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Abstract
We simulate coherent driven free dissipative Kerr nonlinear systemnumerically using Euler’smethod
by solvingHeisenberg equation ofmotion and time evolving block decimation (TEBD) algorithm,
and demonstrate how the numerical results are analogous to classical bistability. The comparisonwith
analytics show that the TEBDnumerics follow the quantummechanical exact solution obtained by
mapping the equation ofmotion of the densitymatrix of the system to a Fokker-Plank equation .
Comparing between two different numerical techniques, we see that the semi-classical Euler’smethod
gives the dynamics of the system field of one among two coherent branches, whereas TEBDnumerics
generate the superposition of both of them. Therefore, the time dynamics determined byTEBD
numericalmethod undergoes through a non-classical state which is also shown by determining
second order correlation function.

Introduction

TheKerr effect was discovered by JohnKerr in 1875 [1], which exhibits quadratic electro-optic (QEO) effect, is
seen in almost allmaterials, but certainmaterials displaymore strongly than others, for example organic
molecules and polymers [2], Se-based chalcogenide glasses [3] and silicon photonic devices [4]. The non-linear
phenomenon introduced byKerr effect has been observed experimentally and it has broad range application in
many optical andmagnetic devices. For example, the optical Kerr effects have been useful for nonlinear signal
processingwhich has shown several applications includingNRZ-to-RZ conversion [5], multi-casting,
demultiplexing, regeneration,monitoring,multiple-wavelength source [6, 7], andmanymore. Themagneto-
optical Kerr effect (MOKE) has potential application in ultrathinmagnetic devices, e.g. films [8], multilayers [9],
andmagnetic superlattices [10], and, the surfacemagneto-optic Kerr effect (SMOKE) has remain a powerful tool
for in situ characterization [11] . All the setups have shown bistability as their predominant characteristics which
causes due to nonlinear susceptibility.

Themultistability in the steady state solution of Kerr nonlinearity has been encountered theoretically in two
different ways: semiclassicaly where the state of the system is approximated to the nearest coherent state, and
quantummechanically wherewe estimate the exact solution from themaster equation formalism of the density
matrix of the system. The semicalssical solution of both dispersive and absorptive bistability has been derived by
using the quantumLangevin equation [12, 13], and the theory of quantummechanical solution for the
absorptive case [14] and the dissipative case [15] has been obtained bymapping themaster equation to the
Fokker plank equation. Both the techniques have been usedwidely to study the dynamics of open quantum
systemswhich is considered as one of themost fundamental problems in quantummechanics.

The theoretical techniques for open quantum systemhave been developed over decades and applied
successfully for detecting and preparing quantum states ofmatter and radiation [16], sensing electromagnetic
fields [17], quantum communication [18] and detection of gravitational waves [19]. The recent development of
nanoscale fabrication techniques, in general, circuit quantum electrodynamics (QED) setups exhibit the
technological application of quantummechanics, particularly in superconducting qubits and nanomechanical
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resonators ([20, 21]).Within this framework, recently the theory has been used to study various nonlinear
systems, e.g. two state systems [22, 23], microwave quantumoptomechanics [24] and impurities in solid state
systems [25]. In all cases, includingKerr nonlinear systems, linearized approximated theory has been
implemented to study the dynamical behavior of the system, where one transforms the nonlinearHamiltonian
to a linear one by accounting the quantum fluctuation over nonlinear steady state field amplitude. Appreciating
its simplicity, the technique, however, cannot provide a satisfactory platform. The limitation of the analytics
provokes us for the numerical simulation of the time evolution of nonlinear systems, explicitly. In order to
implement the numericalmodel, we transform the environmental degrees of freedom to a one dimensional
many body systemwith nearest neighbor interaction and simulate thewhole chain using time-adaptive density
matrix renormalisation group (t-DMRG)method. The computationalmethod consists of numerical
diagonalization and renormalization process.

The t-DMRG technique is considered as one of themost powerful numerical schemes in optical, atomic and
condensedmatter physics to be applied on strongly-correlatedmany-body quantum systems. The technique
have already been used for some of the renownedmodels of quantummechanics, e.g. Hubbardmodel [26–29],
Bose–Hubbardmodel [30–32] and Isingmodel [33–35], especially aiming to study the quenching dynamics,
magnetization and phase transition properties.

In this paper, we introduce a TEBDnumericalmodel for the simulation of open quantum system, and use
themodel for the first time to study the time dynamics of the Kerr nonlinear system. The article is composed by
startingwith the theoreticalmodel that explains how the continuousmodes of the bath together with the
nonlinear system is transformed into a one dimensional discrete chain.Hereafter, we use two different
numericalmethods: time propagation of the system field by solving theHeisenberg equation ofmotion using
Euler’smethod andTEBDnumericalmethod to determine the time dynamics and steady state behavior of the
system.We also compare between the numerics andwith analytics, discussing in detail explaining the physical
significance of our result.

Model: theory

TheHamiltonian of a system that describes theKerr effect is,

*w c= + ¢¢ + -w w-( ) ( )† † †H a a a a i a Ee aE e , 1S S
i t i t2 2 L L

whereωS is the frequency of the cavitymode of oscillation, c¢¢ is the anharmonicity parameter which is
dependent on the real part of the third order nonlinear susceptibility tensor ([15]), and ( )†a a are the creation
(annihilation) operators of the system.E is the amplitude of an external drivingfieldwith an oscillation

frequencyωL, expressing as *= +w w-
  ˜ ( )E t Ee E ei t i tL L . In order tomake theHamiltonian time independent, we

switch to the frame of the driving field. Eventually, the detuned cavity frequency becomesΔ=ωS−ωL.
Considering the system is coupled to a thermal reservoir, the totalHamiltonian is given by,

= + + ( )H H H H , 2tot S B SB

where ò=
-

( ) ( ) ( )†H g x d x d x xdB x

x

m

m
represents theHamiltonian of amultimode bosonic reservoir which is at

zero temperature, and ò= +
-

( )( ( ) )†H h x a d x h c x. . dSB x

x

m

m
is the interactionHamiltonian.We considerωS is the

central frequency of the reservoir, ( )†d dx x are the creation (annihilation) operators, and g(x) and h(x) are the
frequency of oscillation and the coupling strength between the system and environment, respectively, for the
environmentalmode x. The properties of bath can be characterized by a uniquely defined spectral density
function J(ω). Considering the linear dispersion relation (g(x)=g. x, where g is the inverse of density of states),
and implyingwide band limit approximation =( ( ) )h x c0 [36], we get the spectral density function [37]

w gq w w q w w= + -( ) ( ) ( ) ( )J
1

2
, 3c c

where g p= c2 0
2 is the decay rate of the system and θ is theHeaviside step function.With this choice of hard

cutoff, wefix the frequency limitωc=g. xm to run over the entire spectrumof bath.

Model: tebd numerics

To simulate an open quantum systemnumerically, we transform theHamiltonian of the system/bath coupling
model to a semi-infinite chainmodel, bymapping the bath operators to the operators of lattice chain, using a

unitary transformation: ò=
-

( ) ( )b U x d x xdn x

x
n

m

m
. In a casewhere the spectral density is defined by the

equation (3), the normalized shifted Legendre polynomial is a natural choice as the unitary operator:

= +( ) ( )( )U x L x xn
n

x n m
2 1

2 m
which is defined in the range of xä[−xm, xm] and satisfies the orthogonality

2

J. Phys. Commun. 3 (2019) 105004 SAgasti



condition [38]. The transformedHamiltonian of the semi infinite chain is

å åh w h= + ¢ + + + +
¥ = =

-

+ +

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )† † † † †H H a b ab b b b b b blim 4chain S

N n

N

n n n
n

N

n n n n n0 0
0 0

1

1 1

where the coefficients are h w w¢ = =c 2 , 0c n0 and, h w= +
+ +( )( )( )n c

n

n n

1

2 1 2 3
. The schematic diagramof the

transformation is given infigure 1(a). Similarmapping is introduced recently in [38] to simulate open quantum
systems aiming to be applied to spin-bosonmodels [39] and biomolecular aggregates [40].

Hereafter, we express the state of the chain as amatrix product state (MPS) to do the numerical simulation
using TEBD. TheMPS state is expressed by ([41])

å å l l l lYñ = G G G ñ
a a

c

a a a a a a a a a
= =

+
-

+

+
∣ · ∣ ( )[ ] [ ] [ ] [ ] [ ] [ ] [ ] i i i i, ,.., , . 5

i i

M
i i N N i N

N N
,., 0 ... 0

1 1 2 2 1
1 2 1

N N

N N

N

N

1 1 1

1 1 2
2

2 2 3
3

1

TheΓ andλ tensors are obtained through the Schmidt decomposition of the pure state of N sites whereχ is
the Schmidt number andM is the dimension of localHilbert space. Figure 1(b) shows themethod of numerical
simulation for the real time evolution diagrammatically, wherewe choose 2nd order Suzuki Trotter (ST)
expansion ([42])which expresses the unitary evolution operator as

= = +- - - - [ ] ( )U e e e e O td , 6t
i tH iF t iG t iF t

d
d d 2 d d 2 3chain

where = å +F Hi chain
i i

odd
, 1 and = å +G Hi chain

i i
even

, 1. The ST expansionminimizes the error in 3rd order of the time
step by evolving the pairs of alternate sites.

The simulation parameters are estimated byminimizing errors which appear in twoways: during the
modeling of the S/B formalism to a 1D chain and the simulation of each step of the real time evolution.We
discuss the errors extensively in appendixwith an estimation of simulation parameters.

Model: time propagation of semi-classical equation

Since the bath is at zero temperature, the time dynamics of the system field is obtained by theHeisenberg
equation ofmotion:

g
ca c a= - D - - -˙ ∣ ∣ ( )†a i a a i a i a

2
2 4 72 2

which is afirst order differential equation. Therefore, using Euler’smethod ([43]), we do the time propagation of
the systemfield numerically to obtain the time dynamics and steady state.

Results: steady state situation

The exact analytical expression of themoment calculating generalized functions of the systemfield operators are
derived bymapping themaster equation into the Fokker-Plank equation [15], which determines the steady-state
field amplitude and second order correlation functions:

Figure 1. (a)Transformation of system/bath couplingHamiltonian to a semi infinite chainHamiltonian. (b)Diagrammatic
expression of the real time evolutionwhere the operators applied on alternating pair.
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and =( ) ([] [ ] )F p q z F p q z, , , , , is the F0 2

hypergeometric function. Furthermore, the relation between the input drive and the semi-classical stationary
value of the systemfield, determined from theHeisenberg equation ofmotion given in equation (7), is given by

a c a
g

= D + ¢¢ +
⎛
⎝⎜

⎞
⎠⎟∣ ∣ ∣ ∣ ( ∣ ∣ ) ( )E 2

4
, 92 2 2 2

2

whereα is the steady state system field.
Since the TEBDnumericalmodel for theKerr nonlinear system is introduced for the first time, we justify its

applicability by comparingwith the analytically estimated results. Here, we plot the steady state systemfield and
the second order correlation function infigure 2which presents both the numerical results determined through
TEBD and the time propagation of the systemfield using Euler’smethod, alongwith the analytically determined
semi-classical and quantummechanical solution, which shows how the TEBDnumerical result is analogous to
classical bistability. For the numerical simulation of the time dynamics, the initial state of the system is chosen to
be in a ground state, and therefore, no photon existed initially.We see the stationary value of the systemfield
loses its linear naturewhen the driving field is increased far. It is also to be noted that the semi classical solution
exhibits bistability whereas the exact quantummechanical solution does not. The peak in the plot of g2(0)
indicates the increase of the quantumfluctuations near the transition point, which happens due to the
superposition of two coherent states in the quantummechanical solution; and, as the coherent states are not
mutually orthogonal, the state loses its classical nature. The TEBDdetermined numerical resultmatches to the
quantummechanical exact analytical solution, whereas the numerical time propagation of the systemfield using
Euler’smethod follows the analytically determined semi-classical solution, and the branch shift occurs within
the boundary of analytically predicted transition region. The extent towhich bistability is observed depends on
thefluctuations of the input driving field, which in turn determine the time for random switching fromone
branch to the other. The time scale of the change of driving fieldmust be larger than time intervals of the random
switching between branches.

Results: time dynamics

The time dynamics of the Kerr nonlinear system is generally estimated analytically by linearizing the quantum
fluctuation over nonlinear steady state field amplitude. Anticipating its simplicity, however, this does not
provide accuracy when the impact of nonlinearity is predominant which is observed, especially when the system
is driven by a stronger pump. Even though an effort to study the classical dynamics of Kerr systemhas beenmade
in [44], but this does not provide sufficient information regarding quantumdynamics; which provokes us to opt

Figure 2. (a) Steady state field amplitude and second order correlation function, (b) phase plotted for c gD = - ¢¢ = =10, 3, 6.3
with the variation of driving field amplitude. All quantities are in the units of g and the TEBD simulation parameters:N=50,χ=25,
M=15, δt=10−2 g−1.
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numericalmethods.We plot the time dynamics of systemfield infigure 3which shows that the field stabilizes
after suffering initial oscillation .However, the plots exhibit difference for two differentmethods, which comes
from the fact that the semi-classical Euler’smethod determines the coherent field of the systemwhich lies on one
among two branches, whereas TEBDdetermined result gives the superposition of both the branches, and as a
consequence, the difference enhances around the transition region (figures 3(c) and (d)) . The interesting
phenomenon is also noticedwhenwe plot the trajectory of the time evolution of the systemfield in phase space.
From the plots given in insets, we see that two different branches reach different steady states following a
completely opposite trajectory. However, in case of the TEBDnumerical result, we don’tfind any particular
pattern in the transition region, for the trajectory of the system field due to the dominant superposition of both
the coherent states.

Results: second order correlation function

Wealso plot the time evolution of the second order correlation function using TEBD algorithm, infigure 4
which shows that the correlation function does not deviatemuch fromunit valuewhen the system relaxes closer
to a stable classical branch.However, as anticipated due to the superposition of two coherent states, around the
transition region, the time evolution of the correlation function differsmuch from the unit, which indicates that
the evolution of the system goes through nonclassical states.

Conclusion

Wehave used TEBDnumerical technique andEuler’smethod successfully for the time propagation of the
systemfield of a Kerr nonlinear system, and studied how the numerical results are analogous to classical
bistability. Analyzing the steady state behavior of the system,we see that the TEBDnumerical result follows the
quantummechanical exact solution obtained bymapping the equation ofmotion of the densitymatrix of the
system to a Fokker-Plank equation, whereas the time propagation of the systemfield obtained using Euler’s
method follows the semi-classical solution of theHeisenberg equation ofmotion. The time dynamics
determined by two different numerical techniques show that the semi-classical Euler’smethod determines the
coherent field of the systemwhich lies one among two branches, whereas TEBDdetermined numerical result
keeps the superposition of both of them. As a result, there comes a difference in the system field for two different
methods, which enhances around the classical transition region. The TEBDdetermined second order
correlation function does not evolve as unit valued, especially around the transition regionwhich is an
indication of the generation of non-classical state due to the superposition of the two coherent states. The

Figure 3.Time dynamics of the system fieldwith the variation of driving field amplitude ((a)1, (b)3, (c)5, (d)7, (e)15, (f)19). The blue
solid line and the red dashed lines correspond to the time propagation using Euler’smethod andTEBDnumericalmethod,
respectively. In inset we plot the trajectory of the systemfield, alongwith the phase. All other parameters remain samewith figure 2.
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importance of our work, the analysis of the dynamical behavior of the externally drivenKerr nonlinear system,
has been visualized in recent experiments. For example, studding the influence of differentmagnetic fields on
electrical conductivity in a nonlinearmedia has drawn attention for exhibiting interesting quantum effects
[45, 46]. Analyzing the performance of the numerical techniques, we conclude by saying that the techniques
chosen here are quite promising toworkwith for the analysis of nonlinear systems, and could be useful for the
investigation of nonlinear dynamics reported in [24, 25].
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Thisworkwas supported by theAcademy of Finland under contract no. 275245.

Appendix: Errors in tebd simulation and estimation of parameters

We investigate the error here introduced due to the finite values of the simulation parameters, and showhow
theymodify with the variation of those parameters. This studywill help us to estimate and optimize the
parameters in order to do the simulation efficiently.

Modeling error
Themodeling error is contributed by the canonical transformation of S/B coupling to 1D chain. In practice, we
choose amodel where the chain has afinite length considering the fact that the number ofmodes of the bath is
finite, which causes the recurrence of the particle from the end of the chain.Here, we discuss how the recurrence
time changes when those parameters change.

• Length of the chain: The recurrence time is dependent on the group velocity which is defined by = dw
d

vg kN
,

whereω is the frequency, and kN is thewavenumber determined by the number of lattice sites (kN∝N). In
figure A1(a), we see the recurrence time increases with the increment of the length of the chain, which happens
due to the fact that the increment of the number of sites reduces the group velocity for the particle to travel.

• Cut off frequency: The increment of the cutoff frequency increases the group velocity, forcing the particle to
travel faster in the lattice, causing the reduction of the recurrence timewhich is seen in the figure A1(b).

Numerical error
Apart frommodeling error, there are two othermajor sources of simulation error appears due to thefinite sizes
of the time step and the truncation of theHilbert space.

Figure 4.Plot of the second order correlation functionwith the variation of the driving field. All other parameters remain samewith
figure 2.
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• Suzuki Trotter error:In case of real time evolution, the Suzuki-Trotter errorwhich is introduced due to the
finite size of the time step, tends to concentrate in the overall phase ([42]). Infigure A2(a), we showhow the
accuracy of the simulation improvedwith the reduction time step. As time step decreases the curves approach
each other, and beyond the time step 10−2 g−1, we do not see any substantial improvement in the plot of cavity
field amplitude.

• Truncation error:TheTEBDnumericalmethod is involvedwith the truncation ofHilbert space in every step of
time evolution ([41]). The reasonable size ofHilbert space is such a size that has the ability to express the cavity
fieldwith negligible error. The coherent field generated in the systemhas a Poisson probability distribution

Figure A1.Variation of recurrence timewith the variation of (a)number of sites, (b) cutoff frequency. E=4 and all other parameters
remain samewithfigure 2.

Figure A2. (a)Time evolution of the systemfieldwith the variation of step size in TEBD simulation. (b)Plot of cumulative probability
of a regular Poisson distribution for differentmean values. The black line shows the truncation point in theHilbert space. (c)Plot of
the time evolution of the vonNeumann entropy of the first site. (d)Plot of the eigenvalues of the reduced densitymatrix when the
entanglement ismaximized, and the black line shows the truncation point. For (a)E=4 and (c, d)E=20, and all other parameters
remain samewithfigure 2.
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which demands infinite localHilbert space to complete the set which is clearly not possible. The occupation
probability of boson of a coherent field ñ(∣ )n is distributed in Fock basis according to

a aá ñ = a-∣ ∣ ∣ (∣ ∣ )
!

∣ ∣n e
n

n2 1 2 2
. The cumulative probability distribution is shown infigure A2(b), which estimates

the reasonable size of localHilbert space, anticipating accuracy upto a significant extent.
In order to estimate a reasonable size of the Schmidt number, we plot the vonNeumann entropy associated
with the entanglement between the system and the first site l l= -åa a a( ( ) ( ) )[ ] [ ]S log2 2

2
2 2

2 2 2
infigure A2(c). As

the evolution of the state starts from a product state, the vonNeumann entropywas zero at the beginning. It
increases initially and reaches to themaximumvalue, and then, reduces with time.
We estimate the Schmidt numberwhen the entanglement ismaximized. The Schmidt number should be
chosen in such away that the eigenvalues after truncation contribute so less that they can easily be neglected.
Infigure A2(d)weplot the eigenvalues of the reduced densitymatrices when the entanglement ismaximum
between the system and thefirst site of the chain. The truncation line shows that the choice of Schmidt number
is reasonable in this case.
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