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This Letter presents the first experimental observation of the attractive strong interaction between a
proton and a multistrange baryon (hyperon) Ξ−. The result is extracted from two-particle correlations of
combined p-Ξ− ⊕ p̄-Ξ̄þ pairs measured in p-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV at the LHC with ALICE.
The measured correlation function is compared with the prediction obtained assuming only an attractive
Coulomb interaction and a standard deviation in the range [3.6, 5.3] is found. Since the measured p-Ξ− ⊕
p̄-Ξ̄þ correlation is significantly enhanced with respect to the Coulomb prediction, the presence of an
additional, strong, attractive interaction is evident. The data are compatible with recent lattice calculations
by the HAL-QCD Collaboration, with a standard deviation in the range [1.8, 3.7]. The lattice potential
predicts a shallow repulsive Ξ− interaction within pure neutron matter and this implies stiffer equations of
state for neutron-rich matter including hyperons. Implications of the strong interaction for the modeling of
neutron stars are discussed.
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Hyperons are baryons containing at least one strange
quark (e.g., Λ ¼ uds, Σ0 ¼ uds, Ξ− ¼ ssd) and hyperon-
nucleon interactions are the object of intensive studies for
two main purposes. The first one is to achieve a level of
precision in the strangeness sector of low-energy quantum
chromodynamics (QCD) comparable to the one reached in
the determination of the scattering parameters of nucleon-
nucleon interactions. The second purpose is to study the
impact of the strong interaction between baryons with
strangeness on the description of dense objects within
astrophysics [1–4].
Effective field theory provides a systematic expansion

scheme to compute hyperon-nucleon and hyperon-hyperon
interactions [4,5] but currently the experimental constraints
are rather scarce.
Scattering experiments [6–8] and spectroscopy of several

hypernuclei [9] established the attractive character of the
N-Λ interaction but only scarce information is available for
N-Σ [10,11] and N-Ξ [12,13] interactions.
Hyperon-nucleon (pΛ, pΩ) and hyperon-hyperon (ΛΛ)

interactions were already investigated by means of two-
particle correlations in the momentum space measured in
heavy-ion collisions by the STAR collaboration [14–16].
However, these analyses are hampered by large statistical
uncertainties or by contamination by nongenuine

contributions to the correlation function [17], and hence
new experimental approaches are called for.
Recently it has been shown that hyperon-nucleon,

hyperon-hyperon [18,19], and kaon-nucleon [20] inter-
actions can be more precisely measured in proton-proton
(pp) and proton-lead (p-Pb) collisions at the LHC. Indeed,
small colliding systems at LHC energies lead to particle-
emitting sources with sizes of about 1 fm, allowing a
precise test of the short-range strong interaction. With an
emitting source size similar to that of pp collisions [21], the
larger number of pairs available in the data set recorded
from p-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV by ALICE
allows these studies to be extended to the p-Ξ− correlation.
The newly developed tool CATS (correlation analysis tool
using the Schrödinger equation) [22] allows us to compute
predictions for the p-Ξ− correlation considering either only
the known Coulomb interaction or including additionally a
strong potential. The direct comparison of the measured
and predicted correlation functions provides an unprec-
edented tool to test the strong p-Ξ interaction.
In this Letter, we present the first evidence of a strong

attractive interaction in the p-Ξ− channel. We also compare
the experimental correlation to the prediction obtained
employing lattice calculations from the HAL-QCD
Collaboration [23,24] for the p-Ξ− interaction. This, but
also any other p-Ξ− potential, can be then used to evaluate
the single-particle potential of the Ξ− within pure neutron
matter [25]. The possible appearance of Ξ− within dense
neutron matter depends on this single-particle potential
[26]. An attractive single-particle potential for the Ξ−

within pure neutron matter would favor the appearance
of Ξ− at already moderate densities [27], softening the
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equation of state (EOS), while a repulsive single-particle
potential [3] would shift the Ξ− production to larger
densities [4] and stiffen the EOS.
These studies are relevant for the modeling of neutron

stars since, due to the large densities achieved in the center
of these objects, neutrons might transform into hyperons to
minimize the system energy [28]. So far primarily Λ
hyperons are included in theoretical calculations because
the Λ-nucleon interaction is better known than the
Ξ-nucleon and Σ-nucleon interactions, but all the three
hyperon-species and their interactions with nucleons
should be considered to achieve a realistic equation of state.
It is clear that the precise measurement of the p-Ξ−

strong interaction will allow for a sound determination of
the corresponding single-particle potential and conse-
quently for more realistic EOSs of neutron stars with
hyperon content.
This Letter presents p-p ⊕ p̄-p̄ and p-Ξ− ⊕ p̄-Ξ̄þ

correlations measured in p-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV employing the data set collected by ALICE
[29,30] in 2016 during the LHC Run 2. As the correlation
functions of baryon-baryon pairs exhibit identical behavior
compared to their respective anti-baryon–anti-baryon pairs
[31,32], the corresponding samples are combined.
Therefore, in the following p-p denotes the combination
of p-p ⊕ p̄-p̄, and accordingly for p-Ξ−. Collision events
are triggered by the coincidence in the V0 scintillator arrays
[33], which is also used to reject background events
stemming from interactions of the beam particles with
the beam-pipe materials or beam gas. Pile-up events with
more than one p-Pb collision per bunch crossing are
rejected by evaluating the presence of multiple event
vertices. To assure a uniform detector coverage, the dis-
tance along the beam axis between the reconstructed
primary vertex and the nominal interaction point is required
to be smaller than 10 cm. After these selection criteria are
applied, about 600 × 106 minimum-bias events are avail-
able for the analysis.
The main detectors used in the analysis are the inner

tracking system (ITS) [29] and the time projection chamber
(TPC) [34], covering the full azimuthal angle and the
pseudorapidity range of jηj < 0.9. These detectors are
located within a solenoid that creates a magnetic field of
B ¼ 0.5 T directed along the beam axis. The measurement
of the specific ionization energy loss, dE=dx, in the TPC
gas, and the time information delivered by the time of flight
(TOF) [35] detector are used for particle identification
(PID). Particles originating from weak decays are differ-
entiated from primary [36] particles originating at the
collision point since their associated tracks do not point
to the primary vertex [30].
The proton candidates are identified following the same

criteria listed in [18]. The TPC and TOF PID capabilities
are used to select protons by the deviation of the PID signal
from its expectation value normalized to units of standard

deviations nσ;proton of the detector resolution (σTPC, σTOF).
DPMJET [37] Monte Carlo events processed such as to
emulate the ALICE detector acceptance and reconstruction
algorithm [29] are used to estimate the purity and compo-
sition of the selected samples. Both proton and antiproton
samples are found to have a purity of 97%, and to consist of
86% primary particles.
The Ξ− baryons are reconstructed [38] using the decay

channel Ξ− → Λπ− [39]. The Λ is identified by its decay
channel Λ → pπ− [39]. The charged particles employed in
the Ξ− reconstruction are selected via PID with jnσ;TPC;ij <
4 (i ¼ π, p), and they are required to have a hit in one of the
ITS layers or a matched TOF signal in order to use timing
information to remove the contribution of particles stem-
ming from out-of-bunch pileup. The Λ candidates are
selected by applying the following topological criteria:
(i) a minimum distance for the Λ daughter tracks to the
primary vertex of 0.05 cm, (ii) a maximum distance
between the two daughter tracks of 1.5 cm, (iii) the radial
distance of the Λ decay vertex to the detector center in
radial coordinates, rxy, in the range 1.4 to 200 cm, and
(iv) the cosine of the pointing angle (CPA) between the Λ
momentum and the vector connecting the primary and
decay vertices is required to be CPA > 0.97.
The Λ invariant mass is calculated using the pion and

proton hypothesis for the daughters and is described by a
double Gaussian, accounting for the signal and the mass
resolution, and a second-order polynomial for the combi-
natorial background. The resulting average mass resolution
is 2.0 MeV=c2 independent of transverse momentum
(pT) of the selected candidates. A total of 18.0 × 106

(17.6 × 106) Λ (Λ̄) candidates are selected within �3σ
around the nominal mass, with a signal (S) to background
(B) ratio S=B of 5.1 (5.4) corresponding to a purity of
83.5% (84.3%).
A π− candidate track is combined with the selected Λ

candidate to form a Ξ− and evaluate its decay vertex. The
following topological selection criteria are applied: (i) a
minimum distance for the π− to the primary vertex of
0.05 cm, (ii) a maximum distance between the track of the
π− and the Λ of 1.5 cm, (iii) a rxy of the Ξ− decay vertex
between 0.8 and 200 cm, and (iv) a minimum Ξ− CPA of
0.98. The Ξ− mass resolution increases from 2.1 MeV=c2

at low pT to 2.7 MeV=c2 at larger pT, with a pT averaged
value of 2.3 MeV=c2. Applying a �2σ selection of the
average value around the nominal Ξ− mass, a S=B ratio of
7.3 (7.9), resulting in purities of 87.9% (88.6%), is
estimated for Ξ− (Ξ̄þ). A total of 8 × 105 Ξ candidates
of each charge are selected. The fraction of primary
particles is calculated considering measured production
rates of Ω [40] and Ξ0ð1530Þ [41], and assuming for the
Ξ−ð1530Þ a similar production rate as for the Ξ0ð1530Þ.
The total sample is hence estimated to consist of 66.1%
primary particles.
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Experimentally, the correlation function is computed
as Cðk�Þ ¼ N Aðk�Þ

Bðk�Þ, where k� ¼ 1
2
jp�

1 − p�
2j is the reduced

relative momentum of two particles with momenta p�
1 and

p�
2 in the pair rest frame (p�

1 ¼ −p�
2), Aðk�Þ represents the

same event k� distribution, and Bðk�Þ is a corresponding
reference sample of uncorrelated pairs obtained by pairing
particles from different events [18]. The normalization
constant N between the two distributions is obtained in
the region k� ∈ ½240; 340� MeV=c, where final state
interaction effects are absent and the correlation func-
tion is flat. The theoretical correlation function Cðk�Þ ¼R
SðrÞjψk� ðrÞj2d3r in this Letter is computed with CATS

[22], where r is the relative distance between the two
particles, SðrÞ is the source function, and ψk�ðrÞ is the two-
particle wave function. A spherically symmetric emitting
source with a Gaussian density profile parametrized by a
radius parameter r0 is assumed and Coulomb and strong
potentials are considered to evaluate the relative wave
functions for p-p and p-Ξ− pairs.
The measured correlation functions for p-p and p-Ξ− are

shown in Fig. 1. The inset in the left panel shows an
enlargement of the p-p correlation function around
k� ¼ 100 MeV=c, where the effect of the repulsive inter-
action can be seen. A total number of 574 × 103 (412 × 103)
p-p (p̄-p̄) and 3.3 × 103 (2.6 × 103) p-Ξ− (p̄-Ξ̄þ) pairs
contribute to Aðk�Þ in the region k� < 200 MeV=c. The
systematic uncertainties for the p-p and p-Ξ− correlations
are obtained by varying all single-particle selection criteria
for protons and Ξ candidates with respect to their default
values such as to obtain a maximum variation of the single
particle yields of �15%. The resulting uncertainties on
the correlation functions are symmetrized and added in
quadrature.
In order not to be dominated by statistical fluctuations,

the systematic uncertainties are evaluated in intervals of

40 MeV=c width in k� for p-p and 200 MeV=c for p-Ξ−,
and fitted by a second order polynomial which serves to
interpolate the final point-by-point correlated uncertainties
in narrower intervals. The total systematic uncertainty
reaches a maximum value of 5% for p-p and 3.2% for
p-Ξ− at the lowest measured k� value.
The experimental data are fitted with the model corre-

lation function obtained from CATS, Cmodelðk�Þ. Together
with the genuine correlation function due to the two-
particle interaction, residual correlations are also consid-
ered. In the experiment the latter are introduced by
contamination of the selected samples due to particle
misidentification and feed-down from weak decays of
other particles. These are taken into account according to

Cmodelðk�Þ ¼ 1þ λgenuine½Cgenuineðk�Þ − 1�
þ
X

ij

λij½Cijðk�Þ − 1�; ð1Þ

where Cgenuineðk�Þ is the genuine correlation function for
the pairs of interest, i and j denote all possible impurity and
feed-down contributions, and Cijðk�Þ represent the corre-
sponding correlation functions. The parameters λij are the
relative weights of these contributions calculated from
purity and feed-down fractions [18] and are summarized
in Table I. Here X̃ denotes misidentified particles and XY
particles originating from the decay of Y. Both the p-p and
p-Ξ− correlation functions are dominated by the genuine
correlation of interest. The main contribution contaminat-
ing the p-p correlation function are protons from Λ or Σþ
weak decays. The genuine p-Ξ− signal is diluted with
contributions from secondary protons as mentioned above,
misidentified Ξs, or from decays of the Ξð1530Þ resonance.
For the feed-down contributions, the shape of the Cijðk�Þ
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FIG. 1. The (a) p-p and (b) p-Ξ− correlation functions shown as a function of k�. Statistical (bars) and systematic uncertainties (boxes)
are shown separately. The filled bands denote the results from the fit with Eq. (1). Their widths correspond to one standard deviation of
the systematic error of the fit. The HAL-QCD curve uses potentials obtained from Ref. [42]. The dashed line in the right panel shows the
contribution from misidentified p-Ξ̃− pairs from the sidebands scaled by its λ parameter. See text for details.
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correlations is obtained by transforming the initial theo-
retical correlation function [43] of the mother particles via
the corresponding decay matrices [44]. For most combi-
nations this results in a flat Cijðk�Þ ∼ 1. For contributions
with misidentified particles a flat correlation is assumed
except for the case of p-Ξ̃−, where experimental data from
the sidebands of the invariant mass selection are used. This
contribution is also shown in Fig. 1 after scaling according
to 1þ λp−Ξ̃− ½Cp−Ξ̃−ðk�Þ − 1�.
The genuine p-p correlation function is computed by

using the Coulomb and the strong Argonne v18 [45]
potentials, considering s and p waves. The radius r0 of
the emitting source is a free parameter determined by a fit to
the experimental p-p correlation function, conducted in
k� ∈ ½0; 375� MeV=c. A normalization parameter a is
included for the final fit function to the data Ctotðk�Þ in
the form Ctotðk�Þ ¼ aCmodelðk�Þ, and it is also determined
by the fit, driven by the flat region extending from
200 MeV=c. The theoretical correlation is smeared to
account for the finite momentum resolution.
Although Fig. 1 shows that no minijet background is

visible for baryon-baryon correlations [18,46], possible
deformations of the correlation function due to energy and
momentum conservation were considered by extending the
fit procedure. A systematic variation of the fit is carried out
by adding a baseline Cnonfemtoðk�Þ in the form Ctotðk�Þ¼
Cnonfemtoðk�ÞCmodelðk�Þ¼ ðaþbk�ÞCmodelðk�Þ. The param-
eters a and b are estimated from the fit to the p-p data.
Additional systematic uncertainties of the fit and of the
radius r0 are evaluated by varying (i) the range of the fit
region up to 350 or 400 MeV=c, and (ii) the λ parameters
by modifying the secondary contributions by �20% while
keeping the sum of the primary and secondary fractions
constant. The widths of the filled bands in Fig. 1 corre-
spond to one standard deviation of the total systematic error
of the fit.
The resulting radius r0¼1.427�0.007ðstatÞþ0.001

−0.014ðsystÞfm
obtained by a fit with a χ2=ndf ¼ 1.42 is then used in the

computation of the p-Ξ− correlation function, following
the premise of a common Gaussian source. Differences in
the multiplicity dependence of the radius for p-p and p-Ξ−

pairs have been investigated and found to be negligible.
For the p-Ξ− interaction, two scenarios were tested: one
considering only the Coulomb interaction and a second
one with an additional strong potential computed on the
lattice and provided by the HAL-QCD Collaboration [42].
Figure 2 shows the Ξ-nucleon strong interaction poten-

tial as a function of the pair separation distance r for the
different combinations of isospin (I ¼ 0, 1) and spin
(S ¼ 0, 1). The widths of the potentials correspond to
the uncertainties of the lattice calculations. The inset shows
the correlation functions computed with the average values
of each component of the potential and for a source
radius equal to 1.4 fm. The different correlation functions
obtained for the four I, S channels show the sensitivity to
p-Ξ− distances lower than 1.5 fm. Nevertheless, a precise
test of the potential for small distances will be possible only
by improving the statistical uncertainties of the measure-
ment by a factor of 10, as expected during the LHC Run 3.
The genuine total p-Ξ− correlation is obtained by com-

puting the correlation function including the Coulomb and
strong interaction for the four different states with CATS
and then summing up the correlation functions with their
specific statistical weights,

Cp-Ξ− ¼ 1

8
CN-ΞðI¼ 0;S¼ 0Þþ3

8
CN−ΞðI¼ 0;S¼ 1Þ

þ1

8
CN−ΞðI¼ 1;S¼ 0Þþ3

8
CN−ΞðI¼ 1;S¼ 1Þ: ð2Þ

The computation of the p-Ξ− correlations is carried out by
first fitting the normalization parameter a in the range

TABLE I. Weight of the individual components of the p-p and
p-Ξ− correlation function. Entries in the form XY denote particles
originating from the decay of Y, whereas X̃ denotes misidentified
particles. Nonflat contributions are listed individually.

p-p p-Ξ−

Pair
λ parameter

[%] Pair
λ parameter

[%]

p-p 72.1 p-Ξ− 51.3
p-pΛ 16.1 p-Ξ−

Ξ−ð1530Þ 8.2

Feed-down (flat) 8.7 p-Ξ̃− 8.5
Misidentification
(flat)

3.1 Feed-down (flat) 29.1

Misidentification
(flat)

2.9
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FIG. 2. Predictions for the Ξ-nucleon potential from the
HAL-QCD Collaboration [42] for the different spin (S) and
isospin (I) states. The error bands refer to different Euclidean
times considered in the calculation. The inset shows the corre-
lation function computed with the central value of the potential
for each of the different states and a source radius of 1.4 fm.
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k� ∈ ½250; 600� MeV=c, where the correlation function is
flat. Then, using the resulting Ctotðk�Þ, the correlation
function is compared with experimental data.
Systematic uncertainties of the predicted p-Ξ− correla-

tion function from Coulomb and Coulombþ strong inter-
action are evaluated by varying (i) the range where the
normalization parameter a is estimated to k� ∈ ½300; 550�
and k� ∈ ½350; 700� MeV=c, (ii) the fit procedure by
including the baseline Cnonfemtoðk�Þ ¼ ðaþ bk�Þ, (iii) the
λ parameters by modifying the secondary contributions by
�20% while keeping primary and secondary fractions
constant, and (iv) the radius r0 by decreasing it by 20%
to account for possible variation of the p-Ξ− source with
respect to the p-p source due to the larger contribution of
strong Δ decays to the latter. The theoretical correlation is
smeared to account for the finite momentum resolution and
its width in Fig. 1 corresponds to one standard deviation of
the total systematic uncertainty in the model evaluation.
The comparison of the experimental p-Ξ− data with the

predicted correlation functions including only the Coulomb
potential and the Coulombþ strong potential in Fig. 1
shows that the latter is favored. The fact that the exper-
imental p-Ξ− correlation function shows a stronger
enhancement than the Coulomb-only assumption is able
to produce means that the total interaction is more attractive
than the assumption of a Coulomb-only interaction. The
exclusion of this scenario is quantified by computing the p
value of the data-model comparison considering statistical
and systematic errors. To account for the systematic errors
of the experimental data, the yield in each k� bin is smeared
according to a Gaussian distribution with a width equal to
the systematic error of each bin and all obtained permu-
tations are compared to the Coulomb-only and Coulombþ
strong correlation functions. The obtained p values are
converted into nσ values. The Coulomb-only correlation
function is compared with the data in k� ∈ ½0; 140� MeV=c
and the obtained nσ distributions present a standard
deviation from 3.6 to 5.3. For the Coulombþ strong
interaction, the nσ values range from 1.8 to 3.7. The
observation of a significant deviation between measured
correlation function and the prediction using only the
Coulomb interaction provides strong evidence for an
attractive strong potential in the p-Ξ system.
In order to evaluate the consequences of this new

observation for the EOS of neutron stars, the Ξ− single-
particle potential in pure neutron matter (PNM) at saturation
density from HAL-QCD can be considered. This results in a
slight repulsion for Ξ− in PNM of around 6 MeV [25].
Since current models [47] include a much wider range ∈
½−40; 40� MeV=c for such Ξ− single partice potential, the
validated lattice predictions impose a much more stringent
constraint with consequences for the EOS containing hyper-
ons. The slight repulsion that the Ξ− single-particle potential
acquires in PNM translates into larger densities for the
appearance of Ξ− within neutron-rich matter and into a

stiffer EOS. The data to be collected at the LHC in the future
will provide the opportunity to study also baryon-antibaryon
combinations such as antiproton-Ξ− correlations.
In summary, this Letter presents the first measurement

of the p-Ξ− correlation function in p-Pb collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. A fit of the p-p correlation func-
tion with a model including a quantitative treatment
of residual correlations yields a radius of r0 ¼ 1.427�
0.007ðstatÞþ0.001

−0.014ðsystÞ fm for the emitting source of the
particles. The p-Ξ− correlation is compared with Coulomb
and Coulombþ strong interaction assumptions and a
deviation between 3.6 and 5.3 nσ to the Coulomb-only
correlation is measured. This means that an attractive p-Ξ−

strong interaction is observed. The lattice potential pro-
vided by the HAL-QCD Collaboration for the p-Ξ−

interaction is found to be consistent with our measurements
with nσ values from 1.8 to 3.7. This measurement con-
strains models of neutron stars containing hyperons to
stiffer EOS. Additional data will allow different models
[48] to be more precisely tested in order to conclude on the
presence of Ξ− hyperons within neutron stars.
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