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Abstract

Background: Wearable inertial sensors have been shown to provide valid mean gait

characteristics assessments, however, assessment of variability is less convincingly established.

Research question: What level of concurrent validity, and session-to-session reliability does an

ankle-worn inertial measurement unit (IMU)-based gait assessment with a novel angular

velocity-based gait event detection algorithm have among older adults?

Methods: Twenty seven (women N = 17) participants volunteered (age 74.4 (SD 4.3) years,

body mass 74.5 (12.0) kg, height 165.9 (9.9) cm). Right leg stance, swing, and stride duration

and stride length, and stride velocity were concurrently assessed with motion capture and with an

IMU from a 3 min self-paced walk up and back a 14 m track repeated twice a week apart. Gait

variability was assessed as the SD of all of the registered strides.

Results: Significant difference was observed between methods for many of the mean stride

characteristics and stride variability (all p < 0.05), fair to excellent agreement was observed for

mean values of all of the five stride characteristics evaluated (intra-class correlation coefficient

[ICC] from 0.43 to 1.00). However, poor agreement was observed for the SD of all of the

evaluated stride characteristics (ICC from -0.25 to 0.00). Both methods indicated excellent

session to session reliability for all of the five stride characteristics evaluated (ICC from 0.84 to

0.98, CV%RMS from 1.6% to 3.6%), whereas the variability characteristics exhibited poor to

good reliability (ICC from 0.0 to 0.69, CV%RMS from 18.0% to 34.4%)

Significance: Excellent concurrent validity and reliability was observed for mean spatiotemporal

stride characteristics, however, gait variability exhibited poor concurrent validity and reliability.
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Although IMUs and the presented algorithm could be used to assess mean spatiotemporal stride

characteristics among older individuals, either a more reliable gait event detection algorithm or

alternative analytical approaches should be used for gait variability.

Keywords: wearable; gait; accelerometer; motion capture; variability;
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1. Introduction

Gait characteristics of older people reflect their health status, and deviations from normal gait

patterns also predict future adverse health events [1,2]. Spatiotemporal characteristics, such as

average stride length, cadence or velocity are often used to describe gait in older populations [3].

Additional insight into the functional status of an individual may be gained by exploring the step-

to-step or stride-to-stride variation (gait variability) [3,4], which may be an even more sensitive

prognostic indicator of future health outcomes than the mean stride characteristics [5,6].

There are several methods that capture spatiotemporal gait characteristics. Arguably, the golden

standards would include motion capture for spatial information (e.g. stride length), and force plates

and instrumented walkways for temporal characteristics (e.g. stride duration). However, these are

laboratory-bound methods and limit the number of captured strides in overground walking to only

the instrumented part/capture volume. Accordingly, much recent effort has been devoted to

affordable wearable inertial measurement units (IMU) [7–13], which capture strides independent

of a pre-determined capture area [5,6,14,15]. Most of the validation studies of IMU-based gait

assessments have been conducted for mean gait characteristics. For example, foot-worn sensors

show excellent concurrent validity when compared to motion capture, force plate and instrumented

walkways [7–13]. For session-to-session reliability of mean spatiotemporal characteristics, many

wear-locations (trunk, shank, foot), have shown good results [7,8,16,17]. However, the concurrent

validity and reliability of IMU-based gait variability characterisations have rarely been reported.
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IMUs have exhibited the best concurrent validity when foot-worn sensors have been utilised

[11,12]. However, mounting a sensor on the foot is somewhat cumbersome particularly if extended

monitoring is desired. Participants have indicated a preference for an ankle worn device if given a

choice [18]. Hip-worn sensors, while convenient, produce suboptimal results, particularly when

attempting to identify stride length or gait velocity [19] and therefore, an ankle/shank-worn unit

might be considered the preferred wear-location. While the validity and reliability of ankle/shank-

worn IMUs for spatiotemporal gait characteristics assessments have been established among

young healthy adults [11,12], data among older people is still missing.  This is problematic because

older people walk slower than younger people [20], and the validity and reliability of some IMU-

based gait characteristics depend on gait speed [7]. Consequently, the validity and reliability of

IMUs should be evaluated also among older people.

The purpose of the present study was to assess the concurrent validity and session-to-session

reliability of ankle-worn IMU-based spatiotemporal gait characteristic assessments among healthy

older adults aged 70 years and older. Numerous alternatives for gait event identification have been

reported in the literature but no golden standard algorithm has yet emerged. Therefore, a novel

algorithm based on prior art [21] was developed and evaluated in the present study.
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2. Methods

A convenience sample of N = 27 healthy men (N = 10) and women (N = 17) were recruited from

the University of the Third Age meetings at the University of Jyväskylä, and through word of

mouth. The mean age, height and body mass of the women were 74.8 (SD 44) years, 160 (6) cm,

and 68.8 (9.5) kg, and the respective values for men were 73.7 (4.1) years, 176 (7) cm, and 84.2

(9.4) kg. The inclusion criteria included age 70 years or older, and the ability to walk

continuously for three minutes without assistive devices. The exclusion criteria included acute or

unstable chronic cardiovascular disease. The study was conducted in agreement with the

Helsinki declaration, informed written consent was obtained from all participants, and the study

was approved by The Ethical Committee of the University of Jyväskylä (April 5th, 2018).

2.1. Protocol

The participants attended two measurement sessions a week apart at the University of Jyväskylä

biomechanics laboratory. The participant was prepared for 3D motion capture (sampled at 200 Hz,

Vicon T40, Oxford, UK) by taping on 2 spherical light-weight retroreflective markers on the right

foot (the 2nd metatarsal head and the heel). The participant was also asked to wear an inertial

measurement unit (3-dimensional accelerations ±16 g, rotations ±2000 º/s and magnetic field

±1300 μT recorded at 400 Hz, 400 Hz and 20 Hz sample rates, respectively. NGIMU, x-io

Technologies, Bristol, UK) on the right leg strapped on with an elastic Velcro belt just above the

lateral malleolus. After instrumentation the participants were asked to walk up and back a 14 m

track continuously for three minutes at their preferred pace with the motion capture volume
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covering the central 3 m portion of the track. The continuous 3 min walk was concurrently recorded

with the inertial measurement unit and the motion capture system. The measurement devices were

synchronised with a 1.5 V square pulse applied concurrently to the auxiliary channel of the

respective devices.

2.2. Numerical analysis

Motion capture

Following the rationale presented by Zeni and colleagues [22], we identified strides from the

marker trajectories. Flat foot phases were first identified based on the difference between the

vertical position of the heel and the 2nd metatarsal head marker signal. We calculated the

variance of the vertical position difference of the markers using a sliding 0.15 s epoch. Troughs

of at least 0.2 s with variance less than 0.5 mm were defined as parts of  the flat foot phase, and

the instant with minimum variation within a given flat foot phase was used to identify a flat foot

instant. The preceding heel-strike and the subsequent toe-off were then identified surrounding

each flat foot instant. The preceding heel-strike instant was defined as the last instant prior to the

flat foot instant when the distance from the flat foot instant coordinates was less than 2 cm. The

subsequent toe-off was defined as the first instant last instant after the flat foot instant with

distance less than 1 cm from the flat foot instant coordinates (Figure 1). To handle possible false

flat foot phases and missing flat foot phases the heel-strike and toe-off instances were merged,

sorted and then any heel-strikes not followed by a toe-off  or toe-offs not followed by a heel-

strike were eliminated. Subsequently any strides (defined as heel-strike to the next heel-strike)
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with duration not within 1.25 ratio of the median of all identified strides duration were

eliminated. This approach resulted in identifying 41 to 63 strides (mean 51.1) from the 3 min

walking trial. We defined stride length as the distance between successive heel-strikes in the

horizontal plane.

Inertial measurement unit (IMU)

We developed a gyroscope-based algorithm for the present study based on recent investigations

regarding the optimal algorithms for heel-strike and toe-off event detection based on IMU

recordings [21]. Pacini Panebianco reported that sagittal plane angular velocity and basing event

detection on more than just a single datum resulted in the best reliability out of the approaches

they reviewed and tested [21]. Our approach in the present study included identifying the swing-

phases based on sagittal plane angular velocity. The angular velocity around the Z-axis of the

sensor recorded by the IMU was used to represent sagittal plane angular velocity. The shank

rotates counter clockwise during most of the swing phase and therefore the bell-shaped segments

with positive angular velocity were identified (Figure 1). A parabola was fit onto each of the

continuous positive angular velocity epochs, and the residuals between the fit and the measured

angular velocity were calculated. Subsequently the fits were extrapolated until the residual

reached more than 1.5 times the median of the residuals within the positive angular velocity

epochs. The instant of the residual reaching the 1.5 times median cut-off prior to the positive

angular velocity epoch was defined as a toe-off event and the instant after the epoch was defined

as a heel-strike event. Subsequently the toe-off and heel-strike events were handled using the

approach used for motion capture events. That is, the events were merged, events in incorrect

order were discarded, and any strides with duration more than 1.25 from the median were
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eliminated. This approach identified a total of 117 to 199 (mean 158.6) strides from the 3 min

trial. Some of the identified strides had occurred outside of the motion capture volume. From 38

to 61 strides started within 0.2 s of the strides identified based on motion capture, and only these

matched strides, which occurred on the straight path, were used to calculate the reported outcome

for both the motion capture and the IMU-based analyses for temporal characteristics.

*** FIGURE 1 ***

We evaluated stride length and stride velocity following the rationale presented by Hamacher

and colleagues [8] based on orientation corrected horizontal accelerations. The manufacturer of

the IMU used in the present study provides orientation correction on the sensor [23] which we

used.  The horizontal accelerations were integrated twice with respect to time from current stride

flat foot instant to the next stride flat foot instant. Due to the sensor being located above the

ankle it was known a priori that the velocity of the sensor was never actually zero and therefore

an optimisation procedure was applied to evaluate the initial antero-posterior and medio-lateral

velocities for the integration. Initial antero-posterior and medio-lateral velocities were set to 0

m/s to start the integral initial velocity optimisation and non-linearly optimised to minimise the

difference between the initial and final velocities over the integration period. Stride length was

defined as the distance from start of the integration to the end of the integration. The number of

strides included in stride length and stride velocity analysis was further reduced by excluding

strides where stride length estimate differed by more than 1.25 from the median of all stride

lengths. Consequently, the concurrent strides included in the stride length and stride velocity
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analysis varied from 31 to 63 (mean 49.0) strides. Most of the excluded strides were caused by

intermittent breaks in the inertial measurement unit recording caused by device failure, which

caused excessive integration drift to accumulate.

We report the mean of the stance duration, swing duration, stride duration, stride length and

stride velocity as mean gait characteristics. Gait variability of the aforementioned five

characteristics are represented by the standard deviation of all of the strides of a participant

within a measurement session.

2.3. Statistical analysis

Mean and standard deviation (SD) are reported where applicable. The sample size of 27 individuals

measured twice provides a reasonable width of the confidence interval for reliability of repeated

measurements [24]. Concurrent validity is evaluated with similar statistical methods as reliability,

and therefore the same reasoning applies to evaluating concurrent validity as well. The concurrent

validity of the IMU-derived spatiotemporal gait characteristics was evaluated based on the first

measurement session by using motion capture-derived characteristics as the comparison. Mean

difference (bias) evaluated with paired t-test, 95% limits of agreement (95% LoA), Pearson

correlation coefficient (r), root mean squared coefficient of variation percentage (CV%RMS), and

intra-class correlation coefficient (calculated for absolute agreement, ICC) are reported to indicate

validity. ICCs were used to indicate whether the agreement was poor (<0.40), fair (0.40 to < 0.60),

good (0.60 to 0.75) or excellent (≥ 0.75) [25]. Bland Altman plots were used to visualise the
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agreement between the methods, and the reliability of repeated measures. Reliability was evaluated

using paired t-tests, r, CV%RMS, and ICC calculated for absolute agreement. Statistical analysis

was conducted using project R (version 2018-12-18 r75863, https://www.R-project.org/) and the

significance level was set at p ≤ 0.05.
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3. Results

The mean values of the stride characteristics measured with both the motion capture-based and

IMU-based methods and on both measurement sessions are given in Table 1.

***  TABLE 1 ***

Significant difference (mean bias calculated as motion capture minus IMU) was observed

between methods in stride length (3 cm), stride velocity (2 cm/s), stance duration SD (-4.5 ms),

swing duration SD (-10.7 ms), stride length SD (-3.1 cm), and stride velocity SD (-2.4 cm/s) (all

p < 0.05). Fair to excellent agreement was observed for mean values of all of the five stride

characteristics evaluated (ICC from 0.43 to 1.00), whereas poor agreement was observed for the

SD of all of the evaluated stride characteristics (ICC from -0.25 to 0.00) (Table 2).

*** TABLE 2 ***

Both the motion capture-based and IMU-based methods indicated excellent session to session

reliability for all of the five stride characteristics evaluated (ICC from 0.84 to 0.98, CV%RMS

from 1.6% to 3.6%), whereas the SD of the stride characteristics exhibited poor to good

reliability (ICC from 0.0 to 0.69, CV%RMS from 18.0% to 34.4%) (Figures 2 & 3).
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*** FIGURE 2 & 3 ***

Sensitivity of the results to heteroscedasticity was explored using Kendall’s Tau (τ) between the

mean and the norm of the difference between methods or between measurement sessions. If τ

was > 0.2 the values were base 10 log-transformed prior to re-evaluating concurrent validity or

reliability. All variability results were consequently re-evaluated, log-transform brought τ to

below 0.2, but this had no noteworthy effects on the concurrent validity or reliability findings.



14

4. Discussion

The primary findings of the present study were 1) that, apart from swing duration, IMU-

evaluated mean stride characteristics exhibited excellent concurrent validity to corresponding

motion-capture-evaluated values and 2) that both methods exhibited excellent reliability for

mean stride characteristics. However, IMU-based stride variability characteristics exhibited poor

concurrent validity to motion capture. Notably, both the motion capture and the IMU-based

characterisation exhibited poor to good reliability for stride variability. The mean gait

characteristics results are in line with the literature, where excellent concurrent validity, and

session-to-session reliability has been previously reported [7–13]. The poor to good reliability of

the variability results is in line with walkway-based gait assessment which have indicated that

while the mean spatiotemporal stride characteristics can be validly captured with 10 to 20 strides,

a relatively large number of strides are required in evaluating variability to even a moderate

reliability level [26].

Temporal parameter evaluation based on IMU-recordings is an easier task compared to spatial

parameter evaluation due to the fact that a double integration with respect to time is required to

derive displacement from the recorded accelerations, which leads into significant integration drift

and consequent unpredictable error [8,13]. With a foot-worn sensor the integration drift issue is

handled by identifying the foot flat phase of the strides, and always resetting the velocities to

zero during the foot flat phase [8,13]. This approach is not appropriate with an ankle or shank

worn sensor because the sensor is factually continuously moving [27]. The optimisation

procedure to set the velocities to an optimised initial and final value for each stride at the foot flat
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phase developed in the present study was appropriate to handle this issue. Noting the systematic

bias, the present stride length and velocity results exhibited excellent congruency with motion

capture, and excellent session-to-session reliability. As regards to the temporal characteristics, it

has been pointed out that the exact timing of heel-strike and toe-off events based on IMU-

recordings tend to be off by several milliseconds compared to force plates [28]. Moreover, while

valid and reliable stride duration can be obtained based on IMU-recordings, the validity and

reliability of stance phase and swing phase durations has been found to be weaker [21] as was

found to be the case in the present study as well. Taken together the present results indicated that

the mean stance and stride duration characteristics could be used interchangeably between the

methods utilised in the present study if one were, for example, to pool results from different

studies, but that the IMU-based method produced a consistent under estimate of the mean stride

length and stride velocity characteristics and would require calibration to be combined with

motion capture-based results. Mean swing duration results were found to be incongruent between

the methods and should not be pooled between the methods nor can a calibration be used to align

the results.

We observed poor congruence between the motion capture and IMU-based stride variability

measures. This is attributable to the algorithms used to detect the gait events. For the sake of

argument we will assume that the motion capture-based values correspond to the true event

instants. The IMU-based algorithm led into random fluctuation of the event with respect to the

motion capture-defined event on occasions where the bell-shaped part of the angular velocity

signal was not smooth, and explains why the variability calculated from the matched

concurrently registered strides is incongruent (the reader may refer to Figure 1 for a visualisation
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of the issue). Furthermore, the reliability of both methods was poor to good with IMU-based

results actually consistently exhibiting better reliability compared to the motion capture-based

results. Concurrent validity of IMU-based stride variability measures has been scarcely reported

in the literature but our findings on suboptimal reliability independent of the method is well in

line with previous literature based on other assessment methods, and quantifications of

variability [26,29]. That is, it seems that extended gait samples of more than a 100 strides are

required for even moderately reliable stride variability characterisation [26,29]. Based on the

lack of reliability found in the present study, and in the past literature [26,29], it may be

preferable to utilise alternative methods to quantify gait variability with IMUs. That is, Riva and

colleagues [29] showed that the number of strides required for e.g. reliable multiscale entropy

analyses based on acceleration time-series was lower than that required for SD or coefficient of

variation analyses.

The present study has some limitations that should be considered. Firstly, we had a sample of

healthy community-dwelling older adults who chose to volunteer to the study, and thus the

results may not apply to other populations. Secondly, the number of concurrently registered

strides varied from 31 to 63 in the present study, which may have been too few to evaluate

variability reliably [29]. However, the present findings were very consistent in indicating that

motion capture-based variability estimates do not agree with IMU-based variability estimates.

Thirdly, we evaluated stride length with direct integration of the accelerations. Although, this led

into excellent concurrent validity, it is worth noting that individual strides may have produced

markedly erroneous results. Finally, measurements were conducted on a level floor. Incline and

decline may affect the validity of IMU-based gait assessments [30] and although excellent
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concurrent validity and reliability were observed for mean stride characteristics it remains to be

established whether these characteristics could be assessed e.g. utilising prolonged monitoring in

the habitual environment.

In conclusion, excellent concurrent validity and reliability was observed for mean spatiotemporal

stride characteristics among community-dwelling older adults aged 70-years-of-age or older.

However, gait variability exhibited poor concurrent validity and reliability. Taken together this

indicates that ankle-worn inertial measurement unit can be used to assess mean spatiotemporal

stride characteristics among older individuals. On the other hand, either a more reliable gait

event detection algorithm with more strides included needs to be utilised or gait variability

quantifications that do not depend on gait event detection, such as multiscale sample entropy

[29], should be explored for IMU-based variability assessments. The benefit of being able to

assess gait characteristics with a wearable sensors include prolonged measurements in the

habitual environment.



18

Conflict of interest statement

None of the authors have conflicts of interests to report.



19

Acknowledgements

We wish to thank the participants who volunteered their time. Gerontology Research Center is a

joint effort between the University of Jyvaskyla and the University of Tampere.

This work was supported by the European Research Council (grant number 693045, Prof.

Rantanen) and the Academy of Finland (grant number 310526, Prof. Rantanen).



20

References

[1] J.S. Brach, S.A. Studenski, S. Perera, J.M. VanSwearingen, A.B. Newman, GAIT
VARIABILITY AND THE RISK OF INCIDENT MOBILITY DISABILITY IN
COMMUNITY-DWELLING OLDER ADULTS, J. Gerontol. A. Biol. Sci. Med. Sci. 62
(2007) 983–988.

[2] S. Perera, K.V. Patel, C. Rosano, S.M. Rubin, S. Satterfield, T. Harris, K. Ensrud, E.
Orwoll, C.G. Lee, J.M. Chandler, A.B. Newman, J.A. Cauley, J.M. Guralnik, L. Ferrucci,
S.A. Studenski, Gait Speed Predicts Incident Disability: A Pooled Analysis, J. Gerontol. A.
Biol. Sci. Med. Sci. 71 (2016) 63–71. doi:10.1093/gerona/glv126.

[3] J.M. Hausdorff, Gait variability: methods, modeling and meaning, J. NeuroEngineering
Rehabil. 2 (2005) 19. doi:10.1186/1743-0003-2-19.

[4] E. Al-Yahya, H. Dawes, L. Smith, A. Dennis, K. Howells, J. Cockburn, Cognitive motor
interference while walking: A systematic review and meta-analysis, Neurosci. Biobehav.
Rev. 35 (2011) 715–728. doi:10.1016/j.neubiorev.2010.08.008.

[5] E.A.F. Ihlen, A. Weiss, A. Bourke, J.L. Helbostad, J.M. Hausdorff, The complexity of daily
life walking in older adult community-dwelling fallers and non-fallers, J. Biomech. 49
(2016) 1420–1428. doi:10.1016/j.jbiomech.2016.02.055.

[6] E.A.F. Ihlen, V. Schooten, K. S, S.M. Bruijn, V. Dieën, J. H, B. Vereijken, J.L. Helbostad,
M. Pijnappels, Improved Prediction of Falls in Community-Dwelling Older Adults Through
Phase-Dependent Entropy of Daily-Life Walking, Front. Aging Neurosci. 10 (2018).
doi:10.3389/fnagi.2018.00044.

[7] L. Donath, O. Faude, E. Lichtenstein, G. Pagenstert, C. Nüesch, A. Mündermann, Mobile
inertial sensor based gait analysis: Validity and reliability of spatiotemporal gait
characteristics in healthy seniors, Gait Posture. 49 (2016) 371–374.
doi:10.1016/j.gaitpost.2016.07.269.

[8] D. Hamacher, D. Hamacher, W.R. Taylor, N.B. Singh, L. Schega, Towards clinical
application: Repetitive sensor position re-calibration for improved reliability of gait
parameters, Gait Posture. 39 (2014) 1146–1148. doi:10.1016/j.gaitpost.2014.01.020.

[9] W. Johnston, M. Patterson, N. O’Mahony, B. Caulfield, Validation and comparison of
shank and lumbar-worn IMUs for step time estimation, Biomed. Eng. Biomed. Tech. 62
(2017) 537–545. doi:10.1515/bmt-2016-0120.

[10] Q. Li, M. Young, V. Naing, J.M. Donelan, Walking speed estimation using a shank-
mounted inertial measurement unit, J. Biomech. 43 (2010) 1640–1643.
doi:10.1016/j.jbiomech.2010.01.031.

[11] F.A. Storm, C.J. Buckley, C. Mazzà, Gait event detection in laboratory and real life
settings: Accuracy of ankle and waist sensor based methods, Gait Posture. 50 (2016) 42–46.
doi:10.1016/j.gaitpost.2016.08.012.

[12] E.P. Washabaugh, T. Kalyanaraman, P.G. Adamczyk, E.S. Claflin, C. Krishnan, Validity
and repeatability of inertial measurement units for measuring gait parameters, Gait Posture.
55 (2017) 87–93. doi:10.1016/j.gaitpost.2017.04.013.

[13] S. Yang, Q. Li, Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic
Review, Sensors. 12 (2012) 6102–6116. doi:10.3390/s120506102.



21

[14] A. Weiss, S. Sharifi, M. Plotnik, J.P.P. van Vugt, N. Giladi, J.M. Hausdorff, Toward
automated, at-home assessment of mobility among patients with Parkinson disease, using a
body-worn accelerometer, Neurorehabil. Neural Repair. 25 (2011) 810–818.
doi:10.1177/1545968311424869.

[15] A. Weiss, M. Brozgol, M. Dorfman, T. Herman, S. Shema, N. Giladi, J.M. Hausdorff, Does
the Evaluation of Gait Quality During Daily Life Provide Insight Into Fall Risk? A Novel
Approach Using 3-Day Accelerometer Recordings, Neurorehabil. Neural Repair. 27 (2013)
742–752. doi:10.1177/1545968313491004.

[16] P. Esser, H. Dawes, J. Collett, M.G. Feltham, K. Howells, Validity and inter-rater reliability
of inertial gait measurements in Parkinson’s disease: A pilot study, J. Neurosci. Methods.
205 (2012) 177–181. doi:10.1016/j.jneumeth.2012.01.005.

[17] E. Grimpampi, S. Oesen, B. Halper, M. Hofmann, B. Wessner, C. Mazzà, Reliability of gait
variability assessment in older individuals during a six-minute walk test, J. Biomech. 48
(2015) 4185–4189. doi:10.1016/j.jbiomech.2015.10.008.

[18] C. Lützner, H. Voigt, I. Roeder, S. Kirschner, J. Lützner, Placement makes a difference:
Accuracy of an accelerometer in measuring step number and stair climbing, Gait Posture.
39 (2014) 1126–1132. doi:10.1016/j.gaitpost.2014.01.022.

[19] W. Zijlstra, A.L. Hof, Assessment of spatio-temporal gait parameters from trunk
accelerations during human walking, Gait Posture. 18 (2003) 1–10. doi:10.1016/S0966-
6362(02)00190-X.

[20] L. Ferrucci, R. Cooper, M. Shardell, E.M. Simonsick, J.A. Schrack, D. Kuh, Age-Related
Change in Mobility: Perspectives From Life Course Epidemiology and Geroscience, J.
Gerontol. Ser. A. 71 (2016) 1184–1194. doi:10.1093/gerona/glw043.

[21] G. Pacini Panebianco, M.C. Bisi, R. Stagni, S. Fantozzi, Analysis of the performance of 17
algorithms from a systematic review: Influence of sensor position, analysed variable and
computational approach in gait timing estimation from IMU measurements, Gait Posture.
66 (2018) 76–82. doi:10.1016/j.gaitpost.2018.08.025.

[22] J.A. Zeni, J.G. Richards, J.S. Higginson, Two simple methods for determining gait events
during treadmill and overground walking using kinematic data, Gait Posture. 27 (2008)
710–714. doi:10.1016/j.gaitpost.2007.07.007.

[23] S.O.H. Madgwick, A.J.L. Harrison, R. Vaidyanathan, Estimation of IMU and MARG
orientation using a gradient descent algorithm, in: 2011 IEEE Int. Conf. Rehabil. Robot.
ICORR, 2011: pp. 1–7. doi:10.1109/ICORR.2011.5975346.

[24] C.-C. Glüer, G. Blake, Y. Lu, B.A. Blunt, M. Jergas, H.K. Genant, Accurate assessment of
precision errors: How to measure the reproducibility of bone densitometry techniques,
Osteoporos. Int. 5 (1995) 262–270. doi:10.1007/BF01774016.

[25] D.V. Cicchetti, Guidelines, criteria, and rules of thumb for evaluating normed and
standardized assessment instruments in psychology., Psychol. Assess. 6 (1994) 284.

[26] J.H. Hollman, K.B. Childs, M.L. McNeil, A.C. Mueller, C.M. Quilter, J.W. Youdas,
Number of strides required for reliable measurements of pace, rhythm and variability
parameters of gait during normal and dual task walking in older individuals, Gait Posture.
32 (2010) 23–28. doi:10.1016/j.gaitpost.2010.02.017.

[27] A. Peruzzi, U. Della Croce, A. Cereatti, Estimation of stride length in level walking using
an inertial measurement unit attached to the foot: A validation of the zero velocity
assumption during stance, J. Biomech. 44 (2011) 1991–1994.
doi:10.1016/j.jbiomech.2011.04.035.



22

[28] E. Allseits, J. Lučarević, R. Gailey, V. Agrawal, I. Gaunaurd, C. Bennett, The Development
and Concurrent Validity of a Real-time Algorithm for Temporal Gait Analysis using
Inertial Measurement Units, J. Biomech. (2017). doi:10.1016/j.jbiomech.2017.02.016.

[29] F. Riva, M.C. Bisi, R. Stagni, Gait variability and stability measures: Minimum number of
strides and within-session reliability, Comput. Biol. Med. 50 (2014) 9–13.
doi:10.1016/j.compbiomed.2014.04.001.

[30] L. Donath, O. Faude, E. Lichtenstein, C. Nüesch, A. Mündermann, Validity and reliability
of a portable gait analysis system for measuring spatiotemporal gait characteristics:
comparison to an instrumented treadmill, J. NeuroEngineering Rehabil. 13 (2016) 6.
doi:10.1186/s12984-016-0115-z.



23

FIGURE LEGENDS

Figure 1. Visualisation of the signals used in determining heel strike and toe-off events from

motion capture (top pane) and inertial measurement unit (IMU) recording (bottom pane). Top

pane; vertical position of the heel (solid black line) and the 2nd metatarsal head (dashed gray line)

markers. Dashed black vertical line indicates heel-strike based on motion capture, dash-dot gray

line toe-off. Black circle indicates heel-strike based on IMU recordings and gray asterisk toe-off.

Dotted gray line in the bottom pane shows the fitted parabola used to define heel strike and toe-

off events based on the IMU recordings. Sample strides chosen to highlight where the

discrepancy between methods likely arises. Note the variation in IMU-defined toe-off instant

with respect to the stride cycle at around 92.5 s versus 93.5 and 94.5 s.

Figure 2. Bland-Altman plots of temporal stride characteristics assessed a week apart with an

ankle-worn inertial measurement units (IMU).

ICC = intra-class correlation coefficient;

Figure 3. Bland-Altman plots of spatial stride characteristics assessed a week apart with an

ankle-worn inertial measurement units (IMU).

ICC = intra-class correlation coefficient;
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TABLES

Table 1. Stride characteristics measured in the first and the second measurement session a week apart with the two methods.

Reliability values given in text.

Motion capture Inertial measurement unit

Session 1 Session 2 difference (95% CI) Session 1 Session 2 difference (95% CI)

Stance duration [ms] 621 (73) 610 (71) 10 (0 to 21) 634 (74) 626 (77) 8 (-1 to 17)

Swing duration [ms] 427 (38) 429 (39) -1 (-10 to 7) 410 (48) 409 (48) 1 (-5 to 6)

Stride duration [ms] 1040 (100) 1030 (100) 10 (0 to 20) 1040 (100) 1030 (100) 10 (0 to 20)

Stride length [m] 1.33 (0.14) 1.33 (0.13) 0 (-0.02 to 0.01) 1.3 (0.14) 1.31 (0.14) -0.01 (-0.02 to 0.01)

Stride velocity [m/s] 1.29 (0.19) 1.3 (0.19) -0.01 (-0.03 to 0.01) 1.26 (0.19) 1.28 (0.19) -0.02 (-0.04 to 0.01)

Stance duration SD [ms] 20 (5.5) 17.7 (6.6) 2.3 (-0.7 to 5.4) 24.6 (8.2) 24 (7.2) 0.6 (-2 to 3.1)

Swing duration SD [ms] 11.3 (6.2) 13 (7.8) -1.7 (-5.2 to 1.8) 22 (11.1) 21.3 (9.2) 0.6 (-2.6 to 3.9)

Stride duration SD [ms] 23.9 (7.3) 23 (9.9) 0.9 (-3.6 to 5.5) 26.3 (9.3) 25 (8.5) 1.3 (-2.7 to 5.2)

Stride length SD [m] 0.0345 (0.0114) 0.0313 (0.0082) 0.0033 (-0.0014 to 0.0079) 0.0653 (0.0267) 0.0631 (0.0273) 0.0022 (-0.0092 to 0.0135)

Stride velocity SD [m/s] 0.0492 (0.0149) 0.0447 (0.0106) 0.0046 (-0.0031 to 0.0122) 0.073 (0.0263) 0.0711 (0.0249) 0.0019 (-0.0097 to 0.0134)

CI = confidence interval; SD = standard deviation;
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Table 2. Concurrent validity of the stride characteristics measured with the two methods (session 1).

Motion capture
Inertial measurement

unit
Bias (95% CI) CV%RMS ICC (95% CI) r²

Stance duration [ms] 621 (73) 634 (74) -14 (-31 to 4) 5.1 0.81 (0.64 to 0.91) 0.68

Swing duration [ms] 427 (38) 410 (48) 17 (0 to 35) 8.1 0.43 (0.07 to 0.69) 0.24

Stride duration [ms] 1040 (100) 1040 (100) 0 (0 to 0) 0.2 1.00 (1.00 to 1.00) 1.00

Stride length [m] 1.33 (0.14) 1.3 (0.14) 0.03 (0.02 to 0.04)*** 2.1 0.96 (0.92 to 0.98) 0.96

Stride velocity [m/s] 1.29 (0.19) 1.26 (0.19) 0.02 (0.01 to 0.03)*** 1.9 0.98 (0.96 to 0.99) 0.98

Stance duration SD [ms] 20 (5.5) 24.6 (8.2) -4.5 (-8.4 to -0.7)* 30.8 -0.05 (-0.41 to 0.33) 0.00

Swing duration SD [ms] 11.3 (6.2) 22 (11.1) -10.7 (-15.8 to -5.6)*** 56.2 -0.25 (-0.57 to 0.13) 0.00

Stride duration SD [ms] 23.9 (7.3) 26.3 (9.3) -2.4 (-7.1 to 2.4) 31.9 0.00 (-0.37 to 0.37) 0.00

Stride length SD [m] 0.0345 (0.0114) 0.0653 (0.0267) -0.0308 (-0.0411 to -0.0204)*** 47.0 -0.23 (-0.55 to 0.16) 0.07

Stride velocity SD [m/s] 0.0492 (0.0149) 0.073 (0.0263) -0.0238 (-0.0342 to -0.0133)*** 35.6 -0.05 (-0.41 to 0.33) 0.07

CI = confidence interval, CV%RMS = root-mean-squared coefficient of variation percentage. ICC = intra-class correlation coefficient

calculated for absolute agreement; SD = standard deviation; * = p < 0.05; *** = p < 0.001;
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