This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

Author(s): Suhonen, Jouni

Title: Neutrino-nuclear responses and the effective value of weak axial coupling

Year: 2019

Version: Published version

Copyright: © 2019 the Authors

Rights: In Copyright

Rights url: http://rightsstatements.org/page/InC/1.0/?language=en

Please cite the original version:
Neutrino-nuclear responses and the effective value of weak axial coupling

Jouni Suhonen

ARTICLES YOU MAY BE INTERESTED IN

Low-scale seesaw from neutrino condensation
AIP Conference Proceedings 2165, 020023 (2019); https://doi.org/10.1063/1.5130984

GERDA searches for 0νββ and other ββ decay modes of 76Ge
AIP Conference Proceedings 2165, 020024 (2019); https://doi.org/10.1063/1.5130985

Investigation of Lorentz symmetry violation in double beta decay
AIP Conference Proceedings 2165, 020025 (2019); https://doi.org/10.1063/1.5130986
Neutrino-nuclear responses and the effective value of weak axial coupling

Jouni Suhonen¹,a)

¹ University of Jyvaskyla, Department of Physics, P. O. Box 35, FI-40014 Jyvaskyla, Finland

a) Corresponding author: jouni.t.suhonen@jyu.fi

Abstract. On-going measurements of the neutrinoless $\beta\beta$ decay are accompanied by the growing interest in computing the values of the associated nuclear matrix elements. In order to extract the neutrino mass from the potentially measured $\beta\beta$ half-lives one not only needs to know the values of the nuclear matrix elements but also the effective value of the weak axial-vector coupling constant g_A since its value affects strongly the $\beta\beta$ half-lives. In order to gain knowledge of the possible quenching of g_A in finite nuclei one can study, e.g., allowed Gamow-Teller β decays. A new promising tool to study the quenching are the measurements of ordinary muon capture transitions for which the range of momentum exchange, some 100 MeV, corresponds to the one of neutrinoless $\beta\beta$ decay.

Introduction

The neutrinoless double beta ($0\nu\beta\beta$) decay of atomic nuclei can be mediated by a massive Majorana neutrino. The implications of detecting this decay are far-reaching and discussed in recent reviews [1, 2, 3]. In the case of $0\nu\beta\beta$ decay a lot of discussion is concentrated on an accurate calculation of the associated nuclear matrix elements (NMEs). However, in addition to the NMEs one needs to know the effective value of the weak axial-vector coupling g_A since the $\beta\beta$ half-life is quite sensitive to it [4]. The effective axial coupling relevant for $0\nu\beta\beta$ decay can be denoted as $g_{A,0}(J^\pi)$ since, in principle, it can depend on the multipole J^π of a state in the intermediate nucleus. The low momentum-exchange limit of this coupling,

$$g_{A,0}(J^\pi) \xrightarrow{q \to 0} g_{A}(J^\pi),$$

where q denotes the exchanged momentum, can in principle be determined in single β and two-neutrino double beta ($2\nu\beta\beta$) decays [3]. In particular, the Gamow-Teller β and $2\nu\beta\beta$ decays can access the usual effective g_A, namely

$$g_{A} \equiv g_{A}(1^+).$$

In addition to the β and $\beta\beta$ decays the effective value of the axial coupling plays a role in neutrino and astrophysics e.g. in the form of low-energy neutrino-nucleus scattering (solar and supernova neutrinos) and nuclear muon capture. Deviations of the effective value from the bare nucleon value $g_A = 1.27$ can stem from shifts of decay strengths to isovector giant multipole resonances and to non-nucleonic degrees of freedom, like the Δ resonances [3]. Such effects can also be produced by nucleon currents beyond the simple impulse approximation, like the two-body meson-exchange currents [5], or deficiencies in the nuclear many-body approaches, like too restricted single-particle valence spaces, lack of important many-nucleon configurations and omission of three-nucleon forces [3, 5].

Values of g_{A}^{eff} from Gamow-Teller β decays

The renormalization of g_A has long been studied for the Gamow-Teller β decays in the framework of the interacting shell model (ISM). In these calculations, reviewed in Fig 1, it appears that the value of g_A is quenched, and the stronger the heavier the nucleus. The renormalization of g_A in the ISM includes all the possible sources of deficiency listed in the introduction. In Fig. 1 the ISM results of Caurier et al. [6] (dark horizontal bars indicating the mass range),
The analyses of Barea et al. [16] of $2\nu\beta\beta$ half-lives against results of the ISM (the dotted $\beta\beta$ ISM curve in Fig. 1) and the microscopic interacting boson model (the dashed $\beta\beta$ IBM-2 curve in Fig. 1) give a similar trend as the ISM and pnQRPA analyses. The combined β-decay and $2\nu\beta\beta$-decay analyses of Faessler et al. [17] (vertical solid bars) and Suhonen et al. [18, 19] (vertical dashed bars) for $A = 100, 116, 128$ indicate strong variation in the effective value of g_A, partly consistent with the curves of Barea et al. [16] and the pnQRPA analyses of the Gamow-Teller β decays. In Suhonen [4] a two-stage fit of the particle-particle parameter g_{pp} of the pnQRPA to the data on two-neutrino $\beta\beta$ decays was performed. In this analysis it turned out that there is a minimum value of g_A for which the maximum NME can fit the $2\nu\beta\beta$-decay half-life. This lower limit of the possible g_A values is presented in Fig. 1 as a solid broken black line. It is seen that it is in line with the dashed vertical bars of g_A ranges obtained in [18, 19] and with the solid vertical bars obtained in [17].

Here it is appropriate to note that the effective value of g_A can also be enhanced, as in the case of first-forbidden $J^+ \leftrightarrow J^-$ decays. In these cases the enhancement is coming from the two-body meson-exchange currents affecting the axial-charge nuclear matrix element and there is an interference of this enhancement and the quenching related to the usual sources of quenching of g_A [15, 20, 21].
Ordinary muon capture and $0\nu\beta\beta$ decay

The ordinary muon capture (OMC) is a process where a negative muon in an atomic orbit is captured by the nucleus quite like in the ordinary electron capture of a nucleus, except the rest mass of the muon is some 200 times the rest mass of an electron. The process can formally be written as

$$\mu^- + \frac{A}{2}X(0^+) \rightarrow \nu_{\mu} + A_{Z-1}Y(J^\pi),$$

where the muon (μ^-) is captured by the 0^+ ground state of the even-even nucleus X of mass number A and atomic number Z leading to the J^π states of its odd-odd isobar Y of atomic number $Z-1$; here J is the angular momentum and π the parity of the final state. At the same time a muon neutrino ν_{μ} is emitted. Thanks to the involved large momentum exchange, $q \sim 50 - 100$ MeV/c, the OMC can lead to final nuclear states that are both highly excited and of high multipolarity J^π, quite like in the $0\nu\beta\beta$ decay where the Majorana-neutrino exchange with $q \sim 100$ MeV induces high-excitation and high-multipolarity transitions through the virtual states of the intermediate nucleus. Thus the OMC can be considered as an ideal probe of the NMEs of the $0\nu\beta\beta$ decays. This probe corresponds to the right-branch (β^+ type of transitions) virtual transitions of the $0\nu\beta\beta$ decay.

Incentives of the OMC studies are related to the $0\nu\beta\beta$ decays and the associated in-medium renormalization of the weak axial (g_A) and induced pseudoscalar (g_P) couplings [11, 22, 23, 24, 25, 26, 27, 28], and to neutrino-nucleus interactions in general, as discussed in the recent review [3]. Recently, a pioneering theoretical and experimental study of the OMC on 100Mo, populating states in 100Nb in a wide excitation region, up to some 50 MeV, was conducted [29]. The rate of OMC to individual final states forms a strength function quite like in the case of (n,p) charge-exchange reactions for 1^+ final states (the Gamow-Teller strength function). The OMC strength function contains giant resonances, quite like the (p,n) type of transitions contain Gamow-Teller giant resonance and isovector spin-multipole resonances [30, 31]. The work [29] uses the powerful OMC formalism of [32] and this is the first time such resonances are being studied both theoretically and experimentally, inspired by the first observation of the OMC giant resonance in 100Nb at around 12 MeV [33].

![Relative rate comparison](image_url)
Comparison of the computed and measured OMC strength functions in 100Nb is presented in Fig. 2. We notice that the overall features both relative-rate distributions are similar: there is a strong peak at around $10 - 12.5$ MeV and tails on both sides.

Eventual extension of the experiments and calculations to other nuclei, involved in $0\nu\beta\beta$ decays, helps theories better evaluate the β^+ NMEs associated with the $0\nu\beta\beta$ decays and the NMEs related to astro-(anti)neutrino interactions. In addition, the effective values of the axial-vector coupling g_A and induced pseudoscalar coupling g_P play essential roles both in $0\nu\beta\beta$ decays and OMC [3, 15].

Summary and conclusions

The quenching of the weak axial-vector coupling, g_A, is an important issue considering its impact on the detectability of the neutrinoless double beta decay. The quenching of g_A has been observed, e.g., in allowed Gamow-Teller decays. The origins of the quenching seem to be both the nuclear-medium effects and deficiencies in the nuclear many-body approaches, but a clean separation of these two aspects is formidable difficult. Only the recent ab-initio calculations for light nuclei are able to disentangle these two sources of quenching.

Different ways to access the quenching have been proposed, one promising one being the ordinary muon capture which operates in a momentum-exchange range appropriate for extracting information on the neutrinoless double beta decays. Measurements of muon-capture rates for double-beta systems of nuclei can shed light on the nuclear matrix elements and weak couplings involved in the neutrinoless double beta decay.

Acknowledgements

This work was partially supported by the Academy of Finland under the Academy project no. 318043.

REFERENCES