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Jyväskylä
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The pricing of European call options traded on the Chicago Board of Options
Exchange (CBOE) is studied in the Black-Scholes model. A method for treating
uncertainties in option prices based on the propagation of uncertainties is presented.
Practically implementable formulas for the uncertainties are derived. The Black-
Scholes prices with uncertainties are compared to SPX options, where the underlying
asset is the Standard&Poor 500 index consisting of 500 large US based companies, sold
on the CBOE. Possible arbitrage opportunities for certain strike prices and maturities
are found, showing that real markets may have pricing issues.
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Introduction

The present thesis deals with modeling the prices of financial instruments known
as European call options, which give the holder the option, though not the obligation,
to buy shares at a predetermined time at a predetermined price. Fischer Black and
Myron Scholes showed in 1973 in their Nobel prize wining work that such instruments
have a unique price in an arbitrage-free market [1]. This is quite surprising, since
the underlying risky asset, often a stock, usually does not have an objective price,
but individual investors’ subjective attitude towards risk determines the price on the
market place. The formula of Black and Scholes derived for option pricing is now
widely used. The formula is very simple but the application of the formula to real
world options can be problematic due to the limiting assumptions of the theory.

Understanding the Black-Scholes theory requires an understanding of stochastic
analysis. In this work the basic tools of stochastics, such as Itô’s formula, stochastic
differential equations, etc. are presumed to be known. All the necessary concepts
related to finance are presented.

This work provides a novel way for treating the short-comings of the Black-Scholes
theory. Problems related to the determination of a risk-free interest rate as well as
the future volatility of the underlying asset are treated similarly to independent mea-
surement errors in physics. The option pricing with uncertainties is then implemented
using C++ and compared with the prices of recently sold options.

The thesis is organized as follows: in chapter 1 I first present the financial concepts
necessary for the modeling of a market with options, next a derivation of the Black-
Scholes model for pricing European call options, and end this chapter by discussing
the treatment of uncertainties related to the volatility and risk-free interest rates.
In chapter 2 incomplete markets are briefly discussed with examples of situations
where there is no unique price for an option. In chapter 3 the Black-Scholes model
with uncertainties is put to the test when it is applied to S&P500 market index call
options in the Chicago Board of Options Exchange.
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CHAPTER 1

Black-Scholes Model

1.1. Financial markets

In this section the basic concepts and mathematical constructs needed for mod-
eling financial markets are presented. The definitions of a European call option,
portfolio strategy, self-financing portfolio, arbitrage opportunities as well as complete
markets are given. The link between arbitrage-free markets and the existence of an
equivalent martingale measure is given in the form of the fundamental theorem of
asset pricing.

We wish to model the prices of financial instruments known as European call
options. These are important tools for managing risks such as the market risk, i.e.
the risk brought on by the possibility of a bear market.

For now, we assume there are no transaction costs, that there are no limits on the
number of stocks we can buy, and that we can borrow and lend money with the same
interest rate (known as the risk-free interest rate). A European call option gives us
the option but not the obligation to by a given number of stocks (or other assets)
exactly at time T , known as the maturity, for a predetermined price K, known as the
strike price.

Definition 1.1. A European call option is a financial instrument with value at
maturity T

(1.1)

{
(ST −K), if ST > 0

0, else,

where K > 0 is the strike price and ST is the price of the underlying option at time
T .

The price of a European call option can be modeled as a stochastic process defined
on the time interval t ∈ [0, T ]. The word European refers to the fact that the option
can only be exercised at T and does not have any geographical significance. An
American call option can be exercised at any time before T and an Asian call option
is a bit more complicated, with the value depending on the average price of the
underlying asset over a certain period.

1.1.1. Asset classes. Assume a stochastic basis (Ω,F ,P, (Ft)t∈[0,T ]), where (Ft)t∈[0,T ]
is a filtration of F and Wt a Brownian motion with respect to the filtration F. Con-
sider a financial market which consists of two types of assets which are a risk-free
asset S0(t) and a risky asset S(t). The risk-free asset has the dynamics

(1.2)

{
dS0(t) = r(t)S0(t)dt

S0(0) = 1,

3



4 1. BLACK-SCHOLES MODEL

where r(t) > 0 is the instantaneous interest rate at time t. The risk-free asset can
be for example a bank account or a zero-coupon bond with maturity T . A zero-
coupon bond with maturity T is a financial instrument which delivers the initial
capital S0(0) = 1 with interest in a single payment at time T . Since r(t) is strictly
positive, we can formally solve this ordinary differential equation:

dS0(t) =r(t)S0(t)dt

dS0

S0

=r(t)dt∫ S0(t)

1

dy

y
=

∫ t

0

r(s)ds

logS0(t)− log 1 =

∫ t

0

r(s)ds

S0(t) = exp

(∫ t

0

r(s)ds

)
.

If we assume that r is constant, we get

(1.3) S0(t) = ert.

Even though the risk-free interest rate is not exactly constant, there are several reasons
why this assumption is justified. Firstly, the run times of traded options are usually
some months or at most one to three years and the interest rates tend to move slowly.
Secondly, for an investor with basically any amount of capital (from thousands to
hundreds of millions) there are certificates of deposit (CDs) available, which have a
fixed interest rate for given period [0, T ].

A risky asset which is usually referred to as a stock has the dynamics

(1.4)

{
dS(t) = σS(t)dWt + µS(t)dt

S(0) = s0,

where σ and µ are constants and Wt denotes the Brownian motion. We assume the
process S(t) to be continuous and adapted. Since σ and µ are constants, it is easy to
see that the SDE has a unique strong solution. The parameter σ gives the standard
deviation of the returns and is referred to as volatility or risk. The parameter µ is the
mean return. Looking at the equation (1.4) a solution of the form S(t) = s0e

aWt+bt

would make sense. In order to determine the constants a and b, we need the definition
of an Itô process and apply the so-called Itô’s formula (see [2] def. 3.4.8 and thm.
3.4.10).

Definition 1.2. (Itô process) Let (Ω,F ,P, (Ft)t∈[0,T ]) be a stochastic basis and
(Wt)t≥0 an Ft-Brownian motion. (Xt)t∈[0,T ] is an R-valued Itô process if it can be
written as

(1.5) Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdWs P-a.s. for all t ∈ [0, T ],

where

• X0 is F0-measurable
• (Kt)t∈[0,T ] and (Ht)t∈[0,T ] are Ft-adapted
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•
∫ T
0
|Ks|ds < +∞ P-a.s.

•
∫ T
0
|Hs|2ds < +∞ P-a.s.

Theorem 1.3. (Itô’s formula) Let (Xt)t∈[0,T ] be an Itô process for which equa-
tion (1.5) holds and (t, x) → f(t, x) be a twice continuously differentiable function
with respect to x and once with respect to t, and if the partial derivatives are contin-
uous with respect to (x, t), it holds that

f(t,Xt) =f(0, X0) +

∫ t

0

∂f(u,Xu)

∂u
du+

∫ t

0

∂f(u,Xu)

∂Xu

Kudu

+

∫ t

0

∂f(u,Xu)

∂Xu

HudWu +
1

2

∫ t

0

∂2f(u,Xu)

∂X2
u

H2
udu.(1.6)

From the definition of Itô process it is clear that the Brownian motion (Wt)t≥0 is
an Itô process with X0 = 0, Kt = 0, and Ht = 1. Let us consider f(t, x) = s0e

ax+bt,
with the Itô-process x = Wt. First we apply Itô’s formula to f(t,Wt) we get

f(t,Wt) = f(0,W0) +

∫ t

0

∂f(u,Wu)

∂u
du+

∫ t

0

∂f(u,Wu)

∂Wu

Kudu

+

∫ t

0

∂f(u,Wu)

∂Wu

HudWu +
1

2

∫ t

0

∂2f(u,Wu)

∂W 2
u

H2
udu.

For the stock price S(t) = f(t,Wt) we have that that

S(t) = s0 +

∫ t

0

bS(u)du+

∫ t

0

aS(u) · 0du

+

∫ t

0

aS(u) · 1dWu +
1

2

∫ t

0

a2S(u) · 12du

=s0 +

∫ t

0

bS(u)du+

∫ t

0

aS(u)dWu +
1

2

∫ t

0

a2S(u)du.

On the other hand, the stochastic differential equation (1.4) is just a short hand
notation for the integral equation

S(t) = s0 +

∫ t

0

σS(u)dWu +

∫ t

0

µS(u)du.

Since integral terms must be the same, we have that σ = a and µ = b+ a2/2, or

a = σ

b = µ− σ2

2
.

The stock price is therefore given by

(1.7) S(t) = s0e
σWt+µt−σ

2

2
t.

1.1.2. Mathematical definitions. Before we can move on with modeling finan-
cial markets, there are some definitions from stochastics that are needed (definitions
here are from [3]). In order to define a portfolio we need the notion of a predictable
process.
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Definition 1.4. A stochastic process X is said to be (Ft)t≥0-predictible if the
map (ω, t)→ Xt(ω) is P-measurable.

To be able to define the equivalent martingale measure needed for the derivation of
the Black-Scholes equation, we also need the notion of a local martingale (for details
see e.g. [3] section 1.2.4).

Definition 1.5. An adapted, right-continuous process M is an (Ft)t∈[0,T ]-local
martingale if there exists a sequence of stopping times (τn) such that

(1) The sequence τn is increasing and limn→∞ τn =∞, almost surely.
(2) For every n, the stopped process M τnχ{τn>0} is an (Ft)t∈[0,T ]-martingale.

In order to state the fundamental theorem of asset pricing, semi-martingales are
needed.

Definition 1.6. An (Ft)t≥0-semi-martingale is a càdlàg process X which can
be written as X = M + A, where M is an (Ft)t≥0-locat martingale and A is an
(Ft)t≥0-adapted càdlàg process with finite variation and value 0 at t = 0.

More precisely the semi-martingales S needed are locally bounded, meaning that
there exists a localizing sequence of stopping times such that Sτn is bounded. Finally
let us make the notion of a contingent claim (or financial derivative), which the
European call option is a form of, precise:

Definition 1.7. A contingent claim H is a square integrable FT random variable,
where T is a fixed time horizon known as the maturity.

1.1.3. Portfolios and arbitrage. For our model to make sense, there cannot
be two risk-free assets with different interest rates r1 and r2 such that r1 6= r2, since
otherwise it would be possible to borrow money at the lower interest rate and lend it
at the higher rate and thus make risk-free profit, or arbitrage. However, the number
of different stocks in a market can be any natural number d ∈ N. We can now define
a portfolio as in [3] in a market consisting of a risk-free asset and d stocks.

Definition 1.8. A portfolio or a strategy is a (d+1)-dimensional (F)t≥0-predictable
process

(π̂t = (π0
t , π

1
t , . . . , π

d
t ), t ≥ 0),

where πi denotes the number of asset i, with i = 0 being the risk-free asset. The
value of the portfolio at time t is given by the value function

Vt(π̂) :=
d∑
i=0

πitSi(t).

We shall assume that short selling is possible, i.e. that πit can be negative for all
i. If πit > 0, we say that we have a long position on the asset i, or we are long in i.
The set of portfolios we want to consider are ones where all changes in the value of
the portfolio are due to the changes in asset prices. This means that after the initial
investment at t = 0 we do not invest more or withdraw funds before t = T . Such
portfolios are called self-financing.
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Definition 1.9. A portfolio π̂ is called self-financing if it satisfies the condition,

dVt(π̂) =
d∑
i=0

πitdSi(t)

It turns out that the set of self-financing portfolios includes strategies which we
cannot except if we want to model a viable market. The set we want to be looking at
is the set of admissible strategies, which are self-financing portfolios where the value
function Vt(π̂) ≥ 0 for all t. If we would not limit the amount of money that can be
borrowed, we would admit an arbitrage opportunity.

Definition 1.10. An arbitrage opportunity is a self-financing strategy π̂ with zero
initial investment, terminal value V π̂

T ≥ 0, such that E(V π̂
T ) > 0.

In continuous time with unlimited credit you could use a doubling strategy to
make an unlimited amount of money on a finite interval [0, T ] (see theorem 10.1 in
[4]). The idea here is to invest at times (1− 1/n)T , starting by borrowing one dollar
and investing it in the stock at t = 0, if you have not earned $ 1 by t = 0.5T you
borrow double the money, i.e. $ 2. If you have earned $ 1 by t = 0.75T you stop,
otherwise you borrow again double the money, that is, $ 4. Following this strategy
you will make $1 with probability 1 by some step N ∈ N. Once you have made your
dollar, repeat the process starting at time (1 − 1/(N + 1))T . It is easy to see that
you would end up with an infinite amount of money at time t = T if such a strategy
would be permitted.

In order to state the fundamental theorem of asset pricing we need one more
definition, that is, the definition of an equivalent martingale measure [3]. This turns
out to be the link between the applied science of finance and stochastics.

Definition 1.11. An equivalent martingale measure (e.m.m.) is a probability
measure Q, equivalent to P on FT , that is, {A ∈ FT | Q(A) = 0} = {B ∈ FT | P(B) =
0}, such that the discounted prices S̃(t) = Si(t)/S0(t), t < T are local Q-martingales.

For a semi-martingale the no-arbitrage condition and the stricter no-free lunch
with vanishing risk condition are intimately tied to the existence of an equivalent
martingale measure. There are several different definitions of the no-free lunch with
vanishing risk condition and they tend to be quite complicated. The one used here
is definition 2.1.4.3 in [3]. The fundamental theorem can be stated as:

Theorem 1.12. (Fundamental Theorem.) Let S be a locally bounded semi-
martingale. There exists an equivalent martingale measure Q for S if and only if S
satisfies the no-free lunch with vanishing risk condition.

The proof is available in several sources but is quite lengthy, so it is not presented
here. It can be found for example from the book of Delbaen and Schachermayer [5]
(see Theorem 9.1.1.).

Before moving on to determining the proper prices of options, one more important
concept is needed. This is the notion of complete markets. In a complete market any
derivative or contingent claim, such as the options considered here, can be replicated
with a self-financing portfolio. When a derivative can be replicated using a self-
financing portfolio, the price of a derivative can be, given that the volatility off the
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underlying stock is understood, exactly determined. This is quite surprising, since
the value of the underlying asset only has a subjective price. The exact definition of
a complete market is quite straight forward [3].

Definition 1.13. Assume that the risk-free interest rate r is deterministic and
(Ft)t∈[0,T ] be the natural filtration. The market is complete if any contingent claim
(financial derivative) H ∈ L2(FT ) is the value of a self-financing strategy π̂ at time
t = T , i.e.

H = VT (π̂) =
d∑
i=0

πiTSi(t).

While the arbitrage-free nature of a market was linked to the existence of an
equivalent martingale measure, the completeness is linked to the uniqueness of this
measure.

Theorem 1.14. An arbitrage-free market is complete if and only if there exists
a unique probability measure Q equivalent to the objective probability measure P such
that the discounted stock prices S̃i, i = 1, . . . , d are Q-martingales.

1.2. Derivation of the Black-Scholes equation

In the Black-Scholes model we have a market consisting of two assets: a risk-
free asset with the dynamics of eq. (1.2) with constant r and a risky asset with the
dynamics of eq. (1.4). There are several well-established ways to derive the Black-
Scholes equation. I present here for completeness of presentation the important parts
of the derivation based on the e.m.m. method. Further details on the derivation can
be found for example in [3, 4]. The original derivation of Black and Scholes does
not involve any e.m.m. and is not quite as elegant [1]. The necessary results, such
as Girsanov’s theorem and the martingale representation theorem can be found for
example in the book of Karatzas and Shreve [6].

First we want to find the equivalent martingale measure, that is, a probability
measure Q for which the discounted process S̃(t) = S(t)/S0(t), t ∈ [0, T ] is a Q
martingale. An easy way to find this is to re-write the stochastic differential equation
of S̃(t)

(1.8)

{
dS̃(t) = σS̃(t)dWt + (µ− r)S̃(t)dt

S̃(0) = s0,

re-grouping the terms giving

(1.9) dS̃(t) = σS̃(t)(dWt +
(µ− r)
σ

dt)

Now by defining θ : [0, T ]× Ω→ R by

(1.10) θ =
(µ− r)
σ

and applying the Novikov’s condition as well as Girsanov’s theorem we see that B(t) =

Wt+
(µ−r)
σ
t is a Brownian motion (and thus a martingale) under the measure Q which
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is given by

(1.11) Q(A) :=

∫
A

exp
(
− θWt −

1

2
θ2t
)
dP,

and is the e.m.m. we were looking for.
The fact that this indeed is an equivalent martingale measure can be checked quite

easily by hand. To see that Q is a probability measure equivalent to P, it is enough
to check that ZT := exp(−θWT − 1

2
θ2T ) can be used as a density:

EZT =e−
σ2θ2

2
TEe−σθWT

=e−
σ2θ2

2
T 1√

2πT

∫ ∞
−∞

e−σθxe−
x2

2T dx

=
1√
2πT

∫ ∞
−∞

e−
(x+σθT )2

2T dx

=1.

Since the exponential function is strictly positive, it holds that ZT > 0 is a valid
density, and thus {A ∈ FT | Q(A) = 0} = {B ∈ FT | P(B) = 0}.

It remains to show that the discounted price process S̃ is a martingale with respect
to the measure Q given by equation (1.11). If s < t, the martingale property is

(1.12) EQ[S̃(t)|Fs] = S̃(s) almost surely,

or equivalently

(1.13) EZT S̃(t)χG = EZT S̃(s)χG

for all G ∈ Ft. To show this we start from the left hand side of equation (1.13) and
apply the projection property of conditional expectations to get

EZT S̃(t)χG = EE[ZT S̃(t)χG|Ft].
We can write this as

EE[ZT S̃(t)χG|Ft] = EE[ZT−tZtS̃(t)χG|Ft].
Taking out the Ft-measurable part we get

EZtS̃(t)E[ZT−t|Ft]χG = EZtS̃(t)χG · 1.
Again, applying the projection property we get

EZtS̃(t)χG = EE[ZtS̃(t)χG|Fs].
We can now pull χG out of the expected value ending up with

EZsS̃(s)χG = EZsS̃(s)χGE[ZT−s|Fs]

= E exp(−θWs −
1

2
θ2s)S̃(s)χGE[exp(−θW(T−s) −

1

2
θ2(T − s))|Fs]

= E exp(−θWT −
1

2
θ2T )S̃(s)χG = EZT S̃(s)χG,

which proves the martingale property.
We wish to derive a fair price for a European call option, which we can denote for

short as (S(T )−K)+. It is easy to see that the discounted price ˜(S(T )−K)+ as well
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as the martingale Mt = EQ[(S(T ) −K)+|FBt ], are square integrable, where B is the
Q-Brownian motion given by Bt = Wt + µ−r

σ
t. The martingale representation assures

that there exists an (FBt )-adapted process (Lt)t∈[0,T ] for which EQ
∫ T
0
L2
sds <∞, such

that

(1.14) ˜(S(T )−K)+ = M0 +

∫ T

0

LsdBs.

For a self-financing raiding strategy φ we could also write

(1.15) ˜(S(T )−K)+ = V0(φ) +

∫ T

0

φ(u)S̃(u)σdBu.

Now the trick is to combine equations (1.14) and (1.15) and write

0 =EQ
∣∣ ˜(S(T )−K)+ − ˜(S(T )−K)+

∣∣2
=EQ

(
M0 +

∫ T

0

LsdBs − V0(φ)−
∫ T

0

φ(u)S̃(u)σdBu

)2
Applying Itô’s isometry and the fact that the expected value of a stochastic integral
vanishes, we end up with

(1.16) 0 = EQ
(
M0 − V0(φ)

)2
+ EQ

∫ T

0

∣∣Lu − φ(u)S̃(u)σ
∣∣2du.

From this we can deduce that Q⊗ dt almost everywhere that

V0(φ) = M0,

φ(u) =
Lu

S̃(u)σ
,

Ṽt(φ) = Mt.

For the price Vt(φ) we can now write

Vt(φ) =ertEQ
[(S(T )−K)+

erT
∣∣FBt ]

=EQ
[
e−r(T−t)

(
S(t)

S(T )

S(t)
−K

)+∣∣FBt ]
=EQ

[
e−r(T−t)

(
x
S(T )

S(t)
−K

)+∣∣FBt ]∣∣∣
x=S(t)

=EQ
[
e−r(T−t)

(
x
S(T )

S(t)
−K

)+]∣∣∣
x=S(t)

,

where we used the fact that S(T )/S(t) is independent from FBt .
Next we can set

(1.17) F (t, x) := EQe
−r(T−t)(xS(T )

S(t)
−K

)+
,
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which means that Vt(φ) = F (t, S(t)). This gives us

F (t, x) =EQe
−r(T−t)(xerT S̃(T )

ertS̃(t)
−K

)+
=e−r(T−t)EQ

(
xer(T−t)eσBT−t−σ

2(T−t)
2 −K

)+
.

Introducing X = BT−t/
√
T − t, which is a standard Gaussian random variable, and

the traditional short hand notation a = T − t, we get

F (t, x) =e−raEQ
(
xeraeσ

√
aX−σ

2a
2 −K

)+
=e−ra

1√
2π

∫ ∞
−∞

(
xeraeσ

√
az−σ

2a
2 −K

)+
e−

z2

2 dz

=
1√
2π

∫ ∞
−∞

(
xeσ

√
az−σ

2a
2 −K

)+
e−

z2

2 χ{z+d2≥0}dz,

where we have

(1.18) d2 = d1 − σ
√
a with d1 =

log x
K

+ (r + σ2

2
)a

σ
√
a

.

Denoting the cumulative normal distribution by Φ(z), this can be written in the
form known as the Black-Scholes formula:

(1.19) F (t, x) = xΦ(d1)−Ke−r(T−t)Φ(d2) .

1.3. Estimation of Uncertainties

Let us assume we do a calculation using the Black-Scholes formula for the price
of a European call option for 100 Exxon stocks with maturity T and a strike price K.
Suppose the calculation gives the proper price of the option at $ 5. Now assume that
you can buy these option from the market at $ 4.5. If we keep the Black-Scholes model
assumptions of liquidity and no friction in the market, we would have an arbitrage
opportunity. However, the situation is in reality a bit more complicated. Since the
volatility between the present and the maturity of the option is not known, it has
to be estimated. The risk-free interest rate is also unknown for t > 0. The other
quantities, namely the maturity and the strike price are known exactly.

While one option would be to do a simulation, this is not the right approach here.
Computational cost is a priority, since real life arbitrage opportunities are very short
lived. Instead of running a simulation with for example 10 000 random samples,
we can derive an analytical expression for the uncertainty which only requires the
execution of a few lines of code.

What we want is a probability distribution of the proper price of the option
F (t, x). Firstly, we want to estimate such σ, δσ, r, and δr that the true volatility
has the probability distribution N (σ, (δσ)2) and the true risk-free interest rate has
the distribution N (r, (δr)2). Assuming that the uncertainties are independent and



12 1. BLACK-SCHOLES MODEL

random, we get by the general propagation of uncertainty [7] that the proper value
of the option is Gaussian with mean F (t, x) and standard deviation

(1.20) δF (t, x, σ, r) =

√(
∂F (t, x, σ, r)

∂σ
δσ

)2

+

(
∂F (t, x, σ, r)

∂r
δr

)2

,

where the partial derivatives are evaluated with the best guess values σ and r. If the
uncertainties were correlated, it would still hold that

(1.21) δF (t, x, σ, r) ≤
∣∣∣∣∂F (t, x, σ, r)

∂σ

∣∣∣∣ δσ +

∣∣∣∣∂F (t, x, σ, r)

∂r

∣∣∣∣ δr.
The partial derivatives of the price function of eq. (1.19) are

∂F (t, x, σ, r)

∂σ
= xφ(d1(σ))d′1(σ)−Ke−r(T−t)φ(d2(σ))d′2(σ)

=
1√
2π

(
xe−

d1(σ)
2

2 (
√
T − t− d1(σ)

σ
) +Ke−r(T−t)e−

d2(σ)
2

2
d1(σ)

σ

)
and

∂F (t, x, σ, r)

∂r
= xφ(d1(r))d

′
1(r) +K(T − t)e−r(T−t)Φ(d2(r))

−Ke−r(T−t)φ(d2(r))d
′
2(r)

=
1√
2π

(
xe−

d1(r)
2

2

√
T − t
σ

+K(T − t)e−r(T−t)
∫ d2(r)

−∞
e−

z2

2 dz

−Ke−r(T−t)e−
d2(σ)

2

2

√
T − t
σ

)
.



CHAPTER 2

Incomplete Markets

In this section I expand the discussion to incomplete markets, that is, to situations
where the prices of derivatives cannot be uniquely determined. By the definition of
market completeness, in a complete market any contingent claim must be the final
value of a self-financing portfolio. A simple example of an incomplete market would
be a case where there is a stochastic process determining the pay-out of a contingent
claim which is not the value of an underlying asset. A toy example illustrating this
kind of a situation would be a weather insurance, where the pay-out depends on the
temperature, say exactly in one year in Jyväskylä (see Björk Chap. 15 [4] for a similar
example). Assume that the pay-out in euros of our insurance be{

0, if T ≥ 25◦C,

25− T, otherwise,

which looks just like the pay-out of a European call option. However, this ”option”
does not have a unique price, unlike the options in the Black-Scholes model. The
underlying reason is that this option is not replicable, since we can not buy degrees
of warmth on a given day in order to hedge this claim.

For a deeper example which gives insights in to what is going on in general for
incomplete markets, we can use theorem 1.14. To find an example of an incomplete
market, we only need to find a situation where the equivalent martingale measure is
not unique.

Example 2.1. (Incomplete markets, non-unique e.m.m.) Let us assume
the stochastic basis (Ω,F ,P, (Ft))t∈[0,T ] satisfying the usual conditions (see [6]), and

a two-dimensional Brownian motion (Wt, W̃t) with respect to the filtration. Pick the

price process to be S(t) = e−σWt−σ
2

2
t for t ∈ [0, T ] be for the stock.

It is clear that S(t) is a P-martingale with respect to the filtration (Ft))t∈[0,T ]. If
we take the risk-free interest rate to be r = 0, the discounted prices are the same as
the non-discounted prices and so P is itself an equivalent martingale measure (to see
this, just replace r with 0 in eq. (1.11)).

Let θ > 0 be arbitrary and set

Hθ
t = w−θW̃t− θ

2

2
t.

Note that Wt and W̃t are independent. Now

Qθ(A) = E(χAH
θ
T )

is an equivalent martingale measure for any θ > 0, i.e. there are an infinite number
of equivalent martingale measures.

13
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Indeed the equivalence of the measures Qθ(A) and P can be seen by noting that
0 < Hθ

T <∞ P-almost surely. Therefore, if P(A) = 0, this means that χA = 0 P-a.s.
and vice versa, and clearly Qθ(A) is zero P-a.s. if and only if χA = 0 P-almost surely.
The martingale property EQθ [S(t)|Fs] = S(s) can be seen by applying the projection
property of expected values.



CHAPTER 3

Application of the Black-Scholes Model in the Chicago
Board of Options Exchange

In this chapter the Black-Scholes model is applied to options traded on the Chicago
Board of Options Exchange (CBOE). The derivative product considered here is the
SPX, which is an European call option, where the underlying risky asset is the Stan-
dard&Poor 500 index. These options are traded in large volumes and options with
a wide range of maturities and strike prices are available. The options are settled in
dollars instead of actually delivering any stocks, making this the closest thing to the
definition of a European call option used in mathematical modeling. We compare the
calculated option prices to the final prices of sold SPX options traded on June 18,
2019.

3.1. Risk-free interest rate and volatility

For the risk-free interest rate I use is the United States Government Treasury bill
rate, also known as T-bill rate. US government can be seen as having the lowest
default risk, since it has the ability to tax the world’s largest economy in order to
pay off its debt obligations. The current and historical rates are provided by the US
government in [8]. The rates fluctuate, so for the purposes here we pick the risk-free
interest rate to be

(3.1) r = 2.19± 0.22,

a range which allows for slow drift in interest rates over the maturities considered in
this work, with 2.19% representing the current interest rate on June 18.

The determination of the volatility is more problematic, since the volatility be-
tween t = 0 and t = T is not known in advance. Since volatility is not constant
over time a commonly used educated guess is to use the historical volatility (which is
exactly known) for a period which is approximately as long as the time to maturity.
Here, I used for maturities of one month or less the historical volatility of the S&P500
for the past month, for maturities between 1 and 3 months that of the past three
months, for T = 3–6 months that of past six months, for T=6–12 months that of
the past year, and finally for the longer maturities that of the past three years. The
uncertainty related to the volatility is assumed to be 10 %.

3.2. Transaction costs and dividends

In order to make meaningful comparisons to actually traded options, we need to
include two price-affecting factors. The first one is transaction costs. This can be
simply included by subtracting the cost associated with the purchase of the option
from the calculated value. For the fees I used the ones given by the brokerage firm

15
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Interactive Brokers, which trades the SPX for the lowest commercially available price
[9]. The fees used in this work were{

$0.35, for options priced under $1

$0.44, for options priced above or at $1.

One problem with the Black-Scholes model as it is, is that it does not take into account
dividends, which any viable company should pay. Since the underlying asset of the
SPX is the S&P 500 index, which includes 500 companies which all pay their dividends
at different times; some monthly, some quarterly, some annually, the dividends can
be modeled by assuming that the asset pays continuous dividends. The dividend
yield of the S&P 500 was taken to be the current 1.9%. In the Black-Scholes formula
continuous dividends can be included by replacing the stock price S(t) → S(t)e−qa

and r → r− q in d1, where q is the continuously paid dividend (see chapter 18 in [4]).

3.3. Results

The calculations were done for derivatives with all combinations of maturities
and strike prices exchanged in the CBOE on June 18, 2019. This includes 1586
different combinations of maturities and strike prices. The maturities were measured
in banking days, that is, roughly 252 days a year. Banking holidays were taken into
account. The maturities ranged from 1 day to 629 days (2.5 years). The results are
shown as plots in Appendix A. The black plus-signs denote a sold option, while the
blue area is the price according to the Black-Scholes model to 1σ accuracy according
to the eq. (1.20).

For the T = 1 maturities the higher strike price options seem to have been sold
for too high of a price, while for the lower strike prices the model agrees with the real
prices. For T=3–52 the model agrees with the data well, but slight over pricing can
be seen for the lower strike prices. The high strike options with T = 3–9 look to be
over priced. This is where the effect of the fees come into play. These options are
traded at 5–10 cents but a fee of 35 cents makes buying these undesirable. Between
T =66–252 i.e. 3–12 months there seems to have been significant arbitrage opportu-
nities. Options with strike prices above 3100 points have been systematically under
estimated. Another way to look at this is that the implied volatility of the market
is not what we estimate it to be. For the longer maturities there is no significant
difference between the model prices and the real world prices.

In conclusion, the SPX options traded in the CBOE seem to be largely arbitrage
free. However, an investor with the possibility to short the S&P 500 could have
possibly made arbitrage on June 18, 2019 by buying the SPX options with K > 3100
and T=3–12 months.



APPENDIX A

Data
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