and 2π periodic. The minigap is fully open at ϕ = 0 and shrinks till closure at ϕ = π.
An analytical solution of the local normalized DoS is available for diffusive short junctions with rigid
boundary conditions [101,102], yielding that ∆̃ = ∆(T)| cos(ϕ/2)|. The proximity induced gap and its
interesting properties have been observed experimentally by tunneling experiments [89,90,103].

An important feature of this microscopic proximity DoS modification is that it does not take place
just in the N weak link, but also affects the S leads as well. The anti-proximization operated by the
N weak link on the S leads is called inverse proximity effect and plays the role of a crucial correction
in short junctions, since it gives an important contribution to the total entropy dependence on the
junction phase [84].

A numerical example of the phase-dependence of the local normalized DoS N in a junction is
reported in Figure 2, within the quasi-classical methods of Reference [84], calculated for a junction with
parameters l = 0.1 and a = 10, ∆(T → 0) = ∆0. The color plots show the evolution of the normalized
local DoS N versus energy ε and spatial position x for four values of ϕ from 0 to π. The blue area
corresponds to the gapped part of the local DoS; the white area is the saturation color that is associated
to the divergence of the DoS at the gap edges. The position is normalized to the coherence length ξ: as
shown in the first panel, the central zone x ∈ [0, 1] coincides with the N weak link, while the lateral
zones are the superconducting leads. At ϕ = 0, the DoS is homogeneous and is approximatively given
by the BCS form

NBCS(ε, T) = < |ε|√
ε2 − ∆2(T)

. (7)

The spatial homogeneity is due to the fact that the calculation involves a short junction, otherwise the
induced minigap would have been smaller than ∆0 [84,101,102]. Increasing ϕ, the induced minigap
shrinks till the complete closure at ϕ = π. It is possible to appreciate also the inverse proximity effect
in the S leads, outside the stripe delimited by the red dashed lines in Figure 2.
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Figure 2. Color plots of the quasi-particle local normalized Density of States (DoS) N in a
Superconductor/Normal metal/Superconductor (SNS) junction, versus energy ε and position x,
for ϕ = 0, π/3, 2π/3, π. The dashed lines separate the S regions (on the sides) to the N region
(in the center), as shown by the junction sketch. The phase dependence of the DoS is mirrored in a
phase-dependence of the junction entropy S. The numerical calculation has been obtained within the
quasi-classical methods of Reference [84] with a = 10, l = 0.1, ∆(T → 0) = ∆0

The phase dependence of the quasi-particle DoS implies a phase dependence of the junction
entropy. The total entropy is [84,104–107]

S(ϕ, T) =
∫

Vol
S(ϕ, T, r)dV (8)

S(ϕ, T, r) = −4Nr

∫ ∞

−∞
N(r, ε, ϕ) f (ε, T) log( f (ε, T))dε (9)

where Nr is NS or NN whether r is in the leads or the weak link.
At this point, we have two ways to calculate the entropy variation δS(ϕ, T). One consists in

calculating δS(ϕ, T) from I(ϕ, T) exploiting the Maxwell relation through Equations (3)–(6). The other
way is by means of Equations (8) and (9) given by the statistical argument above concerning
the quasi-particle density of states. It is a non-trivial result that the two approaches give results
in agreement [80,84,108]. This is an equilibrium thermodynamic feature due to the fact that the
equilibrium supercurrent is carried by the Andreev Bound States (ABS), whose spectral density is non
zero below the superconducting gap |ε| < ∆(T) [85,101]. The quasi-particle DoS and the ABS spectral
density are both functions of ϕ, ensuring that the two approaches are equivalent.

We conclude this discussion by calculating S0. As discussed in Section 2.2, this quantity can not be
obtained by the Maxwell relation (3), constituting hence an undetermined function of the temperature
T in Equation (4). However, S0 can be determined with a statistical mechanics approach. Given the
assumptions of Section 2.1 of short junction l . 1 and a � 1, the local normalized DoS at ϕ = 0 is
given by the BCS expression (7) [84]. Hence

S0(T) = −4VNS

∫ ∞

−∞
< |ε|√

ε2 − ∆2(T)
f (ε, T) log( f (ε, T))dε . (10)

In obtaining this expression from (9), we neglected that NS 6= NN in general. However, since the
junction volume is negligible respect to the total volume, we have approximated the prefactor with
NSVleads +NNVweak L ≈ VNS.

Below, we discuss this result within the full dependence of the total entropy S on ϕ and T.
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2.4. Kulik-Omel’yanchuk Theory

The Kulik-Omel’yanchuk theory, whose assumptions have been introduced in Section 2.1,
provides the CPR [82,83,101]

I(ϕ, T) =
π∆(T)

eRN
cos

( ϕ

2

) ∫ ∆(T)

|∆(T) cos(ϕ/2)|

1√
ε2 − ∆2(T) cos2(ϕ/2)

tanh
( ε

2T

)
dε . (11)

This expression [101] is equivalent to the Matsubara summation form presented in the first paper
about the KO CPR [82]. Here we adopt the integral form that allows to find simple closed expressions
in the limit T � ∆0.

In the zero-temperature limit T → 0, the KO CPR reduces to [82]

I(ϕ, T = 0) =
π∆0

eRN
cos

( ϕ

2

)
arctanh

(
sin

ϕ

2

)
. (12)

We use as scale for the supercurrent the critical current Ic at T = 0, obtained by maximizing (12).
Numerical maximization returns that Ic is

Ic =
κπ∆0

2eRN
(13)

where κ ≈ 1.33. The maximum is placed at phase ϕ ≈ 1.97 ≈ 0.63π.
The KO CPR is shown in Figure 3a, normalized to Ic. The T = 0 curve in Equation (12) is plotted

in black dotted. As one can see the supercurrent decreases versus temperature, passing from a skewed
shape to a more sinusoidal shape [83].

Figure 3. Characteristics of the KO theory, reported versus phase ϕ for chosen temperatures T in
legend. (a) Supercurrent I(ϕ, T), in Equation (11). The dotted curve at T = 0 is given by Equation (12).
(b) Electric Energy E(ϕ, T), in Equation (14). The dotted curve at T = 0 is given by Equation (15).
(c) Entropy variation δS(ϕ, T), in Equation (5).

According to the prescription given in (6), the associated Josephson energy to the KO CPR is

E(ϕ, T) =
R0

RN

∫ ∆(T)

|∆(T) cos(ϕ/2)|
log

[
∆(T)| sin(ϕ/2)|+

√
ε2 − ∆2(T) cos2(ϕ/2)√

∆2(T)− ε2

]
tanh

( ε

2T

)
dε (14)

where R0 = h/2e2 ≈ 12.9 kΩ is the inverse of the conductance quantum.
The characteristics of E(ϕ, T) are plotted in Figure 3b. Being the integral of the supercurrent,

the Josephson energy increases versus temperature. At T = 0, E reduces to

E(ϕ, T = 0) =
eR0∆0

2eRN

[
log
(

1− sin2 ϕ

2

)
+ 2 arctanh

(
sin

ϕ

2

)
sin

ϕ

2

]
. (15)
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The maximum Josephson energy is E0 = E(ϕ = π, T = 0), given by

E0 =
log 4

2
R0

RN
∆0 =

log 4
κπ

eR0 Ic (16)

that is about E0 ≈ 0.33eR0 Ic.
From E it is possible to calculate δS. Figure 3c reports the entropy variation δS(ϕ, T) calculated

numerically with δS(ϕ, T) = −∂TE(ϕ, T), for chosen temperatures in legend. It can be noticed that δS
decreases with the temperature, consistently with the third law of thermodynamics.

At low temperatures, where ∂T∆(T)→ 0, a closed form of δS can be obtained by the temperature
derivative of Equation (14), yielding [26,84,101]

δS(ϕ, T) =
R0

2RN

∫ ∆0

∆0| cos ϕ
2 |

log

∆0| sin(ϕ/2)|+
√

ε2 − ∆2
0 cos2(ϕ/2)√

∆2
0 − ε2

 ε

T2 sech2
( ε

2T

)
dε . (17)

The behavior of the entropy can be qualitatively grasped with the minigap mechanism. Let us
consider a fixed temperature T. Hence, the distribution function f log f in Equation (9) has a certain
bandwidth of the order T. At low temperature T � ∆0 and ϕ = 0, the DoS gap has width ∆0 and
the distribution bandwidth is smaller than the gap. Hence, the lack of available states exponentially
suppresses the entropy. When ϕ moves from ϕ = 0 to ϕ = π, the minigap shrinks giving new
available states for the distribution f log f , increasing the entropy. At T � ∆0 and short junction, it is
approximately ∆̃ = ∆0| cos(ϕ/2)| [102], the matching phase between the minigap and the distribution
bandwidth is 2 arccos(T/∆0), at which the entropy increases. This is particularly evident in the curve
T = 0.1Tc in Figure 3c, where δS is negligible except close to ϕ→ π.

2.5. Total Entropy

Given the microscopic and the KO CPR considerations of the last subsections, we can study the
total entropy, that is

S(ϕ, T) = S0(T) + δS(ϕ, T) (18)

where S0 is given by the BCS entropy in Equation (10) and δS = −∂TE where E is given by expression (14).
We note that the first term scales as ∆0NSV, while the second as eR0 Ic/∆0. For this reason, it is

convenient to introduce a parameter α of the system that sets the ratio between these two quantities:

α =
eR0 Ic

NS∆2
0V

. (19)

α characterizes the relative influence of the phase-dependent term δS over the remaining term S0.
The quantity α can be experimentally determined by heat capacity measurements, as explained in
Section 3.2. Moreover, α controls the temperature of a first-order transition to the normal state when
ϕ 6= 0, discussed in detail in Appendix A.

Figure 4 reports the total entropy for α = 0.6. Different values ϕ in the legend are plotted, showing
the increase of S from ϕ = 0 to ϕ = π. The four curves correspond to the DoS states in the frames of
Figure 2. As expected, the closure of the minigap from ϕ = 0 to ϕ = π implies an increase of entropy.
The scale of this increase is set by α.
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Figure 4. Total entropy S of the system for α = 0.6. (a) S versus temperature T for chosen phases ϕ in
legend. The case ϕ = 0 correspond to the BCS entropy S0(T) in Equation (10). (b) Magnification of panel
(a) around T = 0.2Tc, highlighting the passage from a exponential suppressed behavior at ϕ = 0 to a
linear behavior at ϕ = π. The dashed curve is the analytical low-temperature in expression (23), (24).

In the following, the calculations are obtained with α = 0.6. This value evidences the entropy
variation and the related results while keeping a proximized volume negligible respect to the total
volume, as shown below in this subsection, and keeping the unwanted first-order transition above the
temperature 0.7Tc, as discussed in Appendix A. Considering that NS ≈ 7× 1046 m−3J−1 [109], α = 0.6
corresponds to a ratio I/V ≈ 20 mAµm−3.

The behavior of the entropy can be studied in more detail at low temperature T � ∆0, where
closed expressions can be obtained. At ϕ = 0, the DoS has the BCS form in the whole volume of the
device, returning the exponentially suppressed behavior of entropy described by the red curve in
Figure 4. Hence, at low temperatures T � ∆0 and ϕ = 0 the entropy can be approximated by the
expression [110,111]

S0(T) ≈
√

2π

√
∆0

T
e−∆0/TVN0∆0 . (20)

At ϕ = π, the minigap is closed and a proximized spatial region around the weak link has a
metallic-like DoS. The entropy density (9) is then exponentially suppressed in the leads and with a
linear-in-temperature dependence in the proximized region. This is confirmed by an analytical expression
for δS that can be obtained at low temperatures at ϕ = π. Substituting ϕ = π in (17) we obtain

δS(ϕ = π, T) = − R0

4RN

∫ ∆0

0
log
[

∆0 − ε

∆0 + ε

]
ε

T2 sech
( ε

2T

)
dε . (21)

Developing the logarithm around ε = 0 as log(1− 2ε/(∆0 + ε)) ≈ −2ε/∆0 and substituting ε/T = z,

δS(ϕ = π, T) =
R0

2RN

T
∆0

∫ ∆0/T

0
z2sech2

( z
2

)
dz . (22)

For T → 0, we obtain

δS(ϕ = π, T → 0) =
π2

3
R0

RN

T
∆0

=
2π

3
eR0 Ic

κ∆0

T
∆0

. (23)

The linear behavior of δS(ϕ = π, T → 0) allows to neglect the exponentially suppressed S0 contribution
to the total entropy S, allowing the following approximation

S(ϕ = π, T) ≈ δS(ϕ = π, T) . (24)

Figure 4b reports the low-temperature behavior of the entropy for 0 ≤ T ≤ 0.4Tc. The ϕ = 0 and
ϕ = π curves show the exponentially suppressed and linear behavior respectively. The purple dashed
curve report the analytical expression (23), revealing a good agreement at T < 0.2Tc.
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A qualitative explanation of the drastic change of the entropy behavior versus phase difference
can be done within the mechanism presented in Section 2.3. When ϕ = 0, the local normalized DoS
N(ϕ, ε, r) is homogeneous over space and gapped according to the BCS expression. As a consequence,
the entropy density S in (9) is exponentially suppressed and independent on the position r. When
0 < ϕ < π, the DoS is altered: this alteration can be roughly described as an effective proximized
volume Ṽ, where the DoS is phase-dependent with minigap ∆̃(ϕ), while in the non-proximized rest of
the system the DoS is unchanged with the BCS gap ∆0. As a consequence, the entropy contribution
from the proximized region dominates over the entropy contribution from the non-proximized region,
since from the proximized region it is S ∝ (∆̃(ϕ)/T)1/2e−∆̃(ϕ)/T while from the non-proximized
region it is S ∝ (∆0/T)1/2e−1/∆0 . This behavior can be noticed in Figure 4b, comparing the curves at
ϕ = π/3 and ϕ = 2π/3 with the one at ϕ = 0. The curves at ϕ 6= 0 show a suppressed region in a low
temperature interval whose width depends on ∆̃(ϕ). Finally, when ϕ = π, the induced minigap is
closed and the behavior is radically changed from exponentially suppressed to linear.

We conclude this Section with some remarks about α. In our treatment, α is a free parameter to
be set to get numerical results. However, there is a physical upper limit to its value. Maximizing α

can be done experimentally by maximizing Ic and minimizing V. However, this can not be done at
will, since our approach is based on the KO theory, that requires as assumption that the two leads are
good reservoirs of electron coherence, i.e., the inverse proximity effect by the weak link does not spoil
the bulk superconducting properties of the leads. We show the existence of this upper limit with the
following two arguments.

The first is given by expressing α in terms of the system geometrical properties. Taking into
account expression (13) for Ic, the coherence length ξ2 = h̄D/∆0, the S conductivity σS = 2e2NSD and
that the volume is V ≈ ASLS, we have

α = κπ2 1
la

ξ

LS
. (25)

The requirement al � 1, given in Section 2.1, implies hence that the only free parameter for increasing
α is to decrease the length of the ring as most as allowed by the practical geometrical realization.

The second argument about the physical upper limit of α is that the volume V of the system must
be in any case bigger than the effective proximized volume Ṽ, involving both the weak link and the
in inverse proximized leads. This can be obtained in a qualitatively by considering that when ϕ = 0,
the minigap is closed and the DoS is modified in a region surrounding the weak link in such a way to
return expression (23), that is linear like a normal metal. The volume Ṽ of the proximized region can
be estimated by comparing expression (24) with the entropy of a normal metal SN = 2π2NSṼT/3:

Ṽ =
1

πκ

eR0 Ic

∆2
0NS

= πξ AS
1
al

. (26)

This expression suggests that the inverse proximized region is present in the leads for a length ξ/al.
The volume of the proximized region does not coincide with the weak link region. In particular,

they scale differently on the junction length LN , since the volume of the weak link is ∝ LN AN , while the
proximized volume is Ṽ ∝ Ic ∝ AN/LN . This point shows that the proximized region is not confined
in the weak link but is extended also in the leads owing to the inverse proximity effect [84].

By imposing that the proximized volume is smaller than the system volume, Ṽ � V, Equation (26)
yields

α� πκ ≈ 4.18 . (27)

In our calculations, α = 0.6, corresponding to a ratio Ṽ/V ≈ 0.15. Finally, another argument that
estimates the physical upper limit of α concerns the fact that a high ratio of Ic/V decreases the critical
temperature of the system. This point is discussed in details in Appendix A.
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3. Thermodynamic Processes

In this section we discuss thermodynamic processes focussing on quasi-static situation, meaning
that the device passes through a succession of equilibrium states. This condition can be met if one
considers a sufficiently slow speed of the process under inspection. This speed is set by the leading
(fastest) thermalization mechanism, that is the electron-electron (e-e) interaction.

Here, we study three different thermodynamic processes. The first is an isothermal one, where
the phase is changed while the temperature is kept constant. The second is the isophasic where the
temperature is changed while the phase is kept constant. Finally, we consider the isentropic process
where the phase is changed while the system exchanges no heat with the universe, thus retaining
entropy constant during the process. We will give particular attention to processes with phase variation
only between ϕ = 0 and ϕ = π, for two reasons. First of all, for these two values of the phase difference,
the circulating supercurrent is null and we can neglect any inductive contribution from the ring to the
total energy when investigating thermodynamic cycles. Secondly, these particular values of ϕ admit
simple and closed expressions, allowing for a simple and analytical discussion within KO theory.

For a quasi-static thermodynamic process, the heat flow between the initial and the final state can
be written as is

Q =
∫
P

TdS (28)

and the work released is
W = − eR0

2π

∫
P

Idϕ (29)

where the integrals are meant to be line integrals over the path P in the space of the thermodynamic
variables. For quasi-static processes, P lies in the surface of the equilibrium states. We will consider
the three different paths corresponding to the isothermal, isophasic and isentropic situation. Hereafter,
heat and work integrals are defined according to the following sign convention: the work W is positive
when the system releases work to the universe, while the heat Q is positive when the system absorbs
heat from the universe. According to this convention, the energy conservation over a closed loop path
reads Q−W = 0.

3.1. Isothermal Process

Let us consider a isothermal process from an initial state i at (ϕi, T) to a final state f at (ϕ f , T).
This can be realized by keeping open the heat valve toward the reservoir sketched in Figure 1a.
For notation simplicity, here we indicate both the system temperature and the reservoir temperature as
T, implying that at thermal equilibrium T = T, where T is the reservoir temperature.

In this case the work released by the system is

Wi f = −
eR0

2π

∫ ϕ f

ϕi

I(ϕ, T)dϕ = E(ϕi, T)− E(ϕ f , T) (30)

where E represents the Josephson energy in the junction defined in Equation (5). For a process
ϕi = 0→ ϕ f = π, where the universe has to perform a work on the system, the sign of Wi f is negative,
consistently with the convention of W defined above.

The heat absorbed during this process is

Qi f = T(S(ϕ f , T)− S(ϕi, T)) = T(δS(ϕ f , T)− δS(ϕi, T)) . (31)

Heat is absorbed when ϕ goes from 0 to π, owing to the closure of the minigap. It is worth to
note that in the isothermal process we do not explicitly rely on the BCS contribution S0(T). Hence,
the thermodynamic consistency requires that an isothermal process must exchange heat. Interestingly,
the supercurrent is not directly involved in this heat exchange, since the Cooper pair system carries no
entropy and the supercurrent flow is dissipationless. Instead, the heat is absorbed by the quasi-particle
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(excited states of system) from an external system, i.e., in our scheme from the external reservoir at
fixed temperature T. If heat is not supplied, the system undergoes an adiabatic transformation, treated
in the next subsection. Below in Section 5 we discuss some strategies to measure this heat exchange.

At low temperature T � ∆0, the heat absorbed and the work released in an isothermal process
from ϕ = 0 to ϕ = π can be calculated exploiting the expression (23).

Qi f = TδS(ϕ = π, T) =
2π

3κ

(
T
∆0

)2
eR0 Ic (32)

where the second equivalence is due to the fact that the temperature is constant during an
isothermal process.

The released work at low temperature is obtained by calculating the expression of E at low
temperature. From Equation (23), since δS = −∂TE , it is

E(ϕ = π, T � ∆0) = E0 −
π

3κ

(
T
∆0

)2
eR0 Ic =

[
log 4
κπ
− π

3κ

(
T
∆0

)2
]

eR0 Ic (33)

where we have used the expression (16) for E0. The work at low temperature for a ϕ = 0 → π

isothermal is

Wi f = −
[

log 4
κπ
− π

3κ

(
T
∆0

)2
]

eR0 Ic . (34)

As expected, the work released scales as the critical supercurrent Ic and increases in module by
lowering the temperature.

3.2. Isophasic Process and Heat Capacity

In an isophasic process, the phase difference ϕ is kept constant while the temperature is changed.
Considering Figure 1, this can be done by opening the thermal valve toward the reservoir while the
threading flux Φ is fixed. The system passes from its initial temperature Ti to the final temperature
Tf = T.

The work exchanged is then null, since dW = −eR0 Idϕ/2π. The system exchanges energy only
in the form of heat. In a process from (ϕ, Ti) to (ϕ, Tf ), the exchanged heat can be written as

Qi f =
∫

i→ f
TdS = Tf S(ϕ, Tf )− TiS(ϕ, Ti)−

∫ Tf

Ti

S(ϕ, T)dT (35)

At low temperature Ti, Tf � ∆0, using Equations (20) and (23), it is possible to obtain the isophasic
heat in a closed form for ϕ = 0 and ϕ = π. At ϕ = 0 we get

Qi f ≈
√

2π

√ Tf

∆0
e−∆0/Tf −

√
Ti
∆0

e−∆0/Ti

VN0∆0 (36)

while for ϕ = π we have

Qi f ≈
π

3κ
eR0 Ic

[( Tf

∆0

)2

−
(

Ti
∆0

)2
]

. (37)

The heat exchanged in an isophasic process brings naturally to the concept of heat capacity.
Indeed the heat exchanged can be expressed as a function of the initial and final temperatures as

Qi f =
∫ Tf

Ti

C(ϕ, T)dT (38)
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where C(ϕ, T) is the isophasic heat capacity:

C(ϕ, T) =
(

∂Q
∂T

)
ϕ

= T
∂S(ϕ, T)

∂T
. (39)

The importance of the heat capacity relies also on the fact that is an experimental observable quantity.
Indeed, by definition, can be measured as the temperature response of the system to a heat pulse.

From Equations (36) and (37) it is evident that the amount of heat exchanged for an isophasic
process from Ti to Tf depends on the phase ϕ and, hence, the heat capacity is dependent on ϕ. From
these expressions, it is possible to obtain the isophasic heat capacity at low temperature T � ∆0 in a
closed form. At ϕ = 0

C(ϕ = 0, T) ≈
√

2π

(
∆0

T

)3/2
e−∆0/TVN0∆0 (40)

while at ϕ = π

C(ϕ = π, T) ≈ 2π

3κ

eR0 Ic

∆0

T
∆0

. (41)

Similarly to the entropy, the heat capacity assumes two different behaviour,passing from a suppressed
superconducting-like to a linear metallic-like behavior whether the phase is ϕ = 0 or ϕ = π,
respectively. Moreover, the ratio of (41) over (40) scales like α. Hence, an experimental measurement
of C at ϕ = 0 and ϕ = π can be used to get an estimated value for the dimensionless parameter α

discussed before.
Here, a sort of parallelism between the variables (I, ϕ) of our system and (p, V) of an ideal gas can

be noticed. In the same analogy, the work differential eR0 Idϕ/2π plays the role of the pdV differential
for a classic gas. However, the phase difference ϕ variable is 2π periodic, differently from V.

In a generic situation, the heat capacity can be evaluated numerically from Equation (39). Figure 5
reports C(ϕ, T) for α = 0.6. Figure 5a is a color plot of C versus ϕ and T; panels (b) and (c) are cuts
of the color plot versus T and ϕ. Looking at panels (a) and (b) one can note that C(ϕ, T) goes from a
gapped-like behavior at ϕ = 0 to a linear behavior at ϕ = π. This is confirmed also by the dashed green
line plotting the analyitical expression (41). Since C is the temperature derivative of S, its behavior
can be explained qualitatively within the phase-dependent minigap mechanism, in the same fashion
provided for the entropy in Section 2.

Figure 5. Isophasic heat capacity properties. (a) Map of the isophasic heat capacity C(ϕ, T). (b) Cuts
from panel (a) for chosen phases in legend. The dashed line shows the low temperature expression (41).
(c) Cuts from panel (a) for chosen temperatures in legend.
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3.3. Isentropic Process

In a isentropic process the entropy of the system is conserved. Since we are considering quasi-static
processes, an isentropic is also adiabatic in the thermodynamic meaning that no heat is exchanged
with the universe. Indeed, for a quasi-static process, it holds dQ = TdS. The isentropic process can be
physically realized when the system is thermally isolated, i.e., when the heat valve in Figure 1a is closed.

In a isentropic process, the constraint of constant S implies an implicit relation between the phase
and the temperature. Let us consider an isentropic process that starts at the initial state (ϕi, Ti). During
the whole process, ϕ and T are related by the implicit equation

S(ϕi, Ti) = S(ϕ, T) . (42)

For an isolated system, the phase and entropy (ϕ, S) are the independent variables that will specify
the system state. The temperature is then a function T(ϕ, S). In detail, T(ϕ, S) decreases by increasing
ϕ in the interval 0 < ϕ < π for fixed S. Indeed, since S(ϕ, T) is an increasing function in 0 < ϕ < π

for fixed T and, as a consequence, the temperature of the system must decrease in order to keep S
constant.

In particular, we focus on the isentropic temperature decrease for processes that start at phase
ϕ = 0 and Ti, where the initial state sets the entropy S(ϕ = 0, Ti) of the process. For these processes,
we define the temperature decrease Tf implicitly defined in Equation (42) as

Tf (ϕ, Ti) = T(ϕ, S(ϕi = 0, Ti)) . (43)

In Figure 6a,b we report the quantity Tf (ϕ, Ti)/Ti, i.e., the relative temperature decrease, for a
system with α = 0.6. Tf /Ti is enhanced toward low Ti, since for T � ∆0 the behaviors of S(ϕ = 0, T)
and S(ϕ = π, T) are strongly different: the former is exponentially suppressed while the latter is linear
(see Figure 4a,b).

A closed expression for Tf /Ti can be obtained for T � ∆0 by exploiting equations (20),(23):

Tf

Ti
=

3κ

α
√

2π

(
∆0

Ti

)3/2
e−∆0/Ti . (44)

The isentropic cooling is reminiscent of the adiabatic cooling process typical for the expansion of
an ideal gas. The analogy goes forward when discussing in terms of available states. Indeed, when
the gap reduces to closure in the process ϕ = 0→ ϕ = π the number of available states increases so
that the temperature decreases to keep the entropy constant. The same thing happens in the case of an
adiabatic expansion of a gas, where the position states are increased by the volume increase.

Figure 6c plots Tf /Ti versus Ti for different values of α. The relative cooling is more effective for
higher α, since higher values of α correspond to a stronger weight of the proximized region, where
the gap can be tuned, over the phase independent superconducting leads. In particular, Tf /Ti ∝ α−1

as shown in Equation (44). However, the passage from a gapped to a gapless state yields a strong
temperature cooling even for moderate values of α, provided that Ti is low enough.
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Figure 6. Isentropic processes properties. (a) Colormap of the temperature decrease Tf (Ti, ϕ)/Ti) for
an isentropic process from initial temperature Ti at ϕ = 0 to ϕ. (b) Cuts from panel (a) for the chosen
temperatures in legend. (c) Temperature decrease Tf /Ti for an isentropic process from (ϕ = 0, Ti) to
(ϕ = π, Tf ) for different values of α. (d) Isentropic current phase relation (red solid curve) across the
state (ϕ = 0, Ti = 0.6Tc), for α = 0.6. For comparison, the dashed curves report two isothermal current
phase relations at T = 0.6Tc and T = 0.51Tc (see legend).

It is interesting to investigate how the CPR of a junction is modified by the assumption that during
the change of the phase difference ϕ the entropy remains constant. For sake of simplicity, here we
focus on isentropic CPR where the entropy is set by the initial state by S(ϕi = 0, Ti). In such case the
Josephson current can be calculated substituting the temperature Tf (ϕ, Ti) in the isothermal CPR (11):

IS(ϕ, Ti) = I(ϕ, Tf (ϕ, Ti)) . (45)

In Figure 6d we show the comparison between the isothermal and isentropic CPR for α = 0.6 for the
initial temperature Ti = 0.6Tc. It is worthy to notice that the isothermal CPR depends only on the
nature of the junction, while for the isentropic case there is also a dependence on α, which includes the
total volume of the system. The dashed lines are isothermal curves at the initial temperature Ti = 0.6Tc

and the final temperature Tf (Ti, ϕ = π) = 0.51Tc. We can notice that the two isothermal respectively
overlap the isentropic at ϕ→ 0 and ϕ→ π. Moreover, the fact that the isentropic curve lies between
the two isothermal curves indicates that the temperature is between the initial and final temperatures,
since T evolves from Ti to Tf during the isentropic process.

The work for an isentropic ϕ = 0→ π with initial temperature Ti is given by

Wi f = −
eR0

2π

∫ ϕ

0
IS(ϕ′, Ti)dϕ′ = − eR0

2π

∫ ϕ

0
I(ϕ′, Tf (ϕ′, Ti))dϕ′ . (46)
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Since the isentropic CPR is constrained between the isothermal CPRs at Ti and Tf , i.e., I(ϕ, Ti) <

IS(ϕ, Ti) < I(ϕ, Tf ) as shown in Figure 6d, the isentropic work is equally constrained between the
isothermal works at Ti and Tf .

4. Thermodynamic Cycles

The combination of different thermodynamic processes, studied in the previous section, allows
constructing thermodynamic cycles. In this section, we present two possible examples of thermodynamic
cycles that can be built based on the various processes discussed above. In particular, we focus on two
cycles that we call Josephson-Otto cycle and Josephson- Stirling cycle, thanks to their analogy with
classic thermodynamic counterpart. We first explain their implementation and then we discuss their
performances.

To this aim, we consider the hybrid system attached to two different reservoirs, identified as
Left Reservoir (L) and right Reservoir (R), in the sketch of Figure 7. The two reservoirs are at fixed
temperature Tj and can release heat Qj to the system through a heat channel controlled by a heat valve
vj, where the subscript j can be L or R, respectively. We consider Qj positive when the heat flows from
the reservoir to the system, in agreement with the sign convention defined in Section 3. Thereafter,
we will study cycle characteristics as a function of the temperatures (TL, TR). In particular, we will
show that there are regions of (TL, TR) where the cycles can operate as engine or refrigerator. The
reservoir roles depend on the operating mode: when a cycle operates as engine, the two reservoirs play
the role of the Hot Reservoir (HR) and Cold Reservoirs (CR), at temperatures Thr > Tcr respectively.
In a cycle, the system absorbs an amount Qhr from the HR and releases |Qcr| < Qhr heat to the CR.
In practical systems, the cold reservoir can be constituted by the ambient, i.e., the large substrate
thermalized to the cryostat, while the hot reservoir can be a heated subsystem, like a large metallic pad
heated by Joule effect.

Figure 7. Sketch of the system connected to two reservoirs, identified as Left Reservoir (L) and Right
Reservoir (R), through two heat valves vL, vR respectively. Thermodynamic cycles can be implemented
varying configurations between different temperatures TL and TR, achieving also opposite operational
modes such as engine or refrigerator configurations (see text).

Conversely, when the cycle is considered as a refrigerator, the two reservoirs play the role of
the Cooled Subsystem (CS) and Heat Sink (HS), at temperatures Tcs < Ths respectively. In a cycle,
the system absorbs an amount of Qcs from the CS and releases |Qhs| > Qcs to the HS. In practice,
the CS is an isolated subsystem from which the heat is extracted, where the heat capacity is assumed
to be large enough to consider the CS as a reservoir within one cycle. The CS can be constituted of a
metallic pad that can be used as cooled substrate for nanodevices. In practical systems, the heat sink is
typically constituted by the ambient, i.e., the substrate thermalized to the cryostat in our device.

The cycle performances are characterized by inspecting several figures of merit. In the case of the
engine we investigate the work released per cycle W and its efficiency, defined as

η =
W

Qhr
. (47)
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This quantity is physically limited by the Carnot efficiency

ηC = 1− Tcr

Thr
. (48)

In the following subsections, we show W and η versus both the temperatures Tcr, Thr. We discuss in
detail the dependence of W and η as a function of Thr for fixed Tcr, since in real systems it is most likely
possible to tune the HR temperature while the CR temperature Tcr is fixed by the ambient.

In the refrigerator mode, the figures of merit we consider are the extracted heat Qcs from the CS
per cycle, and the Coefficient of Performance (COP), defined as

COP =
Qcs

|W| . (49)

Like the efficiency, the COP is limited physically by the Carnot COP limit

COPC =
Tcs

Ths − Tcs
. (50)

In the following subsections, we show Qcs and the COP versus both temperatures Tcs, Ths. We discuss
in detail the dependence of Qcs and the COP as a function of Tcs for fixed Ths, since in real systems
the HS temperature Ths is given by the ambient and can not be tuned, while Tcs decreases from the
ambient temperature in the refrigeration process.

Notice that the work W and the heat extracted Qcs are quantities defined per cycle. Hence,
at cycling frequency ν, the engine returns a Power Ẇ = Wν and the refrigerator returns a Cooling
Power CP = Qcsν.

4.1. Josephson-Otto Cycle

Here we study the Josephson-Otto cycle, by starting with the engine mode for sake of simplicity.
The Josephson-Otto engine is described by the scheme in Figure 8, where the panels a and b show
respectively the processes in the (T, S) and (ϕ, I) planes. The cycle is constituted by two isentropic
processes, i.e., 1→ 2 and 3→ 4, and two isophasic processes, i.e., 2→ 3 and 4→ 1, see Figure 8. We
choose by convention that the state 1 and 3 are thermalized to the R and L reservoir, respectively. In
this way, the R and L reservoirs play respectively the role of the HR and CR.

The cycle is given by the succession of the following processes:

• Isentropic 1→ 2. All thermal valves are closed to make the system thermally isolated. The system
is driven from the state (ϕ1 = 0, T1 = TR) to (ϕ2 = π, T2), where T2 = Tf (ϕ = π, T1). In this
process the universe spends a work |W12| (W12 < 0 according to the convention defined in Section
3). |W12| is represented by the green area in Figure 8b. No heat is exchanged, Q12 = 0.

• Isophasic 2→ 3. By opening the thermal valve vL , the system goes from the state (ϕ = π, T2) to
(ϕ = π, T3 = TL). The system releases heat |Q23| to the left reservoir (magenta area in Figure 8a).
No work is performed, W23 = 0.

• Isentropic 3→ 4. All thermal valves are again closed to make the system thermally isolated. The
system is driven from the state (ϕ3 = π, T3 = TL) to (ϕ4 = 0, T4). By construction, if T2 > TL then
it is T4 < TR. In this process the system returns a work W34 (W34 > 0 according to our convention),
represented by the sum of the green and blue areas in Figure 8b. No heat is exchanged, Q34 = 0.

• Isophasic 4→ 1. By opening the thermal valve vR , the system goes from the state (ϕ = 0, T4) to
(ϕ = 0, T1 = TR). The system absorbs heat Q41 from the reservoir at TR (magenta+pink area in
Figure 8a). No work is performed, W41 = 0.

The total work released per cycle is

W = W12 + W34 (51)
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The heat Qhr absorbed from the HR (correspondent to R) is

Qhr = QR = Q41 . (52)

Figure 8. Otto cycle scheme. The example considers an engine from a hot reservoir at 0.6Tc, cold
reservoir at 0.2Tc and α = 0.6. (a) Scheme in the (T, S) plane. The colored areas help for the discussion
in the text of the heat exchanges. (b) Scheme in (ϕ, I) plane. Of the four processes of the Otto cycle,
only the two isentropic are visible, since the two isophasics are collapsed at the points (ϕ = 0, I = 0)
and (ϕ = π, I = 0). The colored areas help for the discussion in the text of the work exchanges. For
completeness, the dotted curves represent partial isothermal CPRs at the labelled temperature in the plot.

From the two schemes presented in Figure 8 it can be noticed that the cycle operates as an engine
if T2 > T3. This condition requires that TL < Tf (ϕ = π, TR), i.e., a temperature gap between the two
reservoirs is required. When TL approaches Tf (ϕ = π, TR) the cycle tends to the degenerate case
reported in Figure 9a, where the two adiabatic curves tend to superimpose. Also in the (ϕ, I) plane the
two adiabatic curves tend to superimpose, meaning that the net work is W = 0 at TL = Tf (ϕ = π, TR).
On the contrary, if TL > Tf (ϕ = π, TR), the cycle is inverted as in Figure 9b. In this case, the cycle
works as a refrigerator and the work is W < 0, i.e., made by the universe on the system.

Hence, the curve in the plane (TL, TR) where W = 0 can be defined as the characteristic curve of
the Otto cycle. It separates the regions where the cycle is in the engine or refrigerator mode and it is
given by the equation

TL = Tf (ϕ = π, TR) . (53)

Close to the characteristic curve, in the case shown in Figure 9a, it is evident that QL, QR tend to
zero but their ratio tends to QR/QL → TR/TL. This property is exploited below to calculate the limits
of η and COP close to the characteristic curve.
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Figure 9. Particular cases of the Otto cycle on TL, TR. (a) Approaching the degenerate case of Tf (TR) =

TL. (b) Otto cycle as refrigerator for Tf (TR) < TL.

Let us consider the refrigerator mode in the case TL > Tf (TR), represented in Figure 9b. In this
case, the cycle is clockwise and operates as a refrigerator. The two reservoirs play a different role:
the R reservoir represents the Heat Sink, while the L one represents the Cooled Subsystem. The case
TL > Tf (TR) coincides with the following cycle

• Isentropic 1 → 2. All thermal valves are closed to make the system thermally isolated. The
system is driven from the state at the ambient temperature (ϕ1 = 0, T1 = TR) to (ϕ2 = π, T2),
where T2 = Tf (ϕ = π, T1) . In this process, the universe spends a work |W12| (W12 < 0 for of
Section 3). No heat is exchanged, Q12 = 0.

• Isophasic 2→ 3. By opening the thermal valve vL , the system goes from the state (ϕ = π, T2) to
(ϕ = π, T3 = TL), removing the heat Q23 from the CS (magenta area in Figure 9b). No work is
performed, W23 = 0.

• Isentropic 3→ 4. All thermal valves are closed. The system is driven from the state (ϕ3 = π, T3 =

TL) to (ϕ4 = 0, T4). Now, T4 > TR. In this process, the system returns a work W34. No heat is
exchanged, Q34 = 0.

• Isophasic 4 → 1. By opening the thermal valve vR , the system goes from the state (ϕ = 0, T4)

to (ϕ = 0, T1 = TR). The system releases heat Q41 to the reservoir at TR, since T4 > TR, which
correspond to the magenta+pink area in Figure 9b. The temperature T4 plays an analogous role of
the hot heat exchanger that is present in the refrigerators. No work is performed, W41 = 0.

In the refrigerator mode, the work released is still given by W = W12 + W34. The heat Qcs

absorbed by the CS is
Qcs = QL = Q23 . (54)

Figure 10 is a summary of the work released W and the heat absorbed Qhr and Qcs. Panels a,b
are color plots of these quantities versus (TL, TR). The dashed red curve represents the characteristic
curve defined in Equation (53), corresponding to W = 0. Above it, for TL < Tf (ϕ = π, TR), the cycle
operates as engine, while below it (TL > Tf (ϕ = π, TR)) the cycle works as refrigerator. The orange
dot-dashed curve reports the thermal equilibrium TL = TR. We can notice that below this curve, i.e.,
for TR < TL, there is a region where work is spent by the universe to pump heat from the L reservoir
(the hotter one) to the R reservoir (the colder one). Hence, work is spent to perform a process that can
be performed spontaneously. We define this region as a cold pump, following the definition given in
References [112,113].

Figure 10c reports the released work versus the HR temperature TR for different values of the
CR temperature TL as reported in the legend. The curves reach the value zero corresponding to the
characteristic curve plotted in Figure 10a. We observe that the general trend of the work is to increase
with the temperature difference TR − TL between the two reservoirs. The order of magnitude of the
work per cycle is ∼ 0.1eR0 Ic.
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Figure 10d reports the absorbed heat Qcs = QL versus the CS temperature TL for different values
of the HS temperature TR. The black curve reports the case of the heat absorbed Qcs at TL = TR. The
curves with fixed TR are limited on the right at TL = TR, to not include the Cold Pump case, see color
plots in Figure 10. The curves with fixed TR goes to zero in correspondence of the characteristic curve,
defining the minimum achievable temperature of the refrigerator. The refrigerator can not physically
cool below the minimum achievable temperature, since the absorbed heat reaches Qcs = 0.

Figure 10. (a) Work released in a Josephson-Otto cycle as a function of (TL, TR). The dashed red curve,
given by Equation (53), reports W = 0 and separates the region where the cycle operates as engine
or refrigerator. (b) Heat absorbed in a Josephson-Otto cycle. As an engine, the heat QR from the Hot
reservoir is represented by the R reservoir. As a refrigerator, the heat QL from the CS is represented by
the L reservoir. The dash-dotted line represents the thermal equilibrium TL = TR, below which the
system is a cold pump. (c) Cuts of the work in panel (a) versus the Hot Reservoir temperature TR for
fixed temperatures TL of the Cold Reservoir. (d) Cuts of the absorbed heat versus the CS temperature
TL for fixed temperatures TR of the Heat Sink. The black solid curve reports the absorbed heat at
TL = TR. The violet dash-dotted curve reports the analytical result of Equation (55). The curves have
been obtained with α = 0.6.

The black curve reporting Qcs at TL = TR is important since it reports the heat absorbed per cycle
when the refrigerator starts to operate at the thermal equilibrium. Hence, for a cycling frequency
ν, the corresponding cooling power Q̇cs = Qcsν for TL = TR gives the maximum heating power
leakage that the refrigerator can sustain. If the heat leakage is above the cooling power at the thermal
equilibrium, no net refrigeration can be accomplished. The heat absorbed per cycle has the same order
of the work per cycle, ∼0.1eR0 Ic.
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It is possible to find an analytic expression for Qcs valid for TR, TL � ∆0. Considering the scheme
in Figure 9b, it can be noticed that at low temperature the heat absorbed by the CS is ruled by the
purple area defined by the linear expression of entropy in Equations (23) and (24). Approximating the
T2 temperature to 0, due to the strong isentropic cooling at low temperatures, the Qcs is given at the
leading order by the CS temperature

Qcs ≈
π

3κ

(
TL
∆0

)2
eR0 Ic . (55)

This expression is plotted in Figure 10d as a violet dash-dotted curve. The agreement with the
numerical results is good at TL < 0.2Tc, corresponding to the agreement range in Figure 4b.

From the characteristics of W, Qhr, Qcs in Figure 10 it is possible to calculate numerically the
engine efficiency and the refrigerator COP. Figure 11 reports the efficiency and the COP for the studied
Otto engine. Figure 11a shows a color plot of η, COP versus TL, TR. The two quantities are confined
respectively in the engine and refrigerator regions of (TL, TR). The gray area corresponds to the
Cold Pump case. Figure 11b reports cuts of the efficiency η versus the Hot Reservoir temperature
TR for chosen ambient temperatures TL. The curves end on the left in correspondence of the Otto
characteristic curve, where the efficiency saturates at the Carnot limit. Figure 11c reports cuts of the
COP versus the CS temperature TL for chosen HS temperatures TR, showing the evolution of the COP
when the CS is cooled down toward the minimum achievable temperature, that delimits the COP
curves on the left. The COP curves are limited on the right by the thermal equilibrium state TL = TR,
where the COP reaches the theoretical Carnot limit.

Figure 11. Efficiency and COP of the Otto machine. (a) Color plot of η and COP versus (TL, TR),
with different color palettes. The gray region represents the state where the cooled subsystem
temperature is above the heat sink temperature. (b) Cuts of Otto cycle efficiency η versus TR for
chosen TL in legend. The dot-dashed line reports the Carnot limit to efficiency. The curves end at the
Otto characteristic curve, Equation (53), where the efficiency reaches the Carnot limit. (c) Cuts of Otto
cycle COP versus TL for chosen TR in legend. The dot-dashed line report the Carnot limit to COP. The
curves are limited on the right by the thermal equilibrium state TL = TR; on the right, the curves are
limited by the Otto cycle characteristic curve. On this curve, the COP reaches the COP Carnot limit.

An interesting property of the Josephson-Otto cycle is that close to the characteristic curve, both η

and the COP reach the Carnot limit, even though the work released or the heat absorbed goes to zero.
This point can be explained by referring to the degenerate case of Figure 9a. Close to the characteristic



Entropy 2019, 21, 1005 21 of 33

curve, the quantities QL, QR tend to zero but their ratio tends to |QL/QR| → TL/TR. Exploiting the
energy conservation QL + QR −W = 0, it is

η(TL → Tf (ϕ = π, TR)) = 1 +
QL
QR
→ 1− TL

TR
(56)

that is the Carnot limit. With similar considerations, we obtain the analogous limit for the COP:

COP(TL → Tf (ϕ = π, TR)) =
QL

QR + QL
→ TL

TL − TR
. (57)

4.2. Josephson-Stirling Cycle

In this section, we analyze another possible thermodynamic cycle, i.e., a Josephson-Stirling cycle,
that has in practice several practical applications, in particular as refrigerator [114]. The Stirling cycle
is a different combination of the studied processes, being built with two isochorics and two isophasics.
In an ideal gas system, it consists of two isochoric heat addition/rejection processes and two isothermal
(compression + expansion). Real Stirling engines are eventually equipped by regenerators that increase
the efficiency [115,116]; here we study the simple case without the regenerators.

First of all, let us consider the engine case and then move to the refrigerator one.
The Josephson-Stirling engine is described by the scheme in Figure 12, where panels a and b show
respectively the processes in the ST diagram and Iϕ diagram. The cycle is constituted by two isothermal
processes (1→ 2 and 3→ 4 in Figure 12) and two isophasic processes (2→ 3 and 4→ 1 in Figure 12).
The states 1, 2 and 3, 4 are respectively thermalized to the right and left reservoirs. When operating as
Stirling engine, the left and right reservoirs play the roles of ambient and heat source respectively.

Figure 12. Josephson-Stirling cycle scheme. The plotted example concerns an engine between a hot
reservoir TR = 0.6Tc and a cold reservoir TL = 0.3Tc and α = 0.6. (a) Scheme in the (T, S) plane.
The colored areas help for the discussion in the text about the exchanged heats. (b) Scheme in (ϕ, I)
plane. Of the four processes of the Josephson-Stirling cycle, only the two isothermals are visible, since
the two isophasics are collapsed at the points (ϕ = 0, I = 0) and (ϕ = 0, I = 0). The colored areas help
for the discussion in the text about the exchanged works.

In summary, the Josephson-Stirling engine is given by the succession of the following processes:

• Isothermal 1→ 2. The thermal valves vR is open and vL is closed, so that the system is in thermal
contact with the right reservoir. The system is driven from the state (ϕ1 = 0, T1 = TR) to (ϕ2 =

π, T2 = TR). Here a work is spent |W12| represented by the green area in Figure 12b. The heat Q12

is absorbed from the reservoir, represented by the green + dark purple area in Figure 12a.
• Isophasic 2 → 3. By closing vR and opening vL , the system goes from the state (ϕ = π, T2) to

(ϕ = π, T3 = TL). The system releases heat Q23 to the left reservoir, represented by the light
purple + dark purple area. No work is performed, W23 = 0.
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• Isothermal 3 → 4. The valves are kept in the same state: vR open and vL closed. The system is
driven from the state (ϕ3 = π, T3 = TL) to (ϕ4 = 0, T4 = TL). In this process the system returns
a work W34 represented by the sum of the green and blue areas in Figure 12b. The heat |Q34| is
released to the left reservoir, represented by the blue area in Figure 12a.

• Isophasic 4 → 1. By closing vL and opening vR , the system goes from the state (ϕ = 0, T4) to
(ϕ = 0, T1 = TR). The system absorbs the heat Q41 from the reservoir at TR, given by the sum of
the areas in blue, red and light purple in Figure 12a. No work is performed, W41 = 0.

The total work per cycle is given by W = W12 + W34. The heat absorbed from the Hot R
(represented by the R reservoir) is

Qhr = QR = Q12 + Q41 . (58)

In order to work as an engine, it must be TR > TL, as shown in Figure 12a. If TL > TR, the cycle is
reversed as displayed in Figure 13. Panels (a) and (b) show the case of TR = 0.6Tc and TL = 0.35Tc and
TL = 0.25Tc respectively. In this case, the machine can work as a refrigerator with the CS represented
by the R reservoir and HS represented by the L one (differently from the case of the Josephson-Otto
cycle).

Figure 13. Particular examples of the Josephson-Stirling cycle for TR < TL. (a) Stirling inverse cycle
working as refrigerator. The heat absorbed from the R reservoir in the process 1→ 2, represented by
the area defined by the related green arrow, is bigger than the heat released to R reservoir in the process
4→ 1, represented by the area defined by the related red arrow. (b) Stirling inverse cycle working as
Joule pump, exploiting work to release heat to both reservoirs.

Even though the cycles in both panels are clockwise, only the cycle in panel (a) works as
refrigerator. Indeed, there are further conditions that define the (TL, TR) region where the cycle
can work as a refrigerator. Let us consider the heat exchanged with the cold right reservoir, given by
processes 4→ 1 and 1→ 2. From Figure 13 it can be noticed that in 4→ 1 the heat is released from
the system to the R reservoir, while in 1 → 2 the heat is absorbed by the system. Cooling then can
take place if Qcs = QR > 0, i.e., if |Q12| > |Q41|. This is true when TL is closely below TR, TL / TR;
then, when the CS is cooled down, |Q12| decreases, since δS(ϕ = π, T) in an isothermal heat exchange
(31) decreases, while |Q41| increases with the increase of the temperature difference Ths4− Tcs in
the isophasic process. As a consequence, it exists a minimum achievable temperature TMAT that is
characterized by a null cooling power QR = 0, i.e.,

TMAT = TR t.c. Q12(TL, TR) + Q41(TL, TR) = 0 . (59)

Note that TMAT is a function of the HS temperature TL. If TR < TMAT , the total heat QR exchanged
with the R reservoir is negative, and the CS is heated. This case corresponds to the (T, S) diagram in
Figure 13b, where the red area representing the released heat to the right reservoir includes the green
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area of the absorbed heat from the right reservoir. As before, we call the curve (TL, TR = TMAT(TL)) the
characteristic curve of the Josephson-Stirling cycle. We observe for completeness that when TR < TMAT
and QR < 0, also the left reservoir can absorb or release heat QL = Q23 + Q34, depending on (TL, TR).
If QL > 0 the cycle absorbs work to transfer heat from the hot to the cold reservoir, constituting a Cold
Pump similar to the situation described in the Josephson-Otto cycle. On the other hand, if QL < 0, the
machine releases heat to both the reservoirs, converting completely the work in heat. Following the
definition of References [112,113], we call this operating mode as Joule pump.

In the refrigerator case, the total work is W = W12 + W34 and the heat extracted is Qcs = QR =

Q12 + Q41, like the engine case.
The released work W and the heat absorbed Qcs, Qhr are summarized in Figure 14. In the

color plots in panels a,b, the curves W = 0, QR = 0, QL = 0 separate the regions of the engine,
the refrigerator, the Joule pump and the cold pump. The curve W = 0 corresponds to TL = TR.
The refrigerator region is between the curve TL = TR and the characteristic curve TMAT(TL).

Figure 14. (a) Work released in a Stirling cycle as a function of (TL, TR). The dashed curve W = 0
correspond to the thermal equilibrium curve TL = TR and separates the region where the cycle operates
as engine or refrigerator. Moreover, the curves QR = 0 and QL = 0 further distinguish regions where
the cycle is a Joule Pump (JP) or a Cold Pump. (b) Heat absorbed in a Stirling cycle. In both engine and
refrigerator modes, the heat QR is absorbed from the R reservoir that plays the role of Hot Reservoir or
CS in the respective regions. (c) Cuts of the work in panel (a) versus the Hot Reservoir temperature TR

for fixed temperatures TL of the Cold Reservoir. The black dashed line reports expression (60). (d) Cuts
of the absorbed heat QR versus the CS temperature TR for fixed temperatures TL of the Heat Sink. The
black solid curve reports the absorbed heat at TL = TR. The curves have been obtained with α = 0.6.

Figure 14c reports cuts the released work per cycle versus the HR temperature TR for fixed CR
temperatures TL. The curves reach zero at TL = TR. The general trend is that the work increases with
increasing the temperature difference TR − TL between the two reservoirs.
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An analytical expression for W can be calculated. Let us consider a Stirling cycle with TL �
TR � ∆0. The released work can be approximated by W = E(ϕ = π, TR)− E(ϕ = π, TL ≈ 0). Using
approximation (33) for E , we obtain

W ≈ π

3κ
eR0 Ic

(
TR
∆0

)2
. (60)

This expression is plotted in Figure 14c and is in good agreement with the numerical results.
Figure 14d reports the heat absorbed per cycle Qcs = QR versus the CS temperature TR for fixed

HS temperatures TL. The curves go to zero on their left in correspondence of the characteristic curve.
The curves are limited on the right by the black curve of Qcs at TL = TR. The order of magnitude of
the absorbed heat per cycle is ∼ 0.1eR0 Ic.

From the W, Qhr, Qcs characteristics it is possible to calculate the η and the COP, as reported in
Figure 15. Figure 15a shows a color plot of η and COP versus (TL, TR). The two quantities are plotted
over the engine and refrigerator regions respectively. The gray area is where the cycle works as cold
pump or Joule pump.

Figure 15. Efficiency and COP of the Stirling machine. (a) Color plot of η and COP versus (TL, TR),
with different color palettes. The gray region represents where the cycle is a Joule pump or Cold pump.
(b) Cuts of Stirling cycle efficiency η versus TR for chosen TL in legend. The dot-dashed line reports
the Carnot limit to efficiency. The curves end at TR = TL. (c) Cuts of Stirling cycle COP versus TR for
chosen TL in legend. The dot-dashed line reports the Carnot limit to the COP. The curves go to infinity
on the right at the thermal equilibrium state TL = TR; on the left, the curves are limited by the Stirling
characteristic curve.

Figure 15b reports cuts of the efficiency η versus the hot reservoir temperature TR for chosen
ambient cold reservoir temperatures TL. The curves end on the left at the state TR = TL. For TL → TR,
both the cycle efficiency and Carnot limit tend to zero. Indeed, the work W = Q = QR + QL tends to
zero, since QR → −QL as can be noticed from Figure 13a.

Figure 15c reports cuts of the COP versus the CS temperature TR for chosen HS temperatures
TL. The curves end on the left at TR = TMAT . For TL → TR, both the cycle COP and its Carnot
limit tend to infinity. With the same geometrical argument used for the efficiency, it is W → 0 and
QR = TRδS(ϕ = π, T), implying that the COP = QR/|W| → ∞.
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5. Experimental Feasibility

Here, we briefly comment on some experimental aspects that have to be considered to implement
and measure thermodynamic quantities discussed above, based on hybrid junctions. The two crucial
assumptions of this paper are: (i) the processes are quasi-static and (ii) the system is thermally isolated.

As usually done in the thermodynamics, one is interested to investigate the performance of
a thermodynamic cycles in the adiabatic limit (slow evolution) in order to avoid any additional
irreversibility due to non-equilibrium processes. Anyway, in any practical realization, one need to
develop a cycle in a finite time so it is fundamental to discuss which are the fundamental timescales for
the validity of the quasi-static assumption. Hereafter we discuss the quasi-static assumption. It puts a
limit on the speed of a process and hence to the cycling frequency ν. In our system, the equilibrium is
determined by thermalization of the electron system, and hence the time of equilibration is set by the
electron-electron thermal relaxation time τe−e. Non-equilibrium experiments have been performed in
superconducting systems for probing the time-scales of thermal relaxation [117–119]. For aluminium,
τe−e ≈ 1− 10 ns close to Tc and increases by decreasing the temperature [117]. Below T / 0.1Tc it
has been measured that τe−e saturates at ≈102 − 103 µs [118]. On the other side, a material with very
low τ can be niobium nitride, where the electron-phonon relaxation time is 200 ps [119], suggesting a
the same order of magnitude for the electron-electron relaxation time. The minimum time interval
for a process to be quasi-static can range from the milli-second to hundreds of pico-second. Hence,
we conclude that the rate at which a process or cycle can be performed depends largely on the material
and temperature ranges and it is a fundamental issue related to the specific device realization. Even
the presence of impurity scattering can alter the relaxation time [120]. Experiments suggest that this
rate can range from the KHz to tenths of GHz [117–119].

The second assumption concerns the thermal insulation. In a superconductor, like in any metal,
the electron system is in thermal contact with the phonon system. In the superconducting case,
the heat flow is exponentially suppressed at low temperatures and scales like the volume V of the
device [121–123]. Since the electron-phonon thermal conductance is an intrinsic property of the metal
and can not be avoided, it is relevant to estimate a threshold Q̇th to the heat leakage below which
an isentropic process can be observed. In order to calculate this quantity, let us consider a process
that drives the phase from ϕ = 0 to ϕ = π in a time τ. In the ideal case of an isolated system, the
process is isentropic. In the real case, a certain amount of heat will be absorbed due to the closure of
the minigap. If the electron system is well thermalized with the phonon system (corresponding to
most of real cases), the process is isothermal and absorbs an average heat power

Q̇th =
Q
τ

=
2π

3κ

(
T
∆0

)2 eR0 Ic

τ
(61)

where Q is the heat exchanged during the isothermal process, given by Equation (32). As a consequence,
isentropic effects can be observed if the heat leakage of the electron system allows a power flow that is
negligible respect to (61). In particular, for fast processes driven at the quasi-static limit, the threshold
Q̇th is maximized to Q̇th,m:

Q̇th,m =
Q
τ

=
2π

3κ

(
T
∆0

)2 eR0 Ic

τe−e
. (62)

If the heat leakage of the system is above this value, an isentropic process can not be observed.
At T = 0.1∆0 and τ ≈ 10 ns it is Q̇th ≈ 3× 10−8 WA−1 Ic. For Ic ≈ 1 mA, the threshold is Q̇th = 30 pW.
Based on these considerations, a first experimental setting for testing our findings consists of the
measurement of heat capacity for different values of phase difference ϕ. In this case, no external
reservoirs neither heat valves are required. The measure can be performed by heating up the device
with a fixed amount of heat Qtest (through a fixed power pulse) and subsequently measure the
temperature increase ∆T. The quantity C = Qtest/∆T, that approximates the heat capacity C(ϕ, T),
is dependent on the phase ϕ according to the results of Section 3.2. In particular, the relative difference
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of heat capacity is C(ϕ = π, T)/C(ϕ = 0, T) ∝ α(T/∆0)
5/2eT/∆0 , that is strongly enhanced at low

temperatures and is proportional to the parameter α ∝ Ic/V. Interestingly, for these experiments a
perfect thermal isolation is not a crucial task, even though it would make the effect more evident.
The presence of a certain thermal leakage would pull the device to the bath temperature after the
power pulse, making the thermometry more difficult. In this case, a more complete thermal model is
necessary to describe the device behavior.

Another possibility is based on the measurement of temperature variation during an isoentropic
process. In this case, no external reservoirs neither heat valves are required, but the thermal isolation
is a crucial element. As discussed above, the heat leakage in a process ϕ = 0→ π in a time interval
τ must be negligible respect to Q̇th in Equation (61). The heat leakage threshold can be increased by
speeding up the process, i.e., reducing τ toward the limit τe−e.

Finally, the most challenging but direct experiment is the cooling of a subsystem with a
refrigeration cycle. In this case, external reservoirs, heat valves and the thermal isolation of the
whole device (ring, valves, heat channels, cooled subsystem) are required. In detail, in order to
observe the cooling effect, the spurious heat leakage must be lower respect to the cooling power
at the thermal equilibrium. As an example, let us consider the Otto cycle removed heat per cycle
in Equation (55). The cooling power is πν(T/∆0)

2eR0 Ic/3κ, where ν is the cycling frequency. For
ν = 100 MHz, T = 0.1Tc, R0 = 12.9 kΩ we have a cooling power of 0.2 pW.

Before concluding, a comment on the presence of defects at the SN interfaces is in order. Indeed,
in SNS systems, the main source of defects is the quality of the SN interfaces. The opacity of the SN
contacts can make the proximity effect weaker till disappearance in the tunnel limit [83,106]. However,
several experiments on quasi-particle tunneling in SNS junctions show that the induced mini-gap has
reached good quality features over time [89,103], suggesting the possibility of making good entropy
variations in such devices. Finally, opaque interfaces imply that the CPR does not follow a KO form,
so a different relationship between phase and entropy is expected. However, the Maxwell consistency
relation is universal and must hold for every kind of CPR and the entropy variation can be obtained
similarly as we proceeded for non-clean interfaces.

6. Conclusions

In this paper, we have reviewed and analyzed a proximized system with a phase-biased SNS
junction under the thermodynamic point of view. By means of arguments of thermodynamic
consistency, we have obtained the phase-dependent entropy of the system from its current-phase
relation, that we assumed to a Kulik-Omel’yanchuk form. The entropy phase-dependence is related to
the presence of an induced minigap in the density of states of the weak link; the minigap depends on
the phase ϕ across the junction, yielding the phase dependence of the available states and hence of
entropy. We obtained closed-form expressions of the entropy for low temperatures and ϕ = 0, ϕ = π.
These expressions evidence a strong difference in the temperature dependence for the two phases,
where the former is exponentially suppressed and the latter is linear. The entropy relative variation
on the phase difference ϕ scales like the ratio of the critical current over the system volume. Hence,
a stronger effect requires a higher critical current or smaller volume of the system.

We have discussed equilibrium thermodynamic quantities under quasi-static conditions, obtained
by means of the Maxwell equations, investigating processes where phase-coherent properties are linked
with thermal properties. In detail, this approach envisions two particular physically observable effects.
First, the heat capacity of a proximized system is phase-dependent, passing from an exponentially
suppressed behavior at ϕ = 0 to a linear behavior at ϕ = π. Second, the electronic temperature is
subject to an isentropic cooling if the system is kept thermally isolated.

Finally, guided by the analogy of the Josephson-base thermodynamics with the classical
thermodynamics, we discuss different kind of thermodynamic processes such as isothermal, isophasic
and isentropic. After we combine these transformations to define the Josephson-Otto and the
Josephson-Stirling cycles, which combine quantum coherence and Josephson effect. This requires
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the system to be connected to two different reservoirs through heat valves that can allow or stop
the flow of heat from them. We characterized the cycle performances in terms of efficiency and
COP. The Otto cycle, in particular, shows an interesting capability of having a cooling power till
sub-milli-kelvin temperatures.

Further developments can be argued, including Processes that involve a current bias of the
junction can be studied. In this case, the phase is a function of the temperature and iso-current
processes can be conceived, that can be exploited in different cycles, like Brayton or Diesel cycles.
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Appendix A. Thermodynamics Close to the Critical Temperature

In this appendix we briefly discuss a particular limit of our theory when the system temperature
approaches the critical temperature. Apparently, our approach would bring to a thermodynamic
inconsistency at temperature close to the critical temperature. Let us indeed consider the entropy
scheme in Figure A1a. The red solid curve and the dashed green curve report respectively the quantities
S(ϕ = 0, T) = S0(T) and S(ϕ = π, T) = S0(T) + δS(ϕ = π, T). For T > Tc, the entropy is given by
the normal metal form

SN(T) =
2π2NSVT

3
(A1)

plotted over the whole temperature interval as reference (blue dashed line). As can be noticed from
Figure A1a, S(ϕ = π, T) has a decreasing jump ∆S = S(T → T+

c )− S(ϕ = π, T → T−c )at T = Tc,
corresponding to a first-order transition with negative latent heat Tc∆S. According this scheme,
the system releases heat from the superconducting state to the normal state, that is unphysical.

Figure A1. (a) Entropy scheme close to the critical temperature. S̃ is equal to S where a phase
transition is imposed at Tc2, calculated with the method in the text. SN(T) is the normal metal entropy.
(b) Dependence of the critical temperature of the system Tc2 at ϕ = π, normalized to the bulk critical
temperature Tc, versus α.
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This problem has been discussed and solved in References [73,74]. The unphysical states close
to the transition are metastable and do not correspond to the minimum of the system free energy.
The physical stable state is instead given by a null order parameter, that is the normal metal state.
The physical solution, instead, consists in a first-order phase transition at a critical temperature Tc2,
lower than the bulk critical temperature Tc, that brings the system from a normal metal state to a
superconducting state with absorption of latent heat. An experiment returned results in agreement
with this theory [75].

Following the guidelines of [73,74], we discuss here a simplified macroscopical approach that
yields physically acceptable result and allows to grasp the underlying physics.

Let us consider the free energy of both the normal state FN(T) and superconducting state FS(ϕ, T).
At (ϕ = 0, Tc) the two free energies are equal, FS(ϕ = 0, T) = FN(T) = F0. In their neighborhood on
the plane (ϕ, T), it is

FN(T) = F0 −
∫ T

Tc
SN(T)dT = F0 +

π2NSV
3

(T2
c − T2) (A2)

FS(ϕ, T) = F0 −
∫ T

Tc
S0(T)dT + E(ϕ, T) . (A3)

According the minimization of the free energy, the device is in a superconducting phase in the region
(ϕ, T) where FS(ϕ, T)− FN(T) < 0. The boundary between the two region defines critical temperature
Tc2(ϕ), that is a 2π periodic in ϕ with a minimum in ϕ = π. Over this boundary, the transition is
of the first-order (but at ϕ = 0 where takes place the well known second order transition) with a
jump in the entropy and associated latent heat. In Figure 4a, the dashed green line shows the entropy
scheme for this first-order transition at ϕ = π for α = 0.6. In this case, the transition temperature is
Tc2(ϕ = π) ≈ 0.7Tc.

The transition temperature depends on α, since it rules the ratio between S0 and E in (A3). The
dependence of Tc2(ϕ = π) versus α is reported in Figure 4b, normalized to the bulk critical temperature.
As expected, Tc2(ϕ = π) → Tc for α → 0. This calculation returns that the superconductivity is
suppressed at α ≈ 1.5, setting practically an upper limit to the supercurrent density.
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