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ABSTRACT

Kansanaho, Jarno

Data-Driven Methods for Diagnostics of Rolling Element Bearings
Jyvéaskyla: University of Jyvaskyld, 2019, 76 p. (+included articles)
(JYU Dissertations

ISSN 2489-9003; 151)

ISBN 978-951-39-7936-2 (PDF)

This thesis focuses on the research and development of the data-driven meth-
ods used to diagnose rolling element bearings (REBs) and evaluates the software
architectural design of these data-driven methods. REBs are vulnerable com-
ponents in machinery. Vibration-based condition monitoring is a very popular
methodology for monitoring the health of REBs.

This research started with the development of methods to analyze and de-
tect incipient local faults of REBs using vibration measurements. The main goal
was to find weak vibration signatures generated by local faults in REBs. As a
result, a flexible simulator was developed to analyze the vibrations of bearing
faults and to evaluate vibration analysis methods, and a spline wavelet-based
algorithm were introduced for fault detection.

An incipient bearing fault will become enlarged if a machine is run and the
faulty bearing has not been replaced. The identification of different lifetime stages
of wear evolution is part of the input data for bearing diagnostics and prognos-
tics. A method to detect different lifetime stages of REBs according to their vi-
bration signals was proposed based on an unsupervised learning method. The
result of the unsupervised method was exploited in early fault detection utilizing
supervised methods.

It is important to estimate the severity of a fault, and size is probably the
best proxy for severity. Estimating the fault size of defective REBs is one of the
top challenges in bearing diagnostics, especially when vibration measurements
are used to determine the state of health. A novel method for feature ranking to
estimate fault sizes for REBs was presented. Black-box classifiers were applied to
detect non-linear relations between features, and it was concluded that the best
metrics for basic diagnostics are not necessarily the best qualities for fault size
estimation.

The final part of this research focuses on design at system-level. Software
framework designs encapsulate fault detection and remaining useful life (RUL)
estimation methods. As part of the tribotronic system, the object-oriented frame-
work considers bearing applications and potentially extends them to other me-
chanical applications.

Keywords: Rolling element bearing, Bearing diagnostics, Vibration analysis, Fea-
ture extraction, Machine learning, Tribological system, Software frame-
work



TIIVISTELMA (ABSTRACT IN FINNISH)

Kansanaho, Jarno

Tieto-ohjautuvia menetelmia laakerien vikadiagnostiikkaan
Jyvéaskyla: University of Jyvaskyld, 2019, 76 s. (+artikkelit)
(JYU Dissertations

ISSN 2489-9003; 151)

ISBN 978-951-39-7936-2 (PDEF)

Viitoskirjatyoni késittelee vierintdlaakerien kunnonvalvonnassa kiytettavia vika-
diagnostiikka-algoritmeja sekd ohjelmistoarkkitehtuurisuunnittelua kyseisten tieto-
ohjautuvien menetelmien nakokulmasta.

Tutkimus aloitettiin kehittdimalld menetelmis, joilla analysoidaan ja voidaan
havaita vierintdlaakerien alkavat paikalliset viat vardhtelymittauksia hyodynta-
malld. Paatavoitteena oli 10ytda vierintdlaakerien paikallisten vikojen aiheutta-
mat heikot vérdhtelyt. Konkreettisena tutkimustuloksena syntyi joustava simu-
laattori laakerivikojen vardhtelyanalyysille ja vardhtelyanalyysimenetelmien ar-
viointiin sekd spline-véreita hydodyntava algoritmi vierintdlaakerivian havaitse-
miseen.

Vierintdlaakerin vaurio suurenee, jos konetta kidytetdan edelleen, eiké laa-
keria ei vaihdeta. Vierintdlaakerin vaurion etenemisen vaiheiden tunnistaminen
on hyodyllistd vian vakavuuden arvioinnissa ja jaljelld olevan kayttdidn ennusta-
misessa. Tutkimuksessa sovellettiin valvomatonta oppimismenetelméaéa vierinta-
laakerin elinkaaren vaiheiden havaitsemiseksi virdhtelysignaaleista. Valvomat-
toman menetelmén tulosta hyddynnettiin varhaisen laakerivian havainnoinnissa
ohjattujen menetelmien avulla.

Viallisen vierintdlaakerin vian vakavuuden arviointi voi olla hyvin haasta-
vaa, erityisesti vardhtelymittauksia kdytettdessd. Talloin piirreirrotus vardhtely-
signaaleista on vilttdimatontd. Vardhtelysignaalista laskettuja piirteitd on tutkittu
ja niitd kehitetddn laajasti. Piirteitd arvioidaan, kuinka hyvin niilld pystytaan ha-
vainnoimaan laakerivika ja kuinka hyvin ne kuvaavat laakerivian vakavuuden
tilaa tai sen elinkaaren vaiheita. Téassd tutkimuksessa sovellettiin koneoppimis-
menetelmid vian koon arviointiin. Tuloksena syntyi uusi menetelmé viarahtely-
signaalien piirteiden arvioimiseen sovellettaessa vian koon arviointiin instanssi-
pohjaisia luokittimia.

Taman tutkimuksen viimeisessd osassa keskityttiin jarjestelmédtason suun-
nitteluun. Suunniteltu ohjelmistokehys kapseloi vikojen havaitsemisen ja jiljel-
1a olevan kayttoidn arviointimenetelmaét. Toteutettu ohjelmistokehys toimii osa-
na tribotronista jarjestelméa, jossa vierintdlaakeri on tribologinen systeemi. Oh-
jelmistokehys tarjoaa mahdollisuuden laajentaa sen muihin tribologisiin systee-
meihin.

Avainsanat: Vierintdlaakeri, Laakerien diagnostiikka, Vérdhtelyanalyysi, Piirreir-
rotus, Koneoppiminen, Tribotroninen systeemi, Ohjelmistokehys
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1 INTRODUCTION

1.1 Background and motivation

Rolling bearing elements (REBs) are regularly used components in rotating ma-
chinery. The main function of REBs is to support shafts that rotate at different
speeds and carry different loads. A bearing failure is the most common reason
for machine breakdowns, which lead to significant economical, or even human,
losses. Condition monitoring, a crucial part of condition-based maintenance,
tries to prevent catastrophic failures from happening. Fault detection, fault di-
agnostics, and fault prognostics produce inputs for condition monitoring (Figure
1). Figure 1 presents the relationships between components related to condition
monitoring.

Diagnostics covers the identification and quantification of a machine com-
ponent fault, while prognostics covers the prediction of a component’s future
conditions, its remaining operational life, or the risk to complete operation (Heng
et al., 2009; Sikorska et al., 2011). Detecting incipient faults enables better possi-
bilities for planned maintenance actions. The fault severity assessment provides
valuable information for RUL estimation that predicts the final operation time.

Vibration measurements are the most common condition monitoring method
for bearing diagnostics. Compared to other online condition monitoring methods
such as oil particle measurements, vibration measurement systems are affordable
and scalable solutions. Moreover, vibration sensors are continually developed.
Vibration measurements do not directly indicate a bearing’s condition; thus, fea-
ture extraction is necessary. The sensitivity of vibration signals to disturbances
makes the task more difficult.

Signal processing methods for vibration analysis are frequently developed
for bearing diagnostics. Signal processing methods focus on the extraction of
characteristic features from the vibration signals generated by REBs. The decision-
making based on these extracted features can be considered the second step in
signal processing approaches (Rai and Upadhyay, 2016). Features extracted from
vibration signals include time domain, frequency domain, or time-frequency do-
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CONDITION MONITORING

DATA DATA MAINTENANCE
ACQUISITION PROCESSING DECISION-MAKING
FAULT pommme N FAULT e e FAULT
DETECTION | “~~"""*" | DIAGNOSTICS | '======»" | PROGNOSTICS
FAULT REMAINING USEFUL
INDENTIFICATION LIFE ESTIMATION

FAULT SEVERITY
ASSESSMENT

FIGURE 1 Key elements of condition monitoring.

main depending on the application. The most suitable features for diagnostics
differ from features that are the most suitable for prognostics. Aside from data-
driven methods, physical-based models have received attention in prognostics
(Li et al., 1999, 2000; Luo et al., 2003b).

Detecting faults of incipient bearings can be as worthwhile as it is challeng-
ing. The operating conditions of bearings may consist of many other components
that generate vibrations which overlap with the monitored bearing’s vibrations.
In such cases, extracting characteristic fault features requires sophisticated meth-
ods, such as the use of digital filters, transformations, and signal decomposition.
Vibration signal features are usually high-dimensional and non-Gaussian, lead-
ing to problems when recognizing patterns (Zhao et al., 2014). This has led to the
continual application of machine learning methods in bearing diagnostics and
prognostics. However, such research should not rely on narrow datasets.

Fault severity assessment that provides valuable input for prognostics re-
quires more background information regarding the health of a bearing other than
fault detection. Direct information of the degradation of REBs should be acquired
to map the actual degradation state using vibration signal features. In typical
laboratory experiments, this requires the removal of a bearing. Finding a good
degradation feature is essential for RUL estimation, which is a prognostic task.

Novel methods in the research of bearing diagnostics and prognostics are
published in journals such as Mechanical Systems and Signal Processing, Mea-
surement, Sound and Vibration, and Vibration and Control. Many of the pub-
lished research studies are based on bearing vibration data collected from one
bearing test rig. It is notable that one vibration dataset from Case Western Uni-
versity (CWRU, s. a.) has been studied in many research studies; see Table 3 in the



17

Appendix. Furthermore, bearing faults in this particular dataset were artificially
produced; this leads to the conclusion that diagnostic and prognostic methods
based on narrow datasets might not have good generalization capabilities.

Autonomous tribotronic systems control themselves based on measurements
acquired from different sensors. In such a systems, REBs are components that
are monitored, and their running parameters are adjusted based on the deci-
sions made on outputs from diagnostic and prognostics algorithms. The require-
ments of real-time systems can significantly vary depending on the machinery.
However, the key entities and functionalities in diagnostics and prognostics al-
gorithms are generalizable. Software frameworks potentially allow software de-
signs to be generalizable.

1.2 Research questions

RQ1: What methods can be applied for REB fault detection and how can the
methods be analyzed?

RQ2: Can the different stages of wear evolution of REBs be determined?

RQ3: What are the most important vibration signal features, or indicators for
fault diagnostics and severity estimation?

RQ4: How can bearing diagnostics and prognostic methods be encapsulated
into an industrial software system?



2 ROLLING ELEMENTS BEARINGS

ROLLING
INNER RING ELEMENT

PITCH
DIAMETER (P,)

BORE

ROLLER
DIAMETER (R)

FIGURE 2 Main parts of a rolling element bearing.

Bearings are categorized as REBs or journal bearings based on their struc-
tures (Hamrock and Anderson, 1983). REBs contain rolling elements that have
different shapes and can be spherical, cylindrical, tapered and needle-like (NTN,
2019). Journal bearings contain only sliding surfaces, no rolling elements. This
research focuses on the study of REBs. The main parts of an REB are shown in
Figure 2. A rotating shaft penetrates the bore of an REB. Rolling elements circu-
late the shaft between inner and outer rings touching the raceways. The function
of the cage is to keep the rolling elements in the correct position and to prevent
them from falling out (NTN, 2019). The inside of an REB is lubricated.

REBs are widely used in various machines, motors, wheels, cooling fans,
etc., to support rotating shafts. Requirements for bearings vary depending on
the machinery; for example, a large industrial motor has different requirements
compared to a wheel on a car trailer. REBs are designed to carry axial and radial
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loads, run at different speeds, operate in different conditions, etc. The magni-
tude and angle of the load are the most important bases for the selection of REBs
(Ansaharju, 2009). Different types of REBs have been designed to meet various
requirements. The most typical REBs are shown in Figure 3.

GROOVE BALL CYLINDRICAL SPHERICAL

TAPERED
BEARING ROLLER BEARING ROLLER BEARING BEARING ROLLER BEARING

FIGURE 3 Different types of rolling element bearings (Silberwolf, 2006).

The most common type of REB is ball bearing, also called deep groove single
row bearing, which carries axial and radial loads and can be used at high rota-
tion speeds (Ansaharju, 2009). Typically, the inner ring is attached to the shaft
in ball bearings. Cylindrical roller bearings can handle greater radial loads than
ball bearings because cylindrical rolling elements have a larger area where the
load can be distributed. Self-aligning, spherical roller bearings are designed to
endure considerably heavy radial and axial loads at moderate speeds (Gonzales,
2015). The inner rings of these REBs include two raceways inclined at an angle
to bearing axis. Spherical roller bearings are often used in wind turbines, pumps,
and gear boxes. Roller elements of tapered roller bearings lean against the collar
of the inner race that enables concurrent radial and axial loads (Ansaharju, 2009).
Tapered roller bearings are used, for example, in the wheel shafts of cars.

Thrust bearings, also known as axial bearings, are designed to carry axial
loads. Thrust ball bearings, high-speed duplex angular contact ball bearings and
double direction angular contact thrust ball bearings are typical thrust bearings
with ball-shaped rolling elements (NTN, 2019). In thrust bearings, the rolling
elements are installed between plates that have rolling raceways. Thrust roller
bearings can have cylindrical, needle, or tapered rolling elements.

2.1 Bearing failures

Bearing failure modes can be classified into six categories: fatigue, wear, corro-
sion, plastic deformation, fracture, and electric erosion Group (2012). The most
common cause of bearing failure is fatigue (Sawalhi and Randall, 2011). Gen-
erally, REB defects are classified into distributed and localized defects. The dis-
tributed defects are surface roughness, waviness, misaligned races, and incor-
rectly sized rolling elements. Localized defects include cracks, pits, and spalls
caused by fatigue on rolling surfaces (Tandon and Choudhury, 1999).
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Wear, a measure of a bearing’s condition, accumulates over time, and this
cumulative wear is usually measured at selected times in machine condition mon-
itoring systems (Christer and Wang, 1995). The presentation of wear evolution as
a time series describes wear interaction and evolution at different lifetime stages.
El-Thalji et al. introduced a five-stage descriptive model of wear evolution in-
cluding: running-in, steady-state, defect initiation, defect propagation, and dam-
age growth (El-Thalji and Jantunen, 2014). The five stage model is shown in
Figure 4. Previously, two- and three-stage models of wear progress were pre-
sented (Jantunen, 2006; Schwach and Guo, 2006; Harvey et al., 2007; Yoshioka
and Shimizu, 2009).

WEAR EVOLUTION PROCESS

A

:,z,' ! ', . Defect

‘5 : : i propagation
3 = = |

) i . Defect ;

~ . Steady-state '+ . ;

© | ' initiation | :
g Running-in| }

FIGURE 4 A five-stage descriptive model of wear evolution.

2.2 Condition Monitoring

When a measured variable directly determines a bearing failure, the condition
monitoring method is direct. Respectively, when a measured variable provides
associated information that is affected by the bearing condition, the condition
monitoring method is indirect (Christer and Wang, 1995). Commonly used direct
and indirect condition monitoring methods consist of the following (Jantunen,
2002; Dongre et al., 2013; Banjevic and Jardine, 2014; Wang et al., 2017): i) Indirect
methods: vibration analysis, acoustic emission analysis, ultrasound and infrared
analysis, physical basic quantities monitoring (heat, pressure), and electrical basic
quantities monitoring (voltage, current, power, resistance); ii) Direct methods: oil
debris analysis, corrosion monitoring, and visual inspection (boroscope, etc.).
Since a bearing failure is probable, condition monitoring is necessary to
avoid catastrophic failures. The sensitivity of failure detection using different
condition monitoring techniques is presented by a P-F curve (Moubray, 1999).
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The P-F curve indicates time intervals between potential failure (P) and func-
tional failure (F) using different types of condition monitoring techniques (Figure
5). Functional failure means the machine is inoperable.

FAILURE STARTS TO PROGRESS (P)

VIBRATION MEASUREMENTS
P-F INTERVAL 1-9 MONTHS

OIL METAL PARTICLES
P-F INTERVAL 1-6 MONTHS

THERMOGRAPHY
P-F INTERVAL 3-12 WEEKS
® & AUDIBLE NOISE
I - , i P-F INTERVAL 1-4 WEEKS

SENSIBLE HEAT
P-F INTERVAL 1-5 DAYS

\\leAILURE (F)

P = POTENTIAL FAILURE
F = FUNCTIONAL FAILURE

TIME

FIGURES5 P-F curve.

It can be clearly seen from the P-F curve that vibration measurements and
oil metal particle measurements provide the longest time interval between the
potential failure detection and true functional failure. Hence, proper maintenance
can be carefully and safely planned. However, the installation of sensors plays a
crucial role with respect to reliable fault detection.

Vibration sensors interpret vibration values indirectly from mechanical and
optical quantities. Vibration sensors are categorized into contacting and a non-
contacting sensors according to their measurement principles. Moreover, con-
tacting and non-contacting sensors are divided into path, speed, and acceleration
measurement (Ruhm, 2010): i) Path measurement: potentiometric transmitter,
linear variable differential transformer; ii) Speed measurement: principle of elec-
trodynamics, seismometer (principle of inertia); iii) Acceleration measurement:
piezoelectric, piezo-resistive, resistive, and inductive sensors. Path measurement
sensors convert linear displacement into an electrical signal. Commonly used
accelerometers exploit the piezoelectricity of certain materials. Due to the vari-
ety of applications, first, a suitable vibration sensor needs to be chosen based on
measurement requirements. Vibration sensor installation is crucial for reliable
measurements and so forth for successful condition monitoring. The length of a
signal path should be as short as possible (Siemens, 2016). However, environmen-
tal conditions also affect the sensors’ final positions. Figure 6 shows a simplified
example of vibration sensor installation.

Unlike vibration analysis, analysis of lubrication oil of a mechanical system
provides direct and reliable information of wear (Bozchalooi and Liang, 2009).
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FIGURE 6 Simplified example of installation of a vibration sensor.

Metallic debris indicating a faulty bearing can be detected at the early failure state
using an oil debris monitoring system. In practice, oil debris monitoring (ODM)
is based either on regularly taken oil samples analyzed in the laboratory (off-
line analysis) or on ODM sensors, which are able to detect metal particles on-line
(Dupuis, 2010; Dempsey et al., 2011). The actual oil debris data is a time-series,
indexed in a chronological order, that represents the amount of metal particles.
It is possible to use oil debris data itself as a degradation parameter. However,
installation of oil debris sensors is more cumbersome than vibration sensors.

2.3 Tribotronic system

A tribotronic system unites tribological system, sensors, real-time control sys-
tem, and actuators (Glavatskih and Hoglund, 2008). The tribotronic system is
autonomous; measured data from sensors is processed through a real-time con-
trol unit and, based on the unit’s response, the tribological system is controlled.
Such tribological systems include REBs, gears, and seals. Figure 7 presents the
components of a tribotronic system and their interactions.

Due to a variety of assets properties, high resolution data, and rather com-
plex algorithms, it is necessary to both plan and document software design. With-
out any software architectural design in large and complex systems, it is very
likely that a software will become difficult to maintain and error-prone. One of
the main goals in software engineering is to reuse existing code (Bosch et al.,
2000). Since the emergence of object-oriented design, design patterns, software
platforms, and software frameworks, software implementations have become
more maintainable and reusable. Software frameworks are a key technique in
the implementation of software platforms. An important property of a software
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FIGURE 7 Data process flow in tribotronic system.

framework is inversion control, which enables the framework itself to call a user’s
implemented methods (Johnson and Foote, 1988). Without using frameworks in
the software development, a lot of code would be written repeatedly. There ex-
ists several types of software frameworks, such as abstract, white-box, black-box,
plug-in, layered, and hierarchical frameworks (Koskimies and Mikkonen, 2005).

A control unit in a tribotronic system may incorporate complex algorithms
that require the exploitation of several entities, since the software’s architectural
design is essential. More importantly, a tribological system should be interchange-
able from the architectural design perspective; e.g. the tribological system could
be REB which would be replaced with gear. Real-time algorithms for fault de-
tection and RUL estimation should be compatible for other tribological systems.
Progressive data flow in the control unit could be represented as a pipes-and-
filters architectural design (Philipps and Rumped, 1999). From the framework
perspective, the tribological system could be considered a plug-in and the inher-
itance could be the specialization mechanism.



3 DIGITAL SIGNAL PROCESSING

The basics and some common techniques in digital signal processing will be
briefly introduced in this chapter, and Chapter 4! references these techniques
again.

3.1 Discrete digital signals
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FIGURE 8 Sinusoidal pulse with sampling frequency of 1000 Hz.

Analog-to-Digital (A/D) converters change analog signals [V] to discrete
digital signals [0 1]. After conversion, digital filtering removes possible noise or
disturbances caused by non-relevant sources. Sampling frequency Fs defines the
resolution of a signal. Sampling frequency demonstrates how many samples are
recorded per second:

F=1/T, (1)
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where T is the time interval between recorded measurements. Figure 8 shows a
discrete signal with a sampling frequency of 1000 Hz. The signal describes one
sinusoidal pulse (2I1t). The number of samples in the signal is 1000 (left side of
Figure 8) and its duration is one second (right side of Figure 8).

To completely reconstruct a continuous signal, the sampling frequency of a
signal must be at least two times the highest frequency component in the signal
(Nyquist, 1928). If the sampling frequency of the signal is less than prerequisite
set by Nyquist, aliasing will occur, which is a process that causes high frequency
components of a signal to be indistinguishable (Gonzalez and Woods, 2008).

The unit impulse (on the left in Figure 9) is the response of the unit sample
function in the discrete systems. The unit sample function is:

()_{ whenn =0,
0 when n # 0.

Any discrete sequence can represent translated and weighted series of unit

samples:
(0]

x(n)=Y_ x(k)d(n—k), (2)

n=—oo

where k € Z and x(k) is the k' sample of the input sequence.

The input of the linear (discrete) time invariant system (LTI) is the unit im-
pulse 6(n) and the output is the impulse response h(n) (on the right in Figure 9).
If the impulse response of the LTI-system is known then all the other responses
can be calculated (Mitra, 2005).

-—

5(n)% LTI SYSTEM }*h(n)
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| D
N T
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TIME [s]

FIGURE 9 Unit impulse é(n) (left). LTI system output, impulse response h(n) (right).

The impulse response of a system is utilized by convolution. The impulse
response of the discrete system can be determined from its impulses. The re-
sponse to the input signal is the sum of all impulse responses:

x(n) = i x(k)h(n —k) : x(n) x h(n) — convolution (3)

n=—oo

Convolution requires that the system is additive, homogeneous, and time invari-
ant.
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3.2 Discrete Fourier Transform

The discrete-time Fourier transform (DTFT) converts the time domain signal sam-
ples to the frequency domain components. When an input signal is a non-periodic
discrete signal and the result is periodic discrete signal, the transform is referred
as the DTFT. In case, an input signal is a periodic discrete signal and the result is
periodic discrete signal, the transform is referred as the discrete Fourier transform
(DFT). The result of the DFT, X(w), is a complex-valued function of frequency.
The DFT is the set of samples N of taken at frequencies spaced by wys/N in the
Nyquist band (Tretter, 2008). The DFT of signal x(n) is (Mitra, 2005):

The discrete-time Fourier transform (DTFT) converts the time domain signal
samples into the frequency domain components. When an input signal is a non-
periodic discrete signal and the result is a periodic discrete signal, the transform is
referred to as the DTFT. In cases where an input signal is a periodic discrete signal
and the result is periodic discrete signal, the transform is referred to as a discrete
Fourier transform (DFT). The result of the DFT, X(w), is a complex-valued func-
tion of frequency. The DFT is the set of samples N of taken at frequencies spaced
by wys/N in the Nyquist band (Tretter, 2008). The DFT of signal x(n) is (Mitra,
2005):

1 N-1
X(k) = X x(mWy, 4)
ne

where k = (0,1,.., N — 1), N is the length of the fundamental period, Wy is the
n’th root of unity, i is the imaginary unit and 7 is the sample index of the signal.
Using the Euler formula, Wy can be presented:

21Ti

iy = el ) o2y (2 5

where sin and cos functions are referred to as the basis functions. Replacing W,
with Euler’s representation, the DFT becomes:

N-1
X(k) = %} ngox(n) [cos(znkn> —i-sin(znkn>]. (6)
The inverse discrete Fourier transform (IDFT) is given by (Mitra, 2005):
1 N—-1 "
X (k) = N Y x(n)Wy'. (7)
n=0

Both the DFT and the IDFT can be represented in the matrix form. The DFT
operation for the sequence becomes a multiplication operation between a matrix
and a vector. The transformation matrix is called the DFT matrix, W:

1 1 1 1
1 w w? wN-1)
1 WoN-1 2(N-1) o (N-1)(N-1)
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_ 20T
where w = N

3.2.1 Fast Fourier Transform

The Fast Fourier transform (FFT) is an efficient algorithm to calculate the DFT.
The FFT factorizes the DFT matrix into a product of sparce factors. Algorithm
complexity of the FFT is Nlogy N and N? for the DTFT. N depends on the number
of points that is N = 27; e.g. if p = 10 then N? = 1048576 and Nlog, N = 10240.
FFT algorithms apply two main strategies for factorization; decimation in
time (DIT) and decimation in frequency (DIF). The DIT strategy divides the sum-
mation operation of the DFT into sums over the odd and even indexes of a signal.

N_q N_q1
2 i 2 i

X(k) = Z mee—%(zm)k+ Z XZmHe—%(ZmH)k, 8)
m=0 m=0

where 2m refers to sums of the even-numbered indexes and 2m + 1 to sums of
the odd-numbered indexes.

A pair-wise computation of these operations is called a FFT butterly (Figure
10). The Cooley-Tukey algorithm is a popular FFT algorithm that uses the DIT
strategy (Cooley and Tukey, 1965). There are several Cooley-Tukey algorithm
derivatives such as radix-2, radix-4, radix-8 and split-radix (Ghissoni et al., 2010).

Ay Xy

By, -1 Xk+%

FIGURE 10 FFT butterfly describes a pair-wise computation of the FFT algorithm.

3.2.2 Amplitude and power spectrum

The DFT results a complex number representation of an input in frequency do-
main. Amplitude and power spectra are a convenient ways to plot spectral inten-
sities versus frequencies. The definitions for the amplitude spectrum Ay and the
power spectrum Py (Tan, 2008):

1 1

Ay = N|X(k)| - N\/X(k)%{EAL + X(K)imacs ®)
1 1

Py = ﬁ|X(k)|2 = ﬁx(k)%EAL + X(k)iaac (10)

where X (k)rpar is the real part of the DFT and X (k) pac is the imaginary part
of the DFT. The frequency resolution for the spectra is f;es = %
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Spectral leakage is an unwanted phenomenon that occurs because of the
convolution operation that creates new frequency components on spectrum cal-
culations (Tan, 2008). The windowing is used to reduce the spectral leakage in
the DFT. However, the windowing might increase the spectral leakage on some
sections of the spectral and decrease it on other sections (Harris, 1978).

3.2.3 Short-time Fourier transform

The short-time Fourier transform (STFT) is a piece-wise transform that calculates
the sinusoidal frequency and phase content of the local sections of a signal. The
discrete time STFT is defined (Grochenig, 2001):

STFT(k,w) =) _ wln — k|x[n)e /"Te, (11)

nez

where w is the window function, k = mN /2 for even N and k = m(N — 1) /2 for
odd N, with N as the length of a signal and m € Z. An example of the window
function is the Hanning window w[n] = sin?(I1(n — 1) /N), wheren = 1, .., N.

3.3 Modulation and demodulation
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FIGURE 11 Examples of amplitude and frequency modulation.

Modulation is a notable process in telecommunications and digital signal
processing. Modulation is a process which combines a waveform signal, called
a modulating signal, into another waveform signal, called a carrier wave. The
transmission properties of the carrier wave are significantly better than the mod-
ulating signal. Signal waveforms can be modulated by either amplitude or fre-
quency. Amplitude modulation linearly transforms the amplitude of the carrier
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wave. In the frequency modulation, the frequency or phase angle of the carrier
wave is modulated. Figure 11 shows examples of amplitude- and frequency-
modulated signals. The modulating signal is combination of two sinusoidal pulses
(at the top of Figure 11). The frequency of the carrier signal is 20 Hz in the fre-
quency modulation.

Demodulation is the opposite operation of modulation. Several techniques
can be used for amplitude demodulation, including square-law demodulation
(Tretter, 2008), envelope demodulation with Hilbert transform (Tretter, 2008; Feld-
man, 2011), and coherent demodulation (Grami, 2019). Frequency demodulation
techniques include zero-crossing demodulation (Carlson, 1975) and quadrature
demodulation (Gallager, 2008).

The square-law envelope detector

t
| | H@) o e

The Hilbert transform envelope detector

i@ SO (2 5(6)?
- sign(w > 0
s(t) l I e(t)
» (.)2 4I
s(t)?

FIGURE 12 The square law and the Hilbert transform envelope detectors.

The square-law demodulation includes successive operations: the squaring
operation, lowpass filtering and square-root operation (upper portion of Figure
12). The definition for the input (transmitted) signal s(f):

s(t) = Ac[1 + kom(t)]cos(wct), (12)

where m(t) is the modulation signal (lowpass baseband), A, is the amplitude, and
we is the angular frequency of the carrier wave. The sampling rate of the input
signal s(t) must be at least 4(w + W) to prevent aliasing and the lowpass filter
H(w) must operate on samples of s>() taken at rate 4(w + W) (Tretter, 2008). W
is the cut-off frequency of the modulation signal.

The Hilbert transform has been used in vibration analysis more than 30
years (Feldman, 2011). What follows is the definition for the Hilbert transform
in time domain:

2(f) = x(t) % - =+ /oo T 4o, (13)

7tt T )t —T
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where * is the convolution operator. In other words, when a signal is passed
through a filter with impulse response -, the Hilbert transform has been applied
on the signal. The Hilbert transform is a linear operation that shifts the phase
angle by 90° in the frequency domain. The operations of the Hilbert transform
envelope detector are shown in Figure 12. The definition of the input signal was

defined in the equation 12.

3.4 Wavelet Transforms

The wavelet transform enables multi-resolution analysis with dilated windows.
The wavelet transform is a constant relative bandwidth analysis (Kovacevic and
Vetterli, 1995). Using dilation and translation, the wavelet transform can effi-
ciently extract the time-frequency features of a signal (Kumar et al., 2013). It is
an excellent tool for the analysis of non-stationary signals. The frequency reso-
lution increases and the time resolution decreases when the wavelet transform is
done at sequentially wide scales. Like Fourier transforms, the wavelet-transform
concludes the basis-function called mother wavelet.

3.4.1 Continuous wavelet transform

The continuous wavelet transform (CWT) transforms signal to a two-dimensional
time-scale joint representation. The idea of the CWT is to continuously calcu-
late scalable function by moving this function continuously over a signal. As
result, the wavelet coefficients are acquired. However, the bases of the scalable
functions become non-orthogonal, which makes wavelet coefficients redundant
(Sheng, 2000). The definition of the CWT as the function of time is:

T(a,b) = [ FOpf, 0, 19

where ¢ is the mother wavelet and * refers to complex conjugation. The mother
wavelet is:

Pl (£) = % ¢ - b), (15)

where g is the scaling (dilation) parameter, and b if the translation parameter.
The parameter a controls the window length and affects the frequency resolution;
large a for better frequency resolution.

3.4.2 Discrete wavelet transform

The time-scale joint representation of a discrete wavelet transform (DWT) is a
grid along the scale and time axes. The discrete wavelet is a piecewise continuous
function. The discretisation of the wavelet is done by sampling the time-scale axis
at discrete intervals. Usually, dyadic sampling is used with a geometric sequence



31

of ratio two. The DWT as a function of time is:

1 /t—2i
P () = \/§<t > ]>, (16)

where the dilation term is 2/ and the translation term is 2/;.

The DWT can be represented in sequences of high- and low-pass filters, as
shown in Figure 13 (Vetterli and Herley, 1992), where g[n] is the low-pass filter
and h[n] is the high-pass filter.

(2)
@ Level 3 coefficients
@ Q Level 2 coefficients

(12)

x[n] J'I h[n] \lzj Level 1 coefficients

FIGURE 13 The DWT as sequences.

3.5 Digital Filters

3.5.1 Finite impulse response filters

The impulse response of the finite impulse response (FIR) filter has finite length.
Convolution with impulse response of the FIR filter removes desired frequencies
from the signal: The impulse response of the finite impulse response (FIR) filter
has finite length. Convolution with the impulse response of the FIR filter removes
desired frequencies from the signal, as:

y(n) =) hlklx[n — K|, (17)

where h is the impulse response of the FIR filter, x is the original signal, and y is
the filtered signal (Mitra, 2005).

An FIR filter is defined based on requirements of a filter’s phase and am-
plitude responses. Phase responses are usually linear and amplitude responses
are specified for pass-, transition- and stop bands. The basic idea of a FIR filter
design is to find appropriate coefficients and determine an accurate filter order. A
common technique is the FIR convolution that is a cross-correlation between the
original signal and the impulse response of the pulse shape that is to be filtered
(Oppenheim et al., 1983). A moving average filter is a simple FIR filter.
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3.5.2 Infinite impulse response filters

The impulse response of the infinite impulse response (IIR) filter has an infinite
length. The general form of the IIR filter is:

Y(e'w) = H(e'w)X(e'w), (18)

where H(eiw) is the frequency response of the filter. In practice, the IIR filter is
implemented in terms of the difference equation:

K M
y(n) = kZ(:)akx(n —k)+ Z bmy(n —m), (19)

m=0

where m, a; and b, are the IIR coefficients (Mitra, 2005).

Butterworth, Chebyshev, Bessel, and elliptic filters are different types of IIR
tilters. Compared to FIR filters, IIR filters require fewer calculations and memory
and they perform better from narrow transition bands (Mitra, 2005). However,
FIR filters are easier to implement to linear phases and to match the desired fre-
quency response (Mitra, 2005).

3.5.3 Wavelet filter banks

The construction of wavelet filter banks concludes the analysis and synthesis
functions that perform the composition of the original spectrum using sub-spectral
components. The wavelet transform is orthogonal when the analysis and synthe-
sis function sets are the same. For the biorthogonal transform, these function sets
are different. A common technique for computing wavelet transforms is to use
two-channel perfect reconstruction (PR) filter banks: a low-pass filter ¢(z) and
high-pass filter &(z) form an analysis filter bank and a low-pass filter HO(z) and
high-pass filter H1(z) form a synthesis filter bank (Figure 14).

Y, (z) Y’ 1(2)
Gy(2) H,(2)
X(2) X'(z)
Y oL
-Gy 0 e 0 Ho) —22

FIGURE 14 Two-channel wavelet filter bank.
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4 VIBRATION ANALYSIS OF ROLLING ELEMENT
BEARINGS

Vibration analysis is a key technique in the condition monitoring of REBs. Vibra-
tion analysis of REBs exploits different (digital) signal processing methods. Vi-
bration measurements do not provide direct information regarding the health of
REB, and, therefore, feature extraction is necessary. This implies different appli-
cations of signal processing methods. The sensitivity of vibration signals to dis-
turbances makes the task more difficult. Features of vibration signals can be sep-
arated into six categories: i) time-domain features; ii) frequency-domain features;
iii) time-frequency-domain features; iv) phase-space dissimilarity measurements;
v) complexity measurements; vi) other features (Caesarendra and Tjahjowidodo,
2017).

Recently, Rai et al. (Rai and Upadhyay, 2016) reviewed signal processing
methods utilized in the fault diagnosis of REBs and the methods were ordered in
the chronological stages:

I Time domain methods (statistical moments, autoregressive model, etc.), time-
frequency domain methods (DWTs), bispectral and power density methods,
adaptive noise canceling, envelope analysis.

IT Autoregressive model (improvements), bispectral analysis, wavelet trans-
form, matching pursuit, cyclostationary methods, spectral kurtosis and kur-
togram, entropy, morphological feature extration methods, empirical mode
decomposition.

III Spectral kurtosis and kurtogram (improvements), cyclostationary methods,
wavelet based approaches, empirical mode decomposition (improvements),
morphological signal processing, matching pursuit order tracking, data re-
duction tools, cepstral analysis.

A variety of signal processing methods have been developed for the vibration
analysis of REBs. The selection of a suitable technique depends on the bearing ap-
plication in question. In some cases, the required techniques may be rather sim-
ple. However, the detection of incipient bearing faults requires more advanced
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techniques, especially in environments where other sources create disturbing vi-
brations. The vibration analysis methods used in this research are presented in
this chapter.

4.1 Vibrations generated by rolling element bearings

Randall (2008) defined a taxonomy for different signal types:

stationary and non-stationary
stationary — random and deterministic
deterministic — periodic and quasi-periodic

non-stationary — continuous and transient

continuous — continuously varying and cyclostationary

Cyclostationary processes are non-stationary processes whose statistics are peri-
odically varying (Antoni, 2006). Vibration signals generated by REBs can be mod-
elled as pseudo-cyclostationary (Randall and Antoni, 2011). The term “pseudo”
refers to the randomness by caused by jitter. The terms “quasi-cyclostationary”
and “pseudo-quasi-cyclostationary” have also been used in research publications
(Antoni et al., 2004; Estupifian et al., 2007).

OUTER RING
INNER RING FAULT (BPFO)
FAULT (BPFI)

CAGE FAULT
(FTF)

ROLLING ELEMENT
FAULT (BSF)

FIGURE 15 Local faults of REB.

The vibrations generated by REBs include the vibrations of the raceway
rings, the vibrations of the cages, rolling element passage vibrations, vibrations
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due to the surface waviness on the inner and outer raceways, vibrations gen-
erated by flaws, vibrations due to contamination, and seal vibrations (Momono
and Noda, 1999). Other than flaw vibrations, the presented vibrations of the REBs
can be considered normal. Bearing fault signals, which include flaw vibrations,
have a deterministic part and a stochastic part. The stochastic part is pseudo-
cyclostationary and is very often small because of the low-pass filtering effect of
random jitter, combined with the band-pass filtering effect of resonances that are
excited (Randall et al., 2001). The spacing between these impulses usually varies
between 1-2% due to slippage resulting from the variation of the load angle of the
rolling element (Barszcz and Sawalhi, 2012).

4.2 Local faults in REBs

Local faults occur in the different parts of REBs: the inner race, outer race, rolling
elements and cage. Figure 15 shows common local faults. The resonances of
the bearing parts and housing structure emerge when a rolling element strikes
a localized defect, and an exponentially decaying ringing is generated (Tandon
and Choudhury, 1999; Kiral and Karagiille, 2003). Vibrations in the 2-20 kHz
range, are commonly measured by acceleration sensors. Ultrasound and acoustic
emission measurements cover considerably higher frequencies.

When a defective part of a bearing hits other elements of the bearing, a series
of impacts will occur at a rate dependent on the bearing’s geometry. The impacts
appear periodically in time, if the shaft is rotating at a constant speed. Each part
of an REB has its own frequency of occurrence based on the geometric dimension
of the REB. These frequencies are called the characteristics fault (defect) frequen-
cies of the REB and include the outer race (the ball pass frequency of the outer
race [BPFQY]), the inner race (the ball pass frequency of the inner race [BPFI]), the
ball or roller (the ball spin frequency [BSF]), and the gage (the fundamental train
frequency [FTF]) (Randall and Antoni, 2011). Table 1 lists the characteristic fault
frequencies and the corresponding equations, where N, is the number of rolling
elements, B, is the diameter of the rolling element, P; is the pitch diameter, and
RotSpeed refers to the shaft rotation speed.

Many research studies exploit simulation models of bearing faults. McFad-
den and Smith (1984) introduced an impulse model of a single fault that considers
the load distribution and moving location of impacts:

= [ _a-impe), (20)

=—00

where § is the impulse function, T is the time between consecutive impacts, 0 is
the angle of rotation, and P is the load distribution function.

Since then, new impulse models for faulty bearing have been proposed. The
results of these studies have added multiple faults, random fluctuations, the ef-
fect of surface roughness, and the effect of multiple interferences (McFadden and
Smith, 1985; Ho and Randall, 2000; Rohani and Mba, 2011; Liang and Faghidi,
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TABLE 1 Characteristic fault frequencies of REBs.

Fault type Equation
BPFI % (1 + ?,—Zcos@) * RotSpeed
N, By
BPFO - (1 — P_dC059> * RotSpeed
2
BSF 2% (1 — <%§cos€) > * RotSpeed
CAGE % (1 — %) * RotSpeed

2014). The bearing impulse model used in this research was presented by Liang
and Faghidi (2014) with modulation terms for shaft rotation and random jitter
added as follows:

K
r(t) = Asin(wyort)e PTcos(wyest + @) + Y Licos(wt), (21)
k=1

where A is the amplitude of the vibration signal, wy,; is the rotation frequency,
is the structural damping characteristic, wes is the frequency of the exited reso-
nance, ¢ is the phase angle, and Ly is the frequency of the k' interference compo-
nent.

The spectrum of a modulated signal contains sidebands spaced at the mod-
ulation frequency (Randall, 2010). The passage of the local fault through the load
zone or a varying transmission path between the impact point and the vibration
measurement point can result amplitude modulation of impulses responses (Ho
and Randall, 2000). The spectrum of such a signal would consist of a harmonic
series of frequency components spaced at the bearing defect frequency with the
highest amplitude around the resonant frequency (Figure 16).
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FIGURE 16 Modulation sidebands (10 Hz) at the resonant frequency (3500 Hz).
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4.3 Envelope analysis

Envelope analysis, also known “high frequency” resonance technique, is used to
resolve the amplitude modulation of vibration signals. The impulses generated
by bearing faults excite “high frequency resonances” and the resulting signal ap-
pears as a sequence of transient and impulsive vibrations (Gao et al., 1998). The
characteristic frequencies of these impulses can be detected from the envelope
spectrum of a vibration signal. The resonances excited by an incipient bearing
fault exists in higher frequencies than the resonances excited by a grown bear-
ing fault. Figure 17 presents the simulated vibration signal of a faulty bearing
and the power spectrum and envelope spectrum of the signal. The repetition
rate of the fault pulse is 10 Hz, and the resonant frequency of the pulse is 3500
Hz. White noise was added to the signal (SNR = 1.5) and no random fluctuations
were present. Resonant frequency is seen in the power spectrum. The funda-
mental frequency of the fault pulse and its harmonics are present in the envelope
spectrum. The harmonics are integer multiples of the fundamental frequency.

The vibration signals of REBs acquired from real machinery are most likely
affected by other machine components that interfere with vibration analyses. De-
terministic vibrations generated by gears, shafts, and motors affect the measured
signal (Borghesani et al., 2013). It is common that “low frequency” components
are filtered out using a high-pass filter or a band-pass filter if resonances are ex-
pected to appear in certain frequency area. However, these filtering techniques
are quite simple, and more sophisticated methods are needed for vibration sig-
nals that contain multiple interferences.
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FIGURE 17 Envelope analysis of faulty bearing signals.
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4.4 Cepstrum pre-whitening

Cepstrum analysis is a non-linear signal processing technique. The real cepstrum
is defined as the IDFT (Eq.7) of the logarithm of the DFT (Eq.4) of a signal (Bogert
etal., 1963):

CEPSTRUMggar = |IDFT(log(|DFT(X)]))]|. (22)

The shaft harmonics of a vibration signal are the periodical and deterministic ex-
citations that produce a spectrum with multiple harmonics of the first excitation
frequency (Borghesani et al., 2013). The peak amplitudes of the real cepstrum
correspond to the multiple harmonics of the vibration signal. The definition for
the cepstrum pre-whitening is as follows:

DFT(X)

Xcpw = IDFT———2_
cPw [IDET(X)]

(23)

The cepstrum pre-whitening performs the following steps: 1) the real cep-
strum is set to zero, 2) transformation to the frequency domain, 3) recombina-
tion with the original phase, 4) inverse transformation to the time domain. Pre-
whitening removes the deterministic excitations and resonance effects from the
signal (Borghesani et al., 2013).

4.5 Spectral kurtogram

The spectral kurtosis (SK), the frequency domain kurtosis, is a powerful tool to
reveal the non-Gaussian components of a signal in the frequency domain (Dwyer,
1983). The SK represents a kurtosis at each frequency line in order to discover the
presence of hidden non-stationarity properties and to indicate in which frequency
bands these occur (Antoni, 2007). The SK is calculated by using the STFT (Eq.11)
(Antoni, 2006):

({|STFT(k,w)|*)

SK = STFT (K, 0) )

—2, (24)

where (.) is the time-average operator.

Antoni and Randall (2006) presented the concept of the kurtogram. The
kurtogram displays the SK as a function of frequency and of spectral resolution.
The kurtogram can reveal, for example, the resonant frequencies of a REB fault.
Hence, the kurtogram can be used as a basis for a band-pass filter design. Further,
Antoni (2007) developed an algorithm to reduce the computational complexity of
the kurtogram calculation. Figure 18 shows a kurtogram of the simulated vibra-
tion signal presented in Figure 17. Enhancements of the kurtogram have been
proposed, including an adaptive SK and the protrugram (Wang et al., 2016).



39

K =10.0848 at level 4.6, Optimal Window Length = 48,

max

Center Frequency = 3.4375 kHz, Bandwidth = 0.20833 kHz

0 (2
1 (4)
16 (6)
2 (8)
26 (12)
3 (16)
3.6 (24)
4 (32)
46 (48)
5 (64)
5.6 (96)
6 (128)
6.6 (192)
7 (256)
7.6 (384)
8 (512)
8.6 (768)
9 (1024)
9.6 (1536)
10 (2048)

Level (Window Length)
Spectral Kurtosis

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Frequency (kHz)

FIGURE 18 The fast kurtogram of a vibration signal of a faulty bearing.

4.6 Wavelet analysis

The wavelet transform has been used for signal demodulation and optimal band-
pass filter design (Qiu et al., 2006). The wavelet transform has also been suc-
cessfully applied for bearing fault detection (Prabhakar et al., 2002; Seker and
Ayaz, 2003; Luo et al., 2003a; Lou and Loparo, 2004). Fault features extracted by
wavelet transform can be based on wavelet coefficients, wavelet energy, singu-
larity based, and wavelet function (Peng and Chu, 2004). However, there is no
standard method to select the wavelet function for a specific purpose; as such,
the wavelets do not have a standard status in fault diagnostics (Peng and Chu,
2004). Breakdown points, trends, and discontinuities in higher derivatives are
detectable by using wavelet analysis (Kumar et al., 2013).

Tse and Wang (2011) introduced the sparsogram, which uses the binary
wavelet packet transform for signal decomposition and the sparsity measure of
the decomposition levels for bearing fault detection. Later, the sparsogram was
expanded for the optimization of the Morlet wavelet filter Tse and Wang (2013).
Complex frequency B-spline wavelets (CFBSW) have been used for bearing fault
detection by adjusting the wavelet to correspond to the fault pulse (Paliwal et al.,
2014).

The newest enhancements to the wavelet transform is empirical wavelet
transform (EWT) which decomposes a signal based on the segmentation of the
Fourier spectrum (Kedadouche et al., 2016). The EWT extracts different modes of
a signal, and the resulting modes are applied to construct a wavelet filter bank
(Gilles, 2013).
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FIGURE 19 CWT analysis of a vibration signal of a faulty bearing.

4.7 Other popular techniques for vibration analysis

Time synchronous averaging (TSA) can be used to remove discrete frequency
components with the minimal disruption of the residual signal (Randall and An-
toni, 2011). The removal of harmonics requires resampling, which is achieved
with the synchorization of a signal using order tracking (Randall and Antoni,
2011). Order tracking involves sampling a signal at constant increments of the
shaft angle (Fyfe and Munck, 1997). Usually, the phase information of the shaft
is acquired using a tachometer. Later, a tachometer-less TSA approach was pro-
posed (Siegel et al., 2012).

Adaptive noise cancellation (ANC) can be used to separate two uncorre-
lated components from a signal. The idea is to find a linear transfer function that
can be applied to a chosen reference part of the original signal (Randall, 2010).
When the result is subtracted from the original signal, the uncorrelated compo-
nents are separated. Self-adaptive noise cancellation (SANC), an extension of the
ANC, exploits the delayed version of the original signal as another signal in the
process (Randall, 2010). The SANC expects that another component is determin-
istic and that yet another is random.

Empirical mode decomposition (EMD) enables analysis nonlinear and non-
stationary properties of a signal. Empirical mode decomposition (EMD) splits
a signal into intrinsic mode functions (IMF) (Huang et al., 1998). Compared to
wavelet decomposition, EMD does not require a predefined basis for the signal,
which makes it adaptive-like (Peng et al., 2005). The Hilbert-Huang transform
(HHT) combines of the EMD and the Hilbert spectral analysis. The Hilbert spec-
trum reveals instantaneous frequencies of IMFs. The HHT is popular in bearing
diagnostics (Yu et al., 2005; Yang et al., 2007; Zhao et al., 2013).

Bispectrum analysis involves higher order spectra (Nikias and Mendel, 1993).
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It analysis has been shown to detect the modulation phenomena and the type of
the defects better than Fourier analysis in bearing diagnostics (Yiakopoulos and
Antoniadis, 2005; Alwodai et al., 2013; Rehab et al., 2014).



5 MACHINE LEARNING

Machine and deep learning methods have increasing been applied in bearing
fault diagnosis (Zhang et al., 2019; Hoang and Kang, 2019). However, the gener-
alization of these methods has been cumbersome. The biggest weakness of deep
learning methods is the selection of hyper-parameters, which is done with time-
consuming “trial and error” principle (Hoang and Kang, 2019). Many research
studies on the fault diagnostics of REBs, use traditional black-box classifiers such
as the k-nearest-neighbor (k-NN) and the support vector machines (SVM) (Wang
et al., 2014a; Baraldi et al., 2016a; Tian et al., 2016; Gryllias and Antoniadis, 2012;
Zhang et al., 2013; Du et al., 2014; Wen et al., 2015a; Saidi et al., 2015; Li et al,,
2016a,b; Saari et al., 2019). The basic idea is to train classifiers with features of
vibration signals whose health state is known. Further, classifiers are used to
classify features of new vibration signals to diagnose the health state of REBs.

Usually, a number of fault samples in condition monitoring domain is lim-
ited. Instance-based classifiers do not require a large number of training samples
tobe accurate (Yang et al., 2005; Gryllias and Antoniadis, 2012), unlike deep learn-
ing methods. The machine learning methods used in this research are introduced
in the following sections of this chapter.

5.1 On feature engineering

Features are inputs in a model in data-driven approaches. Feature extraction
refers to cases where a new, smaller-dimensional set of features is created from an
original set (e.g. by transform). The process of selecting a subset of relevant fea-
tures is called feature selection or variable selection. The removal of redundant or
irrelevant features should not cause a loss of information. The objectives of fea-
ture selection can be three-fold (Guyon and Elisseeff, 2003; Moradi and Rostami,
2015): to improve the performance of the model (classifiers), to provide faster and
more cost-effective models than using all the available features, and to improve
understanding of the data generation process.
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John et al. (1994); Kohavi and John (1997) proposed the division of a set
of features into irrelevant, weakly relevant, and strongly relevant. In (Zare and
Niazi, 2016), the category of weakly relevant features was further divided into
redundant and non-redundant features. The identification of such a division is
a search problem, and many techniques and approaches exist for this purpose,
for example, exhaustive searching, branch-and-bound-algorithms, evolutionary
approaches etc. (see, e.g., (Miller, 1990; Liu and Motoda, 1998; Huang et al., 2008;
Liang et al., 2017)). A forward search involves adding new features one-by-one
or group-by-group to the model, whereas backward elimination refers to the re-
moval of individual or sets of features during the search process.

The intrinsic assumption behind feature selection is that there is some re-
dundancy among the features. Liu et al. (Liu and Motoda, 1998) divided fea-
ture selection criteria measuring the redundancy into five groups: information
measures, distance measures, dependency measures, consistency measures, and
accuracy measures. Depending on the constituents present when constructing a
criterion, two basic approaches for feature selection can be used: the filter ap-
proach and the wrapper approach (John et al., 1994).

The benefits of feature selection are as follows: i) it reduces effect of the
curse of dimensionality ii) it reduces overfitting, and iii) it speeds-up training
(Guyon and Elisseeff, 2003). The curse of dimensionality arises when the ratio
between features and observations is high; in the k-NN classification it, results in
the phenomenon that observations might have no nearby neighbors (James et al.,
2013). A model with too many adjustable parameters usually leads to overfitting,
which means that noise of the data is fitted (Sovilj, 2014). By selecting optimal
features, the misclassification and the training time of classifiers are reduced (Hu
etal., 2007). The features calculated from the vibration signals generated by REBs
are usually high-dimensional and non-Gaussian, leading to a pattern recognition
problems (Zhao et al., 2014). It is typical that dimensionality reduction methods,
such as Principal Component Analysis, Kernel Principal Component Analysis,
and Linear Discriminant Analysis are applied to vibration signal features (Zhang
et al., 2013; Zhao et al., 2014; Dong and Luo, 2013).

5.2 Unsupervised learning

In the unsupervised learning, one attempts to model the structure or distribution
of unlabeled input data. Clustering, the most common technique for this pur-
pose, involves the unsupervised classification of patterns into groups (clusters)
by joining together similar points (Jain et al., 1999). Over the years, many clus-
tering approaches and algorithms have been developed, for instance, density-
based, probabilistic, grid-based, and spectral clustering (Aggarwal and Reddy,
2013). However, the two most common and mostly used groups of clustering
algorithms are partitional and hierarchical clustering algorithms (Jain, 2010; Zaki
etal., 2014).
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5.2.1 Fuzzy c-means clustering

K-means clustering is the most popular partitional type of algorithm that at-
tempts to partition a set of data points into k number of distinct, crisp clusters. K-
means clustering positions k number of centroids (prototypes), one for each clus-
ter, and then recursively searches the best centroids based on the nearest mean.
Fuzzy clustering algorithms, especially fuzzy c-means (FCM) clustering, which
was originally developed by Ruspini (Ruspini, 1969), generalize the k-means by
allowing data points to belong to multiple clusters. This relation is represented
with a membership function.

The FCM algorithm was further developed by Dunn (1973) and Bezdek
(1973). The algorithm minimizes the objective function (Bezdek, 1981):

Jn = ZZu Ixi =

i=1j=1

, (25)

where D is the number of data points, N is the number of clusters, m is a fuzzy
partition matrix exponent to control the overlap of the clusters, u;; is the degree
of membership of x; in the cluster j, x; is the i observation in the d-dimensional
measurement data, Cj is the d-dimensional center of the cluster, and H*H is the Eu-
clidean norm measuring the similarity between the measured data and its center.

5.3 Supervised learning

Supervised learning refers to training a predictive model, or its parameters, by
using a labelled data. A predictor is then used to evaluate labels for new, unseen
data. Supervised learning algorithms try to approximate the mapping function
between input variables and output variables. Classification and regression prob-
lems are typical supervised learning problems. Classification algorithms attempt
to assign new data points to pre-defined categories. Regression algorithms at-
tempt to predict numeric values for new data points.

5.3.1 k nearest neighbor algorithm

The k-NN classification rule was originally introduced by Cover and Hart (Cover
and Hart, 1967). The k-NN rule is a sub-optimal non-parametric procedure for
the assignment of a class label to an input pattern based on the class labels repre-
sented by the k closest neighbors (Keller et al., 1985). The k-NN rule is applicable
on data that is in the metric space, and it does not make assumptions regard-
ing the distribution of data. k is the number of nearest data points used in the
classification.

An example of the principle of the k-NN classifier is shown on the left side
of Figure 20. A triangle is classified into a group of rectangles when k is three.
When k is five, the triangle is classified into a group of stars. Euclidean distance,
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used as a dissimilarity measure, satisfies the three following properties: positiv-
ity, symmetry, and triangle inequality.

FIGURE 20 k-nearest-neighbor classification example.

The k-NN is an “instance based” learning method. Unlike inductive learn-
ing methods, instance-based learning methods do not include an explicit descrip-
tion of the target function (Mitchell, 1997). Instance-based learning approximates
real-valued or discrete-valued target functions (Mitchell, 1997). The k-NN trains
the examples and finds the k-NN of the new instance (test sample) (Wagh et al.,
2012). The k-NN classifier algorithm for each test example y € Y:

1. Compute the distance 7(y, x) between y and each training example (x,c) €
X,

2. Select X(k,y) € X, the set of the “k nearest” training examples to y,

3.
Class(y) = argmax ) Oy, (26)
ve(1.C] (y,c)e(ky)
where x is the input data, Y = y;,i = 1, .., N is the training data, and ¢,j=1,.,C
is the set of predefined classes.

5.3.2 Support Vector Machine

An SVM is a supervised machine learning algorithm that can be used for both
classification and regression problems. An SVM is a binary classifier that searches
an optimal separating hyperplane to separate classes from each other (Vapnik,
2000). The simplest SVM classifier is the so-called hard-margin classifier, that
is applicable when training data is linearly separable, meaning which the two
hyperplanes clearly separate the data (Figure 17).

The definition of the separating hyperplane is w’ + b = 0, where w is the
normal vector of the hyperplane and b is a scalar constant. The marginal hyper-
planes are w! + b = 1 and w! 4+ b = —1. The sample vectors on the marginal hy-
perplanes are called support vectors. The SVM algorithm tries to solve parameter
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FIGURE 21 Support vector machine (principle).

w and b so that the distance between the hyperplanes is maximal. Otherwise, it
minimizes the length of w so that it is orthogonal to the two hyperplanes: when
yi = wlx; +b >= 1,y; € [-1,1]. Using Lagrange’s method for the minimiza-
tion results in the following equation: L(w, b) = §|w| — TN a;y;(wTx; + b) — 1],
when o > 1.

The classification function for unclassified feature vector x:

flx) = sign( Y, (yiiK(xi,x) +b), 27)

iix;, €SV

where K(x;, x) refers to the “linear like” kernel. The sign of the function defines
the resulting class [—1, 1].

In practice, a non-linear kernel transformation is performed because the pat-
terns are not linearly separable (Saidi et al., 2015). The nonlinearity of the SVM
and the corresponding class boundaries can be obtained from the famous kernel-
trick using nonlinear transformation through a high-dimensional feature space
(Zaki et al., 2014). The feature vectors are transformed to Hilbert space using a
non-linear transform: x7x; — 6(x;)76(x;). The dot product of the transform is
called a kernel. Commonly used kernels are the polynomial kernel (K(x;,x;) =
e~ |x; — x| /20?) and the radial basis kernel (K(x;, x;) = (x]xj + 1)P).

As such, multiclass problems can be reduced to multiple binary classifi-
cation problems that can be solved separately. SVMs use error-correcting out-
put codes (ECOC) framework to combine binary problems to address the multi-
class problems (Dietterich and Bakiri, 1995). The ECOC framework uses differ-
ent decoding strategies, which are implemented by the coding design (Escalera
et al., 2010). The most commonly used coding designs are one-versus-all and
one-versus-one. The one-versus-one coding design considers all possible pairs of
classes while the one-versus-all discriminates a given class from all other classes.
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Disadvantages of the one-versus-all coding design is that the binary classifiers
might have different scales and the training sets are not balanced (Bishop, 2006).

5.3.3 Naive Bayes

The naive Bayes (NB) classifier is a probabilistic classifier that is based on Bayes’
theorem. Bayes’ theorem is a formula that describes the probability of an event,
based on prior knowledge of conditions that might have an effect on the event
(Ziegel, 1989):

P(x]y)P(y)

P(ylx) = TP (28)
where x and y are events, and P(x) # 0. P(y|x) (resp. P(x|y)) is the likelihood
of event y (resp. x) occurring given that x (resp. y) is true. P(x) and P(y) are the
marginal probabilities of observing x and y independently of each other.

The NB classifier considers the prior probability of the predicted class when
the likelihood of that class is calculated (Zaki et al., 2014). The naiveness of NB
means that the input features are assumed to be statistically independent of each
other; thus, the predicted class is the one that maximizes the posterior probabil-
ity (Domingos and Pazzani, 1997). The NB classifier is configured based on the
distribution of the teaching data. A Bayesian posterior is calculated from the dis-
tribution of the training data. Gaussian (normal) distribution is commonly used.



6 SUMMARY OF INCLUDED ARTICLES AND
RESEARCH CONTRIBUTIONS

6.1 Flexible Simulator for the Vibration Analysis of Rolling Ele-
ment Bearings

6.1.1 Publication details

The first version of the article (PI) was published in the proceedings of the 29th In-
ternational Congress on Condition Monitoring and Diagnostic Engineering Man-
agement (COMADEM 2016). The main author had an oral presentation at the
COMADEM 2016 conference that was held at Xi’an Jiaotong University, Shaanxi,
PR. China in August of 2016. The main editor suggested that the article be ex-
tended (+50%) so that it could be published in the International Journal of CO-
MADEM. The manuscript was extended and then it was submitted to the Inter-
national Journal of COMADEM. The manuscript was accepted and it published
in the journal (2/2017).

The paper presents a flexible computer simulator that is used for the simu-
lation and visualization of vibration signals generated by REBs and for testing of
vibration analysis methods. This approach tries to overcome challenges in bear-
ing fault detection in real-world environments, where the weak bearing fault sig-
natures experience interference from noise from different external sources and in-
ternal mechanical components. The parametric models of the impulse responses
for different vibration components are adjustable, and the simulation models can
be verified by loading a real-world vibration signals samples into the simulator.

6.1.2 Scientific and personal contributions

A novel property of the flexible simulator is the feedback mechanism, that uses
information obtained from vibration analysis to adjust a parametric impulse re-
sponse models. The disturbance modeling by using wavelets offers a new way to
test digital filters on problematic vibration analysis scenarios. The flexible simu-
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lator is the main author’s invention.

The main author implemented the simulator with LabVIEW. The conference
paper was written with the help of the co-author’s docent Kari Saarinen and pro-
tessor Tommi Karkkédinen. The simulator was presented for the first time at the
COMADEM 2016 conference. The extended version of the article was reviewed
by both of the co-authors. The vibration data acquisition and data pre-processing
were done by the main author.

6.2 Spline wavelet based filtering for denoising vibration signals
generated by rolling element bearings

6.2.1 Publication details

The first version of the article (PII) was published in the proceedings of the 30th
International Congress on COMADEM 2017. The main author had an oral pre-
sentation at the COMADEM 2017 conference that was held in University of Cen-
tral Lancashire, Preston, United Kingdom in July of 2017. The main editor sug-
gested that the article be extended (+50%) so that it could be published in the
International Journal of COMADEM. The manuscript was extended and then it
was submitted to the International Journal of COMADEM. The manuscript was
accepted and it was published in the journal (4/2018).

Spline wavelets have received little attention in bearing fault detection. The
article presents the fundamentals of spline wavelets and a denoising algorithm
for the vibration signals generated by REBs. The algorithm can be applied for
bearing fault detection. The motivation for this research was initialized during
the development of the flexible simulator that was presented in the previous pa-
per, where biorthogonal spline wavelets where used to model disturbances.

6.2.2 Scientific and personal contributions

Such a brute force algorithm that covers a large number of biorthogonal spline
wavelets has not been seen in the research field of bearing fault detection. Spline
wavelet decomposition reveals bearing fault pulses clearly, which enables the
possibility to study the entry and exit events related to bearing fault size.

The conference paper was written entirely by the main author. It was re-
viewed by the co-author’s docent Kari Saarinen and Professor Tommi Karkkai-
nen. The extended journal paper was reviewed by Professor Tommi Karkk&inen.
The spline wavelet denoising algorithm was implemented by the main author.
The vibration data acquisition and data pre-processing were done by the main
author.
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6.3 Hybrid vibration signal monitoring approach for rolling ele-
ment bearings

6.3.1 Publication details

The identification of different lifetime stages of REBs has been studied, as pre-
sented in Chapter 2. This paper studies unsupervised clustering approaches
to detect the different lifetime stages of REBs using vibration measurements.
Since, vibration measurements are an indirect condition monitoring approach,
feature extraction is necessary to establish of appropriate degradation features.
A method to detect different lifetime stages of REBs according to their vibration
signals was proposed based on an unsupervised learning method. The paper also
presents a bearing fault detection approach using unsupervised clustering results
as bases for supervised methods.

6.3.2 Scientific and personal contributions

The paper presented a novel hybrid vibration “signal based” condition monitor-
ing method. The method enables the identification of different life-time stages
of REBs and early bearing fault detection. A comparison of supervised methods
was performed. However, the data set was small. To generalize the methodol-
ogy, further testing using bearing vibration data from other sources is required.
Hence, the degradation feature selection can be improved.

The main author applied a fuzzy clustering approach to detect of different
life-time stages of REBs. Professor Tommi Kérkkdinen implemented of the cross
validation technique to evaluate of feature saliency. The paper was written by the
main author and it was reviewed by Professor Tommi Karkkainen. The vibration
data acquisition and data pre-processing were done by the main author.

6.4 Feature ranking for the fault size estimation of rolling element
bearings

Research related to fault severity estimation of REBs, started during my research
visit University New South Wales (Australia, Sydney) from 25 June to 20 July
2018. Since then, the research reported in this paper was conducted in collabo-
ration with the Tribology and Machine Condition Monitoring (TMCM) research
group. Key persons of the TMCM group include: Associate Professor Zhongx-
iao Peng, Dr. Pietro Borghesani, Dr. Wade Smith, and Emeritus Professor R.B.
Randall.
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6.4.1 Publication details

The research tried to solve challenges resulting from the fault severity of REBs
using vibration measurements. Incipient bearing fault detection and fault sever-
ity estimation where, the size is probably the best proxy, are challenging. A novel
method for feature ranking to achieve the fault size estimation of REBs was pre-
sented. “Instance based” classifiers (k-NN, SVM) were applied to detect the non-
linear relations between vibration signal features. It was concluded that the best
metrics for basic diagnostics are not necessarily the best for the fault size esti-
mation. Even if, the fault size estimation results are convincing, further research
using REBs with different properties is needed.

6.4.2 Scientific and personal contributions

The research used bearing vibration data from three different bearings and three
different test rigs. The vibration signal feature subset is unique. The classifiers
were taught based on features calculated from one test bearing. The fault size es-
timation was done for all three bearings; meaning that two of the bearings were
completely unknown. An analysis of the features reveal the most relevant fea-
tures to estimate the fault size of REBs when the chosen classifiers were used.
The feature ranking process of features of vibration signals was completely novel
and it is reproducible.

The TMCM research group advised the researchers on the feature selection
process. They provided the bearing vibration data gathered from their bearing
test rig and other sources. The feature extraction algorithms for the new statistical
tfeatures were provided by Dr. Pietro Porghesani. The main author developed
the feature extraction and feature ranking processes with the help of other team
members. The evaluation of the classifiers was done by the author. The article
was written in co-operation with Professor Tommi Karkkdinen and the TMCM
research group.

6.5 Software framework for Tribotronic Systems

6.5.1 Publication details

The increasing capabilities of sensors and computer algorithms require a struc-
tural support to solve recurring problems. Autonomous tribotronic systems are
self-regulating based on feedback acquired from interacting surfaces in relative
motion. This paper introduced a description of a software framework for a tri-
botronic system. An example application is an REB installation with a vibration
sensor. The presented plug-in framework offers functionalities for vibration data
management, feature extraction, fault detection, and remaining useful life esti-
mation. The framework was demonstrated with bearing vibration data acquired
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from NASA'’s prognostics data repository. The plug-in implementations are easy
to update, and new implementations are easily deployable even in run-time. The
proposed software framework improves the performance, efficiency and reliabil-
ity of a tribotronic system. In addition, the framework facilitates evaluation of
the configuration complexity of the plug-in implementation.

6.5.2 Scientific and personal contributions

As the final part of this thesis, an “object oriented” software framework was
designed and developed for tribotronic systems. This publication (manuscript)
summarizes the main concepts of this Ph.D. work. It assembles and validates
the individual parts of this thesis work, namely, feature extraction from vibration
signals, fault detection, and RUL estimation. It highlights the central algorithms
and shows reliable results through demonstration. The framework generalizes
the main elements that were discovered in the research work done in bearing
diagnostics and prognostics.

The main author came up with the idea of a software framework after read-
ing a publication in which of the concept of the tribotronic system was intro-
duced (Glavatskih and Hoglund, 2008). The main contribution is a novel plug-in
framework that evolved during the work. Such a software framework and it’s
evaluation has not been previously established. The main author designed the
framework and implemented the tribotronic plug-in for REBs. The publication
was written by the main author. It was reviewed by Professor Tommi Kéarkkai-
nen.



7 CONCLUSIONS

The main topics of this research are bearing diagnostics, vibration analysis, early
fault detection, fault severity estimation, RUL estimation, and system design. As
mentioned in earlier, fault severity is a diagnostics task. Table 2 summarizes in-
volvement of the topics in different publications.

TABLE 2 Summary of research topics in articles.

RESEARCH TOPICS PII PIII PIV
Bearing diagnostics
Vibration analysis

Early fault detection
Fault severity estimation
RUL estimation

System design X

x| x| x|
| | <

X| X X[ =X

<
X X[ X| X[ X X[
<

With the exception of system design, all the topics focus on the actions that
provide feedback to condition monitoring. However, a system is a realization of
condition monitoring. The last publication brings together all the research topics,
combines diagnostics and prognostics algorithms, and demonstrates them in a
carefully established software framework.

7.1 Answers to research questions

RQ1 (What methods can be applied for REB fault detection and how can the
methods be analyzed?)

Fault detection indicates when the state of an REB changes from normal
condition to defective. Fault detection based on vibration measurements is de-
pendable on the requirements set for its sensitivity and how the environmental
conditions. Traditional statistical indicators are very sensitive to disturbances,
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which makes fault detection unreliable. An envelope analysis can provide accu-
rate results, but vibrations generated by other sources might disturb the analysis.
A variety of methods have been developed to make fault signatures more eas-
ily detectable including filtering, decompositions and transformations. Typically,
research based on certain fault detection cases shows the good or remarkable ca-
pabilities of the fault detection algorithm introduced. However, it is not evident
that one algorithm works across scenarios. Simulation is a powerful tool to in-
vestigate capabilities of different fault detection algorithms.

RQ2 (Can the different stages of wear evolution of REBs be determined?)

Wear, one of the failure modes in REBs, accumulates over time. Since, wear
is monitored cumulatively, representational quantity should be at least mono-
tonic. The metal particles count in o0il, which is monitored by direct condition
monitoring, gives a good indication of wear and transitions between the life-
stages of wear evolution. It is more challenging to find an effective vibration
signal feature to describe the wear-state of REBs. Some methods exist to evalu-
ate the effectiveness of degradation features and to recognize transitions states
from feature data. However, the SNR of features might need smoothing in order
to fill degradation parameter requirements. Unsupervised methods can be used
blindly to classify features of vibration signals into different groups. As a result,
a combination of features provide a model, that can be used for the identification
of different life-time stages.

RQ3 (What are the most important vibration signal features, or indicators for
fault diagnostics and severity estimation?)

Finding a better status indicator is a continuous challenge. Fault detection
should be done early to be reliable and for RUL estimation to certain. Diagnostics
indicators have been developed and justified to describe the different properties
of vibration signals. Further, finding out the physical meaning of the indicators
is very valuable. It is clear that envelope analysis is effective for fault detection
if fault signatures dominate a measured vibration signal. However, a statistical
time-domain features might show good correlation to fault size on some circum-
tances. As research shows, in different cases using different bearings in different
conditions, generalization is very challenging. Machine and deep learning meth-
ods offer new models based on selected features to be indicators for bearing di-
agnostics and prognostics. However, the generalization of these models requires
that the underlying data is some how normalized. Further, different combina-
tions of features might produce equally effective models.

RQ4 (How can bearing diagnostics and prognostic methods be encapsulated
into an industrial software system?)
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As a part of the tribotronic system, the designed object-oriented software
framework implements bearing applications and provides the possibility to ex-
tend it to other mechanical applications. The framework supports condition mon-
itoring data management, feature extraction, fault detection, and RUL estimation,
all of which are central tasks in bearing diagnostics and prognostics. The unique
tribotronic framework was demonstrated using bearing vibration data acquired
from NASA’s data repository. The framework improves the performance, effi-
ciency, and reliability of a tribotronic system. The configuration complexity of
the plug-in implementation is low, and it can be introduced to users of an indus-
trial software system.

7.1.1 Generalization of diagnostics methods for REBs

Generalization of bearing diagnostics methods is very important aspect. Like
point out in this thesis, published research papers related to bearing diagnostics
rely on narrow data sets. Very often presented diagnostics methods and algo-
rithms are often shown to be generalizable only in the presented bearing appli-
cation. Availability of high quality data seems to be a problem. Getting the vi-
bration data from companies or other research institutions is hard. It is almost
indispensable to own hardware that bearings can be tested and appropriate data
acquired for the analysis. The fourth (PIV) paper presented a unique feature rank-
ing process for vibration signals acquired from three different bearings and three
different test rigs in which different running parameters were used. The feature
ranking process includes a specific feature normalization to avoid problems cause
by the fact, that the feature data acquired from different environments have dif-
ferent distributions. Since, the results are very promising, it is very important
to acquire more vibration data from different bearings, which are operated in
different environments and conditions. Further, the presented tribotronic plug-in
framework offers flexible and robust platform to bring new condition monitoring
data and methods for bearing diagnostics.

7.2 Future work

One of the focal points of the future work will be the exploitation of the tribotronic
plug-in framework. The performance of the framework will be tested on embed-
ded systems. A new plug-in implementation will be developed to be deployed
in another tribotronic system, that is, gears. Also other implementations of fea-
ture extraction, fault detection and RUL estimation will be tested. Computation-
ally expensive operations can be evaluated on GPUs in order to reduce running
times. Configuration complexity of the framework requires more advanced met-
rics than just the number meta parameters because some of the parameters re-
quire pre-calculations.

Further focal points of the future work will be the research and develop-
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ment of fault severity estimation methods using vibration measurements. More
data is needed to better test the features under different operating environments
and for larger bearings. In addition, all types of bearing faults have to be taken
into account. Different noise filtering methods will be applied depending on the
measurement conditions. Further, the physical link between fault severity and
found features is not yet clear. Focus will be on developing features that are able
to describe the time span between events linked to the spall size. Finally, the
generalization of the developed methods must be proven over a large data set.



YHTEENVETO (SUMMARY IN FINNISH)

Viitoskirjatyossani késitellddn vierintdlaakerien kunnonvalvonnassa kdytettavia
vikadiagnostiikka-algoritmeja sekd ohjelmistoarkkitehtuurisuunnittelua kyseis-
ten tieto-ohjautuvien menetelmien nikokulmasta.

Laakerit ovat yleisin koneissa kdytettivd komponentti. Laakereita kayte-
tddn mm. moottoreissa, pyOrissd ja puhaltimissa. Vioittunut laakeri on yleisin syy
koneiden rikkoutumiseen. Laakereiden kuntoa valvotaan eri menetelmilld esi-
merkiksi vardhtely-, lampotila- ja 6ljypartikkelimittauksilla. Ideaalisen laakerien
kunnonvalvontamenetelmén tulisi pystyd havainnoimaan laakerivika mahdol-
lisimman aikaisessa vaiheessa, jotta valtytddn ei-toivotuilta dkkindisiltd koneri-
koilta, jotka voivat aiheuttaa merkittdvia taloudellisia tappioita ja pahimmissa ta-
pauksissa ihmishenkien menetyksid. Kehitetyt menetelmét hyodyntavit vierinta-
laakerien kunnonvalvonnassa kéytettdvien vdrdhtelymittalaitteiden mittausda-
taa. Vardhtelymittaus on yleisin vierintdlaakerien kunnonvalvonnassa kdytettava
menetelmd. Kehitetyilld vikadiagnostiikka-algoritmeilla pyritddan havaitsemaan
alkava laakerivika, tunnistamaan laakerivian etenemisen eri vaiheet ja arvioi-
maan vian vakavuutta. Algoritmeissa kdytetddn kehittyneitd signaalinkasittely-
ja koneoppimisalgoritmeja. Tutkimuksessani on kdytetty teollisista koneista ja la-
boratorioista saatua vardhtelydataa.

Vianhavainnointimenetelmad ilmaisee, kun laakerin kunnontila muuttuu nor-
maalista vialliseksi. Virdhtelysignaaleihin perustuva viantunnistus riippuu sille
asetetuista vaatimuksista herkkyyden ja sen toimintaympaériston suhteen. Suu-
ri mddrd menetelmid on kehitetty helpottamaan laakerivian aiheuttamien piir-
teiden loytdmistd vardhtelysignaalista; digitaaliset suodattimet, transformaatiot
ja hajotelmat. Usein tutkimuksissa esitetddn uuden vianhavainnointimenetelméan
tuloksia yhdessd ympaéristossd, miké ei takaa menetelmén yleistysta kaikkiin ym-
paristoihin. Tietokoneavusteinen simulaatio on tehokas keino eri vianhavainnoin-
timenetelmien toimivuuden testaamiseen.

Laakereista mitattujen vardhtelysignaalien piirteistd vikaantumisentilaa luo-
tettavasti kuvaavan piirteen 16ytdminen on huomattavasti vaikeampaa kuin esi-
merkiksi kédytettdessd voiteludljyn metallipartikkelien médrdd. Valvomattomien
oppimismenetelmien kdyttiminen virdhtelysignaalien piirteiden luokitteluun on
hyodyllistd laakerin kulumisen eri vaiheiden tunnistamisessa, koska tuloksena
saatu malli perustuu usean piirteeseen. Valvottujen oppimismenetelmien kaytto
vian vakavuuden arvioimisessa vaatii monipuolisen vdrdhtelysignaalien piirre-
joukon ja piirteiden huolellisen normalisoinnin, jotta menetelmien yleistys olisi
parempi.

Viitoskirjatydssdni kehitetty oliopohjainen ohjelmistokehys soveltuu auto-
nomisten tribotronisten systeemien reaaliaikaisesti toimiviin ohjausyksikoihin.
Ohjelmistokehys kapseloi kunnonvalvontamittausten datan hallinnan, piirreir-
rotuksen, vianhavainnoinnin ja jiljelld olevan elinidn ennustamisen.
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APPENDIX1 RESEARCH PAPERS ON BEARING

DIAGNOSTICS

TABLE 3 Recently done research on bearing diagnostics and prognostics.

Title / Journal

Research interest / Methods

Data source / Bearing (Pitch di-
ameter [mm])

The spectral amplitude modulation: A nonlinear
filtering process for diagnosis of rolling element
bearings (Moshrefzadeh et al., 2019) / MSSP

Fault diagnostics / SAM,
CPW

Test rig (CWRU)), Test rig (Spec-
tralQuest) / SKF 6203-2RS JEM
(28.5 mm), SKF 6205-SR2 JEM
(39 mm), MB-ER-16K 1 (39.32
mm)

Adaptive Kurtogram and its applications in
rolling bearing fault diagnosis (Xu et al., 2019)
/ MSSP

Fault diagnostics / AK, OSF,
EWT

Test rig (XJU) / 6307 (49.56
mm?)

Application of anew EWT-based denoising tech-
nique in bearing fault diagnosis (Chegini et al.,
2019) / Measurement

Fault diagnostics / EWT

Test rig (CWRU) / SKF 6205-SR2
JEM (39 mm)

Detection and identification of windmill bearing
faults using a one-class support vector machine
(SVM) (Saari et al., 2019) / Measurement

Fault diagnostics / SVM

Windmill bearing

A reinforcement learning unit matching recur-
rent neural network for the state trend predic-
tion of rolling bearings (Li et al., 2019) / Mea-
surement

Fault prognostics / RLUM-
RNN

Test rig (IMS) / REXNORD ZA-
2115 (71.5 mm)

Application of tentative variational mode de-
composition in fault feature detection of rolling
element bearing (Gong et al., 2019) / Measure-
ment

Fault diagnostics / TVMD,
DTW

Test rig (CWRU) / SKF 6203-2RS
JEM (28.5 mm), SKF 6205-SR2
JEM (39 mm)

A statistical methodology for the design of con-
dition indicators (Antoni and Borghesani, 2019)
/ MSSP

Fault diagnostics / Statisti-
cal methodology

Test rig (IMS) / REXNORD ZA-
2115 (71.5 mm)

Fault feature extraction for rolling element bear-
ing diagnosis based on a multi-stage noise re-
duction method (Guo et al., 2019) / Measure-
ment

Fault diagnostics / EEMD,
WT, MSB

Test rig (UHF) / 6206ZZ (46.4
mm), 6008 (54 mm)

Incipient rolling element bearing weak fault fea-
ture extraction based on adaptive second-order
stochastic resonance incorporated by mode de-
composition (He et al., 2019) / Measurement

Fault diagnostics / EMD,
CEEMDAN, AUSR

Test rig (IMS), Gear test rig /
REXNORD ZA-2115 (71.5 mm),
Unknown (57 mm)

Fault feature extraction of low speed roller
bearing based on Teager energy operator and
CEEMD (Han et al., 2019) / Measurement

Fault diagnostics / TEO,
CEEMD

Test rig (wind turbine) / 22208C
(60 mm)

Fault detection for rolling element bearing based
on repeated single-scale morphology and simpli-
fied sensitive factor algorithm (Gong et al., 2018)
/ Measurement

Fault diagnostics / RSSMF,
SSF

Test rig (IMS) / REXNORD ZA-
2115 (71.5 mm)

Automated vibration-based fault size estimation
for ball bearings using Savitzky—Golay differen-
tiators (Ismail et al., 2018) / JVC

Fault size estimation /Sav-
itzky—-Golay differentiator

Test rig (DLR) / FAG QJ212TVP
(85.15 mm)

Vibration response characterisation and fault-
size estimation of spalled ball bearings (Ismail
and Sawalhi, 2017) / Insight

Fault size estimation /
Numerical differentiator +
RMS envelope

Test rig (DLR), Test rig (UNSW)
/ NACHI 2206GK (39 mm),
FAG QJ212TVP (85.15 mm)

Method of assessing the state of a rolling bearing
based on the relative compensation distance of
multiple-domain features and locally linear em-
bedding (Kang et al., 2017) / MSSP

Fault severity estimation /
EEMD, SVD, KPCA, LLE,
LPP, LTSA

Testrig (CWRU) / SKF 6205-SR2
JEM (39 mm)

Enhancement of fault diagnosis of rolling ele-
ment bearing using maximum kurtosis fast non-
local means denoising (Laha, 2017) / Measure-
ment

Fault diagnostics / NL-
means

Test rig (CWRU), Test rig (Spec-
traQuest) / SKF 6205-SR2 JEM
(39 mm), REXNORD ERI12K
(30.2 mm)

Fault diagnosis of rolling element bearing com-
pound faults based on sparse no-negative ma-
trix factorization-support vector data descrip-
tion (Wang, 2016) / JVC

Fault Diagnostics / SNMF,
SVDD

Test rig / NU205 (39 mm)
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Vibration response mechanism of faulty outer
race rolling element bearings for quantitative
analysis (Cui et al., 2016b) / JSV

Fault size estimation / Dy-
namic modeling

Test rig / 6307 (57.5 mm)

Quantitative fault analysis of roller bearings
based on a novel matching pursuit method with
a new step-impulse dictionary (Cui et al., 2016a)
/ MSSP

Fault size estimation /
Matching pursuit algorithm

Test rig (UNSW) / NACHI
2206GK (45.15 mm)

A fault diagnosis scheme for rolling bearing
based on local mean decomposition and im-
proved multiscale fuzzy entropy (Li et al., 2016a)
/ ISV

Fault diagnostics / LMD,
IMFE, LS, ISVM-BT

Testrig (CWRU) / SKF 6205-SR2
JEM (39 mm)

Hierarchical k-nearest neighbours classification
and binary differential evolution for fault diag-
nostics of automotive bearings operating under
variable conditions (Baraldi et al., 2016b) / EAAI

Fault diagnostics / MO,
BDE, k-NN

Testrig (CWRU) / SKF 6203-2RS
JEM (28.5 mm), SKF 6205-SR2
JEM (39 mm)

Fault diagnosis of rolling element bearing using
more robust spectral kurtosis and intrinsic time-
scale decomposition (Bo and Peng, 2016) / JVC

Fault diagnostics / ITD, SK

Test rig (CWRU) / SKF 6205-SR2
JEM (39 mm)

Rolling element bearing fault detection using
PPCA and spectral kurtosis (Xiang et al., 2015)
/ Measurement

Fault diagnostics / PPCA,
SK

Test rig (Spectra Quest) / ER-12
K (33.48 mm)

Fault diagnosis of ball bearings using Syn-
chrosqueezed wavelet transforms and SVM
(Wen et al., 2015b) / PHM 2015

Fault diagnostics / DWT,
SVM

Test rig (CWRU) / SKF 6203-2RS
JEM (28.5 mm), SKF 6205-SR2
JEM (39 mm)

Application of higher order spectral features and
support vector machines for bearing faults clas-
sification (Saidi et al., 2015) / ISA Trans.

Fault diagnostics / Bi-

spectrum, SVM

Testrig (CWRU) / SKF 6205-SR2
JEM (39 mm)

Singular spectrum analysis and continuous hid-
den Markov model for rolling element bearing
fault diagnosis (Liu et al., 2015) / JVC

Fault diagnostics / SSA, Bi-
spectrum, CHMM

Test rig (CWRU), Test rig
(HBRC) / SKF 6205-SR2 JEM
(39 mm), 6307 (58.5 mm)

A novel bearing fault diagnosis model inte-
grated permutation entropy, ensemble empiri-
cal mode decomposition and optimized SVM
(Zhang et al., 2015) / Measurement

Fault diagnostics / PE, IMF,
EEMD, SVM

Testrig (CWRU) / SKF 6205-SR2
JEM (39 mm)

Fault size estimation in the outer race of ball
bearing using discrete wavelet transform of the
vibration signal (Khanam et al., 2014) / Procedia
Engineering

DWT

Test rig / SKF BB1B420204 (32.9
mm)

Fault Diagnosis of Bearing Based on KPCA and
KNN Method (Wang et al., 2014b) / AMR

Fault diagnostics / KPCA,
k-NN

Test rig (CWRU) / SKF 6205-S5R2
JEM (39 mm)

Classification of fault location and performance
degradation of a roller bearing (Zhang et al.,
2013) / Measurement

Fault diagnostics / KPCA,
PSO-SVM, EEMD

Testrig (CWRU) / SKF 6205-SR2
JEM (39 mm)

Quantitative diagnosis of a spall-like fault of
a rolling element bearing by empirical mode
decomposition and the approximate entropy
method (Zhao et al., 2013) / MSSP

Fault size estimation /
ApEn, EMD

Testrig (CWRU) / SKF 6205-SR2
JEM (39 mm)

Automatic bearing fault diagnosis based on one-
class v-SVM (Fernandez-Francos et al., 2013) /
CIE

Fault diagnostics / SVM

Test rig (CWRU), Test rig (IMS)
/ SKF 6203-2RS JEM (28.5 mm),
SKF 6205-SR2 JEM (39 mm),
REXNORD ZA-2115 (71.5 mm)

Bearing degradation process prediction based on
the PCA and optimized LS-SVM model (Dong
and Luo, 2013) / Measurement

Fault prognostics / PCA,
PSO-SVM

Test rig (IMS) / REXNORD ZA-
2115 (71.5 mm)

Classification of fault location and the degree
of performance degradation of a rolling bearing
based on an improved hyper-sphere-structured
multi-class support vector machine (Wang et al.,
2012) / MSSP

Fault diagnostics / EMD,
HSS-SVM

Test rig (CWRU) / SKF 6205-SR2
JEM (39 mm)

A Support Vector Machine approach based on
physical model training for rolling element bear-
ing fault detection in industrial environments
(Gryllias and Antoniadis, 2012) / EAAI

Fault diagnostics / SVM

Test rig (CWRU), Industrial
pump / SKF 6205-SR2 JEM (39
mm), SKF 22205 EK (41.2 mm)

Signal complexity analysis for fault diagnosis of
rolling element bearings based on matching pur-
suit (Tang et al., 2011) / JVC

Fault diagnostics / Com-
plexity spectrum entropy,
Matching pursuit

Test rig / GB203 (28.5 mm)
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Rolling element bearing fault diagnosis using
autocorrelation and continuous wavelet trans-
form (Kankar et al., 2011) / JVC

Fault diagnostics / Autocor-
relation, CWT

Test rig / Ball bearing (25.88
mm)

Development of EBP-Artificial neural network
expert system for rolling element bearing
(Jayaswal et al., 2011) / JVC

Fault diagnostics / DWT,
ANN, Fuzzy rules

Test rig / SKF 1205EKTN9/C3
(33.3 mm)
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ABSTRACT

The detection of incipient faults as early as possible has great economic value in the monitoring of the rolling element bearings in industrial applications. In
the early stage, a local fault in the bearing element produces a series of weak impacts at a rate dependent on the bearing geometry. These impacts in turn
excite a special type of vibration that is, in principle, possible to detect using various condition monitoring methods. However, the analysis of vibration
measurements taken from a real industrial environment can be challenging because measurements are noisy and periodic phenomena from other external,
known and unknown sources may overlap the known behavior of interest, for example, in the spectral representation. In this paper, we present a flexible
simulator for advancing early bearing fault detection. In the simulator, the vibration signals are generated by parametric models of the impulse responses for
different vibrating components, with adjustable noise and jitter effects included. The possibility to adjust models and parameters during the simulation allows
a more realistic exploration of changes, for example, in different operating conditions. This includes the generation of non-stationary components into the
vibration signals, which are not suitable per se for frequency domain methods. It is possible to load measured vibration signals to verify the simulation model.
The main purpose of the versatile simulation environment is to enable the rigorous testing of analysis tools consisting of digital filters, frequency domain
methods (FFT, HFRT), time-frequency methods (STET, WT) etc. In turn, improved knowledge on the behavior of analysis methods and approaches can be
reflected back to the simulation when searching the limits of the early fault detection methods.

Keywords: Rolling element bearings, Early fault detection, Vibration measurements, Spectral analysis, Simulation model

1. Introduction task. In this paper, we present a vibration signal simulation ap-

) . . . ) proach to improve bearing fault detection analysis.
Rolling element bearings (REBs) are widely used in various

machines, motors, wheels, cooling fans etc., to support rotating In the simulator, the vibration signals are generated by paramet-
shafts. Failures of bearings are the most common reason for ma- ric models of the impulse responses for different vibrating compo-
chine breakdowns. The most common cause of failure is fatigue nents, with adjustable noise and jitter effects included. The possi-
in REBs [1]. In terms of condition monitoring and system mainte- bility to adjust models and parameters during the simulation allows

nance, research on REB vibrations is essential. An ideal method is a more realistic exploration of changes, for example, in different
a condition-based maintenance that is able to detect incipient faults operating conditions. This includes the generation of non-station-

so early that it is possible to perform the maintenance actions be- ary components into the vibration signals, which are not suitable
fore the bearing fails. Compared to the planned maintenance ac- per se for frequency domain methods. As known, the Fourier trans-
tions, unplanned stoppages are very expensive. formation does not work very well on vibration signals that contain

short and high-frequency pulses, which very important in nonsta-
tionary signals [4]. In the time-frequency domain methods, the sig-
nal decomposition is performed to split the spectrum into sequen-
tial sub-spectral components that are processed individually. The
sinusoidal and phase information of local sections of the signal are
determined by Short-Time Fourier transform (STFT). Weakness
of'the STFT is that the constant window size does not provide suf-
ficient frequency and time resolution at the same time [5]. Lately,
the wavelet transform has been applied for signal demodulation
and optimal band-pass filter design [6]. Wavelet transform has
been successfully applied to bearing fault detection [7][8]. How-

The main motivation for this work is that the weak bearing fault ever, there is no standard method to select the wavelet function for
signatures experience interference from noise from different exter- different purposes, so that the wavelets do not have a standard sta-
nal sources and internal mechanical components, which makes  tus in fault diagnostics [9]. Breakdown points, trends and discon-
bearing fault detection from real measurements a very challenging

Generally, REB defects are classified into distributed and local-
ized effects. The distributed effects are surface roughness, wavi-
ness, misaligned races, and off-size rolling elements. The localized
defects include cracks, pits, and spalls caused by fatigue on the
rolling surfaces [2]. The resonances of the bearing parts and hous-
ing structure emerge when a rolling element strikes a localized de-
fect; an exponentially decaying ringing is generated [2] [3]. These
vibrations in the 2 — 20 kHz range, are commonly measured by
acceleration sensors. Ultrasound and acoustic emission measure-
ments cover considerably higher frequencies.
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tinuities in higher derivatives are detectable by using wavelet anal-
ysis [10]. Verma and Sreejith introduced a Morlet wavelet based
filtering method that efficiently detects weak bearing fault im-
pulses even the signal to noise ratio is very low [11]. In the simu-
lator, the disturbance pulses can be simulated by using wavelet fil-
ter constructions. It is possible to load measured vibration signals
to verify the simulation model. The simulator is being developed
with LabVIEW™ and MATLAB software products.

The nature of the vibrations generated by the REBs, a paramet-
ric model of the impulse response and the information about the
disturbances, are explained in the second chapter (theoretical back-
ground). The flexible simulator and its demonstration in two dif-
ferent scenarios of the vibration signal simulation and analysis are
introduced in the third chapter (simulator). Conclusions and ideas
for future development are summarized in the fourth chapter.

2. Theoretical background

Vibrations generated by REBs are the vibration of the raceway
ring, the vibration of the cage, rolling element passage vibration,
vibration due to waviness, vibration due to flaw, vibration due to
contamination, and seal vibration [12]. Other than flaw vibrations,
the presented vibrations of the REBs can be considered normal.
Bearing fault signals have a deterministic part and a stochastic
part. The stochastic part is quasi-cyclostationary and very often
small because of the low-pass filtering effect of random jitter,
combined with the band-pass filtering effect of resonances that are
excited [13]. In some cases, the REB signals are modeled as cy-
clostationary [14].

The local fault in the bearing element produces a series of weak
impacts at a rate dependent on the bearing geometry. These im-
pulses occur when the defective part hits other elements of the
bearing. If the shaft is rotating at a constant speed, these impacts
will occur periodically with a certain frequency, which can be cal-
culated based on the location of the fault, the bearing geometry,
and the shaft speed. These frequencies are known as the bearing
fault frequencies and can be determined for a fault on: the outer
race (Ball Pass Frequency Outer, BPFO), the inner race (Ball Pass
Frequency Inner, BPFI), the ball or roller, (Ball Spin Frequency,
BSF), and the gage (Fundamental Train Frequency, FTF) [14]. A
ratio of the length to width of the localized defects has a remarka-
ble effect on the generated pulse waveform [15].

The dynamic behavior and features of the rolling element bear-
ings are studied using different dynamic simulation models. Jan-
tunen et al. [16] classified dynamic simulation models into the fol-
lowing categories: bearing contact, clearances, EHL contact, dis-
tributed defect, and localised defect. Further, the dynamic simula-
tion of the localised defects is divided into geometrical defect,
force defect, and defect function.

In the simulations, we need a model for the impulses generated
by the defects that is simple to parametrize and at the same time
realistic enough. Randall et al. [1] provided a useful analytical
equation for a single degree of freedom impulse response:
rett = pe(3) sin(w, t), (D)
where o, is the frequency of the excited resonance and 7 is the
damping time constant(s).

Liang and Faghidi evaluated the signal-to-interference ratio
when the fault-bearing signal contains multiple interferences.
They present a vibration signal model [17] of the form:

r(t) = x() + v(t) = de Pt cos(w,t + @) + Yy Lycos(wyt),

2
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where A is the amplitude of the fault signal, B is the structural
damping characteristic, L, represents the frequency of the k™ in-
terference component, x(t) is the vibration signal containing fault
generated impulse, and v(t) contains multiple vibration interfer-
ences. Instead of the constant amplitude in equations 1 and 2, we
have added the possibility to modulate the amplitude based on ro-
tation speed:

A-tt= AO + Al Sin(wrotariont)a

3)

where @, o¢arion 18 the rotation frequency. The modulation term is
added into bearing model equation (eq.2):

r(t) = x(t) + v(t) = Atte Pt cos(w,t + @) + Ny Lycos(wyt). 4)

The occurrences of the impacts in faulty bearing never repro-
duce exactly at the same position due to the slip of the rolling ele-
ments [13]. This random variation is modeled with jitter. Jitter, a
measure of uncertainty, is the deviation from the true periodicity
of a presumed periodic signal. Jitter can be deterministic, random,
or both. Randal et al. presented a model for jitter [14] where the
random variable AT; is defined as the difference:

ATy =Ty — Ty,

®)
where Ty is the i time of occurrence.

The possibility to adjust models and parameters during the sim-
ulation allows a more realistic exploration of changes, for exam-
ple, in different operating conditions. This includes the generation
of non-stationary components into the vibration signals, which are
not suitable per se for frequency domain methods. Certain compo-
nents in the rotary machinery, such as rotary blades, frequency
converter etc., create vibrations that disturb the analysis. The dis-
turbances can be modeled with a sinusoidal pulse, a parametric
pulse model, or a wavelet in the simulator.

Unlike the Short Time Fourier Transform (SFFT), the wave-
let transform provides multi-scale analysis. By using dilation
and translation, the wavelet transform can extract time-fre-
quency features of a signal efficiently [6]. The frequency res-
olution increases and the time resolution decreases when the
wavelet transform is done at sequentially wide scales. Like
Fourier transform the wavelet-transform concludes the basis-
function called wavelet. The wavelet family is derived from the
mother wavelet by scaling and translation:
Yan® = 5 (7). (6)
where v is the mother wavelet, a is the scaling (dilation) parame-
ter, and b if the translation parameter. The parameter a controls the
window length and effects the frequency resolution; large a for
better frequency resolution. As one weakness, the wavelet trans-
form does not maintain the absolute phase of the signal compo-
nents. A wavelet is orthogonal when the corresponding wavelet
transform is orthogonal. When the wavelet transform is invertible
the corresponding wavelet is biorthogonal (not necessarily orthog-
onal). The number of degrees of freedom increases when biorthog-
onal wavelets are used. For biorthogonal wavelets there are two
scaling functions and the scaling sequences may differ. Designing
biorthogonal wavelets allows more degrees of freedom than or-
thogonal wavelets. More flexible wavelets than basic wavelet ba-
sis are spline wavelets that are constructed with a spline function.
Spline wavelets are cathegorized to interpolatory spline wavelets,
B-spline wavelets, cardinal B-spline wavelets, and Battle-Lemarie
wavelets. The polynomial and discrete splines are a source for a
family of filters, which generate biorthogonal wavelets [18].
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The construction of wavelet filter banks concludes the analysis
and synthesis functions that perform composition of the original
spectrum using sub-spectral components. The wavelet transform
is orthogonal when the analysis and the synthesis function sets are
the same. For the biorthogonal transform, these function sets are
different. A common technique for computing wavelet transform
is to use two-channel perfect reconstruction (PR) filter banks: low
pass filter Gy(z) and high pass filter G,(z) form an analysis filter
bank and low pass filter Hy(z) and high pass filter H,(z) form a
synthesis filter bank (Figure 1).

X(z)

@Yn(l) Y'o(z)

Figure 1. Two-channel filter-bank

X(z)

The signal X(z) is first filtered by a filter bank constituted by
Go(z) and Gy(z). Then Gy(z) and G,(z) are down-sampled by two
(2) to obtain Y(z) and Y(z). The desired modifications are done
for Y(z) and Y (z) to process filtering. Filter bank constructed by
Hy(z) and H,(z) is applied for up-sampled Yo(z) and Y,(z). The
wavelet transformations are special cases of two-channel PR filter
banks. Consequently, two-channel PR filter banks do not neces-
sary correspond to the wavelet transform. Biorthogonal filter
banks are defined by the equation(s):

Y. giln = 2klh[n] = (k) and ¥, g;[n — 2kIhy[n] =0, i=1vk (7)
where g and h are finite impulse response (FIR) digital filters (low
or high-pass depending of i), § is the scaling function. For the or-
thogonal filter bank (special case of biorthogonal), simply set h as

g.
3. Simulator

Understanding the nature of the disturbances in complicated vi-
bration signal analysis scenarios will lead to accurate conclusions
when selecting and developing vibration signal analysis methods.
The flexible simulator offers an interactive tool for the vibration
signal simulation and analysis for hard-to-analyze scenarios. The
main parts of the simulator are the pulse generator, the vibration
signal generator and, the vibration signal analysis module. The
simulation and analysis process is described in Figure 2. The pulse
generator produces a (shock) pulse based on the parametric model
of the impulse response. The model parameters are adjustable. In
addition, the white noise can be added to the pulse signal. A real
measured pulse can be loaded and plotted into the same window
with the simulated signal. This makes it possible to adjust the sim-
ulated pulse to match with the true pulse. The vibration signal gen-
erator produces the simulated vibration signal. The simulated
shock pulses are added to the base signal, based on the adjustable
frequency and the first pulse start position. The length of the base
signal is given and white noise is added to it. There is often a slight
misalignment on the shaft and the rolling element bearings. To
simulate this, a sinusoidal low-frequency component is added to
the base signal. Signal pre-processing is done with digital filters
such as linear continuous-time filter (elliptic), finite impulse re-
sponse filter (FIR), and wavelet filter. Standard statistical
measures, including the root mean square (RMS), peak-to-peak
value, crest factor, and kurtosis, are calculated in the analysis mod-
ule. Mainly frequency domain methods (FFT, HFRT) and time-
frequency methods (STFT, WT) are used in the analysis of the vi-

19

brations. In addition, with the simulator, it is easy to compare al-
gorithms developed earlier [19] with the newer development
(Early SPD) [20]. Improved understanding on the behaviour of the
analysis methods and approaches can be reflected back to the sim-
ulation, for example, when searching the limitations of the early

VIERATION
SIGNAL
GEWERATOR

FAULT PULSES

PULSE
GENERATOR

OISTURBANCES

Figure 2. Process flow of the flexible simulator
fault detection methods.

The disturbance pulse can be simulated by using wavelet filter
constructions. The type of wavelet can be orthogonal or bi-orthog-
onal for the discrete wavelet analysis and reconstruction. A cus-
tomized wavelet for the discrete wavelet analysis and reconstruc-
tion is designed with the following parameters: product of low pass
(P¢= Gy*H,) and factorization (type of Gy). Py is the product of the
low pass analysis filter G, and the low pass synthesis filter H,.
Po(z) satisfies the equation [21]:

0 noddandn #1
poln] = 2 n=1 (8)
arbitrary n even

Wavelet and filter bank configuration according to the National
Instrument’s Wavelet and Filter bank design toolkit manual [21]
is presented next. The process is divided into the following steps:

1. Design Py(z) = Go(z)Hy(z) with Py(z)-Po(-z) = 27"
2. Factorize Py(z) into Gy(z) and H(z)
3. Compute G(-z) = H,(z) and H;(z) = -Gy(-z)

The product of the low pass (P¢=Gy*H,) can be max flat, posi-
tive equiripple, or general equiripple (biorthogonal). Factorization
(type of Gy) contains configuration options for filter type, and ze-
ros at pi (Gy). Po(z), Go(z) and Ho(z) are real-valued finite impulse
response (FIR) filters. The zeros of these filters are mirror-sym-
metric about the x-axis in the z-plane. The corresponding wavelet
is smoother if there are more zeros at pi. The filter type factorizes
Py to Gy and H,. The filter type is configured with the following
options:

e  Arbitrary. When the parameter is set, there exists no
restriction on the placement of zeros.

e  Minimum phase. The parameter defines which zeros
of Gy are located inside the unit circle.

e Linear phase. The parameter defines whether one zero
belongs to Go(Hy)

e  B-Spline. The parameter defines that except for some
zeros at pi, all the zeros of P, belong to H,,.

Selecting different values for Filter type puts different constraints
on the selections of zeros. For example, if you select Linear Phase
for Filter type and select a zero for one filter, the filter automati-
cally contains the reciprocal of the zero. Figure 3 shows the wave-
let filter constructions parameters in the user interface [21].
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4. Results

The goal of the demonstration of the simulator is to show how
the vibrations generated by machine components other than rolling
element bearings may create false alarms on defects. Two case
studies are introduced. The first simulated signal, as depicted on
the top of Figure 4, contains bearing fault pulses, sinusoidal dis-
turbance, and noise. The fault pulse is modeled using equation 4
with the resonant frequency of 2500 Hz. The pulse repetition fre-
quency of the fault, i.e., bearing fault frequency is 10.2 Hz and
frequency of sinusoidal disturbance is 7.0 Hz. In the second case,
we model disturbances generated by blade and electric motors us-
ing pulses with resonant frequencies of 171 Hz (blade) and 4500
Hz (electric motor). The pulse repetition frequencies of the blade
and motor disturbance are 5.0 Hz and 12.0 Hz, respectively. There
are no fault pulses in the second case; the rolling element bearing
is healthy. In the third case, the disturbance (pump) is modeled
using biorthogonal wavelet filter construction with b-spline factor-
ization. The pulse repetition frequency of the pump is 10 Hz. There
is the same bearing fault pulse (10.2 Hz) in the third as it was in
the first case. The simulated vibration signals of the presented
cases are shown in the Figure 4; case 1 on the top, case 2 in the
middle, and case 3 on the bottom.

Wavelet Type Wavelet and Filter Banks
Crthogonal @ Bierthogenal 08 Analysis scaling AMM wavelet
Product of lowpass (P0=G0*HO)
e 910
@ Maxflat Positive Equiripple General Equiripple 0123456 0 2 4 6 #%f
Ansl 55 (G0 ; s 1
Zero pas atz [PO) Y e zhepeom )
[C
! ) e
Factorization (Type of GO) |J. 3 o
D ‘ 234356 0 012
Filter type Syrdhesis scaing S mwwvem

Arbitrary Linear Phase @ B-Spline

E *
I] 5 for2 u 246 83
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Figure 3. Disturbance modeling using wavelet filter banks

Frequency domain methods, spectrum and envelope spectrum
are used in the vibration signal analysis. Like in common envelope
analysis, we use the high-pass filter (1500 Hz cut-off-frequency)
before calculating the envelope signal and the envelope spectrum.
The top most images in Figure 5 incorporate spectra of the first
case. The sinusoidal disturbance frequency (1000 Hz) and resonant
area exited by fault pulses (2500 Hz) appear in the left hand side.
The envelope spectrum reveals clearly the fault frequencies of the
simulated vibration signal of a faulty bearing. The frequency axis
of the envelope spectrum is normalized according to the rotation
speed.

The images in the middle in Figure 5 incorporate the spectra of
the second case. The resonant frequencies of the disturbing com-
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ponents are seen in the spectrum. In addition, there are some leak-
ages to lower frequencies. Harmonics of blade- and motor-gener-
ated frequencies appear in the spectrum of the enveloped signal
(right hand side). Despite the usage of the high-pass filter (1500
Hz), attenuation on the amplitudes of the blade frequency and its
harmonics is small in the envelope spectrum. The second har-
monic of the blade frequency (10 RPM order) is very close to the
bearing fault frequency (10.2 RPM order) that may lead to a false
alarm.

Simulated vibration signal
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Figure 4. Simulated vibration signals of the case study

The images in the bottom of figure 5 shows spectra of the case
3. The resonant frequencies exited by fault pulses (2500 Hz) and
by the disturbance component (pump) are seen in multiple fre-
quency ranges. The spectrum of the enveloped signal reveals the
repetition frequency of the pulses (10 RPM order). Since the bear-
ing fault frequency and the pulse repetition frequency of the dis-
turbance are the same, it is impossible to say whether there is a
bearing fault or not based on the envelope analysis. The results of
the case study are summarized in Table 1.
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Figure 5. Frequency analysis of the simulated vibration signals

Table 1. Summary of the case study

Pulse I Pulse 11 Analysis | Result
method
Case | Bearing fault pulse (eq. 4) Sinusoidal disturbance Envelope | The envelope spectrum reveals clearly the
| spectrum | fault frequencies of the simulated vibration
Resonant frequency 2500 Hz Pulse repetition 1000 Hz signal of a faulty bearing.
Pulse repetition 10.2 Hz
Case | Blade disturbance (eq. 4) Electric motor disturbance Envelope | The second harmonic of the blade fre-
I (eq. 4) spectrum | quency (10 RPM order) is very close to the
Resonant frequency 171 Hz Resonant frequency 4500 Hz bearing fault frequency (10.2 RPM order)
that lead to a false alarm.
Pulse repetition 5 Hz Pulse repetition 12 Hz at may feac o a false alatm
Case | Bearing fault pulse (eq. 4) Pump disturbance (eq. 7) Envelope | The bearing fault frequency and the dis-
I spectrum | turbance frequencies overlap each other. It
Resonant frequency 2500 Hz | Pulse repetition 10 Hz is impossible to say whether there is a fault
i 1 lysi 1
Pulse repetition 10.2 Hz or not‘.by using envelope analysis as only
analysis method.
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5. Discussion and conclusions

The developed flexible simulator offers a new approach to study
vibration signals that are complicated to analyze. The basic idea
was to simulate bearing fault pulses and disturbances as they ap-
pear in the measured signals. In a perfect simulation scenario, the
analysis results should be the same for the simulated and the meas-
ured signals. The simulator advances the analysis, especially in the
cases when there are disturbing non-stationary components in the
vibration signals that create false alarms.

The power of the simulator was demonstrated in the case study.
The results of the case study show how the vibrations of the other
known machine components disturb the analysis of the vibrations
produced by REB faults and the weakness of the used high-pass
filter on removing pulsating low-frequency disturbances from the
envelope spectrum. Disturbances simulation using complex wave-
let modeling is demonstrated with the simulator. With the flexible
simulator vibrations of different machinery scenarios can be easily
investigated. Further development of the simulator will concen-
trate on the modeling of disturbances in REB study and the devel-
opment of an advanced wavelet analysis module.
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ABSTRACT

In this paper, we study biorthogonal spline wavelet decomposition to extract fault features from vibration signals generated by rolling element bearings.
Common challenges in the analysis of vibration measurements taken from a real industrial environment is that non-stationary components, generated by
other machine components, disturb the analysis. Vibration signals generated by non-faulty and faulty rolling element bearings are studied. As known, the
Fourier transformation does not work very well on non-stationary signals because their spectral content changes over time. In the time-frequency domain
methods, signal decomposition is performed to split spectrum into sequential sub-spectral components that are processed individually. The weakness of the
short-time Fourier transform is that the constant window size does not provide sufficient frequency and time resolution at the same time. Lately, the wavelet
transform has been applied on signal demodulation and optimal band-pass filter design. More flexible than basic wavelet basis are spline wavelets that are
constructed with a spline function. Spline wavelets are linear combination of B-splines and they can be defined explicitly. Biorthogonal spline wavelets are
regular, compactly supported and have finite impulse response implementation. Computer simulated vibration signals and vibration signals acquired from a

real-world application are used in our study.
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1. Introduction

Rolling element bearing (REB) is one of the most common and
the most vulnerable component in machinery. Rolling element
bearings, that support rotating shafts, are often installed in
extremely hard conditions. A machine becomes inoperable when
arolling element bearing breaks down. Sudden breakdowns can be
very expensive. Consequently, detection of the bearing fault as
early as possible is very valuable.

Signal processing methods are continuously developed for
bearing fault detection. Signal processing methods focus to extract
characteristic features from vibration signals generated by REBs.
The decision-making based on these extracted features can be
considered as the second step in signal processing approaches [1].
Removal of the speed fluctuations, the smearing effect of signal
transfer path and the background noise are common challenges in
feature extraction from vibration signals [2].

The main motivation for this work is that the weak bearing fault
signatures experience interference from noise from different
external sources and internal mechanical components, which
makes bearing fault detection from real measurements a very

challenging task. De-noising (noise reduction) is the key technique
to reduce the effect of the disturbing components in the analysis.

Random signals are categorized as stationary and non-
stationary. Cyclostationary processes are non-stationary processes
whose statistics are periodically varying [3]. Vibration signals
generated by rolling element bearings can be modelled as pseudo-
cyclostationary [4]. These vibration signals contain short and high
frequency pulses that are difficult to identify by the Fourier
transform [5]. In the time-frequency domain methods, the signal
decomposition is performed to split the spectrum into sequential
sub-spectral components that are processed individually. The
sinusoidal and phase information of local sections of the signal are
determined by Short-Time Fourier transform (STFT). Weakness
of the STFT is that the constant window size does not provide
sufficient frequency and time resolution at the same time [6].

Lately, the wavelet transform has been used for signal
demodulation and optimal band-pass filter design [7]. The wavelet
transform has been successfully applied to bearing fault detection
[9, 10, 11, 12, 13]. Fault features extracted by wavelet transform
can be classified as wavelet coefficients based, wavelet energy
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based, singularity based, and wavelet function based [13].
However, there is no standard method to select the wavelet
function for different purposes, so that the wavelets do not have a
standard status in fault diagnostics [13]. Breakdown points, trends
and discontinuities in higher derivatives are detectable by using
wavelet analysis [14].

Verma and Sreejith introduced a Morlet wavelet based filtering
method that efficiently detects weak bearing fault impulses even if
the signal to noise ratio is very low [15]. Yumona et. al. used a
Morlet wavelet bank for denoising and obtained the resonance
band of interest from the wavelet kurtogram [16]. It has been
shown that the discrete wavelet transform (DWT) can be used to
detect single and multiple faults in the ball bearings [11]. Mori
et.al. used a trend of the wavelet coefficients maximum values,
acquired with the DWT analysis, to predict spalling of rolling
element bearings [20]. The wavelet packet transform has been
utilized often in the condition monitoring of the rolling element
bearings [17, 18, 19]. It has been noticed that the Wavelet packet
transform (WPTT) has better de-noising ability on non-stationary
signals because the frequency resolution of the DWT may not be
enough to extract important features from the decomposed part of
the signal [18]. The Haar wavelet transform has been applied to
transient detection [21]. Tse et. al. introduced exact wavelet
analysis that used genetic algorithm to generate an adaptive
daughter wavelet to match the inspected signal as exactly as
possible [22]. Frequency B-spline wavelets have been applied to
bearing fault detection by selecting the spline wavelet based on the
prior knowledge of the impulse responses [23].

2. Theoretical background

The wavelet transform enables multiresolution analysis with
dilated windows. In other words, the wavelet transform is a
constant relative bandwidth analysis [24]. By using dilation and
translation, the wavelet transform can extract time-frequency
features of a signal efficiently [ 15]. It is an excellent tool to analyze
non-stationary signals. The frequency resolution increases and the
time resolution decreases when the wavelet transform is done at
sequentially wide scales. Like Fourier transform the wavelet-
transform concludes the basis-function called mother wavelet.

The continuous wavelet transform (CWT) transforms signal to
a two-dimensional time-scale joint representation. The idea of the
CWT is to calculate continuously scalable function by moving this
function continuously over a signal. As result, the wavelet
coefficients are acquired. However, the bases of the scalable
functions become non-orthogonal that makes wavelet coefficients
redundant [25]. The definition of the CWT as the function of time
is:

T(a,b) = [, f(6) Yiom (Bt M
where v is the mother wavelet and * refers to complex
conjugation. Here, the transformation of mother wavelet reads as:

Yan® =29 (52)

- (a,b € R,a #0), 2)
where a is the scaling (dilation) parameter, and b if the translation
parameter. The parameter a controls the window length and effects

the frequency resolution; large a for better frequency resolution.

The time-scale joint representation of a discrete wavelet
transform (DWT) is a grid along the scale and time axes. The
discrete wavelet is a piecewise continuous function. The
discretization of the wavelet is done by sampling the time-scale
axis at discrete intervals. Usually dyadic sampling is used with a
geometric sequence of ratio two. The DWT as a function of time:

Yan® = =(5), 3)
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where the dilation term is 2! and translation term is 2.

As one weakness, the wavelet transform does not maintain the
absolute phase of the signal components. A wavelet is orthogonal
when the corresponding wavelet transform is orthogonal. When
the wavelet transform is invertible the corresponding wavelet is
biorthogonal (not necessarily orthogonal). The number of degrees
of freedom increases when biorthogonal wavelets are used. For
biorthogonal wavelets, there are two scaling functions whose
scaling sequences may differ. Designing biorthogonal wavelets
allows more degrees of freedom than orthogonal wavelets. The
semi-orthogonal wavelets were introduced when relaxation of the
intra-scale orthogonality constraint was founded [26]. Wavelets
are categorized into families based on their properties. Some of the
important properties of the wavelets are regularity, symmetry or
anti-symmetry, a number of vanishing moments and existence of
a scaling function. In practice, for example a greater number of
vanishing moments provide sharper frequency resolution.

More flexible wavelets compared to the basic forms are
obtained by using spline wavelets that are constructed with a spline
function. Spline wavelets are categorized to interpolatory spline
wavelets, B-spline wavelets, cardinal B-spline wavelets, and
Battle-Lemarie wavelets. The polynomial and discrete splines are
a source for a family of filters, which generate biorthogonal
wavelets [27]. The greatest benefits of using spline wavelets are
[28]:

e Polynomial spline bases have a simple and explicit
analytic form that is easy to manipulate; differentiation
and integration.

e The B-splines have compact support.

e Any degree of regularity is achieved by increasing the
order of the polynomial splines.

e  Polynomial splines are piecewise constant functions in
the simplest case.

A polynomial spline function of degree n is defined by a linear
combination of shifted B-splines [28]:
+0oo
gr () = X, cUOp™(x — k), 4)
where c(k) is the sequence of B-spline coefficients and f™ (x)is the
central B-spline of order n which definition is:

Br(x) = B BN (x), &)

where $°(x)is the characteristics function and * is the convolution
operator. B-spline is visualized in the Figure 1.

Figure 1B-spline of order 6 contains six polynomial pieces of order 5

The compactly supported B-spline wavelet of order m is
defined by the equation [29]:

Y () = a2 oy (1) NG+ DNSY 2x = ). (6)

When m is set to 1, the equation 6 defines the Haar wavelet [29]:

1,when0 <x <1/2
Yi(x) ={-1,when 1/2<x<1 (7)
0, otherwise .
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Biorthogonal spline wavelets are regular, compactly supported
and have FIR (finite impulse response) implementation. The
simplest B-spline biorthogonal wavelet is biorl.1 that contain
reconstruction and decomposing filters with one vanishing
moment each. Figure 2 shows decomposing (analysis) and
reconstructing (synthesis) filters of biorl.1.

Lowpass Analysis Filter Highpass Analysis Filter

05 05

[ 0
[} 1 2 a 0 1 2 3

Lowpass Synthesis Filter Highpass Synthesis Filter

1

05 1 05/

[ )
0 1 7 | 3 ) 1 2 3

Figure 2 Decomposing and reconstructing filters of biorl.1

When the number of vanishing moments are increased,
complex function can be represented with a sparser set of wavelet
coefficients.  Figure 3  incorporates decomposing and
reconstructing scaling filters of bior6.8.

Lowpass Analysis Filter Highpass Analysis Filter

] 5 10 15 20 0 5 10 15 20

Lowpass Synthesis Filter Highpass Synthesis Filter

1

Figure 3 Decomposing and reconstructing filters of bior6.8

Biorthogonal spline wavelet filtering is applied to de-noising of
the vibration signals in the experimental part of this work. The
construction of wavelet filter banks concludes the analysis and
synthesis functions that perform composition of the original
spectrum using sub-spectral components.

3. Experimental part and results

Biorthogonal spline wavelet based filtering for denoising of
vibration signals is presented in this case study. Simulated and
real-world  measured vibration signals are analyzed.
Decomposition of vibration signals was done with biorthogonal
spline wavelets: biorl.1, bior1.3, biorl.5, bior2.2, bior2.4, bior2.6,
bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5,
and bior6.8. These common wavelets provide versatile set of filters
for de-noising. Reconstruction of vibration signal is done
separately for each decomposition level. Simultaneously other
levels are filtered by using soft thresholding. Hilbert transform
based envelope spectrum is calculated for reconstructed signals.
Finally, peak detection based on local maxima and thresholding is
applied for fault frequency peak detection.

The process of the experimental work is the following:

»  Vibration signal preparation
e Simulation of background noise, disturbing pulses
and bearing fault pulses
e Import measured vibration signal data

» The CWT study of the vibration signal using biorthogonal
spline wavelets

» Vibration signal decomposition using biorthogonal spline
wavelets

» Envelope analysis of the original signal and the wavelet
filtered signal

»  Fault frequency peaks detection from the envelope spectrum

The first case incorporates the analysis of the simulated
vibration signal. The disturbance pulse is modeled using a wavelet
function and it’s repetition frequency is 5.0 Hz. Addition to, white
noise is added to signal by signal to noise ratio of 5.0. The top most
image in Figure 4 incorporate the vibration signal of the first case.
The CWT is performed on the vibration signal by using
biorthogonal spline wavelet (bior1.3). The bottom image in Figure
4 show the scaleogram of the signal. The envelope spectrum of the
simulated signal shows the assumed disturbance frequency (Figure
5). The envelope spectrum of the raw simulated signal and the
wavelet filtered signal (biorl.3) are plotted blue and brown colors
respectively.

Time [¢]

1

Figure 4 Case 1: The CWT analysis (biorl.3)
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Figure 5 Case 1: Envelope spectrum

In the second case the vibration signal model presented by
Kansanaho et.al. is applied in the simulation [30]. The resonant
frequency of the bearing fault pulse is 500 Hz and the bearing fault
frequency is 11.0 Hz. The same disturbance pulse with repetition
frequency of 5.0 Hz as in the first case, is simulated in the second
case. Figures 6 and 7 include different frequency bands of the
scaleograph that stand out the modelled pulses. Figure 8 show the
envelope spectra of the raw simulated signal (blue) and the wavelet
filtered signal (biorl.3, brown). The envelope spectrum of the
simulated vibration signal includes high amplitudes of disturbance
pulse and it’s harmonics (5 Hz, 10 Hz, 15 Hz). The wavelet-
filtered signal does not contain the low frequency disturbance. The
bearing fault frequency and its harmonics are clearly seen (11 Hz,
22 Hz, 33 Hz).
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Figure 8 Case 2: Envelope spectra of the simulated and the
filtered signal

Case 3 consists of analysis of vibration signals acquired from a
real-world application. The first sample includes a clear inner race
bearing fault. Biorthogonal spline wavelets bior3.5 and bior6.8,
emerged as the most appropriate filters to detect the characteristic
bearing fault frequencies from the measured signal. Figure 9
shows the CWT analysis of decomposition of the frequency band
(approximately 2000 Hz). Envelope spectra of the high-pass
filtered signal (1000 Hz) and the wavelet filtered signal show high
intensity bearing fault frequency peaks in Figure 10. One of the
shock pulses produced by the bearing fault is zoomed in Figure 11.
Note that Sawalhi and Randall observed a low frequency step
response before a broader impulse response in the acceleration
signals and used this particular information for spall size
estimation [31]. In our data, there exists no similar step response
before the impulse response.

Figure 12 introduces a vibration signal that does not contain a
bearing fault. The CWT analysis by using bior3.5 and bior6.8
reveals resonating frequencies between 200 Hz and 400 Hz. These
impulses are indigenous from different surrounding components.
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Figure 9 Case 3: The CWT analysis, a measured signal with
bearing fault
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Figure 10 Case 3: Envelope spectra of the high-pass filtered
and the wavelet filtered signal (BPFI fault)
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Figure 11 Case 3: Individual bearing fault pulse zoomed in
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Figure 12 Case 3: Measured signal, no bearing fault

Lastly, a measured vibration signal with weak bearing fault
signature is analyzed. The bearing fault is at early stage. The CWT
analysis (Figure 13) with bior3.5 and bior6.8 reveal the bearing
fault pulses with approximate a resonant frequency of 2000 Hz.
Characteristic frequency of inner race fault (BPFI) and it’s
harmonics appear clearly in the envelope spectrum (Figure 14);
plotted with brown. For comparison the envelope spectrum of the
high-pass filtered signal (1000 Hz), plotted with black color, is
included in the Figure 14. An individual shock pulse is more
fragmented than in the previous signal.
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Figure 14 Case 3: Envelope spectra of the high-pass filtered
and the wavelet filtered signal (BPFI fault)
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Figure 15 Case 3: Invidual bearing fault pulse zoomed in

We presented a set of case studies with biorthogonal spline
wavelet based identification of bearing faults. It was shown that
there exists a (not always the same) biorthogonal spline wavelet,
which can be used to process the vibration signal.

4. Conclusions and discussion

Biorthogonal spline wavelet decomposition is an efficient
method to extract weak bearing fault signatures from vibration
signals. Non-stationary components of the vibration signal can be
extracted and, if necessary, they can be filtered. It has been
remarked earlier that Hilbert transform together with the wavelet
transform wherein Morlet wavelet is used as mother wavelet, do
not successfully address how to enhance the weak signature from
a noisy signal and how to detect early stage defects [8]. However,
by using our approach fault frequencies can be detected in early
stage in the presented case study. The decomposition was done by
using 14 different biorthogonal wavelets with increasing
complexity. Biorthogonal wavelets bior3.5 and bior6.8 proved to
be the best for fault signature extraction when the measured
vibration signals were analyzed. There exists no unified method to
select the wavelet function for different purposes, so this part of
the proposed approach needs manual elaboration. The
implementation to fast algorithm is possible with efficient

implementations available. Previously developed flexible
simulator offered a new way to study complicated vibration signals
[31]. The simulator incorporates generation of vibration signals
and analysis of them and then the reflection back to parameters of
the simulation model. Moreover, the flexible simulation of the
vibration signals is a great tool when developing and testing
denoising filters.
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Abstract. New approach to identify different lifetime stages of rolling el-
ement bearings, to improve early bearing fault detection, is presented. We
extract characteristic features from vibration signals generated by rolling
element bearings. This data is first pre-labelled with an unsupervised
clustering method. Then, supervised methods are used to improve the la-
belling. Moreover, we assess feature importance with each classifier. From
the practical point of view, the classifiers are compared on how early emer-
gence of a bearing fault is being suggested. The results show that all of
the classifiers are usable for bearing fault detection and the importance of
the features was consistent.

1 Introduction

In general terms, rolling-element bearings (REBs) are common elements in vari-
ous rotating machines and the failure of a bearing is a common cause of machine
breakdowns. Economical and human losses due to an unexpected failure of a
critical bearing can be extensive [1]. They can be prevented and significantly
reduced by applying a proper maintenance strategy [2]. Vibration measurements
are the most widely used method for detection and diagnosis of bearing faults
[3]. Signal processing methods are continuously developed for bearing fault de-
tection. These methods focus to extract characteristic features from vibration
signals.

Wear, a measure of condition, accumulates over time and the cumulative
wear is measured at chosen times in the machine condition monitoring systems
[4]. Presentation of the wear evolution process as a time series describes the wear
interaction and evolution at different lifetime stages. El-Thalji et al. introduced
a five-stage descriptive model of wear evolution including: running-in, steady-
state, defect initiation, defect propagation, and damage growth [5]. The main
period of interest is between the steady state and the defect initiation and the
propagation stages. Hence, in general we try to identify the time-instance of the
occurrence of such a concept drift [6].

In doing so, the feature data is pre-labelled with an unsupervised method for
a preliminary identification of the defect initiation. A similar time-series cluster-
ing approach was also used in[7]. Then, three popular supervised classification
techniques [8], also central for the determination of concept drift [6], are applied
and tested to sharpen the unsupervised result. Note that recently a combination
of unsupervised fuzzy clustering and supervised learning to improve a machine

*The work supported by the Academy of Finland from grants 311877 and 315550.



learning method referred as minimum learning machine was proposed in [9]. Our
study confirms that the proposed novel, hybrid combination of methods is useful,
real-time applicable, and reliable for early bearing fault detection.

2 Methodological Background

As described above, condition monitoring and preventive maintenance are based
on proper processing of measurement data [10, 2]. We describe next the basics
of those methods that will be applied as part of the proposed approach.

2.1 Unsupervised learning

Fuzzy clustering algorithms, especially the fuzzy c-means (FCM) which was orig-
inally developed by Ruspini [11], generalize the k-means by allowing data points
to belong to multiple clusters. This relation is represented with a membership
function. Such an approach is appealing especially in the condition monitoring
setting, where we have no fixed change-points but a gradual evolution of differ-
ent lifetime stages [5]. The FCM algorithm was further developed by Dunn and
Bezdek [12, 13].

We use FCM clustering to identify the different REB lifetime-stages. The
number of centroids corresponds to number different life-time stages. Our tech-
niques are different but the basic idea is similar to [7]. Transition states between
lifecycle stages are not characterized by sudden changes in the characteristic
features of vibration signals. Consequently, FCM clustering produces overlap-
ping clusters. Yiakopoulos et al. introduced a k-means clustering approach for
the diagnosis of the bearing faults [14]. They used a set of features based on
vibration energies in the frequency domain and statistical time-domain indices
[14].

2.2 Supervised learning

In this experimental study, we examine different supervised classification meth-
ods, namely K-nearest-neighbors (KNN), Naive Bayes (NB), and Support Vec-
tor Machine (SVM), in terms of how well they are able to generalize the life-
time stage labelling from characteristic features of vibration signals. Previously,
performance of various supervised classifiers (including the techniques here) on
acoustic emission measurements of REBs were compated in [8]. The KNN clas-
sifier was found as the best suited there.

The K-nearest neighbor classification rule was originally introduced by Cover
and Hart [15]. The KNN rule is applicable on data that is in the metric space
and it does not make assumptions on the distribution of data. Support vector
machine (SVM) is a supervised machine learning algorithm that can be used for
both classification and regression problems. General review of the use of SVM
in condition monitoring and fault diagnostics was given in [16]. The naive Bayes
(NB) classifier is a probabilistic classifier that is based on the Bayes theorem.



The NB classifier considers prior probability of the predicted class when the
likelihood of that class is calculated [17].

Quality of the classifiers was assessed using ten-fold cross-validation with
misclassification in percentages (MCP) as error measure. We used Distribution
Optimally Balanced Stratified Cross Validation (10-DOB-SCV), which tries to
keep data distribution as similar as possible between the training and test data by
minimizing the covariate shift [18, 19]. Analysis of feature saliency (importance)
was carried out with each classifier, to identify the most informative features.
It was estimated using backward elimination of individual features one-by-one
[20, 21]. All MCP errors {e;}"; are sorted to the descend order in order to
identify the ranking of features, where n is the number of features. Moreover,
relative importance of each feature in percentages, MCP order, is estimated
simply by taking 100%.

3 Experimental results

Vibration data were generated by the NSF I/UCR Center for Intelligent Main-
tenance Systems (IMS) with support from Rexnord Corp. in Milwaukee, WI
[22]. The vibration data was collected from the IMS bearing test rig. Total of
four bearings (Rexnord ZA-2115) were installed on a shaft. All the tests were
”run-to-a-failure” tests. We use vibration signals from two test runs. The first
case includes an inner race fault in the bearing. The second case includes an
outer race fault in the bearing. The sampling rate of the vibration measurements
was 20 kHz and the measurements were recorded every ten minutes. The total
number of vibration measurements were 2156 and 4448 in these two datasets.

Commonly used statistical time-domain degradation features are used: 1.Root
mean square 2.Crest factor, 3.Shape factor, 4.Impulse factor, 5.Mean frequency,
6.Skewness, 7.Kurtosis and 8. Entropy [23, 24]. The ninth (9.) feature, which is
the only frequency-domain feature, refers to the amplitude of the characteristic
bearing fault frequency in envelope spectrum. Later in the results, the features
are referred to by order number.

3.1 Unsupervised clustering

FCM clustering is performed with four centroids for the unsupervised vibration
features data. The moving median of 50 samples is used to smoothen the feature
data before the fuzzy c-means. Length of the median window is c. 8.3 hours
that gives good resolution for life-time stage identification. Vibration data covers
almost the entire lifetime of the investigated bearings. Figure 1 presents the FCM
clustering results for both cases. The classification indicator is a floating point
value between zero and one. The first indication of a bearing fault is seen as an
increment in the indicator values of the first class (1) in both cases. This change
point is interpreted as the beginning of the defect initiation stage (the first black
dotted line). When the defect initiation stage shifts to the propagation stage,
changes are seen in the second class (2). The assumed beginning of the damage
growth stage begins when the indicator value of the third class (3) increases.



The defect initiation, the defect propagation and the damage growth stages are
clearly separated by fuzzy c-means clustering.
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Fig. 1: Lifetime stage identification using c-means fuzzy clustering (Case 1 on
the left side, Case 2 on the right side)

3.2 Supervised classification

The evaluation of the classifiers is done for the merged data of both cases, con-
taining 4481 feature data points. Moreover, results from the unsupervised pro-
cessing were used to introduce binary labelling of the time-series, where the label
changes corresponded to the unsupervised identification of the time instances for
the emergence of the defect initiation stage. The feature data split by 10-DOB-
SCV and the bearing fault detection is done for the partitioned data. Hence,
the start time of the defect initiation state was set as a zero point to compare
how early different classifiers detect the bearing fault.

The quantified results of the evaluation of the classifiers and the bearing fault
detection estimations are listed in Table 1. First, the optimal number of nearest
neighbors (k) for the KNN classifier is estimated by using 10-DOB-SCV, i.e., by
seeking the minimal CV-error. As a result k=5 was fixed. In each experiment,
the CV-errors were calculated separately for all classifiers. All the calculations
were repeated for 15 times. Average of the CV-errors for the KNN, SVM and NB
classifiers are roughly equal 3.5%, 3.3% and 3.3%, respectively. The standard
deviation of the CV-errors are fairly unobtrusive. The MCP order (%) range is
between 9.3% - 11.1% for all features (1-9), which means that every feature is
important in the classification for all classifiers. The KNN classifier detected the
bearing fault about 51 hours before the zero point, i.e., before the first suggestion
of the unsupervised FCM. The SVM- and NB-classifiers also detected the bearing
fault c¢. 31 hours and c. 46 hours before the zero point, respectively.



KNN SVM NB
CV-error mean 0.035 0.033 0.033
CV-error std 0.006 0.006 0.006
Earlier fault detection mean [hours] 51 33 46
Earlier fault detection std 2.7 3.7 1.8

Table 1: Supervised classification results (15 runs).

4 Conclusions

Our experiments confirmed that the results from FCM clustering can be used
for the initial identification of different lifetime stages of rolling element bear-
ings. Identification of the defect initiation, the defect propagation and the dam-
age growth stages succeeded quite well. Utilization of the FCM clustering was
straightforward. However, the feature data were smoothen by median averaging.

The studied supervised classification methods were not easy to implement
with the presented feature data of vibration signals. The affecting parameters of
the classifiers need to be configured properly and the sensitivity of the classifiers
must be evaluated for reliable results. Our case studies showed that all the
classifiers gave reliable results in bearing fault detection. The KNN classifier gave
slightly the earliest fault detection for the presented vibration signal features.
The importance of the features was consistent and none of the features needed to
be discarded. As a result, several classifiers with different models were obtained.
Future research will focus how to find the best of these models and apply it to
separate case studies to detect bearing faults.
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Abstract

Fault size estimation of defected rolling element bearings is one of the main challenges in diagnostics and
prognostics, especially when vibration measurements are used to determine the health state. In this paper, a novel
feature integration and ranking process for the vibration signals is presented to improve the fault size estimation.
First, multiplicative feature scaling is applied to the vibration signal features when using the k-Nearest Neighbour
(k-NN) and the Support Vector Machine (SVM) classifiers as predictors. Then, relevance ranking based on the
feature importance analysis is used to identify the most important features to estimate the bearing fault size.
A versatile set of vibration data of rolling element bearings gathered from different laboratory experiments with
different operation parameters are exploited to evaluate the methodology. The multi-class SVM is concluded to be
applicable and reliable method for the fault size estimation of the rolling element bearings.

Keywords: Rolling element bearing, Fault severity estimation, Vibration analysis, Feature selection, Supervised

learning

1. Introduction

Rolling element bearings (REB) are widely used components in rotating machinery. Bearing failure is a common
cause of machine breakdowns. An unexpected failure of a critical bearing can lead to significant economical or even
human losses. Fault detection, diagnostics and prognostics methods are frequently developed to improve condition
based maintenance.

Condition monitoring, a part of condition based maintenance (CBM), includes data acquisition, data processing
and maintenance decision making [1]. Fault detection, fault diagnostics and fault prognostics produce inputs for
condition based maintenance (Figure 1). Diagnostics covers identification and quantification of an occurred fault
of machine component, while prognostics covers prediction of component’s future condition, remaining operational
life, or risk to complete operation [2, 3]. In other words, diagnostics is posterior event analysis while prognostics is
prior event analysis [1]. Prognostics is dependent on diagnostics that provides valuable inputs for prediction; fault

indicators and degradation rates [2]. Engel [4] has stated: ”Prognostics is the capability to provide early detection
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Figure 1: Key elements of condition monitoring.

of the precursor and/or incipient fault condition of a component, and to have the technology and means to manage
and predict the progression of this fault condition to component failure”. Hence, the fault severity assessment and
the fault size estimation are important stages of diagnostics.

Vibration measurements are the most widely used basis for detection and diagnosis of bearing faults [5]. Signal
processing and time-series analysis methods are typically used for the necessary pre-processing of the vibration
measurements and these methods focus on extracting characteristic features from vibration signals generated by
REBs [6]. Recently, also deep autoencoders to gradually reduce the dimension of a large-scale signal representation
have been used [7]. Vibration signals generated by REBs can be modelled as cyclostationary [8]. Statistics of
cyclostationary processes are periodically varying [9]. A series of impulses are produced when the defective part
(local fault) hits other elements of the bearing. The spacing between these impulses usually varies between 1-2%
due to slippage resulting from the variation of the load angle of the rolling element [10].

Methods and experiments related to the vibration-based REB fault diagnostics are multifaceted. The analysis
can be based on a direct formulae [11], a special fault-sensitive characteristics [12-14], or dedicated processing
sequence with the selected techniques to reveal the fault characteristics frequencies [15, 16]. The experimental data
can originate from simulated, analytical signals [12, 14, 17-19], the most popular Case Western dataset [14, 17, 19—
21], or from own, dedicated test rig [15, 15, 21, 22]. A recent review paper by Cerrada et al. [23] reveals that the
topic of fault size estimation is less addressed compared to the general fault severity estimation using vibration
signals. However, many studies of the fault size estimation using vibration measurements have been published
recently [24-30]. Also most of these studies are based on the data acquired from one test rig and bearing tests for

one single bearing.



The proposed methodology for the fault size estimation starts from a set of a priori selected features with a
novel, multiplication-based transformation for integrating the scaling and behavior oriented features. Then, we test
two popular, instance-based predictive models—k-NN (e.g., [21]) and SVM (e.g., [31-33])—and identify the most
important features for the fault size estimation using feature relevance ranking.

The contents of this article are as follows. Section 2 explains methodological background including: supervised
methods, essentials for feature extraction and selection, processing of vibration signals, and experimental details.

Results are presented in Section 3. Conclusions and ideas for future research are summarised in Section 4.

2. Methodological background

Proper processing of measurement data is a key element in condition monitoring and preventive maintenance
[34, 35]. This kind of data processing can be unsupervised or supervised [36]. Machine learning algorithms exploit
supervised and predictive-like data processing [36, 37]. The target function, training (teaching) data and an algo-
rithm for learning the target from the training data need to be chosen when designing a machine learning approach
[38]. Next the basics of those methods, that will be applied as part of the proposed approach, are described.

Supervised learning refers to training a predictive model, or its parameters, by using a labelled data. The
predictor is then used to evaluate labels for new, unseen data. Supervised learning algorithms try to approximate
the mapping function between input variables and output variables. Classification and regression problems are
typical supervised learning problems. Classification algorithms attempt to assign new data points to pre-defined
categories. Regression algorithms attempt to predict numeric values for new data points. We deploy well-known
instance-based learning methods, namely the k-Nearest Neighbour (k-NN) algorithm and the multi-class Support
Vector Machine (SVM), to estimate the fault size of REBs using vibration signals.

2.1. k-Nearest Neighbour algorithm

The k-Nearest Neighbour (k-NN) classification rule was originally introduced by Cover and Hart [39]. The k-NN
rule is a sub-optimal non-parametric procedure for the assignment of a class label to the input pattern based on the
class labels represented by the k closest neighbours [40]. The k-NN rule is applicable on data that is in the metric
space and it does not make assumptions on the distribution of data. K is the number of the closest data points
used in the classification. An example of the principle of the k-NN classifier is shown on the left side of Figure 2. A
triangle is classified into the group of rectangles when k is three. If k is five, the triangle is classified into the group
of stars. Euclidean distance, used as a dissimilarity measure, satisfies the three properties: positivity, symmetry,
and triangle inequality. The k-NN is an instance based learning method. Unlike the inductive learning methods,
instance-based learning methods do not include an explicit description of the target function [38]. Instance-based
learning approximate real-valued or discrete-valued target functions [38]. The k-NN ”on-line” trains the examples
and finds out the k-nearest neighbours of the new instance [41].

There are a number of research papers where the k-NN classifiers have been applied to bearing diagnostics using

vibration measurements (e.g., [42—44]). Pandya et al. [37] studied performance of various supervised classifiers in



CLASS 1
. .

L seese—— > W A——
m . * - Lo s Eme il + PLANE NORMAL (w)
| | : :
L1 g = &
\ Tt - OO O e
O cLass 2

Figure 2: Examples of the k-NN classifier (left) and the SVM classifier (right).

bearing diagnostics using acoustic emission measurements. They compared Bayesian, Naive Bayes, Multi Layer

Perceptron, k-NN, weighted k-NN, J48 and Random forest classifiers. The k-NN classifier was found to be the best

suited classifier for their data.

2.2. Support vector machine

Support Vector Machine (SVM) is a supervised machine learning algorithm that can be used for both classifi-
cation and regression problems. SVM is a binary classifier. An SVM algorithm tries to find an optimal separating
hyperplane that separates classes from each other [45]. A “hard-margin” classifier is the simplest SVM classifier.
It is applicable when the training data is linearly separable, meaning that the two hyperplanes clearly separate the
data (on the right side of Figure 2). The SVM algorithm can solve optimisation problem to minimise the length
of w that is orthogonal to two hyperplanes. In practice, non-linear kernel transformation is performed because
the patterns are not linearly separable [46]. Nonlinearity of the SVM and the corresponding class boundaries is
obtained from the famous kernel-trick, by using nonlinear transformation through a high-dimensional feature space
[47].

The multi-class problem is reduced to multiple binary classification problems that can be solved separately.
SVMs use Error-Correcting Output Codes (ECOC) framework to combine binary problems to address the multi-class
problem [48]. The ECOC framework uses different decoding strategies which are implemented by the coding design
[49]. The most commonly used coding designs are one-vs-all and one-vs-one. The one-vs-one coding design considers
all possible pairs of classes while the one-vs-all discriminates a given class from all other classes. Disadvantages of
the one-vs-all coding design is that the binary classifiers might have different scales and the training sets are not

balanced (antisymmetric) [50].

General review of the use of SVM in condition monitoring and fault diagnostics was given in [51]. Since, methods



based on SVMs using vibration measurements have been frequently applied in bearing fault diagnostics [46, 52-58].
Usually, a number of fault samples in condition monitoring domain is limited. Unlike Artifical Neural Networks
(ANN), SVM does not require a large number of training samples to be accurate [52, 59]. Further, SVMs have been
utilised in fault severity estimation of REBs using vibration signals [60-65]. Repeatedly, most of these studies are

based on tests acquired from one test rig.

2.8. Feature extraction and selection

Features are inputs for a model in data-driven approaches. Feature extraction refers to the case where a new,
smaller-dimensional set of features is created from the original set of variables (e.g., [7]). The process of selecting a
subset of relevant features is called feature selection or variable selection. The objective of feature selection can be
three-fold [66]: to improve the performance of the model, to provide faster and more cost-effective models, and to
improve understanding of the data generation process. John, Kohavi, and Pfleger [67, 68] proposed the division of
a set of features into irrelevant, weakly relevant, and strongly relevant. Identification of such a division is a search
problem, and many techniques and approaches exist for this purpose, for example, exhaustive search, branch-and-
bound, evolutionary approaches etc. (see, e.g., [69, 70]). Forward search means adding new features one-by-one or
group-by-group to the model, whereas backward elimination refers to the removal of individual or sets of features
during the search process.

The intrinsic assumption behind feature selection is that there is some redundancy among the features. Liu et
al. [69] divide feature selection criteria measuring the redundancy into five groups: information measures, distance
measures, dependency measures, consistency measures, and accuracy measures. Depending on the constituents
when constructing a criterion, two basic approaches for feature selection can be defined: the filter approach and
the wrapper approach [67]. In the filter mode, one does not utilise the model, e.g. a classifier, in the feature
selection process whereas the wrapper approach involves the model as black-box. Usually this means that a filter
approach is faster and a wrapper approach more accurate [68]. Hybrid e.g., [71] or embedded methods [72, 73]
perform feature selection by using another model or not fully trained actual classification model for assessing
feature relevance. Special techniques ranking and selecting features during the construction of the predictive model
are the hierarchical models, most prominently random forests [74].

The wrapper based feature selection is tightly linked to the variable selection in the statistical regression. For
feature selection in classification problems [75], information on classes could be used to improve feature selection
without actual model building, e.g., by comparing the feature-class correlations or mutual information (MI) in the
joint densities of features and classes (e.g., [76]). Such methods could be referred to as warm filter methods or cold
hybrid methods, because only the information on the classes without building any classifier is being utilised.

The misclassification rate and the training time in REB fault diagnostics can be reduced by feature selection
[77]. The features calculated from the vibration signals are usually high-dimensional and non-Gaussian leading to
a pattern recognition problem [78]. It is typical that dimension reduction methods such as Principal Component

Analysis (PCA), Kernel Principal Component Analysis (KPCA), and Linear Discriminant Analysis (LDA) are



Table 1: Features of vibration signal.

No. | Feature Description
SCALING PARAMETERS
1. Root mean square The power content
2. Scale parameter: mean(abs(x)) Mean of absolute amplitudes
3. Scale parameter: mean(log(z?)) Mean of logaritmic power
4. Scale parameter: median(abs(x)) Median of absolute amplitudes
5. Scale parameter: median(log(z?)) Median of logaritmic power
AFTER PRE-WHITENING
6. Skewness Asymmetry of distribution of signal
7. Kurtosis Impulsiveness of signal
ENVELOPE SPECTRUM (normalization with
the DC value)
8. BPFI peak amplitude Amplitude of characteristic defect frequency (1. harmonic) of
inner race in envelope spectrum
9. BPFI 2. harmonic peak amplitude Amplitude of characteristic defect frequency (2. harmonic) of
inner race in envelope spectrum
10. | BPFI 1. + 2. Sum of features 8 and 9
ENVELOPE SPECTRUM (DC bias removal and
normalization with spectrum median)
11. | BPFI peak amplitude Amplitude of characteristic defect frequency (1. harmonic) of
inner race in envelope spectrum
12. | BPFI 2. harmonic peak amplitude Amplitude of characteristic defect frequency (2. harmonic) of
inner race in envelope spectrum
13. | BPFI 1. + 2. Sum of features 11 and 12
GAUSSIAN AND NON-GAUSSIAN SYMP-
TOMS
14. | GGS Bo Measure of stationarity
15. | GGS 1o Measure of stationarity
16. | GGCS B Measure of cyclostationarity
17. | GGCS mean 7 Measure of impulsiveness (cyclostationary signal)
18. | GGCS std 1 Measure of cyclostationarity




applied when processing vibration signal features [53, 63, 78].

2.4. Vibration signal processing

Basic features representing vibration signals can be separated into six categories: i) time-domain features;
ii) frequency-domain features; i) time-frequency-domain features; iv) phase-space dissimilarity measurements; v)
complexity measurements; vi) other features [6]. However, El-Thalji et al. [79] stated that the whole wear evalution
process in rolling element bearings cannot be tracked with indicators that are based on the statistical time domain
parameters and amplitude at bearing defect frequency.

Here, a special set of vibration features were selected for analysis, as shown in Table 1 and Figure 3. The features
were carefully chosen to describe different characteristics of the signal, such as the signal power level, the statistical
moments, the cyclic impulsiveness, the gaussian and non-gaussian properties of vibration signals. Features are

selected to describe as versatile as possible the properties of vibration signals.
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Figure 3: Feature extraction from vibration signals.

Statistical moments, skewness and kurtosis, are commonly used time-domain features in bearing diagnostics and
prognostics. The skewness (third moment) describes the asymmetry of the probability density function (PDF) of
vibration signal. The skewness value will shift to either negative or positive when the PDF of a vibration signal
changes due to bearing faults [6]. The kurtosis (fourth moment) describes the ”tailedness” of the PDF of vibration
signal and it indicates if the vibration signal is impulsive [6]. However, the skewness and the kurtosis are sensitive
to variations of the rotation speed of the shafts, band-pass filtering, resonance of the sensor, or background noise

[30).



The amplitude modulation of vibration signals is studied with envelope analysis. A series of impulses are
generated by a bearing fault, when bearing elements hit the defective part of the bearing. These impulses excite
high frequency resonances and the resulting signal appears as a sequence of transient impulsive vibrations [81]. The
characteristic frequencies of these impulses can be detected from the envelope spectrum of a vibration signal. The
squared envelope spectrum [82] was used to detect the amplitudes of characteristic bearing fault frequencies. The
envelope spectra were normalized by two strategies: 1. normalisation by the DC value, 2. normalisation by median
of the spectrum.

Recently Antoni et al. [83] introduced indicators that are used to track, separately, Gaussianity (GGS) and
cyclostationarity (GGCS) of vibration signals. This fresh methodology is based on the generalised likelihood ratio
and it provides a statistical threshold that can be used to develop robust condition indicators. It extracts features
that separate non-Gaussianity and non-stationarity properties of vibration signals.

All the selected features are listed in Table 1. The root mean square (RMS), the mean and median of absolute
amplitudes, the power and the logaritmic power are referred as scaling parameters. The scaling parameters were
calculated for raw vibration signals without any pre-processing for all the tests. Vibration signals were processed
with Cepstrum pre-whitening [84] before calculating statistical moments, envelope spectra, and the GGS/GCCS
features. The pre-processing were done because the vibration signals included unknown disturbing components that
weakened the bearing fault signatures. Figure 3 presents the feature extraction from vibration signals and the data

normalization process.

2.5. FExperimental details

Vibration data of three different bearing models were acquired. Table 2 presents the bearing specifications and
test numbers in which the bearings were used. Vibration data were collected from three different test stands / rigs :
a Bearing Prognostics Simulator (SpectralQuest) at the University of New South Wales, a FAG test rig facility and
a test stand of Case Western Reserve University Bearing Data Center. Seven different bearing tests were acquired

to evaluate the performance of the k-NN and the multi-class SVM classifiers in bearing fault size estimation.

Table 2: Bearing information.

Bearing type Bearing N.of Ball  di- | Pitch BPFI Tests
index rollers ameter diameter | [RPM
[mm)] [mm)] order]
Deep groove ball bearing 1 9 7.94 39.04 5.412 1-5
Angular contact bearing 2 12 8.0 38.5 7.310 6
Deep groove ball bearing 3 8 6.7 28.2 4.947 7

The bearing tests 1-5 were run on the Bearing Prognostics Simulator [85]. Single-row deep groove ball bearing

was studied in the tests with a nominal shaft speed of 6 Hz. Vibration signals were captured for ten seconds with



the sampling rate of 131072 Hz. A single notch of width 0.4 mm was artificially made in the inner race of bearing
to initiate spalling using an electrical discharge machining. The bearing was then run and allowed to degrade over
time, during which vibration measurements were frequently taken and the bearing was periodically dismantled and
the size of the actual fault was determined using a laser microscope.

The bearing test 6 [86] was performed on a FAG bearing rig that runs at 196 Hz. Single row angular contact
bearing was used in this test. Small indentations were created on the circumference of the inner race to initiate the
spall. Bearings were run for one minute with a contaminated lubricant, before being cleaned and run again with
clean oil. Vibration signals were collected for four seconds with the sampling rate of 50000 Hz. The fault size of
the inner race fault (BPFI 1397.5 Hz) was measured at certain time intervals.

The bearing test 7 was selected from the Case Western Reserve University’s Fan-End bearing fault data [87].
The bearing test 7 was performed with nominal shaft speed of 30 Hz. Electro-discharge machining was used to
produce artificial bearing fault to the inner race of a deep groove ball bearing. Vibration signals were collected
for four seconds with the sampling rate of 12000 Hz. The Case Western bearing data have been recently analysed
carefully by [88].

Progressive degradation of bearings were examined in the bearing tests 1-6. Differently, in the bearing test 7,

the size of the bearing fault was manually enlarged and then studied.

3. Results

CLASSIFIER TRAINING - TETéI CLASSIFIER TRAINING - TESTg CLASSIFIER TRAINING - TESTg

Fault size [mm]
Fault size [mm]

0 10 20 30 0 1 2 3 4
Time [hours] Time [hours] Time [hours]

Figure 4: Classifier training using three bearing tests (1-3).

The k-NN and the multi-class SVM classifiers were trained by using the selected features of vibration signals
collected from tests 1-3 (see Figure 4). Initially, a total number of 130 vibration signals were used in the training.
The black circles represent the actual measured fault size, the blue lines represent the vibration signal features and
the red tones represent the classified fault size ranges in Figure 4. In the supervised labeling each class (label)
corresponds to a certain fault size range (red tones in the Figure 4): Class 0 = No bearing fault, Class 1 = 0 mm
< ~ Fault size < ~ 1.5 mm, Class 2 = 1.5 mm < ~ Fault size < ~ 3.0 mm, Class 3 = 3.0 mm < ~ Fault size <

~ 6.0 mm.
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Figure 5: Improved classifier training using three bearing tests (1-3).

Initial training lead to significant classification errors in the fault size estimation, because there was not actual
fault size measurements in the beginning and the end of the classification ranges 4. The training was changed that
the classification ranges were enclosed by the fault size measurements as shown in Figure 5. However, the number
training samples decreased to 85 vibration signals.

Correlation analysis was performed in order to find the best features that linearly correlate with the measured
fault size. The results of the correlation analysis are listed in Table 3. It is evident that the scaling parameters
correlate the most with the fault size. Further, the mean of the logaritmic power is the most strongly correlated
feature with the fault size. However, the scaling parameters are very similar so their usage as features leads to
the curse of dimensionality. The conclusion was to use the best scaling parameter together with other features.
Correlation analysis can only detect linear dependencies between variable and target [66]. Hence, the approach
here concerning the feature selection is a hybrid one (see Section 2): the correlation-based filter approach is used
to identify the single most relevant feature. This seed feature is then augmented using the most relevant features

from the wrapper-approach with the exhaustive forward search. Feature ranking process is the following:
. Feature extraction
. Filter based feature selection -> Correlation analysis

1
2
3. Wrapper based feature selection -> Exhaustive forward search
4. Misclassification score

5

. Feature relevance rank

Two approaches were established for usage of the scaling parameters. In the first approach the best scaling
parameter was used as feature among the other features; additive feature scaling. In the second approach the best
scaling parameter was used as a multiplier for other features; multiplicative scaling. The multiplicative scaling is a
simplified version of the product kernel approach used with the SVM [89].

The fault size estimation was done for the tests 4-7 that contain 66 vibration signals. Exhaustive search was
used for the feature subset selection [90]. Exhaustive search produces a total number () = Wlm)' subsets, where

n is the total number of features and m is the number of features in a subset [90]. Exhaustive search was processed
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Table 3: Correlation betweeen measured fault sizes and vibration signal features.

No. | Feature name Correlation: Feature
value vs. Fault size

SCALING PARAMETERS

1. Root mean square 0.5812

2. Scale parameter: mean(abs(x)) 0.8387

3. Scale parameter: mean(log(z?)) 0.9352

4. Scale parameter: median(abs(x)) 0.8775

5. Scale parameter: median(log(z?)) 0.8803
AFTER PRE-WHITENING

6 Skewness 0.2922

7. Kurtosis 0.1124
ENVELOPE SPECTRUM (normalization by the DC value)

8. BPFI peak amplitude 0.2187

9. BPFI 2. harmonic peak amplitude -0.0356

10. | BPFI 1. + 2. 0.1127
ENVELOPE SPECTRUM (DC bias removal and normalization by spectrum median)

11. | BPFI peak amplitude 0.1410

12. | BPFI 2. harmonic peak amplitude -0.0192

13. | BPFI 1. + 2. 0.1051
GGS/GGCS

14. | GGS Bo -0.0187

15. | GGS no -0.1405

16. | GGCS 5 0.0263

17. | GGCS mean 7; -0.0951

18. | GGCS std M1 0.0277

to produce all the possible feature combinations. However, due the limited number of features the algorithm is

applicable in this research; the maximum number of combinations is 3432. Exhaustive feature search was processed

for both classifiers using additive and multiplicative feature scaling.

Figure 6 shows misclassification percentages for both classifiers with the best feature combinations using mul-
tiplicative feature scaling (on the left side) and additive feature scaling (on the right side).
combination refers to a combination of features that produces fault estimation results with least misclassifications.
Misclassification was 6.1 % (4 of 66 samples) for the best combinations. Addivitive feature scaling is not usable
due to the very high misclassication percentages through all feature combinations. The fault size estimation using

multiplicative feature scaling leads to better results with noticeably smaller misclassification percentages. Among

the classifiers the multiclass SVM works better with all feature combinations.

11
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Figure 6: Misclassification of fault size estimation.

Feature ranking results are shown in Table 4. Individual counts for each feature in the best feature combination(s)
were calculated. Then individual counts were normalised by the maximum feature count in the combination in
question. Normalised counts are reported for each feature (6-18) starting from the second column. Total score for
each feature, a sum of normalised counts, are listed in the last row of the Table 4. The most strongly relevant
features were the sum of the first and second harmonic BPFI amplitudes (10) in the envelope spectrum and the
GGS 7y (15) when the mean of the logaritmic power was used as the scaling parameter. Features 11-13 acquired
from the envelope spectrum (DC bias removal and spectrum median normalisation) are less relevant than features
8-10 acquired from the envelope spectrum (the DC value normalisation). As a consequence, features 11-13 could
be discarded. It is also seen that the GGCS features mean 7j; (17) and std 7j; (18) are irrelevant features that do
not improve the fault size estimation result.

It appears the best metrics for basic diagnostics are not necessarily the best for the fault size estimation. Many
research studies try to explain how the individual features extracted from vibration signals explain the health state
of REBs. Further, this leads to research and development of new and ”better” features to describe the health state
of REBs. Ultilised instance-based classifiers provide a combination of features that are the most relevant for the
fault size estimation.

The multi-class SVM performs convincingly in the fault size estimation. The fault size estimation results are

plotted in Figure 7 for the both classifiers.
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Table 4: Feature relevance evalution for multi-class SVM using multiplicative feature scaling

Feature number (Table 3)

Combs| 6 7 8 9 10 11 12 13 14 15 16 17 18
2 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
3 0.5 0.0 0.0 0.5 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
4 0.5 0.5 0.0 0.5 1.0 0.0 0.5 0.0 0.5 0.5 0.0 0.0 0.0
5 0.7 0.4 0.4 0.8 0.8 0.0 0.6 0.0 1.0 1.0 0.4 0.0 0.0
6 0.3 0.8 0.8 0.6 0.6 0.0 0.4 0.0 1.0 0.9 0.6 0.1 0.0
7 0.5 1.0 1.0 0.5 1.0 0.0 0.0 0.0 1.0 1.0 0.5 0.5 0.0
8 0.6 0.5 1.0 0.8 1.0 0.3 0.6 0.4 1.0 0.9 0.7 0.3 0.1
9 0.6 0.6 1.0 0.9 1.0 0.5 0.6 0.5 1.0 1.0 0.9 0.1 0.4
10 0.8 0.8 1.0 1.0 1.0 0.6 0.8 0.6 1.0 1.0 1.0 0.2 0.2
11 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0
12 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0
13 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Score | 7.5 7.6 8.2 8.5 11.3% | 4.4 6.5 4.5 9.5 11.3% | 7.0 2.3 2.7

4. Conclusions

This paper studied the use of a number of different vibration features, and combinations thereof, in combination
with two established classification methods for the estimation of fault severity (size) in rolling element bearings. The
experimental data were collected from three different testing environments with most datasets involving gradual
fault degradation from a known starting spall size (an artificially seeded slot). Selected tests were performed with
different shaft rotation speeds and the measurements were done with different vibration sensors. However, the size
of the bearings were roughly the same.

The k-NN and the multi-class classifiers SVM were selected to perform estimation of the fault size because the
classifiers are suitable for smaller data sets. It was discovered that the training phase needs to be done in a way
that there exists fault size measurements at the beginning and at the end of the chosen fault size class ranges.
Otherwise, the chosen fault size range might include wrong fault size measurements.

Vibration signal features were selected to represent the power level, the impulsiveness, the cyclic impulsiveness
and the non-gaussian and gaussian properties. Exhaustive search was performed for the feature subset selection
that covered all possible feature combinations. Also studied was multiplicative feature scaling which was found
to work better than additive feature scaling. The multiplicative feature scaling emphasises the effect of the most
correlating feature on other features. However, the scaling parameters are very similar so their usage as features
leads to the curse of dimensionality. Particularly, the classifiers can detect non-linear relations between the features.
Relevance analysis of the features reveal the most relevant features to estimate the bearing fault size when the chosen

classifiers are used. Presented feature ranking process of features of vibration signals is completely novel and it is
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Figure 7: Fault size estimation (tests 4-7).

reproducible.

The multi-class SVM classifier was found to work convincingly for the fault size estimation with these available
data sets. The one-vs-one coding design in the multi-class SVM design provided more accurate results than the one-
vs-all coding design. The multi-class SVM detects the class boundaries more accurately than the k-NN classifier.
The k-NN classifier was found not to be reliable for fault size estimation with these available data sets.

Still more data is needed to better test the features; in particular under different operating environments and
for larger bearings. This research included only inner race faults. Moreover, different types of the bearing faults are
needed for future studies (outer race, rolling element). It is not exception that other machine components produce
noise that makes extraction of bearing fault features more difficult. In such cases, preprocessing is required to filter
out the disturbing components. Further, the physical link between fault severity and the best found features is not

clear. We would need to focus to develop features that are able to describe the time span between events linked to

the spall size.
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ABSTRACT

Increasing the capabilities of sensors and computer algorithms produces a need for structural support
that would solve recurring problems. Autonomous tribotronic systems self-regulate based on feedback
acquired from interacting surfaces in relative motion. This paper describes a software framework for
tribotronic systems. An example of such an application is a rolling element bearing (REB) installation
with a vibration sensor. The presented plug-in framework offers functionalities for vibration data
management, feature extraction, fault detection, and remaining useful life (RUL) estimation. The
framework was tested using bearing vibration data acquired from NASA’s prognostics data repository,
and the evaluation included a run-through from feature extraction to fault detection to remaining
useful life estimation. The plug-in implementations are easy to update and new implementations are
easily deployable, even in run-time. The proposed software framework improves the performance,
efficiency, and reliability of a tribotronic system. In addition, the framework facilitates the evaluation
of the configuration complexity of the plug-in implementation.

Keywords Software framework - Tribotronic system - Bearing diagnostics - Bearing prognostics - Vibration analysis

1 Introduction

The term ’tribology’ was introduced and defined in The Jost Report [1] as "the science and technology of interacting
surfaces in relative motion and of the practices related hereto."” It was reported that enormous amounts of resources
were wasted because mechanical surface phenomena was ignored [2]. However, The Jost Report did not pay much
attention to wear, the most significant tribological phenomenon [2]. Tribology enables the effective design of both
machines and lubrication to minimize the impact of friction and wear [3]. The successful implementation of tribological
practices into design procedures for various machines and mechanisms has resulted in significant economic savings
through improvements in machine performance and reliability [3]. Tribology combines physics, chemistry, materials
engineering, machinery theory, and products of its own engineering science [4]. Holmberg [5] defined a taxonomy
for different levels of occurrence of tribological phenomena: universe, global, national, plant, machinery, component,
contact, asperity, and molecular. Each level of this classification comprises its own components and interactions between
them.

A system is a set of related and interdependent elements that regularly interact to form an integrated whole [6]. At high
levels of abstraction, a tribological system can be described with input and output variables and the interaction between
these variables. The input variable is energy (e.g. force, moment and kinematics) and the output variables are matter
and signals [4]. The interaction between elements causes friction and wear losses that are summarized as loss-outputs
[7]. A tribosystem is a tribological system that includes at least two contacting tribological components [8]. A number
of input and output variables in tribosystems can be infinite due to the number of physical and chemical properties of
the surfaces in contact, the properties of the medium (i.e., the lubricant), and the environmental conditions [4]. For
example, bearings, gears, and mechanical seals are tribological components. Glavatskih et al. [3] outlined a tribotronic
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system that would unite the tribosystem, sensors, real-time control system, and actuators. The tribotronic system is
distinct from a mechatronics system because tribosystems use loss outputs, such as wear, vibration, temperature, and
friction. Controlling these outputs allows a tribosystem to try to improve the performance, efficiency, and reliability of
the whole machine [3]. A desirable output for a tribotronic system should be expressed in terms of endurance life and
probability of failure [5].

One of the main goals of software engineering is to reuse existing code [9]. A software’s framework is a "skeleton" that
can be used to supplement application-specific software, so recycling existing frameworks is a key technique when
implementing software platforms. Software frameworks are customized to complete a software application by filling
empty code blocks with product-specific code. An important property of software frameworks is inversion control,
which enables the framework itself to call user-implemented methods, that is not possible in traditional procedural
programming [10]. If frameworks were not reused during software development, a considerable amount of code
would be written repeatedly. Our study focused on object-oriented frameworks. Abstract frameworks provide only
software interfaces; they do not include any runnable code. White-box frameworks use subclasses as extensions,
which allow the implementation of methods for base classes. Black-box frameworks use a composition approach and
include ready-to-use classes. It should be noted that white-box frameworks evolve into black-box frameworks over
time [10]. Gray-box frameworks merge black-box and white-box issues [11]. Layered frameworks can be applied to
large-scale platforms when different frameworks need to be fused [12]. Plug-in frameworks are specialized because they
implement application-specific interfaces, or plug-ins [13]. Caropreso et al. [14] presented a structured methodology to
define the architecture for communication frameworks with multiframe capabilities. It is an example of maintainable
object-oriented framework that is applicable for embedded systems.

Figure 1 depicts a schematic tribotronic system with a control unit and real-time software. In this paper, we introduce
an object-oriented plug-in framework for such tribotronic systems. The main motivation for this work is to speed up and
ease the deployment of diagnostic and prognostic algorithms into tribotronic systems. The purpose of the framework
is to improve the performance, efficiency, and reliability of a tribotronic system. The framework covers asset and
data management, fault detection, and RUL estimation. The plug-in implementation was targeted for REBs that were
monitored using vibration sensors.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

TRIBOLOGICAL SYSTEM
LOSS OUTPUTS: TEMPERATURE, PRESSURE, SPEED, VIBRATION, RADIATION...
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CONTROL UNIT WITH REAL TIME SOFTWARE

A/D REAL-TIME ALGORITHMS
CONVERTER
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Figure 1: Tribotronic system [3]

The contents of this article are as follows. Bearings (tribosystem) and their wear evolution will be introduced in Section
2. Vibration analysis, fault detection, and RUL estimation will be explained in Section 3. Designed plug-in framework
will be presented in Section 4. Evaluation of the framework will be presented in Section 5. Finally, conclusions and
future work will be summarized in Section 6.

2 Tribosystem - Bearing

Bearings are widely used in rotating machinery to support shafts. Bearings are categorized as either REBs or journal
bearings based on their structure [15]. REBs contain spherical, cylindrical, tapered, and needle-shaped rolling elements.
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Journal bearings contain only sliding surfaces —no rolling elements. Monitoring the condition of these bearings is very
important because a bearing failure is a very common reason for machine breakdowns. In general, the vibration and
temperature of a tribological system (REB) are monitored to detect lost outputs.

2.1 Bearing failure

Bearing failures fall under six categories: fatigue, wear, corrosion, electrical erosion, plastic deformation, and frac-
ture/cracking [16]. Wear is a cumulative quantity regularly measured by condition monitoring systems [17]. When a
measured variable directly determines a bearing’s failure, the condition monitoring method is direct; when a measured
variable provides information associated with and affected by the bearing’s condition, the condition monitoring method
is indirect [17]. Common direct and indirect condition monitoring methods consist of the following [18, 19, 20, 21]: i)
indirect methods include monitoring vibrations, acoustic emissions, basic physical quantities such as heat and pressure,
basic electrical quantities such as voltage, current, power, and resistance, and ultrasound or infrared testing, and ii)
direct methods include oil debris or corrosion analysis as well as visual inspection using a borescope. Furthermore, new
methods are constantly being sought that would be more sensitive when measuring bearing defects [22].

Presenting wear evolution of REBs as a time series describes the wear interaction and evolution at different lifetime
stages. A five-stage descriptive model of lifetime stages, as depicted in 2, was presented by El-Thalji et al. [23]:
running-in, steady-state, defect initiation, defect propagation, and damage growth. First, during the running-in stage,
the surface asperities and the lubrication film become uniform [23]. The length of the steady-state stage, the healthy
stage of the lifetime, depends on maximum load-induced stress, material characteristics, and operating temperature [24].
The wear process starts and will affect surface roughness and waviness in the defect initiation stage [25]. According
to [23], this stage can be further split into the sub-stages of defect localization, dentation, crack initiation, and crack
opening. The linear elastic fracture mechanics commences in the defect propagation stage [26]. Incubation, stable,
and crack-to-surface are then the main events that occur [27]. The defect starts to grow in three dimensions (length,
width, and depth) and the effect of multiple asperities is prominent in the damage growth stage [23]. Direct condition
monitoring makes it possible to detect lifetime stages of wear evolution directly from measurements; however, this is
not possible using raw vibration measurements.

WEAR EVOLUTION PROCESS
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> ! : | '
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Figure 2: Wear evolution process [23]

3 Vibration analysis

Vibration sensors interpret vibration values indirectly using mechanical and optical quantities. Vibration sensors
are categorized as contacting or non-contacting according to their measurement principles. Both contacting and
non-contacting sensors are further divided according to path, speed, and acceleration measurement. Path measurement
uses potentiometric transmitters and linear variable differential transformers; speed is measured using principles of
electrodynamics and seismometers; acceleration is measured using piezoelectric, piezo-resistive, resistive, and inductive
sensors [28].
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A machine’s vibrational signature is related to either a standard condition or a fault condition [29]. A tribotronic
system measures vibrations and processes them to discover informative features using feature extraction. Frequently,
features calculated from vibration signals are high-dimensional and non-Gaussian. Further, feature selection is applied
to extracted features to leave over the most relevant features. Descriptive classification for features of vibration signals
is the following: i) time-domain features; ii) frequency-domain features; iii) time-frequency-domain features; iv)
phase-space dissimilarity measurements; v) complexity measurements; vi) other features [30]. A considerable amount
of research has been directed towards the development of the digital signal processing of vibrational signals [22].

3.1 Fault detection

Randall stated [29] that "fault detection is the first step in the overall process of detection, diagnostics and prognostics.
Since all signals have to be processed to determine whether a significant change has occurred, the techniques employed
must be considerably more efficient than those which might be used for the latter processes." Early fault detection
allows time to predict fault progression and estimate RUL before catastrophic failures occur [31]. Fault detection is one
of the main functionalities in the designed framework. Depending on the response from the fault detection algorithm,
the tribosystem (REB) would be controlled by actuators.

3.2 Remaining useful life estimation

RUL estimation is an important prognostic and health management task that enables optimized maintenance plans
to enhance production, minimize costly downtime, and avoid catastrophic breakdowns [32, 33]. RUL estimation
approaches are categorized into physical model approaches, data-driven approaches, and hybrid approaches [34, 32].
Further, the data-driven approaches can be categorized into knowledge-based, statistical, and supervised methods
[35]. Recent machine learning approaches have frequently been applied to the diagnoses and prognoses of REBs [36].
However, the effectiveness of the machine learning methods rely on the quality of features of vibration signals.

An ideal signal processing method should be capable of detecting the bearing degradation phases on changing defect
conditions [22]. Crucial for RUL estimation is to find the most suitable feature to describe the degradation process
when vibration measurements are used. Measuring vibrations is an indirect methods to monitor the condition of REBs.
RUL estimation is another main functionality of the framework.

4 Implementation of the framework

The plug-in framework designed for tribotronic systems supports asset and data management, feature extraction, fault
detection, and RUL estimation. The framework design is shown in Figure 3. A measurement database can be deployed
in a local or remote computer. The results of the fault detection and RUL estimation are inputs for a condition analyzer
that passes the results to a module that decides how the tribosystem is controlled. The general architecture of the system
has been presented Figure 1. A component linking the condition analyzer, the decision-maker, and the actual control of
the system was not explicitly defined in the framework because it would depend on the machine, according to the sorts
of actions needed to maintain running conditions or stop the machine’s operation.

The framework includes interfaces for measurement data (IMeasurementData), asset data (IAssetData), feature
extraction (IFeatureExtractor), fault detection (IFaultDetector), and RUL algorithms (IRULalgorithm). The
measurement data is acquired from the sensor and the asset data is relates to the tribotronic component in question. Fault
detection and RUL estimation are executed by the CConditionAnalyzer class. The PluginLoader class loads the de-
sired plug-in that includes the appropriate implementations for the application in question. The BearingApplication
plug-in implements the interfaces of the framework using inheritance (Figure 3). The presented plug-in was designed
for REBs. The plug-in implementations are based on previous research on feature extraction from vibration signals,
fault detection, and RUL estimation of REBs.

Technical bearing data is included in the CBearingData class. The bearing dimensions are the minimum data required
to calculate characteristic fault frequencies, which are required for the fault detection algorithm. Measurement data is
specialized as a CVibrationData class that handles vibration data. Vibration signals are loaded from the database
as shown in Figure 1. Vibration data includes vibration signals and their measurement time and sampling frequency.
Further, specialization of the measurement data could be easily done, for example, to address temperature and oil debris
data that represent other commonly used condition monitoring measurements for REBs.

The CConditionAnalyzer class uses the CBearingFeatureExtractor that includes methods to extract specified
features from vibrational signals. Methods used to calculate statistical features, such as RMS, skewness, and Kurtosis,
include an optimal degradation parameter, a fast Fourier transform (FFT), and a squared envelope spectrum. The FFT is
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Figure 3: Tribotronic plug-in framework

a sub-routine for the squared envelope spectrum calculation. Previously, an introduced fault detection algorithm was
implemented into CWaveletAnalyzer.

The fault detection algorithm is called by CConditionAnalyzer and implemented in the CMetropolisHastings
class. The algorithm requires the characteristic fault frequencies of an REB and the sampling frequency of a vibrational
signal as input parameters. The algorithm returns a boolean value indication of a fault or not-fault status.

Similar to fault detection, the RUL estimation algorithm is called by CConditionAnalyzer. The model parame-
ters are stored in the CBearingData class when a model-based RUL estimation is applied. The accuracy calcula-
tions, as defined in equation lrefeq:1, which were used to determine degradation features were implemented in the
CBearingFeatureExtractor class. The best degradation feature, the RUL model parameters, and the alarm level are
input parameters for the RUL estimation algorithm that was implemented in the CMetropolisHastings class. The
RUL algorithm returns the time of the last operation date.

The plug-in implementations are tested with unit tests. Unit tests are carefully designed to test the smallest components.
Unclear definitions of unit testing leads to bad and inconsistent testing and makes the software error-prone [37]. This
guarantees the reliability of the framework being run and can be updated in real-time.

A sequence diagram of fault detection and RUL estimation with the suggested realization of the framework are shown
in Figure 4. The performance of the framework is measured by an internal timer initialized in the first call. Elapsed
times for data loading, feature extraction, fault detection, and RUL estimation are recorded. However, RUL estimation
is not executed if the result from fault detection is negative, indicating a non-faulty bearing.

A very important aspect of a system is its configuration complexity [38]. A complex algorithm does not need to be
complex to configure; e.g. [39]. Complicated configurations can be error-prone and time-consuming, which increases
the cost of the system. The meta-parameters of the algorithms play the key role in the evaluation of the configuration
complexity. The configuration complexity can be evaluated based on the meta-parameters in the plug-in implementation:
alarmLevelFault, motherWavelet, nOfDecompLevels, degParamWeights, alarmLevelRUL, RULmodelParameters and

nOfSimulations.
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interaction CallSequence J

CConditionAnalyzer

CBearingData

| CMetropolisHastings

| CWaveletAnalyzer

| CBearingFeatureExtractor

| CVibrationData
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2 : getAssetData

3 : getElapsedTime ; : : L'I

©_ |4:getData
5 : extractFeatures : ; [

=I—| 6 : getMeasurementData

H 7 : getElapsedTime ; :
: : : 8 : calculateFeatures B 9: getData
: 10 : detectFault : : :

11 : getElapsedTime H 12 : execute

13 : estimateRUL o

14 : getElapsedTime

H 15 : execute

Figure 4: Sequence diagram of fault detection and RUL estimation

4.1 Specific algorithm descriptions

The plug-in’s implementation of the fault detection algorithm uses time-frequency domain features. The algorithm
exploits discrete spline wavelet decomposition with bior6.8 as the basis wavelet [40]. The squared envelope spectrum
of the reconstructed signals is searched for characteristic fault frequencies for each wavelet decomposition level, and
the peaks are detected based on local maxima. The peak detection algorithm uses a user-defined alarm level.

A method proposed by Zhang et.al. [41] for degradation feature selection was integrated into a plug-in; the method
defines the feature goodness metrics of correlation, monotonicity, and robustness. The optimal degradation feature is
selected using a weighted linear combination of the proposed metrics:

%aé,] = w1 Corr(X) + waMon(X) + wsRob(X), (1)
€

where J is the score value, €2 is the set of candidate degradation features, and w; is the weight for individual metrics.

The implemented RUL estimation algorithm is based on the adaptive Metropolis-Hastings algorithm so it can calculate
the parameters for the degradation model. The Metropolis-Hastings algorithm is a sampling algorithm based on
Markov-Chain-Monte-Carlo (MCMC) algorithm [42]. MCMC methods aim to solve multi-dimensional integrals using
numerical approximations. The Metropolis-Hastings algorithm generates a random walk using a proposal density and a
method for rejecting some of the proposed moves. In our study, an Adaptive Metropolis (AM) algorithm is used where
the Gaussian proposal distribution is updated along the process using the complete information cumulated so far [43].
A simple exponential degradation model is used in the evaluation [44, 45]:

Deg = cexp(bt), (2)

where ¢ and b are the model parameters, t is the time, and Deg is the degradation indicator. The exponential model is
very often used in RUL estimation for REBs, although different modifications have been suggested [46].

5 Experimental results

A popular REB dataset from the Center for Intelligent Maintenance Systems (IMS) of the University of Cincinnati
was used in the evaluation. Much research has analyzed the IMS dataset [48, 49, 50, 51, 47, 52, 53]. In these run-to-a-
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Table 1: IMS BEARING DATA SPECIFICATIONS

BEARING INFORMATION

Bearing model Rexnord ZA-2115
Bearing type Double row bearing
VIBRATION MEASUREMENTS

Number of bearings 4

Sampling frequency 20480 Hz [47]
Sampling length 20480 data points
Shaft rotation speed 33.3Hz

Inner race fault frequency (BPFI) 297 Hz

Outer race fault frequency (BPFO) 236 Hz

Rolling element fault frequency (BSF*2) 278 Hz
DATASET 1

Number of measurements 2156

Recording duration
Detected bearing faults

34 days 12 hours
Bearing 3 / BPFI, Bearing 4 / BSF

DATASET 2

Number of measurements
Recording duration
Detected bearing faults

984
6 days 20 hours
Bearing 1 / BPFO

DATASET 3

Number of measurements
Recording duration
Detected bearing faults

4448
31 days 10 hours
Bearing 3 / BPFO

failure-tests, four Rexnord ZA-2115 double row bearings were installed on one shaft. The shaft rotation (2000 RPM)
and the radial load (6000 LBS) were constant during the test-runs and all bearings were force-lubricated. During the
test-runs, the designed lifetime of the bearing was exceeded for all failures. The IMS bearing data specifications are
collected in Table 1.

Datasets for the evaluation were selected based on recent findings by [47]. Selected cases of faulty bearings include an
inner fault in bearing 3 (Dataset 1) and an outer race fault in bearing 1 (Dataset 2). Vibration signals were processed
through the realizations of the IFilter and ITransform interfaces, which provide feature extraction methods. The
resulting features are shown in Table 2.

Table 2: VIBRATION SIGNAL FEATURES
STATISTICAL TIME DOMAIN FEATURES

FEATURE DESCRIPTION

1. Root Mean Square (RMS) The power content

2. Crest Factor The ratio of the peak amplitude to the RMS

3. Shape Factor The RMS divided by the signal mean

4. Impulse Factor The maximum of the peak amplitudes divided by
the signal mean

5. Shannon Entropy The degree of uncertainty

6. Log Energy Entropy The degree of uncertainty

7. Skewness Asymmetry measure of the PDF of the signal

8. Kurtosis The impulsiveness of the signal

FREQUENCY DOMAIN FEATURES

Squared Envelope Spectrum
9. - Amplitude of characteristic defect frequency (1. harmonic)

TIME-FREQUENCY DOMAIN FEATURES

Re-constructed signal of Wavelet Decomposition Levels (bior6.8)
Squared Envelope Spectrum
10. - Amplitude of characteristic defect frequency (1. harmonic)

The fault detection algorithm calculates the squared envelope spectrum of a vibration signal. The amplitudes of the
characteristic fault frequencies are identified from the envelope spectrum using peak detection. The fault state indication
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is determined using an alarm level three times the mean of the maximum amplitude of the envelope spectrum of the
steady state (i.e., non-faulty) signal. The alarm level was justified earlier based on the noise level of non-faulty vibration
signals.

The left side of Figure 5 illustrates the fault detection for both bearings, with bearing 3 on the top and bearing 1 on
the bottom. The dotted red line represents the fault detection time. The blue line represents the amplitude of the ball
pass frequency of the inner race (BPFI) in the envelope spectrum of the vibration signal. The orange plot is the highest
amplitude of the BPFI in the envelope spectrum of the re-constructed signals. The BPFI was detected after testing
bearing 3 for 31.5 days (Figure 5). The wavelet decomposition was determined for twelve levels, resulting in the highest
frequency band from 5 kHz to 10 kHz. The wavelet filtering does not give any earlier indication of the fault compared
to the envelope spectrum. The ball pass frequency of the outer race (BPFO) was detected at 3.8 days into the testing of
bearing 1. The wavelet filtered signal provided fault detection 1.1 days earlier than the envelope spectrum.

RUL estimation was processed following fault detection using the adaptive Metropolis-Hastings MCMC algorithm.
The best degradation feature was determined using the goodness metrics defined in equation 1. Table 3 includes the
goodness metrics calculations for the selected features. All the features were normalized to the same sampling rate and
the features were smoothened using a moving average with a window of 20 samples. In terms of time, the window is
3.3 hours to give adequate resolution for RUL estimation. The exponential model from equation (2) was fitted to the
degradation curves of both cases using the least squares approximation. As a result, the prior estimates of the model
parameters (c,b) and the error variance were obtained. The Metropolis-Hastings MCMC algorithm was executed with
the prior parameters to estimate the RUL.

Table 3: DEGRADATION GOODNESS METRICS

1 2 3 4 5 6 7 8 9 10
0.438 0342 | 0418 | 0.348 0.424 | 0.453 0.359 | 0328 | 0.270 | 0.235

Figure 5 represents RUL estimation with 5% - 95% confidence. RUL estimation was done after the last measurement
date (the dashed black line). Time intervals between the fault detection time and the last measurement date were
approximately two days in both cases. The solid blue line is the estimate of the degradation feature. The estimate
was calculated using the exponential model with the model parameters obtained from the RUL algorithm at the last
measurement date. The estimation confidence limits were calculated using the model parameters at 5% - 95% confidence.
The alarm level for the degradation feature (the solid red line) was set to 3.5. The threshold was set higher than the last
degradation feature values in both cases for evaluation purposes. The dashed red line represents the last operation date
of the bearing. The last operation date was determined when the 5% confidence limit reached the alarm threshold.

Table 4: FRAMEWORK PERFORMANCE TESTS
Intel Core 15-6440HQ CPU 2.60GHz - 100 RUNS / FUNCTION

FUNC.2 FUNC.5 FUNC.10 FUNC.13
Mean [s] 0.1616 0.0325 0.1303 24.6400
Std [s] 0.0313 0.0258 0.0365 0.5709
Intel Core 15-4300 CPU 1.90GHz - 100 RUNS / FUNCTION (Fig.4)

FUNC.2 FUNC.5 FUNC.10 FUNC.13
Mean [s] 0.2385 0.0490 0.3256 56.1089
Std [s] 0.0137 0.0356 0.2200 2.7115

Performance tests for the developed framework were run on two CPUs. Table 4 includes averages of 100 runs for
the main functions defined in the sequence diagram (Figure 4). It is notable that the function call getAssetData()
(FUNC.2) also includes the function call getMeasurementData() that reads vibration signal data from external
files, which is an operation dependent upon a hard drive. The function call estimateRUL() depends on how many
measurements were collected since the bearings started to be used. Other than RUL estimation calculations, execution
times of the main functions are not significantly large. However, the performance test should be run on embedded
systems that include less computing power.

6 Conclusions

Tribotronic systems are installed in different environments with various configurations. These systems are vulnerable;
consequently, complex algorithms are developed to interpret measurements from modern sensors and to make decisions
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Figure 5: Fault detection (LEFT) and RUL estimation (RIGHT): Bearing 3(TOP), Bearing 1(BOTTOM)

to control the actuators that give feedback to a tribosystem. The fundamental phenomenon of interacting surfaces is the
main motivator to build such self-adjusting tribotronic systems.

This paper introduced a unique Tribotronic plug-in software framework that offers assets and data management, feature
extraction, fault detection, and RUL estimation for tribotronic systems. The plug-in implementation targets REBs.
Further, the plug-in implementation is interchangeable; ergo, it perfectly fits with other tribosystems, such as gears.
The framework is platform-independent and also applies to embedded systems. It is extensible and implements
functionalities that require considerable amounts of computing power can be implemented in lower-level programming
languages. Unit testing capabilities increase the reliability of the implemented plug-in.

The experimental evaluation of the tribotronic plug-in framework were done using bearing vibration data acquired from
NASA'’s prognostics data repository. The evaluation included a run-through from feature extraction to fault detection
to RUL estimation. The purpose of the evaluation was not to introduce fault detection or RUL estimation methods,
but to show that the framework can handle complex algorithms and produce reliable results. The performance tests
demonstrate that the running times are short on ordinary CPUs; however, the lengths of the vibration measurements can
be considerably longer, which leads to longer running times. The configuration complexity of the implemented plug-in
is low from the point of view of the total number of meta-parameters.

Future research should focus on performance testing of the framework on embedded systems and benchmarking the
framework in other tribotronic systems.
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