
Ossi Jormakka

APPROACHES AND CHALLENGES OF AUTOMATIC
VULNERABILITY CLASSIFICATION USING NATURAL
LANGUAGE PROCESSING AND MACHINE
LEARNING TECHNIQUES

UNIVERSITY OF JYVÄSKYLÄ

FACULTY OF INFORMATION TECHNOLOGY
2019

ABSTRACT

Jormakka, Ossi
Approaches and Challenges of Automatic Vulnerability Classification using
Natural Language Processing and Machine Learning Techniques
University of Jyväskylä, 2019, 58 + 4 pp.
Information Systems, Cyber Security, Master’s Thesis
Supervisor: Costin, Andrei

Automated vulnerability detection and prediction of vulnerability details may
help security specialists to prioritize bug reports and getting earlier fixes to
security related software defects. This thesis is about finding vulnerable-like
descriptions from any text and classifying vulnerability severities and weakness
types. Vulnerability severities are measured using Common Vulnerability
Scoring System. Common Weakness Enumeration is a hierarchical list of
weakness types that each vulnerability can be classified to. The scoring and
weakness type information for known vulnerabilities are available on National
Vulnerability Database. Many existing research about vulnerability text-only
classification is limited to a narrow area, for example, specific version of
Common Vulnerability Scoring System. This thesis gives an overview of
classifying bug reports with severities and weakness types altogether. The Scikit-
learn library’s interfaces were used extensively to implement text preprocessing,
machine learning classification, and experiment validation. Experiments include
stemming, lemmatization, and numerous text vectorization options and
algorithms provided by the library.

The results show that the keyword-based classifier using word 2-grams
works as well as One-class Support Vector Machine with lemmatizing using the
Term Frequency–Inverse Document Frequency preprocessing method in
vulnerability detection. Vulnerability severities can be predicted better for
Common Vulnerability Scoring System version 2 than its version 3. The Linear
Support Vector Machine classifier got the highest F1-score in predicting both
Common Vulnerability Scoring System and Common Weakness Enumeration.
This thesis also presents a summary on the latest data available on the National
Vulnerability Database data feeds.

Keywords: Common Vulnerability Scoring System, Common Weakness
Enumeration, Classification, Scikit-learn, CVE, CVSS, CWE, ML, Machine
Learning, NLP, Natural Language Processing

TIIVISTELMÄ

Jormakka, Ossi
Automaattinen haavoittuvuusluokittelu luonnollisen tekstinkäsittelyn ja
koneoppimisen menetelmillä
Jyväskylä: Jyväskylän yliopisto, 2019, 58 + 4 s.
Tietojenkäsittelytiede, Kyberturvallisuus, pro gradu -tutkielma
Ohjaaja: Costin, Andrei

Automatisoitu haavoittuvuuksien etsiminen ja haavoittuvuuksien yksityiskoh-
tien ennustaminen voi auttaa asiantuntijoita priorisoimaan ohjelmistovirheitä,
joka voi johtaa nopeampaan virheenkorjaukseen. Tässä työssä käytettiin Nati-
onal Vulnerability Database -tietokantaa tutkittaessa kuinka haavoittuvuusku-
vauksien perusteella voidaan havaita haavoittuvuuksia mistä tahansa tekstistä
sekä ennustaa haavoittuvuuksien vakavuus ja haavoittuvuustyyppi. Common
Vulnerability Scoring System -järjestelmä tarjoaa tavan mitata haavoittuvuuk-
sien vakavuuksia. Common Weakness Enumeration -järjestelmä tarjoaa hierark-
kisen luokittelun yleisiin haavoittuvuustyyppeihin. Olemassa olevat tutkimuk-
set haavoittuvuuksien tekstiluokittelussa usein rajoittuvat kapeaan alueeseen,
esimerkiksi vain johonkin Common Vulnerability Scoring System -järjestelmän
versioon. Tämä työ antaa yleiskuvan virheraporttien luokittelusta sekä vakavuu-
den ja haavoittuvuustyypin ennustamisesta. Työssä pyrittiin käyttämään laajasti
tunnettuja tekstin esikäsittelymenetelmiä sekä monia muita Scikit-learn -kirjas-
ton tarjoamia luonnollisen tekstin käsittelyn vaihtoehtoja ja koneoppimismene-
telmiä.

Tulokset osoittavat 2-grammin avainsanapohjaisen menetelmän olevan
yhtä tehokas kuin yhden luokan tukivektorikone kun esikäsittelynä käytetään
Term Frequency – Inverse Document Frequency -painotusta ja sanojen taivutus-
muotojen muuttamista perusmuotoon (lemmatizing). Haavoittuvuuksien vaka-
vuuden ennustamisessa saadaan parempia tuloksia Common Vulnerability Sco-
ring System -järjestelmän versiolle 2 kuin järjestelmän versiolle 3. Lineaarinen
tukivekorikone saavutti korkeimman F1-tuloksen haavoittuvuuksien vakavuu-
den ja haavoittuvuustyypin luokittelussa. Lisäksi tässä työssä on yhteenveto uu-
simpaan National Vulnerability Database -tietokannan tietoon.

Asiasanat: tiedonlouhinta, luokittelu, koneoppiminen, luonnollisen kielen pro-
sessointi, haavoittuvuus

FIGURES

Figure 1. Examples of CVSS vectors (left: CVSS3, right: CVSS2) 10
Figure 2. CWE hierarchy by Research Concept View .. 14
Figure 3. CPE Formatted String Binding .. 15
Figure 4. Machine Learning Classifier Model ... 17
Figure 5. Scikit-learn Algorithm Cheat-Sheet .. 18
Figure 6. Natural Language Processing Steps (Wijayasekara et al., 2014) 26
Figure 7. Example of Parsed NVD Data ... 33
Figure 8. CVSS2 Data Distribution by Vectors .. 34
Figure 9. CVSS3 Data Distribution by Vectors .. 35
Figure 10. Distribution of CVSS Counts Based on Vulnerability Severity 36
Figure 11. Original Dataset CWE Distribution .. 36
Figure 12. Distribution of Root CWEs on Complete Dataset 37
Figure 13. CWE Distribution of Selected Root Items .. 38
Figure 14. Example of Potentially Vulnerable Defect .. 40
Figure 15. OneClassSVM AUC-score and Dataset Size ... 45
Figure 16. Exhaustive Search of OneClassSVM Hyperparameters 47
Figure 17. Classifier Performance with different Data sizes in CVSS2, CVSS3, and
CWE Classification .. 49
Figure 18. Negative Effect of Undersampling in CVSS2 and CVSS3 Metrics 50

TABLES

Table 1. CVSS2 Metrics and Classifications ... 11
Table 2. CVSS3 Metrics and Classifications ... 12
Table 3. OneClassSVM hyperparameters .. 19
Table 4. IsolationForest hyperparameters .. 20
Table 5. LocalOutlierFactor hyperparameters ... 21
Table 6. SGDClassifier hyperparameters ... 22
Table 7. LinearSVC hyperparameters ... 23
Table 8. Vectorizer parameters .. 28
Table 9. Vulnerabilities by Severity .. 35
Table 10. Details of Discarded and Deprecated CWEs .. 39
Table 11. List of Bug Report Databases .. 40
Table 12. F1-score Averaging Options .. 42
Table 13. Vulnerability Detection Performance .. 44
Table 14. Keyword-based Classifier Performance with N-gram Ranges 45
Table 15. OCSVM+TFIDF+Lemmatizing Performance with N-gram Ranges ... 46
Table 16. AUC-score of Keyword-based Classifier 2-gram Counts 46
Table 17. Effect of Minimum Document Frequency Parameter 47
Table 18. Effect of CPE Names Removal on Classification AUC-score 48
Table 19. CVSS2 Score Classification with Vectorizers .. 48

Table 20. CVSS3 Score Classification with Vectorizers .. 48
Table 21. CWE Classification with Vectorizers ... 49
Table 22. CVSS and CWE Classification Performance with N-gram Ranges 50
Table 23. Effect of the min_df Parameter in Multiclass Classification 51
Table 24. Effect of CPE Names Removal on Multiclass Classification F1-score . 51

TABLE OF CONTENTS

ABSTRACT .. 2

TIIVISTELMÄ ... 3

FIGURES .. 4

TABLES .. 4

TABLE OF CONTENTS .. 6

1 AUTOMATIC VULNERABILITY CLASSIFICATION 8

2 OVERVIEW OF CVSS, CWE, AND CPE 10
2.1 Common Vulnerability Scoring System ... 10

2.1.1 CVSS2 Base Metrics .. 10
2.1.2 CVSS3 Base Metrics .. 12

2.2 Common Weakness Enumeration ... 13
2.3 Common Platform Enumeration ... 14

3 OVERVIEW OF MACHINE LEARNING TECHNIQUES 16
3.1 Machine Learning Algorithms ... 18
3.2 One-class Support Vector Machine ... 19
3.3 Isolation Forest ... 20
3.4 Local Outlier Factor ... 20
3.5 Naïve Bayes .. 21
3.6 Stochastic Gradient Descent ... 22
3.7 Linear Support Vector Machine... 22
3.8 K-Nearest Neighbors ... 23
3.9 Scikit-learn Programming Interfaces .. 24

4 OVERVIEW OF TEXT PREPROCESSING TECHNIQUES 25
4.1 Term Frequency – Inverse Document Frequency 27
4.2 Stemming and Lemmatization ... 27
4.3 Text Vectorization .. 28

5 RELATED WORK .. 30

6 METHODS AND DATA ... 33
6.1 NVD Data .. 33

6.2 Defect Datasets ... 40
6.3 Metrics ... 41

7 RESULTS.. 44
7.1 Vulnerability Detection ... 44
7.2 CVSS Scoring and CWE Classification ... 48

8 CONCLUSION ... 52
8.1 Discussion ... 53
8.2 Future Work ... 54

REFERENCES ... 55

APPENDIX 1: SOURCE CODE .. 59

APPENDIX 2: VULNERABILITY DETECTION EXPERIMENTS 61

APPENDIX 3: CVSS CLASSIFICATION EXPERIMENTS 62

1 AUTOMATIC VULNERABILITY CLASSIFICATION

In field of computer security a vulnerability is weakness that can be exploited by
an attacker. Weakness can be any type of defect in a computer system that could
lead information security to be compromised. A vulnerability which is unknown
to the parties that are responsible of correcting them is called a zero-day
vulnerability. Defect reports are often written to a system where the responsible
parties can study, reproduce, prioritize, and monitor the status of defect
corrections. These reports are short, a few sentences long descriptions about
software defects. Some defect reports may expose information about potential
vulnerabilities which should be taken into account in prioritization or public
visibility. Some defect reporting systems are publicly available. According to
Arnold et al. (2009) and Wijayasekara et al. (2012) findings it takes a longer time
to incorporate and distribute non-security related software patches than those
that are identified as vulnerabilities when they were reported. Wright (2013) et
al. concluded that after examining the bug database for the MySQL database
software a significant number of previously unknown vulnerabilities were
identified.

The National Vulnerability Database (NVD) contains information about
vulnerability descriptions, security checklists, security related software flaws,
misconfigurations, product names, and impact metrics. The NVD database is
maintained by the U.S. government and the data is freely available at their data
feeds.1 The data feeds are updated at least daily. The vulnerability descriptions
are relatively short sentences about vulnerabilities. These sentences can be used
to identify potential vulnerabilities in any other text, including defect reports in
defect tracking systems. The security specialists evaluate vulnerability severities
and root causes, and this information is also available among the NVD data.
Vulnerability severities are expressed using Common Vulnerability Scoring
System (CVSS) which is based on a several classifications. Vulnerability root
causes are expressed using Common Weakness Enumeration (CWE) which is a
hierarchical tree of hundreds of weakness types. Each vulnerability is identified

1 https://nvd.nist.gov/vuln/data-feeds

9

using Common Vulnerabilities and Exposures (CVE) identifier number. CVE
Numbering Authorities are organizations worldwide that are authorized to
assign CVE identifier numbers. Common Platform Enumeration (CPE) is a
structured naming scheme for systems, software, and packages. The CPE
information is included with the other vulnerability information via the NVD
data feeds.

In this thesis, the NVD data is used to detect vulnerabilities from text. A few
defect databases were selected for study to find security related reports from all
the reports. The NVD data is also used to learn and to predict selected machine
learning algorithms to classify the CVSS and CWE classifications. The Scikit-learn
library was selected to implement classification and to measure the machine
learning algorithm performance. Scikit-learn is a free software machine learning
library for the Python programming language. The Jupyter Notebook tool was
selected to implement all the experiments. The tool is an open-source web
application that allows to create and share documents that contain live code,
narrative text, and visualizations. The Anaconda platform was selected to
manage all the required software packages for this study. Anaconda is a free
distribution of the Python and R programming languages for scientific
computing that simplifies package management and deployment.

This work is a preliminary study towards a tool which detects and ranks
vulnerabilities and also estimates root causes of vulnerabilities using a short
human written text information only. The most challenging task to achieve this
is to convert human written text suitable for machine learning algorithms. These
preprocessing tasks transform the text to features that machine learning
algorithms can process. To handle this, a variety of Scikit-learn vectorizers were
compared. Another challenge is to detect vulnerabilities from text, knowing
vulnerability descriptions only. This is called a one-class or unary classification
problem. Traditional statistical or machine learning classification concerns binary
classification which requires both positive and negative samples in learning data.
It is claimed that one-class classification is successfully applied in numerous
realms of academic research and industrial applications (Wang et al., 2017). The
results indicate that Scikit-learn’s OneClassSVM classifier is capable detecting
vulnerabilities as good as the keyword based classifier which was implemented
during this work. The problem still remains with relatively high number of false
positives. The CVSS classification is mostly a multiclass classification problem
but some of the metrics may have two classes only. The results show that CVSS
classification is successful with linear classification algorithms having F1-score
around 0,816. The challenge is that there are several metrics to classify to gain the
CVSS score. Automatic CWE classification is also viable using the same methods
as CVSS classification, but the challenge is that there are dozens of separate
classes and having low number of samples in many class. An approach was taken
in this study to find root categories of those CWE classes. The results in this thesis
shares similarities with Han et al. (2017) study estimating CVSS2 scores using
word embeddings and 1-layer convolutional neural network.

10

2 OVERVIEW OF CVSS, CWE, AND CPE

CVSS consists of metrics and classifications, CWE forms a hierarchy of many
weakness types, and CPE is a structured scheme which are explained more
detailed in this chapter.

2.1 Common Vulnerability Scoring System

Common Vulnerability Scoring System (CVSS) is an open industry standard for
assessing the severity of security vulnerabilities. The system is maintained by
Forum of Incident Response and Security Teams organization. The system maps
severity scores to vulnerabilities which allows security specialists to prioritize
responses and resources according to threat. Scores are calculated using a
formula on several metrics that approximates ease of exploit and the impact of
exploit. The scores range is from 0 to 10, with 10 being the most severe. CVSS is
composed of three metric groups: Base, Temporal, and Environmental. Each
metric group consists of a set of metrics. The set of metrics are expressed in a
form of vector. Each metric is abbreviated and separated by a colon character as
shown in Figure 1 example CVSS vectors. The base score represents the innate
characteristics of a vulnerability. The temporal score represents metrics that
change over time due to events which are external to a vulnerability. The
environmental score modifies the impact depending on the environment a
vulnerability is exposed. Vulnerability databases typically provides the base
scores but no temporal or environmental scores. In this thesis the base score is
used only.

Figure 1. Examples of CVSS vectors (left: CVSS3, right: CVSS2)

2.1.1 CVSS2 Base Metrics

The specification of CVSS version 2 was published in June 2007. The base metrics
consist of six separate metrics. Each metric has predefined classifications, used in
a formula to calculate the actual severity score. The CVSS2 metrics and
classifications are shown in Table 1. The Access Vector, Access Complexity, and
Authentication metrics assess how the vulnerability is accessed and if some extra
conditions are required to exploit it. The three impact metrics measures how a
vulnerability affects an IT asset. The impacts are independent with each other
and describes the loss of confidentiality, integrity, and availability. (CVSS2, 2007).

11

Table 1. CVSS2 Metrics and Classifications
Metric Description Classifications
Access Vector (AV) “Reflects how the

vulnerability is exploited.”
Network (N),
Adjacent (A),
Local (L)

Access Complexity (AC) “Measures the complexity
of the attack required to
exploit.”

High (H),
Medium (M),
Low (L)

Authentication (Au) “Measures the number of
times an attacker must
authenticate to a target in
order to exploit a
vulnerability.”

None (N),
Single (S),
Multiple (M)

Confidentiality Impact (C) “Measures the impact on
confidentiality of a
successfully exploited
vulnerability.”

Complete (C),
Partial (P),
None (N)

Integrity Impact (I) “Measures the impact to
integrity of a successfully
exploited vulnerability.”

Complete (C),
Partial (P),
None (N)

Availability Impact (A) “Measures the impact to
availability of a successfully
exploited vulnerability.”

Complete (C),
Partial (P),
None (N)

The CVSS2 score is calculated based on the six metrics with classifications as
illustrated in Table 1. The CVSS2 base score consists of exploitability and impact
metrics and is calculated as follows:

“Impactconf = case ConfidentialityImpact of N: 0.0, P: 0.275, C: 0.660

ImpactInteg = case IntegrityImpact of N: 0.0, P: 0.275, C: 0.660

ImpactAvail = case AvailabilityImpact of N: 0.0, P: 0.275, C: 0.660

Impact = 10.41 × (1– (1– Impactconf) × (1– ImpactInteg) × (1 – ImpactAvail))

f(impact)= 0 if Impact=0, 1.176 otherwise

AV = case AccessVector of L: 0.395, A: 0.646, N: 1.0

AC = case AccessComplexity of H: 0.35, M: 0.61, L: 0.71

Au= case Authentication of M: 0.45, S 0.56, N: 0.704

Expl = 20 × AV × AC × Au

BaseScore = round_to_1_decimal(((0.6× Impact) + (0.4× Expl) – 1.5)×
f(Impact))”

12

2.1.2 CVSS3 Base Metrics

The specification of CVSS version 3 was published in June 2015. The major
difference to the previous version is that there are eight separate metrics to
classify to calculate the actual score. The CVSS version 3 base metrics and
classifications are shown in Table 2. (CVSS3, 2015).

Table 2. CVSS3 Metrics and Classifications
Metric Description Classifications Numeric
Attack Vector (AV) “Reflects the context by

which vulnerability
exploitation is possible.”

Network (N),
Adjacent (A),
Local (L),
Physical (P)

0,85,
0,62,
0,55,
0,2

Attack Complexity (AC) “Measures the complexity
of the attack required to
exploit.”

High (H),
Low (L)

0,44,
0,77

Privileges Required (PR) “Describes the level of
privileges an attacker must
possess before successfully
exploiting the
vulnerability.”

High (H),
Low (L),
None (N)

0,27 / 0,5,
0,62 / 0,68,
0,85

User Interaction (UI) “Captures the requirement
for a user, other than the
attacker, to participate in the
successful compromise of
the vulnerable component.”

Required (R),
None (N)

0,62,
0,85

Scope (S) “Scope refers to the
collection of privileges
defined by a computing
authority. These privileges
are assigned based on some
method of identification and
authorization.”

Changed (C),
Unchanged (U)

Modifies
Privileges
Required if
Scope is
Changed

Confidentiality Impact (C) “Measures the impact to
confidentiality of a
successfully exploited
vulnerability.”

High (H),
Low (L),
None (N)

0,56,
0,22,
0

Integrity Impact (I) “Measures the impact to
integrity of a successfully
exploited vulnerability. “

High (H),
Low (L),
None (N)

0,56,
0,22,
0

Availability Impact (A) “Measures the impact to
availability of a successfully
exploited vulnerability.”

High (H),
Low (L),
None (N)

0,56,
0,22,
0

The numeric values in Table 2 are used in equations to calculate the actual score.
The base score is a function of the Impact and Exploitability sub score equations.

13

The score metric modifies classifications’ numeric values and also the equations
concerning Impact and BaseScore calculations. The CVSS3 base score is
calculated as follows:

“ImpactBase = 1- [(1 - ImpactConf) × (1 - ImpactInteg)× (1 - ImpactAvail)]

Exploitability = 8.22× AV × AC × PR × UI

𝐼𝑓(𝑆𝑐𝑜𝑝𝑒 = 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑):

𝐼𝑚𝑝𝑎𝑐𝑡 = 6.42× ImpactBase

𝐼𝑓(𝑆𝑐𝑜𝑝𝑒 = 𝐶ℎ𝑎𝑛𝑔𝑒𝑑):

Impact = 7.52× [ImpactBase - 0.029]- 3.25× [ImpactBase - 0.02]15

𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 = 𝐼𝑓(𝐼𝑚𝑝𝑎𝑐𝑡 ≤ 0), 0 𝑒𝑙𝑠𝑒:

𝐼𝑓(𝑆𝑐𝑜𝑝𝑒 = 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑):

𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 = Roundup(Minimum [(Impact + Exploitability) , 10])

𝐼𝑓(𝑆𝑐𝑜𝑝𝑒 = 𝐶ℎ𝑎𝑛𝑔𝑒𝑑):

𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 = Roundup(Minimum [1.08×(Impact +Exploitability), 10])”

In this thesis the cvsslib’s calculate_vector method was used to calculate the
actual CVSS2 and CVSS3 scores.

2.2 Common Weakness Enumeration

Common Weakness Enumeration is a hierarchical list of software weakness types.
The CWE is maintained by nonprofit MITRE organization. The latest version 3.2
was published in January 2019. A new version is published approximately
annually. The hierarchical lists are divided based on the concept views: Research,
Development, and Architectural views. The research concept view describes
weaknesses and dependencies with each other to identify theoretical gaps within
CWEs. The development concept view organizes weaknesses related to software
development. The architectural concept view organizes weaknesses according to
common architectural security tactics. Its goal is to identify potential mistakes
that can be made in a software development process. In this thesis the Research
Concept view was selected as a basis to resolve CWE parent items. An example
of the research hierarchy is shown in Figure 2.

14

Figure 2. CWE hierarchy by Research Concept View2

All the research concept view’s root level classes are shown in Figure 2. The tree-
like relationships between weaknesses that exist at different levels of abstraction
are shown. At the highest level, classes exist to group weaknesses. The classes are
weaknesses that are described at more abstract level than the base weaknesses.
A variant weakness is described at a very low level of detail, typically limited to
a specific language or technology. Also the category type of CWE exists but not
in the research concept view. In the view there are 806 CWE entries out of the
total 1131 entries.

2.3 Common Platform Enumeration

The CPE is a structured naming scheme for systems, software, and packages. The
CPE includes a formal name format, a method for checking names, and a
description format for binding text to a name. The CPE Dictionary is hosted and
maintained by NIST organization which is part of the Security Content
Automation Protocol (SCAP). The latest version 2.3 was published in 2013. The
CPE is considered to be an industry standard, originally defined by MITRE
organization. The CPE formatted string binding is shown in Figure 3. All eleven
attribute values must appear in the formatted string binding.

2 https://cwe.mitre.org/data/definitions/1000.html

15

cpe:2.3:<part>:<vendor>:<product>:<version>:<update>:<edition>:<language>:<sw
_edition>:<target_sw>:<target_hw>:<other>

Figure 3. CPE Formatted String Binding

The format specifies in which platform vulnerabilities have been found. More
detailed explanation about the format is the following:

 part: The system type, one of the following:
a = Application
h = Hardware
o = Operating System

 vendor: Organization name who developed the product.
 product: Product name specified by vendor.
 version: Version identifier of the product.
 update: Update name of a version specified by vendor, for example, “R2”

for Windows 2012.
 edition: Vendor specified software edition, for example, “server” or “x86”.
 language: Language of a software, for example, Finnish.
 sw_edition: Software Edition defined by vendor to tailor a particular

market or class of end users.
 target_sw: Software computing environment where the product operates.
 target_hw: Instruction set architecture the product is being identified, for

example, “x86”.
 other: Any other descriptive information which does not fit in any other

attribute.

The complete CPE dictionary is freely available at the NVD website which is
updated at least daily3. The CPEs which are mapped to vulnerabilities are listed
among the NVD data feeds. The CPE formatted string binding within the NVD
data feeds were used in this thesis.

3 https://nvd.nist.gov/products/cpe

16

3 OVERVIEW OF MACHINE LEARNING
TECHNIQUES

Text classification or text categorization is the task of assigning one or more
predefined classes on unstructured text documents according to their content.
Text classification is used for multiple purposes in many different fields: for
example, news stories can be organized by subject topics, academic papers can
be classified by technical domains, and patient reports in health-care can be
indexed in multiple categories. A spam filter can classify an e-mail message as
spam or non-spam. Text classification can be manual, simple rule or word based,
or it can use machine learning methods to categorize text documents. Based on
previous research, text classification performs better using machine learning
approaches than a word based approach (Yang, 2000). Structured data refers to
information with a high degree of organization which is more easily computable
and handled by a computer. Unstructured data is information that does not have
a pre-defined data model or organisation of data is not pre-defined. Semi-
structured data is a form of structured data that does not conform to the formal
structure of data models or forms but contains tags or other markers to separate
semantic elements and enforce hierarchies of records and fields within the data.
(Kantardzic, 2011).

Machine learning methods in automatic text classification shares
similarities with the fields of pattern recognition, statistics and data mining.
Pattern recognition is a branch of machine learning that focuses on the
recognition of patterns and regularities in data. Statistics is a branch of
mathematics dealing with the collection, analysis, interpretation, presentation
and organization of data. Data mining is the computing process of discovering
patterns in large data sets. The goal is to discover a novel information from data.
Machine learning can be roughly divided into two wide categories: Supervised
or unsupervised learning depending on the learning signal. Supervised learning
is the task learning from labelled training data. Unsupervised learning is the task
to describe hidden structure in unlabelled training data. Another field of data
mining is anomaly detection. The idea is that anomalies compared to a normal
baselined data can be somehow detected. Anomaly detection can use supervised
or unsupervised machine learning techniques. The Scikit-learn user guide
divides anomaly detection into outlier and novelty detection. In outlier detection,
the training data contains outliers which are far from the others, and estimators
ignore the deviant observations. In novelty detection, the training data is not
polluted by outliers (Scikit, 2019).

In terminology of machine learning, classification is usually considered as
an instance of supervised learning. The corresponding unsupervised procedure
is known as clustering. In classification, the categories are known beforehand and
given in advance for each training document. In clustering, groups of samples
that naturally belong together are sought. (Witten & Frank, 2005). Binary or
binomial classification is the task of classifying the elements of a given set into

17

two groups. Multiclass or multinomial classification is the problem of classifying
instances into three or more classes. In multi-label classification, multiple labels
are predicted for each sample. In one-class classification or unary classification
objects of a specific class are tried to be identified from all objects by learning
from a training set containing only the objects of that class. A unary classifier
performance remains relatively stable when a dataset class imbalance increases
whereas a binary classifier performance decreases (Bellinger et al., 2012). A
balanced dataset is the one that contains equal or almost equal number of
samples of each class.

In data mining, dataset is a matrix which consists of rows of samples and
columns of features. In text classification, the number of features is typically
hundreds or thousands. This type of dataset is called a high dimensional dataset
(Kantardzic, 2011). High number of features often leads to sparsity which means
having a value of zero for the most instances. Text classification methods must
be able to handle the sparsity of data. Sparsity can be taken into account at the
feature extraction phase by implementing a dimension reduction technique. A
general machine learning classifier model is shown in Figure 4. It represents how
unstructured text is transformed into features, first in the training phase and then
in the prediction phase.

Figure 4. Machine Learning Classifier Model

In training, the features are provided to a machine learning algorithm with labels
of the correct classifying results. Machine learning algorithm builds a model
internally which is able to distinguish labels seen in the training data. In
prediction, based on the trained model a classifier is able to predict labels in a
new unseen data provided. A classifier can predict only such labels seen in the
training data. The model in Figure 4 illustrates a supervised learning paradigm.
In case of one-class classification, the data provided at learning phase contains
samples only from one class. A one-class classifier can predict how far a data
point is compared to the training data. In this sense the approach can be said as
semi-supervised novelty detection (Scikit, 2019). In this thesis traditional
machine learning techniques were used only but newer neural network based
techniques exists to solve natural language classification problems as well.

18

3.1 Machine Learning Algorithms

There are many machine learning algorithms available depending on the
problem type the algorithm needs to solve. Kantardzic (2011) divides the
problem types into six primary data mining tasks: Classification, Regression,
Clustering, Summarization, Dependency Modelling, and Change and Deviation
Detection. As stated earlier, classification tries to classify items to predefined
classes as clustering seeks to identify a finite set of categories. Regression tries to
map data items to real-value prediction variables. Summarization is a task that
involves methods for finding a compact description for a dataset. Dependency
modelling is for finding a local model that describes significant dependencies
between data variables. Change and Deviation Detection is used to discover the
most significant changes in a dataset. The Scikit-learn user guide (2019) provides
a cheat-sheet to select preferable algorithm for a machine learning problem as
presented in Figure 5.

Figure 5. Scikit-learn Algorithm Cheat-Sheet

The cheat-sheet instructs to select an approach solving a machine learning
problem. The approaches are not implicit but rather guidelines to lead to the right
direction. In this thesis, Naïve Bayes, Stochastic Gradient Descent, Linear
Support Vector Machine, and K-nearest Neighbors classification approaches
were studied. The Scikit-learn library also provides approaches to for anomaly
detection problems. The following approaches were studied: One-class Support
Vector Machine, IsolationForest, and LocalOutlierFactor. In this chapter these
algorithms are briefly explained from the view of using the programming
interfaces, not implementing the actual algorithms.

19

3.2 One-class Support Vector Machine

Schölkopf et al. (2001) introduced One-class Support Vector Machine (OCSVM)
to solve a novelty detection problem. In novelty detection, at prediction phase
the classifier tries to determine whether a data point can be distinguished from
the original data points seen at training phase. OCSVM is an extension of the
standard binary Support Vector Machine (SVM). Wang et al. (2017) pointed out
the importance of selecting the classifier hyperparameters which has a significant
influence on its performance. In machine learning, a hyperparameter is a
parameter whose value is set before the learning process begins. According to
Wang et al. (2017) findings the most important hyperparameters which need to
be properly tuned are the following: “The regularization coefficient ν and the
Gaussian kernel width σ. The ν controls the upper bound of rejected target data,
which is often tuned to reject noise during training, while σ controls the
smoothness of decision boundary. An overly large σ or small σ will cause
underfitting and overfitting respectively. Improper ν will make the decision
boundary distorted by noisy target data or reject excessive target data.” In
machine learning, underfitting is the classifier decision boundary that is too
simple to explain the variance in data. Overfitting is a too complex decision
boundary. The both circumstance leads to bad classification performance.

The Scikit-learn library provides OCSVM implementation in the svm
module’s OneClassSVM class. The implementation is based on the libsvm
implementation. The libsvm is an open-source machine learning library written
in C++. The most important OneClassSVM’s hyperparameters are introduced in
Table 3, full hyperparameter list can be found from the user guide4.

Table 3. OneClassSVM hyperparameters
Hyperparameter Description Possible values
kernel “Specifies the kernel type to be used in the

algorithm. If a callable is given it is used to
precompute the kernel matrix.”

‘linear’, ‘rbf’, ‘poly’,
‘sigmoid’,
‘precomputed’, callable

gamma “Kernel coefficient for ‘rbf’, ‘poly’ and
‘sigmoid’. If gamma='scale' it uses 1 /
(n_features * X.var()) as value of gamma.”

float

tol “Tolerance for stopping criterion.” float
nu “The fraction of training errors and

support vectors. Should be in the interval
[0, 1]. By default 0.5 will be taken.”

float

The kernel parameter adjusts the function how a support vector hyperplane is
calculated. The default value is ‘rbf’ which stands for radial basis function. In this
thesis, different parameter values were tested during hyperparameter tuning.

4 https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

20

3.3 Isolation Forest

IsolationForest is an unsupervised ensemble learning method performing outlier
detection in high-dimensional datasets. The method isolates samples by
randomly selecting features and split values between the maximum and
minimum of the selected features. It can be represented by a tree structure. (Scikit,
2019). The method detects anomalies based on the concept of isolation without
employing a distance or density measure. The method returns the anomaly score
of each sample. The Scikit-learn library provides many hyperparameters to affect
the functionality. Some of the parameters are explained in Table 4, full
hyperparameter list can be found from the user guide.5

Table 4. IsolationForest hyperparameters
Hyperparameter Description Possible values
contamination “The proportion of outliers in the dataset.

Used at learning to define the threshold on
the decision function.”

float in (0., 0.5), optional
(default=0.1)

n_estimators “The number of base estimators in the
ensemble.”

int, optional
(default=100)

bootstrap “Whether or not the individual trees are fit
on random subsets of the training data
sampled with replacement.”

boolean, optional
(default=False)

According to Liu et al. (2012) Isolation Forest outperforms OneClassSVM and
Local Outlier Factor methods detecting global anomalies in performance having
a low linear time-complexity and a small memory-requirement. Isolation forest
fails to detect local anomalies. They also found that using smaller subsamples
builds better isolation models.

3.4 Local Outlier Factor

Local Outlier Factor (LOF) is an unsupervised algorithm proposed by Breunig et
al. (2000) for finding anomalous data points by measuring the local deviation of
a given data point with respect to its neighbors. The algorithm can detect local
outliers efficiently from large datasets. An anomaly score of each sample is called
Local Outlier Factor. The score tells how isolated the object is compared to
surrounding neighbors. Locality is given by nearest neighbors and the distance
is used to estimate the local density. The Scikit-learn library provides numerous

5 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationFo-

rest.html

21

hyperparameters for LOF. Some hyperparameters are introduced in Table 5, full
list of hyperparameters can be found from the user guide.6

Table 5. LocalOutlierFactor hyperparameters
Hyperparameter Description Possible values
n_neighbors “Number of neighbors to use by default

for k-neighbors queries. If n_neighbors is
larger than the number of samples
provided, all samples will be used.”

int, optional (default=20)

algorithm “Algorithm used to compute the nearest
neighbors: ‘ball_tree’ will use BallTree
‘kd_tree’ will use KDTree. ‘brute’ will use
a brute-force search. ‘auto’ will attempt to
decide the most appropriate algorithm
based on the learning values.”

{‘auto’, ‘ball_tree’,
‘kd_tree’, ‘brute’},
optional

contamination “The proportion of outliers in the dataset.
Used at learning to define the threshold on
the decision function.”

float in (0., 0.5), optional
(default=0.1)

novelty “By default, LocalOutlierFactor is only
meant to be used for outlier detection. Set
novelty to True if you want to use
LocalOutlierFactor for novelty detection.”

boolean, default False

3.5 Naïve Bayes

According to the Scikit-learn user guide Naive Bayes methods are a set of
supervised learning algorithms based on applying Bayes’ theorem. A Naive
Bayes classifier assumes that the presence of a particular feature is unrelated to
the presence of any other feature. Naive Bayes classifiers have worked well in
many real-world situations such as document classification and spam filtering. It
is alleged that Naïve Bayes requires a small amount of training data to estimate
the necessary parameters. Naive Bayes learners and classifiers can be fast
compared to more sophisticated methods. Naive Bayes is also known as a bad
estimator, so the probability results are not trustworthy. The Scikit-learn library
provides many variants of Naïve Bayes implementations. The Multinomial
Naïve Bayes (MultinomialNB) classifier was selected in this thesis as the classifier
has been used in text classification. (Scikit, 2019).

6 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlier-

Factor.html

22

3.6 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is supervised discriminative learning of linear
classifiers under convex loss functions. The Scikit-learn user guide tells that SGD
has been applied to large-scale and sparse machine learning problems often
encountered in text classification and natural language processing. The classifier
can scale to very large matrices with more than 10^5 training samples and more
than 10^5 features. The Scikit-learn’s SGDClassifier supports multiclass
classification by combining multiple binary classifiers in a one versus all (OVA)
scheme. (Scikit, 2019). The actual classifier can be selected as a hyperparameter.
In Table 6 there are some hyperparameters introduced, full listing can be found
from the user guide.7

Table 6. SGDClassifier hyperparameters
Hyperparameter Description Possible values
loss “The loss function to be used. ‘hinge’ gives a

linear SVM. The ‘log’ loss gives logistic
regression, a probabilistic classifier.
‘squared_hinge’ is like hinge but is quadratically
penalized. ‘perceptron’ is the linear loss used by
the perceptron algorithm. The other losses are
designed for regression instead of classification.”

str, default:
‘hinge’, ‘log’,
‘modified_huber’,
‘squared_hinge’,
‘perceptron’

alpha “Constant that multiplies the regularization term.
Also used to compute learning rate when set to
‘optimal’.”

float, default=1e-
4

tol “The stopping criterion. If it is not None, the
iterations will stop when (loss > best_loss - tol) for
n_iter_no_change consecutive epochs.”

float or None,
optional
(default=1e-3)

shuffle “Whether or not the training data should be
shuffled after each epoch (iteration).”

bool, optional.
Default: True

3.7 Linear Support Vector Machine

Support Vector Machines (SVM) are a set of supervised learning methods used
for classification, regression and outlier detection. The Scikit-learn user guide
(2019) says that SVM is effective in high dimensional spaces even in the case of
very high number of features compared to number of samples, but the classifier
may suffer overfitting. SVM is also memory efficient. SVMs supports specifying
different kernel functions for the decision function. Overfitting can be avoided
by choosing a kernel and a regularization term. SVM do not directly provide

7 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClas-

sifier.html

23

probability estimates. In this thesis the linear kernel was selected for further
study. The Scikit-learn’s LinearSVC provides the linear SVM. The
implementation is based on the liblinear library which is more efficient than the
libsvm library based implementation. The LinearSVC supports multiclass
classification according to OVA scheme. In Table 7 some important LinearSVC
hyperparameters are introduced, full list of hyperparameters can be found from
the user guide.8

Table 7. LinearSVC hyperparameters
Hyperparameter Description Possible values
penalty “Specifies the norm used in the penalization. The

‘l2’ penalty is the standard used in SVC. The ‘l1’
leads to coefficient vectors that are sparse.”

string, ‘l1’ or ‘l2’
(default=’l2’)

loss “Specifies the loss function. ‘hinge’ is the standard
SVM loss while ‘squared_hinge’ is the square of
the hinge loss.”

string, ‘hinge’ or
‘squared_hinge’
(default=’square
d_hinge’)

dual “Select the algorithm to either solve the dual or
primal optimization problem. Prefer dual=False
when n_samples > n_features.”

bool,
(default=True)

tol “Tolerance for stopping criteria.” float, optional
(default=1e-4)

C “Penalty parameter C of the error term.” float, optional
(default=1.0)

The implementation uses a random number generator to select features when
fitting the model. It might lead to different results for the same input data. If that
happens a smaller value of the tol parameter must be attempted.

3.8 K-Nearest Neighbors

The Scikit-learn user guide (2019) calls Nearest Neighbors classification as
instance based learning or non-generalizing learning method. The method does
not attempt to generate a general internal model but stores instances of the
training data instead. Classification is computed as a simple majority vote of the
nearest neighbors of each point. A query point is then assigned the data class that
has the most representatives within the nearest neighbors of the point. The
algorithm is simple but the method has been successfully applied in number of
classification and regression problems such as handwritten digits or satellite
image scenes. Nearest Neighbors methods may be useful in classification
situations where the decision boundary is very irregular. (Scikit, 2019). The
Scikit-learn library provides the KNeighborsClassifier object to implement this
type of classifier.

8 https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

24

3.9 Scikit-learn Programming Interfaces

In the Scikit-learn library, an estimator for classification is a Python class that
implements the fit and the predict methods. Fitting an estimator means that the
learning data is provided as parameter. The testing data is provided as parameter
to be able to predict the classes to which unseen samples belong. As a coding
convention, the Scikit-learn estimators follow certain guidelines to make its
behavior more predictive and developer friendly.

The library provides Pipeline class to apply sequentially a list of transforms
and a final estimator. The intermediate steps must implement the fit and the
transform methods. Only a final estimator needs to implement the predict
method. The purpose of a pipeline is to ease the processing steps that can be
cross-validated.

To implement a new Scikit-learn compatible estimator, the class needs to
inherit Scikit-learn’s BaseEstimator and also one of the estimator type classes. The
type classes are ClassifierMixin, RegressorMixin, ClusterMixin, and
TransformerMixin. In case of an estimator for classification the fit, predict, and
score methods need to be overwritten. Further information about implementing
estimators can be found from the Scikit-learn’s developer’s guide.9

GridSearchCV is a useful class for tuning an estimator hyperparameters or
options in a pipeline. The class does exhaustive search over specified parameter
values for an estimator. GridSearchCV uses the fit and score methods. It also may
use the methods predict, predict_proba, decision_function, transform, and
inverse_transform if they are implemented in the estimator used. It does cross-
validated search over a parameter grid. Another option is to use the
ParameterGrid class directly passing each grid element as a parameter of the
estimator’s set_params method.

The metrics package contains useful methods to calculate classification
scores, for example, the f1_score and roc_auc_score methods. The package also
contains the classification_report method to print a report of classification results
and the confusion_matrix method which returns a matrix of classification results.
Scikit-learn also provides many vectorizer implementations for preprocessing
text data.

9 https://scikit-learn.org/stable/developers/contributing.html#rolling-your-own-esti-

mator

25

4 OVERVIEW OF TEXT PREPROCESSING
TECHNIQUES

History of Natural Language Processing (NLP) began in 1950 when Alan Turing
handled this topic in his paper Computing Machinery and Intelligence. Since
then the NLP has taken its place in fields of computer science, artificial
intelligence and computational linguistics. NLP consists of processes required to
interact between computer and human languages. In other terms, NLP is feature
engineering to transform unstructured text to features and machine learning
algorithms for further processing. Kantardzic (2011) splits feature engineering
into data preparation and data reduction phases. He estimates that over 50% of
effort is used in these phases in the data mining process. Data preparation
concerns transformation of raw data, normalizations, data smoothing, handling
missing data, and dealing with outliers. Data reduction concerns feature
reduction, dimensionality reduction, and value reduction. Feature reduction is
important since most of the real world data mining applications are characterized
by high dimensional data, where not all of the features are important.
Dimensionality reduction refers to mathematical transformations to reduce
features, for example, the Karhunen – Loeve’s Principal Component Analysis.
Value reduction is a reduction in the number of discrete values for a given feature.
This is also known as feature discretization. In this thesis the value reduction is
implemented transforming CVSS scores into four severity levels.

In NLP, syntactic analysis is used to evaluate how the natural language fits
with the grammatical rules. Some widely known NLP techniques are:
Lemmatization is converting various inflected forms of a word into a single form.
Morphological segmentation is dividing words into individual units called
morphemes. In word segmentation a large piece of continuous text is divided
into distinct units. Part-of-speech tagging is used to identify the part of speech
for every word. Parsing involves undertaking grammatical analysis for the
provided sentence. Stemming is cutting the inflected words to their root form.
Tokenization is splitting the text into a sequence of N-gram tokens. N-gram
means combining a sequence of N-words into tokens. For example, a 2-gram
token contains two subsequent words. A stop word is a commonly used word
which might not contain any useful information, such as English words “the”,
“a”, “an”, “in”, et cetera. Named entity recognition is a technique that tries to
map items in the text to proper names. Many of the introduced techniques are
implemented in the Stanford CoreNLP toolkit (Manning et al, 2014). Another
toolkit which used in this thesis is Natural Language Toolkit (NLTK). It is a
platform for building Python programs to work with written natural text. In
Figure 6 there is Wijayasekara et al. (2014) technique to process and classify bug
reports to regular bugs and bugs that are security related. These preprocessing
steps can be used in other text classification purposes as well.

26

Figure 6. Natural Language Processing Steps (Wijayasekara et al., 2014)

In the figure, Step 1 represents the basic unstructured text extraction. The short
description is a title which can be 5-10 words long. The long description is a defect
report a few sentences about a bug. In step 2 the syntactical information is
extracted in the form of single unique words which are converted to lower case.
The extraction process removes words and symbols that might not carry a
significant amount of information. This is done by tokenizing the description into
a bag-of-words representation and then removing stop words. A simple form of
bag-of-words representation is to keep count how many times each word appear
in a document. In Step 3 similar words are combined and stemming is performed
to identify the most frequent words. Step 4 illustrates how the features are passed
to a classifier which makes prediction concerning the text given as input of the
whole process. Steps 2 and 3 represents the data preparation and reduction
phases in data mining. Wijayasekara et al. (2012) used Wordnet to identify
synonyms to combine them. WordNet is a large lexical database of English. They
used Porter stemming to cut words into their basic form. To combine words that
carry similar information further reduces the number of features in matrix.

27

4.1 Term Frequency – Inverse Document Frequency

Term Frequency–Inverse Document Frequency (TFIDF), is a numerical statistic
weighting scheme to reflect how important a word is to a document in a
collection or corpus. In linguistics, a corpus is a large and structured set of texts.
TFIDF is a very popular weighting scheme used in digital library systems. TFIDF
can be calculated as follows:

 𝑑(𝑖) = 𝑇𝐹(𝑤𝑖, 𝑑) × 𝐼𝐷𝐹(𝑤𝑖) (4.1)

 𝐼𝐷𝐹(𝑤) = log (

|஽|

஽ி(௪)
) (4.2)

Joachims (1996) explained how TFIDF works as follows: “The term frequency
𝑇𝐹(𝑤𝑖, 𝑑) is the number of times word w occurs in document d. The document
frequency 𝐷𝐹(𝑤) is the number of documents in which the word w occurs at least
once. The inverse document frequency 𝐼𝐷𝐹(𝑤) can be calculated from the
document frequency. |D| is the total number of documents. The inverse
document frequency of a word is low if it occurs in many documents and highest
if the word occurs in only once. The value 𝑑(𝑖) of feature wi for document d is
then calculated as the product. 𝑑(𝑖) is called the weight of word wi in document
d. This weighting scheme says that a word wi is an important indexing term for
document d if it occurs frequently in it. On the other hand, words which occur in
many documents are rated less important due to their low inverse document
frequency.” His research focused text categorization using Naïve Bayes and
TFIDF classifiers.

4.2 Stemming and Lemmatization

Stemming is a crude heuristic process that cuts off the ends of words in the hope
of correctly transforming words into its root form. The original stemming
algorithm was introduced in 1979 in the Computer Laboratory, Cambridge
England. Porter Stemming algorithm is written and maintained by its author,
Martin Porter. In this thesis, the NLTK library’s Snowball Stemmer was used
which implements the Porter stemmer algorithm (Porter, 1980).

Another approach determining a stem of a word is lemmatization.
Lemmatization is process of determining the dictionary form of a word based on
its intended meaning. It may use a dictionary for word mappings or rule-based
approaches. According Camacho-Collados and Pilehvar (2018) research a simple
tokenization works equally or better than lemmatization or multiword grouping
for text classification with neural network based classifiers. In this thesis, the
NLTK library’s WordnetLemmatizer was used.

28

4.3 Text Vectorization

The Scikit-learn library provides many helpful classes in feature extraction from
text. In Scikit-learn, the process of turning text documents into numerical features
is called vectorization. Feature extraction differs from feature selection: feature
extraction transforms arbitrary data into numerical features usable for machine
learning. Feature selection is a machine learning technique applied on these
features. (Scikit, 2019). Scikit-learn’s CountVectorizer provides a basic bag-of-
words representation of features. The TfidfVectorizer class provides a TFIDF
representation of features. In Table 8 some of important vectorizer parameters
are introduced, full list of parameters are available in the user guide.10

Table 8. Vectorizer parameters
Parameter Description Possible values
stop_words “If ‘english’, a built-in stop word list for English is

used. If a list, that list is assumed to contain stop
words, all of which will be removed from the resulting
tokens. If None, no stop words will be used. The
max_df parameter can be set to a value in the range
[0.7, 1.0] to automatically detect and filter stop words
based on intra corpus document frequency of terms.”

string
{‘english’}, list,
or None
(default)

lowercase “Convert all characters to lowercase before
tokenizing.”

boolean, True
by default

ngram_range “The lower and upper boundary of the range of n-
values for different N-grams to be extracted. All values
of n such that min_n <= n <= max_n will be used.”

tuple (min_n,
max_n) Default:
(1, 1)

min_df “When building the vocabulary ignore terms that have
a document frequency strictly lower than the given
threshold. If float, the parameter represents a
proportion of documents, integer absolute counts.”

float in range
[0.0, 1.0] or int,
default=1

token_pattern “Regular expression denoting what constitutes a
token. By default it selects tokens of 2 or more
alphanumeric characters. Punctuation is completely
ignored and always treated as a token separator.”

string, Default:
r'\b[^\d\W]+
\b'

Stop words are assumed uninformative representing the content and can be
removed to avoid them being used in prediction. Stop word lists may contain
words that could include important information, for example “vulnerability”.
Stop word lists are a simple tool managing noise. (Nothman et al., 2018). In this
thesis the token pattern’s regular expression is changed from default so that only
at least three characters long alphanumerical words are extracted as features.

10 https://scikit-learn.org/stable/modules/feature_extraction.html

29

The Scikit-learn built-in vectorizers do not account for potential misspellings or
word derivations but the functionality can be added by customizing a tokenizer
or analyzer. The Scikit-learn user guide (2019) instructs that instead of passing
customized methods as constructor parameters more advisable way is to inherit
the class and override the member methods: build_preprocessor, build_tokenizer,
and build_analyzer. The basic functionality of the member methods are
described more detailed in the user guide. 11

11 https://scikit-learn.org/stable/modules/feature_extraction.html

30

5 RELATED WORK

Jacob J. Tyo (2016) concluded in his thesis that performance of each classifier
varied greatly between datasets but the Naïve Bayes classifier outperformed all
other classifiers in all cases while SVM classifiers were always among the best
performing. In the research, three separate NASA’s defect databases used as
datasets. The research focused detecting hidden impact bugs using supervised
and unsupervised machine learning approaches. A hidden impact bug can be
defined as vulnerability identified as such after the bug had been disclosed to the
public. The outcome of this study was that while unsupervised approach
performed well, it was not as effective as the supervised method, achieving a G-
Score of only 0,715 where the best supervised approach achieved G-Score of 0,903.
The research suggests to continue to explore the generalizability of vulnerability
profiles and open source bug database empirical studies should be performed.
As an alternative, the research proposes continuing anomaly detection approach
towards multiclass classification treating each class of the multiclass problem as
a one-class anomaly detection problem. According to the research there are no
prior work using unsupervised machine learning to classify software security
bug reports exists.

Miyamoto et al. (2015) compared the following algorithms: Naïve Bayes
Classifier, Latent Dirichlet Allocation, Latent Semantic Indexing, and Supervised
Latent Dirichlet Allocation (SLDA) to estimate the CVSS score. They used NVD
vulnerability descriptions as a dataset. Their finding was that the SLDA
algorithm is the most efficient. They proved even better results adding an annual
weight to the algorithm. They concluded that their method cannot detect
completely novel vulnerabilities. They also observed that if information about
CWE were assigned to the vulnerability, it might be possible to improve accuracy.
So, they speculated that it might be possible to create a two-step method which
first estimates the CWE-ID from the description and then estimate the CVSS base
metrics using their method.

Lamkamfi et al. (2011) found that Naïve Bayes Multinomial classifier is able
to achieve stable accuracy the fastest, having only about 250 bug reports of each
severity at training phase. They studied GNOME and Eclipse defect databases to
predict severity of bug reports but not in the sense of vulnerabilities or security.
They study Naïve Bayes, K-Nearest Neighbor, and Support Vector Machines
(SVM) approaches.

Bozorgi et al. (2010) explored OSVDB and Mitre CVE databases for the most
likely exploited vulnerabilities. They used the SVM classifier to distinguish the
data into two classes. They found that many of the features are irrelevant but a
lot of information is contained in text fields. They used a bag-of-words
representation for each text field to transform the text to features.
Peters et al. (2017) developed a tool to find security related bug reports using a
few open source project’s defect databases. They used stop-word removal and
TFIDF preprocessing techniques and compared Random Forest, Naïve Bayes,

31

Logistic Regression, Multilayer Perceptron, and K-Nearest Neighbors machine
learning algorithms. Their results show that the selection of machine learning
algorithm varies between the databases. The tool handles the class imbalance
problem. Data is said to suffer from class imbalance problem when the class
distributions are highly imbalanced. In this context, many classification learning
algorithms have low predictive accuracy for infrequent class.

Han et al. (2017) studied predicting CVSS2 scores based on NVD
vulnerability descriptions. They divided the vulnerabilities into four classes by
severity from critical to low. In their approach, instead of relying on manual
feature engineering, they used word embeddings and a one-layer shallow
Convolutional Neural Network (CNN) to automatically capture discriminative
word and sentence features of vulnerability descriptions for predicting
vulnerability severity. They adopted an undersampling strategy to balance the
training and testing datasets. They compared their method to TFIDF+SVM, word
embeddings+SVM, word embeddings+2-layer CNN, and word
embeddings+CNN with Long Short Term Memory (LSTM). Their method
outperformed the rival methods having F1-score averaged by severity classes
0,816. Word embedding is the collective name for techniques where words or
phrases from the vocabulary are mapped to vectors of real numbers. It involves
a mathematical embedding from a space with many dimensions per word to a
continuous vector space with a much lower dimension. CNN and LSTM are
neural network approaches in machine learning. Originally CNN was designed
to map image data to an output variable. LSTM was proposed in 1997 by Sepp
Hochreiter and Jürgen Schmidhuber to deal with the exploding and vanishing
gradient problems.

Another way finding vulnerabilities in addition to crawling through defect
texts is to scan the source code. As defect reports may contain code snippets
within the text, Wijayasekara et al. (2012) used a static code analyser to create
features in addition to text preprocessing techniques. Li et al. (2018) developed a
tool using neural network techniques to detect potential vulnerabilities in source
code. The tool is limited to C/C++ programming languages only.

Sanguino and Uetz (2017) analysed CPE dictionary and CVE feeds. They
developed a method that recommends a prioritized list of CPE identifiers for a
given software product. Based on their observations there are four major issues:
CVE entries without CPE references, software products without assigned CPEs,
typographical errors, and a lack of synchronization between both datasets may
lead to incorrect results output of Vulnerability Management Systems. They
propose that NIST, which is responsible for maintaining these repositories,
should define a mechanism to overcome these issues.

Ruohonen and Leppänen (2018) studied textual information retrieval techniques
to map CVEs to CWEs. Based on the NVD information they attempted to assign
CWEs to vulnerabilities in four software products that can be found from the
Snyk database. They used traditional text pre-processing techniques and four

32

weighting systems, including TFIDF, 1-3 grams, and latent semantic analysis to
map CWE to vulnerabilities. They got poor precision results but it cannot be
generalized to all repositories or programming languages. They found that
simple keyword searches based on CVE and CWE identifiers are more robust.
Their observation were, that the choice over particular security-related corpora
has likely a strong effect upon the vulnerability-CWE mappings and CWEs are
not very similar with respect to each other. Even though unigrams gave the best
results the trigrams “denial of service” and “NULL pointer dereference”, for
example, should attain higher weights than any of the other N-grams.

33

6 METHODS AND DATA

NVD database was used to study CVSS and CWE classification and also to learn
one-class classifiers. To study unary classification, a few defect databases of open
source projects were collected. The security related issues were manually labelled
by a security specialist to confirm vulnerability keywords can be found from
defect reports. Automatic CVSS and CWE classifications were run using NVD
data only.

6.1 NVD Data

NVD provides vulnerability data feeds in the JSON format, specified in NVD
JSON 1.0 Schema. The data feeds are available in compressed format where files
are divided on a yearly basis. Also, the recently added and lately modified
vulnerabilities are available in separate files. In this thesis, the latest
vulnerabilities and all vulnerability data from 2018 and until end of April in 2019
were downloaded. 18755 vulnerabilities were used as datasets in experiments. In
Figure 7 there is an example of a single item of vulnerability data which is
downloaded and parsed for further usage. According to Miyamoto et al. (2015)
assigning higher weights to recently published CVEs gives better classification
results. Also, by narrowing down the dataset size it might save computational
power.

Figure 7. Example of Parsed NVD Data

The data structure presented is a Python list in which items are as follows, listed
from the top: CVE identifier, Vulnerability text, CWE class, CVSS2 vector, CVSS2
Score, CVSS3 vector, CVSS3 score, and CPE vendor and component names.
Vulnerability texts were preprocessed and passed to machine learning
algorithms to predict classifications. The CVSS vectors and CWE classes were
used to validate the classifier results. CPE names, 6571 of them, were studied to
compare whether excluding or including them have better results. According to
Han et al. (2017) vulnerability texts are concise, average length is only 37.5 ± 15.4
words. Not all vulnerabilities have CVSS2, CVSS3 and CWE given in whole
dataset. In Figure 8 the data distribution of CVSS2 metrics are presented. There
were total of 18124 vulnerabilities that had CVSS2 vector given in whole dataset.

34

Figure 8. CVSS2 Data Distribution by Vectors

In this thesis, the classification approach tries to predict vectors metric by metric
and then calculating the score. In CVSS2 there are six classification predictions to
be made based on metrics to calculate the actual score. As Figure 8 indicates there
is high class imbalance in the attack vector, access complexity, and authentication
metrics. The class “Multiple” of Authentication metric was completely discarded
because there are only 4 observations of them. On the attack vector and access
complexity metrics there are over 300 observations of low number classes. Major
number of vulnerabilities can be exploited from network, having low access
complexity with no authentication required by attacker. Partial loss of
confidentiality, integrity, and availability are the major impacts the
vulnerabilities have. This average type of vulnerability base score can be
calculated as 7,5.

 In Figure 9 the CVSS3 data distribution by vectors is shown. There are
17928 vulnerabilities in total the CVSS3 vector is given in whole dataset. The
classification approach makes eight predictions before the actual CVSS3 score can
be calculated. As the figure indicates, there are some classes that have low
number of observations but none have to be discarded. On the attack vector there
are physical vulnerabilities only 177 and exploitable from adjacent network only
a little over 300 observations. Surprisingly, with low impact on availability there
are only about 300 vulnerabilities. Most of the vulnerabilities are exploitable from
network, having low attack complexity with no privileges required from attacker
and having no user interaction required. Mostly, as the scope is not changed the
authorization privileges are not elevated by vulnerable components. The major
impact is high on confidentiality, integrity, and availability for CVSS3 estimated
vulnerabilities. This type of average vulnerability gives base score of 9,8.

0

2000

4000

6000

8000

10000

12000

14000

16000

Lo
ca

l

Ad
ja

ce
nt

 N
et

w
or

k

N
et

w
or

k

Lo
w

M
ed

iu
m

H
ig

h

N
on

e

Si
ng

le

M
ul

tip
le

N
on

e

Pa
rt

ia
l

Co
m

pl
et

e

N
on

e

Pa
rt

ia
l

Co
m

pl
et

e

N
on

e

Pa
rt

ia
l

Co
m

pl
et

e

Attack Vector Access
Complexity

Authentication Confidentality
Impact

Integrity Impact Availability
Impact

Co
un

t

CVSS2 Metric

35

Figure 9. CVSS3 Data Distribution by Vectors

Han et al. (2017) categorized vulnerabilities into four groups by severity as
indicated in Table 9. Atlassian security advisories classify vulnerabilities into
four severity levels based on CVSS scores. They estimated vulnerability severities
based on these categories. In this thesis the severity categories are used in
classification after calculating the actual score. In Figure 10 the vulnerabilities by
severity are shown in CVSS2 and CVSS3 scores.

Table 9. Vulnerabilities by Severity
Range Description Category
9.0 – 10.0 “Vulnerabilities this range are usually exploited

straightforwardly since the attacker does not need any special
authentication credentials or knowledge about individual
victims.”

critical

7.0 – 8.9 “Vulnerabilities are usually difficult to exploit. Exploitation of
such Vulnerabilities may result in elevated privileges, significant
downtime, or compromise of the confidentiality, integrity, or
availability.”

high

4.0 – 6.9 “Vulnerabilities typically require the attacker to reside on the
same local network as the victim or manipulate individual
victims via social engineering tactics. Impact of such
vulnerabilities is usually mitigated by factors such as user
privileges, authentication requirements.”

medium

0.1 – 3.9 “Vulnerabilities in the “low” level have very little impact on an
enterprise’s business. Local or physical system access is always
required for exploiting.”

low

0

2000

4000

6000

8000

10000

12000

14000

16000
Lo

ca
l

Ad
ja

ce
nt

…

N
et

w
or

k

Ph
ys

ic
al

Lo
w

H
ig

h

N
on

e

Lo
w

H
ig

h

N
on

e

Re
qu

ire
d

U
nc

ha
ng

ed

Ch
an

ge
d

N
on

e

Lo
w

H
ig

h

N
on

e

Lo
w

H
ig

h

N
on

e

Lo
w

H
ig

h

AV AC PR UI S C I A

Count

CVSS3 Metric

36

Figure 10. Distribution of CVSS Counts Based on Vulnerability Severity

In this thesis, in CVSS2 score the 11946 vulnerabilities fell into medium category
but the rest vulnerabilities were between 1000-3000. In CVSS3 score there were
163 vulnerabilities in low category, 6984 vulnerabilities in medium, 8187
vulnerabilities in high, and 2590 vulnerabilities in critical severity.

There are 18755 vulnerabilities and 105 different CWEs given. In Figure 11
the distribution of CWEs is listed. There are 38 CWEs which are assigned less
than 10 times. In top 5 CWEs there 8228 vulnerabilities out of all 18775.

Figure 11. Original Dataset CWE Distribution

0
2000
4000
6000
8000

10000
12000

low medium high critical

CVSS2

0

2000

4000

6000

8000

low medium high critical

CVSS3

0 500 1000 1500 2000
CWE-79: Improper Neutralization of Input During…

CWE-284: Improper Access Control
CWE-125: Out-of-bounds Read

CWE-352: Cross-Site Request Forgery
CWE-22: Improper Limitation of a Pathname to a…

CWE-77: Improper Neutralization of Special…
CWE-787: Out-of-bounds Write

CWE-434: Unrestricted Upload of File with…
CWE-78: Improper Neutralization of Special…

CWE-310: Cryptographic Issues
CWE-502: Deserialization of Untrusted Data

CWE-275: Permission Issues
CWE-74: Improper Neutralization of Special…

CWE-362: Concurrent Execution using Shared…
CWE-532: Information Exposure Through Log Files

CWE-326: Inadequate Encryption Strength
CWE-129: Improper Validation of Array Index

CWE-185: Incorrect Regular Expression
CWE-388: 7PK - Errors

CWE-427: Uncontrolled Search Path Element
CWE-134: Use of Externally-Controlled Format String

CWE-338: Use of Cryptographically Weak Pseudo-…
CWE-345: Insufficient Verification of Data Authenticity

CWE-417: Channel and Path Errors
CWE-358: Improperly Implemented Security Check…

CWE-613: Insufficient Session Expiration
CWE-665: Improper Initialization

CWE-172: Encoding Error
CWE-749: Exposed Dangerous Method or Function

CWE-913: Improper Control of Dynamically-Managed…
CWE-171: Cleansing, Canonicalization, and…

CWE-216: Containment Errors
CWE-405: Asymmetric Resource Consumption

CWE-642: External Control of Critical State Data
CWE-707: Improper Enforcement of Message or Data…

CWE-371: State Issues

Count

W
ea

kn
es

s

37

The top 5 original dataset CWEs consists of Improper Neutralization of Input
During Web Page Generation, Improper Restriction of Operations within the
Bounds of a Memory Buffer, Improper Input Validation, Improper Access
Control, and Information Exposure. In this thesis, an attempt to balance the CWE
data by finding root categories of low number CWEs was taken: If there were less
than ten times CWE assigned a search for root category was attempted. This is
implemented in the CweFinder class which can be found from Appendix 1. The
CWE hierarchy is available in different formats separated in three different views.
The research concept view was used in this thesis only. In Figure 12 there is the
distribution of root CWEs of the complete dataset presented.

Figure 12. Distribution of Root CWEs on Complete Dataset

In the Research Concept view the root CWEs concentrates mainly around four
major weakness types as shown in Figure 12:

 CWE-693: Protection Mechanism Failure
 CWE-707: Improper Enforcement of Message or Data Structure
 CWE-118: Incorrect Access of Indexable Resource
 CWE-664: Improper Control of a Resource Through its Lifetime.

After finding root CWEs for the complete dataset, there were two root items
assigned two times only: Information Exposure Through Log Files and
Allocation of File Descriptors. After completely discarding CWEs less or equal
than ten in numbers the data ended up having 18753 vulnerabilities in 70
different CWEs. The 10-fold cross-validation method requires at least ten
observations in each class. The data distribution is presented in Figure 13 which
were used in the experiments. The completely discarded CWEs are shown in
Table 10. A closer look on the discarded CWEs it reveals many deprecated
categories or suggested for deprecation on upcoming versions. There were 631

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Co
un

t

Weakness

38

empty CWEs and 121 CWEs labelled ‘NVD-CWE-noinfo’ discarded completely
as well as they were not describing any vulnerability causes.

Figure 13. CWE Distribution of Selected Root Items

There were 32 vulnerabilities which were rejected for some reason, for example,
rejected by CNA or duplicates which do not contain any useful information for
prediction. These vulnerabilities were discarded from the dataset. Also, there
were 41 vulnerabilities disputed or rejected by CNA which however contains
useful descriptions but this single word was removed. These vulnerability
descriptions starts with “** DISPUTED **” or “** REJECT **”. Unwanted common
words were removed from vulnerability descriptions to make distinction better
between a defect and vulnerability. The following words removed in addition to
Scikit-learn’s default stop words: “issue”, “defect”, “bug”, “fault”, “flaw”,
“mistake”, “error”, “version”, “system”, “because”, and “before”.

0 500 1000 1500 2000

CWE-79: Improper Neutralization of Input During…
CWE-284: Improper Access Control

CWE-125: Out-of-bounds Read
CWE-352: Cross-Site Request Forgery

CWE-22: Improper Limitation of a Pathname to a…
CWE-77: Improper Neutralization of Special…

CWE-787: Out-of-bounds Write
CWE-434: Unrestricted Upload of File with…

CWE-78: Improper Neutralization of Special…
CWE-310: Cryptographic Issues

CWE-502: Deserialization of Untrusted Data
CWE-275: Permission Issues

CWE-74: Improper Neutralization of Special…
CWE-362: Concurrent Execution using Shared…

CWE-532: Information Exposure Through Log Files
CWE-326: Inadequate Encryption Strength
CWE-664: Improper Control of a Resource…

CWE-693: Protection Mechanism Failure
CWE-189: Numeric Errors

CWE-428: Unquoted Search Path or Element
CWE-191: Integer Underflow

CWE-327: Use of a Broken or Risky Cryptographic…
CWE-93: Improper Neutralization of CRLF…

CWE-88: Argument Injection or Modification

Count

W
ea

kn
es

s

39

Table 10. Details of Discarded and Deprecated CWEs
ID Name Description ∑
CWE-18 “CWE CATEGORY: Source

Code”
“This entry is being considered for
deprecation.”

1

CWE-398 “CWE CATEGORY: 7PK –
Code Quality”

“Poor code quality leads to unpredictable
behaviour. From a user's perspective that often
manifests itself as poor usability.”

1

CWE-371 “CWE CATEGORY: State
Issues”

“Weaknesses in this category are related to
improper management of system state.”

1

CWE-199 “CWE:CATEGORY:
Information Management”

“Weaknesses in this category are related to
improper handling of sensitive information.”

1

CWE-534 “DEPRECATED:
Information Exposure
Through Debug Log Files”

“This entry has been deprecated because its
abstraction was too low-level. See CWE-532.”

2

CWE-769 “DEPRECATED:
Uncontrolled File
Descriptor Consumption”

“This entry has been deprecated because it was
a duplicate of CWE-774. All content has been
transferred to CWE-774.”

2

CWE-171 “CWE CATEGORY:
Cleansing,
Canonicalization, and
Comparison Errors”

“Weaknesses in this category are related to
improper handling of data within protection
mechanisms that attempt to perform
neutralization for untrusted data.”

2

CWE-754 “Improper Check for
Unusual or Exceptional
Conditions”

“The software does not check or improperly
checks for unusual or exceptional conditions
that are not expected to occur frequently
during day to day operation of the software.”

6

CWE-17 “CWE CATEGORY: Code” “This entry is being considered for
deprecation.”

7

CWE-91 “XML Injection” “Entry might need to be deprecated or
converted to a general category.”

7

CWE-358 “Improperly Implemented
Security Check for
Standard”

“The software does not implement or
incorrectly implements one or more security-
relevant checks as specified by the design of a
standardized algorithm, protocol, or
technique.”

7

CWE-444 “Inconsistent Interpretation
of HTTP Requests ('HTTP
Request Smuggling')”

“When malformed or abnormal HTTP requests
are interpreted by one or more entities in the
data flow between the user and the web server,
such as a proxy or firewall, they can be
interpreted inconsistently, allowing the
attacker to "smuggle" a request to one device
without the other device being aware of it.”

8

CWE-682 “Incorrect Calculation” “The software performs a calculation that
generates incorrect or unintended results that
are later used in security-critical decisions or
resource management.”

8

CWE-417 “CWE CATEGORY:
Channel and Path Errors”

“This category is being considered for
deprecation.”

9

CWE-346 “Origin Validation Error” “The software does not properly verify that the
source of data or communication is valid.”

9

40

6.2 Defect Datasets

Defect databases were used to measure one-class classification performance. The
NVD vulnerability descriptions were used at learning phase and defect databases
were used to predict. In Table 11 there are open source projects defect datasets
introduced (Peters et al., 2017) which were used in this study.

Table 11. List of Bug Report Databases
Project Domain Start Date End Date ∑
Chromium “Web browser called Chrome.” Aug 30 2008 Jun 11 2010 41940
Wicket “Component-based web

application framework for the
Java programming.”

Oct 20 2006 Nov 9 2014 1000

Ambari “Hadoop management web UI
backed by its RESTful APIs.”

Sep 26 2011 Aug 8 2014 1000

Camel “A rule-based routing and
mediation engine.”

Jul 8 2007 Sep 18 2013 1000

Derby “A relational database
management system.”

Sep 28 2004 Sep 17 2014 1000

The databases contains all together 351 security labelled defect reports and the
rest are non-security related, normal defect reports. To make sure the security
related reports contain a real vulnerability keywords, security specialist
manually labelled these items and 148 items were labelled as potentially
vulnerable. 200 randomly selected samples per database, non-security related
defect reports were used as a testing set and the potentially vulnerable items were
added on the top of that. As a result the testing tests size of 1148 defect reports
were used in one-class classification experiments. In Figure 14 there is an
example of manually labelled defect which is potentially vulnerable.

Figure 14. Example of Potentially Vulnerable Defect

41

6.3 Metrics

The metrics introduced in this chapter are popular metrics to measure and
validate classification performance. There are four different outcomes where
unary and binary classification can lead to in defect classification (Witten & Frank,
2005, p. 162):

 True Positive (TP) is correctly classified potentially vulnerable defect.
 True Negative (TN) is correctly classified normal defect.
 False Positive (FP) is incorrectly classified potentially vulnerable defect.
 False Negative (FN) is incorrectly classified normal defect.

In optimal case, all predictions are correctly classified and there are no incorrectly
classified samples. Gates and Taylor (2007) argued a system can be completely
useless due to high number of false positives even if all the correctly classified
samples are found. Even though their research was about anomalous intrusion
detection the same analogy applies here: the false positive rate should not be
higher than 1%. The outcomes of classification measures can be used to calculate
the true negative rate (TNR or specificity), true positive rate (TPR, recall or
sensitivity), false positive rate (FPR), precision, accuracy, F1-score (F1), G-score
(G), Matthews Correlation Coefficient (MCC), and Area Under Curve of Receiver
Operating Characteristic (AUC) as follows:

 𝑇𝑁𝑅 =

்ே

்ே ା ி௉
 (6.3)

 𝑇𝑃𝑅 = 𝑟𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ ା ிே
 (6.4)

 𝐹𝑃𝑅 =

்௉

ி௉ ା ்ே
 (6.5)

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

்௉

்௉ ା ி௉
 (6.6)

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

்ே ା ்௉

்ே ା ி௉ ା ்௉ ା ிே
 (6.7)

 𝐹1 =

ଶ × ௥௘௖௔௟௟ × ௣௥௘௖௜௦௜௢௡

௥௘௖௔௟௟ ା ௣௥௘௖௜௦௜௢௡
 (6.8)

 𝐺 = ඥ𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 (6.9)

𝑀𝐶𝐶 =
்௉×்ேିி ×ிே

ඥ(்௉ାி)(்௉ାி)(்ேାி௉)(்ேାி)
 (6.8)

42

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅൫𝐹𝑃𝑅ିଵ(𝑥)൯𝑑𝑥

ଵ

௫ୀ଴
 (6.9)

Accuracy, the proportion of correct classifications among all classifications, is a
very simple and intuitive measure but in classification and anomaly detection it
might lead to too optimistic results. In this sense recall and precision are better
measures to describe performance. As a single value of performance is pursued,
F1-score is a harmonic mean of precision and recall which suits for binary and
multiclass classification. F1-score reaches its best value at 1 and worst at 0. G-
score is geometric mean of precision and recall. However, in literature F1-score
is more common. F1-score does not take into account the class imbalance and
random value of F1-score may vary. To make results comparable with other
research the MCC and AUC might be better options. MCC is a measure of the
quality of classification which takes into account true and false positives and
negatives, and is generally regarded as a balanced measure which can be used
even if the classes are of very different sizes. A coefficient of +1 represents a
perfect prediction, 0 no better than random and −1 indicates total disagreement.
Receiver Operating Characteristic curve is a graphical plot of TPR against FPR
that illustrates the diagnostic ability of binary or unary classifier as its
discrimination threshold is varied. AUC is the area under the curve. The value of
AUC varies between 0 and 1. The random value being 0,5. AUC is a widely used
measure of performance for classification but has no automatic extension to the
multiclass case. MCC can be used as a performance measure in multiclass
problems. (Hand, 2009; Jurman et al., 2012). The Scikit-learn library also sets
limitations on which metrics to use: The cross_val_score method’s scoring
parameter supports a limited set of measurement options.12 Scikit-learn (2019)
provides options for averaging each class weighting in multiclass classification.
In Table 12 the F1-score averaging options are introduced.

Table 12. F1-score Averaging Options
Option Description
binary “Only report results for the class specified. This is applicable only if the

targets are binary.”
micro “Calculate metrics globally by counting the total true positives, false

negatives and false positives.”
macro “Calculate metrics for each label, and find their unweighted mean. This

does not take label imbalance into account.”
weighted “Calculate metrics for each label, and find their average weighted by the

number of true instances for each label. This alters ‘macro’ to account for
label imbalance but it can result in an F-score that is not between precision
and recall.”

samples “Calculate metrics for each instance, and find their average.”

12 https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter

43

In this thesis, unary classification is measured using AUC-score and multiclass
classification is measured using micro averaged F1-score. The results can be
displayed as a two-dimensional confusion matrix with a row and column for
each class. Each matrix element shows the number of test examples for which the
actual class is the row and the predicted class is the column. All correct
predictions are located in the diagonal of the table which is easy to visually
inspect the table for prediction errors (Witten & Frank, 2005). Confusion matrices
of CVSS classification can be found from Appendix 3.

Cross-validation is a standard statistical model validation technique for
assessing how the results of a statistical analysis will generalize to an
independent dataset. The goal is to validate how a predictive model will perform
in practice. The outcome of cross-validation is reliable only if the learning and
testing datasets are separate and a single instance of data belongs to either
learning or testing dataset, but not both. The following cross-validation methods
can be found from literature (Arlot & Celisse 2010; Kohavi 1995; Kantardzic 2011):

 Holdout is a method where a dataset is split into two. One dataset is used
for learning and the other for testing. The ratio of the two datasets can be
arbitrary but commonly two thirds is used for learning and the rest for
testing. This method can be said cross-validation only if validated more
than once. Average results of multiple rounds are then used.

 K-fold cross-validation is a method where a dataset is divided into K the
equal size datasets. One dataset is used for testing and the rest for learning.
Validation is performed K times so that the each partial dataset is used for
testing at each round.

 Leave-one-out is a special case of K-fold cross-validation as K is chosen
equal to the samples of a dataset. One single sample is used for testing and
the other samples for learning. The validation is repeated K times. This
method is computationally expensive.

In this thesis, the ten times repeated holdout method was used. Scikit-learn
provides the train_test_split method to split a dataset. By default two thirds of
the data are used for training. Also, 10-fold cross-validation was used in
multiclass classification. The Scikit-learn’s cross_val_score method provides the
cv parameter to implement this.

Oversampling and undersampling are widely known techniques to handle
the class imbalance in datasets. In oversampling the minority class data points
are replicated as in undersampling only a part of the majority class data points
are taken. There are methods to synthetically generate data points on minority
data. In this thesis, undersampling strategy was chosen as oversampling may
lead having the same data in learning and testing which further leads too
optimistic results.

44

7 RESULTS

This chapter shows the results of vulnerability detection from open source defect
databases and CVSS2 scoring, CVSS3 scoring, and CWE multiclass classification
results. The goal of vulnerability detection is to classify whether a text contains
keywords used in vulnerability descriptions or not. The multiclass classification
results explain how well a vulnerability text can be used to estimate CVSS scores
and CWE weakness. The dataset used in experiments contains 18755
vulnerabilities in total having vulnerability descriptions from beginning of 2018
until April 2019. The results shows classification performance comparisons with
different classifiers and techniques.

7.1 Vulnerability Detection

Three different machine learning algorithms were tested detecting potential
vulnerability descriptions from text which are available in Scikit-learn:
OneClassSVM, LOF, and IsolationForest. The NVD data were used in learning
and the defect texts in prediction. The results are presented in Table 13 where
AUC-score of each algorithm is shown. Elapsed time was also measured during
experiments.

Table 13. Vulnerability Detection Performance
Algorithm AUC-score Time
OneClassSVM 0,682 18,5s
IsolationForest 0,5 8,6s
LocalOutlierFactor 0,492 9,8s

The experiments were run with each algorithm default parameters.
IsolationForest and LOF are faster but performance is not better than random.
The OneClassSVM classifier was selected for further examination. Different
vectorizers with the classifier were tested to find the most effective combination.
Also, a keyword-based classifier was implemented to see the difference between
machine learning approach and a simple text search. Source code for
vulnerability detection and the keyword-based classifier can be found from
Appendix 1. The classifier is using Scikit-learn CountVectorizer internally to
have bag-of-words representation of vulnerability descriptions. Different N-
gram combinations were tested. To classify a text to vulnerability it should
contain at least two N-grams tokens of vulnerability descriptions. Stemming and
lemmatizing were examined to measure which preprocessing technique gives the
best performance. In Table 14 the results of different combinations of vectorizer
N-gram ranges in the keyword-based classifier are presented. The min_df
parameter, minimum document frequency, was left on its default value. The

45

parameter makes a vectorizer to ignore terms that have a document frequency
strictly lower than the given threshold. The AUC-score, feature count of the
vectorizer, and elapsed time are shown.

Table 14. Keyword-based Classifier Performance with N-gram Ranges
N-gram Range AUC-score Feature Count Time
1 – 1 0,5039 8065 121,7s
1 – 2 0,503 44187 124,5s
1 – 3 0,50435 93456 127,3s
2 – 2 0,7402 37200 123,1s
2 – 3 0,74 84650 124,7s
3 – 3 0,52 48041 127,7s

The results show that counting 2-grams and not including single words gives
much better performance. By having 3-grams in addition it increases the feature
count but not performance. The 2-grams only was selected for further
examinations in the keyword-based classifier. The classifier with stemming and
lemmatizing was compared to different combinations of vectorizers with
OneClassSVM. These results are presented in Figure 15. Also, different dataset
sizes in learning are shown.

Figure 15. OneClassSVM AUC-score and Dataset Size

0,6

0,62

0,64

0,66

0,68

0,7

0,72

0,74

100 500 1000 2000 4000 6000 8000 10000 12000 14000 16000 18000

AU
C-

sc
or

e

Dataset Size

CountVectorizer StemmedCountVectorizer LemmaCountVectorizer

TfidfVectorizer StemmedTfidfVectorizer LemmaTfidfVectorizer

KeywordStemClassifier KeywordLemmaClassifier KeywordCountClassifier

46

The results indicate that using 1000 – 4000 vulnerability descriptions would be
enough to reach a stable performance. A plain CountVectorizer and its feature
reducing techniques gives the best results at very low number of samples but
none of these combinations exceed AUC-score of 0,7. The Keyword-based
classifier with a plain CountVectorizer or lemmatizing gives no better results
than 0,68 but surprisingly with stemming it gives 0,72 the dataset being 4000
vulnerabilities. OneClassSVM works better with TFIDF weighting than a plain
bag-of-words representation. OneClassSVM with stemming does not exceed
AUC-score 0,7 but a plain TFIDF performs almost as good as the TFIDF with
lemmatizing reaching the score of 0,72 at 4000 vulnerabilities. The TFIDF
vectorizer with lemmatizing was selected for further OneClassSVM experiments.
In Table 15 AUC-score of different N-gram ranges are shown using
OneClassSVM classifier with TFIDF vectorizing and lemmatization. Also,
number of vectorizer features and elapsed times are presented.

Table 15. OCSVM+TFIDF+Lemmatizing Performance with N-gram Ranges
N-gram Range AUC-score Feature Count Time
1 – 1 0,699 10401 14,3s
1 – 2 0,703 59834 16,7s
1 – 3 0,69 122703 19,1s
2 – 2 0,566 49556 10,9s
2 – 3 0,562 122686 13,6s
3 – 3 0,536 64357 9,3s

The results indicate that using single words as features is almost as good as 2-
grams combined. The number of features increases considerably when the N-
grams range is increased but having no effects on performance. In Table 16 there
are the keyword-based classifier performance with different 2-gram token counts
presented. The best performance is obtained when a text contains at least two
vulnerable 2-gram tokens.

Table 16. AUC-score of Keyword-based Classifier 2-gram Counts
 1 2 3 4 5
Keyword-based Classifier 0,691 0,731 0,694 0,686 0,632

The vectorizers provide the min_df parameter to discard words which do not
exists on a minimum amount of documents. In Table 17 the effect of different
min_df parameters are shown. Increasing the parameter value it has a negative
effect on the amount of features. Also, OneClassSVM elapsed time effect can be
observed. OneClassSVM and the keyword-based classifier performance is at the
highest having min_df = 1.

There are two generic options in Scikit-learn to find optimal combination of
classifier hyperparameters: exhaustively by testing all possible combinations
using GridSearchCV or randomly selecting a sample in a given number of
candidates from a parameter space using RandomizedSearchCV. In this thesis,

47

the exhaustive approach was selected. In unary classification the exhaustive
search must be implemented using ParameterGrid because a different dataset is
needed to be passed to the fit method and to the predict method. In Figure 16 the
output of exhaustive search is shown.

Table 17. Effect of Minimum Document Frequency Parameter
min_df OCSVM

AUC-score
KeywordStem
AUC-score

OCSVM
Feature Count

KeywordStem
Feature Count

OCSVM
Time

1 0,711 0,728 58943 37028 17,2s
2 0,708 0,705 15532 8217 13,8s
3 0,703 0,69 8573 3995 12,9s
4 0,702 0,671 5961 2545 13,7s
5 0,688 0,657 4665 1963 13,7s
10 0,673 0,618 2425 887 11,6s
20 0,688 0,587 1296 451 11,3s
30 0,686 0,577 951 334 11,4s
40 0,683 0,577 758 257 11,0s
50 0,682 0,563 618 199 10,6s

Figure 16. Exhaustive Search of OneClassSVM Hyperparameters

OneClassSVM with linear kernel performs the best but with radial basis function
the results are very close. Smaller values for the upper bound of training errors
and lower bound of support vectors gives better results. Also, it seems the
selection of stopping criterion has not much effect. It is good to note that the
results on Figure 16 are not cross-validated.

48

The final experiment tries to find if removing CPE names from datasets gives
somewhat better results as shown in Table 18. The results indicate that AUC-
score is higher if CPE names are included in both OneClassSVM and the
keyword-based classifier.

Table 18. Effect of CPE Names Removal on Classification AUC-score
CPE Name Included Excluded
OneClassSVM 0,729 0,717
KeywordStemClassifier 0,732 0,718

7.2 CVSS Scoring and CWE Classification

Four different machine learning algorithms and techniques were compared
classifying CVSS scores and CWE categories. The algorithms are suggested by
Scikit-learn for text classification. In Table 19 the CVSS2 classification F1-scores
are presented with different vectorizers. The corresponding results for CVSS3 are
presented in Table 20. In Table 21 the corresponding results are presented for
CWE Classification.

Table 19. CVSS2 Score Classification with Vectorizers
 MultinomialNB SGDClassifier LinearSVC KNeighbors
CountVectorizer 0,75 0,803 0,808 0,73
StemmedCount 0,748 0,803 0,807 0,724
LemmaCount 0,749 0,802 0,810 0,716
TFIDFVectorizer 0,677 0,804 0,817 0,718
StemmedTFIDF 0,675 0,803 0,815 0,715
LemmaTFIDF 0,678 0,805 0,817 0,716
Time w. TFIDF 16,5s 15,4s 17,5s 30,5s

Table 20. CVSS3 Score Classification with Vectorizers
 MultinomialNB SGDClassifier LinearSVC KNeighbors
CountVectorizer 0,702 0,782 0,792 0,672
StemmedCount 0,7 0,784 0,792 0,67
LemmaCount 0,704 0,784 0,794 0,671
TFIDFVectorizer 0,532 0,77 0,795 0,679
StemmedTFIDF 0,527 0,771 0,795 0,678
LemmaTFIDF 0,533 0,771 0,796 0,678
Time w. TFIDF 19s 19,6s 21,8s 40,9s

49

Table 21. CWE Classification with Vectorizers
 MultinomialNB SGDClassifier LinearSVC KNeighbors
CountVectorizer 0,665 0,796 0,811 0,569
StemmedCount 0,653 0,791 0,808 0,556
LemmaCount 0,665 0,796 0,809 0,574
TFIDFVectorizer 0,541 0,804 0,812 0,642
StemmedTFIDF 0,529 0,802 0,811 0,631
LemmaTFIDF 0,544 0,805 0,811 0,643
Time w. TFIDF 48,4s 74,9s 137,8s 56,3s

The results show that the LinearSVC classifier with TFIDF weighting gives the
best performance and no remarkable improvement is achieved by stemming or
lemmatizing in CVSS2, CVSS3, and CWE classification tasks. Scikit-learn
provides HashingVectorizer to create in-memory mapping from string tokens to
integer feature indices but performance was considerably lower than
CountVectorizers and TFIDFVectorizers. In Figure 17 the SGDClassifier and
LinearSVC classifiers are compared with different dataset sizes.

Figure 17. Classifier Performance with different Data sizes in CVSS2, CVSS3, and CWE
Classification

In CWE classification F1-score reaches 0,8 at maximum of 2000 samples per class
defined. In CVSS classification 0,8 F1-score is exceeded in CVSS2 classification
with LinearSVC only. In Figure 17 the data size is the complete dataset size in
CVSS experiments and resampled specifically to each class in CWE classification.
Negative effect of undersampling can be seen in Figure 17 concerning CWE
classification and in Figure 18 concerning CVSS classifications.

0,6

0,65

0,7

0,75

0,8

100 200 500 1000 2000 3000 4000 5000 6000 8000 10000 12000 14000 16000

F1
-s

co
re

Dataset Size

SGD CVSS2 SGD CVSS3 SGD CWE

LinearSVC CVSS2 LinearSVC CVSS3 LinearSVC CWE

50

Figure 18. Negative Effect of Undersampling in CVSS2 and CVSS3 Metrics

As indicated in Figures 17 and 18, the undersampling strategy does not give
better results. The F1-score varies between 0,87 – 0,975 but combining all metrics
using severity categories the highest F1-score can be obtained in CVSS2, having
the score 0,81 and in CVSS3 0,783.

As the LinearSVC classifier with a plain TFIDF vectorizing is selected for
further experiments the different N-grams ranges were observed. In Table 22
there are F1-scores of CVSS and CWE classifications with different N-gram
ranges presented.

Table 22. CVSS and CWE Classification Performance with N-gram Ranges
N-grams CVSS2 CVSS3 CWE Feature Count Time
1 – 1 0,795 0,774 0,796 20059 30,8s
1 – 2 0,814 0,792 0,813 135644 62,2s
1 – 3 0,817 0,795 0,812 293891 105,1s
2 – 2 0,805 0,772 0,787 114286 65,5s
2 – 3 0,804 0,762 0,78 273832 129,2s
3 – 3 0,787 0,723 0,71 159546 115,4s

Very similar results in F1-score can be obtained with 1-2 grams than 1-3 grams
but number of features grows higher using wider N-gram ranges. To see the
effect of the minimum document frequency in multiclass classification the
experiments were made running the df_min parameter values from 1 to 50. In
Table 23 the F1-scores with feature counts and elapsed times are shown in CVSS2,
CVSS3 and CWE classification. The df_min parameter is explained in Table 8
among the other vectorizer parameters.

0,75

0,8

0,85

0,9

0,95
F1

-s
co

re

CVSS2 Dataset Size

Attack Vector Access Complexity

Authentication Confidentality

Integrity Availability

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

F1
-s

co
re

CVSS3 Dataset Size
Attack Vector Attack Complexity

Privileges Required User Interaction

Scope Confidentality

Integrity Availability

51

Table 23. Effect of the min_df Parameter in Multiclass Classification
min_df CVSS2 CVSS3 CWE Feature Count Time
1 0,816 0,797 0,814 135136 70,4s
2 0,815 0,797 0,811 42383 52,3s
3 0,811 0,791 0,81 24060 46,3s
4 0,807 0,789 0,809 16299 44,4s
5 0,804 0,786 0,806 12478 42,1s
10 0,791 0,775 0,803 6277 40,9s
20 0,781 0,775 0,796 3340 39,5s
30 0,777 0,758 0,792 2376 38,6s
40 0,772 0,75 0,786 1858 38,2s
50 0,768 0,748 0,784 1561 38,4s

The best performance in F1-score is gained with lower values of the min_df
parameter. However, there are no major effects on performance with higher
values of minimum document frequency but the feature count decreases
considerably. The processing time also proves a slight, but not considerable
decrease. In larger datasets by reducing amount of features it may consume less
CPU power.

The final experiment was to test if removing the common platform
enumeration names gives better results in multiclass classification. The F1-score
results are shown in Table 24 for CVSS2, CVSS3 and CWE classification.

Table 24. Effect of CPE Names Removal on Multiclass Classification F1-score
CPE Names Included Excluded
CVSS2 0,818 0,812
CVSS3 0,798 0,791
CWE 0,814 0,813

The results indicate a slightly better but insignificant performance increase in F1-
score if CPE names are not removed during the process of removing stop words.
The results are very similar in unary and in multiclass classification.

Hyperparameter tuning was carried out for LinearSVC using
GridSearchCV but the classifier seemed to achieve the best performance with
default settings. Hyperparameter settings can be observed more detailed in
Appendix 1.

52

8 CONCLUSION

Machine learning and natural language techniques were experimented in unary
and multiclass classification. In unary classification the one-class classification
and anomaly detection algorithms were experimented. Algorithms were selected
as suggested by Scikit-learn. The library provides vectorizers to convert word
tokens to numeric matrices. Vectorizers and algorithm hyperparameters
combined have lots of options and in this work the options were examined
thoroughly. The relatively new NVD vulnerability data was used as a learning
data of one-class classifiers and also as datasets of multiclass classification
experiments. A keyword-based classifier was implemented to compare a non-
machine learning solution to the one-class classifiers. Defect databases were used
to test the classifiers. Security related defects were manually labelled by a security
specialist to verify that the defects truly contained some security related words.
The goal of unary classification was to detect potential vulnerabilities from short
text descriptions. Multiclass classification experiments were divided predicting
CVSS2 and CVSS3 classes and also CWE weaknesses. The CVSS scores consist of
exploitability and impact metrics which form distinguishable classes to calculate
the actual CVSS score. The scores were mapped in four severity levels to compare
the final classification performance. There are hundreds of different CWE classes
which describe root causes of weakness types. AUC-score was selected to
measure unary classification and micro averaged F1-score was selected to
measure multiclassification performance. All the experiments were verified
using the 10-fold cross-validation method or its variant.

The OneClassSVM classifier clearly outperforms LocalOutlierFactor and
IsolationForest. The radial basis function works as well as the linear kernel and
TFIDF weighting works evidently better with OneClassSVM. Vulnerabilities can
be detected from text using a keyword-based solution as well. The keyword-
based classifier works the best using 2-grams of vulnerability keywords with
stemming. AUC-score in unary classification achieved 0,73 at highest. Some
unary classification experiments with different datasets can be inspected more
detailed in Appendix 2. The results show that vulnerability detection from text is
difficult and the results are far from perfect. In many experiments, generation of
false alarms arose very high. The classifiers gain a stable level using 4000 to 6000
vulnerability descriptions as learning data.

In multiclass classification the LinearSVC classifier beats the other tested
classifiers: Multinomial Naïve Bayes, Stochastic Gradient Descent on top of linear
methods, and Nearest Neighbors. The classifier with TFIDF weighting gives a
slightly better results than a plain bag-of-words representation. The challenge is
that the source data has high class imbalance and effective undersampling could
not be achieved. The results show that classifiers work better using the complete
dataset without applying a sampling strategy. F1-score got 0,82 in CVSS2 and
CWE classification but in CVSS3 the score goes slightly under. Han et al. (2017)
got F1-score 0,816 ± 0,052 in their study classifying CVSS2 scores using the word

53

embedding + 1-layer CNN techniques. In their study the negative effect of
undersampling is similar to this work. They found that increasing training data
improves the model performance in general but has larger impact on smaller
training dataset, and the performance improvement becomes smaller and slower
as the training dataset becomes larger. In CVSS classification the challenge is
multiple metrics to classify. In CVSS3 there are 8 metrics to classify which all
must have high performance to get effective results. Some CVSS classification
experiments with confusion matrices can be found from Appendix 3. The
challenge classifying CWE is high number of distinguishable classes.

In both, vulnerability detection and multiclass classification the stemming
and lemmatization did not have remarkable effect on performance. The
techniques are to reduce inflectional variations in words which reduces the
number of features. By reducing amount of features it may consume less CPU
power. Finally, to make the classifiers more generic by removing CPE names
from the datasets was attempted. A slightly better performance was gained by
leaving the names within the data. It is possible that thousands of vendor and
component names are generic in nature which should be left among the data to
gain better class distinction.

All the experiments presented in this paper are published in Github:
https://github.com/oz-ds/textvulns.git. Jupyter Notebook implementations for
keyword-based classifier, one-class classifier experiments, Common
Vulnerability Scoring System, and Common Weakness Enumeration
experiments can be found from the repository.

8.1 Discussion

This work aimed to study techniques towards a tool to predict vulnerabilities and
their severities from text. The results show that security specialists might benefit
from this kind of tool which is using the techniques presented. The tool could
give some indications whether a text contains words that are used in
vulnerabilities in general, estimation about CVSS score to help prioritization of
defects, and also estimation of CWE weakness class. Estimated CWE might
further help in prioritization and defect categorization. The experimented
techniques can be further developed and better vulnerability detection
mechanisms should be researched. As in any empirical study the experiments
may suffer validity issues. To mitigate these issues, cross-validation mechanisms
are applied. However, low number of bug report databases may threaten validity
of vulnerability detection measurements. Another mitigation task was manual
labelling of bug reports by security specialist to keep mislabeling in the training
data as low as possible.

As the goal of this thesis was more technical, some side-notes can be made
based on the NVD data which is presented on Chapter 6. In the CVSS classes
there are high class imbalance in many metrics. For example, the most
vulnerabilities are exploitable from network and low number of vulnerabilities

54

are exploitable from adjacent network. Some classes were completely discarded
from the data due to low number of observations. The CVSS2 Multiple
Authentication metric’s vulnerabilities exists only four times on the entire dataset.
This metric is changed to Privileges Required in CVSS3. Low number of real
world observations in CVSS metrics might indicate need for changes on future
versions of CVSS. High class imbalance concerns the CWE data as well. Table 10
lists the bad quality CWEs which were discarded from the experiments. Many of
these CWEs are deprecated or suggested for deprecation on upcoming versions.

8.2 Future Work

In this thesis, traditional machine learning approaches were studied and better
performance might be obtained by text enrichment and augmentation techniques.
Text enrichment involves augmenting original text data with information that it
did not previously have. One enrichment technique is part-of-speech tagging
where the tags can be used as machine learning features or take additional
preprocessing steps concerning to a particular part of speech, for example, take
different actions for verbs and nouns. Such techniques were not studied in this
work. Also, text normalization could lead to better results. It is a preprocessing
technique which goal is to convert word abbreviations and misspellings into
normalized form, for example, words “2mrrw” and “tomrw” can be converted
to “tomorrow”. According to Satapathy et al. (2017) study sentiment
classification improved by 4% by applying normalization. The Scikit-learn user
guide (2019) provides another interesting approach handling misspellings and
derivations by building features using character N-grams. For example, dealing
with a corpus of two documents: “words”, “wprds”. The second document
contains a misspelling of the word “words”. Usually these are considered two
very distinct documents but a character 2-gram representation would find the
documents matching in 4 out of 8 features, which may help the preferred
classifier decide better. Suitable preprocessing steps are very domain and goal
specific and general rule of thumb guidelines cannot be easily defined.

To improve unary classification performance, newer neural network based
approaches could be attempted. Perera et al. (2018) developed a novel deep
learning based solution for one-class classification. They achieved AUC-score of
0,99 using their method compared to one-class svm having AUC-score only 0,606
detecting American flag images on the Caltech256 dataset. To extend document
classification on very large datasets Joulin et al. (2016) developed a new classifier
(fastText) on sentiment analysis and tag prediction of text using the YFCC100M
dataset. They concluded that deep neural networks have in theory much higher
representational power than shallow models but it is not clear if simple text
classification problems are the right ones to evaluate them.

55

REFERENCES

Arlot, S., Celisse, A. (2010). A Survey of cross-validation procedures for model selection.
Statistics surveys 4: 40-79.

Arnold, J., Abbott, T., Elhage, N., Thomas, G. and Kaseorg, A. (2009). Security
impact ratings considered harmful. 12th workshop on Hot Topics in
Operating Systems. USENIX.
http://web.mit.edu/tabbott/www/papers/hotos.pdf

Bellinger, C., Sharma, S., Japkowicz, N. (2012). One-Class versus Binary classification:
Which and When?. 11th International Conference on Machine Learning and
Applications. IEEE Computer Society. https://doi.org/10.1109/ICMLA.2012.212

Bozorgi, M., Saul, L., Savage, S., Voelker, G. (2010). Beyond Heuristics: Learning to
Classify Vulnerabilities and Predict Exploits. Department of Computer Science and
Engineering, University of California, San Diego.
http://cseweb.ucsd.edu/~saul/papers/kdd10_exploit.pdf

Breunig, M., Kriegel, H., Ng, R., Sander, J. (2000). LOF: Identifying Density-Based
Local Outliers. ACM SIGMOD International Conference on Management of Data.
DOI: 10.1145/342009.335388.

Camacho-Collados, J., Pilehvar, M. (2018). On the Role of Text Preprocessing in Neural
Network Architectures: An Evaluation Study on Text Categorization and Sentiment
Analysis. https://arxiv.org/pdf/1707.01780.pdf

CVSS2. (2007). A Complete Guide to the Common Vulnerability Scoring System Version
2.0. Forum of Incident Response and Security Teams.
https://www.first.org/cvss/cvss-v2-guide.pdf

CVSS3. (2015). Common Vulnerability Scoring System v3.0: Specification Document.
Forum of Incident Response and Security Teams.
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf

Han, Z., Li, X., Xing, Z., Liu, H., Feng, Z. (2017). Learning to Predict Severity of
Software Vulnerability Using Only Vulnerability Description. 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME).
https://doi.org/10.1109/ICSME.2017.52

Hand, D. (2009). Measuring classifier performance: a coherent alternative to the area
under the ROC curve. Springer Science+Business Media, LLC

Joachims, T. (1996). A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for
Text Categorization. Proceedings of the Fourteenth International Conference
on Machine Learning (ICML 1997), Nashville, Tennessee, USA, July 8-12,
1997

56

Joulin, A., Grave, E., Bojanowski, P., Mikolov, T. (2016). Bag of Tricks for Efficient
Text Classification, Facebook AI Research. arXiv:1607.01759.
https://arxiv.org/pdf/1607.01759

Jurman, G., Riccadonna, S., Furlanello, C. (2012). A Comparison of MCC and CEN
Error Measures in Multi-Class Prediction. PLoS ONE 7(8): e41882.
doi:10.1371/journal.pone.0041882

Kantardzic, M. (2011). Data mining: Concepts, models, and algorithms. John Wiley &
Sons. IEEE Press. ISBN: 978-1-118-02912-1.

Kohavi, R. (1995). A Study of cross-validation and bootstrap for accuracy estimation
and model selection. Proceedings of the 14th international joint conference on
artificial intelligence - Volume 2, 1137-1143. IJCAI’95. Montreal, Quebec,
Kanada: Morgan Kaufmann Publishers Inc. ISBN: 1-55860-363-8.

Lamkanfi, A., Demeyer, S., Soetens, Q. D., and Verdonck, T. (2011). Comparing
mining algorithms for predicting the severity of a reported bug. Software
Maintenance and Reengineering (CSMR).

Li, Z., Zou, D., Xu, S., Ou, X. Jin, H., Wang, S., Deng, Z., Zhong, Y. (2018).
VulDeePecker: A Depp Learning-Based System for Vulnerability Detection.
Network and Distributed Systems Security (NDSS) Symposium 2018. 18-21
February 2018, San Diego, CA, USA. ISBN 1-1891562-49-5.

Liu, F., Ting, K., Zhou, Z. (2012). Isolation-based Anomaly Detection. ACM
Transactions on Knowledge Discovery from Data 6(1):1-39. DOI:
10.1145/2133360.2133363.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J. Bethard, S. McClosky, D. (2014).
The Stanford CoreNLP Natural Language Processing Toolkit. Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, pages 55–60. Association for Computational
Linguistics

Miyamoto, D., Yamamoto, Y., Nakayama, M. (2015). Text-Mining Approach for
Estimating Vulnerability Score. Conference: 2015 4th International Workshop
on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS).

Nothman, J., Hanmin, Q., Yurchak, R. (2018). Stop Word Lists in Frr Open-source
Software Packages. Proceedings of Workshop for NLP Open Source Software,
pages 7–12. Association for Computational Linguistics.

Peters, P., Tun, T., Yu, Y., Nuseibeh, B. (2017). Text Filtering and Ranking for
Security Bug Report Prediction. IEEE Transactions on Software Engineering.
https://doi.org/10.1109/TSE.2017.2787653

57

Perera, P., Patel, V.M. (2018). Learning Deep Features for One-Class Classification.
arXiv:1801.05365. https://arxiv.org/pdf/1801.05365

Porter, M. (1980). An algorithm for suffix stripping. Program 14.3 (1980): 130-137.

Ruohonen, J., Leppänen, V. (2018). Toward Validation of Textual Information
Retrieval Techniques for Software Weaknesses. Proceedings of the 29th
International Conference on Database and Expert Systems Applications
(DEXA 2018), Regensburg, Springer, pp.~265—277.
https://arxiv.org/abs/1809.01360

Sanguino, L. A. B., Uetz, R. (2017). Software Vulnerability Analysis Using CPE and
CVE. arXiv:1705.05347. https://arxiv.org/abs/1705.05347

Satapathy, R., Guerreiro, C., Chaturvedi, I., Cambria, E. (2017). Phonetic-Based
Microtext Normalization for Twitter Sentiment Analysis. 2017 IEEE
International Conference on Data Mining Workshops

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R. (2001).
Estimating the Support of a High-Dimensional Distribution. Neural
Computation. Volume 13 Issue 7, Pages 1443 – 1471. MIT Press Cambridge,
MA, USA

Scikit, (2019, May 27). Scikit-learn user guide. Release 0.21.2. Scikit-learn developers.
https://scikit-learn.org/stable/user_guide.html

Gates, C., Taylor, C. (2007). Challenging the anomaly detection paradigm: A
provocative discussion. Proceedings of the 2006 workshop on new security
paradigms, 21-29. NSPW ‘06. Germany: ACM

Tyo, J. P. (2016). Empirical Analysis and Automated Classification of Security Bug
Reports. Lane Department of Computer Science and Electrical Engineering.
Morgantown, West Virginia.
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160014477.pdf

Wang, S., Liu, Q., Zhu, E., Porikli, F., Yin, J. (2017). Hyperparameter selection of one-
class support vector machine by self-adaptive data shifting. Pattern Recognition
Volume 74, Pages 198-211. Elsevier Ltd.
http://dx.doi.org/10.1016/j.patcog.2017.09.012

Wijayasekara, D., Manic, M., Wright, J., McQueen, M. (2012). Mining Bug Databases
for Unidentified Software Vulnerabilities. 5th International Conference on Human
System Interactions. https://doi.org/10.1109/HSI.2012.22

Wijayasekara, D., Manic, M., McQueen, M. (2014). Vulnerability identification and
classification via text mining bug databases. IECON 2014-40th Annual
Conference of the IEEE Industrial Electronics Society pp. 3612-3618.

58

Witten, I. H., Frank, E. (2005). Data mining: Practical machine learning tools and
techniques. Morgan Kaufmann Series in data management systems. Morgan
Kaufmann. ISBN: 9780120884070.

Wright, J., Larsen, J., McQueen, M. (2013). Estimating Software Vulnerabilities: A Case
Study Based on the Misclassification of Bugs in MySQL Server.
Idaho National Laboratory.

Yang, Y. (1998). An Evaluation of Statistical Approaches to Text Categorization. INRT
Journal.

59

APPENDIX 1: SOURCE CODE

Class to find parent and root cwe

Example:
finder = CweFinder()
root_cwe = finder.find_root_cwe(123)

import pandas as pd
class CweFinder():
 def __init__(self):
 # CSV file available at https://cwe.mitre.org/data/csv/1000.csv.zip
 self.cwes = pd.read_csv('data/1000.csv', index_col=False)
 self.cwes['CWE-ID'] = self.cwes['CWE-ID'].values.astype(str)

 def find_parent_cwe(self, cwe_id):# method returns the parent cwe of given cwe
 cwe = self.cwes[self.cwes['CWE-ID'] == cwe_id]
 if(cwe.empty):
 return ''
 cwe = cwe.iloc[0]['Related Weaknesses']
 if type(cwe) != str:
 return ''
 s = cwe.find('ChildOf:CWE ID:')#15 characters long
 e = cwe.find(':', s+15)
 if s == -1 or e == -1:
 return ''
 return cwe[s+15:e]

 def find_root_cwe(self, cwe_id):# method return the root cwe of given cwe
 parent = self.find_parent_cwe(cwe_id)
 if len(parent) <= 0:
 return cwe_id
 else:
 return self.find_root_cwe(parent)

LinearSVC hyperparameter tuning

from sklearn.model_selection import GridSearchCV
ngram_s = 1
ngram_e = 2
df = 1
t = r'(?u)\b\w*[a-zA-Z]{3,}\w*\b'
vectorizer =
 TfidfVectorizer(stop_words=swds, ngram_range=(ngram_s, ngram_e), min_df=df, token_pattern=t)

classifier = LinearSVC()
pipe = Pipeline([('vect', vectorizer), ('cls', classifier)])

#hyperparameters
parameters = {'cls__loss': ('hinge', 'squared_hinge'),#default: squared_hinge
 'cls__dual': (True, False),#default: True
 'cls__multi_class': ('ovr', 'crammer_singer'),#default: ovr
 'cls__max_iter': (1000, 2000),#default: 1000
 }
gs = GridSearchCV(pipe, parameters, scoring='f1_micro', cv=10, error_score=np.nan)

for i in range(6):# 6 classes on cvss2 metrics
 gs = gs.fit(cvss2_texts[i]['text'], cvss2_texts[i]['label'])
 print(str(i)+':'+str(gs.best_score_))
 print(str(i)+':'+str(gs.best_params_))

Vulnerability detection classifiers and vectorizers

def run_test(vzr, cls):
 print(str(cls)[0:str(cls).find('(')] + ' ' + str(vzr)[0:str(vzr).find('(')])

 #get a new testing set
 mixed = vulns_common.get_mixed_dataset(reports['report'], 1000)

 scores = []
 t = time.time()
 for i in range(nfold): #n-fold cross val score
 predicted = pipe.predict(mixed['report'])
 #score = f1_score(y_true=mixed['security'], y_pred=predicted, average='micro')
 score = roc_auc_score(y_true=mixed['security'], y_score=predicted, average='micro')
 scores.append(score)

 scores = np.array(scores)

60

 print(str(nfold)+'-fold cross-validated roc-auc-score:' + str(scores.mean()) + '\n')
 print('Time taken: ' + str(round(time.time() - t, 1)) + 's')

for c in classifiers:
 for v in vectorizers:
 pipe = Pipeline([('vect', v), ('clf', c)])
 #get a new learning data before the fit method
 vuln_data = shuffle(nvd_vulns, n_samples=6000)
 vuln_descs = []
 for d in vuln_data:
 if not d[1].startswith('** REJECT'):#some descriptions are rejected by NVD
 vuln_descs.append(d[1])
 print('Dataset to fit:'+str(len(vuln_descs)))
 pipe = pipe.fit(vuln_descs)
 run_test(v, c)

Keyword-based Classifier with stemming

class StemmedCountVectorizer(CountVectorizer):
 def build_analyzer(self):
 self.stemmer = SnowballStemmer("english")
 analyzer = super(CountVectorizer, self).build_analyzer()

 return lambda doc: (analyzer(' '.join([self.stemmer.stem(word) for word in doc.split(' ')])))

class KeywordStemClassifier(BaseEstimator, ClassifierMixin):
 def __init__(self, min_ngrams=2, max_ngrams=2):
 self.min_ngrams = min_ngrams
 self.max_ngrams = max_ngrams
 unwanted_words =
['issue','defect','bug','fault','flaw','mistake','error','version','system','because','before','dispu
ted']
 stop_words = text.ENGLISH_STOP_WORDS#.union(cpe_names)
 stop_words = stop_words.union(unwanted_words)
 self.vectorizer = StemmedCountVectorizer(stop_words=stop_words,
 lowercase=True,
 ngram_range=(min_ngrams, max_ngrams),
 min_df=1,
 token_pattern=r'(?u)\b\w*[a-zA-Z]{3,}\w*\b')

 def fit(self, raw_documents, y=None):
 self.vectorizer.fit(raw_documents)

 return self

 def predict(self, raw_documents, y=None):
 assert (len(self.vectorizer.vocabulary_) > 0), "You must call fit() before predicting data!"
 scores = self.score(raw_documents)

 predictions = []
 for count in scores:
 if count >= 2:#at least two vulnerability n-grams classified as security related
 predictions.append(1)
 else:
 predictions.append(-1)

 return np.array(predictions)

 def word_grams(self, words, min, max):
 s = []
 for n in range(min, max+1):
 for ngram in ngrams(words, n):
 s.append(' '.join(str(i) for i in ngram))
 return s

 def _score_single(self, tokens):
 count= 0
 for index, token in enumerate(tokens):
 if token in self.vectorizer.vocabulary_:
 count = count + 1
 return count

 def score(self, raw_documents, y=None):
 assert (len(self.vectorizer.vocabulary_) > 0), "You must call fit() before scoring data!"
 stemmer = SnowballStemmer("english")
 scores = []
 for index, row in enumerate(raw_documents):
 stems = []
 for word in row.split():
 stems.append(stemmer.stem(word))
 tokens = self.word_grams(stems, self.min_ngrams, self.max_ngrams)
 count = self._score_single(tokens)
 scores.append(count)

 return np.array(scores)

61

APPENDIX 2: VULNERABILITY DETECTION EXPERIMENTS

Keyword-based Classifier

Manually labeled vulnerability dataset: 148
 precision recall f1-score support

 -1 0.00 0.00 0.00 0
 1 1.00 0.66 0.80 148

 micro avg 0.66 0.66 0.66 148
 macro avg 0.50 0.33 0.40 148
weighted avg 1.00 0.66 0.80 148

TN=0, FP=0, FN=50, TP=98
Vulnerability learning dataset:3979
 precision recall f1-score support

 -1 0.00 0.00 0.00 0
 1 1.00 0.95 0.97 3979

 micro avg 0.95 0.95 0.95 3979
 macro avg 0.50 0.47 0.49 3979
weighted avg 1.00 0.95 0.97 3979

TN=0, FP=0, FN=211, TP=3768
Test on data/Ambari.csv. Rows: 1000
 precision recall f1-score support

 False 0.98 0.93 0.95 971
 True 0.09 0.24 0.13 29

 micro avg 0.91 0.91 0.91 1000
 macro avg 0.53 0.59 0.54 1000
weighted avg 0.95 0.91 0.93 1000

TN=902, FP=69, FN=22, TP=7
Test on data/Ambari.csv. Rows: 1000
 precision recall f1-score support

 False 0.98 0.82 0.89 971
 True 0.06 0.41 0.11 29

 micro avg 0.81 0.81 0.81 1000
 macro avg 0.52 0.62 0.50 1000
weighted avg 0.95 0.81 0.87 1000

TN=797, FP=174, FN=17, TP=12
Test on data/Camel.csv. Rows: 1000
 precision recall f1-score support

 False 0.97 0.79 0.87 967
 True 0.04 0.28 0.07 32

 micro avg 0.77 0.77 0.77 999
 macro avg 0.51 0.54 0.47 999
weighted avg 0.94 0.77 0.84 999

TN=763, FP=204, FN=23, TP=9
Test on data/Wicket.csv. Rows: 1000
 precision recall f1-score support

 False 0.99 0.78 0.87 990
 True 0.01 0.30 0.03 10

 micro avg 0.78 0.78 0.78 1000
 macro avg 0.50 0.54 0.45 1000
weighted avg 0.98 0.78 0.86 1000

TN=773, FP=217, FN=7, TP=3
Test on data/Chromium.csv. Rows: 1000
 precision recall f1-score support

 False 1.00 0.73 0.85 996
 True 0.00 0.25 0.01 4

 micro avg 0.73 0.73 0.73 1000
 macro avg 0.50 0.49 0.43 1000
weighted avg 0.99 0.73 0.84 1000

TN=732, FP=264, FN=3, TP=1
Test on data/Derby.csv. Rows: 1000
 precision recall f1-score support

 False 0.94 0.70 0.80 910
 True 0.15 0.52 0.23 88

 micro avg 0.69 0.69 0.69 998
 macro avg 0.54 0.61 0.52 998
weighted avg 0.87 0.69 0.75 998

TN=639, FP=271, FN=42, TP=46

OneClassSVM Classifier

Manually labeled vulnerability dataset: 148
 precision recall f1-score support

 -1 0.00 0.00 0.00 0
 1 1.00 0.73 0.84 148

 micro avg 0.73 0.73 0.73 148
 macro avg 0.50 0.36 0.42 148
weighted avg 1.00 0.73 0.84 148

TN=0, FP=0, FN=40, TP=108
Vulnerability learning dataset:5967
 precision recall f1-score support

 -1 0.00 0.00 0.00 0
 1 1.00 0.79 0.88 5967

 micro avg 0.79 0.79 0.79 5967
 macro avg 0.50 0.39 0.44 5967
weighted avg 1.00 0.79 0.88 5967

TN=0, FP=0, FN=1281, TP=4686
Mixed dataset: 1148
 precision recall f1-score support

 -1 0.95 0.71 0.81 1000
 1 0.27 0.73 0.39 148

 micro avg 0.71 0.71 0.71 1148
 macro avg 0.61 0.72 0.60 1148
weighted avg 0.86 0.71 0.76 1148

TN=706, FP=294, FN=40, TP=108
Test on data/Ambari.csv. Rows: 1000
 precision recall f1-score support

 False 0.97 0.94 0.95 971
 True 0.05 0.10 0.06 29

 micro avg 0.91 0.91 0.91 1000
 macro avg 0.51 0.52 0.51 1000
weighted avg 0.95 0.91 0.93 1000

TN=910, FP=61, FN=26, TP=3
Test on data/Camel.csv. Rows: 1000
 precision recall f1-score support

 False 0.97 0.91 0.94 967
 True 0.09 0.28 0.14 32

 micro avg 0.89 0.89 0.89 999
 macro avg 0.53 0.59 0.54 999
weighted avg 0.95 0.89 0.91 999

TN=878, FP=89, FN=23, TP=9
Test on data/Wicket.csv. Rows: 1000
 precision recall f1-score support

 False 0.99 0.82 0.90 990
 True 0.02 0.30 0.03 10

 micro avg 0.81 0.81 0.81 1000
 macro avg 0.50 0.56 0.46 1000
weighted avg 0.98 0.81 0.89 1000

TN=811, FP=179, FN=7, TP=3
Test on data/Chromium.csv. Rows: 1000
 precision recall f1-score support

 False 1.00 0.92 0.96 997
 True 0.03 0.67 0.05 3

 micro avg 0.92 0.92 0.92 1000
 macro avg 0.51 0.80 0.50 1000
weighted avg 1.00 0.92 0.96 1000

TN=921, FP=76, FN=1, TP=2
Test on data/Derby.csv. Rows: 1000
 precision recall f1-score support

 False 0.92 0.90 0.91 910
 True 0.14 0.17 0.15 88

 micro avg 0.84 0.84 0.84 998
 macro avg 0.53 0.54 0.53 998
weighted avg 0.85 0.84 0.84 998

TN=819, FP=91, FN=73, TP=15

62

APPENDIX 3: CVSS CLASSIFICATION EXPERIMENTS

CVSS2

Training data:13593 Testing data:4531
 precision recall f1-score support

 critical 0.72 0.72 0.72 325
 high 0.68 0.71 0.70 728
 low 0.76 0.66 0.71 533
 medium 0.87 0.89 0.88 2945

 micro avg 0.82 0.82 0.82 4531
 macro avg 0.76 0.74 0.75 4531
weighted avg 0.82 0.82 0.82 4531

Confusion matrix:
[[235 39 2 49]
 [47 517 13 151]
 [1 5 352 175]
 [45 194 96 2610]]

CVSS3

Training data:13446 Testing data:4482
 precision recall f1-score support

 critical 0.60 0.83 0.70 645
 high 0.81 0.81 0.81 2061
 low 0.51 0.40 0.45 50
 medium 0.90 0.78 0.84 1726

 micro avg 0.80 0.80 0.80 4482
 macro avg 0.71 0.70 0.70 4482
weighted avg 0.81 0.80 0.80 4482

Confusion matrix:
[[537 101 1 6]
 [274 1663 8 116]
 [3 6 20 21]
 [81 289 10 1346]]

