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ABSTRACT 

Jormakka, Ossi 
Approaches and Challenges of Automatic Vulnerability Classification using 
Natural Language Processing and Machine Learning Techniques 
University of Jyväskylä, 2019, 58 + 4 pp. 
Information Systems, Cyber Security, Master’s Thesis 
Supervisor: Costin, Andrei 

Automated vulnerability detection and prediction of vulnerability details may 
help security specialists to prioritize bug reports and getting earlier fixes to 
security related software defects. This thesis is about finding vulnerable-like 
descriptions from any text and classifying vulnerability severities and weakness 
types. Vulnerability severities are measured using Common Vulnerability 
Scoring System. Common Weakness Enumeration is a hierarchical list of 
weakness types that each vulnerability can be classified to. The scoring and 
weakness type information for known vulnerabilities are available on National 
Vulnerability Database. Many existing research about vulnerability text-only 
classification is limited to a narrow area, for example, specific version of 
Common Vulnerability Scoring System. This thesis gives an overview of 
classifying bug reports with severities and weakness types altogether. The Scikit-
learn library’s interfaces were used extensively to implement text preprocessing, 
machine learning classification, and experiment validation. Experiments include 
stemming, lemmatization, and numerous text vectorization options and 
algorithms provided by the library.  

The results show that the keyword-based classifier using word 2-grams 
works as well as One-class Support Vector Machine with lemmatizing using the 
Term Frequency–Inverse Document Frequency preprocessing method in 
vulnerability detection. Vulnerability severities can be predicted better for 
Common Vulnerability Scoring System version 2 than its version 3. The Linear 
Support Vector Machine classifier got the highest F1-score in predicting both 
Common Vulnerability Scoring System and Common Weakness Enumeration. 
This thesis also presents a summary on the latest data available on the National 
Vulnerability Database data feeds. 

 

Keywords: Common Vulnerability Scoring System, Common Weakness 
Enumeration, Classification, Scikit-learn, CVE, CVSS, CWE, ML, Machine 
Learning, NLP, Natural Language Processing 
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Automatisoitu haavoittuvuuksien etsiminen ja haavoittuvuuksien yksityiskoh-
tien ennustaminen voi auttaa asiantuntijoita priorisoimaan ohjelmistovirheitä, 
joka voi johtaa nopeampaan virheenkorjaukseen. Tässä työssä käytettiin Nati-
onal Vulnerability Database -tietokantaa tutkittaessa kuinka haavoittuvuusku-
vauksien perusteella voidaan havaita haavoittuvuuksia mistä tahansa tekstistä 
sekä ennustaa haavoittuvuuksien vakavuus ja haavoittuvuustyyppi. Common 
Vulnerability Scoring System -järjestelmä tarjoaa tavan mitata haavoittuvuuk-
sien vakavuuksia. Common Weakness Enumeration -järjestelmä tarjoaa hierark-
kisen luokittelun yleisiin haavoittuvuustyyppeihin. Olemassa olevat tutkimuk-
set haavoittuvuuksien tekstiluokittelussa usein rajoittuvat kapeaan alueeseen, 
esimerkiksi vain johonkin Common Vulnerability Scoring System -järjestelmän 
versioon. Tämä työ antaa yleiskuvan virheraporttien luokittelusta sekä vakavuu-
den ja haavoittuvuustyypin ennustamisesta. Työssä pyrittiin käyttämään laajasti 
tunnettuja tekstin esikäsittelymenetelmiä sekä monia muita Scikit-learn -kirjas-
ton tarjoamia luonnollisen tekstin käsittelyn vaihtoehtoja ja koneoppimismene-
telmiä. 

Tulokset osoittavat 2-grammin avainsanapohjaisen menetelmän olevan 
yhtä tehokas kuin yhden luokan tukivektorikone kun esikäsittelynä käytetään 
Term Frequency – Inverse Document Frequency -painotusta ja sanojen taivutus-
muotojen muuttamista perusmuotoon (lemmatizing). Haavoittuvuuksien vaka-
vuuden ennustamisessa saadaan parempia tuloksia Common Vulnerability Sco-
ring System -järjestelmän versiolle 2 kuin järjestelmän versiolle 3. Lineaarinen 
tukivekorikone saavutti korkeimman F1-tuloksen haavoittuvuuksien vakavuu-
den ja haavoittuvuustyypin luokittelussa. Lisäksi tässä työssä on yhteenveto uu-
simpaan National Vulnerability Database -tietokannan tietoon. 

 
Asiasanat: tiedonlouhinta, luokittelu, koneoppiminen, luonnollisen kielen pro-
sessointi, haavoittuvuus 
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1 AUTOMATIC VULNERABILITY CLASSIFICATION 

In field of computer security a vulnerability is weakness that can be exploited by 
an attacker. Weakness can be any type of defect in a computer system that could 
lead information security to be compromised. A vulnerability which is unknown 
to the parties that are responsible of correcting them is called a zero-day 
vulnerability. Defect reports are often written to a system where the responsible 
parties can study, reproduce, prioritize, and monitor the status of defect 
corrections. These reports are short, a few sentences long descriptions about 
software defects. Some defect reports may expose information about potential 
vulnerabilities which should be taken into account in prioritization or public 
visibility. Some defect reporting systems are publicly available. According to 
Arnold et al. (2009) and Wijayasekara et al. (2012) findings it takes a longer time 
to incorporate and distribute non-security related software patches than those 
that are identified as vulnerabilities when they were reported. Wright (2013) et 
al. concluded that after examining the bug database for the MySQL database 
software a significant number of previously unknown vulnerabilities were 
identified. 

The National Vulnerability Database (NVD) contains information about 
vulnerability descriptions, security checklists, security related software flaws, 
misconfigurations, product names, and impact metrics. The NVD database is 
maintained by the U.S. government and the data is freely available at their data 
feeds.1 The data feeds are updated at least daily. The vulnerability descriptions 
are relatively short sentences about vulnerabilities. These sentences can be used 
to identify potential vulnerabilities in any other text, including defect reports in 
defect tracking systems. The security specialists evaluate vulnerability severities 
and root causes, and this information is also available among the NVD data. 
Vulnerability severities are expressed using Common Vulnerability Scoring 
System (CVSS) which is based on a several classifications. Vulnerability root 
causes are expressed using Common Weakness Enumeration (CWE) which is a 
hierarchical tree of hundreds of weakness types. Each vulnerability is identified 

                                                 
1 https://nvd.nist.gov/vuln/data-feeds 
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using Common Vulnerabilities and Exposures (CVE) identifier number. CVE 
Numbering Authorities are organizations worldwide that are authorized to 
assign CVE identifier numbers. Common Platform Enumeration (CPE) is a 
structured naming scheme for systems, software, and packages. The CPE 
information is included with the other vulnerability information via the NVD 
data feeds. 

In this thesis, the NVD data is used to detect vulnerabilities from text. A few 
defect databases were selected for study to find security related reports from all 
the reports. The NVD data is also used to learn and to predict selected machine 
learning algorithms to classify the CVSS and CWE classifications. The Scikit-learn 
library was selected to implement classification and to measure the machine 
learning algorithm performance. Scikit-learn is a free software machine learning 
library for the Python programming language. The Jupyter Notebook tool was 
selected to implement all the experiments. The tool is an open-source web 
application that allows to create and share documents that contain live code, 
narrative text, and visualizations. The Anaconda platform was selected to 
manage all the required software packages for this study. Anaconda is a free 
distribution of the Python and R programming languages for scientific 
computing that simplifies package management and deployment. 

This work is a preliminary study towards a tool which detects and ranks 
vulnerabilities and also estimates root causes of vulnerabilities using a short 
human written text information only. The most challenging task to achieve this 
is to convert human written text suitable for machine learning algorithms. These 
preprocessing tasks transform the text to features that machine learning 
algorithms can process. To handle this, a variety of Scikit-learn vectorizers were 
compared. Another challenge is to detect vulnerabilities from text, knowing 
vulnerability descriptions only. This is called a one-class or unary classification 
problem. Traditional statistical or machine learning classification concerns binary 
classification which requires both positive and negative samples in learning data. 
It is claimed that one-class classification is successfully applied in numerous 
realms of academic research and industrial applications (Wang et al., 2017). The 
results indicate that Scikit-learn’s OneClassSVM classifier is capable detecting 
vulnerabilities as good as the keyword based classifier which was implemented 
during this work. The problem still remains with relatively high number of false 
positives. The CVSS classification is mostly a multiclass classification problem 
but some of the metrics may have two classes only. The results show that CVSS 
classification is successful with linear classification algorithms having F1-score 
around 0,816. The challenge is that there are several metrics to classify to gain the 
CVSS score. Automatic CWE classification is also viable using the same methods 
as CVSS classification, but the challenge is that there are dozens of separate 
classes and having low number of samples in many class. An approach was taken 
in this study to find root categories of those CWE classes. The results in this thesis 
shares similarities with Han et al. (2017) study estimating CVSS2 scores using 
word embeddings and 1-layer convolutional neural network. 
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2 OVERVIEW OF CVSS, CWE, AND CPE 

CVSS consists of metrics and classifications, CWE forms a hierarchy of many 
weakness types, and CPE is a structured scheme which are explained more 
detailed in this chapter. 

2.1 Common Vulnerability Scoring System 

Common Vulnerability Scoring System (CVSS) is an open industry standard for 
assessing the severity of security vulnerabilities. The system is maintained by 
Forum of Incident Response and Security Teams organization. The system maps 
severity scores to vulnerabilities which allows security specialists to prioritize 
responses and resources according to threat. Scores are calculated using a 
formula on several metrics that approximates ease of exploit and the impact of 
exploit. The scores range is from 0 to 10, with 10 being the most severe. CVSS is 
composed of three metric groups: Base, Temporal, and Environmental. Each 
metric group consists of a set of metrics. The set of metrics are expressed in a 
form of vector. Each metric is abbreviated and separated by a colon character as 
shown in Figure 1 example CVSS vectors. The base score represents the innate 
characteristics of a vulnerability. The temporal score represents metrics that 
change over time due to events which are external to a vulnerability. The 
environmental score modifies the impact depending on the environment a 
vulnerability is exposed. Vulnerability databases typically provides the base 
scores but no temporal or environmental scores. In this thesis the base score is 
used only. 

 
 

Figure 1. Examples of CVSS vectors (left: CVSS3, right: CVSS2) 

2.1.1 CVSS2 Base Metrics 

The specification of CVSS version 2 was published in June 2007. The base metrics 
consist of six separate metrics. Each metric has predefined classifications, used in 
a formula to calculate the actual severity score. The CVSS2 metrics and 
classifications are shown in Table 1. The Access Vector, Access Complexity, and 
Authentication metrics assess how the vulnerability is accessed and if some extra 
conditions are required to exploit it. The three impact metrics measures how a 
vulnerability affects an IT asset. The impacts are independent with each other 
and describes the loss of confidentiality, integrity, and availability. (CVSS2, 2007). 
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Table 1. CVSS2 Metrics and Classifications 
Metric Description Classifications 
Access Vector (AV) “Reflects how the 

vulnerability is exploited.” 
Network (N), 
Adjacent (A), 
Local (L) 

Access Complexity (AC) “Measures the complexity 
of the attack required to 
exploit.” 

High (H), 
Medium (M), 
Low (L) 

Authentication (Au) “Measures the number of 
times an attacker must 
authenticate to a target in 
order to exploit a 
vulnerability.” 

None (N), 
Single (S), 
Multiple (M) 

Confidentiality Impact (C) “Measures the impact on 
confidentiality of a 
successfully exploited 
vulnerability.” 

Complete (C), 
Partial (P), 
None (N) 
 

Integrity Impact (I) “Measures the impact to 
integrity of a successfully 
exploited vulnerability.” 

Complete (C), 
Partial (P), 
None (N) 
 

Availability Impact (A) “Measures the impact to 
availability of a successfully 
exploited vulnerability.” 

Complete (C), 
Partial (P), 
None (N) 

 
The CVSS2 score is calculated based on the six metrics with classifications as 
illustrated in Table 1. The CVSS2 base score consists of exploitability and impact 
metrics and is calculated as follows: 
 

“Impactconf = case ConfidentialityImpact of N: 0.0, P: 0.275, C: 0.660 
 

ImpactInteg = case IntegrityImpact of N: 0.0, P: 0.275, C: 0.660 
 

ImpactAvail = case AvailabilityImpact of N: 0.0, P: 0.275, C: 0.660 
 

Impact = 10.41 × (1– (1– Impactconf) × (1– ImpactInteg) × (1 – ImpactAvail)) 
 

f(impact)= 0 if Impact=0, 1.176 otherwise 
 

AV = case AccessVector of L: 0.395, A: 0.646, N: 1.0 
 

AC = case AccessComplexity of H: 0.35, M: 0.61, L: 0.71 
 

Au= case Authentication of M: 0.45, S 0.56, N: 0.704 
 

Expl = 20 ×  AV ×  AC ×  Au 
 

BaseScore = round_to_1_decimal(((0.6× Impact) + (0.4× Expl) – 1.5)× 
f(Impact))” 
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2.1.2 CVSS3 Base Metrics 

The specification of CVSS version 3 was published in June 2015. The major 
difference to the previous version is that there are eight separate metrics to 
classify to calculate the actual score. The CVSS version 3 base metrics and 
classifications are shown in Table 2. (CVSS3, 2015). 

Table 2. CVSS3 Metrics and Classifications 
Metric Description Classifications Numeric 
Attack Vector (AV) “Reflects the context by 

which vulnerability 
exploitation is possible.” 

Network (N), 
Adjacent (A), 
Local (L), 
Physical (P) 

0,85, 
0,62, 
0,55, 
0,2 

Attack Complexity (AC) “Measures the complexity 
of the attack required to 
exploit.” 

High (H), 
Low (L) 

0,44, 
0,77 

Privileges Required (PR) “Describes the level of 
privileges an attacker must 
possess before successfully 
exploiting the 
vulnerability.” 

High (H), 
Low (L), 
None (N) 
 

0,27 / 0,5, 
0,62 / 0,68, 
0,85 

User Interaction (UI) “Captures the requirement 
for a user, other than the 
attacker, to participate in the 
successful compromise of 
the vulnerable component.” 

Required (R), 
None (N) 

0,62, 
0,85 

Scope (S) “Scope refers to the 
collection of privileges 
defined by a computing 
authority. These privileges 
are assigned based on some 
method of identification and 
authorization.” 

Changed (C), 
Unchanged (U) 

Modifies 
Privileges 
Required if 
Scope is 
Changed 

Confidentiality Impact (C) “Measures the impact to 
confidentiality of a 
successfully exploited 
vulnerability.” 

High (H), 
Low (L), 
None (N) 

0,56, 
0,22, 
0 

Integrity Impact (I) “Measures the impact to 
integrity of a successfully 
exploited vulnerability. “ 

High (H), 
Low (L), 
None (N) 

0,56, 
0,22, 
0 

Availability Impact (A) “Measures the impact to 
availability of a successfully 
exploited vulnerability.” 

High (H), 
Low (L), 
None (N) 

0,56, 
0,22, 
0 

 
The numeric values in Table 2 are used in equations to calculate the actual score. 
The base score is a function of the Impact and Exploitability sub score equations. 
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The score metric modifies classifications’ numeric values and also the equations 
concerning Impact and BaseScore calculations. The CVSS3 base score is 
calculated as follows: 
 

“ImpactBase = 1- [(1 - ImpactConf) × (1 - ImpactInteg)× (1 - ImpactAvail )] 
 

Exploitability = 8.22× AV × AC × PR × UI 
 

𝐼𝑓(𝑆𝑐𝑜𝑝𝑒 = 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑): 
 

𝐼𝑚𝑝𝑎𝑐𝑡 = 6.42× ImpactBase 

 
𝐼𝑓(𝑆𝑐𝑜𝑝𝑒 = 𝐶ℎ𝑎𝑛𝑔𝑒𝑑): 

 
Impact = 7.52× [ImpactBase - 0.029]- 3.25× [ImpactBase - 0.02]15 

 
𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 = 𝐼𝑓(𝐼𝑚𝑝𝑎𝑐𝑡 ≤ 0), 0 𝑒𝑙𝑠𝑒: 

 
𝐼𝑓(𝑆𝑐𝑜𝑝𝑒 = 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑): 

 
𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 = Roundup(Minimum [( Impact + Exploitability ) , 10]) 

 
𝐼𝑓(𝑆𝑐𝑜𝑝𝑒 = 𝐶ℎ𝑎𝑛𝑔𝑒𝑑): 

 
𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 = Roundup(Minimum [1.08×( Impact +Exploitability ), 10])” 

 
 
In this thesis the cvsslib’s calculate_vector method was used to calculate the 
actual CVSS2 and CVSS3 scores. 

2.2 Common Weakness Enumeration 

Common Weakness Enumeration is a hierarchical list of software weakness types. 
The CWE is maintained by nonprofit MITRE organization. The latest version 3.2 
was published in January 2019. A new version is published approximately 
annually. The hierarchical lists are divided based on the concept views: Research, 
Development, and Architectural views. The research concept view describes 
weaknesses and dependencies with each other to identify theoretical gaps within 
CWEs. The development concept view organizes weaknesses related to software 
development. The architectural concept view organizes weaknesses according to 
common architectural security tactics. Its goal is to identify potential mistakes 
that can be made in a software development process. In this thesis the Research 
Concept view was selected as a basis to resolve CWE parent items. An example 
of the research hierarchy is shown in Figure 2. 
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Figure 2. CWE hierarchy by Research Concept View2 

All the research concept view’s root level classes are shown in Figure 2. The tree-
like relationships between weaknesses that exist at different levels of abstraction 
are shown. At the highest level, classes exist to group weaknesses. The classes are 
weaknesses that are described at more abstract level than the base weaknesses. 
A variant weakness is described at a very low level of detail, typically limited to 
a specific language or technology. Also the category type of CWE exists but not 
in the research concept view. In the view there are 806 CWE entries out of the 
total 1131 entries. 

2.3 Common Platform Enumeration 

The CPE is a structured naming scheme for systems, software, and packages. The 
CPE includes a formal name format, a method for checking names, and a 
description format for binding text to a name. The CPE Dictionary is hosted and 
maintained by NIST organization which is part of the Security Content 
Automation Protocol (SCAP). The latest version 2.3 was published in 2013. The 
CPE is considered to be an industry standard, originally defined by MITRE 
organization. The CPE formatted string binding is shown in Figure 3. All eleven 
attribute values must appear in the formatted string binding. 

                                                 
2 https://cwe.mitre.org/data/definitions/1000.html 
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cpe:2.3:<part>:<vendor>:<product>:<version>:<update>:<edition>:<language>:<sw
_edition>:<target_sw>:<target_hw>:<other> 

Figure 3. CPE Formatted String Binding 

The format specifies in which platform vulnerabilities have been found. More 
detailed explanation about the format is the following: 

 part: The system type, one of the following: 
a = Application 
h = Hardware 
o = Operating System 

 vendor: Organization name who developed the product. 
 product: Product name specified by vendor. 
 version: Version identifier of the product. 
 update: Update name of a version specified by vendor, for example, “R2” 

for Windows 2012. 
 edition: Vendor specified software edition, for example, “server” or “x86”. 
 language: Language of a software, for example, Finnish. 
 sw_edition: Software Edition defined by vendor to tailor a particular 

market or class of end users. 
 target_sw: Software computing environment where the product operates. 
 target_hw: Instruction set architecture the product is being identified, for 

example, “x86”. 
 other: Any other descriptive information which does not fit in any other 

attribute. 

The complete CPE dictionary is freely available at the NVD website which is 
updated at least daily3. The CPEs which are mapped to vulnerabilities are listed 
among the NVD data feeds. The CPE formatted string binding within the NVD 
data feeds were used in this thesis. 

 

                                                 
3 https://nvd.nist.gov/products/cpe 
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3 OVERVIEW OF MACHINE LEARNING 
TECHNIQUES 

Text classification or text categorization is the task of assigning one or more 
predefined classes on unstructured text documents according to their content. 
Text classification is used for multiple purposes in many different fields: for 
example, news stories can be organized by subject topics, academic papers can 
be classified by technical domains, and patient reports in health-care can be 
indexed in multiple categories. A spam filter can classify an e-mail message as 
spam or non-spam. Text classification can be manual, simple rule or word based, 
or it can use machine learning methods to categorize text documents. Based on 
previous research, text classification performs better using machine learning 
approaches than a word based approach (Yang, 2000). Structured data refers to 
information with a high degree of organization which is more easily computable 
and handled by a computer. Unstructured data is information that does not have 
a pre-defined data model or organisation of data is not pre-defined. Semi-
structured data is a form of structured data that does not conform to the formal 
structure of data models or forms but contains tags or other markers to separate 
semantic elements and enforce hierarchies of records and fields within the data. 
(Kantardzic, 2011). 

Machine learning methods in automatic text classification shares 
similarities with the fields of pattern recognition, statistics and data mining. 
Pattern recognition is a branch of machine learning that focuses on the 
recognition of patterns and regularities in data. Statistics is a branch of 
mathematics dealing with the collection, analysis, interpretation, presentation 
and organization of data. Data mining is the computing process of discovering 
patterns in large data sets. The goal is to discover a novel information from data. 
Machine learning can be roughly divided into two wide categories: Supervised 
or unsupervised learning depending on the learning signal. Supervised learning 
is the task learning from labelled training data. Unsupervised learning is the task 
to describe hidden structure in unlabelled training data. Another field of data 
mining is anomaly detection. The idea is that anomalies compared to a normal 
baselined data can be somehow detected. Anomaly detection can use supervised 
or unsupervised machine learning techniques. The Scikit-learn user guide 
divides anomaly detection into outlier and novelty detection. In outlier detection, 
the training data contains outliers which are far from the others, and estimators 
ignore the deviant observations. In novelty detection, the training data is not 
polluted by outliers (Scikit, 2019). 

In terminology of machine learning, classification is usually considered as 
an instance of supervised learning. The corresponding unsupervised procedure 
is known as clustering. In classification, the categories are known beforehand and 
given in advance for each training document. In clustering, groups of samples 
that naturally belong together are sought. (Witten & Frank, 2005).  Binary or 
binomial classification is the task of classifying the elements of a given set into 
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two groups. Multiclass or multinomial classification is the problem of classifying 
instances into three or more classes. In multi-label classification, multiple labels 
are predicted for each sample. In one-class classification or unary classification 
objects of a specific class are tried to be identified from all objects by learning 
from a training set containing only the objects of that class. A unary classifier 
performance remains relatively stable when a dataset class imbalance increases 
whereas a binary classifier performance decreases (Bellinger et al., 2012). A 
balanced dataset is the one that contains equal or almost equal number of 
samples of each class. 

In data mining, dataset is a matrix which consists of rows of samples and 
columns of features. In text classification, the number of features is typically 
hundreds or thousands. This type of dataset is called a high dimensional dataset 
(Kantardzic, 2011). High number of features often leads to sparsity which means 
having a value of zero for the most instances. Text classification methods must 
be able to handle the sparsity of data. Sparsity can be taken into account at the 
feature extraction phase by implementing a dimension reduction technique.  A 
general machine learning classifier model is shown in Figure 4. It represents how 
unstructured text is transformed into features, first in the training phase and then 
in the prediction phase. 

 

 
Figure 4. Machine Learning Classifier Model 

In training, the features are provided to a machine learning algorithm with labels 
of the correct classifying results. Machine learning algorithm builds a model 
internally which is able to distinguish labels seen in the training data. In 
prediction, based on the trained model a classifier is able to predict labels in a 
new unseen data provided. A classifier can predict only such labels seen in the 
training data. The model in Figure 4 illustrates a supervised learning paradigm. 
In case of one-class classification, the data provided at learning phase contains 
samples only from one class. A one-class classifier can predict how far a data 
point is compared to the training data. In this sense the approach can be said as 
semi-supervised novelty detection (Scikit, 2019). In this thesis traditional 
machine learning techniques were used only but newer neural network based 
techniques exists to solve natural language classification problems as well.  
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3.1 Machine Learning Algorithms 

There are many machine learning algorithms available depending on the 
problem type the algorithm needs to solve. Kantardzic (2011) divides the 
problem types into six primary data mining tasks: Classification, Regression, 
Clustering, Summarization, Dependency Modelling, and Change and Deviation 
Detection. As stated earlier, classification tries to classify items to predefined 
classes as clustering seeks to identify a finite set of categories. Regression tries to 
map data items to real-value prediction variables. Summarization is a task that 
involves methods for finding a compact description for a dataset. Dependency 
modelling is for finding a local model that describes significant dependencies 
between data variables. Change and Deviation Detection is used to discover the 
most significant changes in a dataset. The Scikit-learn user guide (2019) provides 
a cheat-sheet to select preferable algorithm for a machine learning problem as 
presented in Figure 5. 
 

 
Figure 5. Scikit-learn Algorithm Cheat-Sheet 

The cheat-sheet instructs to select an approach solving a machine learning 
problem. The approaches are not implicit but rather guidelines to lead to the right 
direction. In this thesis, Naïve Bayes, Stochastic Gradient Descent, Linear 
Support Vector Machine, and K-nearest Neighbors classification approaches 
were studied. The Scikit-learn library also provides approaches to for anomaly 
detection problems. The following approaches were studied: One-class Support 
Vector Machine, IsolationForest, and LocalOutlierFactor. In this chapter these 
algorithms are briefly explained from the view of using the programming 
interfaces, not implementing the actual algorithms. 
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3.2 One-class Support Vector Machine 

Schölkopf et al. (2001) introduced One-class Support Vector Machine (OCSVM) 
to solve a novelty detection problem. In novelty detection, at prediction phase 
the classifier tries to determine whether a data point can be distinguished from 
the original data points seen at training phase. OCSVM is an extension of the 
standard binary Support Vector Machine (SVM). Wang et al. (2017) pointed out 
the importance of selecting the classifier hyperparameters which has a significant 
influence on its performance. In machine learning, a hyperparameter is a 
parameter whose value is set before the learning process begins. According to 
Wang et al. (2017) findings the most important hyperparameters which need to 
be properly tuned are the following: “The regularization coefficient ν and the 
Gaussian kernel width σ. The ν controls the upper bound of rejected target data, 
which is often tuned to reject noise during training, while σ controls the 
smoothness of decision boundary. An overly large σ or small σ will cause 
underfitting and overfitting respectively. Improper ν will make the decision 
boundary distorted by noisy target data or reject excessive target data.” In 
machine learning, underfitting is the classifier decision boundary that is too 
simple to explain the variance in data. Overfitting is a too complex decision 
boundary. The both circumstance leads to bad classification performance. 

The Scikit-learn library provides OCSVM implementation in the svm 
module’s OneClassSVM class. The implementation is based on the libsvm 
implementation. The libsvm is an open-source machine learning library written 
in C++. The most important OneClassSVM’s hyperparameters are introduced in 
Table 3, full hyperparameter list can be found from the user guide4. 

Table 3. OneClassSVM hyperparameters 
Hyperparameter Description Possible values 
kernel “Specifies the kernel type to be used in the 

algorithm. If a callable is given it is used to 
precompute the kernel matrix.” 

‘linear’, ‘rbf’, ‘poly’, 
‘sigmoid’, 
‘precomputed’, callable 

gamma “Kernel coefficient for ‘rbf’, ‘poly’ and 
‘sigmoid’. If gamma='scale' it uses 1 / 
(n_features * X.var()) as value of gamma.” 

float 

tol “Tolerance for stopping criterion.” float 
nu “The fraction of training errors and 

support vectors. Should be in the interval 
[0, 1]. By default 0.5 will be taken.” 

float 

 
The kernel parameter adjusts the function how a support vector hyperplane is 
calculated. The default value is ‘rbf’ which stands for radial basis function. In this 
thesis, different parameter values were tested during hyperparameter tuning. 
 

                                                 
4 https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html 
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3.3 Isolation Forest 

IsolationForest is an unsupervised ensemble learning method performing outlier 
detection in high-dimensional datasets. The method isolates samples by 
randomly selecting features and split values between the maximum and 
minimum of the selected features. It can be represented by a tree structure. (Scikit, 
2019). The method detects anomalies based on the concept of isolation without 
employing a distance or density measure. The method returns the anomaly score 
of each sample. The Scikit-learn library provides many hyperparameters to affect 
the functionality. Some of the parameters are explained in Table 4, full 
hyperparameter list can be found from the user guide.5 

Table 4. IsolationForest hyperparameters 
Hyperparameter Description Possible values 
contamination “The proportion of outliers in the dataset. 

Used at learning to define the threshold on 
the decision function.” 

float in (0., 0.5), optional 
(default=0.1) 

n_estimators “The number of base estimators in the 
ensemble.” 

int, optional 
(default=100) 

bootstrap “Whether or not the individual trees are fit 
on random subsets of the training data 
sampled with replacement.” 

boolean, optional 
(default=False) 

 
According to Liu et al. (2012) Isolation Forest outperforms OneClassSVM and 
Local Outlier Factor methods detecting global anomalies in performance having 
a low linear time-complexity and a small memory-requirement. Isolation forest 
fails to detect local anomalies. They also found that using smaller subsamples 
builds better isolation models. 

3.4 Local Outlier Factor 

Local Outlier Factor (LOF) is an unsupervised algorithm proposed by Breunig et 
al. (2000) for finding anomalous data points by measuring the local deviation of 
a given data point with respect to its neighbors. The algorithm can detect local 
outliers efficiently from large datasets. An anomaly score of each sample is called 
Local Outlier Factor. The score tells how isolated the object is compared to 
surrounding neighbors. Locality is given by nearest neighbors and the distance 
is used to estimate the local density. The Scikit-learn library provides numerous 

                                                 
5  https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationFo-

rest.html 
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hyperparameters for LOF. Some hyperparameters are introduced in Table 5, full 
list of hyperparameters can be found from the user guide.6 

Table 5. LocalOutlierFactor hyperparameters 
Hyperparameter Description Possible values 
n_neighbors “Number of neighbors to use by default 

for k-neighbors queries. If n_neighbors is 
larger than the number of samples 
provided, all samples will be used.” 

int, optional (default=20) 

algorithm “Algorithm used to compute the nearest 
neighbors: ‘ball_tree’ will use BallTree 
‘kd_tree’ will use KDTree. ‘brute’ will use 
a brute-force search. ‘auto’ will attempt to 
decide the most appropriate algorithm 
based on the learning values.” 

{‘auto’, ‘ball_tree’, 
‘kd_tree’, ‘brute’}, 
optional 

contamination “The proportion of outliers in the dataset. 
Used at learning to define the threshold on 
the decision function.” 

float in (0., 0.5), optional 
(default=0.1) 

novelty “By default, LocalOutlierFactor is only 
meant to be used for outlier detection. Set 
novelty to True if you want to use 
LocalOutlierFactor for novelty detection.” 

boolean, default False 

3.5 Naïve Bayes 

According to the Scikit-learn user guide Naive Bayes methods are a set of 
supervised learning algorithms based on applying Bayes’ theorem. A Naive 
Bayes classifier assumes that the presence of a particular feature is unrelated to 
the presence of any other feature. Naive Bayes classifiers have worked well in 
many real-world situations such as document classification and spam filtering. It 
is alleged that Naïve Bayes requires a small amount of training data to estimate 
the necessary parameters. Naive Bayes learners and classifiers can be fast 
compared to more sophisticated methods. Naive Bayes is also known as a bad 
estimator, so the probability results are not trustworthy. The Scikit-learn library 
provides many variants of Naïve Bayes implementations. The Multinomial 
Naïve Bayes (MultinomialNB) classifier was selected in this thesis as the classifier 
has been used in text classification. (Scikit, 2019). 

 

                                                 
6  https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlier-

Factor.html 
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3.6 Stochastic Gradient Descent 

Stochastic Gradient Descent (SGD) is supervised discriminative learning of linear 
classifiers under convex loss functions. The Scikit-learn user guide tells that SGD 
has been applied to large-scale and sparse machine learning problems often 
encountered in text classification and natural language processing. The classifier 
can scale to very large matrices with more than 10^5 training samples and more 
than 10^5 features. The Scikit-learn’s SGDClassifier supports multiclass 
classification by combining multiple binary classifiers in a one versus all (OVA) 
scheme. (Scikit, 2019). The actual classifier can be selected as a hyperparameter. 
In Table 6 there are some hyperparameters introduced, full listing can be found 
from the user guide.7 

Table 6. SGDClassifier hyperparameters 
Hyperparameter Description Possible values 
loss “The loss function to be used.  ‘hinge’ gives a 

linear SVM. The ‘log’ loss gives logistic 
regression, a probabilistic classifier. 
‘squared_hinge’ is like hinge but is quadratically 
penalized. ‘perceptron’ is the linear loss used by 
the perceptron algorithm. The other losses are 
designed for regression instead of classification.” 

str, default: 
‘hinge’, ‘log’, 
‘modified_huber’, 
‘squared_hinge’, 
‘perceptron’ 

alpha “Constant that multiplies the regularization term. 
Also used to compute learning rate when set to 
‘optimal’.” 

float, default=1e-
4 

tol “The stopping criterion. If it is not None, the 
iterations will stop when (loss > best_loss - tol) for 
n_iter_no_change consecutive epochs.” 

float or None, 
optional 
(default=1e-3) 

shuffle “Whether or not the training data should be 
shuffled after each epoch (iteration).”  

bool, optional. 
Default: True 

3.7 Linear Support Vector Machine 

Support Vector Machines (SVM) are a set of supervised learning methods used 
for classification, regression and outlier detection. The Scikit-learn user guide 
(2019) says that SVM is effective in high dimensional spaces even in the case of 
very high number of features compared to number of samples, but the classifier 
may suffer overfitting. SVM is also memory efficient. SVMs supports specifying 
different kernel functions for the decision function. Overfitting can be avoided 
by choosing a kernel and a regularization term. SVM do not directly provide 

                                                 
7  https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClas-

sifier.html 
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probability estimates. In this thesis the linear kernel was selected for further 
study. The Scikit-learn’s LinearSVC provides the linear SVM. The 
implementation is based on the liblinear library which is more efficient than the 
libsvm library based implementation. The LinearSVC supports multiclass 
classification according to OVA scheme. In Table 7 some important LinearSVC 
hyperparameters are introduced, full list of hyperparameters can be found from 
the user guide.8 

Table 7. LinearSVC hyperparameters 
Hyperparameter Description Possible values 
penalty “Specifies the norm used in the penalization. The 

‘l2’ penalty is the standard used in SVC. The ‘l1’ 
leads to coefficient vectors that are sparse.” 

string, ‘l1’ or ‘l2’ 
(default=’l2’) 

loss “Specifies the loss function. ‘hinge’ is the standard 
SVM loss while ‘squared_hinge’ is the square of 
the hinge loss.” 

string, ‘hinge’ or 
‘squared_hinge’ 
(default=’square
d_hinge’) 

dual “Select the algorithm to either solve the dual or 
primal optimization problem. Prefer dual=False 
when n_samples > n_features.” 

bool, 
(default=True) 

tol “Tolerance for stopping criteria.” float, optional 
(default=1e-4) 

C “Penalty parameter C of the error term.” float, optional 
(default=1.0) 

 
The implementation uses a random number generator to select features when 
fitting the model. It might lead to different results for the same input data. If that 
happens a smaller value of the tol parameter must be attempted. 

3.8 K-Nearest Neighbors 

The Scikit-learn user guide (2019) calls Nearest Neighbors classification as 
instance based learning or non-generalizing learning method. The method does 
not attempt to generate a general internal model but stores instances of the 
training data instead. Classification is computed as a simple majority vote of the 
nearest neighbors of each point. A query point is then assigned the data class that 
has the most representatives within the nearest neighbors of the point. The 
algorithm is simple but the method has been successfully applied in number of 
classification and regression problems such as handwritten digits or satellite 
image scenes. Nearest Neighbors methods may be useful in classification 
situations where the decision boundary is very irregular. (Scikit, 2019). The 
Scikit-learn library provides the KNeighborsClassifier object to implement this 
type of classifier. 

                                                 
8 https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html 
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3.9 Scikit-learn Programming Interfaces 

In the Scikit-learn library, an estimator for classification is a Python class that 
implements the fit and the predict methods. Fitting an estimator means that the 
learning data is provided as parameter. The testing data is provided as parameter 
to be able to predict the classes to which unseen samples belong. As a coding 
convention, the Scikit-learn estimators follow certain guidelines to make its 
behavior more predictive and developer friendly. 

The library provides Pipeline class to apply sequentially a list of transforms 
and a final estimator. The intermediate steps must implement the fit and the 
transform methods. Only a final estimator needs to implement the predict 
method. The purpose of a pipeline is to ease the processing steps that can be 
cross-validated. 

To implement a new Scikit-learn compatible estimator, the class needs to 
inherit Scikit-learn’s BaseEstimator and also one of the estimator type classes. The 
type classes are ClassifierMixin, RegressorMixin, ClusterMixin, and 
TransformerMixin. In case of an estimator for classification the fit, predict, and 
score methods need to be overwritten. Further information about implementing 
estimators can be found from the Scikit-learn’s developer’s guide.9 

GridSearchCV is a useful class for tuning an estimator hyperparameters or 
options in a pipeline. The class does exhaustive search over specified parameter 
values for an estimator. GridSearchCV uses the fit and score methods. It also may 
use the methods predict, predict_proba, decision_function, transform, and 
inverse_transform if they are implemented in the estimator used. It does cross-
validated search over a parameter grid. Another option is to use the 
ParameterGrid class directly passing each grid element as a parameter of the 
estimator’s set_params method. 

The metrics package contains useful methods to calculate classification 
scores, for example, the f1_score and roc_auc_score methods. The package also 
contains the classification_report method to print a report of classification results 
and the confusion_matrix method which returns a matrix of classification results. 
Scikit-learn also provides many vectorizer implementations for preprocessing 
text data. 

 

                                                 
9  https://scikit-learn.org/stable/developers/contributing.html#rolling-your-own-esti-

mator 



25 

4 OVERVIEW OF TEXT PREPROCESSING 
TECHNIQUES 

History of Natural Language Processing (NLP) began in 1950 when Alan Turing 
handled this topic in his paper Computing Machinery and Intelligence. Since 
then the NLP has taken its place in fields of computer science, artificial 
intelligence and computational linguistics. NLP consists of processes required to 
interact between computer and human languages. In other terms, NLP is feature 
engineering to transform unstructured text to features and machine learning 
algorithms for further processing. Kantardzic (2011) splits feature engineering 
into data preparation and data reduction phases. He estimates that over 50% of 
effort is used in these phases in the data mining process. Data preparation 
concerns transformation of raw data, normalizations, data smoothing, handling 
missing data, and dealing with outliers. Data reduction concerns feature 
reduction, dimensionality reduction, and value reduction. Feature reduction is 
important since most of the real world data mining applications are characterized 
by high dimensional data, where not all of the features are important. 
Dimensionality reduction refers to mathematical transformations to reduce 
features, for example, the Karhunen – Loeve’s Principal Component Analysis. 
Value reduction is a reduction in the number of discrete values for a given feature. 
This is also known as feature discretization. In this thesis the value reduction is 
implemented transforming CVSS scores into four severity levels. 

In NLP, syntactic analysis is used to evaluate how the natural language fits 
with the grammatical rules. Some widely known NLP techniques are: 
Lemmatization is converting various inflected forms of a word into a single form. 
Morphological segmentation is dividing words into individual units called 
morphemes. In word segmentation a large piece of continuous text is divided 
into distinct units. Part-of-speech tagging is used to identify the part of speech 
for every word. Parsing involves undertaking grammatical analysis for the 
provided sentence. Stemming is cutting the inflected words to their root form. 
Tokenization is splitting the text into a sequence of N-gram tokens. N-gram 
means combining a sequence of N-words into tokens. For example, a 2-gram 
token contains two subsequent words. A stop word is a commonly used word 
which might not contain any useful information, such as English words “the”, 
“a”, “an”, “in”, et cetera. Named entity recognition is a technique that tries to 
map items in the text to proper names. Many of the introduced techniques are 
implemented in the Stanford CoreNLP toolkit (Manning et al, 2014). Another 
toolkit which used in this thesis is Natural Language Toolkit (NLTK). It is a 
platform for building Python programs to work with written natural text. In 
Figure 6 there is Wijayasekara et al. (2014) technique to process and classify bug 
reports to regular bugs and bugs that are security related. These preprocessing 
steps can be used in other text classification purposes as well. 
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Figure 6. Natural Language Processing Steps (Wijayasekara et al., 2014) 

In the figure, Step 1 represents the basic unstructured text extraction. The short 
description is a title which can be 5-10 words long. The long description is a defect 
report a few sentences about a bug. In step 2 the syntactical information is 
extracted in the form of single unique words which are converted to lower case. 
The extraction process removes words and symbols that might not carry a 
significant amount of information. This is done by tokenizing the description into 
a bag-of-words representation and then removing stop words. A simple form of 
bag-of-words representation is to keep count how many times each word appear 
in a document. In Step 3 similar words are combined and stemming is performed 
to identify the most frequent words. Step 4 illustrates how the features are passed 
to a classifier which makes prediction concerning the text given as input of the 
whole process. Steps 2 and 3 represents the data preparation and reduction 
phases in data mining. Wijayasekara et al. (2012) used Wordnet to identify 
synonyms to combine them. WordNet is a large lexical database of English. They 
used Porter stemming to cut words into their basic form. To combine words that 
carry similar information further reduces the number of features in matrix. 
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4.1 Term Frequency – Inverse Document Frequency 

Term Frequency–Inverse Document Frequency (TFIDF), is a numerical statistic 
weighting scheme to reflect how important a word is to a document in a 
collection or corpus. In linguistics, a corpus is a large and structured set of texts. 
TFIDF is a very popular weighting scheme used in digital library systems. TFIDF 
can be calculated as follows: 
 
 𝑑(𝑖) = 𝑇𝐹(𝑤𝑖, 𝑑) × 𝐼𝐷𝐹(𝑤𝑖)   (4.1) 

 
 𝐼𝐷𝐹(𝑤) = log (

|஽|

஽ி(௪)
)   (4.2) 

Joachims (1996) explained how TFIDF works as follows: “The term frequency 
𝑇𝐹(𝑤𝑖, 𝑑) is the number of times word w occurs in document d. The document 
frequency 𝐷𝐹(𝑤) is the number of documents in which the word w occurs at least 
once. The inverse document frequency 𝐼𝐷𝐹(𝑤)  can be calculated from the 
document frequency. |D| is the total number of documents. The inverse 
document frequency of a word is low if it occurs in many documents and highest 
if the word occurs in only once. The value 𝑑(𝑖) of feature wi for document d is 
then calculated as the product. 𝑑(𝑖) is called the weight of word wi in document 
d. This weighting scheme says that a word wi is an important indexing term for 
document d if it occurs frequently in it. On the other hand, words which occur in 
many documents are rated less important due to their low inverse document 
frequency.” His research focused text categorization using Naïve Bayes and 
TFIDF classifiers. 

4.2 Stemming and Lemmatization 

Stemming is a crude heuristic process that cuts off the ends of words in the hope 
of correctly transforming words into its root form. The original stemming 
algorithm was introduced in 1979 in the Computer Laboratory, Cambridge 
England. Porter Stemming algorithm is written and maintained by its author, 
Martin Porter. In this thesis, the NLTK library’s Snowball Stemmer was used 
which implements the Porter stemmer algorithm (Porter, 1980). 

Another approach determining a stem of a word is lemmatization. 
Lemmatization is process of determining the dictionary form of a word based on 
its intended meaning. It may use a dictionary for word mappings or rule-based 
approaches. According Camacho-Collados and Pilehvar (2018) research a simple 
tokenization works equally or better than lemmatization or multiword grouping 
for text classification with neural network based classifiers. In this thesis, the 
NLTK library’s WordnetLemmatizer was used. 
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4.3 Text Vectorization 

The Scikit-learn library provides many helpful classes in feature extraction from 
text. In Scikit-learn, the process of turning text documents into numerical features 
is called vectorization. Feature extraction differs from feature selection: feature 
extraction transforms arbitrary data into numerical features usable for machine 
learning. Feature selection is a machine learning technique applied on these 
features. (Scikit, 2019). Scikit-learn’s CountVectorizer provides a basic bag-of-
words representation of features. The TfidfVectorizer class provides a TFIDF 
representation of features. In Table 8 some of important vectorizer parameters 
are introduced, full list of parameters are available in the user guide.10 

Table 8. Vectorizer parameters 
Parameter Description Possible values 
stop_words “If ‘english’, a built-in stop word list for English is 

used. If a list, that list is assumed to contain stop 
words, all of which will be removed from the resulting 
tokens. If None, no stop words will be used. The 
max_df parameter can be set to a value in the range 
[0.7, 1.0] to automatically detect and filter stop words 
based on intra corpus document frequency of terms.” 

string 
{‘english’}, list, 
or None 
(default) 

lowercase “Convert all characters to lowercase before 
tokenizing.” 

boolean, True 
by default 

ngram_range “The lower and upper boundary of the range of n-
values for different N-grams to be extracted. All values 
of n such that min_n <= n <= max_n will be used.” 

tuple (min_n, 
max_n) Default: 
(1, 1) 

min_df “When building the vocabulary ignore terms that have 
a document frequency strictly lower than the given 
threshold. If float, the parameter represents a 
proportion of documents, integer absolute counts.” 

float in range 
[0.0, 1.0] or int, 
default=1 

token_pattern “Regular expression denoting what constitutes a 
token. By default it selects tokens of 2 or more 
alphanumeric characters. Punctuation is completely 
ignored and always treated as a token separator.” 

string, Default: 
r'\b[^\d\W]+
\b' 

 
Stop words are assumed uninformative representing the content and can be 
removed to avoid them being used in prediction. Stop word lists may contain 
words that could include important information, for example “vulnerability”. 
Stop word lists are a simple tool managing noise. (Nothman et al., 2018). In this 
thesis the token pattern’s regular expression is changed from default so that only 
at least three characters long alphanumerical words are extracted as features. 

                                                 
10 https://scikit-learn.org/stable/modules/feature_extraction.html 
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The Scikit-learn built-in vectorizers do not account for potential misspellings or 
word derivations but the functionality can be added by customizing a tokenizer 
or analyzer. The Scikit-learn user guide (2019) instructs that instead of passing 
customized methods as constructor parameters more advisable way is to inherit 
the class and override the member methods: build_preprocessor, build_tokenizer, 
and build_analyzer. The basic functionality of the member methods are 
described more detailed in the user guide. 11 

                                                 
11 https://scikit-learn.org/stable/modules/feature_extraction.html 
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5 RELATED WORK 

Jacob J. Tyo (2016) concluded in his thesis that performance of each classifier 
varied greatly between datasets but the Naïve Bayes classifier outperformed all 
other classifiers in all cases while SVM classifiers were always among the best 
performing. In the research, three separate NASA’s defect databases used as 
datasets. The research focused detecting hidden impact bugs using supervised 
and unsupervised machine learning approaches. A hidden impact bug can be 
defined as vulnerability identified as such after the bug had been disclosed to the 
public. The outcome of this study was that while unsupervised approach 
performed well, it was not as effective as the supervised method, achieving a G-
Score of only 0,715 where the best supervised approach achieved G-Score of 0,903. 
The research suggests to continue to explore the generalizability of vulnerability 
profiles and open source bug database empirical studies should be performed. 
As an alternative, the research proposes continuing anomaly detection approach 
towards multiclass classification treating each class of the multiclass problem as 
a one-class anomaly detection problem. According to the research there are no 
prior work using unsupervised machine learning to classify software security 
bug reports exists. 

Miyamoto et al. (2015) compared the following algorithms: Naïve Bayes 
Classifier, Latent Dirichlet Allocation, Latent Semantic Indexing, and Supervised 
Latent Dirichlet Allocation (SLDA) to estimate the CVSS score. They used NVD 
vulnerability descriptions as a dataset. Their finding was that the SLDA 
algorithm is the most efficient. They proved even better results adding an annual 
weight to the algorithm. They concluded that their method cannot detect 
completely novel vulnerabilities. They also observed that if information about 
CWE were assigned to the vulnerability, it might be possible to improve accuracy. 
So, they speculated that it might be possible to create a two-step method which 
first estimates the CWE-ID from the description and then estimate the CVSS base 
metrics using their method. 

Lamkamfi et al. (2011) found that Naïve Bayes Multinomial classifier is able 
to achieve stable accuracy the fastest, having only about 250 bug reports of each 
severity at training phase. They studied GNOME and Eclipse defect databases to 
predict severity of bug reports but not in the sense of vulnerabilities or security. 
They study Naïve Bayes, K-Nearest Neighbor, and Support Vector Machines 
(SVM) approaches. 

Bozorgi et al. (2010) explored OSVDB and Mitre CVE databases for the most 
likely exploited vulnerabilities. They used the SVM classifier to distinguish the 
data into two classes. They found that many of the features are irrelevant but a 
lot of information is contained in text fields. They used a bag-of-words 
representation for each text field to transform the text to features. 
Peters et al. (2017) developed a tool to find security related bug reports using a 
few open source project’s defect databases. They used stop-word removal and 
TFIDF preprocessing techniques and compared Random Forest, Naïve Bayes, 
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Logistic Regression, Multilayer Perceptron, and K-Nearest Neighbors machine 
learning algorithms.  Their results show that the selection of machine learning 
algorithm varies between the databases. The tool handles the class imbalance 
problem. Data is said to suffer from class imbalance problem when the class 
distributions are highly imbalanced. In this context, many classification learning 
algorithms have low predictive accuracy for infrequent class. 

Han et al. (2017) studied predicting CVSS2 scores based on NVD 
vulnerability descriptions. They divided the vulnerabilities into four classes by 
severity from critical to low. In their approach, instead of relying on manual 
feature engineering, they used word embeddings and a one-layer shallow 
Convolutional Neural Network (CNN) to automatically capture discriminative 
word and sentence features of vulnerability descriptions for predicting 
vulnerability severity. They adopted an undersampling strategy to balance the 
training and testing datasets. They compared their method to TFIDF+SVM, word 
embeddings+SVM, word embeddings+2-layer CNN, and word 
embeddings+CNN with Long Short Term Memory (LSTM). Their method 
outperformed the rival methods having F1-score averaged by severity classes 
0,816. Word embedding is the collective name for techniques where words or 
phrases from the vocabulary are mapped to vectors of real numbers. It involves 
a mathematical embedding from a space with many dimensions per word to a 
continuous vector space with a much lower dimension. CNN and LSTM are 
neural network approaches in machine learning. Originally CNN was designed 
to map image data to an output variable. LSTM was proposed in 1997 by Sepp 
Hochreiter and Jürgen Schmidhuber to deal with the exploding and vanishing 
gradient problems. 

Another way finding vulnerabilities in addition to crawling through defect 
texts is to scan the source code. As defect reports may contain code snippets 
within the text, Wijayasekara et al. (2012) used a static code analyser to create 
features in addition to text preprocessing techniques. Li et al. (2018) developed a 
tool using neural network techniques to detect potential vulnerabilities in source 
code. The tool is limited to C/C++ programming languages only. 

Sanguino and Uetz (2017) analysed CPE dictionary and CVE feeds. They 
developed a method that recommends a prioritized list of CPE identifiers for a 
given software product. Based on their observations there are four major issues: 
CVE entries without CPE references, software products without assigned CPEs, 
typographical errors, and a lack of synchronization between both datasets may 
lead to incorrect results output of Vulnerability Management Systems. They 
propose that NIST, which is responsible for maintaining these repositories, 
should define a mechanism to overcome these issues. 

 
 
Ruohonen and Leppänen (2018) studied textual information retrieval techniques 
to map CVEs to CWEs. Based on the NVD information they attempted to assign 
CWEs to vulnerabilities in four software products that can be found from the 
Snyk database. They used traditional text pre-processing techniques and four 
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weighting systems, including TFIDF, 1-3 grams, and latent semantic analysis to 
map CWE to vulnerabilities. They got poor precision results but it cannot be 
generalized to all repositories or programming languages. They found that 
simple keyword searches based on CVE and CWE identifiers are more robust. 
Their observation were, that the choice over particular security-related corpora 
has likely a strong effect upon the vulnerability-CWE mappings and CWEs are 
not very similar with respect to each other. Even though unigrams gave the best 
results the trigrams “denial of service” and “NULL pointer dereference”, for 
example, should attain higher weights than any of the other N-grams. 
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6 METHODS AND DATA 

NVD database was used to study CVSS and CWE classification and also to learn 
one-class classifiers. To study unary classification, a few defect databases of open 
source projects were collected. The security related issues were manually labelled 
by a security specialist to confirm vulnerability keywords can be found from 
defect reports. Automatic CVSS and CWE classifications were run using NVD 
data only. 

6.1 NVD Data 

NVD provides vulnerability data feeds in the JSON format, specified in NVD 
JSON 1.0 Schema. The data feeds are available in compressed format where files 
are divided on a yearly basis. Also, the recently added and lately modified 
vulnerabilities are available in separate files. In this thesis, the latest 
vulnerabilities and all vulnerability data from 2018 and until end of April in 2019 
were downloaded. 18755 vulnerabilities were used as datasets in experiments. In 
Figure 7 there is an example of a single item of vulnerability data which is 
downloaded and parsed for further usage. According to Miyamoto et al. (2015) 
assigning higher weights to recently published CVEs gives better classification 
results. Also, by narrowing down the dataset size it might save computational 
power. 
 

 
Figure 7. Example of Parsed NVD Data 

The data structure presented is a Python list in which items are as follows, listed 
from the top: CVE identifier, Vulnerability text, CWE class, CVSS2 vector, CVSS2 
Score, CVSS3 vector, CVSS3 score, and CPE vendor and component names. 
Vulnerability texts were preprocessed and passed to machine learning 
algorithms to predict classifications. The CVSS vectors and CWE classes were 
used to validate the classifier results. CPE names, 6571 of them, were studied to 
compare whether excluding or including them have better results. According to 
Han et al. (2017) vulnerability texts are concise, average length is only 37.5 ± 15.4 
words. Not all vulnerabilities have CVSS2, CVSS3 and CWE given in whole 
dataset. In Figure 8 the data distribution of CVSS2 metrics are presented. There 
were total of 18124 vulnerabilities that had CVSS2 vector given in whole dataset. 
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Figure 8. CVSS2 Data Distribution by Vectors 

In this thesis, the classification approach tries to predict vectors metric by metric 
and then calculating the score. In CVSS2 there are six classification predictions to 
be made based on metrics to calculate the actual score. As Figure 8 indicates there 
is high class imbalance in the attack vector, access complexity, and authentication 
metrics. The class “Multiple” of Authentication metric was completely discarded 
because there are only 4 observations of them. On the attack vector and access 
complexity metrics there are over 300 observations of low number classes. Major 
number of vulnerabilities can be exploited from network, having low access 
complexity with no authentication required by attacker. Partial loss of 
confidentiality, integrity, and availability are the major impacts the 
vulnerabilities have. This average type of vulnerability base score can be 
calculated as 7,5. 

 In Figure 9 the CVSS3 data distribution by vectors is shown. There are 
17928 vulnerabilities in total the CVSS3 vector is given in whole dataset. The 
classification approach makes eight predictions before the actual CVSS3 score can 
be calculated. As the figure indicates, there are some classes that have low 
number of observations but none have to be discarded. On the attack vector there 
are physical vulnerabilities only 177 and exploitable from adjacent network only 
a little over 300 observations. Surprisingly, with low impact on availability there 
are only about 300 vulnerabilities. Most of the vulnerabilities are exploitable from 
network, having low attack complexity with no privileges required from attacker 
and having no user interaction required. Mostly, as the scope is not changed the 
authorization privileges are not elevated by vulnerable components. The major 
impact is high on confidentiality, integrity, and availability for CVSS3 estimated 
vulnerabilities. This type of average vulnerability gives base score of 9,8. 
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Figure 9. CVSS3 Data Distribution by Vectors 

Han et al. (2017) categorized vulnerabilities into four groups by severity as 
indicated in Table 9. Atlassian security advisories classify vulnerabilities into 
four severity levels based on CVSS scores. They estimated vulnerability severities 
based on these categories. In this thesis the severity categories are used in 
classification after calculating the actual score. In Figure 10 the vulnerabilities by 
severity are shown in CVSS2 and CVSS3 scores. 

Table 9. Vulnerabilities by Severity 
Range Description Category 
9.0 – 10.0 “Vulnerabilities this range are usually exploited 

straightforwardly since the attacker does not need any special 
authentication credentials or knowledge about individual 
victims.” 

critical 

7.0 – 8.9 “Vulnerabilities are usually difficult to exploit. Exploitation of 
such Vulnerabilities may result in elevated privileges, significant 
downtime, or compromise of the confidentiality, integrity, or 
availability.” 

high 

4.0 – 6.9 “Vulnerabilities typically require the attacker to reside on the 
same local network as the victim or manipulate individual 
victims via social engineering tactics. Impact of such 
vulnerabilities is usually mitigated by factors such as user 
privileges, authentication requirements.” 

medium 

0.1 – 3.9 “Vulnerabilities in the “low” level have very little impact on an 
enterprise’s business. Local or physical system access is always 
required for exploiting.” 

low 
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Figure 10. Distribution of CVSS Counts Based on Vulnerability Severity 

In this thesis, in CVSS2 score the 11946 vulnerabilities fell into medium category 
but the rest vulnerabilities were between 1000-3000. In CVSS3 score there were 
163 vulnerabilities in low category, 6984 vulnerabilities in medium, 8187 
vulnerabilities in high, and 2590 vulnerabilities in critical severity. 

There are 18755 vulnerabilities and 105 different CWEs given. In Figure 11 
the distribution of CWEs is listed. There are 38 CWEs which are assigned less 
than 10 times. In top 5 CWEs there 8228 vulnerabilities out of all 18775. 

 
Figure 11. Original Dataset CWE Distribution 
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The top 5 original dataset CWEs consists of Improper Neutralization of Input 
During Web Page Generation, Improper Restriction of Operations within the 
Bounds of a Memory Buffer, Improper Input Validation, Improper Access 
Control, and Information Exposure. In this thesis, an attempt to balance the CWE 
data by finding root categories of low number CWEs was taken: If there were less 
than ten times CWE assigned a search for root category was attempted. This is 
implemented in the CweFinder class which can be found from Appendix 1. The 
CWE hierarchy is available in different formats separated in three different views. 
The research concept view was used in this thesis only. In Figure 12 there is the 
distribution of root CWEs of the complete dataset presented. 
 

 
Figure 12. Distribution of Root CWEs on Complete Dataset 

In the Research Concept view the root CWEs concentrates mainly around four 
major weakness types as shown in Figure 12:  

 CWE-693: Protection Mechanism Failure 
 CWE-707: Improper Enforcement of Message or Data Structure 
 CWE-118: Incorrect Access of Indexable Resource 
 CWE-664: Improper Control of a Resource Through its Lifetime. 

After finding root CWEs for the complete dataset, there were two root items 
assigned two times only: Information Exposure Through Log Files and 
Allocation of File Descriptors. After completely discarding CWEs less or equal 
than ten in numbers the data ended up having 18753 vulnerabilities in 70 
different CWEs. The 10-fold cross-validation method requires at least ten 
observations in each class. The data distribution is presented in Figure 13 which 
were used in the experiments. The completely discarded CWEs are shown in 
Table 10. A closer look on the discarded CWEs it reveals many deprecated 
categories or suggested for deprecation on upcoming versions. There were 631 
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empty CWEs and 121 CWEs labelled ‘NVD-CWE-noinfo’ discarded completely 
as well as they were not describing any vulnerability causes. 
 

 
Figure 13. CWE Distribution of Selected Root Items 

There were 32 vulnerabilities which were rejected for some reason, for example, 
rejected by CNA or duplicates which do not contain any useful information for 
prediction. These vulnerabilities were discarded from the dataset. Also, there 
were 41 vulnerabilities disputed or rejected by CNA which however contains 
useful descriptions but this single word was removed. These vulnerability 
descriptions starts with “** DISPUTED **” or “** REJECT **”. Unwanted common 
words were removed from vulnerability descriptions to make distinction better 
between a defect and vulnerability. The following words removed in addition to 
Scikit-learn’s default stop words: “issue”, “defect”, “bug”, “fault”, “flaw”, 
“mistake”, “error”, “version”, “system”, “because”,  and “before”. 
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Table 10. Details of Discarded and Deprecated CWEs 
ID Name Description ∑ 
CWE-18 “CWE CATEGORY: Source 

Code” 
“This entry is being considered for 
deprecation.” 

1 

CWE-398 “CWE CATEGORY: 7PK – 
Code Quality” 

“Poor code quality leads to unpredictable 
behaviour. From a user's perspective that often 
manifests itself as poor usability.” 

1 

CWE-371 “CWE CATEGORY: State 
Issues” 

“Weaknesses in this category are related to 
improper management of system state.” 

1 

CWE-199 “CWE:CATEGORY: 
Information Management” 

“Weaknesses in this category are related to 
improper handling of sensitive information.” 

1 

CWE-534 “DEPRECATED: 
Information Exposure 
Through Debug Log Files” 

“This entry has been deprecated because its 
abstraction was too low-level. See CWE-532.” 

2 

CWE-769 “DEPRECATED: 
Uncontrolled File 
Descriptor Consumption” 

“This entry has been deprecated because it was 
a duplicate of CWE-774. All content has been 
transferred to CWE-774.” 

2 

CWE-171 “CWE CATEGORY: 
Cleansing, 
Canonicalization, and 
Comparison Errors” 

“Weaknesses in this category are related to 
improper handling of data within protection 
mechanisms that attempt to perform 
neutralization for untrusted data.” 

2 

CWE-754 “Improper Check for 
Unusual or Exceptional 
Conditions” 

“The software does not check or improperly 
checks for unusual or exceptional conditions 
that are not expected to occur frequently 
during day to day operation of the software.” 

6 

CWE-17 “CWE CATEGORY: Code” “This entry is being considered for 
deprecation.” 

7 

CWE-91 “XML Injection” “Entry might need to be deprecated or 
converted to a general category.” 

7 

CWE-358 “Improperly Implemented 
Security Check for 
Standard” 

“The software does not implement or 
incorrectly implements one or more security-
relevant checks as specified by the design of a 
standardized algorithm, protocol, or 
technique.” 

7 

CWE-444 “Inconsistent Interpretation 
of HTTP Requests ('HTTP 
Request Smuggling')” 

“When malformed or abnormal HTTP requests 
are interpreted by one or more entities in the 
data flow between the user and the web server, 
such as a proxy or firewall, they can be 
interpreted inconsistently, allowing the 
attacker to "smuggle" a request to one device 
without the other device being aware of it.” 

8 

CWE-682 “Incorrect Calculation” “The software performs a calculation that 
generates incorrect or unintended results that 
are later used in security-critical decisions or 
resource management.” 

8 

CWE-417 “CWE CATEGORY: 
Channel and Path Errors” 

“This category is being considered for 
deprecation.” 

9 

CWE-346 “Origin Validation Error” “The software does not properly verify that the 
source of data or communication is valid.” 

9 
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6.2 Defect Datasets 

Defect databases were used to measure one-class classification performance. The 
NVD vulnerability descriptions were used at learning phase and defect databases 
were used to predict. In Table 11 there are open source projects defect datasets 
introduced (Peters et al., 2017) which were used in this study. 

Table 11. List of Bug Report Databases 
Project Domain Start Date End Date ∑ 
Chromium “Web browser called Chrome.” Aug 30 2008 Jun 11 2010 41940 
Wicket “Component-based web 

application framework for the 
Java programming.” 

Oct 20 2006 Nov 9 2014 1000 

Ambari “Hadoop management web UI 
backed by its RESTful APIs.” 

Sep 26 2011 Aug 8 2014 1000 

Camel “A rule-based routing and 
mediation engine.” 

Jul 8 2007 Sep 18 2013 1000 

Derby “A relational database 
management system.” 

Sep 28 2004 Sep 17 2014 1000 

 
The databases contains all together 351 security labelled defect reports and the 
rest are non-security related, normal defect reports. To make sure the security 
related reports contain a real vulnerability keywords, security specialist 
manually labelled these items and 148 items were labelled as potentially 
vulnerable.  200 randomly selected samples per database, non-security related 
defect reports were used as a testing set and the potentially vulnerable items were 
added on the top of that. As a result the testing tests size of 1148 defect reports 
were used in one-class classification experiments. In Figure 14 there is an 
example of manually labelled defect which is potentially vulnerable. 
 

 
Figure 14. Example of Potentially Vulnerable Defect 
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6.3 Metrics 

The metrics introduced in this chapter are popular metrics to measure and 
validate classification performance. There are four different outcomes where 
unary and binary classification can lead to in defect classification (Witten & Frank, 
2005, p. 162): 

 True Positive (TP) is correctly classified potentially vulnerable defect. 
 True Negative (TN) is correctly classified normal defect. 
 False Positive (FP) is incorrectly classified potentially vulnerable defect. 
 False Negative (FN) is incorrectly classified normal defect. 

In optimal case, all predictions are correctly classified and there are no incorrectly 
classified samples. Gates and Taylor (2007) argued a system can be completely 
useless due to high number of false positives even if all the correctly classified 
samples are found. Even though their research was about anomalous intrusion 
detection the same analogy applies here: the false positive rate should not be 
higher than 1%. The outcomes of classification measures can be used to calculate 
the true negative rate (TNR or specificity), true positive rate (TPR, recall or 
sensitivity), false positive rate (FPR), precision, accuracy, F1-score (F1), G-score 
(G), Matthews Correlation Coefficient (MCC), and Area Under Curve of Receiver 
Operating Characteristic (AUC) as follows: 
 
 𝑇𝑁𝑅 =

்ே

்ே ା ி௉
 (6.3) 
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ଵ

௫ୀ଴
                      (6.9) 

 
Accuracy, the proportion of correct classifications among all classifications, is a 
very simple and intuitive measure but in classification and anomaly detection it 
might lead to too optimistic results. In this sense recall and precision are better 
measures to describe performance. As a single value of performance is pursued, 
F1-score is a harmonic mean of precision and recall which suits for binary and 
multiclass classification. F1-score reaches its best value at 1 and worst at 0. G-
score is geometric mean of precision and recall. However, in literature F1-score 
is more common. F1-score does not take into account the class imbalance and 
random value of F1-score may vary. To make results comparable with other 
research the MCC and AUC might be better options. MCC is a measure of the 
quality of classification which takes into account true and false positives and 
negatives, and is generally regarded as a balanced measure which can be used 
even if the classes are of very different sizes. A coefficient of +1 represents a 
perfect prediction, 0 no better than random and −1 indicates total disagreement. 
Receiver Operating Characteristic curve is a graphical plot of TPR against FPR 
that illustrates the diagnostic ability of binary or unary classifier as its 
discrimination threshold is varied. AUC is the area under the curve. The value of 
AUC varies between 0 and 1. The random value being 0,5. AUC is a widely used 
measure of performance for classification but has no automatic extension to the 
multiclass case. MCC can be used as a performance measure in multiclass 
problems. (Hand, 2009; Jurman et al., 2012). The Scikit-learn library also sets 
limitations on which metrics to use: The cross_val_score method’s scoring 
parameter supports a limited set of measurement options.12 Scikit-learn (2019) 
provides options for averaging each class weighting in multiclass classification. 
In Table 12 the F1-score averaging options are introduced. 

Table 12. F1-score Averaging Options 
Option Description 
binary “Only report results for the class specified. This is applicable only if the 

targets are binary.” 
micro “Calculate metrics globally by counting the total true positives, false 

negatives and false positives.” 
macro “Calculate metrics for each label, and find their unweighted mean. This 

does not take label imbalance into account.” 
weighted “Calculate metrics for each label, and find their average weighted by the 

number of true instances for each label. This alters ‘macro’ to account for 
label imbalance but it can result in an F-score that is not between precision 
and recall.” 

samples “Calculate metrics for each instance, and find their average.” 
 

                                                 
12 https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter 
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In this thesis, unary classification is measured using AUC-score and multiclass 
classification is measured using micro averaged F1-score. The results can be 
displayed as a two-dimensional confusion matrix with a row and column for 
each class. Each matrix element shows the number of test examples for which the 
actual class is the row and the predicted class is the column. All correct 
predictions are located in the diagonal of the table which is easy to visually 
inspect the table for prediction errors (Witten & Frank, 2005). Confusion matrices 
of CVSS classification can be found from Appendix 3. 

Cross-validation is a standard statistical model validation technique for 
assessing how the results of a statistical analysis will generalize to an 
independent dataset. The goal is to validate how a predictive model will perform 
in practice. The outcome of cross-validation is reliable only if the learning and 
testing datasets are separate and a single instance of data belongs to either 
learning or testing dataset, but not both. The following cross-validation methods 
can be found from literature (Arlot & Celisse 2010; Kohavi 1995; Kantardzic 2011): 

 Holdout is a method where a dataset is split into two. One dataset is used 
for learning and the other for testing. The ratio of the two datasets can be 
arbitrary but commonly two thirds is used for learning and the rest for 
testing. This method can be said cross-validation only if validated more 
than once. Average results of multiple rounds are then used.  

 K-fold cross-validation is a method where a dataset is divided into K the 
equal size datasets. One dataset is used for testing and the rest for learning. 
Validation is performed K times so that the each partial dataset is used for 
testing at each round. 

 Leave-one-out is a special case of K-fold cross-validation as K is chosen 
equal to the samples of a dataset. One single sample is used for testing and 
the other samples for learning. The validation is repeated K times. This 
method is computationally expensive. 

In this thesis, the ten times repeated holdout method was used. Scikit-learn 
provides the train_test_split method to split a dataset. By default two thirds of 
the data are used for training. Also, 10-fold cross-validation was used in 
multiclass classification. The Scikit-learn’s cross_val_score method provides the 
cv parameter to implement this. 

Oversampling and undersampling are widely known techniques to handle 
the class imbalance in datasets. In oversampling the minority class data points 
are replicated as in undersampling only a part of the majority class data points 
are taken. There are methods to synthetically generate data points on minority 
data. In this thesis, undersampling strategy was chosen as oversampling may 
lead having the same data in learning and testing which further leads too 
optimistic results. 
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7 RESULTS 

This chapter shows the results of vulnerability detection from open source defect 
databases and CVSS2 scoring, CVSS3 scoring, and CWE multiclass classification 
results. The goal of vulnerability detection is to classify whether a text contains 
keywords used in vulnerability descriptions or not. The multiclass classification 
results explain how well a vulnerability text can be used to estimate CVSS scores 
and CWE weakness. The dataset used in experiments contains 18755 
vulnerabilities in total having vulnerability descriptions from beginning of 2018 
until April 2019. The results shows classification performance comparisons with 
different classifiers and techniques. 

7.1 Vulnerability Detection 

Three different machine learning algorithms were tested detecting potential 
vulnerability descriptions from text which are available in Scikit-learn: 
OneClassSVM, LOF, and IsolationForest. The NVD data were used in learning 
and the defect texts in prediction. The results are presented in Table 13 where 
AUC-score of each algorithm is shown. Elapsed time was also measured during 
experiments. 

Table 13. Vulnerability Detection Performance 
Algorithm AUC-score Time 
OneClassSVM 0,682 18,5s 
IsolationForest 0,5 8,6s 
LocalOutlierFactor 0,492 9,8s 

 
The experiments were run with each algorithm default parameters. 
IsolationForest and LOF are faster but performance is not better than random. 
The OneClassSVM classifier was selected for further examination. Different 
vectorizers with the classifier were tested to find the most effective combination. 
Also, a keyword-based classifier was implemented to see the difference between 
machine learning approach and a simple text search. Source code for 
vulnerability detection and the keyword-based classifier can be found from 
Appendix 1. The classifier is using Scikit-learn CountVectorizer internally to 
have bag-of-words representation of vulnerability descriptions. Different N-
gram combinations were tested. To classify a text to vulnerability it should 
contain at least two N-grams tokens of vulnerability descriptions. Stemming and 
lemmatizing were examined to measure which preprocessing technique gives the 
best performance. In Table 14 the results of different combinations of vectorizer 
N-gram ranges in the keyword-based classifier are presented. The min_df 
parameter, minimum document frequency, was left on its default value. The 
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parameter makes a vectorizer to ignore terms that have a document frequency 
strictly lower than the given threshold. The AUC-score, feature count of the 
vectorizer, and elapsed time are shown. 

Table 14. Keyword-based Classifier Performance with N-gram Ranges 
N-gram Range AUC-score Feature Count Time 
1 – 1  0,5039 8065 121,7s 
1 – 2  0,503 44187 124,5s 
1 – 3 0,50435 93456 127,3s 
2 – 2 0,7402 37200 123,1s 
2 – 3  0,74 84650 124,7s 
3 – 3  0,52 48041 127,7s 

  
The results show that counting 2-grams and not including single words gives 
much better performance. By having 3-grams in addition it increases the feature 
count but not performance. The 2-grams only was selected for further 
examinations in the keyword-based classifier. The classifier with stemming and 
lemmatizing was compared to different combinations of vectorizers with 
OneClassSVM. These results are presented in Figure 15. Also, different dataset 
sizes in learning are shown. 
 

 
Figure 15. OneClassSVM AUC-score and Dataset Size 
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The results indicate that using 1000 – 4000 vulnerability descriptions would be 
enough to reach a stable performance. A plain CountVectorizer and its feature 
reducing techniques gives the best results at very low number of samples but 
none of these combinations exceed AUC-score of 0,7. The Keyword-based 
classifier with a plain CountVectorizer or lemmatizing gives no better results 
than 0,68 but surprisingly with stemming it gives 0,72 the dataset being 4000 
vulnerabilities. OneClassSVM works better with TFIDF weighting than a plain 
bag-of-words representation. OneClassSVM with stemming does not exceed 
AUC-score 0,7 but a plain TFIDF performs almost as good as the TFIDF with 
lemmatizing reaching the score of 0,72 at 4000 vulnerabilities. The TFIDF 
vectorizer with lemmatizing was selected for further OneClassSVM experiments. 
In Table 15 AUC-score of different N-gram ranges are shown using 
OneClassSVM classifier with TFIDF vectorizing and lemmatization. Also, 
number of vectorizer features and elapsed times are presented. 

Table 15. OCSVM+TFIDF+Lemmatizing Performance with N-gram Ranges 
N-gram Range AUC-score Feature Count Time 
1 – 1  0,699 10401 14,3s 
1 – 2  0,703 59834 16,7s 
1 – 3 0,69 122703 19,1s 
2 – 2 0,566 49556 10,9s 
2 – 3  0,562 122686 13,6s 
3 – 3  0,536 64357 9,3s 

 
The results indicate that using single words as features is almost as good as 2-
grams combined. The number of features increases considerably when the N-
grams range is increased but having no effects on performance. In Table 16 there 
are the keyword-based classifier performance with different 2-gram token counts 
presented. The best performance is obtained when a text contains at least two 
vulnerable 2-gram tokens. 

Table 16. AUC-score of Keyword-based Classifier 2-gram Counts 
 1 2 3 4 5 
Keyword-based Classifier 0,691 0,731 0,694 0,686 0,632 

 
The vectorizers provide the min_df parameter to discard words which do not 
exists on a minimum amount of documents. In Table 17 the effect of different 
min_df parameters are shown. Increasing the parameter value it has a negative 
effect on the amount of features. Also, OneClassSVM elapsed time effect can be 
observed. OneClassSVM and the keyword-based classifier performance is at the 
highest having min_df = 1. 

There are two generic options in Scikit-learn to find optimal combination of 
classifier hyperparameters: exhaustively by testing all possible combinations 
using GridSearchCV or randomly selecting a sample in a given number of 
candidates from a parameter space using RandomizedSearchCV. In this thesis, 
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the exhaustive approach was selected. In unary classification the exhaustive 
search must be implemented using ParameterGrid because a different dataset is 
needed to be passed to the fit method and to the predict method. In Figure 16 the 
output of exhaustive search is shown. 

Table 17. Effect of Minimum Document Frequency Parameter 
min_df OCSVM 

AUC-score 
KeywordStem 
AUC-score 

OCSVM 
Feature Count 

KeywordStem 
Feature Count 

OCSVM 
Time 

1 0,711 0,728 58943 37028 17,2s 
2 0,708 0,705 15532 8217 13,8s 
3 0,703 0,69 8573 3995 12,9s 
4 0,702 0,671 5961 2545 13,7s 
5 0,688 0,657 4665 1963 13,7s 
10 0,673 0,618 2425 887 11,6s 
20 0,688 0,587 1296 451 11,3s 
30 0,686 0,577 951 334 11,4s 
40 0,683 0,577 758 257 11,0s 
50 0,682 0,563 618 199 10,6s 

 

 
Figure 16. Exhaustive Search of OneClassSVM Hyperparameters 

OneClassSVM with linear kernel performs the best but with radial basis function 
the results are very close. Smaller values for the upper bound of training errors 
and lower bound of support vectors gives better results. Also, it seems the 
selection of stopping criterion has not much effect. It is good to note that the 
results on Figure 16 are not cross-validated. 
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The final experiment tries to find if removing CPE names from datasets gives 
somewhat better results as shown in Table 18. The results indicate that AUC-
score is higher if CPE names are included in both OneClassSVM and the 
keyword-based classifier. 

Table 18. Effect of CPE Names Removal on Classification AUC-score 
CPE Name Included Excluded 
OneClassSVM 0,729 0,717 
KeywordStemClassifier 0,732 0,718 

7.2 CVSS Scoring and CWE Classification 

Four different machine learning algorithms and techniques were compared 
classifying CVSS scores and CWE categories. The algorithms are suggested by 
Scikit-learn for text classification. In Table 19 the CVSS2 classification F1-scores 
are presented with different vectorizers. The corresponding results for CVSS3 are 
presented in Table 20. In Table 21 the corresponding results are presented for 
CWE Classification. 

Table 19. CVSS2 Score Classification with Vectorizers 
 MultinomialNB SGDClassifier LinearSVC KNeighbors 
CountVectorizer 0,75 0,803 0,808 0,73 
StemmedCount 0,748 0,803 0,807 0,724 
LemmaCount 0,749 0,802 0,810 0,716 
TFIDFVectorizer 0,677 0,804 0,817 0,718 
StemmedTFIDF 0,675 0,803 0,815 0,715 
LemmaTFIDF 0,678 0,805 0,817 0,716 
Time w. TFIDF 16,5s 15,4s 17,5s 30,5s 

Table 20. CVSS3 Score Classification with Vectorizers 
 MultinomialNB SGDClassifier LinearSVC KNeighbors 
CountVectorizer 0,702 0,782 0,792 0,672 
StemmedCount 0,7 0,784 0,792 0,67 
LemmaCount 0,704 0,784 0,794 0,671 
TFIDFVectorizer 0,532 0,77 0,795 0,679 
StemmedTFIDF 0,527 0,771 0,795 0,678 
LemmaTFIDF 0,533 0,771 0,796 0,678 
Time w. TFIDF 19s 19,6s 21,8s 40,9s 
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Table 21. CWE Classification with Vectorizers 
 MultinomialNB SGDClassifier LinearSVC KNeighbors 
CountVectorizer 0,665 0,796 0,811 0,569 
StemmedCount 0,653 0,791 0,808 0,556 
LemmaCount 0,665 0,796 0,809 0,574 
TFIDFVectorizer 0,541 0,804 0,812 0,642 
StemmedTFIDF 0,529 0,802 0,811 0,631 
LemmaTFIDF 0,544 0,805 0,811 0,643 
Time w. TFIDF 48,4s 74,9s 137,8s 56,3s 

 
The results show that the LinearSVC classifier with TFIDF weighting gives the 
best performance and no remarkable improvement is achieved by stemming or 
lemmatizing in CVSS2, CVSS3, and CWE classification tasks. Scikit-learn 
provides HashingVectorizer to create in-memory mapping from string tokens to 
integer feature indices but performance was considerably lower than 
CountVectorizers and TFIDFVectorizers. In Figure 17 the SGDClassifier and 
LinearSVC classifiers are compared with different dataset sizes. 
 

 
Figure 17. Classifier Performance with different Data sizes in CVSS2, CVSS3, and CWE 
Classification 

In CWE classification F1-score reaches 0,8 at maximum of 2000 samples per class 
defined. In CVSS classification 0,8 F1-score is exceeded in CVSS2 classification 
with LinearSVC only. In Figure 17 the data size is the complete dataset size in 
CVSS experiments and resampled specifically to each class in CWE classification. 
Negative effect of undersampling can be seen in Figure 17 concerning CWE 
classification and in Figure 18 concerning CVSS classifications. 
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Figure 18. Negative Effect of Undersampling in CVSS2 and CVSS3 Metrics 

As indicated in Figures 17 and 18, the undersampling strategy does not give 
better results. The F1-score varies between 0,87 – 0,975 but combining all metrics 
using severity categories the highest F1-score can be obtained in CVSS2, having 
the score 0,81 and in CVSS3 0,783. 

As the LinearSVC classifier with a plain TFIDF vectorizing is selected for 
further experiments the different N-grams ranges were observed. In Table 22 
there are F1-scores of CVSS and CWE classifications with different N-gram 
ranges presented. 

Table 22. CVSS and CWE Classification Performance with N-gram Ranges 
N-grams CVSS2 CVSS3 CWE Feature Count Time 
1 – 1  0,795 0,774 0,796 20059 30,8s 
1 – 2  0,814 0,792 0,813 135644 62,2s 
1 – 3 0,817 0,795 0,812 293891 105,1s 
2 – 2 0,805 0,772 0,787 114286 65,5s 
2 – 3  0,804 0,762 0,78 273832 129,2s 
3 – 3  0,787 0,723 0,71 159546 115,4s 

 
Very similar results in F1-score can be obtained with 1-2 grams than 1-3 grams 
but number of features grows higher using wider N-gram ranges. To see the 
effect of the minimum document frequency in multiclass classification the 
experiments were made running the df_min parameter values from 1 to 50. In 
Table 23 the F1-scores with feature counts and elapsed times are shown in CVSS2, 
CVSS3 and CWE classification. The df_min parameter is explained in Table 8 
among the other vectorizer parameters. 
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Table 23. Effect of the min_df Parameter in Multiclass Classification 
min_df CVSS2 CVSS3 CWE Feature Count Time 
1 0,816 0,797 0,814 135136 70,4s 
2 0,815 0,797 0,811 42383 52,3s 
3 0,811 0,791 0,81 24060 46,3s 
4 0,807 0,789 0,809 16299 44,4s 
5 0,804 0,786 0,806 12478 42,1s 
10 0,791 0,775 0,803 6277 40,9s 
20 0,781 0,775 0,796 3340 39,5s 
30 0,777 0,758 0,792 2376 38,6s 
40 0,772 0,75 0,786 1858 38,2s 
50 0,768 0,748 0,784 1561 38,4s 

 
The best performance in F1-score is gained with lower values of the min_df 
parameter. However, there are no major effects on performance with higher 
values of minimum document frequency but the feature count decreases 
considerably. The processing time also proves a slight, but not considerable 
decrease. In larger datasets by reducing amount of features it may consume less 
CPU power. 

The final experiment was to test if removing the common platform 
enumeration names gives better results in multiclass classification. The F1-score 
results are shown in Table 24 for CVSS2, CVSS3 and CWE classification. 

Table 24. Effect of CPE Names Removal on Multiclass Classification F1-score 
CPE Names Included Excluded 
CVSS2 0,818 0,812 
CVSS3 0,798 0,791 
CWE 0,814 0,813 

 
The results indicate a slightly better but insignificant performance increase in F1-
score if CPE names are not removed during the process of removing stop words. 
The results are very similar in unary and in multiclass classification. 

Hyperparameter tuning was carried out for LinearSVC using 
GridSearchCV but the classifier seemed to achieve the best performance with 
default settings. Hyperparameter settings can be observed more detailed in 
Appendix 1. 
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8 CONCLUSION 

Machine learning and natural language techniques were experimented in unary 
and multiclass classification. In unary classification the one-class classification 
and anomaly detection algorithms were experimented. Algorithms were selected 
as suggested by Scikit-learn. The library provides vectorizers to convert word 
tokens to numeric matrices. Vectorizers and algorithm hyperparameters 
combined have lots of options and in this work the options were examined 
thoroughly. The relatively new NVD vulnerability data was used as a learning 
data of one-class classifiers and also as datasets of multiclass classification 
experiments. A keyword-based classifier was implemented to compare a non-
machine learning solution to the one-class classifiers. Defect databases were used 
to test the classifiers. Security related defects were manually labelled by a security 
specialist to verify that the defects truly contained some security related words. 
The goal of unary classification was to detect potential vulnerabilities from short 
text descriptions. Multiclass classification experiments were divided predicting 
CVSS2 and CVSS3 classes and also CWE weaknesses. The CVSS scores consist of 
exploitability and impact metrics which form distinguishable classes to calculate 
the actual CVSS score. The scores were mapped in four severity levels to compare 
the final classification performance. There are hundreds of different CWE classes 
which describe root causes of weakness types. AUC-score was selected to 
measure unary classification and micro averaged F1-score was selected to 
measure multiclassification performance. All the experiments were verified 
using the 10-fold cross-validation method or its variant. 

The OneClassSVM classifier clearly outperforms LocalOutlierFactor and 
IsolationForest. The radial basis function works as well as the linear kernel and 
TFIDF weighting works evidently better with OneClassSVM. Vulnerabilities can 
be detected from text using a keyword-based solution as well. The keyword-
based classifier works the best using 2-grams of vulnerability keywords with 
stemming. AUC-score in unary classification achieved 0,73 at highest. Some 
unary classification experiments with different datasets can be inspected more 
detailed in Appendix 2. The results show that vulnerability detection from text is 
difficult and the results are far from perfect. In many experiments, generation of 
false alarms arose very high. The classifiers gain a stable level using 4000 to 6000 
vulnerability descriptions as learning data. 

In multiclass classification the LinearSVC classifier beats the other tested 
classifiers: Multinomial Naïve Bayes, Stochastic Gradient Descent on top of linear 
methods, and Nearest Neighbors. The classifier with TFIDF weighting gives a 
slightly better results than a plain bag-of-words representation. The challenge is 
that the source data has high class imbalance and effective undersampling could 
not be achieved. The results show that classifiers work better using the complete 
dataset without applying a sampling strategy. F1-score got 0,82 in CVSS2 and 
CWE classification but in CVSS3 the score goes slightly under. Han et al. (2017) 
got F1-score 0,816 ± 0,052 in their study classifying CVSS2 scores using the word 
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embedding + 1-layer CNN techniques. In their study the negative effect of 
undersampling is similar to this work. They found that increasing training data 
improves the model performance in general but has larger impact on smaller 
training dataset, and the performance improvement becomes smaller and slower 
as the training dataset becomes larger. In CVSS classification the challenge is 
multiple metrics to classify. In CVSS3 there are 8 metrics to classify which all 
must have high performance to get effective results. Some CVSS classification 
experiments with confusion matrices can be found from Appendix 3. The 
challenge classifying CWE is high number of distinguishable classes. 

In both, vulnerability detection and multiclass classification the stemming 
and lemmatization did not have remarkable effect on performance. The 
techniques are to reduce inflectional variations in words which reduces the 
number of features. By reducing amount of features it may consume less CPU 
power. Finally, to make the classifiers more generic by removing CPE names 
from the datasets was attempted. A slightly better performance was gained by 
leaving the names within the data. It is possible that thousands of vendor and 
component names are generic in nature which should be left among the data to 
gain better class distinction. 

All the experiments presented in this paper are published in Github: 
https://github.com/oz-ds/textvulns.git. Jupyter Notebook implementations for 
keyword-based classifier, one-class classifier experiments, Common 
Vulnerability Scoring System, and Common Weakness Enumeration 
experiments can be found from the repository. 

8.1 Discussion 

This work aimed to study techniques towards a tool to predict vulnerabilities and 
their severities from text. The results show that security specialists might benefit 
from this kind of tool which is using the techniques presented. The tool could 
give some indications whether a text contains words that are used in 
vulnerabilities in general, estimation about CVSS score to help prioritization of 
defects, and also estimation of CWE weakness class. Estimated CWE might 
further help in prioritization and defect categorization. The experimented 
techniques can be further developed and better vulnerability detection 
mechanisms should be researched. As in any empirical study the experiments 
may suffer validity issues. To mitigate these issues, cross-validation mechanisms 
are applied. However, low number of bug report databases may threaten validity 
of vulnerability detection measurements. Another mitigation task was manual 
labelling of bug reports by security specialist to keep mislabeling in the training 
data as low as possible. 

As the goal of this thesis was more technical, some side-notes can be made 
based on the NVD data which is presented on Chapter 6. In the CVSS classes 
there are high class imbalance in many metrics. For example, the most 
vulnerabilities are exploitable from network and low number of vulnerabilities 
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are exploitable from adjacent network. Some classes were completely discarded 
from the data due to low number of observations. The CVSS2 Multiple 
Authentication metric’s vulnerabilities exists only four times on the entire dataset. 
This metric is changed to Privileges Required in CVSS3. Low number of real 
world observations in CVSS metrics might indicate need for changes on future 
versions of CVSS. High class imbalance concerns the CWE data as well. Table 10 
lists the bad quality CWEs which were discarded from the experiments. Many of 
these CWEs are deprecated or suggested for deprecation on upcoming versions. 

8.2 Future Work 

In this thesis, traditional machine learning approaches were studied and better 
performance might be obtained by text enrichment and augmentation techniques. 
Text enrichment involves augmenting original text data with information that it 
did not previously have. One enrichment technique is part-of-speech tagging 
where the tags can be used as machine learning features or take additional 
preprocessing steps concerning to a particular part of speech, for example, take 
different actions for verbs and nouns. Such techniques were not studied in this 
work. Also, text normalization could lead to better results. It is a preprocessing 
technique which goal is to convert word abbreviations and misspellings into 
normalized form, for example, words “2mrrw” and “tomrw” can be converted 
to “tomorrow”. According to Satapathy et al. (2017) study sentiment 
classification improved by 4% by applying normalization. The Scikit-learn user 
guide (2019) provides another interesting approach handling misspellings and 
derivations by building features using character N-grams. For example, dealing 
with a corpus of two documents: “words”, “wprds”. The second document 
contains a misspelling of the word “words”. Usually these are considered two 
very distinct documents but a character 2-gram representation would find the 
documents matching in 4 out of 8 features, which may help the preferred 
classifier decide better. Suitable preprocessing steps are very domain and goal 
specific and general rule of thumb guidelines cannot be easily defined. 

To improve unary classification performance, newer neural network based 
approaches could be attempted. Perera et al. (2018) developed a novel deep 
learning based solution for one-class classification. They achieved AUC-score of 
0,99 using their method compared to one-class svm having AUC-score only 0,606 
detecting American flag images on the Caltech256 dataset. To extend document 
classification on very large datasets Joulin et al. (2016) developed a new classifier 
(fastText) on sentiment analysis and tag prediction of text using the YFCC100M 
dataset. They concluded that deep neural networks have in theory much higher 
representational power than shallow models but it is not clear if simple text 
classification problems are the right ones to evaluate them. 
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APPENDIX 1: SOURCE CODE 

# 
# Class to find parent and root cwe 
# 
# Example: 
# finder = CweFinder() 
# root_cwe = finder.find_root_cwe(123) 
# 
import pandas as pd 
class CweFinder(): 
    def __init__(self): 
        # CSV file available at https://cwe.mitre.org/data/csv/1000.csv.zip 
        self.cwes = pd.read_csv('data/1000.csv', index_col=False) 
        self.cwes['CWE-ID'] = self.cwes['CWE-ID'].values.astype(str) 
 
    def find_parent_cwe(self, cwe_id):# method returns the parent cwe of given cwe 
        cwe = self.cwes[self.cwes['CWE-ID'] == cwe_id] 
        if(cwe.empty): 
            return '' 
        cwe = cwe.iloc[0]['Related Weaknesses'] 
        if type(cwe) != str: 
            return '' 
        s = cwe.find('ChildOf:CWE ID:')#15 characters long 
        e = cwe.find(':', s+15) 
        if s == -1 or e == -1: 
            return '' 
        return cwe[s+15:e] 
 
    def find_root_cwe(self, cwe_id):# method return the root cwe of given cwe 
        parent = self.find_parent_cwe(cwe_id) 
        if len(parent) <= 0: 
            return cwe_id 
        else: 
            return self.find_root_cwe(parent) 
 
 
# 
# LinearSVC hyperparameter tuning 
# 
from sklearn.model_selection import GridSearchCV 
ngram_s = 1 
ngram_e = 2 
df = 1 
t = r'(?u)\b\w*[a-zA-Z]{3,}\w*\b' 
vectorizer =  
    TfidfVectorizer(stop_words=swds, ngram_range=(ngram_s, ngram_e), min_df=df, token_pattern=t) 
 
classifier = LinearSVC() 
pipe = Pipeline([('vect', vectorizer), ('cls', classifier)]) 
 
#hyperparameters 
parameters = {'cls__loss': ('hinge', 'squared_hinge'),#default: squared_hinge 
              'cls__dual': (True, False),#default: True 
              'cls__multi_class': ('ovr', 'crammer_singer'),#default: ovr 
              'cls__max_iter': (1000, 2000),#default: 1000 
             } 
gs = GridSearchCV(pipe, parameters, scoring='f1_micro', cv=10, error_score=np.nan) 
 
for i in range(6):# 6 classes on cvss2 metrics 
    gs = gs.fit(cvss2_texts[i]['text'], cvss2_texts[i]['label']) 
    print(str(i)+':'+str(gs.best_score_)) 
    print(str(i)+':'+str(gs.best_params_)) 
 
# 
# Vulnerability detection classifiers and vectorizers 
# 
def run_test(vzr, cls): 
    print(str(cls)[0:str(cls).find('(')] + ' ' + str(vzr)[0:str(vzr).find('(')]) 
 
    #get a new testing set 
    mixed = vulns_common.get_mixed_dataset(reports['report'], 1000)     
     
    scores = [] 
    t = time.time() 
    for i in range(nfold): #n-fold cross val score 
        predicted = pipe.predict(mixed['report']) 
        #score = f1_score(y_true=mixed['security'], y_pred=predicted, average='micro') 
        score = roc_auc_score(y_true=mixed['security'], y_score=predicted, average='micro') 
        scores.append(score) 
     
    scores = np.array(scores) 
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    print(str(nfold)+'-fold cross-validated roc-auc-score:' + str(scores.mean()) + '\n') 
    print('Time taken: ' + str(round(time.time() - t, 1)) + 's') 
 
for c in classifiers: 
    for v in vectorizers: 
        pipe = Pipeline([('vect', v), ('clf', c)]) 
        #get a new learning data before the fit method 
        vuln_data = shuffle(nvd_vulns, n_samples=6000) 
        vuln_descs = [] 
        for d in vuln_data: 
            if not d[1].startswith('** REJECT'):#some descriptions are rejected by NVD 
                vuln_descs.append(d[1]) 
        print('Dataset to fit:'+str(len(vuln_descs))) 
        pipe = pipe.fit(vuln_descs) 
        run_test(v, c) 
 
# 
# Keyword-based Classifier with stemming 
# 
class StemmedCountVectorizer(CountVectorizer): 
    def build_analyzer(self): 
        self.stemmer = SnowballStemmer("english") 
        analyzer = super(CountVectorizer, self).build_analyzer() 
 
        return lambda doc: (analyzer(' '.join([self.stemmer.stem(word) for word in doc.split(' ')]))) 
 
class KeywordStemClassifier(BaseEstimator, ClassifierMixin): 
    def __init__(self, min_ngrams=2, max_ngrams=2): 
        self.min_ngrams = min_ngrams 
        self.max_ngrams = max_ngrams 
        unwanted_words = 
['issue','defect','bug','fault','flaw','mistake','error','version','system','because','before','dispu
ted'] 
        stop_words = text.ENGLISH_STOP_WORDS#.union(cpe_names) 
        stop_words = stop_words.union(unwanted_words) 
        self.vectorizer = StemmedCountVectorizer(stop_words=stop_words, 
                                                 lowercase=True, 
                                                 ngram_range=(min_ngrams, max_ngrams),  
                                                 min_df=1, 
                                                 token_pattern=r'(?u)\b\w*[a-zA-Z]{3,}\w*\b') 
 
    def fit(self, raw_documents, y=None): 
        self.vectorizer.fit(raw_documents) 
 
        return self 
     
    def predict(self, raw_documents, y=None): 
        assert (len(self.vectorizer.vocabulary_) > 0), "You must call fit() before predicting data!" 
        scores = self.score(raw_documents) 
         
        predictions = [] 
        for count in scores: 
            if count >= 2:#at least two vulnerability n-grams classified as security related 
                predictions.append(1) 
            else: 
                predictions.append(-1) 
         
        return np.array(predictions)    
     
    def word_grams(self, words, min, max): 
        s = [] 
        for n in range(min, max+1): 
            for ngram in ngrams(words, n): 
                s.append(' '.join(str(i) for i in ngram)) 
        return s 
     
    def _score_single(self, tokens): 
        count= 0 
        for index, token in enumerate(tokens): 
            if token in self.vectorizer.vocabulary_: 
                count = count + 1 
        return count 
         
    def score(self, raw_documents, y=None): 
        assert (len(self.vectorizer.vocabulary_) > 0), "You must call fit() before scoring data!" 
        stemmer = SnowballStemmer("english") 
        scores = [] 
        for index, row in enumerate(raw_documents): 
            stems = [] 
            for word in row.split(): 
                stems.append(stemmer.stem(word)) 
            tokens = self.word_grams(stems, self.min_ngrams, self.max_ngrams) 
            count = self._score_single(tokens) 
            scores.append(count) 
         
        return np.array(scores) 



61 

APPENDIX 2: VULNERABILITY DETECTION EXPERIMENTS 

Keyword-based Classifier 
 
Manually labeled vulnerability dataset: 148 
              precision    recall  f1-score   support 
 
          -1       0.00      0.00      0.00         0 
           1       1.00      0.66      0.80       148 
 
   micro avg       0.66      0.66      0.66       148 
   macro avg       0.50      0.33      0.40       148 
weighted avg       1.00      0.66      0.80       148 
 
TN=0, FP=0, FN=50, TP=98 
Vulnerability learning dataset:3979 
              precision    recall  f1-score   support 
 
          -1       0.00      0.00      0.00         0 
           1       1.00      0.95      0.97      3979 
 
   micro avg       0.95      0.95      0.95      3979 
   macro avg       0.50      0.47      0.49      3979 
weighted avg       1.00      0.95      0.97      3979 
 
TN=0, FP=0, FN=211, TP=3768 
Test on data/Ambari.csv. Rows: 1000 
              precision    recall  f1-score   support 
 
       False       0.98      0.93      0.95       971 
        True       0.09      0.24      0.13        29 
 
   micro avg       0.91      0.91      0.91      1000 
   macro avg       0.53      0.59      0.54      1000 
weighted avg       0.95      0.91      0.93      1000 
 
TN=902, FP=69, FN=22, TP=7 
Test on data/Ambari.csv. Rows: 1000 
              precision    recall  f1-score   support 
 
       False       0.98      0.82      0.89       971 
        True       0.06      0.41      0.11        29 
 
   micro avg       0.81      0.81      0.81      1000 
   macro avg       0.52      0.62      0.50      1000 
weighted avg       0.95      0.81      0.87      1000 
 
TN=797, FP=174, FN=17, TP=12 
Test on data/Camel.csv. Rows: 1000 
              precision    recall  f1-score   support 
 
       False       0.97      0.79      0.87       967 
        True       0.04      0.28      0.07        32 
 
   micro avg       0.77      0.77      0.77       999 
   macro avg       0.51      0.54      0.47       999 
weighted avg       0.94      0.77      0.84       999 
 
TN=763, FP=204, FN=23, TP=9 
Test on data/Wicket.csv. Rows: 1000 
              precision    recall  f1-score   support 
 
       False       0.99      0.78      0.87       990 
        True       0.01      0.30      0.03        10 
 
   micro avg       0.78      0.78      0.78      1000 
   macro avg       0.50      0.54      0.45      1000 
weighted avg       0.98      0.78      0.86      1000 
 
TN=773, FP=217, FN=7, TP=3 
Test on data/Chromium.csv. Rows: 1000 
              precision    recall  f1-score   support 
 
       False       1.00      0.73      0.85       996 
        True       0.00      0.25      0.01         4 
 
   micro avg       0.73      0.73      0.73      1000 
   macro avg       0.50      0.49      0.43      1000 
weighted avg       0.99      0.73      0.84      1000 
 
TN=732, FP=264, FN=3, TP=1 
Test on data/Derby.csv. Rows: 1000 
              precision    recall  f1-score   support 
 
       False       0.94      0.70      0.80       910 
        True       0.15      0.52      0.23        88 
 
   micro avg       0.69      0.69      0.69       998 
   macro avg       0.54      0.61      0.52       998 
weighted avg       0.87      0.69      0.75       998 
 
TN=639, FP=271, FN=42, TP=46 

OneClassSVM Classifier 
 
Manually labeled vulnerability dataset: 148 
              precision    recall  f1-score   support 
 
          -1       0.00      0.00      0.00         0 
           1       1.00      0.73      0.84       148 
 
   micro avg       0.73      0.73      0.73       148 
   macro avg       0.50      0.36      0.42       148 
weighted avg       1.00      0.73      0.84       148 
 
TN=0, FP=0, FN=40, TP=108  
Vulnerability learning dataset:5967 
              precision    recall  f1-score   support 
 
          -1       0.00      0.00      0.00         0 
           1       1.00      0.79      0.88      5967 
 
   micro avg       0.79      0.79      0.79      5967 
   macro avg       0.50      0.39      0.44      5967 
weighted avg       1.00      0.79      0.88      5967 
 
TN=0, FP=0, FN=1281, TP=4686  
Mixed dataset: 1148 
              precision    recall  f1-score   support 
 
          -1       0.95      0.71      0.81      1000 
           1       0.27      0.73      0.39       148 
 
   micro avg       0.71      0.71      0.71      1148 
   macro avg       0.61      0.72      0.60      1148 
weighted avg       0.86      0.71      0.76      1148 
 
TN=706, FP=294, FN=40, TP=108  
Test on data/Ambari.csv. Rows: 1000 
              precision    recall  f1-score   support 
 
       False       0.97      0.94      0.95       971 
        True       0.05      0.10      0.06        29 
 
   micro avg       0.91      0.91      0.91      1000 
   macro avg       0.51      0.52      0.51      1000 
weighted avg       0.95      0.91      0.93      1000 
 
TN=910, FP=61, FN=26, TP=3 
Test on data/Camel.csv. Rows: 1000 
              precision    recall  f1-score   support 
 
       False       0.97      0.91      0.94       967 
        True       0.09      0.28      0.14        32 
 
   micro avg       0.89      0.89      0.89       999 
   macro avg       0.53      0.59      0.54       999 
weighted avg       0.95      0.89      0.91       999 
 
TN=878, FP=89, FN=23, TP=9 
Test on data/Wicket.csv. Rows: 1000 
              precision    recall  f1-score   support 
 
       False       0.99      0.82      0.90       990 
        True       0.02      0.30      0.03        10 
 
   micro avg       0.81      0.81      0.81      1000 
   macro avg       0.50      0.56      0.46      1000 
weighted avg       0.98      0.81      0.89      1000 
 
TN=811, FP=179, FN=7, TP=3 
Test on data/Chromium.csv. Rows: 1000 
              precision    recall  f1-score   support 
 
       False       1.00      0.92      0.96       997 
        True       0.03      0.67      0.05         3 
 
   micro avg       0.92      0.92      0.92      1000 
   macro avg       0.51      0.80      0.50      1000 
weighted avg       1.00      0.92      0.96      1000 
 
TN=921, FP=76, FN=1, TP=2 
Test on data/Derby.csv. Rows: 1000 
              precision    recall  f1-score   support 
 
       False       0.92      0.90      0.91       910 
        True       0.14      0.17      0.15        88 
 
   micro avg       0.84      0.84      0.84       998 
   macro avg       0.53      0.54      0.53       998 
weighted avg       0.85      0.84      0.84       998 
 
TN=819, FP=91, FN=73, TP=15
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APPENDIX 3: CVSS CLASSIFICATION EXPERIMENTS 

CVSS2 
 
Training data:13593 Testing data:4531 
              precision    recall  f1-score   support 
 
    critical       0.72      0.72      0.72       325 
        high       0.68      0.71      0.70       728 
         low       0.76      0.66      0.71       533 
      medium       0.87      0.89      0.88      2945 
 
   micro avg       0.82      0.82      0.82      4531 
   macro avg       0.76      0.74      0.75      4531 
weighted avg       0.82      0.82      0.82      4531 
 
Confusion matrix: 
[[ 235   39    2   49] 
 [  47  517   13  151] 
 [   1    5  352  175] 
 [  45  194   96 2610]] 
 
 
CVSS3  
 
Training data:13446 Testing data:4482 
              precision    recall  f1-score   support 
 
    critical       0.60      0.83      0.70       645 
        high       0.81      0.81      0.81      2061 
         low       0.51      0.40      0.45        50 
      medium       0.90      0.78      0.84      1726 
 
   micro avg       0.80      0.80      0.80      4482 
   macro avg       0.71      0.70      0.70      4482 
weighted avg       0.81      0.80      0.80      4482 
 
Confusion matrix: 
[[ 537  101    1    6] 
 [ 274 1663    8  116] 
 [   3    6   20   21] 
 [  81  289   10 1346]] 
 
 


