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ABSTRACT 
 

This chapter consists of the earlier study of shot put where A.V. Hill’s force-velocity relationship was 
transformed into a constant maximum power model consisting of three different components of power. 
In addition, the braking phase of the arm rotation movement was examined where Hill’s equation was 
applied for accelerated motions. Hill’s force-velocity relationship was tested by fitting it into two arm 
push measurements of shot put experiments and one braking phase of whole arm rotation. 
Theoretically derived equation for accelerated motions was in agreement with the measured data of 
shot put experiments and the braking phase of the whole arm rotation experiment. Maximum power in 
these experiments was also tested by three different equations and two of them seemed to function 
well. The progress of movement in the studied experiments was concluded to be as follows: 1) the 
state of low speed and maximal acceleration which applies to the hypothesis of constant force, 2) the 
state of high speed and maximal power which applies to the hypothesis of constant power.  
 
Keywords: Muscle mechanics; muscle power; force-velocity relationship; Hill’s equation; arm 

movement; arm push in shot put. 
 

1. INTRODUCTION 
 

British Nobel laureate A.V. Hill invented the famous model of muscle mechanics which describes the 
force-velocity relationship of skeletal muscle contraction (Fig. 1). The equation of this model is (F + 
a)(v + b) = b(F0 + a), where F is maximum force in muscle contraction, a is constant force and b is 

constant velocity, F0 is isometric force of muscle or the constant maximum force generated by muscle 

with zero velocity and v is velocity [1,2]. This equation was based on the laboratory measurements in 
which the force (F) of activated muscle was measured as the muscle was contracting at a constant 
speed in an isolated condition. In the equation the vectors of forces and velocities have the same 
direction and therefore Hill’s equation can be presented in a scalar form. Other early experiments of 
force-velocity relationship of skeletal muscle were done by e.g. Fenn and Marsh [3] and good reviews 
are also available [4,5]. 
 

The arm rotation experiments of Rahikainen et al. [6] followed the theory, where movement was 
described to have four (4) different phases: 1) start of motion 2) movement proceeds at constant 
maximum rotational moment during the first part of the movement 3) movement proceeds at constant 
maximum muscular power during the second part of the movement 4) stopping of motion. For 
validation of these assumptions the equation was solved for angular velocity-time function: 
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This theoretically derived equation with constant maximum power (phase 3 above) was in good 
agreement with the experimentally measured results. 
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Fig. 1. Hill’s force-velocity curve with the corresponding power P 
 
The study of Rahikainen and Virmavirta [6] continued the experiments of the previous study [7] and 
further developed its theory of mechanics resulting in further solution of Hill’s equation. The results 
were based on the assumption that in muscle mechanics there is a constant maximum power which 
the muscle is able to generate within a certain range of velocity. The principle of constant maximum 
power is also in Hill’s equation and in this respect the two models can be considered the same. In the 
left side of Hill’s equation the term (F + a)(v + b) is muscles’ total power including Fv, which is the 
power of moving the external load. The right side of the equation, b (F0 + a), includes only constants 

and thus the equation can be considered as a constant power model. However, the constant 
maximum power in the study of Rahikainen and Virmavirta [6] is a characteristic of whole muscle 
group instead of separate muscle fibers as in the Hill’s equation. The model was based on the 
muscular system’s ability to transfer chemical energy and, therefore, it is not necessary to know the 
contribution of the individual muscles involved. 
 
The constant power of Hill’s equation presented by Rahikainen and Virmavirta [6] is not the power of 
Hill’s original curve as it is usually considered in biomechanics, but it is the sum of three different 
power components. It was inferred that the constant power model of the study of this paper acts 
during high speed movements with no external load, where Hill’s equation does not seem to fit the 
experimental points [2, p. 32, Fig. 3.2] very well. As an explanation for this mismatch Hill mentioned 
that “sharp rise at the end of the curve in the region of very low tension was due to the presence of a 
limited number of fibers of high intrinsic speed and no such equation could fit the observed points 
below P/P0 = 0.05”.. Because Hill’s equation is also a constant power model, it is acting only in a 

certain state of motion, which is constant power movement at low speed of motion decelerated by 
counter force. Therefore it is not a model of motion which is suitable for every state of muscle motion. 
 
Although Hill’s force-velocity relationship has been an important part of muscular mechanics models, 
it has deficiencies which to a great extent restrict its application for the real muscular mechanics of 
human motion. Hill’s equation is a constant power model and it has no term for the power of 
acceleration and therefore it cannot be applied within accelerated motions. Also at the point of 
maximum speed, where force is zero, Hill’s equation does not seem to fit the experimental points well. 
The third reason for the deficiencies of the models based on Hill’s equation is that they take no 
account of the effect of the elastic properties of muscle-tendon unit.  
 
The present chapter consists of the earlier study of the arm push of the Olympic shot put winner 
where the further develop of Hill’s equation was applied. As an example of the accelerated motion, the 
braking phase of the whole arm rotation was also examined. Maximum power in these experiments 
was also tested by three different equations. 
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2. SHOT PUT 
 
2.1 Hill’s Equation in Accelerated Motion 
 
In order to find out the function of Hill’s force-velocity relationship in accelerated motion, equation of 
motion was derived from Hill’s equation. In the present study Hill’s equation is presented in a form: 
 

( )( ) ( )baFbvaF +=++ 0H                                                                                                      (1) 

 
where 
 
F is the muscular force in Hill’s equation. The force F must be constant during the whole muscle 
contraction. If it is not, the equation of motion of muscle contraction will be much more complex. 
 
vH is constant velocity in Hill’s equation, and during the muscle contraction the muscular force F 

corresponds to the velocity vH in Hill’s equation.  

 
The results of Hill’s experiments could be transformed into hyperbola equation describing force-
velocity dependence of the movement. The left side of Hill’s equation represents the maximum total 
power consumed into muscle contraction, and the right side of Hill’s equation indicates that this 
maximum total power is constant. In the following this maximum total power is divided into three 
power components. Hill’s equation, the motion with maximum constant power is the second state of 
motion. The first state of motion is with the maximum constant force, and in that state of motion 
acceleration is constant. Fig. 2 represents a further development of Hill’s force-velocity relationship. 
Hill’s equation, (F + a) (vH + b) = constant, implies that the area of the rectangle (F + a) (vH + b) is 

constant. The total power of the muscle is comprised of three different components represented by 
rectangles A, B and C. The area of rectangle A = FvH represents the power needed from muscle 

against an external load (see the power curve in Fig. 1). If there is no external load, this power is 
consumed by acceleration. The area of rectangle B = (F + a) b represents the power of muscle’s 
internal loss of energy. This power creates a counter force against an external load. As the velocity is 
zero, this power B is highest and, therefore, it is not related to external movement. When velocity 
increases, this power decreases rapidly initially, then slowly at higher velocities. The area of rectangle 
C = vH a represents the power of friction due to the motion of the muscle – load system. Because 

power is force multiplied by velocity, the force of friction is a. This is not force directly proportional to 
velocity, generally known as liquid friction (which is the friction used in the present study in paragraph 
2.3), but constant force of friction which is known as glide friction. Now we can see that there are 
three different states of motion: 1) at the beginning of motion characterized by a state of low speed 
constant maximal acceleration, then 2) as the motion continues a state of high speed, constant 
maximal power, which applies to motion of Eq. (21) and to Hill’s equation. The maximum power is due 
to the fact that the transfer of energy within the muscle system must have a maximum rate and, 
therefore, muscle’s power generation must also have a certain maximum rate. 
 
Application of Hill’s equation into human movement is problematic. Hill’s force-velocity relationship 
has no power term for acceleration, and therefore it is not valid in accelerated motions. Hill’s force - 
velocity relationship was measured with a measuring device in which the muscle force is measured at 
constant velocity. Its applications must also be constant velocity movements. 
 
Herein theoretical experiment is performed: A mass m is accelerated by a muscle contraction. The 
force generated by the muscle is F and its counter force is – F. In the beginning velocity is zero, and 
the movement is at a state of high acceleration. As the movement continues, velocity v increases and 
acceleration decreases, and if the movement continues sufficient long distance at some point the 
movement can be regarded as constant. Then there is force F corresponding to velocity vH as it is in 

Hill’s force – velocity relationship. The total power of Hill’s equation can be divided into three separate 
power components (Fig. 2): the power of the work done against counter force FvH, the power of 
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friction avH and the power consumed within generation of muscle force (F + a) b. Because the muscle 

force F is constant and a and b are also constants, the power (F + a) b is also constant. The total 
power at the phase of constant velocity is the sum of the three rectangles A, B and C (Fig. 2) which is: 
 

F v
H

 + avH + (F + a) b = (F + a)(vH + b) = (F0 + a) b                                                                           (2) 

 
At the phase of acceleration the power consumption into acceleration is: 
 

v

dt

dv
mP =acc                                                                                                                           (3) 

 

where v is general velocity in movement containing also accelerated phase of motion. 
 

 
 

Fig. 2. Hill’s force-velocity relationship presented with asymptotes (broken lines) and three 
rectangles of power. In traditional presentation of hyperbola a and b are negative, but here 

they refer to the positive constant terms of Hill’ equation 
 
Because at the phase of acceleration the velocity v is less than the constant velocity vH, the power of 

the work done against counter force Fv and the power of friction av are less than that at the velocity 
vH. The difference of these powers is equal to the power into acceleration. We obtain the equation of 

motion. 
 

( ) ( ) ( ) ( )vvavvFbaFbaF

avavFvFvv
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m
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constant C = 0 
 
ln (1) = 0 
 

( )[ ]HH 1ln vvvv

aF

m
t −+

+
−=                                                                                        (11) 

 
This is the equation of motion as mass m is accelerated by muscle contraction. Hill’s velocity vH 

corresponds to muscle force F in Hill’s equation. Hill’s velocity is the velocity after the phase of 
acceleration as the motion can be regarded as constant velocity movement. Calculation of the values 
of Hill’s velocity vH and muscular force F (Eq. 1) are: 

 

( )( ) ( )baFbvaF +=++ 0H  

( )
bv

avbF
vF

+

−
=

H

H0
H                                                                                                                 (12) 

 
Substituting F = 0 into Hill’s equation 
 

bFva 0H0 =                                                                                                                           (13) 

 

0

H0

F

av
b =                                                                                                                                (14) 

 

2.2 Numerical Calculations of Hill’s Equation in Accelerated Motion 
 

Theoretical velocity functions of the mass lifted against gravity force by muscle contraction are 
determined by selecting constant values F0 = 1 N and vH0 = 1 m/s (for convenience), and a / F0 = 

0.27 (MacIntosh and Holash [8], p. 194). Moving mass m is equal to force divided by gravitational 
coefficient m = F / g. 
 
First Hill’s velocities are chosen for the curves of contraction equations which will be calculated (vH = 

0.2 m/s, 0.4 m/s, 0,6 m/s, 0.8 m/s, 0.9 m/s, Fig. 3). Then the values of constant force a = 0.27 F0 and 

constant velocity b using Eq. (14) are chosen (a = 0.27, b = 0.27). After that the corresponding values 
of force F using Eq. (12) are calculated (F = 0.460 N, 0.242 N, 0.124 N, 0.051 N, 0.023 N, Fig. 3). 
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Finally corresponding values of force F and Hill’s velocity vH are substituted into equation of muscle 

contraction (Eq.11), and the velocity curves of mass accelerated in muscle contraction resisted by 
constant counter force F are obtained, (Fig. 3). 
 

 
 

Fig. 3. Velocity curves of moving mass accelerated in muscle contraction resisted by counter 
force which is equal to the force of gravitation. Hill’s velocity vH is the limit velocity that the 

velocity of the moving mass approaches. Hill’s velocity vH corresponds to the velocity in the 

Hill’s force velocity relationship and the force F corresponds to the force of Hill’s force 
velocity relationship 

 

2.3 Constant Power - Liquid Friction Model of Muscle Contraction 
 
The model used in the present study is constructed according to Newton’s II law, which was first used 
in linear motion of arm push in shot put (Rahikainen and Luhtanen [9]) and then applied to rotational 
motion by Rahikainen et al. [7] and Rahikainen and Virmavirta [6]. The theory of arm movement is as 
follows: At the beginning of the movement, velocity is naturally zero and it takes some time to 
generate force. At that phase of motion, passive elements of muscle-tendon unit have influence on 
the motion, but after reaching the full state of tension, they have no further dynamic effect. After that it 
can be assumed that a maximum muscle force takes action and at that phase of motion constant 
value glide friction acts. Because the muscle system is able to transfer only a certain quantity of 
chemical energy during the time of contraction, there must be a constant maximum power, which the 
muscle is able to generate within a certain range of velocity. As the velocity increases the motion 
reaches the point where the maximum power takes action and acting force is less than the maximum 
force. This way power remains constant as the velocity increases and the force decreases. At high 
velocity phase of motion, liquid friction, directly proportional to velocity, acts. The constant value glide 
friction decreases as forces at the joint decrease and it becomes indifferent. The model of arm 
movement during constant power phase in shot put study was constructed as follows: accelerating 
force is mass multiplied by acceleration which equals muscle force minus the force generated by inner 
friction of muscle. The effect of gravitational force is added afterwards. 
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V
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Where 
 
The weight of the shot 7.27 kg and the weight of the arm approximately 3.5 kg, or total weight 10.8 kg 
(Table 1). 
 

Mass of shot and arm  m 
Velocity of shot   V 
Power generated by arm  P 
Time of arm push   T 
Pushing force        P / V 
Internal friction in arm   C V 

 
Internal friction of muscle is liquid friction inside muscle, which is directly proportional to velocity. The 
same liquid friction was also used in the study of Rahikainen et al. [7] which was initially adopted from 
Alonso and Finn [10]. 
 
Table 1. Body segment masses [11] and estimated moving mass of the shot putter (140 kg) in 

the present study 
 

 

 % of total 
mass 

mass 
(kg) 

moving mass  
(kg) 

1 trunk 34.70 48.6  

2 upper arm L 2.65 3.7  

3 forearm L 1.82 2.5  

4 hand L 0.50 0.7  

5 upper arm R 2.65 3.7 ¼ = 0.925 

6 forearm R 1.82 2.5 ¾ = 1.875 

7 hand R 0.50 0.7 0.7 
8 shot  7.3 7.3 

9 head 6.72 9.4  

 
Solution of velocity in Eq. (15) 
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2.4 Effect of Gravitational Force on the Movement in Shot Put 
 
The force that is induced by gravity was omitted from the motion model. The power generated by this 
gravity force is Pgr = mg·sin(41º)·V = 69.5 N·V, where mg is gravitational force of moving mass (Fig. 

4), V is velocity of arm movement. In Fig. 6, velocity (V in Eq. 21) coincides the measured velocity 
curve between 4 and 6 m/s and the best fit for power (4750 W, Fig. 6) is in the middle of these 
velocities, at 5 m/s. As the force of gravity is relatively small, the power induced by gravity was 
calculated in this study as a constant factor. It is included in the power P as follows; 1) 
 

P0 = Pacc + Pfr + Pgr                                                                                                                                          (22) 

     
P = P0 ‒ Pgr = Pacc + Pfr 

 
P is power in Eq. (21), P0 is muscle power, acc is acceleration, fr is friction, gr is gravity, force of 

gravity is F. At the point B in Fig. 5 velocity is 4 m/s and the real power can be calculated as follows; 
2) 
 
Preal = P + (5 – 4) m/s ·F = 4750 W + 69.6 W = 4819.6 W 

 
The real velocity can be solved from the power ratio of Eq. (21); 3) 
 

0073.147506.4819
real

==VV                                                                                         (23) 

 

m/s029.40073.14
real

=⋅=V  

 

which is within the accuracy of this study 4 m/s 
 

In constant acceleration phase of movement 
 
F0 = Facc + Ffr + F 

 

 
 

Fig. 4. Sideview of shot’s path during the arm push (distance of the put 19.47 m) 
 

2.5 Analysis of 19.47 m Put Using Eq. (21) 
 

If the time of arm push is known, it is possible to determine the speed of shot during the arm push 
using speed curves from Rahikainen and Luhtanen [9], (Figs. 5 and 6). Thereby, the part 
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corresponding to the time of arm push is separated from the end of the speed curve (e.g. Fig. 5). In 
the path of the shot (Fig. 6) it can be seen that in section A - B the arm push continues to generate 
speed with the maximal pushing force and the inclination of the speed curve is almost constant. This 
is because the maximal generation of speed is limited by the shot putter’s maximal arm-pushing force. 
As the arm push continues, in section B - C - D, the pushing force accelerating the shot decreases 
and the inclination of the speed curve decreases as well. There are three different factors that cause 
the decrease in acceleration. First: as the speed of the shot increases, the rate of increase is not 
limited by a maximal pushing force, but by a maximal propulsive power, in which case force is power 
divided by velocity. Second: The internal friction of the pushing arm, which can be considered to be 
directly proportional to the velocity, decreases the velocity of the shot. Third: as the shot putter in the 
rotational motion turns sideways in respect to the direction of the arm push, the pushing force of the 
arm decreases and disappears and the arm just follows the shot without accelerating it. In Fig. 6 the 
broken line describes the effect of the first and second factor mentioned above. In section B – C, the 
measured speed curve and the broken line coincides. In this phase of the arm push, the two above-
mentioned factors are the principal factors influencing the speed of the shot. In section C – D, the 
measured speed curve travels under the broken line. In this phase of the arm push, the shot putter 
turns so much sideways in respect to the direction of the arm push that the acceleration of the shot 
decreases further. If the shot putter would not turn (or rotate) during the arm push, the measured 
speed curve would combine with the broken line in section C - E. By fitting   Eq. (21) into the 
measured speed curve in Fig. 6 values of internal friction and power are obtained C = 64.8 kg/s and P 
= 4750 W. 
 

2.6 Analysis of Arm Push in Shot Put using Hill’s Equation 
 
In Hill’s equation the velocity of muscle contraction vH is measured, as the force -F is resisting the 

motion. The muscle force is then F. In the beginning of movement the velocity of muscle contraction is 
zero, then the muscle force accelerates the motion, and the velocity increases. At some point it 
reaches maximum value, and at this constant speed phase of movement, velocity vH in Hill’s equation 

corresponds to the muscle force F. Theoretically the time of motion for the constant maximum velocity 
vH is indefinite, but if the counter force -F is strong enough, the movement decelerates and the 

constant maximum phase really exists in muscle mechanics. All the velocities v from zero to 
maximum velocity correspond to muscle forces greater than F (muscle force velocity = constant 
power) and therefore in this study the maximum velocity corresponding F is marked as Hill’s velocity 
vH. 
 

 
 

Fig. 5. The measured speed and the length of arm push (shaded area A−−−−D) in 19.47 m shot put 
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bv

avbF
F

+

−
=

H

H0
,        m = 10.8 kg,  F

0
 = 1260 N,  F = 69.6 N,  v

H0
 = 17.2 m/s,  v

H
 = 13.2 m/s, 

                                   a = 0.24 ⋅ F
0
 = 302 N,  b = 0.24 ⋅ v

H0
 = 4.12 m/s 

 

Fig. 6. The measured speed of the 19.47 m shot put (curve A – B ‒ C – D) and the theoretical 
speed curves, dashed line from Eq. (21) and solid line from Eq. (11). The zero time (T = 0) for 

theoretical curves is at 0.032 and 0.030 s, respectively 
 
In arm push of shot put the corresponding progress of velocity does not reach the velocity value vH 

because the range of movement is too short for that. In that movement all the velocity values are 
calculated from Eq. (11). 
 

( )[ ]HH 1ln vvvv

aF

m
t −+

+
−=  

 

2.7 Determining the Constants in Eq. (11) 
 
The moving mass m is presented in Table 1. Gravitational force of the moving mass is mg = 10.8 · 
9.82 = 106 N and the force resisting the acceleration of the shot is – F = – mg · sin(41º) = – 69.6 N, 
and the muscle force of Hill’s equation is F = 69.6 N. 
 
The maximum muscle force F0 can be determined by two different ways. Shot putter’s maximum 

bench press with two hands has been measured 260 kg and thus the estimated result for one hand is 
130 kg. The maximum muscle force is then F01 = 130 kg · 9.82 m/s2 = 1280 N. The other way to 

determine the maximum muscle force F02 is to use Eq. (21) which yields the value of power 4750 W 

(Fig. 6). At the velocity of 4 m/s this power gives the force 4750 W / 4 m/s, and by adding the force of 
gravity of shot and hand the maximum muscle force is obtained F02 = 4750 W / 4 + 69.6 N = 1260 N. 

 
Constant a in Eq. (11) is the constant value glide friction It can be determined in the phase of constant 
acceleration between A and B (V between ~1.5 - 3.5 m/s, Fig. 6) as follows: Force of friction a is equal 
to the maximum muscle force F0 subtracted the gravitational force resisting acceleration F and the 

force of acceleration Facc. The force of acceleration Facc is equal to moving mass m multiplied by 

acceleration. The acceleration can be determined from the phase of constant acceleration by 
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measuring the corresponding changes of velocity and time, dV/dT = 82 m/s2, and the force of 
acceleration is Facc = 10.8 kg 82 m/s2 = 888 N. The force of friction (using F02) is  a = 1260 N – 888 

N – 69.6 = 302 N and the coefficient of friction is 302 N / 1260 N = 0.24. 
 

 

bv

avbF
F

+

−
=

H

H0
,    m = 10.8 kg, F0 = 1200 N, F = 69.6 N, vH0 = 16.6 m/s, vH = 12.7 m/s, 

                                 a = 0.24 · F0 = 288 N, b = 0.24 · vH0 = 3.99 m/s 

 

Fig. 7. The measured speed of the 20.90 m shot put (curve A – B – C – D) and the theoretical 
speed curves, dashed line from Eq. (21) and solid line from Eq. (11). The zero time (T= 0) for 

theoretical curves is at 0.032 and 0.030 s, respectively 
 
Hill’s velocity vH can be determined by iteration. Iteration can be done (for instance) so that Eq. (11) is 

calculated with proper value of vH through the intersection point of the measured velocity curve and 

the line of the velocity 4 m/s (point B). The value of vH is then found by iteration so that Eq. (11) 

matches the measured velocity curve at the velocity of 6 m/s (point C). Increase of the velocity value 
vH results in increase of inclination of the iterated velocity curve. Constant b is calculated from Hill’s 

equation. 
 

2.8 Analysis of 20.90 m Put 
 

Another shot put performance (20.90 m, Rahikainen and Luhtanen [9]) was analyzed in order to be 
able to compare the two puts and to learn more about the characteristics of the arm push. Another 
analysis was also needed to confirm the validity of the equation of motion. Measured speed curve of 
this put (dots) is presented in Fig. 7. The speed which is calculated with Eq. (21) coincides with the 
speed of further development of Hill’s equation Eq. (11) in section B – C (Fig. 7). The propulsive 
power of the arm push is approximately P = 4520 W. The arm push in Fig. 6 has a greater pushing 
force 1260 N than in Fig. 7 1200 N, but at the end of the push the decrease in acceleration in Fig. 6 is 
so great that the total velocities generated during both arm pushes are almost equally high. The 
reason for the large decrease in acceleration is probably due to muscle’s mechanics, maybe a 
pressure decrease in muscles as the turning of the body is getting larger. In the optimal arm push, this 
large acceleration decrease must be eliminated. 
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3. ARM ROTATION MOVEMENT 
 
3.1 Model of Muscle Contraction in the Braking Phase of Arm Rotation 
 
Two models of muscle contraction have been used for the braking phase of arm rotation. The first 
model is constructed according to Newton’s II law, which was first used in linear motion by Rahikainen 
and Luhtanen [9] and then applied to rotational motion by Rahikainen et al. [7] and Rahikainen and 
Virmavirta [6]. The second model is Hill’s equation, which has been solved for accelerated movement 
by Rahikainen et al. [12]. 
 
The theory of arm rotation in the braking phase is as follows: In the beginning of the braking phase, 
angular velocity has reached the maximum value. At this phase elasticity of the muscle-tendon unit 
has influence on the motion, which can be seen as a wave motion between points B – C in Fig. 8, but 
thereafter the muscle-tendon unit have full state of tension, and it has no further dynamic effect in the 
braking phase of movement between points C – E. The phase of braking movement between 
points C – D is the phase of maximum constant power. 
 

 
 

Fig. 8. The measured angular velocity values of whole arm rotation upwards are marked as 
filled circles (A – E), and the theoretical angular velocity values calculated from the equation 

Eq. (34) are shown as broken-line curve. Open circles are the points calculated from Hill’s 
equation (Eq. 50). For convenience, the time for Eq. (50) is presented from right to left 

 
Because the muscle system is able to transfer only a certain quantity of chemical energy during the 
time of contraction, it is obvious that arm rotation must have maximum power that cannot be 
exceeded. It can also be assumed that the maximum power acts within a certain range of velocity and 
it is a constant maximum power. As the braking of the movement starts, the maximum power takes 
action and the rotational moment is less than the maximum moment. This way power remains 
constant as the angular velocity decreases and rotational moment increases, until rotational moment 
is the maximum rotational moment at point D. In the braking phase of motion, moment of the frictional 

force of fluid friction Cϕ& , which is directly proportional to velocity, was used in the model of arm 

rotation. Within arm rotation experiments constant force of sliding friction turn out to be better friction 
approximation than fluid friction model. However, the fluid friction model was good enough within the 
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range of Maximum constant power. Hill’s equation is another model of Maximum constant power. The 
theoretical phase of movement is Maximum constant velocity which is the phase of the velocity of 

Hill’s equation Hϕ& , which velocity in this study is called Hill’s velocity. Usually arm rotation movements 

do not reach Hill’s velocity within the range of movement. There must be strong enough counter 
moment M, Eq. (36), to resist the acceleration so that the movement reach Maximum constant 
velocity within the range of movement. 
 
The model of deceleration is constructed according to Newton’s II law as follows: 
 
Phase of maximum constant power P decelerating movement 
 

ϕ
ϕ

ϕ
&

&

&
C

P

Td

d
I +−=                                                                                      (24) 

 
Moment of inertia in arm rotation                       I 

Angular velocity                      ϕ&  

Maximum constant power generated by arm muscles  P 
Time                       T 

Maximum constant moment generated by muscle force P/ϕ&  

Moment of fluid friction (inner friction of muscle)              Cϕ&  

Coefficient of friction                       C 
 
Inner friction of muscle is fluid friction which is directly proportional to velocity. It can be seen in Fig. 8 
that initially movement accelerates at Maximum constant moment M0 between points A – B, which 

implies that the moment generated by muscle force is constant. After that the movement has reached 
maximum velocity between points B – C. As the velocity decreases, the movement decelerates at 
maximum constant power within the range of movement between points C – D in Fig. 8 and the power 
P is constant. 
 
Solution 
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The theoretical phase of maximum constant velocity in Eq. (34) is 
 

C

P
T =⇒∞= ϕ&                                                                                              (35) 

 

The corresponding velocity in Hill’s equation is Hϕ& , Eq. (36). The moment M in Hill’s equation is the 

moment of gravitational force which resists the movement. Towards the end of the braking phase in 
Fig. 8 movement turns to horizontal direction, and therefore the moment of the gravitational force can 
be omitted (M = 0).  In whole arm rotation the moment of gravitational force has notable effect on 
motion between points B – C in Fig. 8. 
 

3.2 Constant Velocity Movement 
 
Experiments of Rahikainen et al. [7] and Rahikainen and Virmavirta [6] verified that the conclusions of 
the theoretically derived equation with constant maximum power Eq. (21) were in agreement with 
experimentally measured results. As it is compared to Eq. (34), it can be seen that it is the same save 
the negative power. As Hill’s equation is a constant power model, it is same as the model of Eq. (34) 
and Eq. (21) in that respect. Hill’s force - velocity relationship was derived from the experiments in 
which the velocity of muscle contraction was measured against a certain constant force. The 
experiments of Hill’s equation naturally started at zero velocity and continued in the same manner as 
the experiment of the present study through all the phases. Hill's equation was derived from muscle 
contraction experiments, in which moving masses were very small. The scale difference has a great 
effect on muscle forces and inertial forces of moving masses. For instance 10 times larger muscle has 
100 times stronger muscle forces (related to cross-section area of the muscle) and 1000 times 
stronger inertial forces of moving masses (related to the volume of moving mass). Therefore Hill’s 
equation is valid within the muscular mechanics of mice and mosquito, but within muscular mechanics 
of human being it must be solved into accelerated motion [13,14] and [15]. The measurement of the 
this study was made without external load and it did not reach the maximum theoretical velocity of  
Eq. (21). 
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Maximum theoretical velocity of Eq. (21) and Eq. (34) 
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Maximum theoretical velocity in Hill’s equation is written here in the form Hϕ&
 

 

( ) ( ) ( ) roro0roHro baMbaM +=++ ϕ&                                                                   (36) 

 
where 
 
M is the rotational moment resisting movement in Hill’s equation and in real muscle movement. The 
moment M must be constant during the whole muscle contraction. If it is not, the equation of motion of 
muscle contraction will be much more complex. 
 

Hϕ&  is the maximum constant angular velocity in Hill’s equation, and during the muscle contraction the 

moment M corresponds to the angular velocity Hϕ&  in Hill’s equation.    

 

ϕ&  is general angular velocity in real muscle movement containing also accelerated phase of motion. 

 
Three power components of Hill’s equation are: 
 

( ) ( )

( ) roroHroH

roHro

baMaM

baM

+++

=++

ϕϕ

ϕ

&&

&
                                                                                     (37) 

 

i) Power done against an external load Hϕ&M  

ii) Power of friction due to the motion of muscle’s internal structures Hroϕ&a    

iii) Power of muscle’s internal loss of energy ( ) roro baM +  
 

These powers correspond to powers of translational movement related to areas A, B, C in Fig. 2. Hill’s 
equation can be transformed into a form in which it is described by three power components Eq.(37). 
As the factors of muscles’ maximum moment M0, force of friction aro and constant factor bro are 

constants, it implies that the power ( ) roro0 baM +  is also constant. The total power of the muscle is 

comprised of three different power components. The power Hϕ&M  represents the power, which the 

muscle does against external load (corresponding the area A in Fig. 2). If there is no external load, 

this power is consumed by acceleration. The power ( ) roro baM +  represents the power of muscle’s 

internal loss of energy (corresponding the area B in Fig. 2). This power creates a counter force 
against external load. As the velocity is zero, the force is highest. Thereafter, as velocity increases, 
initially this power decreases rapidly, then slowly at higher velocities. This power has no velocity 

variable, and therefore it is not related to movement. The power Hroϕ&a represents the power of 

friction due to the motion of muscle’s internal structures (corresponding the area C in Fig. 2). Because 
power is force multiplied by velocity, the force of friction is aro. This is not the force directly 

proportional to velocity, generally known as fluid friction (which is the friction used in the upper model 
of muscle contraction), but constant force of friction which is known as sliding friction. 
 

3.3 Model of Hill’s Equation in the Braking Phase of Arm Rotation 
 

The Hill’s equation Eq. (36) for decelerating movement in Fig. 8 was solved between points C – D. 
The solution has been calculated from the theoretical maximum velocity phase of movement, in which 
Hill’s equation Eq. (36) is valid. 
 
Decelerated movement (braking phase) 
 
At the phase of deceleration the power consumption into deceleration is 
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dt

d
IP =dec .                                                                                     (38)  

 

Because at the phase of deceleration the velocity ϕ&  is less than the maximum constant velocity Hϕ& , 

the power of the work done against counter moment Hϕ&M  and the power of friction Hroϕ&a  are less 

than that at the velocity Hϕ& . The difference of these powers is equal to the power into deceleration. As 

we know that equation Eq.(50) in curve fitting in Fig. 8 functions right with plus sign, we obtain the 
equation of motion as follows: 
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and solution of rotational motion corresponding to Eq.(11) is 
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Substitution 
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Constant C = 0 and ln (1) = 0 
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3.4 Analysis of the Braking Phase of Whole Arm Rotation Movement 
 
At the section of braking movement C – D deceleration decreases, and the movement decelerates at 
constant power movement. This is followed by stopping of the movement. 
 
The theory of muscle contraction in arm rotation movement in Fig. 8 is as follows: 
 
The phase of Acceleration 
 
Maximum rotational moment between points A – B. 
 
Maximum power acceleration the motion after point B (very short). 
 
The phase of Maximum constant velocity 
 
Maximum velocity between points B – C is less than the theoretical Maximum constant velocity in 

Hill’s equation Hϕ&  and the Maximum velocity of Eq. (35). 

 
The Phase of Deceleration 
 

Maximum power decelerates the motion between points C – D. Fitting of Eq. (34) and Eq. (50) into the 

measured velocity curve yields two Maximum constant power values, P from Eq. (34) and Hroϕ&a  

from Eq. (50). At the end the movement turns to horizontal, and therefore the effect of gravity is about 
zero M = 0. 
 
Eq. (34) 
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Eq. (50) 
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The end of the deceleration with maximum constant power is the point D in Fig. 8. At this point the 
rotational moment generated by muscle is maximum constant moment, and maximum constant power 
is maximum constant moment multiplied by velocity. 
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The effect of the force of gravity, the moment M was omitted from the equation of arm rotation Eq.(24) 
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Adding the effect of the force of gravity yields the equation 
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The real constant power decelerating the movement is approximately 
 

C
MP ϕ&+                                                                                      (52) 

 

in which the velocity 
C

ϕ&  varies, and in Fig. 8 the constant power phase of decelerated motion is from 

12.5 rad/s to 8.7 rad/s, and the average constant value for velocity 
C

ϕ&  is 10.6 rad/s. 

 
Power consumption in decelerated motion between C – D in Fig. 8 
 
Power consumption into deceleration 
 

(M0 – aro – M) ϕ&                                                                                       (53) 

 

Power consumption of friction  ϕ&roa                                                                    (54) 

 

Power consumption of force of gravity  ϕ&M                                                                    (55) 

 

Total power consumption  ϕ&0M                                                                   (56) 

 

Power consumption in maximum constant velocity, phase of Hill’s Equation (theoretical) 
 

( )( ) ( ) rorororo 0H baMbaM +=++ ϕ&   

Left side of Hill’s equation   
( )( )

rorororo

roro

HH

H

babMaM

baM

+++

=++

ϕϕ

ϕ

&&

&

 

 

Power done against external force 
 

Hϕ&M                                                                (57) 

 

Power into friction 
 

Hro ϕ&a                                                                (58) 

 

Power into muscle’s operational ability 
 

rororo babM +                                                                                      (59) 

 

Maximum constant power consumption into motion in Hill’s equation 
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Arm rotation experiment presented in Fig. 8 was recorded by the camera system of Rahikainen [16]. 
The measuring technique has been described in papers [6,7,17,18]. The theoretical angular velocity 
curve of Eq.(34) is marked with broken-line and it coincides with the measured angular velocity points 
between C – D, where movement proceeds at constant power according to Eq. (34). 
 
Theoretical angular velocity of Eq. (50), which is Hill’s equation in decelerated motion, is marked with 
open circles and it coincides with the measured angular velocity curves between C – D, where 
movement proceeds at constant power according to Eq. (50). 
 
Three Maximum Power values for testing Eq. (50) and Eq. (34) 
 

Moment of deceleration dtdI ϕ&⋅  

 
Moment of muscle’s internal friction aro 
 
Moment of gravitation resisting movement M 
 

Maximum constant moment Ma
Td

d
IM ++= ro0

ϕ&
 

 
1) Maximum constant muscle power (Fig. 8) at the point of intersection (~ 8.7 rad/s, 26 ms) in which 

maximum muscle power changes into maximum muscle moment (M0), Eq. (56) 

 

M0 ϕ&   ϕ&  = 8.7 1/s  

 
This is the only point where the moment has its maximum value, M0, because in the constant power 

phase (C - D) moment decreases as ϕ&  increases (>8.7 rad/s). 

 
2) Maximum constant muscle power of Hill’s equation, Eq.(36), Eq.(60) 
 

HroH ϕϕ && aM +
 

 
3) Maximum constant muscle power of Eq.(34), Eq.(52) 
 

P + M
C

ϕ&
 

 
If these three maximum power values are same, this analysis of the braking phase of arm rotation 
movement has been proved true. 
 
Maximum constant power in fluid friction model of muscle contraction Eq.(34) 
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In Fig. 8 during braking phase ~150 – 200 ms movement turns to horizontal and therefore, the effect 
of gravitational force is zero and the moment of gravitational force is also zero M = 0. 
 

Average moment of fluid friction (inner friction of muscle) at the velocity 10.6 rad/s � ∙  �� = 3.67 ∙

10.6 = 39.0 Nm 
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Maximum constant moment, which here is maximum braking force moment, was calculated at point D 
(Fig. 8). Slope of the velocity curve is equal to the deceleration of movement. The value for the slope 

of the velocity curve (∆ ϕ& / ∆T) at the point (8.7 rad/s, 26 ms) was approximated 155.4 rad/s2. The 

force of deceleration is then 
 

Nm6.854.155551.0 =⋅=
dT

d
I

ϕ&
 

 
The total moment generated by the muscles is maximum constant muscle moment M0, and its 

counter moment is comprised of three moment components: 
 

Moment of acceleration dtdI ϕ&⋅  

Moment of muscle’s internal friction aro 
Moment of gravitation resisting movement M 
Maximum constant muscle moment M0 = 85.6 + 39.0 + 0.0 = 124.6 Nm 

 
Iteration process 
 

Iteration of the value of Hill’s velocity ϕ&  has been done in Fig. 8. The time is from right to left. The 

time corresponding velocity ϕ&  = 12.5 rad/s has been calculated and by using the starting point for 

iteration s/rad30H =ϕ& . 

 

( ) ( )[ ] s0525.0305.121ln305.12
5.38

551.0
5.12 =−+−=t  

 

The point (12.5 rad/s, 0.0525 s) is above the measured velocity curve, and therefore Hill’s velocity 

must be less than Hϕ&  = 30 rad/s. After some iterations the right Hill’s velocity will be found Hϕ&  = 26.5 

rad/s. 
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4. CHECKING THE POWER CALCULATIONS 
 

4.1 Braking Phase of the Arm Rotation Movement 
 

Calculation of the angular velocity ϕ&  at point D (Fig. 8) where the measured velocity points and the 

theoretical velocity curve (Eq. 50) coincide is checked first below. 
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At the point D (Fig. 8), the estimation of the velocity ϕ&  from the measured data is 8.7 rad/s.  
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Assuming Eq.(56) = Eq. (60) 
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In Fig. 8 it can be seen that Hill’s equation Eq.(50) functions right in the decelerated motion when 

velocity is higher thanϕ&  = 8.3 rad/s (approximately point D). 

 
The calculation of maximum power into motion in Hill’s equation Eq.(60) and maximum power in 
fluid friction model of muscle contraction, P in Eq.(34) is checked below. 
 
The calculation maximum constant power into motion in Hill’s equation yields 
 

W10345.26390 HHH ro =⋅+⋅=+ ϕϕϕ &&& aM  

 
Maximum constant power in fluid friction model of muscle contraction Eq.(34) can be found by utilizing 
Eq. (52) 
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P/C = 287 1/s (Fig. 8) 
 

Eq.(52) W1053067.3287 =⋅+⋅=+
CC

MP ϕϕ &&  

 
Maximum power consumption in decelerated motion calculated at the point of intersection of 
maximum power and maximum moment at velocity 8.3 rad /s in Fig. 8 can be obtained by Eq.(56): 
 

M0 ϕ&  = 124.6 Nm × 8.3 rad/s = 1034 W 

 
In that case the coefficient of friction is 
 

31.06.124/39/ 0ro ==Ma  

 

Hill’s velocity value 26.5 rad/s must be very near the right one. The intersection point of the phases of 
Maximum constant power and Maximum constant moment may be lower than 8.7 rad/s, because in 
the phase of movement D – E there is no phase of Maximum constant moment. Therefore it may be 
that the value of Maximum constant power 1084 W is too high. However, all the values of Hill’s 
velocity are close each other, and therefore it can be concluded that this analysis of Hill’s equation 
functions right.  
 

4.2 Checking of Shot Puts, 19.47 m and 20.90 m 
 

As in the arm rotation before (4.1), the checking of the calculations for the shot put of 19.47 m (Fig. 
6) is presented here: 
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The equations Eq. (56) and Eq.(60) used in the rotational movement (4.1) are changed to the  
translational movement: 
 

HH0 vavFvF +=                                                                                      (61) 
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After the velocity v = 3.9 m/s Hill’s equation acts in the motion. In Fig. 6 it can be seen that the 
measured velocity curve begins to bend approximately at that point and therefore, it can be inferred 
that Hill’s equation functions right in accelerated motion.  
 
Checking the calculations of maximum power into motion in Hill’s equation, right side of Eq.(61),

HH vavF +  and maximum power in fluid friction model of muscle contraction P, Eq.(21) in Fig. 6. 

 
Thus maximum constant power into motion in Hill’s equation yields 
 

W49002.133022.136.69HH =⋅+⋅=+ vavF  

 
Maximum constant power in fluid friction model of muscle contraction yields 
 

Eq.(21)  
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P = 4750 W,  
 

The constant power decelerating the movement is (Eq. 52) 
C

MP ϕ&+ and for corresponding 

translational movement 
 

P + FVC = 4750 + 5 × 69.6 = 5100 W                                                                               (62) 

 

Maximum power consumption in accelerated motion calculated at the point of beginning of the phase 
of maximum constant power at velocity 3.9 m/s in Fig. 6 can be obtained as follows: 
 

left side of Eq. (61) 
 

F0v = 1260 N × 3.9 m/s = 4914 W 

 

In this case the friction coefficient is a / F0 = 0.24 

The check for the shot put of 20.90 m (Fig. 7) follow the same principle as the previous check for the 
shot put of 19.47 m. 
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HH0 vavFvF +=  
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In Fig. 7 it can be seen that this point is not a match to the point at which the measured velocity curve 
begins to bend. 

 

Maximum constant power into motion in Hill’s equation, right side of Eq. (61) yields 

 

W45407.122887.126.69HH =⋅+⋅=+ vavF  

 

Maximum constant power (Eq.21) in fluid friction model of muscle contraction yields 

 

P = 4690 W,  

 

The constant power decelerating the movement is  

 

P + FVC = 4520 W + 69.6 × 5 W = 4870 W 

 

Maximum power consumption in accelerated motion calculated at the point of the beginning of the 
phase of maximum constant power at velocity 4.0 m/s in Fig. 7: 

 

left side of Eq.(61) 

 

F0v = 1200 N × 4.0 m/s = 4800 W 

 

Coefficient of friction is  a / F0 = 288 / 1200 = 24 

 

5. DISCUSSION AND CONCLUSIONS 

 

Rahikainen et al. [7] showed that in the first part of the arm rotation movement acceleration was 
constant and during the second part of movement equation of constant power (Eq. 34) fitted the 
measured velocity curve. The following study [6] continued the arm rotation experiments and a new 
approach to Hill’s equation was presented. 
 

5.1 Shot Put 
 

The shot put experiments of the present study have the similar progress of movement with the 
previous ones, and the above mentioned constant acceleration and constant power phases have 
been proved to be true as well. The correct functioning of Eq. (21) is also proven as the two forces F01 

= 1260 N and F02 = 1200 N are close to each other. 

 

In Figs. 6 and 7 the measured velocity curve has a phase of constant acceleration between velocity 
values ~1.5 - 3.5 m/s and it can be inferred that within this range of velocity constant maximum 
muscle force is produced presuming that the force of friction is constant value glide friction. The 
constant friction a in the phase of constant acceleration and in the phase of constant power in Eq. (11) 
is assumed to be the same and mechanics in the equation seems to function properly with this 
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assumption. In MacIntosh and Holash [8] the values of friction coefficient a/P0 for human elbow 

flexors are given, 0.45, 0.4 and 0.39, in which P0 is maximum moment for values 0.4 and 0.45 and 

maximum force for value 0.39 and a corresponds to the force of friction. Values of friction coefficient 
a/P0 0.2-0.3 are also used. Proper functioning of Hill’s equation implies the action of counter force F 

and if the counter force is weak, velocity increases, and the friction coefficient a/P0 may be bigger 0.6 

– 0.7. 

 

The original purpose of this study was to find out how well the models of Eq. (21) and the further 
development of Hill’s equation, Eq. (11), match the measured velocity in the arm pushes of two shot 
put performances. The fittings of these two constant power equations succeeded and they did 
function very much the same manner. Both of power equations fitted the measured velocity curve 
between velocity values 4 - 6 m/s and thus the constant power model proved to be true within this 
range of velocity. However, these two models of constant power, Eq. (11) and Eq. (21), are different 
and they differ at higher velocities significantly. The highest velocity value of Hill’s equation in 
accelerated movement (Eq. 11) in Fig. 6 is vH = 13.2 m/s and the highest velocity of Eq. (21) is 

CPV /= = 8.56 m/s. 

 

It was verified that in the phase of constant acceleration three different constant forces are acting: the 
force of acceleration, the force of friction and the force of gravity and added together they represent 
the maximum muscle force. The range of correspondence between the measured and theoretical 
velocities of the shot put experiments was long enough to confirm the existence of constant power 
models. Kinetic friction was assumed to be directly proportional to velocity at the beginning of the 
movement. It is possible that kinetic friction at small velocities is constant and at high velocities is 
directly proportional to velocity. This leads to a constant torque accelerating the movement at the 
beginning of movement. It is also possible that the constant acceleration phase of movement is rather 
a matter of human ability to learn effective modes of motion than a direct cause of natural laws. It may 
be that human nervous system controls the rotational moment accelerating the arm movement. 
 

The present application of Hill’s equation in accelerated motion could be worth to apply in the 
accelerated rotational movement as well. The analysis of additional subjects with different 
performance level would also help to understand better the function of Hill’s equation in accelerated 
movement. 

 

After checking the shot put of 20.90 m experiment, it can be concluded that further analysis is needed. 
The friction term of Hill’s equation a = 288 N must be bigger.  

 

5.2 Arm Rotation Movement 

 
The braking phase of whole arm rotation of this study was initially analysed by Rahikainen and 
Virmavirta [6]. However, in that analysis an error was made, so that the whole arm rotation was 
analysed as downwards rotation, but actually it was upwards rotation. Therefore the time had wrong 
direction. The error was found, and there was no doubt about the direction of the movement, because 
maximum velocity of downward movement is much higher than upward movement. Because of this 
error the very important finding was made that the muscle’s braking movement, which is called 
eccentric movement, is much the same as accelerating movement, which is called concentric 
movement. The actual Hill’s equation at maximum constant velocity values is valid only within 
concentric movement, but not within eccentric movements. However, the arm rotation movement in 
Fig. 8 shows that Hill’s equation is valid both in accelerated and decelerated movements. Another 
important finding was that as the equation that fitted the decelerated arm rotation movement was 
known, the corresponding equation of motion, Eq. (21), was obtained by deriving backwards the 
solution process: 
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Comparing the two equations of motion in accelerating and decelerating movement, it can be seen 

that the term of friction C ϕ&  is always against the muscle force P / ϕ& , not against the direction of 

motion as it usually is. Therefore, it must be related to muscle’s force and power generation process 
decreasing muscle’s force generation. 
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