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ABSTRACT

Rasku, Jussi

Toward Automatic Customization of Vehicle Routing Systems
Jyvaskyla: University of Jyvaskyld, 2019, 98 p.(+included articles)
(JYU Dissertations

ISSN 2489-9003; 113)

ISBN 978-951-39-7826-6 (PDF)

This thesis was motivated by the desire to make the state-of-the-art vehicle rout-
ing problem models and algorithms more convenient for a non-expert to use.
Currently, heavy customization is required whenever route optimization tech-
nology is adapted to solve new real-life routing problems. A critical part of this
tailoring process involves choosing a suitable optimization algorithm and con-
figuring its parameters; this requires developing a deep understanding of vehi-
cle routing problems, their solution algorithms, and the software systems built
around them. However, given that such information can be captured and rep-
resented as numerical feature values, machine learning can be used to find and
exploit the patterns in the variation of algorithm performance.

This dissertation proposes a framework for automating the customization of
different components and data transformations within a vehicle routing system.
This is accompanied by a comprehensive set of empirical experiments that were
conducted to verify the feasibility of the proposed approach. As such, this disser-
tation furthers our understanding of the vehicle routing problem instances, algo-
rithms, and their search spaces. It also provides suggestions and evidence on how
to effectively use the automatic algorithm configuration and algorithm selection
techniques in an automated vehicle routing system customization context. The
tindings of this work indicate that meta-optimization is a promising approach
that allows more convenient and effective use of existing tools and techniques for
solving vehicle routing problems.

Overall, logistics plays a major role in modern society, which has made
vehicle route optimization an important application of combinatorial optimiza-
tion. The approach developed in this dissertation can reduce the friction in cus-
tomization and deployment of optimization systems, thus allowing moving to-
ward more economical, cost-effective, and environmentally friendly road trans-
portation.

Keywords: vehicle routing problem, meta-optimization, automatic algorithm con-
tiguration, algorithm selection, feature selection
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Viitoskirjan taustalla oli halu tehdd huipputeknisistd ajoneuvojen reititysmalleis-
ta ja niiden ratkaisemiseen kdytetyistd algoritmeista entistd helpompia kayttaa.
Nykytilanne vaatii merkittdivian médaran asiantuntemusta vaativaa raatalointia ai-
na, kun optimointitekniikkaa mukautetaan uusiin tosieldmén reititystehtaviin.
Kriittinen osa rdataldintiprosessia on sopivan optimointialgoritmin valitseminen
ja sen parametrien konfigurointi, mutta tima edellyttdd ajoneuvojen reititystehta-
vien, niiden ratkaisualgoritmien ja niiden ympérille rakennettujen ohjelmistojar-
jestelmien syvallistd ymmartamistd. Kuitenkin, timéa on automatisoitavissa. Ko-
neoppimista voidaan kayttda 1oytdamaan ja hyodyntaméaan saannonmukaisuuk-
sia algoritmien suorituskykyvaihtelussa, edellyttden ettd niiden konfigurointiin
liittyvit olennaiset seikat voidaan ilmaista numeerisina arvoina.

Tama vaitoskirja esittelee mallin, joka mahdollistaa kuljetusten optimointi-
jarjestelmien raatdloinnin ja kdyttoonoton osittaisen automatisoinnin. Mallin kdyt-
tokelpoisuuden osoittavat kattavat empiiriset kokeet, jotka suoritettiin ehdote-
tun ldhestymistavan toteutettavuuden varmistamiseksi. Vaitdskirja lisdd ymmar-
rystimme ajoneuvojen reititystehtdvista, reititysalgoritmeista ja niiden hakuava-
ruuksista. Se kertoo my0s, miten moderneja automaattisia algoritmien konfigu-
rointi- ja valintatekniikoita voidaan kdyttdd tehostamaan kuljetusten optimointi-
jarjestelmien raatalointia. Tulokset osoittavat, ettd metaoptimointi on lupaava la-
hestymistapa mahdollistamaan olemassa olevien tydkalujen ja tekniikoiden hel-
pomman ja tehokkaamman kdyton ajoneuvojen reititystehtdvia ratkaistaessa.

Huomionarvoista on, ettd logistiikan merkittdva rooli nykyaikaisen yhteis-
kunnan tehokkaan toiminnan mahdollistajana on tehnyt ajoneuvojen reititykses-
ta tairkedn optimoinnin sovelluksen. Tdssd vditoskirjassa kehitetty ldhestymistapa
on lupaava keino optimointijarjestelmien rddtdloinnin ja kdyttoonoton nopeutta-
miseksi. Taten se osaltaan mahdollistaa entista taloudellisemman, kustannuste-
hokkaamman ja ymparistoystavallisemman tieliikenneteen.

Avainsanat: ajoneuvojen reititystehtdva, metaoptimointi, automaattinen algorit-
mien konfigurointi, algoritmien valinta, piirteiden valinta
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1 INTRODUCTION

This dissertation seeks to increase the level of self-adaptivity in vehicle routing
systems by applying meta-optimization. Vehicle routing systems are specialized
decision support systems capable of solving the vehicle routing problem, and the
proposed approach allows for their automatic configuration and customization.
Designing models and algorithms for the vehicle routing problem is usually car-
ried out in the research fields of management science and operations research.
These problems originate from the transportation industry and the research has
always had a practical, applied focus (Toth and Vigo, 2014). The research on solv-
ing these problems has advanced concurrently with increasing computational re-
sources, and computation has grown to be an integral part of operations research.
This has allowed the complexity of problems, models, and solutions to increase.
These developments, and the practical importance of the applications, have led
to a great number of proposed VRP model variants and the algorithms needed
to solve them (Golden et al., 2008; Eksioglu et al., 2009; Toth and Vigo, 2014).
Thus, the sheer volume of research on the topic can be overwhelming. Instead of
proposing yet another new VRP variant or algorithm, the overarching theme of
this work is finding ways to more effectively utilize the existing knowledge on
how to model and solve these problems.

The importance of software engineering should also be recognized here. De-
spite the strong connection between operations research and computer science,
software engineering topics have received relatively little attention in the oper-
ations research literature. This is surprising because managing the complexity
and variability of the models, problems, and algorithms is a serious challenge in
building, customizing, and deploying these software solutions (Drexl, 2012; de la
Banda et al., 2014). In fact, some of the major barriers for adopting route optimiza-
tion technology are related to the significant and expensive customization effort
required in deploying these systems (Partyka and Hall, 2014; Rincon-Garcia et
al., 2018). In addition to challenges in integration and migration from the current
systems (Neittaanmédki and Puranen, 2015), modeling the problem and tuning
the optimization components is laborious and requires expensive, hard-to-find
expertise (Sorensen et al., 2008; de la Banda et al., 2014). This can create practical
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obstacles that prevent the latest innovative research from being disseminated for
wider use. This dissertation addresses some of these challenges by introducing
a framework and a workflow for automating parts of the vehicle routing system
customization and deployment.

1.1 Background and motivation

The origins of the modern operations research can be traced back to the logistics
of World War II (Fortun and Schweber, 1993). Since then, the term logistics has ex-
panded to cover not only the management of storing and moving physical items,
but also intangible resources such as time and data. By doing so, logistics has
irreversibly shaped the formation of the modern world. Meanwhile, the logistics
sector has become a huge industry. It is a key enabler in the efficient operation
of virtually all economic sectors (Brdaysy and Hasle, 2014; Ecorys et al., 2015). Ac-
cording to Schwemmer (2015), the logistics market size of EU-28 together with
Norway and Switzerland was 1050 billion euros in 2016, out of which transporta-
tion generates 45% of the share (473 billion euros). Overall, transportation con-
tributed to around 5% of the EU-30 region gross value added in 2016 (European
Commission, 2018). Also, the scale of operations is growing rapidly: from 1995
to 2005, there was a 38% increase in the number of vehicles used for road-based
goods transportation in the EU-27 (Huggins et al., 2009).

Because of its impact, cost effective logistics is crucial to the productiv-
ity and competitiveness of the service, industry, and public sectors (Brdysy and
Hasle, 2014). This is especially true in sparsely populated Finland, where the
transportation distances are long and where a large portion of the logistics is
done using roads. In 2017, Finland had the seventh largest road freight transport
per capita of the EU-28 countries at 5,081 tonne-kilometers per person (Eurostat,
2019). According to the logistics report of Solakivi et al. (2017), logistics opera-
tions accounted for around 13.9% of the turnover of Finnish manufacturing and
trade in 2015. Hence, the cost of logistics is around 37 billion euros, which is
around 11.2% of the Finnish GDP. Here, the proportion of transportation costs of
the total logistics costs is 38%.

Technological innovation seems to be the driving force behind the digital-
ization of the transportation sector, at least in Finland (Levidkangas, 2016). Ad-
vances with the internet of things (IoT), computation, smartphone technology,
and electric and autonomous vehicles are opening up new possibilities for fleet
monitoring and control (Braysy and Hasle, 2014; Speranza, 2018). Furthermore,
we are currently living in the age of increasing online retail, global supply chains,
and home deliveries, which is making the logistics even more dynamic, hectic,
and difficult to manage (Crainic et al., 2009; Hoff et al., 2010; Speranza, 2018).
There is also climate change, which has recently become a powerful driver of
effective logistics (Hoff et al., 2010). To make the situation even more challeng-
ing for transportation companies, the market is characterized by low profitability
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(Rincon-Garcia et al., 2018) and tightening competition (Partyka and Hall, 2014).
The requirements for efficiency are not limited to transportation business: route
planning is done in diverse sectors (Drexl, 2012). For example, there are many
public sector operations involving transportation of goods and people that have
a significant potential for cost savings (Brdysy et al., 2009).

Hence, there are very strong incentives to improve the utilization of exist-
ing transportation resources on all sectors of the economy (Ecorys et al., 2015).
Meanwhile, transportation operators already struggle under high demands and
have trouble obtaining efficiency, customer service, timeliness, reactivity, and cost
savings (Hoff et al., 2010). To answer these challenges, the operators need to
constantly innovate and improve the management and planning of their logistic
systems (Labadie et al., 2016). Unfortunately, the ever-increasing transportation
volumes and the accruing complexity because of the growing number of oper-
ational rules and limitations has made many distribution planning tasks unrea-
sonably difficult for a human planner to do (Gacias et al., 2012, p. 805). Hence, it
is not surprising that there is a growing interest toward deploying computerized
vehicle route optimization systems (Cari¢ et al., 2008).

The advantages of automated route planning are well-known: it can con-
siderably reduce the planning time, total travel distance, and overall resource
usage by making the routes more economical. In fact, industry experience indi-
cates that the total travel distance can typically be reduced by 5-30% compared
with manual planning (Hasle and Kloster, 2007). In addition, there are a number
of other associated benefits: the plans can be illustrated visually; the operational
statistics can be calculated and stored; and integration, interoperability, and com-
munication between other systems becomes possible. On the planning side, the
task becomes quicker and less error-prone to do, routes can be designed to be
more robust to disruptive changes, and the optimization can be used to balance
between cost, service quality, or other key performance indicators (Drexl, 2012).

However, there remain many challenges in constructing such systems (Par-
tyka and Hall, 2014), perhaps the most critical one being that building them is ex-
pensive and time-consuming (Maturana et al., 2004). The situation can make the
customization and deployment of these systems prohibitively costly, especially
for small- and medium-sized enterprises. Furthermore, no two transportation
companies or sectors are alike, and consequentially, the family of different rout-
ing problems has become heterogeneous (see, e.g., Vidal et al., 2013b; Brdysy and
Hasle, 2014). To address these challenges, academics and system providers need
to use a generic approach to address the heterogeneity of the modeling needs.
Simultaneously, expectations are increasing: the optimization technology is ex-
pected to be user-friendly, faster, more scalable and reliable, and have a strong
and expressive modeling layer (Brdysy and Hasle, 2014). The last requirement
means that the mathematical models are expected to consider a growing num-
ber of properties and features of real-life logistics, which leads to so-called “rich”
models (Lahyani et al., 2015). Only these rich models can consider all the relevant
rules, parameters, and variables of the specific transportation problem they are
targeting. These expectations tend to increase the complexity of the route opti-
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mization solutions. This accumulated complexity places a significant cognitive
burden on the practitioners of operations research, and therefore, the models and
algorithms are becoming difficult for even an expert to manage (de la Banda et al.,
2014). The situation calls for the development of new tools and techniques that
can help to unlock the benefits offered by advances in the underlying technology.

1.2 Positioning the study

The field of operations research seeks to find advanced analytical and mathemat-
ical methods that can be applied to support decision making in science, industry,
and society. This work, which is positioned at the intersection between opera-
tions research, machine learning, and software engineering, concentrates on al-
gorithms and software systems targeting the distribution function of logistics.
This function generally considers the transportation of goods, people, and ser-
vices from supply points to demand points. The transportation fleet may consist
of trucks, vans, cars, or even bicycles. To complete the operational objectives they
are required to do a set of tasks at a number of locations.

In the field of operations research, the combinatorial optimization problem
(COP) for planning these transportation tasks is known as the vehicle routing prob-
lem (VRP). It involves determining which tasks should be assigned to each vehi-
cle and in which order the tasks should be performed to minimize the objective
function (e.g., the total cost of operations). The problem definition includes con-
straints that make sure that vehicles leave from and return to a central depot and
that each customer is served only once by a single vehicle. In addition, the assign-
ments must not violate side constraints such as the capacity of the vehicles in the
classic capacitated vehicle routing problem (CVRP) or the service time windows
in the vehicle routing problem with time windows (VRPTW). Lately, more com-
plex “rich” models (Lahyani et al., 2015; Vidal et al., 2014) have been proposed.
These rich vehicle routing problems can have a large number of customers and
complex constraints which makes them notoriously hard to solve because of the
combinatorial nature of the problem.

VRP optimization is an integral part of decision support systems (DSS) for
transportation planning, where they are applied to increase the efficiency of the
distribution function. In practice, such vehicle routing systems (VRS) are used to
model and solve real-word route optimization problems. The capability to effec-
tively solve these problems is central for staying competitive in transportation lo-
gistics (Brdaysy and Hasle, 2014). The significant and practical importance of the
topic has led operations researchers to propose a wide variety of optimization
techniques to model and provide solutions to these problems (Speranza, 2018).
Hence, VRP research has always had a strong applied connection, and a signif-
icant part of the literature involves reporting successful applications of the opti-
mization technology in diverse sectors of the economy (e.g., Watson-Gandy and
Foulds 1981, p. 76; Part I1I of Golden et al. 2008 and Toth and Vigo 2014).
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The practical applicability of VRSs depends heavily on the suitability of
the built-in algorithms on the problem that they are intended to solve. Fortu-
nately, several decades of intensive research have produced a great number of
mathematical programming, approximation, and heuristic approaches for solv-
ing them (see, e.g., Toth and Vigo, 2014). Many of these technologies have also
been integrated into commercial software packages (Speranza, 2018). Still, apply-
ing these more theoretical contributions to practice is not always straightforward.
A tailored algorithm tends to produce the best results, and, in the industry and
academia alike, models and solution methods are hand-tuned by experts for each
new problem to maximize the algorithm’s performance (Coy et al., 2001). How-
ever, creating such a specialized solution for every new real-world routing case is
prohibitively expensive (Sorensen et al., 2008; Rincon-Garcia et al., 2018). Hence,
Sorensen et al. (2008) recognized that there exists a strong need for self-adaptive
algorithms and automatic configuration, an opportunity also recognized earlier
by Desrochers et al. (1999). Furthermore, Hoff et al. (2010) noted that because of
technological progress, there is more information available to the decision maker
and to the VRS vendor. This is because the amount of historical data, including
customer and usage patterns, driving times, speeds, and other tracking data, are
growing (Speranza, 2018). Hence, Hoff et al. identified a need to develop DSSs
that could utilize such data to provide better and more realistic solutions. Simi-
larly, Calleja et al. (2019) noted that there has been an explosion of data, and this
has created a strong need to turn these data into actionable insight.

Machine learning is a tool for automatically extracting previously unknown
patterns and potentially useful knowledge from large databases (Olafsson et al.,
2008). Although combining machine learning and VRP research is not a new
idea (see, e.g., Potvin et al., 1990), emerging technologies such as artificial intel-
ligence and big data analytics have opened new, promising areas of research in
operations research (Calleja et al., 2019). Recent increases in computational ca-
pacity, decreases in the cost of data storage, and advances in machine learning
algorithms have opened new possibilities for applying data-driven techniques in
solving VRPs.

Simultaneously, the number of VRP algorithms proposed over the past few
decades has grown rapidly (Braekers et al., 2016). However, different optimiza-
tion algorithms show different performance characteristics on different classes
of the problem instances. This variation is because of their differing operating
principles. The theoretical foundations for this phenomena can be found from
the “No Free Lunch Theorem for Optimization” (Wolpert and Macready, 1997),
which states that no single algorithm is superior to all others for all problems.
Hence, it is important to consider the theorem when generalizing results and ac-
knowledge that it applies also to self-adaptive algorithms (De Jong, 2007). How-
ever, the theorem also implies that, in practice, it is possible to fine-tune or find a
good algorithm for a given set of problem instances.

Analogously to the machine learning topics meta-learning (Brazdil et al.,
2009) and hyperparameter optimization (Bergstra et al., 2011), meta-optimization
has received growing attention from the researchers working on combinatorial
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optimization problems (Kotthoff, 2014). Meta-optimization involves using an
optimization or machine learning model to optimize the behavior of a target opti-
mization method (Battiti, 1989). Similar ideas have been independently proposed
several times in several research fields, but recently, a concentrated effort on top-
ics such as automatic algorithm configuration, algorithm selection, and hyper-
heuristics (Calvet et al., 2017) have provided a significant amount of information
on how to apply this approach effectively. Hence, while the poor generalization
ability of the early VRP models and heuristics has traditionally been tackled us-
ing hybridization (Vidal et al., 2014) or with orthogonal solution methods (Arnold
and Sorensen, 2019a), the use of automatic algorithm selection, algorithm config-
uration, and hyper-heuristics have steadily gained popularity (e.g., Nygard et al.,
1990; Coy et al., 2001; Pellegrini and Birattari, 2007; Garrido and Riff, 2010).
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FIGURE 1 The main topics discussed in this dissertation.

To summarize, this dissertation builds on the fundamental research on ve-
hicle routing problems and machine learning. In practice, the existing literature
on modeling and solving vehicle routing problems has been used to create vehi-
cle routing systems that target real-world transportation and distribution tasks,
whereas machine learning techniques have provided theoretical foundations and
tools for many meta-optimization techniques. Figure 1 illustrates how these top-
ics are related. The premise of this dissertation is that combining the theory and
practice allows for the modeling and solving of increasingly complex real-world
problems.
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1.3 Research problem and objective

The use of meta-optimization has not yet been comprehensively explored in the
context of vehicle routing systems. In this dissertation, we study how the cus-
tomization of vehicle routing systems can be accelerated via the use of machine
learning and meta-optimization (Figure 1). Our main motivation was to make the
state-of-the-art vehicle routing tools easier to use and deploy, for both experts and
non-experts. To narrow down the scope even further, in this work, we concen-
trate on answering research questions related to usability and data-integration
concerns and to the limited generalization ability, robustness, speed, and adap-
tivity of the existing solution methods. This requires us to do the following:

1. recognize the relevant components and transformations within a vehicle
routing system susceptible to customization,

2. propose new tools and techniques for observing the behavior of VRP heuris-
tics that can be used in developing new algorithms,

3. provide a numerical description of vehicle routing problem instances for
machine learning, and

4. verify the applicability of existing automatic algorithm configuration and
algorithm selection techniques in this domain.

There are multiple expected advantages with this approach to the VRS vendors
and their customers. Currently, the tailoring and use of vehicle routing systems
requires hard-to-gain expertise (Brdysy and Hasle, 2014), which is emphasized by
the fact that novel methods are often more complex to use—even for expert prac-
titioners (de la Banda et al., 2014). Hence, de la Banda et al. recognized the need
for the simplification of combinatorial optimization technology. While their focus
was on constraint programming solvers, the topic is also important in related do-
mains. Birattari (2009) argued that time-consuming algorithm configuration can,
and should, be substituted by an automated and replicable process, and Neit-
taanmdki and Puranen (2015) explicitly recognized the possibilities of automatic
configuration and performance tuning of vehicle routing systems. With these
techniques, the customization and deployment of a vehicle routing system is ex-
pected to become less labor intensive, without needing to sacrifice the algorithm
performance. Clearly, this is beneficial also to the end user because the auto-
matic adaptation of the algorithm parameters makes the software easier to use.
Given that some of the required tailoring effort can be automated with the pro-
posed methods, the time of the expensive consultants (Sorensen et al., 2008) can
be better spent in helping the customer to define the objectives and constraints of
their problem. This is important as this is a task that the customer often struggles
with without outside help (Drexl, 2012). Also, the approach has the potential to
address the aspects of reusability, customizability, and flexibility of vehicle rout-
ing systems. These topics have received surprisingly little attention despite their
practical relevance (Derigs and Vogel, 2014a).
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A system with a similar goal was envisioned by Desrochers et al. (1999),
who made the observation that there already was a vast amount of information
on how to solve VRPs in the literature, but modeling the problem and select-
ing a suitable algorithm for it required a significant amount of knowledge and
expertise. They proposed a vocabulary for representing this knowledge and an
inference scheme for manipulating the information. However, they did not offer
a comprehensive solution, and building the knowledge base they proposed still
required a large amount of manual work from the expert. Hence, this dissertation
aims to complement their work and address this issue by proposing data-driven
methods that can automatically adapt a vehicle routing system to the specific
real-world problems with only minor involvement from the expert.

This dissertation also builds on the earlier work on vehicle routing systems
by Puranen (2011, 2012), who proposed a metamodel for several VRP variants
and a blueprint for a model-driven VRP DSS software product line architecture
that could be customized to generate specialized software products for differ-
ent end users. Hence, when the applications of the research presented here are
considered, one should assume a similar modeling system that can express mul-
tiple important VRP variants, and a solver with a selection of generic and flexible
heuristic algorithms that can be used to solve them. It should also be noted that
Neittaanmdki and Puranen (2015) explicitly called for advances in automating
the configuration of vehicle routing systems and techniques that could infer the
necessary model features and constraints from the data. Hence, the aim of this
dissertation is to realize a part of this vision.

In academia, the rigorous design of computational experiments is a require-
ment of high-quality empirical science (Barr et al., 1995). To facilitate repro-
ducibility, authors should explicitly list and define the parameters of the tested
algorithms, and the parameter values should be set systematically (Golden et
al., 1998). Unfortunately, this is still not a standard procedure when propos-
ing and testing VRP algorithms. Sorensen (2015) pointed out that “the scientific
value of most papers on metaheuristics would increase considerably if the step
of parameter-tuning is be done in a transparent way.” They continued by not-
ing that automatic algorithm configuration methods and guidelines to perform
it are readily available, and the algorithm developers should begin to use this
solid experimental methodology when testing their methods. Hence, the meta-
optimization topics explored in this dissertation should also interest academics.
Meta-optimization removes the effect the expertise of the researcher may have on
the experimental results (Eggensperger et al., 2019): If instead of relying on the
tedious and subjective manual configuration work all algorithms are tuned by
an independent system, the true potential of the different methods is measured
rather than the algorithm tuning ability of the researcher (Ansétegui et al., 2009).

The obsession to create novel algorithms that produce marginal improve-
ments on a very specific circumstances has been criticized, for example, by Hooker
(1995). Such competitive testing only reveals which algorithm has better perfor-
mance in that specific experimental setting but rarely goes into details why this
happens. However, scholars should be interested in which algorithmic elements
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are responsible for the performance of a specific solution method and how it is
correlated with the characteristics of the problem instances (Corstjens et al., 2019).
Meta-optimization exploits and can reveal the patterns between the problem in-
stance, heuristic algorithm, and optimization search spaces. The characterization
of these spaces is central to the successful application of the meta-optimization
approach; hence, finding suitable techniques for extracting this information is
needed.

1.4 Main contributions

This dissertation provides a holistic survey, a conceptual framework, and proofs
of concept of the suitability of meta-optimization applied to vehicle routing sys-
tems (Figure 1; Paper PI). The core of this dissertation consists of an extensive
set of comparative experiments on automatic configuration (PVI) and algorithm
selection (PV) techniques used to configure and select heuristics targeting the ve-
hicle routing problem. The empirical results of these experiments support our
hypothesis that an automated, more systematic approach for customizing rout-
ing systems can be achieved through the application of machine learning and
meta-optimization. We have shown how such automation can improve the per-
formance of the existing algorithms while simultaneously allowing algorithm
developers to avoid the onerous task of manually fine-tuning the solvers. The
proposed meta-optimization approach also addresses the usability concerns of
modern metaheuristics, because it can reduce the number of parameters that the
user needs to set. This can be used to make decision support systems easier to
use, but also simultaneously improve the robustness, simplicity, and flexibility of
the algorithms powering them. Also, configuring, predicting, and using the most
suitable algorithm seems to be a promising approach to reduce the total comput-
ing time while still maintaining a good solution quality. Desaulniers et al. (2014,
p. 151) recognized the importance of such advances, especially when targeting
interactive and dynamic planning.

Our research also contributes to the development of VRP modeling, visu-
alization, and optimization tools. The contributed results, characterizations, and
software increase our understanding of the interactions between the vehicle rout-
ing problem instances, the algorithms used to solve them, and their parameters.
Hence, our work on VRP algorithm performance analysis (PIV), problem instance
characterization (PIII) and search space visualization (PII) can be used to recog-
nize the different strengths and weaknesses of different heuristics.

The aforementioned contributions can be reflected against the needs and
issues recognized in the literature on vehicle routing systems. Sorensen et al.
(2008) recognized a strong need to make commercial vehicle routing software
more self-adaptive and easier to customize and use. Here, the meta-optimization
techniques offer practical solutions on how to address these challenges: We ex-
plore a number of techniques that can make the tailoring of vehicle routing al-
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gorithms in an industrial software engineering context more scalable and user-
friendly. Furthermore, our experiments show that the approach can improve the
overall performance of a typical vehicle routing system that contains a portfolio
of alternative algorithms. Especially when compared with the option of using a
single sophisticated solution method.

The presented research also contributes to the recent important discussion
on the experimental study of VRP algorithms (Geiger, 2018; Sorensen et al., 2019;
Corstjens et al., 2019), and designing solid computational experiments for test-
ing VRP heuristics is a strong theme throughout this work. We strongly agree
with Eiben and Smit (2011) that the automatic configuration of parametrized
algorithms is needed to conduct solid experimental comparisons because it re-
moves the effect of varied manual configuration effort and expertise. We also
acknowledge that the topics of reproducibility, replicability, and openness of ve-
hicle routing algorithm research are very important (Sorensen et al., 2019). This
dissertation contributes to this topic by presenting replications of the results of
many well-known VRP heuristics, by providing analysis of their performance
and time complexity characteristics, and by publishing an open source software
library implementing them (PIV).

Taken together, our research shows how combining the research on ve-
hicle routing problems, vehicle routing systems, machine learning, and meta-
optimization (see Figure 1) can lead to useful contributions. We believe that
these contributions allow moving towards more adaptive and easier-to-use ve-
hicle routing models, algorithms, and software.

1.5 Structure of the dissertation

This dissertation is organized as follows: This chapter (Chapter 1) has outlined
the context, aims, and major contributions of the work. Chapters 2 and 4 are
theoretical in nature and give an introduction to their respective research fields,
whereas more practical applications in the context of customization and deploy-
ment of vehicle route optimization are given in Chapters 3 and 5.

To be more specific, Chapter 2 gives both informal and formal descriptions
of the vehicle routing problem, its variants, and solution methods, whereas Chap-
ter 3 shifts the focus to the vehicle routing systems. These systems are used in
planning and optimizing practical transportation cases, and the chapter includes
a discussion on the varied functionality, typical modules, and customization of
such systems. Similarly, although Chapter 4 introduces the topic of machine
learning, these techniques are mostly used in meta-optimization tasks, which are
discussed in Chapter 5. Finally, Chapter 6 provides detailed summaries of the
original publications included in this dissertation and Chapter 7 gives the con-
text for these contributions. This final chapter finishes with a discussion on the
limitations and future research topics.



2 VEHICLE ROUTING PROBLEM

The vehicle routing problem (VRP) is a well-known N P-hard problem in com-
binatorial optimization (Lenstra and Kan, 1981) and an extension of the travel-
ing salesman problem (TSP). The NP-hard property makes it computationally
difficult to solve. It was originally introduced in 1959 by Dantzig and Ramser
(1959) and because of its practical relevance, it has been intensively researched
ever since. In fact, it has become one of the most widely studied topics in the
tield of operations research (Braekers et al., 2016). Thus, this chapter gives only
an overview of the most central topics. The reader is referred to Toth and Vigo
(2014) for a more comprehensive handling of the topic.

The classic capacitated vehicle routing problem (CVRP) can be stated as fol-
lows: the task is to plan optimal routes for a set of vehicles leaving from a depot. On
their routes, the vehicles serve a number of clients by fulfilling their orders. Each
client must be served exactly once by exactly one vehicle, that is, the orders can-
not be split. Each vehicle leaves the depot and returns there when completing its
route. The capacities of the vehicles together with the demands of the customers are
known, and the total demand of a route must not exceed the vehicle’s capacity.

A useful definition can be given using graph-based formalism. Let G =
(V,E) be a graph, where the set of vertices V = 0,...,n consists of the depot
at vertex 0 and the n customers at vertices 1,...,n. Each edge (i,j),i # jin the
set of edges E = V x V has an associated non-negative weight d;;. The weight
corresponds to the minimum cost of traveling from node i to j. Hence, d;; =
0 Vi = j. The graph is assumed to be fully connected, and thus, all the weights
together can be represented in a distance matrix D. Additionally, if d;j = d;; V i,],
the problem is said to be symmetric. Now, each route 7* € R can be defined as
a path of customers <r§,r§, .., 71}, where ri € V' \ {0} is the first customer and
i, € V'\ {0} is the last customer of the route r;. Here, R is the set of all possible
routes, that is, all Hamiltonian paths for the subgraphs of G that start from the
vertex 0 but with the depot node removed from the path. This notation allows for
formally specifying the side constraints. In CVRP, each customer has a demand g;.
Now, assuming the vehicles are identical and have a capacity Q, then the capacity
constraint } ;. « q; < Q specifies that the route must not exceed this limit. Other
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FIGURE 2 A CVRP problem instance and its optimal solution.

VRP variants (Toth and Vigo, 2014, Part II) introduce additional side constraints.

Assuming that all of the side constraints are satisfied, S C R is a solution
to the problem and if and only if all customers are served, as guaranteed by the
condition JS = V \ {0}, and the condition Y« ¢ || = |V \ {0}| making sure
that no customer is served twice. If all constraints are satisfied, then the solution
is said to be feasible. Furthermore, if S is a set of all such feasible solutions and if
f(S) gives the objective function value of solution S that we are minimizing, then
S’ is the optimal solution if £(S’) < f(S) V S € S. One such problem and optimal
solution is illustrated in Figure 2

The graph-based formalism presented above gives a useful but simplistic
view of the breadth of modeling development and in the shifts in the focus that
has happened throughout the 60 years of VRP research (see Figure 3). The early
models were idealized, but quite quickly, the practical applications of VRP in-
troduced new side constraints. These extensions ultimately led to the so-called
“rich” VRP models (surveyed in Lahyani et al., 2015), which could capture sev-
eral complex characteristics of real-life routing and scheduling problems. The
large number of variants and their combinations created interest toward unified
modeling frameworks that could be used to model a large selection of different
VRP features (Desaulniers et al., 1998; Ropke and Pisinger, 2006a; Irnich, 2008;
Puranen, 2012; Vidal et al., 2014; Kritzinger et al., 2017). Recently, Puranen (2011)
observed that the research on models was progressing toward generic models
that could be composed as needed.

Modeling, however, is only part of a solution. Finding solutions involves
solving combinatorially difficult problems using exact, heuristic, metaheuristic,
or hybridized search methods (Toth and Vigo, 2014). These problems tend to
have several local optima (Czech, 2008) where the optimization algorithms can
prematurely converge to. Also, the constraints may make it hard to find a sin-
gle feasible solution (Beck et al., 2003), and increasing the problem size leads to
extremely large solution search spaces because of the combinatorial explosion.
These properties make these problems challenging and, thus, interesting. Hence,



25

models: idealized — rich — unified — composed

methods: simple — refined — adaptive — learning
FIGURE 3 Trends in VRP research. Adapted from Puranen (2011, p. 80).

novel search algorithms still constantly emerge and are being evaluated (see, e.g.,
Arnold and Sorensen, 2019a). Much like the trends in modeling, the proposed
solution approaches have evolved. The first algorithms were simple one-stage
constructive heuristics. These were soon followed by a generation of more refined
exact solvers that relied on advanced mixed integer solving techniques such as
cutting plane generation, branch-and-bound, and column generation. Heuristics
became multi-phased and drew inspiration from solving other related combina-
torial optimization problems. This development continued and led to adaptive
metaheuristic algorithms based on artificial intelligence ideas (e.g., Ropke and
Pisinger, 2006b; Battiti et al., 2010; Vidal et al., 2013a). Recently, the rise of hybrid
algorithms and the use of meta-optimization techniques such as hyper-heuristics
has led to algorithms capable of learning from the earlier solving attempts. These
are typically able to identify the particularities of specific problem instances and
adjust the heuristic components based on the earlier and current search progress
(see, e.g., Garrido and Riff, 2010).

In VRP research, the prowess of a new algorithm is typically demonstrated
through an experimental procedure where improvements over existing results
on a set of known benchmark instances are demonstrated. For this purpose, each
popular VRP variant tends to have its own set of such well-known benchmark
problems. However, there is inherent variation in the performance between the
solution methods for these problem instances. Understanding the strengths and
weaknesses of different algorithms is important, and this has increased the inter-
est in describing and understanding the idiosyncrasies of the problem instances
and their search spaces (Kubiak, 2007; Czech, 2008; Pitzer et al., 2012; Ventresca
et al., 2013; Steinhaus, 2015; Arnold and Sorensen, 2019a).

2.1 Variants

Dantzig and Ramser (1959) originally called the problem the truck dispatching prob-
lem, which, as the name suggests, indicates that the initiative to model and solve
the problem arose from practical origins. In fact, according to Braekers et al.
(2016), the practical vehicle routing task that Dantzig and Ramser were solving
was the distribution of oil to a number of gas stations. Since its first formal defini-
tion in 1959, the problem has been extended, studied, and applied from numerous
different perspectives. And despite its practical origin, the topic has also received
a great amount of purely academic interest. Thus, it has slightly deviated from
the practice, and there has been criticism that the models are sometimes too ide-
alized to have a practical value (Hoff et al., 2010; Braysy and Hasle, 2014).
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Still, because modeling and solving VRPs has a broad range of possible ap-
plications, research also has led to number of extensions and variations to the
basic problem definition that more closely capture several real-world constraints
and objectives. The early extensions (Bodin et al., 1983) included multiple de-
pots (MDVRP), service time windows (VRPTW), a heterogeneous fleet (HFVRP),
and stochastic demands (VRPSD). Later, the ability to split deliveries, periodic
planning, backhauls (VRPB), open routes, working time regulation rules, special
loading constraints, service compatibles, alternative service locations, synchro-
nization, transshipments, and many others were proposed. For a survey and
synthesis on the topic, please see Vidal et al. (2013b). Related popular families of
problems are the pickup and delivery problem (PDP) (Parragh et al., 2008) and
the dial-a-ride problem (DARP) (Cordeau and Laporte, 2003), where there does
not need to be a central location for the transported items or people and where
the pickup and delivery locations can be chosen arbitrarily.

Combining several of these extensions is often required when modeling the
complex characteristics of real-life VRPs. These problems are known as “‘rich”
vehicle routing problems (Lahyani et al., 2015). Furthermore, many real-world
VRPs with inherent uncertainty and variability of system conditions can be clas-
sified by their dynamic and stochastic dimensions (Pillac et al., 2013). In dynamic
problems, new information can appear during the planned operations, and the
routes must be adjusted accordingly. In stochastic VRPs, some aspects such as
travel time, demand, or cost are not known exactly, but their probability distribu-
tions are given. Both of these dimensions increase the complexity of the model
formulations and algorithms to solve them. It is also possible to increase the
scope of planning by considering related questions of the supply chain together
with the route optimization. An example could be fleet size and mix, where deci-
sions include deciding fleet composition and the extent of subcontracting. Please
refer to Toth and Vigo (2014, Section 1.3) for a more thorough list of VRP variants.

2.2 Solution methods

For the past 60 years, there has been steady progress in the development of VRP
solution methods (see, e.g., Cordeau et al., 2002; Vidal et al., 2013b; Toth and
Vigo, 2014). During this time, the advances made on exact methods and approx-
imation algorithms, including classical constructive heuristics, local search, and
metaheuristics, have been significant. This section provides an overview of the
different solution approaches to these problems.

Also, the strengths and limitations of different approaches are explored on a
general level. Useful properties for estimating the usefulness of VRP algorithms
was provided by Cordeau et al. (2002), and because there is a large variation in
algorithm accuracy, speed, consistency or robustness, and simplicity, each of these
should be considered carefully when the suitability of an algorithm is assessed.
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2.2.1 Exact methods

The exact optimization algorithms guarantee that if a solution is found, it will be
an optimal solution. That is, when measured with the objective function, there can
be other solutions that are equally good but not a better one. For any nontrivial
VRP, the number of possible solutions is too large for a naive exhaustive search.
Therefore, numerous relaxation, decomposition, and preprocessing approaches
have been proposed.

One of the oldest techniques for solving such combinatorial problems is the
branch-and-bound, where the leafs of a search tree contain only a single solution.
The tree is branched by, for example, fixing the decision variables. On each iter-
ation, there is a possibility that the algorithm can use bounds to determine that
some group of solutions (a branch) many not contain an optimal solution. An up-
per bound is usually calculated using heuristics, or it can be set to be the objective
function value of the best feasible solution found during the search. Similarly, a
solution to a relaxed form of the problem can be used as the lower bound. By
traversing the tree while simultaneously tightening the bounds, the algorithm
will, given enough time, find the optimal solution.

The decision variables are usually constrained to have integer or binary val-
ues. Thus, the techniques used in mixed integer programming (MIP) can be used
to accelerate the search. These include, among others, branch-and-cut, branch-
cut-and-price, column generation, route enumeration, and variable labeling (see,
e.g., Lysgaard et al., 2004; Pecin et al., 2017); these techniques are used to rule out
large groups of solutions very efficiently, or to speed up the search in some other
way. Most involve finding solutions to linear programming (LP) relaxations of
the original VRP, where related acceleration techniques can be used.

Although the vehicle and commodity flow formulations (see, e.g., Laporte,
2009) are popular for exact VRP algorithms, an alternative formulation is based
on the weighted set covering. This formulation is more relevant to the heuristic
approach of this dissertation, and can be given as follows: Each binary decision
variable v, chooses if a feasible route r is included in the solution. The related
binary coefficients a;, equal 1 if and only if the order i,i € V' \ {0} is served by
the route r, and it will be 0 otherwise. The cost of using the route r is c,, and it
can be determined by optimizing the order of the customers on the route leaving
from and ending at the depot with a TSP algorithm. Using these variables and
coefficients, the problem can be written as a binary linear programming model:

min Z Crlr (1a)
reR
s.t. 2 apyr =1, Vi=1,...,n (1b)
reR
Z yr S K/ (1C)
reR

yr=0orl, VreR (1d)
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Here, objective 1a is the total cost of the selected routes, constraint 1b en-
sures that each order is served exactly once, and constraint 1c specifies that at
most K vehicles are used. Because the basic objects of the formulation are feasible
routes, the size of the set of feasible routes R grows unreasonably large, even for
small VRPs. Despite its limitations, it is a simple formulation, and it has signif-
icant practical importance: Instead of a full enumeration of all feasible routes, a
heuristic algorithm can be used to generate a promising subset of feasible routes
(Taillard, 1999). This means that solving the weighted set covering problem (SCP)
can be done as a post-optimization step (Taillard, 1999).

The largest VRP problem instances that currently can be solved using exact
methods have only a few hundred points (Pecin et al., 2017), which limits their
practical applicability. This limitation is due to the combinatorial explosion of
the search space and the related increase in the decision variable and constraint
count. Furthermore, extending these models is nontrivial and is often a subject
of a research project of its own. And, although the exact methods can guarantee
the optimality of the obtained solution, a good enough solution that can be found
relatively quickly will usually suffice. Therefore, vehicle routing problems aris-
ing from the industry, including the larger and more complex ones, are typically
solved using heuristics or metaheuristics.

2.2.2 Classical heuristics

“Classical” VRP heuristics refer to the relatively simple heuristics developed be-
tween 1960 and 1990 (Laporte and Semet, 2002). Cordeau et al. (2007) further
divided the classical VRP heuristics into constructive, two-phase, and improvement
heuristics. Here, a heuristic is a rule-of-thumb algorithm that can be applied to
produce a solution to a problem—or to improve an existing one. They are often
used when one needs to produce good solutions in a reasonable amount of time.
However, they cannot guarantee the optimality of the solution, or even a lower
bound for its quality. Also, although they are relatively simple to implement, they
are sometimes hard to use effectively because it is hard to know which heuristic
should be applied and when. This is because of how heuristic algorithms are cre-
ated: they are developed for specific use; thus, they are highly specialized, and
their performance is problem and situation dependent.

The earliest of the classical VRP heuristics belong to the class of constructive
heuristics. They are capable of starting from an empty solution and usually can
build feasible solutions with surprisingly good quality. Such constructive heuris-
tics typically work by inserting unassigned clients to routes until all customers
have been assigned. Such an insertion strategy builds routes either sequentially
one route at the time or in parallel by considering all of the routes together. Note
that this terminology should not be confused with parallel computing.

Perhaps the best-known parallel constructive algorithm is the savings heuris-
tic from Clarke and Wright (1964). It starts from a solution where each customer
is served using a separate route and savings values are calculated for each po-
tential merging of a pair of routes. The algorithm then applies the merges in
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the decreasing savings value order. Each merge is checked for validity to avoid
making the solution infeasible. Because of its popularity, many heuristics that
extend this basic scheme have been proposed (see, e.g., Paessens, 1988). Alter-
native constructive algorithms have relied, for example, on the greedy insertion
of nearest neighbors or otherwise promising candidates (Fisher, 1995). All such
heuristics are simple to implement and, in most cases, easy to extend to solve the
more complex VRP variants, which explains their long-lasting popularity in the
literature (Cordeau et al., 2002). However, their accuracy and robustness are not
usually that good (Laporte and Semet, 2002), and they should be complemented
with modern metaheuristics in most practical applications.

Two-phase heuristics tackle VRP instances by solving two separate subprob-
lems: 1) clustering, that is, assigning the customer visits to routes or vehicles,
and 2) routing, that is, sequencing the visits in an optimal order. The order of
these two phases varies between the different heuristics and two-phase heuristics
can be further divided into cluster-first, route-second, and route-first, cluster-second
heuristics (Laporte, 2007). The Petal heuristic from Foster and Ryan (1976) is a
good example of an early two-phase heuristic. First, a set of feasible candidate
routes is built by radially sweeping over the customers. These routes form the
collection of sets in a weighted set covering problem (SCP). Solving the SCP is
followed by an inter-route improvement procedure that can produce new routes,
which are then used during the subsequent iterations that alternate between the
SCP and the improvement procedure. The algorithm terminates when no im-
proving routes are found. Although the Petal heuristic is quite flexible (Cordeau
et al., 2002), many of the two-phase heuristics tend to be fairly fragile and suit-
able only for some specific classes of VRP problems. It should be noted that some
two-phase heuristics, such as the Petal algorithm and the generalized assignment
problem (GAP) heuristic of Fisher and Jaikumar (1981), also belong to a class of
algorithms known as matheuristics. These algorithms are characterized by inter-
operation between heuristics and mathematical programming techniques. For a
survey of VRP matheuristics, refer to Archetti and Speranza (2014).

Many classical heuristics have employed simple improvement heuristics.
Improvement heuristics work by taking an existing solution and making small
changes that improve the objective function value of the solution. The early
heuristics were adapted to VRP from TSP literature (see, e.g., Savelsbergh, 1985).
The framework for improvement heuristics is provided by the concept of local
search (LS). LS has become a key element in modern metaheuristics because of its
flexibility and robustness. To formally describe LS, the notation of Laporte (2007)
is used: When trying to improve a solution s € S, where S is the set of all feasible
solutions, LS can employ different heuristic operations that each define a neigh-
borhood N(s) C S. To make a move in the local search, a new solution s’ € N(s)
is selected. Given that f : S — R tells the objective value of a solution, and if the
simple strategy of always taking the best improving move is used, the s’ is the
one for which f(s") < f(s) Vs € N(s). Applying this simple strategy iteratively
will ultimately lead the LS to a local optima. While doing so, the search creates a
trace in the search space consisting of the candidate solutions.
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Well-known local search heuristics for VRP are shared with TSP and include
2-opt, 3-opt, relocate, and exchange, but there are also inter-route variants such as
2-opt*, 3-opt*, one-point move, and two-point swap (see, e.g., Laporte and Semet,
2002; Braysy and Gendreau, 2005; Groér et al., 2010). In the past 30 years, scholars
have shifted their focus from these simple heuristics to the use of metaheuristics,
which, in turn, has allowed significant advances in solving real-world VRPs.

2.2.3 Metaheuristics

As stated earlier, the disadvantage of exact methods is that they are limited to
solving only relatively small problems. Similarly, classical heuristics are not very
robust and are unable to consistently produce high-quality solutions because the
local optimum they stop at is rarely the global optimum. Thus, methods that
are capable of wider exploration of the search space have been under intensive
research. These methods are known as metaheuristics and have become, in prac-
tice, the standard way of solving VRPs. The literature on metaheuristics is too
extensive to be discussed here in depth, and thus, only those metaheuristics that
are relevant to this dissertation are mentioned. Please refer to the book from
Labadie et al. (2016) for a comprehensive discussion on the topic.

The simple early heuristics tended to be problem dependent. The meta-
prefix in metaheuristics refers to the fact that they are a more generic approach
(Olafsson et al., 2008). Indeed, metaheuristics are based on high-level and ab-
stract principles (Birattari, 2009) and on rely these strategies to guide the search.
This usually involves the orchestration of several lower-level application-specific
(local search) heuristics. Metaheuristics also typically include a mechanism for es-
caping a local optima attractor (Labadie et al., 2016), allowing for a more thorough
search of the solution space. This is achieved through the use of sophisticated
mechanisms such as memory structures, perturbation moves, route combination,
and so forth. However, such flexibility comes at a cost. The implementations of
such metaheuristics expose many design choices through parameters that need
to be configured for the algorithm to work effectively (Birattari, 2009).

Following Battiti et al. (2010), some general strategies of metaheuristics can
be recognized: there are methods that 1) optimize the problem a subproblem at
the time, 2) manipulate the objective, 3) allow non-improving moves, or 4) pro-
hibit some local moves. For a more in-depth handling of the search diversification
methods in the context of VRP see, for example, Laporte (2007) or Toth and Vigo
(2014, Chapter 4, Section 4.4). Popular VRP metaheuristics include, among oth-
ers, simulated annealing (SA), tabu search (TS), ant colony optimization (ACO),
genetic algorithms (GA), and iterated local search (ILS):

SA: Simulated annealing (Kirkpatrick et al., 1983) is a metaheuristic that ran-
domly allows worsening moves to escape a local optima. The probability of
allowing these moves depends on the simulated temperature of the system.
When the search is intensified, the temperature of the system is lowered. In
contrast, if it is detected that no improvements cannot be made, the system
is reheated to make further exploration of the search space possible.
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TS: In tabu search (Glover and Laguna, 1998), some solutions of a neighborhood

RTR:

can be marked as tabu (forbidden). This may force the local search to do
non-improving moves and allows climbing out of the local optima basin of
attraction. The mechanism also prevents the search from cycling. In addi-
tion to selecting the local search neighborhoods, the forbid and free strategies
that manage the tabu list, the aspiration strategy governing these, the selec-
tion strategy for choosing the next non tabu move, and the stopping crite-
rion need to be selected and configured. Gendreau et al. (1994) and Osman
(1993) were among the first to apply TS in solving VRPs, and Osman (1993)
included a comparison between TS and SA.

Similarly to SA, the record-to-record travel metaheuristic (Dueck, 1993) uses
a deterministic rule to accept a worsening move; If r is the best-known
solution (the record), then an alternative solution s’ € N(s) is selected if
f(s") < f(r) +d, where d is the allowed deviation from the record pro-
portional to the objective value of . A RTR variant targeting HFVRP (Li
et al., 2007) was shown to be competitive against the other contemporary
algorithms.

ACO: Nature-inspired computational methods have always been popular in the

literature on metaheuristics, and there are numerous studies where they
have been successfully applied to solving VRPs (Potvin, 2009). In ant colony
optimization (Dorigo and Di Caro, 1999), the behavior of ants is mimicked
by modeling the pheromone trail they leave behind and follow while ex-
ploring their surroundings. ACO have been adapted in VRP, for example,
by Rizzoli et al. (2007).

GA: Genetic algorithms (Holland, 1975) can be used to evolve a population of

solutions. GA-based approaches usually encode VRP solutions into chro-
mosomes through a list of node indexes (Potvin, 2009), and the fitness of a
solution is measured by the objective function value. Through the crossover,
mutation, and selection of these chromosomes, fitter generations are evolved.
For a review, refer to Potvin (2009).

ILS: Iterated local search is a generic heuristic that applies one or several local

search operators until a local optimum has been reached. Then, the solu-
tion is perturbed with a carefully selected operation to obtain a new initial
solution for the local search. This process is iterated until a stopping crite-
ria has been fulfilled. Please refer to the book chapter from Lourenco et al.
(2003) for a comprehensive handling of ILS with VRP references.

The recent trend in metaheuristic research has been toward hybrids. Hybrids com-
bine various ideas from different algorithms. The motivation behind hybridiza-
tion is to build more robust and capable algorithms by exploiting the strengths of
different search strategies. Hence, many recently proposed state-of-the-art algo-
rithms are, unsurprisingly, hybrids. An example of such an algorithm is the state-
of-the-art unified hybrid genetic search metaheuristic from Vidal et al. (2014). The
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algorithm targets multi-attribute VRPs and has demonstrated remarkably good
performance on a wide range of VRP variants. Note that hybrids where a lo-
cal search is combined with an evolutionary computation are sometimes called
memetic algorithms (Neri and Cotta, 2012). Also, the hybridization of meta-
heuristics with machine learning to create solution methods capable of learn-

ing from earlier solution attempts is an emerging research topic in operations
research (Calvet et al., 2017).



3 VEHICLE ROUTING SYSTEMS

Software systems play a crucial role in planning real-world transportation and
delivery operations (Brdysy and Hasle, 2014). This dissertation is mainly con-
cerned with the functionality that allows the optimization of the delivery and
transportation routes. Such route optimization can be built as part of more gen-
eral purpose enterprise resource planning (ERP) systems, that can deeply inte-
grate into the business and operational processes of a company. Typically, these
systems contain a wide range of features and applications: from product, inven-
tory, and sales management; through timesheet and employee records; and to
customer, purchase order, billing, delivery management, and tracking. The more
specialized systems for managing the transportation and distribution functions
are called transportation management systems (TMS) or advanced fleet manage-
ment systems (AFMS) (Crainic et al., 2009, Section 4).

Vehicle route optimization may be available as a module for a TMS or AFMS,
but it can also be sold as separate stand-alone software (Drexl, 2012). To differ-
entiate it from the aforementioned more comprehensive management solutions,
we call such a stand-alone application a vehicle routing system (VRS). Concentrat-
ing only on the planning component and the related support functions prevents
the topic from straying too far from the vehicle routing problem. The responsi-
bilities of a VRS are described by Drexl (2012) as follows: A VRS is a computer
program that can read in a transportation problem with vehicles, drivers, depots,
customers, and their requests with locations that define the specific problem sce-
nario. From there, a VRS allows manual, interactive, or fully automated optimiza-
tion of the routes. The key feature of the system is the computational algorithms
that can build a complete routing plan from the input data.

It is useful to reiterate some of the advantages of the optimization technol-
ogy in the context of VRSs: the solutions are often superior to those made by
human planners, and producing them reduces planning time and excludes the
chance of human error (Drexl, 2012). This is because software can address and
balance among many constraints and competing requirements, such as robust-
ness to change, carbon emissions, level of service, and operational costs in com-
binations, which would create a too complex planning task for a human planner.
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Still, the main reason for introducing VRS is often to help use the transportation
resources of the company more efficiently and reduce the operating costs (UK De-
partment for Transport, 2005). The typical cost savings from introducing a VRS
can range from 5% up to 20%. The savings come from operational efficiencies
in reducing the journey length and time, improving the utilization of transporta-
tion resources, and improving the reliability of the schedules. This alone does not
necessarily lead to happier customers, but through management and service en-
hancements, the approach can support better processes for order management,
communications, and planning (UK Department for Transport, 2005). Irnich et
al. (2014) recognized other benefits, such as standardization and tighter integra-
tion of the planning processes with the existing software systems. This makes
planning less time-consuming and more cost-efficient compared with manual
planning. Furthermore, the benefits are not limited to the operational level, and
Drexl (2012) also emphasized the macroeconomic benefits, such as improved traf-
tic flow and lowered transportation emissions.

Besides optimization at the operational level, that is, the ongoing, daily, or
weekly routes and schedules, these tools can be used in strategic planning via
modeling of different scenarios involving, for example, employing subcontrac-
tors, planning for forecasted developments, evaluation of alternative strategies,
comparing the effects of various resource procurement or allocation options, or
testing the effect of service level changes (UK Department for Transport, 2005).
Such strategic and tactical planning allows organizations to better allocate their
resources and estimate their future resource needs. A VRS can also be used to es-
timate the cost figures of the transportation offer calculations on which the con-
tracts are based. These cost estimations can provide immediate value whether
the user of the VRS is providing the transportation service or subcontracting it.

If we consider the impressive volume of research on VRPs, the advantages
of route optimization, and the progress of computational technology, it is no won-
der that a growing number of software companies have emerged to provide com-
mercial vehicle routing systems (Sorensen et al., 2008; Hoff et al., 2010; Braysy and
Hasle, 2014). According to Baker (2002), in 1997, there were already 133 software
packages available for routing and scheduling applications. Since then, OR/MS
Today has published biennial surveys of VRS software vendors, with the latest
being done in 2018 (Partyka and Hall, 2012, 2014; Horner, 2018). These surveys
keep the vendors and their potential customers up-to-date on the latest develop-
ments. For example, in recent years, there has been a clear trend toward web-
based, software-as-a service (SaaS) solutions.

The early expectation in the 1980s was that organizations would adopt these
systems with enthusiasm, but coming into 1990s, almost all planning was still
done manually (Waters, 1992). Given the prevalence of modern optimization
technology and its many benefits, the results of the survey made by the Depart-
ment of Transport of the United Kingdom in 2010 (as summarized by Rincon-
Garcia et al., 2018) still reported that the adaptation rate was surprisingly low
among the surveyed transportation companies. The study found that the main
reasons for not adopting a VRS were that the existing systems were not suitable,
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were too expensive, or were too complex. Hence, the difficulties in VRS adapta-
tion are mostly because of the complex operating environment these systems face
(Partyka and Hall, 2012). This is also the reason there is a need for advances that
can increase the self-adaptivity of such systems (Sorensen et al., 2008) and au-
tomate some of the systems’ expensive customization work (Neittaanméki and
Puranen, 2015).

3.1 Functionality and typical modules

In this section, we discuss the features of a typical VRS, outline the software mod-
ules that the system consists of, and describe how they interact. However, it is im-
portant to remember that the specific functionality offered by a VRS will vary ac-
cording to its intended use. The features required when optimizing routes, for ex-
ample, for transporting people, have different modeling requirements than when
planning for parcel deliveries, transportation of perishables like food, or haz-
ardous liquids. At minimum, a software system that is used for vehicle route opti-
mization requires the depots, the customer visits (stops), and the types, operating
costs, and capacities of the vehicles (the fleet) along with their locations (street ad-
dress or coordinates) to be given as inputs (Baker, 2002). In addition, sometimes,
the driver qualifications, shift scheduling, and related drivers’ working-hour reg-
ulations are an important part of the planning, and they need to be optimized
along with the routes. The exact nature of the transportation, be it perishable
goods, parcels, products, or people, may induce some special rules. For exam-
ple, the demand of a customer can be described using a single number or using
various dimensions (e.g., weight and volume). Furthermore, the customer or-
ders may be last-mile deliveries, with or without backhauls, or a mix of pickups
and deliveries during the day or with a longer planning horizon. There may be
single or multiple allowed time windows for the visit. Also, compatibility rules
between the customers, drivers, vehicles, and products are typical in real-world
transportation planning scenarios. Furthermore, it is possible that the exact de-
mand of the customer is not known, and the task can be to maintain a certain
level of a product over a longer time span. It is also possible for the orders to
be removed or added dynamically during the planning horizon. These dynamic
features make the problems harder to solve because this increases the interdepen-
dencies between the decisions (Pillac et al., 2013). These requirements illustrate
the multifaceted nature of these problems.

The modular structure of a typical VRS is illustrated in Figure 4. One can
usually recognize modules (a) intended for interfacing with the problem instance
data storage, (b) a geographical information system (GIS) module for handling
addresses, coordinates, and travel distance and time calculations, (c) a concep-
tual/domain model (Hasle and Kloster, 2007; Puranen, 2011) for building an ab-
stract model of the problem using the concepts of the problem domain, (d) au-
tomatic planning (solver) module that offers the optimization algorithms and re-
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FIGURE 4 Modules of a VRS.

lated mathematical modeling services, and (e) a user interface component for vi-
sualization and interaction with the software. In addition, there may be a telem-
atics module (f) for receiving real-time data from the field operations and data
collection and statistics module (g) for the calculation of key performance indi-
cators and generation of other relevant reports. A similar modular structure was
presented by Drexl (2012), Puranen (2011), and Brdysy and Hasle (2014, p. 354).

An important requirement for a VRS is the ability to integrate it with other
systems to read in the depots, vehicles, orders, locations, and other necessary
information (Sorensen et al., 2008). In this case the data interface module is cus-
tomized to support an external data source. In fact, Baker (2002) noted that a
major portion of the functionality in a commercial VRS is devoted to file manip-
ulation and geocoding.

However, the most central module to this dissertation is the VRP solver
component, which resides at the core of every VRS. According to Sorensen et
al. (2008), the ability to model many types of problem characteristics is one of
the most important requirements of a commercial VRS. There needs be a way to
specify the objective and operational constraints, be it through a domain-specific
language (DSL) or by configuring the software some other way. Hence, the plan-
ning/optimization component also defines the modeling capabilities, and the
richness of the underlying VRP model influences the applicability of the entire
system (Hasle and Kloster, 2007). If, for example, there is a time limit for how
long a product can be transported but this is not part of the optimization model,
then the resulting plans cannot be executed as is, and manual changes may be
required to produce actionable plans. Hence, the modeling capabilities are very
important to the end users, even if they are not always able to recognize it. The
necessary attributes to the optimization model used in typical transportation ap-
plications are often numerous. These include, but are not limited to, multiple
capacities (weight, volume, etc.), maximum travel time, multiple depots, hetero-
geneous fleet, time windows, pickup and delivery, the stochasticity of the de-
mand and travel times, periodicity, and so forth. Also, the planning task may
include many qualification and compatibility rules between drivers, vehicles, or-



37

ders, depots, and even the transported products. Complementing a VRP model
with such attributes leads to multi-attribute vehicle routing problems or rich models
(Lahyani et al., 2015). Related to these model attributes, Drexl (2012, pp. 57-58)
and Brédysy and Hasle (2014, pp. 357-364) provided a list and descriptions of the
modeling features found in a typical commercial system. Also, Hasle and Kloster
(2007); Puranen (2011); and Derigs and Vogel (2014b) described considerations
regarding the implementation of such a general model.

As mentioned in Section 2.2.1, VRPs can be modeled and solved as mixed
integer programming problems. Usually, this involves describing the individual
problems in a modeling language for linear programming. Although this ap-
proach can and is used in some special applications (Drexl, 2012, p. 59), even the
state-of-the-art exact solution methods are limited to VRP instances of less than
a few hundred customers (Uchoa et al., 2017). Hence, the commercial VRSs use
metaheuristics that usually are some variant of a variable neighborhood search
(VNS) (Sorensen et al., 2008). Such solver may offer a few initialization heuris-
tics and multiple local search procedures to improve the initial solution. VNS
also has the benefit that it is relatively simple to implement, which helps to keep
the complexity of the software low. Also, this approach can usually provide fea-
sible solutions within a few minutes, which makes the quick re-optimization of
the plan possible in cases where the operational situation changes during the day
(Drexl, 2012).

Most commercial systems claim to be capable of solving problems up to
10,000 customers with ease (Drexl, 2012). However, because they are built around
a rich model and a unified algorithmic approach, they may be less computation-
ally efficient than some of their more specialized academic counterparts (Hasle
and Kloster, 2007). This illustrates the differences in the focus between academic
research and industry: researchers are more concerned with the modeling and
solving efficiency, whereas in commercial routing systems facing real-world trans-
portation tasks, the usability, flexibility, and scalability are usually more impor-
tant (Brdysy and Hasle, 2014). Related to this, the impressive performance of
some academic state-of-the-art metaheuristics may fail to generalize unless the
parameters are manually tuned specifically for the specific problems being solved
(Sorensen, 2015). Requiring such a specific calibration effort is not desirable with
a commercial solution (Rincon-Garcia et al., 2018).

The requirements for interactivity vary from one application to another.
Sometimes it might be desirable to require the minimal amount of interaction
with the routing system—to the extent that the plan is generated completely with-
out any user intervention (Baker, 2002, p. 359). However, in most cases, a com-
mercial solution must have a graphical user interface (GUI) (Sorensen et al., 2008;
Drexl, 2012). The GUI is used to validate the solution or to tweak some aspects
of it. Gacias et al. (2012) concentrated on this functionality and studied the hu-
man factors and ergonomics of using a vehicle routing system. Instead of a fully
automated system, they advocated an approach where through user-interaction
tools, the human planners can build solutions that adhere to informal constraints
and that allow for relaxing or violating some of the existing constraints. The role
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of algorithms in their proposed DSS was to assist the human planner to solve the
problem, and the authors argued that this allowed producing solutions that are
more suitable for real-world use. Also Drexl (2012) discussed the usability con-
cerns related to easy-to-use GUISs, data interfaces, and documentation. According
to him, one of the most central features of a VRS GUI is the ability to display the
depot, customer, and vehicle locations and planned routes on the map. Some of
this functionality is supported by the GIS module, which also provides services
to the solver module.

The solver module requires a distance matrix to be given as an input. How-
ever, the matrix can also be represented by a fully connected graph between the
depot(s) and the customer locations, where each edge (i.e., the cell of the ma-
trix) represents the travel cost (length or time) from one node to another. The
matrix is used to quickly retrieve the distance between any location pair. Popu-
lating the distance matrix involves a GIS module that can efficiently do many-to-
many shortest path calculations, which is a feature that exists only in a few GIS
products (Tarantilis and Kiranoudis, 2002). The shortest path computation re-
quires converting the geographical map data to a graph format, where the nodes
and edges represent the roads, junctions, terminals, and delivery locations of the
transportation network. A number of preprocessing techniques can be used (e.g.,
Geisberger et al., 2008) to speed up the calculation. In most applications, it is
very important to carefully consider the accuracy of the data and the level of
detail provided by the GIS (Hasle and Kloster, 2007) because inaccurate travel
distances may make the final solution non viable. An advanced GIS module may
also take one-way streets; speed limits; forbidden areas; speed limits; turning,
height, weight, and other related road usage restrictions; and traffic congestion
into account. Furthermore, it is usual to provide separate distance matrices for
the travel time, distance, and each vehicle type in the fleet. The other typical map-
related features are the support for geocoding and reverse geocoding to transform
street addresses into GPS coordinates and back.

Modern VRS tend to offer comprehensive reporting capabilities. The opti-
mization results can be viewed on the screen or printed as maps, delivery sched-
ules, or load manifests. Alternatively, a VRS may interact with an existing ERP
system, which then has the ability to put the optimized plans into operational
use. In addition to such plan deployment options, a VRS may have advanced
reporting functionality and the ability to produce cost reports, summaries, and
plan actualization reports and comparisons. Furthermore, the data can usually
be exported in compatible file formats for further analysis in an external applica-
tion (UK Department for Transport, 2005). Besides such usability concerns, Drexl
(2012) lists other non-functional features such as versatility, generality, and main-
tainability. The first two are strongly related to the modeling and solving capabil-
ities of the solver component, whereas maintainability is linked to the flexibility,
expandability, and customization of such systems. These non-functional require-
ments were also discussed in-depth by Puranen (2011), where he considered the
implementability of a VRS. The most relevant aspect to this dissertation, though, is
the customizability of vehicle routing systems, which is discussed next.
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3.2 Customization

Many VRP modeling and solution techniques originating from academic research
can be inflexible and require serious effort to adapt them to new problems and
operational contexts (Cari¢ et al., 2008). This can be an issue for the VRS vendors.
Drexl (2012) noted, “It is not an option to develop and implement a specialized al-
gorithm for each new customer. Therefore, algorithms used in CVRS must neces-
sarily be generic and easily extendable to new problem features.” Because of this,
a solver targeted for industrial use usually contains many different algorithms
or algorithmic components, meaning that they expose a large set of different pa-
rameters (Becker et al., 2005). The same applies to the multi-attribute VRP models
used in real-world transportation planning, where the modeling requirements of
each individual application determine which features of the mathematical model
and which algorithms are needed.

The varying requirements are not limited to the optimization component.
According to Cordeau et al. (2002), most of the development effort is devoted to
implementing data management and user interfaces. To make such customiza-
tion tasks more manageable, several software engineering techniques have been
proposed. Some, such as the integrated VRP algorithm design environment from
Potvin et al. (1994), concentrate on the modeling and solution capabilities and are
more intended to be used by an operations researcher. However, the focus of this
section is customization in the commercial context; hence, only papers targeting
real-world transportation are surveyed below.

The machine-learning-based self-adjusting VRS proposed by Kadaba et al.
(1991) was ahead of its time. They stated that their goal was to “assist researchers
and decision makers in applying mathematical models to the problem descrip-
tion.” and proposed an approach that could adapt to the problem type at hand
by utilizing information managed by a frame-based knowledge representation
scheme. They used neural networks for feature extraction, to recognize the prob-
lem type, select a mathematical model that fits a problem instance, and suggest
the seed point locations and control rules for VRP heuristics. In addition to these
learning and self-adaptive modules, there is a control algorithm that orchestrates
their execution. The information is encoded into the control rules and the weights
of the numerous neural networks. The authors presented experimental results,
showing that the automatic tuning of parameters is beneficial and that their sys-
tem provides better results than many of the second-generation VRP algorithms.
It remains unclear which VRP variants were considered besides the basic CVRP.
Still, the system shows great self-adaptivity and seems to present a flexible and
expandable, if complex, architecture for realizing modular and data-driven VRSs.
Furthermore, the neural network parts of the system can learn from the data,
which is, a scalable approach for customization. Related to this, Kadaba et al.
(1991) noted that the good results were because of the careful analysis of impor-
tant problem instance features. The results of our Paper PV supports and com-
plements their observations.



40

Desrochers et al. (1999) proposed a system that would allow for the manage-
ment of VRP models and that could also suggest suitable algorithms for solving
the stored models; they stated that the system is meant to be used by a consultant
with a basic understanding of mathematical programming. Their approach was
to formalize and store the existing knowledge on VRP modeling and solving in
multiple knowledge bases. The inference made by the system was symbolic and
the stored knowledge was based on manual annotation. For example, the models
were stored in a formulation knowledge base in the AMPL modeling language,
whereas the model and algorithm suitability was configured by specifying the
confidence factors of a semantic network residing in another knowledge base.
The customization of the system was done by describing the problem variant
using a special formal language (Desrochers et al., 1999, Appendix A), and, if
necessary, by manually extending the knowledge bases to support new variants.
This also included encoding the information on how to effectively solve them.
Unfortunately, only the concept was given in detail. Thus, it is difficult to see
how some of the concepts would work in practice. Although one can see how
the knowledge of an expert could be encoded into the knowledge bases, building
them manually would still require significant effort. Still, the VRP variant clas-
sification language is an interesting approach for formalizing the VRP taxonomy
in a computer-friendly format.

The challenges in satisfying the varying requirements and needs of differ-
ent users was recognized by Du and Wu (2001). In addition, they acknowledged
the challenges of ever-shifting expectations. They proposed an object-oriented
component assembly process focusing on software reuse to manage the complex-
ity in a rapidly changing environment. In their approach, customization was
done by storing application functions, class definitions, and object instances in
an object-oriented database that acted as persistent storage of the software com-
ponent variants. The application function implementations could be iteratively
revised and reused in other applications. The approach allowed Du and Wu to
develop applications for five VRP variants. However, it is difficult to see how the
object-oriented database driven development process makes the customization
of VRSs easier compared with a more traditional object-oriented programming
(OOP) approach where the database is used as “plain” data storage and where
the source code is stored in a version control system.

The VRS architecture advocated by Tarantilis and Kiranoudis (2002) was
based on distributed components and OOP. Thus, their approach was similar
to that of modern microservices (Newman, 2015) and so were the advantages:
they claimed that the architecture allowed software component reuse and clearer
modularization. The main VRS components (Figure 4) can easily be recognized.
However, instead of being composed into a monolithic application, the modules
act as separate services and communicate through a SQL database or HTTP. This
includes the user interface, which is the only module the user can access directly.
Tarantilis and Kiranoudis reported that their VRS has been used successfully in

several transportation tasks, but all applications are rather similar (and can be
modeled as CVRP).
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A more generic view to implementing VRSs can be taken by considering
VRS as a type of optimization-based decision support system, as was done in
(Maturana et al., 2004). They surveyed the ways building such systems had been
approached in the literature and proposed a DSS generator to support the de-
sign and construction of optimization-based DSS applications. They claimed that
their generator, which combined the latest advances in operations research and
software engineering, allowed them to develop DSSs at a fraction of the time and
cost compared with a traditional approach. Their approach was centered around
MIP models that are defined with structured modeling (Geoffrion, 2013) ideas
and a related SML modeling language. Each application had a custom module
that could instantiate a MIP model using the data stored in a database. The popu-
lated model was then given for the exact solver. The database schema and the re-
lated triggers were central in customizing a new application, and it was possible
to specify them with a configuration tool. Although the generator-based system
allowed reusing many of the components of a DSS, the customization relied en-
tirely on the modeling and specification efforts of an expert. In addition, the data
transformations are written manually in SQL, and Maturana et al. only consid-
ered an MIP solver, not heuristic solvers. Interestingly, they still recognized the
importance of the solver parameters to the solution times, but failed to provide a
solution other than exposing the parameters to the end user and trial-and-error
to configure them.

Caric et al. (2008) presented an integrated modeling and optimization frame-
work for VRPs based on a modular design that had a focus on code reusability.
The algorithms were scripted using a custom DSL that provided the abstractions
relevant to vehicle routing. The DSL, together with tools for algorithm testing,
tuning, and visualization, allowed for fast experimentation with existing VRP
heuristics. The authors also presented rudimentary self-adaptation capabilities
of the framework in the form of algorithm performance prediction. The flexibil-
ity of the VRP model was not demonstrated, and extendability of the approach
beyond VRPTW remained unclear.

The customization solution of Puranen (2011) was built around a model-
driven software production line architecture and a unified PDPTW metamodel.
The proposed optimization system was shown to be flexible by adjusting it to
support many different VRP model attributes. The modeling approach relied on
defining model transformations that targeted a generic PDPTW model, much like
Ropke and Pisinger (2006a). The customized applications were derived manually
by developing the differing elements on the application layer. Thanks to the flex-
ibility of the metamodel, this did not require making changes on the algorithm
level. Thus, the approach seems to be effective in managing the complexity of
the VRP domain and a useful tool for balancing between generality and speci-
ticity. The variability is managed systematically by explicitly defining the vari-
ation points (Pohl et al., 2005). The customization is done by defining the trans-
formations that specify the variability objects associated with these points. The
approach creates a good foundation for a data-driven automatic product deriva-
tion framework. In fact, Puranen expected the approach to allow automatic data
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interpretation in model building, automatic algorithm configuration, and the use
of hyper-heuristics (Neittaanméki and Puranen, 2015). Hence, the concepts of
software product lines and variability management were central in the work of
Puranen (for more, see Pohl et al., 2005).

Derigs and Vogel (2014a) suggested that their heuristic framework for rich
VRPs was user-friendly and enabled flexible customization of problem-specific
solvers. The base implementation of the framework only supported the reading
and solving of CVRP instances. From there, customization was done on an adap-
tation layer by overriding the existing simpler functionality and by extending the
capabilities of the system through OOP inheritance. The algorithm framework
separated the local search move evaluation and move application, allowing the
reuse of the higher level functionality. Although the framework seems to allow
for some code reuse, they admitted that a lot of experience and creativity was
required from the developer in the form of manual design, programming, and
fine-tuning to derive a new application.

We acknowledge that there has been earlier studies that have sought to au-
tomate the fine-tuning of algorithm performance (Nygard et al., 1990; Kadaba et
al., 1991; Becker et al., 2005). Also, the idea of using machine learning to automate
software engineering tasks is not new. Zhang and Tsai (2005) dealt with topics
related to using learning algorithms in software development and maintenance
tasks; indeed, they saw the software reuse topics as a fertile ground for applying
case-based reasoning. However, we are not aware of a pre-existing, holistic, data-
driven, and machine learning-based approach for VRS customization and believe
that these topics can be combined in a novel way.

To summarize this subsection, we have surveyed the methods for deriving
and specifying the optimization model in a vehicle routing system. To make this
task more manageable, the aforementioned architectures typically used a clear
separation between the conceptual data layer, the modeling layer, and the solver
layer. In this dissertation, we concentrated our customization effort to the data
transformations that happen between these layers.



4 MACHINE LEARNING

This dissertation proposes leveraging machine learning (ML) in automating the
customization of the vehicle routing systems. The purpose of this section is to
give the reader a brief overview of ML topics and techniques used in the included
papers. A more comprehensive operations research perspective can be found, for
example, from the survey by Olafsson et al. (2008).

Machine learning can be defined (Mitchell, 1997) to be the art of seeking
an answer to the question: how do you build computer programs that improve
their performance at some task through experience? Hence, with ML techniques
we can build software that can learn and discover patterns in data. The task of
learning involves fitting a model to observations, and the resulting models can
be used to predict outcomes, support decisions, or guide the search for solutions
in optimization algorithms.

When applying machine learning, it is crucial to understand what the algo-
rithm is actually trying to learn. This includes having some generic idea about
the correct answers the final model should give. ML is often able to gradually
tind better solution variations to a specific problem, but it can rarely produce
novel, unexpected solutions. This is also the reason why the selection of a cor-
rect model and input data are very important. Clearly, the data should contain
information about the phenomena we are trying to model: Relevant information
in the form of features has to be available for an algorithm to learn useful patterns.
One should also note that there is a fine balance between what features are avail-
able and which subset of them is useful to the learning task at hand (Guyon and
Elisseeff, 2006).

As ML all is data-driven, it is essential that the available data sets are good,
unbiased, and representative. Furthermore, the data set should be large enough
so that the algorithm is able to produce a useful generalization instead of getting
an incomplete picture of the phenomena. Gathering the necessary data can be
difficult and time-consuming, but if the data is incomplete, barely sufficient, or
biased the quality of the final model will be poor (Kotsiantis et al., 2006; Domin-
gos, 2012). Based on the available dataset, and the goal of applying ML, it is
useful to differentiate between ML task types:
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Unsupervised learning: These techniques are designed to work on unlabeled
datasets, where the correct responses (labels) are not known, but we still
need to extract meaning or patterns from the data. Thus, they can be used
in exploratory data analysis or to build predictive models on datasets we
know little about. For example, clustering involves grouping inputs that are
similar to one another. It can be used to produce labels for unlabeled data
based on the hidden structure of the dataset. Another unsupervised tech-
nique is dimension reduction, which involves finding a data mapping to a
space that has a lower dimension than the original dataset. Usually, dimen-
sion reduction techniques are used for visualization or as a preprocessing
step for other supervised or unsupervised learning techniques

Supervised learning: This approach is used when the correct responses are a
part of the dataset, and we want to build a model that is able to predict
these responses from the inputs. A good supervised learning algorithm is
able to respond correctly to previously unseen inputs. Classification and re-
gression are typical supervised ML tasks.

Reinforcement learning: This ML technique allows finding model parameters
that maximize a certain reward through a process of trial and error (Bishop,
2006). Thus, the technique is not used for learning the patterns in the data,
but to find a model how a given system operates.

The data used in ML is typically split into three sets: training, testing, and vali-
dation data. The training data set is used when the algorithm learns the model.
The testing data set is used to measure how well the trained model works on
previously unseen data, that is, how well its performance generalizes (Marsland,
2009, pp. 66-67). It is also possible that the model overfits. When this happens, the
model learns the patterns in the training data too well, and the model’s ability to
generalize has gotten weaker, not better. The validation dataset is optional; it can
be used for model selection. The exact method used for splitting the data depends
on the application. If there are only a small number of data samples available, it is
recommended to do a k-fold cross-validation. This involves partitioning the data
set into k parts and training the model k times, each time holding out different
folds for testing (Marsland, 2009, pp. 67-68). When sampling the data or gener-
ating the folds, it is important to keep the samples representative, for example,
through stratified sampling. A special case is the leave-one-out cross-validation,
where the test set contains only one sample and the rest of the samples are used
to teach the model. This is repeated for all samples in the data set.

4.1 Clustering

Sometimes the data set does not have pre-existing labels that indicate the classes
of the data points. Still, we would often like to know if different categories can be
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recognized from the data. Unsupervised clustering algorithms can create models
that group the data in a way that “natural” groups of similar objects, or clusters,
are formed. See Figure 5 for an illustrative example.

X1

FIGURE 5 Clustering with three clusters and two inputs x; and x;.

Informally, the clusters are formed of data points with small inter-point dis-
tances compared with distances to points in other clusters (Bishop, 2006). Thus,
choosing the right distance measure is very important as it directly influences the
formation of the clusters. Even if the canonical /2 norm is used, a care should be
taken to scale the data dimensions so that they are commensurate. Furthermore,
as the quality of the resulting clusters is more or less subjective, the choice of the
clustering algorithm is important. An in-depth discussion of different clustering
algorithms and their taxonomy is beyond the scope of this overview, but the in-
terested reader is referred to the surveys by Xu and Wunsch (2005) and Xu and
Tian (2015). However, two popular clustering algorithms, k-means and DBSCAN,
that were used in the included papers are briefly introduced.

The k-means algorithm is perhaps the best-known of the partitional clus-
tering methods. In k-means, the partitions are defined by cluster centroids u;,
and the number of these cluster centroids, k, needs to be known a priori. The
algorithm works by iteratively updating the positions of these centroids so that,
ultimately, the partitions minimize the within-cluster sum of squares (Bishop,
2006, p. 424). The algorithm essentially partitions the space to Voronoi cells which
means that the resulting clusters are always convex, limiting its applicability.

Another popular clustering algorithm is DBSCAN (Ester et al., 1996). Unlike
k-means, where the clusters always form around the cluster centers, DBSCAN
clusters can be of arbitrary shape. If a data point is at least minPts points inside a
radius of € it is marked a core point. If a data point is not a core point but is within
€ from a closest core point, it is an edge point belonging to the same cluster as the
core point. A point that is neither core nor edge point is an outlier. DBSCAN
is a rather robust algorithm, and with carefully set values for the minPts and €
parameters, it can produce aesthetically pleasing clusters.

There are multiple examples where clustering techniques are used in vehi-
cle routing. It is, for example, usual to tackle very-large-scale problem instances
with a divide-and-conquer strategy. Sdez et al. (2008) adopted a fuzzy k-means
algorithm for systematic zoning in solving dynamic PDP problems, and, simi-
larly, Dondo and Cerda (2007) used a preprocessing phase that clusters the orders
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in a multi-depot heterogeneous fleet VRP with time windows (MDHFVRPTW).
Hence, clustering can be used to divide a large VRP instance to a more man-
ageable subproblems. An estimate for the number of clusters in a routing prob-
lem can be made, for example, by calculating rough lower and upper bounds for
routes needed to satisfy all of the model constraints. Gacias et al. (2012) consid-
ered both spatial and temporal clustering to suggest constraints that should be
relaxed to find a feasible solution.

4.2 Dimension reduction

Many popular ML algorithms do not perform well with high-dimensional data.
This may manifest as poor predictive performance or as high computational re-
quirements of the algorithm. The effect is known as “the curse of dimensionality”
of high-dimensional datasets (Bellman and Dreyfus, 1962), which means that the
volume of the feature space grows rapidly with increasing dimensionality. As
a result, the dataset becomes too sparse for learning. Additionally, it is hard to
devise a relevant distance metric for a high-dimensional space (Domingos, 2012).

Dimension reduction is used to address this issue. The goal in these meth-
ods is to find a mapping to a lower dimensional space that minimizes the to-
pographical distortion. In other words, dimension reduction techniques try to
tind a low-dimensional representation for the high-dimensional vectors that pre-
serves the structure and the information of the dataset. This task can be achieved
through feature selection (which is discussed later) or through a number of dif-
ferent data transformations. Two such basic data transformation techniques are
principal component analysis (PCA) and linear discriminant analysis (LDA). Of
these, PCA finds a linear projection that minimizes the squared distance between
the data points and their projections and while doing so also maximizes the vari-
ance of the projected data (Bishop, 2006). Due to its solid statistical properties, it
is a popular method in data analysis and visualization.

Multi-dimensional scaling (MDS) methods (Cox and Cox, 2000) do not re-
quire the coordinates of the data points to be known. It relies on the information
of the dissimilarity matrix AN*N which contains (dis)similarity scores between
all pairings of data points. MDS methods generate output embeddings for the
data points in a lower dimensional space y; € R so that the structure implied by
the matrix A is closely preserved. A popular MDS algorithm is SMACOEF, which
does stress minimization using majorization (Borg and Groenen, 2005). The al-
gorithm iteratively minimizes the stress function ¢, which is usually a weighted
sum of squared residuals. In the domain of vehicle routing, MDS has been used,
for example, by Feng et al. (2014) to transform arc routing problems into vehicle
routing problems, and by Ventresca et al. (2013) to visualize genetic algorithm
operator pairings.
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4.3 Classification

Classification involves predicting a label (category) for an input, which is usually
given in a form of a feature vector. A useful concept in classification tasks is that
of a decision boundary, which is a hypersurface that divides the input space into
two subspaces. By learning the parameters defining these surfaces, the model can
determine the class label for any input by assigning it according to the subspace
of the data point. The model is called a classifier, and the number of decision
boundaries that need to be learned depends on the number of class labels.

X1
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>

X2

FIGURE 6 Three-label classification with two inputs x; and x;.

Figure 6 illustrates a three-label classification case. As one can see, the clas-
sification accuracy in this example is not perfect as some of the test data will be
classified incorrectly with the given decision boundaries. Improving the accu-
racy would be possible with a better fit of the model or by using more complex
decision boundaries.

Popular classification algorithms such as k-nearest neighbor (k-NN), deci-
sion trees (e.g., CART), support vector machines (SVM), random forests (RF), and
artificial neural networks (ANN) are interchangeable to some extent (see, e.g.,
Kotsiantis et al., 2007; Marsland, 2009). However, their suitability for a specific
learning task varies greatly, and it is recommended practice to experimentally

verify which one should be used with a given application problem (Kotsiantis et
al., 2007).

4.4 Feature selection

In this section, we review some recent and relevant publications related to fea-
ture selection and extraction. However, because this is a large and active research
topic, it cannot be fully covered here. Still, it is an important topic because ma-
chine learning always requires a numerical representation of the examples as an
input, usually in the form of a feature vector. Here, a feature is synonymous with
an input variable or attribute for a machine learning algorithm. These features
describe some properties of the samples, and the values can be binary, ordinal,
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categorical, or continuous. Sometimes, the samples are already in a format that
can be fed directly into the machine learning algorithms, but usually an addi-
tional feature engineering phase is required to refine and summarize the data into
a more convenient numerical format (Domingos, 2012).

Feature engineering involves constructing feature variables from the raw data.
Getting this step right is vital to the successful construction of statistical or ma-
chine learning models. In fact, Domingos (2012) claims this is the differentiating
factor between successful and failed ML applications. However, engineering use-
tul features and, thus, finding a good data representation (that is, a useful set of
features) for the raw data is a challenging domain specific task that requires ex-
perimentation and domain expertise (Guyon and Elisseeff, 2006). Furthermore,
experimentation is needed to see how data preprocessing, features, and machine
learning interact. These interactions can sometimes be surprisingly complex and
delicate, which illustrates why feature engineering is sometimes considered to be
more of a black art than an exact science (Domingos, 2012).

According to Guyon and Elisseeff (2006), one should be aware of informa-
tion loss in the feature extraction phase and err on the side of being too inclusive,
rather than risk omitting useful features. Thus, experimentation with both low-
and high-level features is important (low being close to the original raw data and
high being features constructed from other features). However, this may lead to
the manifestation of the previously mentioned curse of dimensionality (Bellman
and Dreyfus, 1962). The curse causes the learning task to become considerably
more difficult and computationally intensive to construct. There is also the dan-
ger that a model is overfit or made less comprehensible (Zhao et al., 2010). To
overcome these challenges caused by irrelevant and redundant features in machine
learning applications, many feature selection (FS) approaches have been proposed.
The aim in feature selection is to improve the performance and accuracy of the
models by recognizing a good subset of important features from the original full
feature set. Selecting a good subset is a multicriteria search problem that needs to
balance between minimizing the number of features and maximizing the model
accuracy and generalization ability.

Many techniques have been proposed to solve this task. They can be di-
vided into three broad categories: filter, wrapper, and embedded FS techniques. The
filter approaches are usually fastest as they only consider the information in the
dataset itself. For example, the correlation-based feature selection (CFS) method
of Hall (2000) uses feature correlations with the class label and a heuristic search
strategy to recommend a set of relevant features. Similarly, in the minimum-
redundancy-maximum-relevance (mnRMR) method from Peng et al. (2005), the
feature ranking is based on mutual information between the features and corre-
lations between the features and the class labels. The wrapper-based methods
test the candidate feature subsets on the actual target ML algorithm. This can be
done using, for example, forward selection where features that improve the accu-
racy most are iteratively added to the set, or with backwards elimination where
irrelevant features are removed one by one. As one can expect, this approach can
be computationally very intensive on large feature sets. The embedded methods
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are similar to wrapper methods, but they rely on the features of specific learn-
ing algorithms and use their internal information to rank or select the features.
Ensemble methods, such as random forests, are a natural choice, because with
them, the feature-importance measures can be calculated using the final model(s)
(Saeys et al., 2008).

Besides being an important part of the preprocessing in machine learning
(Saeys et al., 2008) in that they have the potential to increase the prediction ac-
curacy and speed of the machine learning models, any of the aforementioned
feature selection approaches can be used to gain a better understanding of the
samples and the feature extraction process (Guyon and Elisseeff, 2006). As such,
feature selection is also a powerful data analysis tool for gaining a better under-
standing of the underlying phenomena.



5 META-OPTIMIZATION

All heuristics are to some extent problem dependent. Their performance greatly
depends on how well they can exploit the characteristics of the specific problem
being solved (Arnold and Sorensen, 2019b). Hence, to achieve a good perfor-
mance, algorithms need to be carefully selected and tuned for the specific prob-
lem under consideration. This makes applied work sometimes more of an art
than a science. The task involves recognizing the idiosyncrasies of the problem
instance class, comparing them against the strengths and weaknesses of the dif-
ferent algorithms, and finally, using experiments and intuition to fine-tune the
most promising algorithms to solve the problem.

As one can expect, building such expertise and intuition can be difficult.
Developers rarely provide any guidelines on how to select and configure their
proposed algorithms (Brazdil et al., 2009). Furthermore, comparative experimen-
tal studies concentrate on showing which algorithm is better under a specific set
of circumstances and often fail to generalize or consider the implications of the
experimental results (Hooker, 1995; Barr et al., 1995). Most importantly, the fa-
miliarity of the researchers with some of the algorithms can have a significant
effect on the results; there exists a severe danger for confirmation bias in such
algorithm comparisons due to the varied manipulations and manual fine-tuning
efforts the algorithms receive (Ansétegui et al., 2009). Also, the extent of these
manual efforts is rarely disclosed, and it can be argued that manual selection
and configuration of optimization algorithms can lead to irreproducible results
(Eggensperger et al., 2019).

Fortunately, relying on expert intuition is not the only option for tackling the
problem of algorithm suitability, configuration, and selection. Analogous to meta-
learning in the machine learning literature (Brazdil et al., 2009), meta-optimization
involves optimizing the selection and configuration of optimization algorithms.
The basic idea in meta-optimization is to learn a mapping between the charac-
teristics of optimization tasks and suitable optimization algorithms and their pa-
rameter configurations. Ansétegui et al. (2009) argued that using such techniques
should be a recommended practice when planning, making, and reporting com-
putational studies. Furthermore, it has been shown that machine learning can
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improve the performance of existing optimization algorithms (Birattari, 2009).
Hence, applying meta-optimization to optimization problems with significant
practical importance, such as the vehicle routing problem described in Section
2, seems to offer a promising way to increase the performance and robustness of
the solution methods.

Meta-optimization with its applications, automatic algorithm configuration,
parameter control, and algorithm selection is closely related to the research on
hyper-heuristics (Burke et al., 2013; Pillay and Qu, 2018). As noted earlier (Sec-
tion 2.2.3), the trend in solving VRPs has shifted towards hybrid metaheuristics
that combine the elements of several solution techniques. The rapidly develop-
ing field of hyper-heuristics promises to automate this hybridization; instead of
proposing and experimentally validating yet another hybrid algorithm, one can
build a system that is able to automatically discover a good combination of lower
level heuristics and algorithmic ideas for a specific set of problem instances. In
comparison with metaheuristics, hyper-heuristics work in the heuristic space in-
stead of the solution space. That is, hyper-heuristics selects or generates the low-
level heuristics from the heuristics space, which are then used to solve the original
problem by searching the solutions space (Pillay and Qu, 2018).

The emphasis of hyper-heuristics is with the on-line selection and config-
uration of heuristics during the solving process, whereas automatic algorithm
configuration and selection are off-line techniques. However, this dissertation
only considers off-line meta-optimization, which leaves hyper-heuristics out of
the scope of the conducted research. Still, is is useful for the reader to recognize
the advances in hyper-heuristics research in parallel with that of algorithm con-
tiguration and selection (Smith-Miles, 2009; Pappa et al., 2014). While the ideas
on these fields have developed to some extent independently, Pappa et al. (2014)
calls for cross-fertilization among the fields.

The next sections concentrate on topics related to automatic algorithm con-
figuration and algorithm selection. Also, there seems to be a research gap that
calls for a holistic understanding and exploitation of the VRP instance and solu-
tion structure. Therefore, as the last topic of this chapter on meta-optimization,
we discuss meta-features, VRP and TSP feature extraction, and VRP fitness land-
scape analysis.

5.1 Automatic algorithm configuration

Most state-of-the-art VRP algorithms have free parameters, and the choice of val-
ues for these parameters can have a significant impact on the performance of
the optimization algorithm. This applies to exact solvers based on linear pro-
gramming (Hutter et al., 2010) as well as to approximate algorithms based on
heuristics or metaheuristics (Pellegrini and Birattari, 2007).

Some of the parameters are fixed by the programmer of the algorithm, but
some are left to be set by the user, to allow adaption of the solver to the prob-
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FIGURE 7 Algorithm configuration workflow (Eggensperger et al., 2019).

lem being solved (Hutter et al., 2009). The algorithm parameters adjust how
the search for the optimal solution is conducted and, in the case of heuristics,
how the exploration and exploitation in the search space are balanced. Tradi-
tionally, these algorithm parameters have been set manually using expertise and
experimentation (Hutter et al., 2009), which takes considerable time and effort.
Furthermore, experimenting with different algorithm parameters is tedious, and
without the necessary experience and expertise in the optimization field, frustrat-
ing with numerous caveats in the interaction between the parameters, problem
instances, and algorithms (Barr et al., 1995). For example, a metaheuristic can
be composed of multiple algorithmic components (e.g., in the form of multiple
built-in local search operators) and of a set of free parameters that enable and
disable them. Adapting metaheuristics to a certain set of problems often requires
serious configuration effort that involves selecting the correct components and
experimentally finding suitable values for the parameters (Birattari, 2009, p. 3).

Kadioglu et al. (2010) argued that exposing more parameters to the user of
the solver is better. Their rationale was that this allows the user to fine-tune the
solver to specific needs. The downside is that the multitude of parameters can
make the effective use of the algorithm difficult, especially if there are complex
interactions between the parameters themselves. In fact, Cordeau et al. (2002,
p. 514) argued that VRP “algorithms that contain too many parameters are dif-
ficult to understand and unlikely to be used.” They suggested two strategies to
combat this: fix them to some predefined meaningful value or allow the methods
to self-adjust the parameters during the optimization. Fortunately, there is also a
third option.

The tedious task of parameter configuration can be automated with the use
of automatic algorithm configuration (AAC). AAC addresses the off-line task of find-
ing a good set of parameter values, or a parameter configuration, prior to using the
target algorithm in production. Because of the knowledge and effort requirements
of manually finding good sets of parameters, manual configuration efforts of-
ten lead to inferior performance compared to AAC (Hutter et al., 2009). Hence,
the increase in algorithm performance is perhaps the most obvious benefit. In
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their experiments, Kadioglu et al. (2010) demonstrated algorithm speed increases
ranging from 10- to almost 300-fold compared to the parameter defaults when
configuring solvers for the well-known satisfiability problem (SAT). The addi-
tional benefit of AAC to the target algorithm is that it makes the algorithm what
Battiti et al. (2010, p. 5) call self-contained; its quality and performance can be
measured independently from the designer. Hence, the algorithm designer and
his /her extensive expertise in tuning the algorithm manually no longer cause bias
to the results. This allows objective evaluation and comparison of algorithms.
Algorithm configuration can be formalized as follows: given an algorithm
« and its configuration space O, find a parameter configuration 6 € ©® which allows
the algorithm to yield the best possible solution for a problem instance I € P or a
set of problem instances P’ C P. Assuming the objective is to minimize the cost
metric ¢, and we are configuring a deterministic algorithm, the task of finding the
optimal parameter configuration 6* can be given as (Eggensperger et al., 2019):

0" € argmin Y_ ¢(6,1). (2)
0e®@ [P’
In the case of a deterministic algorithm, the cost with a given parameter configu-
ration is acquired simply by calling the algorithm with the candidate parameters
and the problem instance as an input (see Figure 7). Depending on the cost met-
ric ¢, the best parameter configuration for a target algorithm might be the one that
minimizes the algorithm runtime or produces the best solution quality.

According to Hepdogan (2006, p. 23) an ideal AAC technique should be fast,
use as few evaluations on the target algorithm as possible, be robust and suitable
for many different kinds of optimization algorithms, and be able to produce al-
gorithm configurations in a repeatable fashion. The tool should be easy to use
and have very few parameters so that using it does not require extensive setup or
configuration time. Also, the method should outperform simple trial-and-error
parameter tuning and pure random search. A good practical guide on applying
AAC methods has been recently published by Eggensperger et al. (2019). There
are also many powerful AAC tools that are available that can be used to improve
the performance and efficiency of existing algorithms. These include SMAC from
Hutter et al. (2011), GGA from Ansétegui et al. (2009), and iterated F-Race from
Lopez-Ibaiiez et al. (2016).

Coy et al. (2001) was one of the first to raise the awareness of the impor-
tance of configuring the parameters of VRP metaheuristics, and Van Breedam
(2002) presented a systematic analysis of the parameters of many classical VRP
heuristics. The study from Pellegrini and Birattari (2007) illustrated the benefits
of AAC through a series of experiments on six VRP metaheuristics and showed
that the configuration significantly improved the performance of the algorithms.
Saremi et al. (2007) proposed a systemic approach based on the design of exper-
iments for tuning a memetic metaheuristic for VRPB and Ceschia et al. (2011)
used F-Race to select best local search operator composition for tabu search meta-
heuristic solving HFVRPTW. Also, while it is hard to estimate its significance in
producing the state-of-the art results on “rich” VRPs, Vidal et al. (2013a) used



54

CMA-ES (Hansen, 2006) to configure their hybrid algorithm. The results of Pelle-
grini and Birattari and those in Paper PVI suggest that AAC might have played
a significant role in achieving their impressive results. Recently, Labadie et al.
(2016) noted that the trend of building hybrid metaheuristics leads to an increase
in the number of free parameters. This emphasizes the importance of a solid
design of experiments (Barr et al., 1995) and AAC. Lastly, for an industry per-
spective on configuring VRP algorithms, please refer to the Becker et al. (2005).

It should be noted that in the field of evolutionary computing, AAC usu-
ally goes by the name of parameter tuning (De Jong, 2007; Eiben and Smit, 2011),
whereas the similar task involving the configuration of machine learning algo-
rithms is known as hyperparameter optimization (Bergstra et al., 2011). The ap-
proach in all of these is similar and the proposed techniques are to a large ex-
tent interchangeable. However, the research on the topic in these fields currently
seems to be quite disjoint.

5.2 Algorithm selection

Le PPCP y €R
Instance space Performance space
A
Feature arﬂtgerj/m c(a,I) Performance
extraction mapping
xp = f(I) v vy =c(a,I)
Selection
A4 mapping
xec F' CF ay = S(x) ve A CA
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FIGURE 8 Model for algorithm selection (Rice, 1976; Smith-Miles, 2009).

The algorithm selection (AS) problem can be stated as follows (Rice, 1976): Given
a portfolio of algorithms and their measured performance on a set of problem
instances, which algorithm or algorithms should be used to solve a previously
unseen problem instance? The basic idea in automating this is to use machine
learning to learn a model which is then used to predict the best among a portfolio
of different algorithms (Bischl et al., 2016). Alternatively, the model can be used
to determine the ordering and time budget allocation for the different methods
by predicting a ranking of the algorithms. In both approaches, the model exploits
the varying algorithm performance over a set of problem instances (Bischl et al.,
2016). As a result, algorithm selection allows concentrating the computational
effort on those algorithms that are expected to show a good performance on a
specific problem instance.
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Next, a more formal definition is given. Assume that we have a set of algo-
rithms A that can be used to solve problems from the problem space P. Feature
extraction for a problem instance I € P can be formally expressed as a feature
extractor function that transforms the problem instance to a feature vector x; of
n feature values, f : P — R". Thus, the performance data for the algorithm se-
lection task can be expressed as D = (x,y). If we denote the algorithm with &,
and & € A" where A’ is the portfolio of algorithms, we can use the performance
data to learn an algorithm recommendation mapping S : P — A’ which can,
together with the feature extraction, be used in the on-line task of predicting the
best algorithm for a previously unseen problem instance I,, € P, I, ¢ P’. Figure
8 illustrates the relations between the different spaces related to algorithm se-
lection: problem instance space P, problem instance feature space F, algorithm
space A, and algorithm performance measure space.

Algorithm selection has been shown to produce state-of-the art results in
many combinatorial optimization tasks (see, e.g., Xu et al., 2008). In his survey
of algorithm selection targeting combinatorial optimization problems, Kotthoff
(2014) recognizes that the quest for significant performance improvements has
shifted the focus away from proposing new algorithms and towards investigating
how to recognize the most suitable existing algorithm. Additionally, like AAC, al-
gorithm selection can help researchers to make fairer algorithm comparisons and
obtain understanding of the strengths and weaknesses of the different methods
(Bischl et al., 2016).

However, one should note that there are some considerations in applying
this approach (Kotthoff, 2014). It is critical to use a representative set of problem
instances when building the algorithm selection model. Otherwise, there is a
danger that the selected algorithms are not the best choices for new, previously
unseen, instances. Also, the algorithms may seem to perform well on one set
of instances, but the performance of the selected algorithms can be worse than
the single best algorithm on another set. Thus, the ability to generalize should
always be verified with cross-validation or with a separate testing set. It is also
necessary to recognize features that can describe the problem set in the way they
capture properties relevant to: a) solving the problems, b) configuring algorithm
parameters, c) recognizing a set of mutually similar problems that can share a
configured parameter configuration, and d) can predict algorithm performance.
This is not always easy as feature engineering is always a domain-specific task
(Domingos, 2012).

The extensive literature on VRP algorithms shows that the performance of
different VRP algorithms varies between problem instances, and no single algo-
rithm is superior to the rest (Tighe et al., 2005). Hence, the main motivation to
solve the algorithm selection problem in the VRP context comes from the possi-
bilities in increasing the speed and expressive power of the existing optimization
technology (de la Banda et al., 2014). Algorithm selection has been previously
applied to VRP by various researchers (Nygard et al., 1990; Tuzun et al., 1997;
Tighe et al., 2005; Steinhaus, 2015). Nygard et al. (1990) presented empirical evi-
dence that there was a significant dependency between the relative performance
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of four different classical CVRP algorithms and the distribution of the customer
points. They achieved remarkably good predictive accuracy through application
of several complementary neural network classifiers, which were activated by
another meta-meta-level neural network classifier depending on the inputs. Sim-
ilarly, the study of Tuzun et al. (1997) concluded that using neural networks to
predict the most suitable algorithm for a CVRP instance was a viable approach
to solving the algorithm selection problem. Tighe et al. (2005) explored the capa-
bilities of an adaptive system where a self-organizing fuzzy control orchestrates
a dynamic PDP optimization task by changing the runtime priority of three algo-
rithms. More recently, Steinhaus (2015) proposed using self-organizing maps in a
CVRP algorithm selection. The related topic of TSP algorithm selection has also
been studied by a number of individuals (e.g., Nallaperuma et al., 2013; Hutter et
al., 2014; Pihera and Musliu, 2014).

One recent development is methods that simultaneously choose algorithms
and optimize their parameters. An example of such work is the proposed solu-
tion for the combined ML classifier selection and hyperparameter optimization
problem from Kotthoff et al. (2017). Their extensive experiments showed that a
combined selection and configuration approach for classification tasks offers fur-
ther benefits as opposed to considering these tasks separately.

5.3 Meta-features

In meta-learning (Brazdil et al., 2009), the dataset statistics are characterized by
meta-features. They are needed to build the models that can predict the most suit-
able ML algorithm for a specific dataset. Analogous to meta-learning, the prop-
erties of the optimization problem need to be described to the meta-optimization
algorithms; in algorithm selection and instance specific algorithm configuration,
the task becomes to learn the connections between the performance of the algo-
rithms and the problem instance features (Kanda et al., 2016). Hence, the meta-
features allow understanding and detecting the particularities of a specific prob-
lem instance. However, the specific number and quality of features depends on
the intended application.

The importance of good features cannot be overstated, and similar to any
other ML application, they are the key to producing a useful model (Domin-
gos, 2012). Also, a higher volume of data and a richer set of meta-features per
data point is expected to result in a better learned model (Arnold and Soérensen,
2019b). Thus, a wealth of problem-specific information needs to be extracted to
the heuristics to work optimally. Battiti et al. (2010, p. 14) consider three possible
sources of such information that can be used in algorithm selection and tuning;:
problem type related, instance specific, and those based on the current position and
the trace through the search space.

The problem-type-related features are usually categorical or binary. They can
indicate if some certain modeling constructs are needed or not. In practice, these
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features can be derived from different classifications and taxonomies of VRP vari-
ants. An example of such work is the formal classification language of Desrochers
et al. (1999). However, such type-related meta-features are relevant only with
multi-attribute VRP solvers that are able to solve several VRP variants such as
the one from Vidal et al. (2014). Furthermore, such encoding of the problem vari-
ant in a format that can be given to a ML algorithm is currently a manual process,
and we are not aware of any prior work on automating the detection of VRP
variants or attributes from the raw data that specifies the problem instance.

Regarding the problem-instance-specific features, VRP shares the typical list
with the other COPs: the size of the problem, type of numeric inputs, and the
size and quantity of the constraints can can be used as meta-features (Tighe et
al., 2005). There exist relatively few prior works on VRP feature extraction. Sev-
eral propose features for VRP algorithm selection, but not all papers discussing
the topic use meta-features. Instead, it seems typical that parameters of a problem
instance generator are used as inputs for the learning algorithm (e.g., Tuzun et al.,
1997; Tighe et al., 2005), which severely limits the applicability of the proposed
studies. An exception to this is the work of Nygard et al. (1990) who proposed
three feature extractors that were invariant under rotations of the problem and
measured the distance from the depot, clustering, and angular dispersion of the
customers. Each extractor produced values for 10 frequency classes, and so the
total number of features was 30. The dimensionality of the input data was fur-
ther reduced to a feature vector with only four values using a neural autoencoder.
(Steinhaus, 2015, p. 66) proposed a set of 23 features capturing the spatial distri-
bution of the customers, depot position, average number of customers served by
a single route, and the demand structure. Additional features can be adapted to
VRP from the related TSP literature (Smith-Miles and van Hemert, 2011; Mers-
mann et al., 2013; Nallaperuma et al., 2013; Hutter et al., 2014; Pihera and Musliu,
2014; Kanda et al., 2016).

For describing solutions and the search space of VRPs, we give two examples.
Jin et al. (2014) described a co-operative parallel tabu search metaheuristic that
uses clustering of solutions in the solution pool and bookkeeping of cluster met-
rics to balance between intensification and diversification. Clustering also war-
ranted Jin et al. to define a solution similarity measure. Later, Arnold and Sorensen
(2019b) proposed 10 features to characterize solutions. The features that are used
to describe VRP solutions also contain information about its search space and
can, thus, be used to study its structure. Generally, such information is gath-
ered through solution attempts with a simple heuristic algorithm. The algorithm
leaves a trace of candidate solutions, which may reveal rich details and patterns
about the search space, and the features derived from this information may have
high predictive power (Asta, 2015).

Such an approach is related to the topic of fitness landscape analysis (FLA),
which can be used to analyze and increase the performance of metaheuristic al-
gorithms (Pitzer and Affenzeller, 2012). FLA aims to characterize the problem
structure through analysis of the search space and the fitness and neighborhood
functions (Marmion et al., 2013). The metaphor in FLA is about imaging a two-
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dimensional search space as a landscape with valleys, peaks, canyons, and other
such features. The analogy helps to give an intuition on how heuristic algorithms
operate, but it can be misleading in higher dimensions (Pitzer and Affenzeller,
2012). FLA can allow the problem to be understood better by the researcher, and
many FLA techniques can provide useful meta-features for the ML algorithms.
Typical features measured from a fitness landscape are modality (the number and
distribution of local optima), existence of basins of attraction, barriers and phase
transitions, landscape walks, and ruggedness. For a generic survey on FLA, refer
to Pitzer and Affenzeller (2012).

There exist some studies where the fitness landscape of VRPs have been ex-
plored using the FLA technique. Kubiak (2007) presented an approach for statisti-
cal fitness-distance analysis of the CVRP instances. He proposed multiple metrics
for measuring the distance between solutions and observed that most of the local
optima seem to be clustered, and that this global structure of the search space
might explain the success of some metaheuristics. Czech (2008) measured the
ruggedness of VRPTW fitness landscapes that allowed them to rank the problem
instances according to their difficulty and determine the parameters of a SA meta-
heuristic. Pitzer et al. (2012) and Marmion et al. (2013) used asymmetric CVRP
as a case study in FLA. Marmion et al. used the relocate and exchange neighbor-
hoods and a giant-tour-solution encoding and proposed a solution-to-solution
distance measure based on a robust on-hold greedy algorithm. They studied the
valley structure and the ruggedness of eight problem instances and concluded
that there are definite differences in the landscapes as observed through the dif-
terent local search operators. Ventresca et al. (2013) used similar analysis methods
to discriminate between difficult and easy VRPTW and CVRP instances. Interest-
ingly, instance clusters recognized in their study tended to contain only one type
of local search operator. Based on this observation, they proposed an approach
similar to instance-specific algorithm configuration (Kadioglu et al., 2010) involv-
ing performance profiles for the GA.

When new meta-features are proposed, it is important to consider the com-
putational effort involved in producing the feature data. Extensive analysis of a
problem instance can easily counteract any time saved in predicting the algorithm
parameters or using the most suitable solution algorithm (Tighe et al., 2005). This
topic has been discussed in depth, for example, by Kanda et al. (2016). They
note that the computational cost of generating the meta-features should always
be smaller compared to the combined cost of running several optimization algo-
rithms. Otherwise, there is a danger that meta-optimization cannot provide any
efficiency gains. Hence, the analysis of the feature importance and examination
of their computational effort, as done by Kanda et al., is extremely important. A
useful tool to evaluate the feature importance is feature selection (Section 4.4),
which allows eliminating redundant and irrelevant meta-features. This approach
was demonstrated by Pihera and Musliu (2014), where they reduced the dimen-
sionality of feature vectors that characterized TSP instances. However, prior to
our own work on the topic in Paper PV, we are not aware of earlier studies where
modern feature selection methods have been applied in VRP research.



6 SUMMARY OF THE PUBLICATIONS

This chapter summarizes the original articles included in this dissertation and
lists the individual contributions with special emphasis on the software aspects.
The papers are not presented strictly in the order they were published. Instead,
we proceed from the more general, conceptual, and exploratory works towards
the more detailed topics. The last two articles on algorithm selection and auto-
matic algorithm configuration of VRP (meta)heuristics bring the discussion back
to applications of meta-optimization in the context of vehicle routing systems.

6.1 Paper PI: Automatic Customization Framework for Efficient Ve-
hicle Routing System Deployment

This research was presented at the CM3 Conference on Computational Multi Physics,
Multi Scales and Multi Big Data in Transport Modeling, Simulation and Optimization,
held May 25-27, 2015, in Jyvaskyld, Finland. The accompanying paper was peer-
reviewed and published in the book Computational Methods and Models for Trans-
port - New Challenges for the Greening of Transport Systems.

Aim

The aim of this work was to recognize the issues in customization and tailoring
of vehicle routing systems which are holding back the widespread adaptation
of vehicle route optimization technology among small- and medium-sized trans-
portation companies. Furthermore, we aimed to provide a vision for an auto-
mated configuration workflow to address these issues. Of particular interest was
the data flow and related transformations inside a typical vehicle routing system.
Thus, we did not seek to recommend proven solutions for automating the de-
sign of the recognized transformations but rather explored alternative ways to
increase the degree of automation in configuring such systems.
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Method

Our main method in this study was to conduct well-constrained literature sur-
veys on multiple related topics. By analyzing the trends in VRP research, we
showed that the state-of-the-art has been progressing towards unified models
that can simultaneously capture many attributes of “rich” vehicle routing prob-
lems and towards adaptive and learning algorithms in solving them. These trends
and the earlier work (Puranen, 2012) allowed us to assume access to a generic ve-
hicle routing system with flexible modeling capabilities and a selection of modern
heuristic algorithms.

In order to present a concept of data flow and data transformations, we
recognized the typical modules inside a VRS. We discussed different options for
managing the transformations and argued that the one involving automatic cus-
tomization would be the most natural one, especially considering the emerging
VRP research trends. Similar ideas have also been presented by other authors
(e.g., de la Banda et al., 2014) in related research fields around the same time,
which seems to further validate our choice.

Results and contribution to the whole

We presented descriptions and related literature for automating the configura-
tion of the data transformations in interpreting the input data, inferring the op-
timization model, selecting and configuring the suitable algorithms, solving the
problem, interpreting the results, and producing a correctly formatted plan.

The descriptions of the transformation steps and related automation oppor-
tunities were complemented with some preliminary experimental results. The
benefits of configuring three CVRP metaheuristics on a set of real-world inspired
problem instances with SMAC from Hutter et al. (2011) and iterated F-race from
Lopez-Ibéfiez et al. (2016) were demonstrated, and the concept and preliminary
results of our data import automation prototype were presented.

This study’s main contribution to this dissertation was the customization
framework for automating the data transformation operations inside a vehicle
routing system. Adapting a vehicle routing system to the particularities of a
specific strain of VRP instances using data-driven customization seemed to be
a promising research direction, and we expected it to have significant practical
significance. We based our argument on the existing literature, and the prelim-
inary results of configuring the algorithms and automating a part of the data
integration process.

Summary of individual contributions

* Recognized the possibilities of a data-driven customization process based
on machine learning and meta-optimization. It is expected to make the tai-
loring and deployment of vehicle routing systems cheaper, easier, and less
labor intensive.
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* Proposed a conceptual model for the seven data transformations inside a
typical VRS, and described how they can be used as variation points of a
software product line.

* Provided surveys, suggestions, and in two proofs-of-concept (for algorithm
configuration and data integration) on how to use machine learning to au-
tomatically configure the data transformations.

6.2 Paper PII: Solution Space Visualization as a Tool for Vehicle
Routing Algorithm Development

This research was first presented at the FORS40 Workshop on Optimization and
Decision-making on August 20-21, 2013. The workshop was held at Lappeen-
ranta University of Technology to celebrate 40 years of the Finnish Operations
Research Society (FORS). Later, a peer-reviewed paper was published in the pro-
ceedings of the workshop.

Aim

The aim was to understand how and why VRP heuristics work has still received
surprisingly little attention (Corstjens et al., 2019). Learning and reasoning about
the decisions the algorithms make during a search is sometimes difficult. For-
tunately, visualization has proved to be a powerful tool for understanding and
gaining intuition on the operating principles behind a heuristic algorithm (Halim
et al., 2006). In this paper, we proposed a technique to visualize a VRP solution
and local search neighborhood landscapes. The main goal of this work was to
propose a visualization technique that could be used as a viable tool by VRP al-
gorithm designers and developers.

Method

We proposed a technique that uses multidimensional scaling to find a 2D rep-
resentation for the highly multi-dimensional solution space of vehicle routing
problems. Each point in this visualization space corresponds to one feasible or
infeasible solution to the original problem instance. Developing the visualiza-
tion method involved creating an efficient procedure to enumerate all solutions
for small CVRP instances, experimentally finding a suitable measure for solution
dissimilarity, experimenting with multidimensional scaling algorithms, and se-
lecting a tool to visualize the resulting data. We also implemented the necessary
tooling to calculate multiple statistical fitness landscape measures in the original
search space and in the visualized space in order to verify the accuracy of the
visual representation.
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Results and contribution to the whole

In the spirit of constructive research approach (Lukka, 2003), we created a tech-
nique capable of visualizing vehicle routing problem solution landscapes. This
allows a visual examination of VRP landscapes and analysis of how local search
operators move through it. The work improved our understanding of the fitness
landscapes of vehicle routing problems and the behavior of local search heuris-
tics. Later, these tools helped us to examine and verify the correct operation of
the classical routing algorithms implemented in Paper PIV. In this study, we also
made a novel contribution by proposing a method for verifying the accuracy of
the representation via the use of three relevant statistical fitness landscape mea-
sures. These features were later used in describing vehicle routing problem in-
stances as part of our comprehensive set of feature extractors for vehicle routing
problems (PIII).

Summary of individual contributions

Introduced a technique for visualizing vehicle routing problems and local
search trace neighborhoods.

* Proposed an analysis technique that uses fitness landscape analysis mea-
sures to verify that the visualization preserves the relevant features of the
search space.

* Empirically derived a formula for the number of solutions to a symmetric
CVRP.

* Software: Designed and programmed the visualization tool to draw inter-
active 3D plots of small problem instances and of local search traces.

* Software: Designed and programmed a fast open-source CVRP solution
enumerator! supporting three different solution generation methods.

6.3 Paper PIII: Feature Extractors for Describing Vehicle Routing
Problem Instances

This work was presented at the 5th Student Conference on Operations Research
(SCOR16) held at 8-10th April 2016 in Nottingham, UK. The talk selected as the
runner-up for the best talk at the conference and the peer-reviewed paper was
later published in the conference proceedings.

1 https:/ /github.com/yorak/cvrp-solution-generator
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Aim

Access to a set of high-quality meta-features is a prerequisite to efficient algo-
rithm runtime prediction, algorithm parameter value prediction, and algorithm
selection. This feature set must be diverse, comprehensive, and relevant to the
machine learning task. A good set of features is capable of capturing the idiosyn-
crasies of the problem instances.

In this study, our aim was to find a set of VRP meta-features that could be
used in VRP-related meta-optimization tasks. To that end, we needed to build a
feature extractor framework intended for numerically describing the well-known
problem instances from the literature as feature vectors.

Method

Based on a literature survey on the topic of describing TSPs and VRPs, a set of
76 feature extractors was adapted to characterize VRP instances. These extrac-
tors can produce a feature vector with 386 feature values for a single CVRP in-
stance. The features were organized into groups: those related to node distri-
bution (10 extractors), features calculated from the minimum spanning tree (3
extractors), features from probing the problem instance through 20 solution at-
tempts with a heuristic (12 extractors) and branch-and-cut solver (4 extractors),
geometric features based on an enclosing rectangle and convex hull (5 extrac-
tors), nearest-neighbor graphs (22 extractors), and VRP-domain-specific features
(11 extractors). The time used to calculate the aforementioned features add a fur-
ther nine features. For probing, we used a modified VRPH (Groér et al., 2010)
solver and the open-source SYMPHONY (Ralphs and Giizelsoy, 2005) branch-
and-cut solver with a time cutoff.

The feature extraction required some preprocessing measures. The distance
matrix was adequate for describing the distribution of the customer nodes on the
plane, but some features, such as those concerning the convex hull, also required
the node coordinates to be known. However, there were benchmark instances
that were defined using only a distance matrix. In cases where coordinates were
missing, or given as geographical coordinates, their locations were approximated
using multidimensional scaling (MDS) (Borg and Groenen, 2005). We also scaled
the problem instance nodes to the range x, y € [(0,400), (0,400)]) as suggested by
(Smith-Miles and van Hemert, 2011) but retained the aspect ratio of the problem.

The proposed set included many features that were used to describe VRPs
for the first time. For example, we proposed including the silhouette score, which
measures how appropriately the data has been clustered, and an autocorrelation
length of a random walk in the solution space.

The quality of this feature set was evaluated by clustering a collection of
168 CVRP benchmark instances collected from multiple sources. Also, automatic
algorithm configuration of three metaheuristic CVRP algorithms was done using
a state-of-the-art instance-specific algorithm configuration tool SMAC (Hutter et
al., 2011).
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Results and contribution to the whole

The VRP feature set presented in our study was significantly larger than those
previously found in the literature. Clustering of the benchmark instances showed
that the proposed feature set has a good discriminative power. Also, the results
of the instance-specific algorithm configuration were promising. We were able
to further improve the quality of the solutions by using the feature data, and in
many cases the difference was statistically significant. We recognized that the
dimensionality of the full feature set was too high for most tasks, and we had to
use PCA to bring it down to more manageable levels. However, our experiments
revealed the need for more advanced feature selection that could fully utilize the
information captured by the features.

Our initial experiments with VRP meta-learning showed that applying ma-
chine learning approaches in this domain had the potential to improve the re-
sulting solution quality and lead to significant algorithm performance improve-
ments, in addition to lifting the burden of tweaking the algorithms from the
shoulders of the operations researcher.

Summary of individual contributions

* Provided a literature survey on describing VRP and TSP instances.
* Proposed a comprehensive list of CVRP feature extractors.

* Demonstrated the usefulness of the features through instance-specific auto-
matic algorithm configuration and clustering of problem instances.

¢ Software: Designed and programmed a feature extraction tool with 76 fea-
ture extractors that can produce 386 features for a given CVRP instance.

6.4 Paper PIV : Meta-Survey and Implementations of Classical Ca-
pacitated Vehicle Routing Heuristics with Reproduced Results

This report currently has a status of an unpublished manuscript.
Aim

Despite their popularity in operations research, only a few VRP algorithms have
freely available implementations. Furthermore, even if an implementation is
available, replication of results has not been the main focus of such reimplementa-
tion work. This also applies to the classical CVRP heuristics that were introduced
between 1959 and the early 1990s. This situation makes experimental compar-
isons between different algorithms difficult and unreliable (Barr et al., 1995).

In addition to the criticism on the empirical testing of heuristics (Hooker,
1995; Hasle and Kloster, 2007), the themes of reproduction and replication of re-



65

sults and code re-use in the field of vehicle routing research have recently resur-
faced (e.g., Cordeau et al., 2002; Sorensen et al., 2019). Simultaneously, the gen-
eral trend in VRP algorithm research has been towards hybridization and au-
tomatic composition of solution methods through hyper-heuristics. Such ap-
proaches benefit from recognizing the relative strengths and weaknesses of dif-
ferent algorithmic components and solution approaches. Hooker (1995) has ar-
gued that gaining these insights requires us to shift our focus from competitive
testing to understanding the effect of the design decisions made in algorithm de-
velopment. Such research efforts would benefit from access to an open-source
software library of classical vehicle routing heuristics. Hence, the objective of the
study was to recognize the most relevant classical heuristics and then produce
open-source implementations that can reproduce the original results.

This work was also motivated by the structure of this dissertation. To carry
out the necessary experiments involving algorithm selection for Paper PV, we
needed access to implementations of several VRP algorithms. To make these ex-
periments less computationally intensive to conduct, we made the additional re-
quirements for the algorithms to be deterministic to be relatively parameter free,
and to be able to solve also the larger problem instances in the popular CVRP
benchmark sets. Many of the classical VRP heuristics fulfill these criteria. Also,
there is large variation in operating principles between the classical heuristics
(Cordeau et al., 2002, p. 514), which makes them an interesting target for in-depth
analysis and well suited for experimental study in algorithm selection.

Method

We conducted a literature meta-survey of 15 survey papers published between
1971 to 2014 on VRP heuristic algorithms to recognize those CVRP heuristics that
can be considered to be “classical.” By calculating the frequency of citations since
the algorithms had been introduced, we were able to recognize 28 “classical”
CVRP heuristics.

We also surveyed the currently available open-source libraries for solving
vehicle routing problems. There were many alternatives offering an implementa-
tion of metaheuristics, but only a few offered several alternative algorithms, and
even if they did, no results or evidence was given to demonstrate that the imple-
mented algorithms would, indeed, replicate the results from the literature. This,
together with the complexity of the existing software libraries, led us to write our
own independent implementations.

Most of the classical heuristics were deterministic and some could be triv-
ially converted. The requirement for determinism also helped us to rule out some
algorithms that could be more naturally classified as metaheuristics. We also
ruled out heuristics that involved interactive or manual steps and those few for
which we were unable to find experimental results. This left us with a list of 15
classical deterministic CVRP heuristics introduced between 1964 and 1989. The
rest of the study concerned itself with the implementation details and replications
of the computational results of these 15 algorithms.
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Results and contribution to the whole

The working principles of the 15 selected classical heuristics were carefully doc-
umented during the implementation process. The descriptions were comple-
mented by notes on the many design and implementation insights and details
gained through the tenacious effort of replicating the numerical results from the
literature. As a result of our efforts, 10 of the implementations closely replicated
the original numerical results. For the rest, the replication level was mostly sat-
isfactory. The probable reasons for the discrepancies were also discussed; some
uncertainties remained because of missing details of the original experimental
setup, due to the vagueness in the algorithm description, or due to possible im-
plementation error on our part.

The reproductions were complemented by an extensive computational study:.
We reported the observed time complexities of the algorithms and presented
a comparison of the implemented CVRP algorithms on 454 CVRP problem in-
stances from the literature. This extensive amount of performance data allowed
us to study and analyze the different strengths and weaknesses of the heuris-
tic algorithms through a systemic examination of their the accuracy, consistency,
speed, and simplicity. To our knowledge, this is the most in-depth review and
computational study on classical CVRP heuristics. The main contribution is the
open-source implementations written in a modern programming language and
the related replication of the original results. Later, the computational results on
the 454 CVRP problem instances were used in the experimental part of Paper PV

Summary of individual contributions

* Recognized 15 deterministic CVRP heuristics that can be considered to be
“classical” through a literature meta-survey.

* Presented replications of the results for those 15 heuristics and documented
the related design and implementation decisions.

* Presented and analyzed the results of an extensive computational study
where the classical heuristics solved 454 well-known CVRP instances. This
allowed us to...

- ...experimentally provide computational complexity classes for the 15
heuristics.

- ...recognize patterns in the solution quality variation between the clas-
sical heuristics, revealing their strengths and weaknesses.

- ...derive quantitative scores of accuracy, robustness, simplicity, and
speed for the 15 classical heuristics.

 Software: Designed and programmed an open-source software library?
with implementations of 15 deterministic classical CVRP heuristics.

2 https:/ / github.com/yorak/VeRyPy
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6.5 Paper PV :Feature and Algorithm Selection for Capacitated Ve-
hicle Routing Problems

The paper was published in the proceedings of the 27th European Symposium on
Artificial Neural Networks in 2019. The conference was held in Bruges, Belgium,
on April 24-27, 2019.

Aim

The number of features proposed for describing combinatorial problem instances
has continued to steadily grow, but there is little discussion on the trade-offs
between computational effort of the feature extraction and the extent of the in-
crease in solver performance one can expect by using meta-learning techniques.
Furthermore, the differences in the importance of the different features is rarely
explored in the literature.

We had recently proposed an extensive set of features for CVRP instances in
Paper PIII, and recognizing the most relevant VRP features in meta-optimization
tasks was set as the main objective of this study. More specifically, we sought
to determine the most central features for the task of VRP algorithm selection.
This involved answering the following question: which subset of the features
proposed in Paper PIII should be used when predicting the most suitable clas-
sical heuristic algorithm from Paper PIV for a given CVRP instance? We were
also interested in seeing what kind of increase in solution quality an ensemble of
relatively simple VRP heuristics could offer. The study was inspired by a similar
study from Pihera and Musliu (2014), where they used discretization and ma-
chine learning to predict a best TSP algorithm for a given TSP instance.

Method

The feature extraction framework that was originally proposed in Paper PIII, and
extended by Karkkdinen and Rasku (2019), was further modified in this study.
Compared to Paper PIII, we added: features related to the local search neigh-
borhood; a feature indicating the ratio between integer and non-integer decision
variable values in the output of the exact solver; and several features measur-
ing the tightness of an optional maximum route duration constraint. The fea-
tures were preprocessed by imputing large values in the place of infinite ones,
performing normalization, and creating a second discretized dataset using the
multi-interval discretization of continuous-valued attributes (MDLP) algorithm
from Fayyad and Irani (1993).

We used the algorithm performance data from Paper PIV, which contained
the accuracy and computation time data for the implemented 15 deterministic
classical CVRP heuristics, with each solving 454 CVRP instances from the liter-
ature. Using this data instead of the values reported in the literature allowed
us to sidestep the issues related to stochasticity (Barr et al., 1995) and algorithm
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performance data commensurability (Laporte, 2007). Out of the 15 algorithms,
the sequential savings algorithm was omitted because it was not the single best
algorithm on any of the 454 CVRP benchmark instances. We also prepared an-
other algorithm selection scenario, where the task was to select the best algorithm
among the three most successful on the benchmark set: GAP (Fisher and Jaiku-
mar, 1981), Petal (Foster and Ryan, 1976), and parametrized savings (Paessens,
1988).

This led to four algorithm selection scenarios: to predict the best algorithm
(with or without the feature value discretization) among the 14 classical heuristics
for CVRPs, or among the three best. In addition to the algorithm performance
data, the extended feature data with 433 feature values was calculated for each of
the 454 problem instances. Using the optimality gap and elapsed time data, we
were able to label the data. So, the best algorithm was set to be the one with the
smallest optimality gap, or in the case of ties, the one with the shortest solution
time.

A comparison where PCA and three feature selection methods, mRMR (Peng
et al., 2005), CFS (Hall, 2000), and extremely randomized trees-based estimators
(Geurts et al., 2006), were used to reduce the dimensionality of the feature data
and four classifiers, 3-nearest neighbor (3-NN), multilayer perception (MLP), C-
SVM, and random forest, were used to learn the performance patterns. All ML
tasks were evaluated with a selected feature count from 1 to 100 using a leave-
one-out cross-validation.

Results and contribution to the whole

The results revealed that features from probing with exact and local search al-
gorithms were among the top 10 for all of the four feature selection/analysis
methods, but also features related to the tightness of the constraints, position of
the depot, and the structure of the nearest-neighbor digraph contributed signifi-
cantly to the classification task. The best predictive accuracy in our experiments
was reached when between 75 and 100 features were used. However, the embed-
ded feature selection method based on random forest indicated that the feature
importance decreased significantly after ten features.

The results of this study allowed us to estimate what kind of predictive
accuracy one can expect in VRP algorithm selection tasks assuming a suitable
teature set for describing the problem instances is available. The best predictive
accuracy in the experiments ranged from 48.5% for the prediction task with 14
algorithms, through 75.3% for a more realistic case where an acceptable result
was that the predicted algorithm was in the top 3, to 74% accuracy on the task
of where the very best heuristic was selected among a portfolio of three proven
classical CVRP heuristics. Compared to the simple strategy of using the single
best algorithm, the algorithm selection yielded the following improvements: on
the scenario where the algorithm was predicted among 14 alternatives, the algo-
rithm selection allowed closing the optimality gap on average by 1.1 percentage
points, which was a 28% improvement. In the easier three algorithm scenario, the
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optimality gap was closed on average by 1.3 percentage points, a 34% improve-
ment. In these comparisons, the predictions were put against the generalized
savings algorithm of Paessens (1988), which was the single best all-around clas-
sical algorithm in Paper PIV.

The results verified the feasibility of the algorithm selection approach and
illustrated how existing tools and techniques related to feature extraction, fea-
ture selection, and algorithm selection could be used to boost the quality of VRP
solutions. Based on the experiments and their results, we expect using the al-
gorithm selection approach in customizing a vehicle routing system to yield nu-
merous benefits. This would require embedding the feature extraction (PIII) and
algorithm selection to the vehicle routing system customization and deployment
workflow (Paper PI).

Summary of individual contributions

¢ Identified the most relevant features in the algorithm selection of classical
CVRP heuristics.

* Presented results of the automatic algorithm selection. A good heuristic
was selected with an accuracy of around 75%.

* Presented empirical evidence demonstrating that the algorithm and feature
selection can allow an ensemble of relatively simple heuristics to produce
high quality solutions.

6.6 Paper PVI: On Automatic Algorithm Configuration of Vehicle
Routing Problem Solvers

The preliminary results (Rasku et al., 2014) on this topic were published in the
proceedings of the Optimization and PDEs with Industrial Applications conference
held in June 2012 at the University of Jyvaskyld, Finland. The study was further
extended with new configuration targets and with an in-depth analysis of the
results, and in 2019, a study containing these new contributions was published in
the Journal on Vehicle Routing Algorithms.

Aim

Almost all algorithms for combinatorial optimization problems have a number
of free parameters that influence their behavior (Birattari, 2009), and VRP algo-
rithms are not an exception. In addition to the several free parameters, they tend
to exhibit relatively long computing times which makes finding the right values
for these parameters challenging (Becker et al., 2005).

Usually, a set of default parameter values is suggested by the algorithm
designer who has used expertise and experiments to find them. Unfortunately,
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these are typically optimized to solve a specific scientific benchmark set (Hutter
et al., 2009), and using the defaults on a new set of problems may not give an
accurate impression of the true performance of the algorithm. Thus, the objective
in this study was to offer practical recommendations on how a systematic algo-
rithm configuration of VRP heuristics could be carried out in order to improve
their performance and allow replicable algorithm comparisons (Ansétegui et al.,
2009; Eggensperger et al., 2019).

The timeliness for such an experimental study was further emphasized by
the observation of Kadioglu et al. (2010) that there has been a renaissance in au-
tomatic algorithm configuration during the first decade of the 21st century. This
development has led to many new and interesting automatic algorithm configu-
ration methods being proposed. Employing them would allow automating the
critical and tedious part of finding the right parameters for the VRP algorithms.
Also, we would like to argue that a comprehensive critical evaluation of well-
known existing configuration methods is needed to verify their suitability in con-
tiguring VRP metaheuristics.

Method

Benchmarking the surveyed state-of-the-art automatic algorithm configuration
tools necessitated designing a comprehensive set of experiments that took the
special needs of configuring VRP algorithms into account. To facilitate our re-
search, we developed a design-of-tuning-experiment tool similar to the one pro-
posed by Eggensperger et al. (2019). This scaffolding made it easier to build wrap-
pers and experiment with different configuration scenarios.

We used solvers from two sources: the CVRP solvers from Groér et al. (2010)
providing TS, SA, and RTR metaheuristics; and IRIDIA (Bianchi et al., 2005)
solvers with ACO, EA, ILS, SA, and TS metaheuristics targeting VRPSDs. Both
aimed to solve a specific VRP type, and both were based on local search enhanced
and orchestrated by the different metaheuristics. The solvers had from 3 to 14 pa-
rameters that needed to be configured. The experiments involved using these
eight metaheuristics to compute solutions to several academic problem sets on a
total of 2695 configuration runs.

The extensive computational requirements of such automatic algorithm con-
figuration experimentation required us to carefully control and fix some aspects
of our experiments. For example, we required that each configuration target in
our experiments had 14 problem instances and a separate training and test sets.
If the original problem set was larger, we used stratified sampling to create a
smaller benchmark set. Stratification made sure that the problem size compo-
sition of the instance sets resembled the original set. We used a 3-fold cross-
validation for one of the problem sets which did not have enough problem in-
stances for a separate test set. We also used fixed evaluation budgets of 100, 500,
and 1000 solver invocations, with each invocation limited to a runtime of 10 sec-
onds. To test the effect of a larger budget, the configuration methods tuning the
ACO metaheuristic were also given a larger budget of 5000 evaluations.
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The objective in our automatic algorithm configuration runs was to find
a parameter configuration that would minimize the aggregated optimality gap
over a problem instance set. Also, the metaheuristics had a stochastic compo-
nent, and repetitions were required to get a reliable estimate of the performance
with a given parameter configuration. Thus, the automatic algorithm configu-
ration methods were set to expect stochastic solvers and the actual allocation of
the evaluation budgets depended on how the method decided to use evaluations
and handle stochasticity of the target algorithms. Furthermore, the configura-
tion methods were also allowed to use the default parameter configuration of the
target metaheuristics as a seed for the parameter search.

Regarding other parameters of the configuration methods, we used the de-
faults and changed them only if it was necessary to make a configuration method
to respect the evaluation budget. Configuring the automatic configuration meth-
ods themselves could have improved the performance but this would have in-
creased the already high computational effort further. It can also be argued that
a good meta-optimization method should not need such meta-meta-level param-
eter configuration (Sorensen et al., 2008, p. 251-252).

Results and contribution to the whole

The absolute and relative improvements achieved through automatic algorithm
configuration of the eight VRP metaheuristics were considered through a careful
analysis of the results. This allowed gaining insights on what kind of improve-
ment one can expect from the problem set specific configuration. Unsurprisingly,
all of the tested metaheuristics benefited from automatic configuration, and they
were able to surpass the solution quality of the default parameter values.

While presenting and analyzing some of the best algorithm configurations
found by the configuration methods, we recognized parameter configurations
that would allow producing optimal solutions for all of the Augerat (1995) prob-
lem instances in the validation set. However, there was a large variation between
the different combinations of metaheuristic, configuration method, and problem
instance sets. We recognized three different difficulty classes among the configu-
ration tasks. The classification revealed how the suitability of a metaheuristic in
solving a specific problem instance type can significantly effect its configurability.

Our experiments and analysis also revealed clear differences in the perfor-
mance of different configuration methods. However, these were not systematic
and the best method depended on configuration targets and tasks. The two most
successful methods for configuring VRP metaheuristics in our study were SMAC
from Hutter et al. (2011) and iterated F-race from Lopez-Ibéfiez et al. (2016). The
results strongly supported the hypothesis that such methods could also be used
to automatically configure the algorithms inside a vehicle routing system. Fur-
thermore, if we assume that the best configuration method for a specific target
can always be chosen, the optimality gap was closed by 70 % compared to using
the default parameters. Hence, the performance increase in automatic algorithm
configuration of such software systems can be significant.
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If we consider a more general VRP research context, we argue that compar-
ison studies like the one presented in this paper are needed to reveal the true
robustness and performance characteristics of the algorithms targeting vehicle
routing problems. We have shown that such work can provide a deeper insight
into the nature and solution space structure of the routing and automatic pa-
rameter configuration problems and provide a large amount of useful empirical
information on how to apply these solution techniques. As such, with a sharper
focus on VRP metaheuristics, our study can complement the more generic advice
from Eggensperger et al. (2019).

Summary of individual contributions

* Presented a comprehensive experimental study on automatic algorithm con-
tiguration (AAC) of VRP metaheuristics which allowed us to observe that. ..

- ...in general, the algorithm with configured parameters produced sig-
nificantly better solutions than one with the default parameters. This
shows that existing AAC methods are suitable for configuring the tested
VRP metaheuristics.

- ...as few as 100 algorithm invitations was in most cases enough to find
a better parameter configuration than the defaults.

- ...SMAC and iterated F-race are feature-rich and robust configuration
methods well suited for configuring VRP metaheuristics.

— ...the configuration performance varied greatly, and there was no sin-
gle best AAC method for VRP metaheuristics.

¢ Argued that AAC should be a recommended practice when VRP researchers
are doing comparative experimental work.

¢ Software: Designed and programmed a tool for designing and running
AAC experiments. It includes wrappers for the seven AAC methods and
eight VRP metaheuristics used in this study and allows easy extendability.

6.7 Author’s contributions

I was the corresponding and the main author of all six papers. Only Paper PI
contains original content written by two of the co-authors: Tuukka Puranen con-
tributed text on how the software product lines and vehicle routing systems can
be combined, and Antoine Kalmbach provided a description of the automatic
data integration and the preliminary results for its application. Still, it should
be noted that all papers went through many writing iterations and the review
and revision work from all co-authors was an instrumental part of the writing
process.
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Many of the ideas and approaches used in this dissertation were heavily
influenced by the discussions between me and the co-authors. This dissertation
can first and foremost be seen as a continuation of the work done by Tuukka
Puranen, who in his doctoral dissertation proposed a metamodel and a model-
driven software production line approach for building vehicle routing systems.
His efforts, together with the work of the other members of the Research Group
on Computational Logistics of the University of Jyvdskyld, created the foundation
for the presented research and heavily influenced the formulation of the research
problems and objectives. Furthermore, recognizing how the data flows through
a vehicle routing system, what kind of transformations are required, and what
kind of variability points are exposed should be credited to Tuukka Puranen and
the other members of the research group involved in creating the vehicle routing
system research prototype.

Regarding the individual papers, Nysret Musliu was familiar with earlier
studies on applying automatic algorithm configuration and algorithm selection
techniques to related combinatorial optimization problems. His input and su-
pervision initiated and had a major impact on the research reported in Paper
PVI and Paper PV. Similarly, the earlier research carried out by Tommi Kéarkkai-
nen shared similarities with the work in papers PII and PV. Furthermore, one
of his methods for discovering important features based on hybrid autoencoders
(Kéarkkdinen and Rasku, 2019) was one of the feature importance analysis meth-
ods in Paper PV. However, while I co-authored that paper, my role was minor
and the study is not included in this collection of original papers. Overall, the
guidance, questions, and recommendations of Tommi and Nysret were invalu-
able in formulating the research goals and designing the required experiments
for all these works. However, I worked independently on formulating the re-
search questions, choosing the appropriate research methods, implementing the
necessary tools, preparing and carrying out the necessary experiments, and for-
mulating the main contributions of the individual papers.

I developed multiple research tools and software artifacts during the course
of the outlined research. I wrote the automatic algorithm configuration frame-
work that made it possible to carry out the computational study of Paper PVL
Similarly, the visualization tool in Paper PII, and the efficient solution generators
that could produce the data to be visualized, were written solely by me. How-
ever, the local search trace and its neighborhood was generated using the research
VRP solver prototype of the research group, which was slightly modified and run
by Pekka Hotokka. Also, the preliminary results on automated data import and
model inference in Paper PI were provided by the research prototype written by
Antoine Kalmbach. For Paper PIII, I was again the sole programmer and imple-
mented a total of 76 feature extractors. I extended this feature extraction frame-
work twice for subsequent studies. The final version of the feature extraction tool
used in Paper PV implements 100 feature extractors. However, the largest imple-
mentation effort in this work involved writing VeRyPy, which is the open-source
library implementing 15 classical CVRP heuristics, many local search heuristics,
and a few additional less-known constructive heuristics.
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Finally, all papers included a large amount of experimental empirical work.
I was responsible for setting up the computational experiments, running them,
and processing their results. This involved, sometimes extensive, scripting and
analysis work. In addition to this experiment management, the generation of
most of the figures and tables was done using scripts designed and programmed
by me.



7 DISCUSSION

This dissertation illustrates how recent advances in machine learning and com-
binatorial optimization allow leveraging the diversity of the existing routing al-
gorithms which, ultimately, should allow pushing the state-of-the-art (Kotthoff,
2014). More specifically, this research has presented a vision and suggestions for
realizing a next-generation vehicle routing system with increased self-adaptivity—
the goal being a less-labor-intensive customization process. We have also argued
that automatic customization of the system for each specific operational context
yields numerous benefits. Most centrally, this is expected to improve the quality
of the results and make the systems cheaper to deploy. Our results suggest that
meta-optimization can be used to automate some of the tailoring work, which
would otherwise require hard to find and acquire expertise.

What follows is a more detailed discussion of the results and contributions
leading toward the goal of automated vehicle routing system customization. Also,
the validity, limitations, and future research topics are discussed at the end of this
chapter.

7.1 Discussion of the results

According to de la Banda et al. (2014), in order to deliver effective high-level,
easy-to-use optimization to everybody, modern optimization technology needs
to be made easier to use and deploy. To overcome this challenge, they called for
major scientific contributions in three related areas: 1) modeling, 2) model transfor-
mations, and 3) solver technology. The focus of de la Banda et al. was constraint
programming, but it is easy to see how similar ideas involving observation of
the problem and solution search space to outperform more general-purpose al-
gorithms can be applied with methods targeting vehicle routing problems.

The research presented in the six original papers that make up this disser-
tation aim to address this challenge by making contributions in all three areas.
More specifically, the dissertation contributes by:



76

1)

2)

3)

Giving the VRP researchers visual tools (PII) and descriptive metrics (PIII)
to observe the problems they are investigating. This helps them to under-
stand the structure and idiosyncrasies of problem instances. de la Banda
et al. (2014) explicitly mention combinatorial substructures and stochastic
information as a few of the possible ways of describing the problems, but
there are many others as we have demonstrated in Paper PIII. We have also
shown how such tools can be useful for debugging, explanation, and explo-
ration of the algorithm’s behavior. For example, the visualization technol-
ogy presented in Paper PII contributes by allowing an intuitive understand-
ing on the behavior of a heuristic search procedure through visual exami-
nation of its trace.

Proposing the idea of optimization model inference with some preliminary
results (PI). Using the model transformation terminology in de la Banda et
al. (2014, 3.2), we can see that this dissertation contributes to the automatic
derivation of design models (i.e., optimization models). The presented research
also provides empirical evidence on how high-level features (PIII) and VRP
algorithm performance are linked (PV).

Presenting empirical results on applying automatic algorithm configura-
tion (PVI) and algorithm selection (PV). Algorithm portfolios and automatic
model and algorithm tuning (configuration) can be considered to be central
techniques in automatic hybridization of combinatorial optimization solvers
(de la Banda et al., 2014) and these topics are closely related to the research
on hyper-heuristics (Smith-Miles, 2009; Pappa et al., 2014). A closer inte-
gration of the VRP heuristics would, indeed, lead to hybridization (if done
manually) and hyper-heuristics (if automated). Due to the similarities of
these approaches, we argue that the presented research provides original
and useful insights on how to address this third challenge regarding solver
technology. Furthermore, de la Banda et al. (2014) explicitly call for research
and tools that can automatically tune optimization models and algorithms,
and such work is presented in Paper PVI. They also emphasize the impor-
tance of tools that allow exploration and comparison of the performance
of different optimization techniques (PIV), especially from the search space
exploration point of view (PII).

Another trend in optimization technology is what de la Banda et al. (2014) call
data intensive optimization. With machine learning, the data can be used to aid and
guide the optimization technology. Data-intensive techniques have developed to-
gether with big data and increasing computational capacity. We have seen an ad-

vent in the use of massive vectorized computing with graphical processing units

(GPU) and data centers with scalable parallel processing power. Optimization
technology has been, and will be, benefiting greatly of these advances; these ad-

vances and techniques will allow us to build next generation optimization tech-
nology that can be utilized without needing an expert to constantly tweak the

system.
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Gathering the necessary data for teaching the models for algorithm selec-
tion and automatic algorithm configuration is a computationally intensive task.
The advances in parallel computing power make it feasible to explore the config-
uration and design choice space to a unprecedented extent as shown in Papers
PVI and PV. Ultimately, we have demonstrated how such data can be used to
build models that capture the interactions among the triplet: problem instance,
algorithm and its parameter configuration, and performance measure. In essence,
such meta-optimization techniques learn the patterns in the performance data to
create a model with a predictive power, be it predicting the best algorithm for a
given problem instance or a good parameter configuration.

Both automatic algorithm configuration and algorithm selection are data-
driven automation methods. As such, they benefit from a large number of prior
solution runs. As with all machine learning, the predictive power of the models
is heavily dependent of the amount and quality of the data. In this dissertation,
Papers PIII and PIV aim to address this dependency by proposing an extensive
feature extraction framework for characterizing the problem instances and a set
of 15 open-source implementations of the classical CVRP heuristics. As such, this
work also supports the call for reproducibility, replicability, and openness of the
research on vehicle routing algorithms (Sérensen et al., 2019), for example, in the
form of open-sourcing the relevant software artifacts.

Van Breedam (2002) analyzed the effect of parameters on VRP heuristics and
in the conclusions of his article, he proposed a checklist for building a system that
could automatically select and configure VRP algorithms. He pointed out that the
proposed actions would include a huge amount of experiments. Thus, due to the
constructive and experimental nature of our work, it is interesting to reflect the
contributions of this dissertation against his list:

1. Van Breedam: Determine the characteristics of a given VRP instance. One major
contribution of this work was the feature exaction framework proposed in
Paper PIII, which, in addition to those characteristics explicitly mentioned
in Van Breedam (2002), includes a comprehensive set of features derived
from the literature on TSP and VRP meta-optimization and solution space
analysis. Furthermore, we provide a feature selection based analysis on the
relative importance of these features in Paper PV and our work on VRP
visualization and fitness landscape analysis presented in Paper PII offers
insights on the properties of VRP solution search spaces.

2. Van Breedam: Determine the most efficient heuristics to solve a VRP instance.
This required access to a comprehensive selection of heuristics. For practi-
cal reasons, we wanted to limit our study to deterministic algorithms, and
because such implementations were not readily available, we proceeded to
recognize and implement 15 classical CVRP heuristics ourselves. The cor-
rectness of the implementations was demonstrated through a replication
study. This work is covered by Paper PIV. The implementations allowed
us to determine the best classical heuristic for all problem instances in the
commonly used CVRP benchmark sets.
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3. Van Breedam: Determine the best parameter values for the heuristics. This task
was explored in Paper PVI, where we proposed extensive computational ex-
periments in automatically configuring the parameters of eight VRP meta-
heuristics using seven automatic algorithm configuration methods. Based
on that, we could give recommendations on how to do effective parame-
ter meta-optimization with VRP metaheuristics and which kind of accuracy
and improvements one can expect. In Paper PI, we showed similar results
on problem instances derived from real world routing cases. Paper PIII
further extended the experiments with instance-specific algorithm config-
uration, where the features (characteristics) of the problem instances were
used to aid the prediction of good parameter values for a problem instance.

4. Van Breedam: Generate a solution for the given VRP instance. Feasibility of
the algorithm selection approach was shown in Paper PV, where machine
learning classifiers were able to predict a suitable solver with good accuracy.
An ensemble of simple VRP algorithms guided by machine learning seems
to be a feasible strategy to get better solutions compared to using a single
well-regarded algorithm.

Thus, this dissertation addresses all of the items on the Van Breedam (2002) check-
list and offers practical insights on how the diagnostic system he envisioned
could be implemented.

Similar fundamental challenges were recognized by Desrochers et al. (1999)
but with a stronger focus on commercial vehicle routing systems. They stud-
ied how to represent and manipulate meta-knowledge on problems and models
and how to utilize it in decision support systems targeting vehicle routing prob-
lems. Their proposed approach relied on using a mathematical modeling lan-
guage for mixed integer problems. However, the industry standard in solving
real-life transportation optimization has moved towards metaheuristics (Laporte
et al., 2014) for which the modeling is more conveniently done using alternative
approaches. Related to this development, Puranen (2011, p. 52) differentiates
formulating the problem and modeling it: formulating is stating the problem in
the form of objective and constraints, but modeling “involves transforming the
required aspects of reality into a mathematical abstraction that can be operated
on by algorithmic means.” A natural nonlinear encoding for a VRP is one that
uses graphs. This is also the reason why the use of a routing metamodel and
the associated model transformations described in (Puranen, 2011, Chapter 5) is
the approach advocated by this dissertation. We have argued that assuming the
availability of such modeling and solution capabilities allows automating some
of the customization tasks, and is one of the main reasons our proposed approach
differs from the one envisioned by Desrochers et al. (1999). Instead of manually
building a knowledge base, we have applied a more modern machine learning
approach to automatically discover the patterns and relations between problem
types, instance features, modeling constructs, and algorithm performance from
the data. This approach allows using meta-optimization to automatically fine-
tune the algorithmic components inside a vehicle routing system.
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FIGURE9 The included papers in relation to the data flow through a VRS. The model
proposed in Paper PI and the other papers are assigned to their respective
transformations.

Of particular interest in this dissertation was the data flow through a vehicle
routing system. It defines how the problem instance is passed from one sys-
tem module to another. This process is illustrated in Figure 9, which describes
how the input data of describing a planning task ultimately leads to a transporta-
tion plan after having gone through several transformations. The transformations
convert the problem between different representations and abstraction levels so
that it is in the correct format used by the different modules. As one can see, all
of the original papers are associated to one of these transformations.

In this disseration, we have argued that the flow of information and man-
aging these transformations are the main aspects affecting the customization, de-
ployment, integration, and utilization of vehicle routing systems. These transfor-
mations can be linked to the seven variation points of the software production
line proposed by Puranen (2011, pp. 201-202). Below, we have reordered and
grouped them to match the numbered transformations illustrated in Figure 9.
The VRP is solved by:

1. populating the domain model by wiring data connections and by using the
task generation process;

2. generating the optimization model;
3. selecting the solution methodology and

4. its parameters;
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5. applying the solution methodology;

6. interpreting the resulting decision variables back to the concepts used in the
domain model; and

7. producing an actionable plan using the presentation model and the opera-
tional terminology (on the presentation layer).

Hence, our proposed data-driven approach to automate the configuration of such
customizable optimization software is similar to the one described by de la Banda
et al. (2014). They envisioned how the runtime analysis of the data, concep-
tual/domain model, optimization model, and algorithms could be used to dis-
cover information related to the transformations between them, and how this
could help in solving the problem effectively. They propose transferring infor-
mation about the original problem through domain and mathematical models to
the solver, and expect that this should allow faster convergence towards good so-
lutions. This dissertation demonstrated how instance-specific algorithm configu-
ration (PIII) and the algorithm selection (PV) can be used to realize this vision.
Furthermore, Paper PI proposed some possible techniques on automating the
data import phase, including some preliminary results on automatically popu-
lating the domain model from an unstructured or structured data source. Hence,
our contributions allow moving towards a situation where “the benefits of ... op-
timization technology can be utilized without expert knowledge” (de la Banda et
al., 2014).

7.2 Conclusions and future research directions

This dissertation is built around the six articles that focus on an analysis of vehi-
cle routing problems, problem instances, heuristics, and search spaces. The mo-
tivation of this work was to explore ways vehicle routing system customization
efforts could be automated.

The main contributions, in addition to the description of the customiza-
tion workflow itself, are related to the applicability of the meta-optimization ap-
proach. We have shown that the use of state-of-the-art automatic algorithm con-
figuration techniques to configure VRP metaheuristics provides several benefits:
it is more thorough and less tedious than manual configuration and even mod-
est automated configuration efforts increase the algorithm performance over de-
faults. We have also proposed and demonstrated the usefulness of an extensive
set of features for describing vehicle routing problem instances and search spaces.
These features were used in instance-specific automatic algorithm configuration,
clustering of well-known academic problem instances, and in predicting the most
suitable classical VRP heuristic for a given problem instance. In addition to the
empirical support on the suitability of the algorithm selection approach, the last
contribution also included identification of the most relevant features among the
proposed set of VRP instance features.
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The constructive research methodology (Lukka, 2003) used in this disserta-
tion allowed us to contribute to the knowledge on how to design and implement
a vehicle routing system that is customizable with meta-optimization, with a spe-
cial focus on its solver component (transformations 3, 4, and 5 in Figure 9). The
conclusions are supported by a set of extensive computational experiments and
the contributions align with the recent trend in VRP research towards more uni-
fied and self-adaptive solution methods.

For operations researchers, this dissertation offers tools and techniques for
visualizing, analyzing, and solving vehicle routing problems. These tools have
the potential to further our understanding of the nature of vehicle routing prob-
lems and how to solve them effectively. Regarding recommendations on how to
conduct experimental studies on VRP algorithms, we have demonstrated how
automatic algorithm configuration is important for replicable algorithm compar-
isons, and how inherent properties of individual problem instances are correlated
with the performance of heuristic VRP algorithms. We have also open-sourced
the code of our software library implementing 15 classical CVRP heuristics. This
library can be used not only to replicate results but also as a foundation for im-
plementing novel TSP and VRP algorithms. Hence, our work contributes to the
recent and important discussion on reproducibility, replicability, and openness of
the research on vehicle routing algorithms (Sérensen et al., 2019).

Regarding the limitations of the conducted research, we can reflect the con-
tributions against the transformations inside a vehicle routing system (Figure 9).
This dissertation provided in-depth exploration of only the transformations in-
volving the solver component. This focus on meta-optimization was deliberate.
Our research goal was to proceed toward the automatic customization of vehicle
routing systems and the questions related to the self-adaptivity of the solver rec-
ognized earlier by Van Breedam (2002); Sorensen et al. (2008) and Neittaanmaki
and Puranen (2015) seemed most relevant to the VRP researchers. The methods
proposed in this dissertation allow increasing the level of automation in vehicle
routing systems, but more work is still needed to further automate the adaptation
and deployment of such systems.

A natural direction for future research would be to shift the focus from off-
line to on-line adaptivity, that is, to methods that adapt the algorithms during the
optimization. Experimenting with hyper-heuristics (Burke et al., 2013) and re-
lated reactive search and optimization methods (Battiti et al., 2010) in the context
of vehicle routing systems would verify the applicability, advantages, and dis-
advantages of such methods in a commercial vehicle routing context. Advances
in adapting these techniques could make it easier for non-experts to use power-
tul vehicle route optimization tools. Furthermore, in this dissertation, we have
discussed only relatively simple VRP models. Meta-learning with metaheuris-
tics targeting rich models (Lahyani et al., 2015; Vidal et al., 2014) and stochastic
or dynamic (Pillac et al., 2013) VRP variants could reveal new interesting behav-
iors, strengths, and weaknesses between the algorithms and models. This would
also warrant extending our feature extraction framework to capture the details of
these more complex VRP variants.
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A more industry-motivated future research direction would be to concen-
trate on the first two steps of Figure 9. We have already explored some possibili-
ties in automating the data integration, but only preliminary results exist for the
statistical-inference-based mapping of the input data to the domain model (Kalm-
bach, 2014). It would be interesting to see this approach extended to include the
transformation of the domain model to the optimization model. Here, the model
transformation could perhaps be inferred using the problem instance features
proposed in this dissertation. Adapting the VRP taxonomies and description lan-
guages, such as the one proposed by Desrochers et al. (1999), to encode the VRP
variant information would probably be beneficial for model inference. Also, in
this dissertation we concentrated on the forward-looking data transforms and
did not consider the transformations back from the mathematical model to the
domain level and, ultimately, into an actionable plan in the format of printed
maps, delivery schedule, or load manifests. Instead, such transformations were
left as a future research topic.

Finally, we acknowledge that challenges with the data quality, availability,
and integration are very important to successful vehicle routing software deploy-
ments (Neittaanmdki and Puranen, 2015). However, many of these topics more
naturally belong to the management side of management science and were, thus,
left outside of this work. Still, automation, in the form of validation, anomaly de-
tection, and imputation of the missing data, could be part of the solution to such
data quality concerns. After the automatic customization of vehicle routing algo-
rithms is addressed, we hope that machine-learning-powered data management
approaches can be used to remove some of the remaining barriers for effortless
industry-wide deployment of vehicle routing systems.
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YHTEENVETO (SUMMARY IN FINNISH)

Viitoskirjassa tutkittiin kuljetustenoptimointijdrjestelmien rdataldinnin automa-
tisoimista metaoptimoinnin ja koneoppimisen avulla. Kuljetusten optimoinnissa
tehtdvdnd on suunnitella reitit, jotka palvelevat joukon asiakkaita mahdollisim-
man tehokkaasti. Tehtdvdd on tutkittu 60-luvulta ldhtien, mitd heijastelee myos
saatavilla olevien ratkaisualgoritmien suuri maara. Lisaksi erilaisten kuljetusteh-
tavien vililld on suuria eroja, silld reittien suunnittelussa huomioitavat erilai-
set rajoitteet ja tavoitteet ovat moninaisia. Siksi algoritmeja ja jarjestelmid jou-
dutaan ldhes poikkeuksetta raatdaloimaan kuljetustoiminnan tarpeita vastaavak-
si. Erikoisratkaisu myos yleensd huomattavasti parantaa optimoitujen suunnitel-
mien laatua. Tama raatalointityé on kuitenkin haastavaa ja kallista.

Vastatakseen ndihin haasteisiin tutkijat ja jarjestelmétoimittajat tasapainoi-
levat yleiskdyttdisyyden ja erillisratkaisuiden vililld. Yleiskadyttoiset mallinnus-
védlineet ovat jo laajalti kdytossd, mutta algoritmeja rdatdloiddadn ja kehitetdan
edelleen paljon tiettyihin yksittdisiin kdyttotarkoituksiin. Vditoskirja tarjoaa rat-
kaisuksi metaoptimointia eli optimointimenetelmien optimointia. Mikali tata teh-
dddn koneoppimisen avulla, historiatietoa voidaan kadyttdd optimointimenetel-
mien suorituskyvyn sadnnonmukaisuuksien loytdmiseen ja hyddyntdamiseen.

Ensimmaisessa vditoskirjan julkaisussa tunnistettiin ne kuljetusten optimoin-
tijarjestelmédn kohteet, joita mukauttamalla rdatilointid tehdddn — ja jotka tdten
ovat kiinnostavia kohteita radtdloinnin automatisoinnille. Julkaisussa listattiin
erilaisia vaihtoehtoja dataohjatun muunneltavuuden saavuttamiseksi ja esiteltiin
konepaittelyyn perustuvan dataintegraation ja automaattisen algoritmien kon-
tiguroinnin kautta ldhestymistavan hyotyjd. Seuraavat kolme julkaisua tutkivat
kuljetusten suunnittelutehtdvien, niiden hakuavaruuksien ja niiden ratkaisemi-
seen kdytettyjen heuristiikkojen ominaisuuksia. Piirteytyksen avulla kuljetusten
suunnittelutehtdville voitiin laskea niiden ominaispiirteitd kuvaavia tunnusluku-
ja. Viidennessd julkaisussa nditéd piirrearvoja kdytettiin ennustamaan paras rat-
kaisualgoritmi viidentoista klassisen heuristiikan joukosta, joiden kuvaukset 16y-
tyvét neljannestd julkaisusta. Viimeinen, eli kuudes artikkeli sisdltda laajan para-
metrien automaattista konfigurointia kéisittelevan laskennallisen tutkimuksen.

Yhdessd julkaisut osoittavat, ettd metaoptimointi pystyy olennaisesti paran-
tamaan olemassa olevien kuljetusten optimointialgoritmien suorituskykya ja it-
sesddtyvyyttd. Tietomassoja hydodyntamaillad osa tyoldastd jarjestelmien radtaloin-
tityostd voidaan téten siirtdd tietokoneelle. Tama tekee kuljetusten optimointioh-
jelmistoista helpompia ja halvempia raataloida eri kayttotarkoituksiin. Jo nykyi-
sellddn kuljetusten optimoinnilla voidaan sddstdd kuljetuskustannuksissa 5-20%
verrattuna kdsin tehtdvaan suunnitteluun. Optimointitekniikan avulla suunnitte-
lu nopeutuu, suunnitelmien laatu kasvaa ja se saadaan joustavammin tukemaan
yrityksen muita prosesseja. Viitoskirjassa esitellyilld menetelmilld voidaan var-
mistua siitd, ettd kdytettdvissd on aina sopiva ja oikein viritetty optimointime-
netelmd. Entistd paremmat suunnitelmat tuovat lopulta my6s makroekonomisia
hyotyjd, kuten sujuvamman liikenteen ja pienemmat kuljetuspadstot.
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Automatic Customization Framework for Efficient
Vehicle Routing System Deployment

Jussi Rasku, Tuukka Puranen, Antoine Kalmbach, and Tommi Kérkkéinen

Abstract Vehicle routing systems provide several advantages over manual transportation
planning and they are attracting growing attention. However, deployment of these sys-
tems can be prohibitively costly, especially for small and medium-sized enterprises: the
customization, integration, and migration is laborious and requires operations research ex-
petise. We propose an automated configuration workflow for vehicle routing system and
data flow customization, which provides the necessary basis for more experimental work
on the subject. Our preliminary results with learning and adaptive algorithms support the
assumption of applicability of the proposed configuration framework. The strategies pre-
sented here equip implementers with the methods needed, and give an outline for automat-
ing the deployment of these systems. This also opens up new directions for research in ve-
hicle routing systems, data exchange, model inference, automatic algorithm configuration,
algorithm selection, software customization, and domain-specific languages.

1 Introduction

Globalization, increased goods consumption, and economic changes pose challenges on
transportation logistics. With increasing scale, tightened competition, and environmental
concerns, dispatchers stretch their planning capabilities to the limit. Handling all the fac-
tors may even be impossible for the human planner [21], which has spawned an interest
in commercial automated route planning systems. Combined with the rapid development
of IT, this has created a transportation planning tools industry serving operators working
with the increasingly complex logistics systems [14].

The advantages of these systems are well known: savings up to 30% in operational
costs, reduced planning time, and minimization of human error [42]. Drexl [9] also note
the macroeconomic benefits such as improved traffic flow and lowered emissions. If ap-
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plied at a large scale, deployment of Vehicle Routing Systems (VRSs) can lead to signifi-
cant economic and environmental benefits.

A VRS is described in Drexl [9] as follows: it is an operational planning software that
can read in data with vehicles, drivers, depots, customers, and their respective requests
connected to geographical locations. The data defines the specific problem scenario. A
map view is often used for visual data verification. A VRS then allows manual, interactive
or fully automated (optimization-based) construction of routes. The algorithms, that can
build a routing plan conforming to the operational rules such as work time regulations,
are the key feature of the system. Finally, the system interacts with an existing resource
management system, or allows saving and printing the plans for operational use.

The operation environment for a VRS is complex and dynamic [42, 5, 31] and poses
hard to match requirements for commercial software. In a survey from an industry view-
point, Hoff et al [14] raised a concern that while academic Vehicle Routing Problem (VRP)
research has provided efficient algorithms for these problems, they typically use idealized
models which omit important facets such as driver breaks, work time regulations, turning
restrictions, variation of service times, and congestion. According to Partyka and Hall [32]
the providers are having difficulties in providing holistic solutions due to this complexity.

In addition to shortcomings of the idealized models, different logistic operators have
differing requirements [5]. As it is not commercially viable to build a unique VRS for each
of them [42] the product is made customizable. Here, a VRS designed for easy deploy-
ment needs to capture the features of the common VRP variants. Additionally, solving the
problems effectively calls for robustness, adaptivity, and reactivity [42].

According to Partyka and Hall [32] routing installations require heavy customization
which is mainly done manually. A survey of the Dutch VRS market by Kleijn [21] agrees:
most of the software was at least partially tailor-made. The issue has been identified also
in academic research. Puranen [36] proposes the use of Software Product Lines (SPL) as a
mass-customization strategy. It is a promising approach, as these techniques exploit com-
monalities in a system to effectively manage variation. Applying SPL in other application
domains report order of magnitude reductions in time-to-market, engineering overhead,
error rates, and cost [24]. Preliminary experiments in [36] suggest that these benefits are
achievable also with VRSs. The extended rationale for the work, as presented in [31], is
that the underutilization of route optimization is not due to the shortcomings of models
and algorithms, but due to problems in deployment.

The challenges in implementation and deployment call for an approach that could for-
ward the adoption of optimization. In this paper, we propose such an approach as a set
of actions and techniques to automate the flow of data through a VRS. Acting upon pre-
sented ideas allows utilization of the recent advances in Software Engineering, Machine
Learning, and Operations Research.

In related works Desrochers et al [8] describe a VRS that could be used by a consultant
with a basic understanding of mathematical programming. Similarly, Maturana et al [30]
describe a decision support system generator that substantially lowers the cost of devel-
oping such systems, although in their solution the model and data structures has to be still
defined manually. Also, Hoff et al [14] envision a tool exhibiting some of the properties
presented here. Despite these ideas, a planning and decision support system that allows as
extensive automation as ours has not been previously described. No customization frame-
work for the needed automation methods has existed, and their interaction within VRSs
has not been previously explored. In this paper, we address this by providing an automated
configuration workflow for VRSs and a review on the automation methods for different
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phases of the process. The customization framework should be of interest not only to op-
erations researchers, but also to providers of VRSs.

For an overview, Section 2 provides a review of the trends in vehicle routing research.
In Section 3 we recognize the opportunities for automation in customizing from data flow
perspective. Section 4 we present our proposition for solving some pressing problems in
VRS deployment and Section 5 reviews our preliminary experimental results. In Section
6 we conclude our study.

2 Trends in Vehicle Routing Problem Research

VRP has been under intensive research ever since was first introduced by Dantzig and
Ramser [7]. VRP concerns the task of finding optimal routes for a fleet of vehicles leaving
typically from a depot to serve a specified number of requests. Objectives can be anything
from minimizing the number of vehicles or total travel distance to complex multiobjective
business goals. Over 50 years of academic interest has experienced many shifts of research
focus. The trends in VRP research as recognized, e.g., by Puranen [36] are illustrated in
Figure 1.

models: idealized —> rich — unified — inferred

methods: simple —  refined —> adaptve — learning

Fig. 1: Trends in vehicle routing research. Adapted from [36]

The early models were idealized, partly due to the limitations of computational hard-
ware and solution methods of the time. Since the early days, the trend has been towards
more complex and more realistic “rich” problems [42, 14]. Rich models extend the clas-
sical formulation with complex decisions and objectives as well as can introduce many
operational constraints. In addition, a number of new aspects have been proposed; for ex-
ample Hoff et al [14] call for more explicit handling of stochasticity and risk in the models,
and stress the need for research on real time and dynamic routing. For reviews on rich VRP
research in the context of commercial solutions, we refer to Hasle and Kloster [13], Drexl
[9], and Briysy and Hasle [5]. Recently, there has been efforts to develop unified model-
ing approaches with generic and flexible modeling structures that can capture the aspects
of different VRP variants [40, 13, 18, 48, 37]. Vidal et al [45] make a synthesis on previous
research and propose a naming scheme for these variants. Unified modeling frameworks
often provide a Domain Specific Language (DSL) for describing the problems. One of the
contributions of this paper concerns the rightmost transition in modeling: we argue that
the advances in unified modeling enable model inference where composite optimization
model can be automatically or semi-automatically formed by inferring the composition of
the model from the problem instance data.

The solution methodologies have followed a similar trend. The first methods relied on
simple heuristics or on mathematical programming as in the original paper by Dantzig
and Ramser [7]. The growing problem size and model complexity led to interest in more
refined and sophisticated methods. However, due to scale of the real-life problems, exact
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solution methods cannot always be used. Thus, a number of heuristics and metaheuristics
have been proposed. For surveys in solving VRPs, see, e.g., Toth and Vigo [44], Cordeau
et al [6], and Laporte [26]. Recently, there has been interest in adaptive and self-adjusting
methods where algorithms observe the optimization progress and react accordingly. This
trend was recognized, for example, in the survey by Vidal et al [46]. A newer trend is
the application of learning hyperheuristic systems, which involve using data-driven tech-
niques that enable and disable different algorithms depending on the observed search
space. This involves identifying situations similar to those found in the history data or
knowledge model. For a survey on using hyperheuristics in combinatorial optimization
we refer to Kotthoff [23].

The disadvantage of unified and “rich” models and refined versatile solving methods
is that they may make the deployment more complicated [31]. Also, note that in most of
the case studies in the aforementioned surveys, the derivation of the model, selection of
the algorithms, and fine tuning of the methods is done manually by the researchers based
on their expertise. Unfortunately, this does not scale in a commercial setting and poses a
barrier for the deployment of VRSs.

3 Data Flow in a Vehicle Routing System

In this section, we outline the data flow through a VRS, or more specifically, how the
problem instance is passed from system module to another. The flow of information is one
of the main aspects affecting the deployment, integration, and utilization of the system.
Describing the modular structure of a typical VRS in detail is omitted, and the reader is
referred to Drexl [9], Puranen [36], and Briysy and Hasle [5].

The data flow can be divided into phases as illustrated in Figure 2. First, the data is read
from a data storage, such as files or relational database, and then constructed into a domain
model (1). Domain model offers primitives for concepts such as truck, driver, and request.
The domain model is then translated into optimization model (2). This involves describing
the decision variables, the objective function, and the necessary constraints. Note that a
DSL or similar technique has to be used to capture the aspects of the specific routing
problem. Result of this transformation is a mathematical optimization model that can be
then completed with the problem instance specific variable values. The modeled problem
can now be fed to the routing algorithms residing in the solver module (3). Effectiveness of
the algorithms depends heavily on the algorithm parameters [15]. Thus, when adapting a
VRS care is needed to derive a set of suitable parameter values (4). After the optimization
(5) the results can be transformed back to the primitives of the domain model (6) which in
turn are translated into an actionable plan (7).

Provided that the VRS is generic enough to model a wide set of different and “rich”
VRP variants, and that it includes a set of modern metaheuristics and local search based
routing algorithms, the biggest effort in adopting a VRS for a new customer is to make
sure that the data is read and processed correctly [31]. VRS providers have several options
to manage the data flow:

(a) Force an identical data flow for all customers. This will remove much of the flexibility
and only a narrow set of problem types can be efficiently addressed by the VRS.
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Customer Domain Optimization
data 1 model 2 model

Algorithm Routing
parameters 4 algorithms

. Optimization
-
Plan <Z—  Solution 6 results 5

Fig. 2: Data flow of a problem instance trough a VRS.

(b) Customize the data flow manually on a case-by-case basis. Here multiple model vari-
ants and use cases can be supported, but the customization heavily depends on manual
work and expertise.

(c) Outsource the customization to a third party or to the customer by providing a way to
externally configure the system via, e.g. a DSL. The challenge is to provide enough
training and sufficient tools for the third party.

(d) Automate the customization so that fixing any given set of functionality inside the
VRS is done automatically based on the customer input and data. In addition, if the
provider has access to the history data during the customization, the automation might
even be learning, that is, with every new modeled problem and deployment the soft-
ware gains experience.

Designing the software in a way that the flexibility is maximized makes the system
applicable in larger number of different contexts, thus making the approaches (c) and (d)
feasible. The challenge for (c) is that many logistic operators are small, and lack the neces-
sary expertise to understand the inherent complexity in selecting, configuring and deploy-
ing VRSs [31]. Therefore, out of these, the automation based approach (d) is the one that
is more scalable and cost-effective. This validates the need for the proposed customization
framework.

Each of the data conversion phases Figure 2 expose a potential point of customization.
In practice, this variability is exposed by configurable behavior of the software system, and
it needs to be managed somehow. From a theoretical perspective, this has been addressed
by the techniques in the area of software product line engineering (SPLE) [35]. In SPLE,
the developed system is divided into two layers: domain layer and application layer. The
domain layer of the system captures the generic properties of the current domain, and
the application layer is used to define customized application instances with variability
points. It is a predefined point in the system, in which variation between the applications
occur [19]. The specialized expertise required in the customization of VRSs prohibits
manually managed mass customization. Instead, we suggest the use of machine-learning
based adaptive mass customization techniques, and argue that these represent one of the
key technologies in achieving cost-effective routing system deployment.
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4 The Automation and Customization Framework

Our main contribution is an outline, or a vision, of how highly automated and easy-to-
deploy VRS could be constructed. This customization framework could also enable ex-
perimentation with different automation approaches, but here we concentrate on the tech-
niques we have either successfully applied ourselves, or see as pragmatic solutions to
the presented opportunities for workflow automation. We limit ourselves to well-known
methods used in related fields, and assume a generic solver module capable of expressing
a wide set of “rich” VRP variants. The section follows the structure of Figure 2 with each
phase having a corresponding subsection.

4.1 Interpreting Customer Data

Input data — Domain model

Interpreting the customer data and transforming it into routing problem starts with the
creation of a domain model, which represents the real world entities that form the routing
problem. The transformation task consists of taking the problem data as an input and then
extracting the data into the domain model. In the simplest case, one can specify a data
format that is required and the VRS simply parses this data into a model. It becomes
problematic if the parser needs to support different formats. Maintaining numerous many-
to-one mappings can quickly become an onerous task.

A likely scenario for data integration is a relational dataset, such as relational database,
but in general, any kind of flat dataset with interconnected files can be used. To illustrate,
one part of the dataset could consist of ordinary files that pertain to drivers and vehicles,
and the other deliveries and locations. Finding semantic links between the relations in
these datasets is what we call join inference, which in turn is based on foreign key discov-
ery [1, 41]. We propose join inference as a model that can learn the semantic links between
a set of relations. It is used to produce a cohesive union of data, the joined relation.

After join inference has been done, we propose the use of schema mapping [4] to ex-
tract the required information from the data. Schema mapping consists of finding pairings
between two schemas. A schema is a formal description of the information contained in
a relation; crudely, this would be a set of data attributes, or column headers. Having to
find these attribute pairings makes the problem a kind of data exchange problem [22],
where the goal is to take data from different sources and assimilate it, in this context, to
the domain model of a VRS.

4.2 Inferring the Optimization Model

Domain model — Optimization model

After mapping the input data to the domain model, it must be translated into a format
understood by the VRP solver. This includes choosing an optimization model. We were
unable to find related work on automating this step. Therefore, we proceed to propose four
approaches for implementing such an automated transformation:
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1. Separate models: methods from Section 4.1 can be used on domain model to map it
against a selection of optimization models. Out of these, the one with the best fit is
selected and completed with instance data. This is suitable approach only if a VRS
has support for a limited number of VRP variants.

2. Coupled models: a number of domain and optimization models are coupled together
with predefined pairwise transformations. Data interpretation from Section 4.1 is done
with all domain models in the coupling set and then the one with the best schema map-
ping (along some criteria) is selected. This has the same constraints as the previous
approach.

3. Model composition: the optimization model is composed of different objects that
may correspond to partial objectives, decisions, or constraints. Filled domain model
is matched against each optimization model component and if a threshold is crossed,
the component is included to the composite model.

4. Model reduction: alternatively, the initial optimization model may be “complete” or
unified in a sense that is capable of expressing all the supported VRP features. After
doing schema mapping between the domain and optimization models, the unused ele-
ments, for which the variable values were not set, are removed from the optimization
model.

Besides domain model, other sources for deducing the optimization model include e.g.
the vocabulary used in the data. To illustrate, the field revealing that the transportation
involves people, refers to use of a dial-a-ride optimization model. The unified naming
convention for VRP variants in Vidal et al [46] might prove to be useful in recognizing
the different modeling constructs for the model inference. We note that the feasibility
of applying automation in this phase is uncertain, mostly because of the lack of prior
published research on the topic.

4.3 Selecting the Suitable Optimization Algorithms

Optimization model — Algorithm performance predictions

As mentioned earlier, industrial solutions tend to favor algorithms based on heuristics
[42, 5], and many implement a collection of different algorithms to gain extra flexibility.
It is also known, that the performance of an algorithm varies greatly between different
routing variants and even problem instances [15]. Therefore, it is important to use an
algorithm that is efficient in solving the given problem. Portfolio-based algorithm selection
techniques such as SATzilla [49] use statistical models to select the algorithm for solving
a given problem instance. In VRS this approach could be applied to select the higher
level algorithmic components: a metaheuristic could be selected based on the instance
characteristics and predicted performance.

Another way to improve solver performance is the utilization of so called hyperheuris-
tics. Instead of using a single algorithm or a manually constructed combination, a hyper-
heuristic acts as a high level learning “supervisor” algorithm that selects and combines
lower level algorithms from a portfolio on the fly.

Similar ideas have been tried in VRP, for example by using several simple heuristics in
varied order to escape local optima. Pisinger and Ropke [34] proposed a mehtod, where
adaptive heuristic selection is done among intensification and diversification heuristic op-
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erators. Garrido has proposed the use of hyperheuristics to select local search operators in
solving different VRP variants [11]. VRP was also one of the problem domains in Cross-
domain Heuristic Search Challenge (CHeSC2011) where a number of domain independent
hyperheuristics were evaluated [47].

We note that these schemes should be useful when adapting an industrial VRS to a
new set of end user provided sample problem instances. Our experimental work to explore
these possibilities is in preparation.

4.4 Configuring the Optimization Algorithm

Optimization model & Observed performance — Algorithm parameter values

The algorithms used to solve hard computational problems often reveal parameters that
can be used to change the behaviour of the algorithm and adapt it into solving a specific
problem instance [15]. The settings of the algorithm parameters have a substantial effect
on the performance of the algorithm. However, setting them manually is a non-trivial task
requiring expertise and effort trough experimentation [15]. Therefore, automatic search
approaches have been proposed to what is in literature known as the problem of automated
algorithm configuration (AAC).

In practice, AAC can be used to automatically adapt the a routing solver for each VRS
deployment. This allows the VRS provider to get the best performance out of the imple-
mented algorithms. Also, after enough experimentation, archetypes of routing problems
might emerge. With this history data the previous configuration effort could be reused to
provide more varied algorithm defaults for the solver. In fact, several AAC methods have
proven successful also with VRP [33]. Of particular interest in this context is the work
in Becker et al [3], where they tuned the parameters of a commercial VRP solver with
real-world routing problem instances. Our recent experimental work [39] verifies this and
gives suggestions on which AAC methods to use to configure VRP metaheuristics.

Current state-of-the-art methods like SMAC from Hutter et al [17] or I/F-Race from
Balaprakash et al [2] support all parameter types, are able to use extra information like the
parameter structure, interactions or hierarchies, and use several intensification techniques
that aim to save computationally expensive parameter configuration evaluations. The ben-
efits of can be striking: Hutter et al [16] were able to achieve up to 50-fold speedup over
the default parameters of the CPLEX solver.

The main challenge of applying AAC in routing, however, is that the runtime on real
world routing cases may be hours, especially in presence of complex constraints [3]. For-
tunately, the focus of the AAC research has been recently shifting onto overcoming these
challenges, see e.g. Mascia et al [29].

4.5 Solving the VRP Problems
Optimization model & Algorithms and their parameter values — Optimization results

The solver module is responsible of performing the optimization, which contains the tasks
of mapping of tasks to vehicles as well as routing the vehicles as efficiently as possible
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according to the objective function. The search is performed until a predefined stopping
criterion has been met, or the user ends the process.

From the process perspective, the ability to predict and adjust the runtime is a major
concern. The same system may be operated under tight time-constraints for planning,
whereas some users prefer the added robustness of a more thorough search. It is probable
that this variability is exposed e.g. as stopping criteria.

Another viewpoint to solver module customization is the availability of computational
resources. In many cases, the routing system is still run in a desktop environment, but
increasingly, optimization services are available through cloud services [5]. This opens
a new dimension in the customization, namely the allocated computing time, resources
and priority based on the customer requirements, service level agreements, and instance
characteristics, which all adds in to the complexity of deploying the system.

4.6 Interpreting the Optimization Results

Optimization model & Optimization results — Domain model (solution)

The optimization solver module usually returns the resulting plan in the mathematical for-
mat it uses internally. The interpretation of the optimization results has a direct connection
to the construction of the optimization model. Whereas in model construction the decision
variables are selected based the data in the domain model, in this phase the values of the
decision variables need to be interpreted back to the relations and values of the entities in
the domain model. We can use an inverse transformation of the one in Subsection 4.2 to
decode the solution.

One issue in the interpretation of the results is the type of the decoding. It may be that
the decoding is not one-to-one. That is, there may be multiple possible plans the optimized
solution can be decoded to. For example, in a classical VRP all the trucks are identical and
it does not matter how the vehicles and routes are mapped Puranen [36]. This potential
unambiguity may have undesired consequences if it is not taken into account.

4.7 Producing a Formatted Plan

Domain model (solution) — Output plan

Ultimately the user of a VRS needs to apply the plan into practice. Different users have
different formats, output data requirements, and reporting needs, so in the final data trans-
formation step an automated VRS could adapt its output to the format most convenient to
the end user.

If the interfaced system includes plan generation, it could be enough to do the schema
mapping procedure from Section 4.1 in reverse. The existing system would then compose
the output document to that is to be handed to the drivers. Another option is to infer the
structure of an example document using methods such as table extraction, visual object
and information extraction, and entity identification [27, 25]. This produces a template
which then can be filled with the relevant data from the solver. Similar technique has been
used, for example, in web page content and structure extraction to reformat the web page
content for mobile clients [25].
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5 Preliminary Experimental Results

To demonstrate the potential of automatic configuration of route optimization algorithms,
we configured the three metaheuristics (Record-to-Record travel RTR, simulated anneal-
ing SA, and ejection EJ) provided by the VRPH library [12] on four real world based
benchmark instances from the literature. For details of the experimental setup see Rasku
et al [39].

The target problem instances were F-n45-k4, F-n72-k4, and F-n135-k7 from
[10] with 45, 72 and 135 requests and the 385 request instance t ai 385 from Taillard [43].
The tai385 instance is generated based on the locations and census of population data
from canton of Vaud in Switzerland, whereas the instances F-n45-k4 and F-n135-k7
are from a day of grocery deliveries from the Ontario terminal of National Groceries Lim-
ited. The F-n72-k4 instance data is obtained from Exxon associated case involving the
delivery of tires, batteries and other accessories to gas stations. We used SMAC [17] (ver-
sion 2.3.5) and Iterated F-Race [2] implementation described in [28] (version 1.0.7) and
restricted to evaluation budget of 500 invocations. Each metaheuristics was configured
separately for each of the target problem instance. A 30 second cutoff was used for the
solvers.

Table 1: Average AAC results for all solver-instance pairs.
Results are given as percentage from the best known solution (relative optimality gap). Statistically better

(p < 0.05) results are bolded, evaluation budget violations of more than 5% are in italics, and the standard
deviation over 100 VRP solutions is given in parentheses.

Quality on the target instance Quality on the other instances
Target Defaults I/F-Race SMAC Defaults I/F-Race SMAC

F-n45 EJ 0.49 (0.35) 0.12(0.23) 0.15(0.25) 2.57(2.19) 2.21(1.41) 2.70(2.07)
F-n45 RTR  0.48 (0.40) 0.01 (0.04) 0.00 (0.00) 11.25(0.40) 5.32 (3.01) 6.02 (3.56)
F-n45 SA 0.30(0.34) 0.03 (0.14) 0.01 (0.09) 8.91 (1.54) 6.55(4.97) 7.68 (6.70)

F-n72 EJ 0.99(2.15) 0.19 (1.03) 0.16 (1.11) 1.98 (0.54) 2.15(0.88) 2.11(0.82)
F-n72RTR  6.63 (0.28) 0.00 (0.00) 0.00 (0.00) 4.94 (0.51) 3.86 (1.01) 3.66 (1.02)
F-n72 SA 3.80 (1.75) 0.05(0.15) 0.02(0.09) 5.06(0.52) 2.66 (1.11) 3.06 (1.41)

F-ni35E]  0.24(0.29) 0.19 (0.28) 0.17 (0.15) 2.96(2.58) 2.01(1.61) 1.88(0.92)
FnI35RTR  1.62(0.07) 0.06 (0.08) 0.02(0.03) 9.94 (0.57) 4.71 (3.00) 5.65(2.17)
F-ni35SA  0.11(0.07) 0.14(0.14) 0.08 (0.06) 8.9 (1.57) 6.42 (3.65) 6.25 (2.89)
tai385 EJ 1.23(0.28) 1.10(0.23) 1.02(0.18)  1.92(2.46) 0.72(0.53) 0.76 (0.43)
tai385 RTR 291 (0.27) 1.00 (0.22) 0.88 (0.18)  8.61 (0.48) 3.99 (2.09) 3.47 (1.85)
tai385SA  4.67(0.40) 1.04(0.24) 1.18(0.27) 3.74(2.06) 2.15(2.51) 5.79 (4.63)

Results of the configuration runs are presented in Table 1. On average, the quality of
the results was improved by 1.65 percentage points with the use of AAC, which means
that the relative optimality gap was closed by 73%. Furthermore, the performance of the
metaheuristics was more consistent when configured, as can be observed from the standard
deviations.

Because the metaheuristics were configured for each instance separately, we acknowl-
edge the danger of overtuning [16]. To observe the effect, the rightmost three columns
of Table 1 present the performance of the resulting parameter configurations on the other
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three remaining instances. These columns can be interpreted as the result of a 4-fold cross-
validation. The configurators overfit only for the F-n72-k4, and for all other targets the
solution quality is statistically significantly improved on average by 2.4 percentage points
(a 37% improvement). The solver behavior becomes slightly more erratic as can be per-
ceived from the standard deviations. However, this is likely to be a byproduct of the im-
proved solution quality and the more rugged fitness landscape of a multi-instance problem
set. As suggested by the results in [39], if tuned on the entire instance set, the robustness
of the solvers on similar instances is expected to improve.

domain_compat <= 0.50
error = 0.44
VZ?&ZPZICK li ] avg len <= 14.83
error = 0.24
/ \ samples = 22
value=[ 19. 3.]
error = 0.00 klél:r;:j(')ogz
samples = 7 samples = 5 / \
value =[7. 0. value=[ 1. 4.]
error = 0.00 error = 0.00
/ \ samples = 19 samples = 3
rror = 0.00 rror = 0.00 value=[19. 0.] value=[0. 3.]
samples = 4 samples = 1
value=[0. 4.] value=[1. 0.] (b) Location
(a) Capacity

Fig. 3: Decision trees for the schema mapping of two domain model attributes

Our proposed solution to increase the level of automation in the data import phase is
presented in [20]. To summarize, Kalmbach [20] provided a formulation for the data im-
port and model inference problem, presented a decision trees [38] based approach for join
inference and schema mapping, and explored its applicability in importing of schemaless
routing instance data. Two decision trees for capacity and request location mapping are
provided in Figure 4.4 as an illustration of the generated inference rules. The proof-of-
concept tool is able to recognize the nature of each column in a column-oriented input for
the generated test data, and is thus capable of generating simple mapping rules between
input and the domain model.

6 Conclusions

Vehicle routing systems provide several advantages over manual transportation planning,
but the deployment of these systems is in many cases laborious and costly. In addition, mi-
gration from the current system with associated customization and integration challenges
create practical obstacles that prevent the latest advances in operations research from be-
ing disseminated to wide use. The focus in academic research is in modeling and solving
efficiency whereas in commercial routing systems usability, flexibility, and scalability are
more important. Tighter interaction between the two is needed in order to effectively solve
real-world routing problems [5].
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The advances in technologies such as GPS and RFID, and drop in data warehousing
prices, have made transportation big data collection possible and economical. Concur-
rently, logistics operators have begun to see the information as a vital asset that can be
used in decision making. This opens new possibilities for machine learning, for which
the accuracy is dependent of the amount and availability of data that can be used to train
the models. Therefore, these trends have paved the road for a new generation of vehicle
routing systems that can utilize machine learning to automate the customization and de-
ployment. This in turn has the potential to increase the effectiveness and robustness as
the system can be adapted automatically to the particularities of a problem instance. The
goal is to diminish the importance of an operations researcher in the deployment process
and consequently to permit higher scalability and more widespread deployment of route
optimization.

In this paper, we have outlined a customization framework for the automation of data
transformation operations inside a routing system. Our framework recognizes seven trans-
formation steps, each open for system customization. We also provide suggestions on
automating these steps. Our preliminary empirical results are promising, but further ex-
perimental work is required to establish whether all the proposed techniques are fully
applicable in practice.

To evaluate the proposed customization framework, we reflect it against the frame-
work for analyzing VRS deployment published in [31]. Neittaanméki and Puranen [31]
recognize several practical adoption and deployment barriers for the VRSs. They see the
involvement of an optimization expert as a prohibiting investment and call for an increased
automation of the deployment process. Their deployment process is split into three phases:
data, process, and system integration. To see in which extent our proposed customization
framework can resolve the 18 barriers they recognized, we proceed to give some possi-
ble solutions to the recognized issues: In data integration step, the missing, low quality
and incomplete data could be automatically imputed, or at least recognized with machine
learning. The data structure inference from Subsection 4.1 can help when acquiring and
combining the data from existing systems. In addition, because of the techniques proposed
in Subsection 4.2, it takes less expertise to generate the optimization model. As demon-
strated by our experiments, the plan quality can be improved, sometimes significantly,
using automatic algorithm configuration (Subsection 4.4). Use of automation results into
lower perceived complexity and improved usability that can instill trust in the users to the
system and to the plans it generates. On the system integration level, the automation makes
integration easier and faster, which in turn can make the system deployment cheaper, less
dependent on expertise and other resources, and flexible to the current and future changes
in operations.

Taken together, we argue that in order to bring the latest academic routing knowledge to
the hands of logistics operators in a massive scale, the automatic configuration approach,
as presented in this paper, is needed. The recent trends in VRP research seem to con-
verge towards generic reusable modeling and highly adaptive and configurable modeling
frameworks, but we have shown that several other areas in practical system integration and
deployment need to be considered in order to effectively apply these into practice. This
requires extensive further studies in several disciplines, but should provide a promising
area of research with a potential for a wide array of practical benefits.
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Abstract—Understanding the exploration of search space of
vehicle routing problems is important in designing efficient
algorithms. These spaces are multidimensional and hard to
visualize, which makes it difficult to examine the trajectories of
the search. We use a technique based on multidimensional scaling
to visualize objective function surfaces for such problems. The
technique is used to examine a full objective function surface of
small VRP and TSP problem instances, and the neighbourhood
as observed by heuristic search algorithms.

I. INTRODUCTION

Combinatorial optimization problems are usually inher-
ently multidimensional. For example, the well known travelling
salesman problem (TSP) has m? binary decision variables,
where n is the number of cities to visit. Understanding,
let alone visualising such solution spaces is challenging. A
visualization technique that could plot the trajectory of an
algorithm in search space would be a useful tool for algorithm
developers (Halim and Lau, 2007).

In this study we present a visualisation technique based on
multidimensional scaling (MDS). We address the limitations
and challenges of the presented technique, such as the defi-
nition of the distance metric between solutions. We will also
show how to use the presented visualization technique to depict
two well known routing problems, the TSP and the capacitated
vehicle routing problem (CVRP). To our knowledge, this is the
first time this kind of technique is used to make observations
of routing problem solution spaces.

In Section II we give a brief overview to the vehicle routing
problem. In Section III we review previous relevant work on
understanding VRP solution spaces. Section IV describes our
visualization technique and Section V gives examples of the
different landscapes and addresses the accuracy of the method.
We conclude our study in section VI.

II. THE VEHICLE ROUTING PROBLEM

VRP is one of the most studied NP-hard combinatorial
optimization problems (Toth and Vigo, 2002). The task in VRP
is to find optimal routes for vehicles leaving from a depot to
serve a specified number of requests. In its archetypical form
each customer must be visited once by exactly one vehicle.
Each vehicle must leave from the depot and return there after
serving customers on its route. Typical objective is to minimize
the total length of the routes.

Following Toth and Vigo (2002) a graph formulation for
VRP can be given. Let V = 0,...,n be the set of vertices

where the depot has the index 0 and where the indices 1,...,n
correspond to the customers. The graph G = (V,E) is
complete with each edge e = (i,j) € F having an associated
non-negative c;; that is the cost of traversal from vertex ¢ to j.
Each of the edges (i,7) € E has an adjoining binary decision
variable x;; to decide whether traverse the edge. Using the
notation of the graph formulation, a linear programming model
for VRP can be given (Toth and Vigo, 2002).

minZZcijzij (1)
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Different routing problem variants can derived by defining
specialized objectives and by adding additional constraints.
Out of these, the most usual one, CVRP is used as an
illustrative example in this work. In CVRP a set of identical
vehicles, with a capacity of C, serve requests with a non-
negative demand of d;. The problem is to find the lowest
cost solution with minimum number of tours K* so that the
capacity C' is not exceeded by any of the tours.

III.  ON SOLUTION SPACE ANALYSIS

Statistical analysis of fitness landscapes has proven to
be useful approach in understanding solution space structure
(Weinberger, 1990). Previous approaches for examining rout-
ing problem search spaces, and observations of thereof, are
explored in e.g. (Fonlupt et al., 1999; Kubiak, 2007; Czech,
2008; Pitzer et al., 2012). These methods involve probing the
solution space in order to calculate statistical measures that
describe the behaviour of the objective function.

These studies have revealed that routing problem search
space is rugged, multimodal and tends to have a “big valley”
structure where the local optima are clustered close to each
other. Landscape ruggedness describes the expected amount
of local variance of the objective function values around any
given neighbourhood.
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Halim and Lau (2007) and Mascia and Brunato (2010)
have previously introduced tools that can be used in stochastic
local search (LS) landscape visualization and analysis. The aim
of these studies has been to further the understanding of the
problems. Because of the differences in underlying nature of
combinatorial optimization problems, we argue that problem
structure exploration tools need to be adapted to different
domains.

IV. DESCRIPTION OF THE USED METHOD

Biggest challenge in visualizing the search space of VRP
comes from the multidimensional nature of the problem.
A combinatorial optimization problem, such as VRP, may
have hundreds or thousands of binary decision variables. A
technique called multidimensional scaling (MDS) can be used
to bring the dimensionality down to two or three dimensions.
(Brunato and Battiti, 2010) Following tasks are expected:

(A) Find a solution distance (or dissimilarity) measure.

(B) Implement an effective method of enumerating the solu-
tions for a full search space visualization.

(C) Select the MDS method.

(D) Draw the visualization.

Fig. 1: Visualization process

| Problem | | Instance |
Generatorl Feasibility
- checker
Sece!
Dissimilarity function
Dpg f(z),
Distances Feasibilities

MDS | )

Our visualization technique uses a process that is described
in Figure 1. The problem with the size n; and instance with
capacity constraint, ) distance matrix D, and demands d;;
can be treated separately. For the problem, all solutions are
generated and their distances to each other calculated using a
dissimilarity measure. MDS produces the x and y coordinates
for the visualization. Then, feasibility and objective function
values are calculated for each solution of the instance. From
objective values we get the z coordinate and from fitness
the colour that is used to differentiate feasible and infeasible
solutions.

A. Solution similarity

Let s1,s2 € R, be two solutions of a symmetric VRP.
The distance between solutions d(s1, s2) can be defined as the
number of edges not shared by the solutions. Thus, d is a dis-
similarity measure of VRP solutions. For operators like 2-opt
and relocate (Fig. 2), this Manhattan distance has been shown
to be a good metric to be used with routing problems (Fonlupt
et al.,, 1999). However, other binary dissimilarity measures
such as Dice, Jaccard, Yule, Russel-Rao, Rogers-Tanimoto and
Sokal-Sneath (Choi et al., 2010) can also be used, and we will
present the first comparison of these measures in the domain
of routing problems.

B. Enumerating VRP solutions

We needed an effective way of enumerating all solutions
without capacity, time window, or similar constraints. Note that
the node degree (2), (3), subtour elimination (4), and variable
type (5) constraints from Section (I) are still respected. If we
let VK : K € {1...n}, all possible solutions are created.
We consider only the symmetric case where the graph is
undirected. Therefore, routing problems where the direction of
the tour is important (PDP, VRPTW etc.), are not considered
in this study.

Fig. 2: Relocate* operator and giant tour encoding

S1. So.

d(s1,82) =4
[0[1]2]o[3]4]5[0] [o]1]2][3]0]4]5]0]

We implemented three algorithms to enumerate the so-
lIutions. 1) A permutation based algorithm lists all possible
choices for the first points for K routes. All permutations
of remaining points are then divided to the routes in all
possible ways. 2) A matrix based algorithm that uses an integer
interpreted as binary upper strict triangle matrix of decision
variables. Increase by 1 gives a new solution. With constraints
to the sum of a row/column we can prune entire branches
of constraint breaking solutions. 3) An algorithm based on
generation of all Hamiltonian paths after which visits to the
depot are recursively added. A pseudocode of a subprocedure
for the last method is given below.

Require: giant tour encoded solution s
Require: a,b are indexes of s: a,b € {0,...,|s| — 1}
Ry« 0
if b —a > 2 then
for c=a to b do
t.—,t.+ < the tours of s before and after ¢
ty+ < the tour of s after b
Cy + s[c] #0 and s[c+ 1] #0
Cy  to—.first() < t.-.last()
Cs  ter. first() < te+.last()
Cy  to—.first() < te+.first()
Cs < |ty+| > 0 and t.+. first() < ty+.first()
if C7 and C5 and C3 and C4 and C5 then
s* < copy of s with visit to depot at ¢
Rt — Rt U {8*}
R; + R:U call algorithm recursively with
s’ s*a +—a b «—c+1
R; < R;U call algorithm recursively with
s’ s*a +—c+ 1,0 b
end if
end for
end if
return R,

We use giant tour encoding (Toth and Vigo, 2002) with 0
indicating the depot as illustrated in Figure 2. In addition we
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use rules that require the tours to be directed so that the first
node has always smaller index than the last node (conditions
Ca, C3 of the procedure) and that tours are ordered according
to their first nodes (conditions Cy, Cs). These enforce unique
encoding of the solutions.

Require: N € A < Size of the CVRP instance
R+ 0
for all ¢ € Hamiltonian paths do
if ¢. first() < t.last() then
R+ RU{t}
R < R U call algorithm with
s’ t,a +— 1,0+ N
end if
end for
return R

The algorithm described above is then used to generate
all solutions of an asymmetric VRP using the subprocedure
described earlier. Generation of Hamiltonian cycles can simply
be done generating permutations of the request indices.

C. Multidimensional Scaling

MDS is a name for a family of techniques of dimension-
ality reduction for data analytics and visualization. Input is
proximity data in the form of a dissimilarity matrix D> of
high-dimensional coordinate points and the output embeddings
of these points into a lower dimensional space R?. Several
methods exist, but in this work we use the popular SMACOF
stress majorization algorithm (Borg and Groenen, 2005). As
the minimization target we used the Kurskal stress function:

o(X,D) = > (dij —di;)? 6)

i<j

We used the implementation from Orange Data Mining li-
brary! with Torgerson initialization (Borg and Groenen, 2005)
that gives an analytic solution to the MDS. The SMACOF was
terminated after 100 iterations or when termination condition
o < 0.001 was met.

D. Drawing the Visualization

To draw the visualization we used Mayavi2? library for
scientific 3D data visualization. We used Delaunay 2D tri-
angulation to create a mesh which was then plotted with
Mayavi surface pipeline. LS algorithm trace is drawn using
3D parabolas as “jumps” from solution to another.

The accuracy of the visual representation can be verified
using fitness landscape analysis measures. This idea is one
the major contributions of this paper. We want to examine if
important solution space features, such as the autocorrelation
length A of a random walk (RW) (Weinberger, 1990), number
of local optima #LO discovered with random initialization
and LS, and distribution of the aforementioned local optima
(d(LO;, LOY), 04), are preserved. To do this we need to define
a LS operator in the visualization space. In this work we chose
to use k-nearest neighbour search, where £ is the length giant
tour encoding of the current solution.

Thttp://orange.biolab.si/
Zhttp://code.enthought.com/projects/mayavi/

V. RESULTS

The described generation method is capable of producing
around 220 000 solutions per second on a 2.13GHz Intel Core
2 Duo workstation. For any practical purposes this is enough.

TABLE I: Number of solutions with different n

n 3 4 5 6 7 8 9 10
[Revee| 7 34 206 1486 12412 117692 1248004 14625856
| Rysp| 1 3 12 60 360 2520 20160 181440

Because all three implemented algorithms produced the
same number of solutions at least up to n = 10 we feel
confident that all VRP solutions are enumerated. Enumeration
with different number of customers yields a sequence shown in
Table 1. To allow comparison, we have also listed the number
of possible solutions for a corresponding TSP expressed with
‘RTSP| = (n — 1)!/2.

Our empirical study of the number of solutions to symmet-
ric CVRP leads to Formula (7) (Wilf, 2012). We have verified
it produces the correct number of solutions least up to N = 13.
By presenting the result, we would like to open discussion of
the implications of knowing the exact number of solutions.

n

|Revre| = Z [s1(n, k)| b(k), where (7)
=0
= [n-1+k 2n —m
s1(n,m) = 2 (n—m—l—k) <n_m_k>sz(nm+k,k)
(3)
L
s2(n,m) = kZ:O m )
n k i . k
(1) k= 20" ()
b(n)=;;W7 b(0) =1 (10)

In order to examine the suitability of the distance measures
we compare MDS stress. As a reference we use fitting of a
uniformly random point cloud inside a unit 3D ball down to 2D
coordinates. Reference provides us an intuition of how “tight”
it gets when fitting CVRP solutions into 2D. The results are
presented in Table II. Dice and Manhattan seem to be the ones
showing stable behaviour and least stress.

TABLE II: MDS stress comparison

CVRP 3D ball
|R| Dice  Manhattan ~ Jaccard ~ Yule | euclidean
7 0.008 0.004 0.010 0.027 0.003
34 0.019 0.021 0.032 0.037 0.008
206 0.035 0.039 0.042 0.056 0.010
1486 | 0.049 0.048 0.073 0.043 0.011

In Figure 3 we present visualizations of randomly gen-
erated TSP and CVRP instances produced with our method.
In addition, the rightmost plot visualizes a search trajectory
of Clarke-Wright construction heuristic followed by few it-
erations of 2-opt. Our visualization tool allows interactive

examination with freeform rotation around the visualizations?.

3http://youtu.be/LW4DnTHpXoE
http://youtu.be/i6JsS6VjSEU
http://youtu.be/y53Qh2kCOXo0
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(a) TSP, n =16

(b) CVRP, n = 6

(c) CVRP LS, | U N(s;)| = 1218

Fig. 3: Example visualizations produced using the described method

TABLE III: Perseverance of fitness landscape features

Measure CVRP,,—4 CVRP,,—5 CVRP,,—¢
A 0.22 0.70 0.67
#LO 0.73 0.24 0.01
d (04) 0.78 (0.53)  0.26 (0.32)  0.58 (0.59)

We calculated solution space metrics for 20 random CVRPs
and compared them with the ones for corresponding visual-
izations. Each RW and LS with maximum length of 500 steps
was repeated 100 times. Finally the results were averaged for
reliability. Table III shows correlations between these results. It
becomes clear that the accuracy of the described method drops
on transition from n = 5 to n = 6. Especially the placement
of local optima in a topology persevering way becomes hard.
Luckily, the problem is smaller with neighbourhood plots as
there is more room for the MDS to work. In addition, the vi-
sualization of neighbourhoods is more convenient in algorithm
development as it allows e.g. plotting of different LS strategies
into one visualization for comparison or troubleshooting.

VI

We have presented a technique capable of visualizing
vehicle routing problem solution landscapes. Because of this
technique, we were able to visually observe the nature of
the vehicle routing problem instance landscape for the first
time. We also examined the accuracy of our method. We have
shown that the properties and possibilities make the presented
technique a viable tool for routing algorithm designers, es-
pecially when dealing with local search neighbourhoods. We
also presented the first closed form function for the number of
solutions for symmetric CVRPs.

CONCLUSIONS AND FUTURE TOPICS

Further research might be extended the comparison to
recent routing specific distance measures (Lgkketangen et al.,
2012). Also, accelerated methods such as Split-and-Combine
MDS or Landmark MDS might be needed to visualize larger
solution spaces and search algorithm neighbourhoods. Another
bottleneck was the handling of big distance matrices. Exper-
imentation with approximation and compression techniques
could lead to faster calculations and reduced memory footprint.
Our aim is to create an online gallery of problem variants
(CVRP, TSP, VRPTW, PDP etc.) and search trajectories of
different popular heuristic operators and metaheuristics. Also
the source code of the tool will be published with the gallery.
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—— Abstract

The vehicle routing problem comes in varied forms. In addition to usual variants with diverse
constraints and specialized objectives, the problem instances themselves — even from a single
shared source — can be distinctly different. Heuristic, metaheuristic, and hybrid algorithms that
are typically used to solve these problems are sensitive to this variation and can exhibit er-
ratic performance when applied on new, previously unseen instances. To mitigate this, and to
improve their applicability, algorithm developers often choose to expose parameters that allow
customization of the algorithm behavior. Unfortunately, finding a good set of values for these

parameters can be a tedious task that requires extensive experimentation and experience. By
deriving descriptors for the problem classes and instances, one would be able to apply learning
and adaptive methods that, when taught, can effectively exploit the idiosyncrasies of a problem
instance. Furthermore, these methods can generalize from previously learnt knowledge by infer-
ring suitable values for these parameters. As a necessary intermediate step towards this goal, we
propose a set of feature extractors for vehicle routing problems. The descriptors include dimen-
sionality of the problem; statistical descriptors of distances, demands, etc.; clusterability of the
vertex locations; and measures derived using fitness landscape analysis. We show the relevancy
of these features by performing clustering on classical problem instances and instance-specific
algorithm configuration of vehicle routing metaheuristics.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Optim-
ization, G.1.10 Applications, 1.2.6 Learning, 1.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Metaheuristics, Vehicle Routing Problem, Feature extraction, Unsuper-
vised learning, Automatic Algorithm Configuration

Digital Object Identifier 10.4230/OASIcs.SCOR.2016.7

1 Introduction

The quality and the required computational effort of algorithmically optimized vehicle routing
solutions are heavily dependent on the problem instance, the solution method, and using
the right parameters for the algorithms [5]. Fortunately, it has been shown that automatic
algorithm configuration and algorithm selection can be used to improve the solver performance.
Thus, in order to make routing algorithms more robust and adaptive, we propose applying
machine learning to help the algorithms more effectively adapt to the problem being solved.
However, as a prerequisite, we need a way to describe the problem instances to the learning
algorithms.
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Feature Extractors for Describing Vehicle Routing Problem Instances

The vehicle routing problem (VRP) can be considered to be a generalization of the
traveling salesman problem (TSP). Therefore, studies where TSP instances are described,
e.g. 20, 8, 12, 6, 13|, are highly relevant. Smith-Miles and van Hemert [20] proposed 12
features for predicting the most suitable optimization algorithm for a TSP instance. The
feature set is well-rounded containing features derived from the distance matrix, clustering,
nearest neighbors, and geometry of an instance. Kanda et al. [8] had a similar goal, but
they relied only on features based on the problem size and statistical description of the
distance matrix, whereas Mersmann et al. [12] proposed a set of 47 features in order to
build a model that could be used to discriminate between hard and easy TSP instances.
Hutter et al. [6] proposed a set of new approaches such as describing minimum spanning
trees, ruggedness, and probing with TSP solvers. Probing involved analyzing and describing
the solution attempts with a heuristic and branch-and-cut solvers. Pihera and Musliu [13]
further extended this feature set, which allowed algorithm selection for a TSP instance.

Literature of VRP descriptors is scarce. The only studies on VRP feature extraction from
the machine learning perspective we are aware of are the dissertation of Steinhaus [22] and
algorithm performance prediction in [25]. Steinhaus [22] explores the use of a self organizing
maps in solving VRPs and in algorithm selection. She proposes 23 features specifically
for VRP problems and explores the discrimination power of this feature set across 102
VRP benchmark problems. Most features she proposed are based on earlier literature on
describing T'SPs, but they are complemented with features describing the demand distribution
of the nodes, vehicle capacity, and their relations. Studies from a VRP fitness landscape
analysis perspective, e.g. [21, 14, 25], do exist, but as these metrics are mainly used to gain
deeper understanding of the problem, they need to be adapted before they can be used for
performance prediction or algorithm selection. This was the approach chosen by Ventresca
et al. [25].

In this article, a set of feature extractors gathered from the aforementioned sources
is adapted to describe capacitated vehicle routing problem (CVRP) instances. Our goal
is to recognize problem types and better understand instance properties that may affect
solving them. A set of features that is this comprehensive has not been previously used
to describe vehicle routing problems. Moreover, the feature set is validated experimentally
with clustering of benchmark instances, automatic algorithm configuration [5], and instance
specific algorithm tuning [7].

Our contributions are threefold: First, we give a review on feature extraction of vehicle
routing problems. Second, proposed features are used in automatic configuration of three
metaheuristic CVRP solvers to prove their usefulness for self-adaptive and learning solution
techniques. Finally, we do clustering on 168 well known CVRP benchmark instances and
make observations on their similarities. To the best of our knowledge, this is the first study
that proposes the use of features acquired by probing CVRP instances with exact and
heuristic solution methods. This is also the first study to explore the possibility of using
features to improve the performance of automatic configuration of vehicle routing algorithms.

This paper is organized as follows: In Section 2 the automatic algorithm configuration
problem is defined. Section 3 introduces the vehicle routing problem in detail, with handling
of common solution approaches. It is followed by listings of feature extractors and descriptors
for these problems, also including those presented in this study. Section 4 describes the
experimental setup and the results for verifying the proposed feature set. Finally, we conclude
our study in Section 5.
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2 Instance Specific Algorithm Configuration Problem

The task of automatic algorithm configuration (AAC) involves the off-line task of finding
a “good” set of parameter values, or a parameter configuration, for a target algorithm in
a way that the algorithm achieves the best possible performance. It is critical to use a
representative set of problem instances when configuring the algorithm parameters. This
ensures that the performance advantage manifests also on new, previously unseen, instances.

If a good generalized performance is needed and the problem set is not homogeneous,
i.e. the instances are very different from each other, the use of AAC may even be disad-
vantageous: a parameter configuration may enable an algorithm to perform well on some
instances, but be inferior to algorithm defaults on another. One possible solution in a
situation like this is to use instance specific algorithm configuration as described e.g. in
Kadioglu et al. [7]. The idea is to configure the parameters for each group of mutually similar
problem instances separately, and when a new problem instance needs to be solved, the
automatically configured parameters of the most similar instance group is used. For a study
on instance specific algorithm configuration of a TSP metaheuristic we refer to [18].

The task of algorithm selection is closely related to AAC. In algorithm selection, the
problem instance properties are used to choose the algorithm with best predicted performance.
Usually the algorithm is selected out of a portfolio, and the model for algorithm performance
is built earlier during an off-line learning phase. The approach has proven successful: during
the last decade many state-of-the-art results in combinatorial optimization competitions have
been achieved using algorithm selection from an algorithm portfolio [27, 10].

Please note that both algorithm selection and instance specific algorithm configuration
need a way to describe the problem instances. Therefore, a good set of feature extractors
is a critical prerequisite for employing these learning meta-optimization techniques. It is
necessary to experimentally discover which features can characterize a problem set in such a
way they capture properties relevant to a) solving the problems b) configuring algorithm
parameters c) recognizing a set of mutually similar problems that can share a configured
parameter configuration, and d) ability to predict algorithm performance.

3 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) involves finding optimal routes for vehicles leaving
from a depot to serve number of clients. Each client must be visited exactly once by exactly
one vehicle. Each vehicle must leave from the depot and return there after serving the
clients on its tour. There are numerous variants of VRPs, each with their own additional
constraints [23]. In this study, only the classic Capacitated Vehicle Routing Problem (CVRP)
is considered. In the CVRP, each of the identical vehicles has a maximum carrying capacity
of @ that cannot be exceeded at any point of the tour. Each of the clients, indexed with 1,
have a demand ¢; that has to be within 0 < ¢; < . The number of vehicles, denoted by
k, is the primal minimization target, followed by the total travel distance of the k vehicles.
Extending this notation, the CVRP can be written in a graph formulation adapted from
Toth and Vigo [23] as follows: Let V = {0,...,n} be the set of vertices where the depot
has the index 0 and where the rest correspond to the clients. The size of the problem is
denoted by N =|V|. Let E = {(0,1),...,(4,5),...,(n —1,n)} be the set of edges, where
i,j € V,i # j. Therefore, the graph G = (V, E) is complete with each edge e = (i,j) € E

having an associated non-negative weight c;; that is the cost of traversal from vertex i to j.

The weights can be also given as a distance matrix D. For each of the edges (i,j) € E there
is a binary decision variable z;; to decide whether the edge is traversed.

7:3
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3.1 On Solving Vehicle Routing Problems

The solution approaches of VRPs can be divided into two main families: exact and heuristic
methods. Heuristic methods are often augmented with metaheuristics to avoid entrapment
in the first local optima the search encounters. Laporte [9] further divides heuristic methods
into constructive and improvement heuristics. Constructive heuristics insert unassigned
clients on the routes, and improvement heuristics improve the solution quality through small
moves until no improving steps can be taken. Improvement heuristics can be seen as a
building block of the Local Search (LS), a key element in modern metaheuristics.

The (meta)heuristic approach is the most feasible approach when solving larger CVRP
problems. However, exact methods are still relevant as the (meta)heuristic methods make no
guarantees in reaching the globally optimal value. According to Lysgaard et al. [11], the most
promising exact solution technique for CVRP appears to be branch-and-cut (BnC). In BnC
cutting planes are iteratively added to a relaxed linear programming model to ultimately
narrow down on the global optimum.

3.2 Descriptors for the Problem

The features for routing problem instances are usually calculated either using the distance
matrix or the 2D coordinates. Therefore, to calculate all features, both the node coordinates
and the distance matrix need to be known. If D was not given in an instance file, a distance
matrix was produced using the depot and client coordinates. Likewise, if a benchmark
instance provided only a distance matrix, we used multidimensional scaling (MDS) [2] to
generate x and y coordinates for the instance. We also followed the example of Smith-Miles
and van Hemert [20] and scaled the coordinates into the [(0,0), (400, 400)] rectangle to make
the geometrical features comparable between problem instances. However, we retain the
shape (scale) of the problem when normalizing the problem to avoid distortion of the distance
matrix, i.e. we maintained the z/y ratio. To maintain the connection between the coordinates
and D, we scaled the distance matrix D using the same multiplier as with coordinates. This
preprocessing produces a commensurable distance matrix D™ and coordinate set P™ that
can be used to calculate geometrical and graph features.

Table 1 (p. 5) presents the CVRP feature extractors used in this study. The features
proposed in this study are marked with bold typeface. The table also shows how many feature
values each extractor produces. Usually the features are statistical descriptors explaining the
distribution of measured values. If the number of statistical descriptors is five, it includes
statistical moments (mean, standard deviation, skewness and kurtosis) and coefficient of
variation; whereas if 11 descriptors are given, the former are complemented by minimum,
maximum, median, number of modes, frequency of the mode value, and the mode itself (or
average of modes). An even more complete set of 14 descriptors adds quartiles.

Table 1a. The first feature set is for describing the node distribution on a 2D plane. The most
often used feature involves statistically describing the distance matrix (cost matrix, without
the diagonal). Smith-Miles and van Hemert [20] used the standard deviation, which Kanda
et al. [8] and Hutter et al. [6] complemented with a more comprehensive set of statistical
descriptors. We normalized the distance matrix to the rectangle [(0,0), (400, 400)],
similarly to [20], and calculate 11 statistical descriptors for the distance distribution.
Smith-Miles and van Hemert [20] also proposed counting the distinct distances found in
the distance matrix using different precision. We used four levels of precision, like in [6].
Also, the centroid of the coordinates and the euclidean distance from each point to the
centroid were calculated. The average of these distances is the “radius” feature from [20].
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Table 1 The feature extractors for CVRPs, grouped by type.

(a) Node distribution features

(e) Geometric features

1D Feature # 1D Feature #
ND1 Distribution of distance matrix 11 G1 Area of the enclosing rect- 1
calues [20, 8, 6] angle (“squareness”) [20, 6]
ND2  Fraction of distinct distances 4 G2 Convex hull (CH) area [12] 1
(with 1,2,3,4 decimals) [20, 6] G3 Ratio of points on the hull 1
ND3  Centroid of the nodes (z,y) [20] 2 [12]
ND4  Distance to the centroid [20] 5 G4 Distance of enclosed points 11
ND5 # of clusters (abs.,rel.) [20] 2 to the CH contour [13]
ND6 # of core, edge and outlier 3 G5 Edge lengths of the CH [13] 11
cluster points (rel.) [20]
M7 Reach of the clusters [20] . (f) Nearest neighborhood (NN) features
ND8  Normalized cluster sizes [6] 5
ND9  Silhouette coefficient 1 ID Feature #
ND10  Minimum bottleneck cost [6] 5 NN1 Distance to 1st NN [20, 6] 5
NN2,9,15 Node input degree in direc- 14
o ) ted kNN graph (DKNNG) for
(b) Minimum spanning tree (MST) features ke {3,5,7} [13]
NN3,10,16 # of strongly connected com- 11
I{I]:S)Tl i‘/[e;"tl?zzlge cost [12, 6] ? ponents (SCCs) in DNNG
) NN5,11,17 Size of SCCs in DKNNG [13] 11
MST2  MST node degree [12, 6] 5 NN6,12,18 # of Weakly Connected 11
) ’
MST3  MST depth from the depot 5 Components (WCCs) in
DKNNG
(c) Local search (LS) probing features NN7,13,19 Size of WCCs in DkNNG [13] 11
NN8,14,20 Ratio of SCCs/WCCs [13] 1
ID Feature #_ NN21 Angle between edges to two 11
LSP1  Solution quality after construc- 5 NNs [12, 13]
tion phase [6] NN22 Cosine similarity between 11
LSP2 Solution quality after LS [6] 5 edges to two NNs [13]
LSP3  Improvement per LS step [6] 5
LSP4 LS steps to local minimum [6] 5 .
LSP5  Distance of local minima [6] 5 () VRP specific features
LSP6 % for edges in local optima [6] 5 ID Feature #
LSP7  Solution edge lengths per 20 DC1 Number of clients [8] 1
quartile (5 x 4 quartiles) [13] DC2 The depot location (z,y) [22] 2
LSP8 Segment length [13] 5 DC3 Distance between the 1
LSP9 Segment edge count [13] 5 centroid and the depot
LSP10  Segment edge length [13] 5 DC4 Client dist. to the depot 5
LSP11  Intra-tour intersections [13] 5 DC5 Client Demands [22] 5
LSP12 Autocorrelation length 5 DC6 Ratio of total demand to 1
total capacity (the “tight-
ness”) [22]

(d) Branch-and-cut probing features DC7 Ratio of max. cluster de- 1
D Feature Z man.d to vehicle capaciFy [22]
BCP1 Improvement per added cut [6] 5 bes (1::11?;)11 (geggsgefmo]uther fo 1
BCP2 Ratio between upper and lower 1 DC9 Ratio between the largest de- 1

bounfi [6] . mand and the capacity [22]
BCP3  Solution value after probing [6] 1 DC10 Average number of clients 1
BCP4 Lower bound [6] 1 per vehicle [22]
DC11 Minimum number of trucks 1

[22]
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Some heuristics rely heavily on the existence of clusters. Therefore, features capturing
this aspect are expected to be useful in algorithm selection. DBSCAN clustering has been
used, at least, in [20, 8, 12, 6, 13, 22] to extract features for routing problem instances.
We calculated features for cluster count (absolute and relative to N); cluster size; and
a relative number of core, edge and outlier points. Mersmann et al. [12] used three
different values for the e (maximum allowed distance for two points belonging to a same
cluster), while Steinhaus [22] experimented with four alternative methods to find a good
€ value. In our study we decided to use the minimum cluster size of 4, and with that
€ = App/(V/N — 1), which is an approximation of the 4th nearest neighbor distance if the
nodes are assumed to be uniformly distributed on a lattice within a square with an area
of App [22]. To include a feature measuring the quality of the DBSCAN clustering, we
propose the silhouette score [19] as a novel addition to the feature set.

The node distribution features are completed with the Minimum Bottleneck Cost (MBC)
as proposed by [6]. It is used to describe the clusterability of TSP instances. The
bottleneck cost is defined to be the weight of the longest edge on a path from node i
to j, i # j. We get the minimum bottleneck cost by taking a minimum of bottleneck
costs over all possible paths from node i to j. By calculating the bottleneck cost for all
possible node pairs i,j € V, i # j, we get a distribution that can then be described with
statistical moments.

Table 1b. A minimum spanning tree (MST) was calculated for the fully connected normalized
graph G™. As suggested in [12, 6], the distribution of edge costs and node degrees of
the MST were described using statistical moments. Mersmann et al. [12] included the
spanning tree node depth as well, which we adapted for the VRP by calculating it with
the depot as the root. We omitted the sum of the MST tree cost proposed in [12], as it
can be inferred from the average MST cost.

Table 1c Probing features are computed with a solution attempt on a problem instance. An
algorithm is run for predefined time or steps and the trajectory of the search is recorded.
The approach is general and applicable to a variety of problems. Probing has been shown
to be useful, e.g. for predicting the performance of an algorithm [6].

To adapt the TSP LS probing features from [13], we used the VRPH heuristic search
algorithm library [3], or more specifically, its vrp_init application that is based on
the Clarke-Wright construction heuristic. It was modified to accept a shape parameter
~ that affects the savings calculation [28]. The parameter can be selected randomly
to produce varied initial solutions. After construction, the solution is improved with
intra-route multi-neighborhood search using best accept strategy with one-point-move,
two-point-move and two-opt local search heuristics [3] until no improving move is found.
By repeating the probing 20 times, we could calculate the statistical descriptors in
Table 1c. Some of the features closely resemble those we have used previously to validate
visualization technique for VRPs with solution space analysis (SSA) [16]: the first is
the distribution of Manhattan distances between the local optimum solutions (LSP5),
calculated from the differences in edge traversal decision variable values between the
solutions. This feature is a measure of the multimodality and indicator for the existence
of a “big-valley” structure [14]. The second SSA feature LSP6 describes the distribution
of probabilities of all edges in locally optimal solutions, which aims to reveal the existence
of a backbone [26], that is, a common structure between good solutions.

The features LSP8-10 involve the concept of a segment. A segment is a continuous path
of consecutive edges on a tour, from which the longest edges are removed as specified in
[13]. Pihera and Musliu [13] also proposed another extension to the set of local search
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features, which is the number of intra-tour intersections, i.e. the times the edges of a tour
cross each other.

The final local search probing feature is the autocorrelation length Aac of a random
walk through a series of best-accept one-point-move neighborhoods (heuristic described
e.g. in [3]). This closely relates to the autocorrelation coefficient used in [6]. For calculating
the autocorrelation length we used a method adapted from [21] and [4], with a random
walk length of 2N. The walk is repeated and the length calculated 10 times.

Table 1d. Besides heuristics, also exact solvers can be used to probe the problem. We used
the open source mixed-integer programming package SYMPHONY 5.6.15 and its VRP
application that can solve CVRPs [15]. Unfortunately, we were not able to compile the
VRP application with heuristics support for this version of SYMPHONY. Therefore,
the upper bound is set only after the first feasible solution is found. Because of this,
is possible that the feature BCP2 is left undefined for the larger instances if no feasible
solution is found. SYMPHONY also requires the number of vehicles k as an input when
solving an instance. If & was not known we divided the total demand with some margin
(+5%) with the vehicle capacity @ to get the value for k, i.e. k = [1.05> ¢;/Q]. For
branch-and-cut probing we used a wall time cutoff of 3.0 seconds.

Table le. Geometric features try to capture information of the overall shape of the problem.

The area of an enclosing rectangle, when normalized with the area of the scaled problem,
describes the “squareness” of the problem. Mersmann et al. [12] suggested two features
concerning the convex hull: the hull area and the fraction of nodes that are on the hull
contour. According to their experiments, convex hull features allow accurate separation
of easy and hard TSP instances. Pihera and Musliu [13] added statistical descriptors
for distances of inner nodes to the hull contour. It is assumed that the more evenly
distributed the nodes are inside the convex hull, the more difficult it is to solve. Therefore,
all these were included in our feature set.

Table 1f. Because heuristic solution methods operate by navigating through the search space
using a local search neighborhood, the Nearest Neighbors (NN) of the nodes can offer
important insight to the structure of the problem. In our study, the distribution of the 1st

nearest neighbor distances over all nodes is statistically described as done in [20, 6, 13].

We also included the extended nearest neighbor features presented in [13], which involve
building a directed graph by taking only k£ € 3,5,7 shortest edges for each node from
the complete normalized graph G™. The node degree, number and size of strongly and

weakly connected components, and their ratios are calculated and statistically described.

Table 1g. In describing the demands and capacity, we followed [22]. As an extension to the
VRP specific features, we propose measuring the distance between the depot and the
centroid of the client points. Also, describing the shape of the distribution of distances
from clients to the depot is included in our feature set. Furthermore, the size of the
problem (number of clients) is included here. Refer to [22] for details on these features.

In addition to the features presented in Table 1, we recorded the per instance feature
computation time as proposed in [6]. These are reported as timing features T1-T9 that match
the feature groups (Tables la—1g), with the exception of the autocorrelation and bottleneck
cost features, which are timed separately.

To summarize this section, we have adapted and proposed 76 feature extractors for
CVRPs which generate 386 features in total. The feature extractors were implemented in
Python version 2.7.10, with the aid from numerical libary Numpy (version 1.9.2), machine
learning library Scikit-learn (version 0.16.1), and statistical library Scipy (0.15.1). VRPH

and SYMPHONY were built with GNU g+4 5.3.0 compiler from the Mingw-w64 project.

77

SCOR’16



7:8

Feature Extractors for Describing Vehicle Routing Problem Instances

36
- @57 1
i GGllc—%Gl6 G20 Go7 o 122 ol33
< gg 11}5 .Gos:éﬂ? . G06 Oé)@?zés
o | o G117 |
% ® 709
S 3 01e Gl O Qéw 1
o
B é 6ve1T04 %6%2 T12 .Fl ]

g%E,oe 08 2F03 ]
™. o T08

JF03 e V12
, dﬁ%geﬁﬁB @@g&’}m

B16

PC1 (28 42%)

Figure 1 The clustering of the benchmark instances. Black dots are non-clustered outliers. The
plot axes are the first two principal components, with the ratio of explained variance given in
parenthesis.

All feature extraction in this study was done on a laptop with dual-core 2.53 GHz Intel Core
i5 520M processor, 8 GB of memory and 64-bit Windows 7 Enterprise operating system.

4 Experimental Evaluation of the Features

4.1 Clustering

To evaluate the quality of the proposed feature set, we computed the 386 features for each of
the 168 problem instances in CVRPLIB, which is a collection of CVRP benchmark instances
[24]. However, the high dimensionality of the resulting data had to be addressed before
clustering. Hutter et al. [5] suggests using principal component analysis (PCA) to reduce
the computational complexity when building a surrogate model for the automatic algorithm
configuration tool SMAC. We share some of the concerns regarding the computational cost.
However, in our case a larger issue is the curse of dimensionality, where the space volume
grows very rapidly as the dimensionality increases. This makes the dataset too sparse to
provide a representative sample of the high dimensional space. A related problem is the
irrelevancy of the distance metric in high dimensional data, where all data points seem to be
similarly close to each other [1]. To overcome these issues, we reduced the dimensionality of
the feature space with PCA.

To do the actual clustering, the feature data was first normalized by scaling all features
independently to a range [0.0,1.0]. Then, PCA was applied to bring the dimensionality of
the data down from 386 to 7 following the example of [5]. These seven principal components
together explain 71 % of the overall variance in the data. Finally, to do the unsupervised
learning, we used the DBSCAN with a minimum cluster size of 3. The € parameter was set
to 0.20 through experimentation. Resulting clusters for the 168 benchmark instances are
presented in Figure 1.
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The clusters in the lower left corner seem to be the small-to-medium easy-to-solve
instances. Unsurprisingly, the A and P sets overlap, as P is based on A. The difference
between A and B is that clients in A are uniformly generated whereas in B they are clustered.
Also the Taillard (T) and Fisher (F) sets contain clustered clients, which can be observed
as an overlap with the set B. Interestingly, the benchmark set Golden (G) is separated into
four clusters and some outliers. The benchmark set contains points in geometric shapes
like stars, squares, circles and rays, and it seems that our features are able to discriminate
between these. The Li (L) and Golden benchmark sets are similar and clustering them
together is expected. For a more accurate analysis of clusters we would need to do a more
extensive experimentation with the solvers, since probing does not necessarily allow reliable
estimation of the hardness and computational difficulty of an instance. The complete list
of problem instance abbreviations and the clustering in a table format, together with an
interactive zooming visualization of the clustering, can be found from the supplementary
online appendix at http://users.jyu.fi/~juherask/features/

4.2 Instance Specific Algorithm Configuration

As the automatic algorithm configuration targets, we used the three metaheuristic solvers
provided by the VRPH package from Groér et al. [3]. Each solver employs different meta-
heuristic: Record-to-Record travel (VRPH-RTR, 648 free parameters), simulated annealing
(VRPH-SA, 6+5), and ejection (VRPH-EJ, 6+3). We omit the descriptions of the algorithms
and solver parameters and refer the reader to [3], whereas a detailed description of the
automatic algorithm configuration setup can be found in [17].

As a configurator, we used SMAC [5]. SMAC is a state-of-the-art AAC method that
alternates between fitting a random forest model to the observed behavior of the target
algorithm, and using that model to predict the performance of generated parameter configur-
ation candidates — evaluating only those that are most promising on the solver. SMAC offers
an option to complement the problem instances with feature values, which are used when
building and updating the random forest model. In our experiments this approach is called
fSMAC. fSMAC already does PCA to the feature vectors, but as an additional preprocessing
step we took 50 features that showed the highest correlation with the solution quality in
heuristic and branch-and-bound probing. SMAC is not an instance specific algorithm con-
figuration tool like ISAC from Kadioglu et al. [7], but we can follow a similar scheme to
create IS-fSMAC. This variant uses k-Means clustering on the preprocessed feature data to
split the problem instance set to subsets. These subsets supposedly share similar solving
characteristics and can be configured separately.

In our configuration experiments we used a set of 14 instances taken with stratified
sampling from the CVRPLIB set A. The problem set is the same one that we used in [17],
which makes it possible for the interested reader to compare the proposed approach against
other configurators. Also, each configuration task was run with three different evaluation
budgets (EBs): 100, 500, and 1000 time capped (10 s) runs of the target algorithm. In
the case of configuring the clustered instances, the budget was distributed according to the
cluster size. Because the algorithms are stochastic, the experiments were repeated 10 times.

The results of the configuration tasks are presented in Table 2. The use of features
seems beneficial, especially with a budget of 100. This is unsurprising, as the use of features
is expected to provide more initial information when building the surrogate model of the
parameter-solution quality response surface. Especially VRPH-SA target seems to benefit
from using the features. The advantage gained by using features is smaller for VRPH-EJ
and VRPH-RTR targets, but the effect still exists. However, the results of instance specific
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Table 2 Median tuning results for VRPH metaheuristics. Results are given as percentages from
the aggregated best known solution (relative optimality gap). The best known solution values are
from CVRPLIB. Statistically better results are in bold (p < 0.05 with Bonferroni adjustment). If no
single best was found, a test for a best pair was made.

Target VRPH-SA VRPH-EJ VRPH-RTR
Defaults 0.83 (0.12) 0.50 (0.13) 1.42 (0.07)
Method \ EB 100 500 1000 100 500 1000 100 500 1000
SMAC 0.40 029 0.26 039 0.35 0.34 0.16 0.09 0.10
(0.11) (0.08) (0.06) (0.07) (0.04) (0.04) (0.05) (0.01) (0.02)
fSMAC 0.39 026 0.23 0.36 036  0.35 0.15 0.09 0.07
(0.15) (0.06) (0.05)  (0.06) (0.05) (0.06)  (0.06) (0.04) (0.03)
IS-fSMAC 056 027 0.25 0.35 0.33 0.34 0.19  0.09  0.09

(0.11)  (0.07) (0.05) (0.08) (0.07) (0.06) (0.06) (0.03) (0.01)

parameter tuning are not as good as expected. The clustering to problem classes seems to be
beneficial only for VRPH-EJ targets. It may be that the features are unable to capture the
differences (unlikely), the clustering is handicapped by the curse of dimensionality (likely),
or the evaluation budget split among clusters is too small for SMAC to converge to good
parameter configurations (likely). Still, the most probable cause is the homogeneity of the
problem set. All of the instances in the set A come from the same generator, thus showing
similar solving characteristics. Additional experiments are needed to identify the largest
factor preventing the instance specific tuning from giving comparable advantage to what has
been reported in e.g. in [7]. Nonetheless, every resulting parameter configuration is superior
compared to the defaults.

All automatic configuration was done on a computing server with 64 Intel(R) Xeon(R)
CPU E7 2.67 GHz cores, and 1 TB of RAM running 64-bit OpenSUSE version 13.2 (codename
Harlequin). We enforced a 10 second cutoff for all evaluations of the CVRP solver.

5 Conclusions

In this article, we set out to find feature extractors for capacitated vehicle routing problem
(CVRP) instances, mostly by adapting Traveling Salesman Problem (TSP) descriptors from
the literature. We implemented 76 feature extractors for almost every descriptor that had
been reportedly used in algorithm selection and automatic algorithm configuration of routing
algorithms and proposed some novel ones. The presented set of 386 features for CVRP
is unparalleled in its extent. Additionally, we are not aware that probing with heuristic
and branch-and-cut solvers has been previously used to produce features for CVRP meta-
optimization. The suitability of these features was verified with feature assisted automatic
algorithm configuration with the state-of-the-art tool SMAC. We also presented clustering of
168 well-known benchmark instances from the CVRPLIB collection. Clustering shows good
discrimination ability between the known properties of these problems. However, a more
complete analysis of the clustering is warranted to get novel insights.

We can conclude that automatic algorithm configuration can benefit from using the
proposed features. Out of the tested CVRP metaheuristics, the simulated annealing (VRPH-
SA) benefited the most. We also experimented with instance specific configuration, where it
was possible to further improve the configured solver performance of the ejection metaheuristic
(VRPH-EJ). However, the overall increase in performance when using an instance specific
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algorithm configuration scheme was modest. This is probably due to our problem set being
relatively small and homogeneous. Therefore, a more extensive experimentation with different
targets, instance specific configurators, and problem sets is required to make a judgment on
applicability of instance specific parameter configuration of vehicle routing solvers. Also,
please note that in our automatic algorithm configuration experiments we did not test for
over-tuning (cf. overfitting), which may manifest as poor generalizability of the configured
parameter configuration.

Other future research topics include: Feature selection that should help us recognize the
most useful features, as currently the high dimensionality of the feature vector seems to
confuse unsupervised learning and algorithm configuration efforts. We would also like to
extend our feature extractors to describe other well-known VRP variants such as vehicle
routing problem with time windows (VRPTW) and pickup and delivery problems (PDP).
This could potentially reveal new interesting similarities between the problem types and sets.
We would also like to extend our study towards algorithm selection.

It has been shown that applying feature based machine learning approaches, such as the
one presented here, in solving combinatorial optimization problems, can lead to significant
improvements in on-line algorithm performance and resulting solution quality. Adapting this
approach in solving VRPs has shown promise and warrants further research.
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Abstract

In this study, we present open source implementations for a comprehensive
collection of 15 classic construction heuristics and seven local search operators
targeting the capacitated vehicle routing problem. While the literature on the
classical algorithms has been widely cited, existing vehicle routing software
libraries only offer implementations for a few selected construction heuris-
tics. Additionally, while some of the approaches are dated, and currently the
state-of-the-art results are achieved using adaptive metaheuristics, classical
construction heuristics still remain a viable approach when a solution should
be produced deterministically or with limited computational resources. Con-
struction heuristics are also a vital component in the more advanced solvers,
where they are used to produce initial solutions that metaheuristics then seek
to improve. The heuristics in this study were programmed in Python accord-
ing to the functional programming paradigm. The source code was written to
be accessible, easy-to-extend, well tested, and well documented. This is fur-
ther supported by the detailed commentary on the implementation and design
decisions. The provided algorithms can be used to solve traveling salesman
and capacitated vehicle routing problems, with or without a maximum route
duration constraint. We present an extensive experimental study that aims to
replicate the results published in the original papers and provide comparative
results on 454 capacitated vehicle routing problem instances from the litera-
ture. We were able to replicate most of the classical results and could confirm
many of the earlier observations regarding the early heuristics. We were also
able to recognize their individual strengths and weaknesses, and rank them
by their simplicity, accuracy, consistency, and speed. Consequently, our work
addresses the recent concerns on repeatability, reproducibility, and sharing the
source code of vehicle routing heuristics.

Keywords: heuristics, vehicle routing problem, software, replication



1 Introduction

Between its inception in 1959 (Dantzig and Ramser, 1959) and early 1990s, many
algorithms had been proposed to solve the vehicle routing problem (VRP). The
algorithms of this era are usually referred to as the classical heuristics. Most of
these methods were composed of a straightforward greedy heuristic with an improve-
ment or mixed integer programming (MIP) step, and their purpose was well-defined:
when given a problem instance definition including the location of the depot and
customers, their demands, and vehicle capacity, the algorithm promptly produces
a feasible ‘good enough’ solution. This solution is usually not optimal, but the al-
gorithms were often simple to implement and extend (Laporte and Semet, 2002).
Due to their practical value, the classical heuristics have remained relevant also for
the later research on the topic (Braekers et al., 2016). Today, these algorithms are
typically used to give an initial solution for the more advanced methods such as the
many metaheuristics proposed since late 1980s (Section 4.4, p. 90- Toth and Vigo,
2014). Hence, the humble construction heuristic still matters, notably since it has
been shown that the more sophisticated methods benefit from using a good initial
solution (Thompson and Psaraftis, 1993).

The classical algorithms were usually proposed for solving the capacitated vehicle
routing problem (CVRP), which can be seen as a generalization of the widely-known
N P-hard traveling salesman problem (TSP). Instead of just one traveling entity, as
in TSP, in CVRP there are multiple identical vehicles serving a number of customers
from one central depot. Fixed or unlimited number of vehicles are deployed from the
depot to carry out routes before returning to the depot. Moreover, the demand of
each customer must be satisfied by a visit of exactly one vehicle, and the combined
demand of the customers on a route must not exceed the vehicle capacity. The task
is to minimize the transportation costs (usually length of the routes). Some classical
problem instances also include a maximum route length/duration/cost constraint,
and this variant is sometimes called the duration-constrained VRP (DVRP).

According to Sorensen (2015), it is important to be knowledgeable of the recent
and previously proposed methods in order to avoid doing “research” where renaming
existing concepts is regarded to be a contribution. Furthermore, without acknowl-
edging the roots of a given field, the newly proposed methods will not be properly
positioned in the literature and existing taxonomies of heuristics. Additionally, as
Sorensen points out, “the ultimate goal of science is to understand”. While it is clear
that the classical algorithms, of which some are several decades old, do not always
offer state-of-the-art performance, studying them can be useful. Recognizing the
principles behind the most prominent classical heuristics allows one to gain intu-
ition on which kind of algorithmic structures seem beneficial for certain situations
or problems, and innovate and build upon this foundation (Hooker, 1995). More-
over, proper replication of computational experiments is a fundamental prerequisite
for reliable algorithm comparisons (Crepinéek et al., 2014). The recent replication
difficulties of a VRP algorithm reported by Sorensen et al. (2019) can be seen as
an example of the importance of this topic. Unfortunately, it seems that classi-
cal algorithms are rarely reimplemented in the academic literature in their original
form, and a concentrated effort on independent replication of their results seems to
be missing from the literature. We are aware that some of the classical algorithms



have been reimplemented individually (e.g., in Golden et al., 1977; Cordeau et al.,
2002; Laporte and Semet, 2002; Renaud et al., 1996), but the replication of the
results has not been the main focus of these studies. It seems that the incentives
to re-implement existing algorithms and replicate their results are sorely missing
in operations research (Sorensen et al., 2019), which to some extent endangers the
quality of the research building on top of the earlier studies.

The situation leads to our research questions: Which of the early CVRP algo-
rithms actually should be considered to be “classical”? Are their originally published
results replicable? And, how much, and which kind of variation there is in the qual-
ity of the solutions and in the runtime between these heuristics when they are used
to solve well-known CVRP problem instances from the literature.

Regarding the last research question, it is difficult to find studies that reliably
compare the performance differences between the classical algorithms. While publi-
cations usually include result tables with multiple algorithms on a handful of problem
instances, the results may have been combined from multiple sources (e.g., Fisher,
1995; Cordeau et al., 2002; Laporte and Semet, 2002), which makes comparison
unreliable due to differing test environments. There may be variation in the im-
plementation and tuning effort used, in the numeric representation accuracy of the
computational hardware, and in the software versions that were used to produce
the results (Barr et al., 1995, p. 19). Furthermore, in the early VRP research the
rounding and truncating conventions differed from author to author (Mole, 1979;
Gendreau et al., 1994), which further complicates the comparison of algorithms
(Fisher, 1995; Cordeau et al., 2002). Sometimes, two publications do not even share
the primary optimization objective, and the exact parameter values and the number
of runs needed to produce the reported solution are not disclosed. All this makes
comparing, reproducing, or replicating the results difficult (Barr et al., 1995). The
comparisons become even less meaningful for the computation times. The classical
results have been run on a variety of computers over a large time span and imple-
mented in different programming languages (Laporte, 2009). In addition, besides the
implementation details and the computation environment, which themselves have
a definite effect on the algorithm performance, usually only a limited number of
problem instances are tested (Laporte and Semet, 2002). Finally, our work revealed
several misprints and inconsistencies, which may have had effect on many earlier
comparisons where the experiments are drawn from several sources.

Due to these issues, we argue that answering the research questions is impossible
using only the results published in the literature. The conclusions would be drawn
based on limited experimental data, or worse, selective experimental testing, which
has the danger of leading to unremarkable and misleading results (Sorensen, 2015).
Conducting the comparison correctly, therefore, requires building an experimental
setup where the classical heuristic implementations from a single source are used to
solve a comprehensive set of problem instances on a fixed computing environment.
Only this would allow a solid comparison of the classical heuristics and answering the
questions regarding the replicability of the results reported in the classical papers.

Unfortunately, while there are many software packages for solving the traveling
salesman problem (TSP) (for a survey, see Lodi and Punnen, 2007), and some for
VRP metaheuristics (e.g., Schrimpf et al., 2000; Groér et al., 2010; De Smet et al.,
2016), we are not aware of a CVRP library that offers implementations for a com-



prehensive selection of classical algorithms. It seems that some of the classical VRP
heuristics are rarely implemented because they are often considered to be too com-
plicated to understand or implement (Cordeau et al., 2002). This is disconcerting,
as freely available implementations would surely benefit the research field.

The most complete reimplementation effort of classical VRP heuristics is found
from the PhD thesis of Van Breedam (1994). Unfortunately, his work was carried
out before the open source movement gained momentum (Newman, 1999) and the
C-++ implementations of the algorithms are not publicly available. Also, his work
(Van Breedam, 1994, 2002) concentrated on analyzing the effects that heuristic
parameters and side constraints can have on the resulting quality of the solutions,
and did not present replications of the earlier results, nor analyze the individual
variation between the algorithms. Thus, it seems that the field is sorely missing
accurate and freely available implementations of the most central classical heuristics.
In this study, we did set out to fill this void by creating a software library of classical
vehicle routing heuristics called VeRyPy.

But first, to recognize the most prominent algorithms, we did a meta-survey on
the topic of classical CVRP heuristics. In order to narrow down the scope of this
study, we limited ourselves to deterministic heuristics with well-defined termination
rules that have no, or only few, free parameters. This is because algorithms with
many parameters are hard to understand (Laporte and Semet, 2002) and replicating
their results is notoriously difficult. Furthermore, stochastic methods with arbitrary
stop conditions require extensive computation and experimentation to gain statis-
tically valid estimates on their expected performance. Note that these criteria also
naturally exclude methods which are better classified as metaheuristics. Addition-
ally, for an algorithm to be included in our library, we wanted it to be relevant for
solving large scale problems, i.e., with at least 1000 customer points. We also re-
quired that all the necessary details to re-implement the algorithm were given in the
original paper (see guidelies given in Barr et al., 1995). This requirement included
computational experiments on a standard set of CVRP benchmark instances to make
it possible to verify the correct operation of our independent implementations.

The most laborious task in our study consisted of writing the (re)implementations
of the established classical CVRP heuristics. However, as we have argued, this im-
plementation work was necessary to allow answering the research questions of the
replication accuracy and algorithm performance. To differentiate from the existing
open source VRP software libraries, and to make our CVRP library as accessible as
possible, we decided to implement it in Python. This decision is further supported
by Python’s recent popularity in many scientific fields (Millman and Aivazis, 2011).
Its expressive and compact syntax, built-in interactive environment, comprehensive
standard library with a rich collection of data structures, and a selection of useful
scientific extension modules creates a productive computational ecosystem for high-
level scientific computing (Perez et al., 2011). At the same time, we are aware that
Python is not the best option for scientific applications involving intensive compu-
tations (Cai et al., 2005). However, this was not a major concern in this study,
because the speed or the state-of-the-art performance were not our top priority. In-
stead, we followed the recommendation of Hooker (1995) and concentrated on the
scientific testing of the algorithms instead of competitive bout of coding skill. Using
a high level language for this task was, therefore, well-justified. Also, the algorithms



should still be reasonably fast because special care was taken to use suitable data
structures and low level algorithms.

Besides programming language, there are many implementation decisions and
trade-offs to be made when implementing an algorithm library, and we needed to set
guidelines how to balance between them. Cordeau et al. (2002) argued that a good
VRP heuristic should be estimated using four criteria: accuracy, speed, simplicity,
and flexibility. Our main concerns were to make the implementations as simple as
possible, followed by accuracy in the sense that they should replicate the results
from the literature. As mentioned above, absolute speed was not of paramount
importance in our study. Regarding the last criteria, we argue that simplicity also
helps to achieve flexibility, because it makes the code easy to reuse and extend (e.g.,
to solve other VRP variants).

Related to accuracy and speed of the methods, the extensive computational ex-
periment presented in this paper compared the 15 implemented classical heuristics
on 454 capacitated vehicle routing problem instances from the literature. This al-
lowed us to recognize the different strengths and weaknesses of the algorithms and
to independently verify many earlier observations from the literature. Based on the
results, three of the heuristics stood out: the Petal heuristic from Foster and Ryan
(1976) is very good at solving problems with a maximum route duration constraint;
the generalized assignment heuristic from Fisher and Jaikumar (1981) can usually
find good solutions but is computationally expensive, especially on the larger prob-
lems with a maximum route duration constraint; and the extension from Paessens
(1988) to the well-known savings heuristic of Clarke and Wright (1964) turned out to
be accurate, robust, and fast, while still being reasonably simple to implement and
extend. Despite these three heuristics standing out, there is not a single heuristic
that always dominates the others: All but one of the tested heuristics can be stated
to be the recommended algorithm for at least one of the 454 problem instances.
These results, together with the detailed descriptions of the heuristics in this study,
should help algorithm developers to a) more easily recognize and borrow promising
ideas from the extensive literature on the topic and b) offer them insights for novel
combinations of heuristic components when proposing hybrid solvers.

Our work also plays a part in addressing the concerns recently discussed by
Sorensen et al. (2019) regarding repeatability, replicability, and improving peer re-
view standards of the VRP research. Freely available implementations that have
emphasis on simplicity and flexibility could help peer-reviewers to independently
verify new results proposed for publication. Our contribution, a publicly available,
clearly documented, and well written code library of classical vehicle routing prob-
lems, allows this. Also, with this ideal in mind, we strove to replicate the classical
computational results. Prior to our work, a comprehensive study concentrating
on reproduction and replication of classical VRP algorithm results was completely
missing from the VRP literature.

The remainder of this report is organized as follows: Local search, which is a cen-
tral building block in many heuristics, is discussed first in Section 2, together with
listing the operators implemented by our library. This forms a necessary background
for the literature meta-survey on classical vehicle routing heuristics (Section 3.1) and
for the survey on open source software VRP libraries (Section 3.2). The surveys are,
in turn, used to determine which classical heuristics to implement in Section 4. This



section also contains the detailed descriptions of the heuristics, their implementa-
tions, and replication of their results. The next section, Section 5, is intended to
the users of our classical CVRP heuristics software library, and it gives examples
on how to use the heuristics to solve problem instances and some performance con-
siderations for operations research practitioners. Section 6 presents summary of the
replication results, a description of the experimental study, its results, and analysis
thereof. The report is concluded in Section 7, where the implications and future
directions for our research are discussed.

2 Local Search

Local search is a key element not only in many classical but in almost all modern
heuristics and metaheuristics (Funke et al., 2005). Familiarity to the concept is
crucial to understanding the working principle of the algorithms described later in
this report. Local search involves making moves (small changes) to a route or a
solution. The search progresses by repeatedly exploring candidate moves and then
applying those that lead to other, usually better, solutions.

Following the notation of Laporte (2007), we can define a concept of neighbor-
hood, which is central to the operating principle of local search. Assume we are
trying to improve a solution s € S, where S is the set of all solutions. Local search
operators see a neighborhood N(s) C S, which is a set of solutions reachable from
the current solution by applying a operator specific transformation. When such a
move is made, a new solution s’ € N(s) is selected from the neighborhood. One
such neighborhood is depicted in Figure 1.

Among the popular search strategies are the first accept strategy which involves
taking the first improving move that is encountered, or the best accept strateqy where
the entire neighborhood for solution s* is searched for the move that would give the
best improvement to the objective function value:

s’ = argmin ¢(s).
SEN(s*)
Here, ¢ : S — R is the objective value of a solution and we assume that we are
minimizing the function. Thus, local search has reached a local optima if there is
no better solution in the neighborhood, that is, ¢(s") < ¢(s) Vs € N(s').

To facilitate the implementation of classical heuristics, we selected a set of well
known local search operators (see Figures 2 and 3). We did not aim for feature
parity nor competitive performance with the existing libraries such as VRPH from
Groér et al. (2010). Instead, we wanted to implement a representative selection of
operators that would avoid code duplication in implementing the classical heuristics.
Note that the naming of local search operators is not consistent in the literature.
This report roughly follows the naming used by Funke et al. (2005), Briysy and
Gendreau (2005), and Groér et al. (2010). The implemented operators are:

do_2opt_move, which takes one route and reconnects the ends of two edges that
cross. In practice, this means reversing a sequence of nodes within one route.
In a symmetric euclidean case this always improves the solution. The 2-opt
neighborhood is a subset of 3-opt neighborhood (see Figure 1).



Figure 1: The 3-opt neighborhood on edges a-b, c-d, e-f. Dotted edges represent
sequences of customers and may contain arbitrary number of visits.

(a) Initial state




do_3opt_move, which removes three edges from one route and reconnects the node
sequences in a way that improves the solution if such configuration exists.

do_relocate_move checks if a customer can be moved to a different position within
a route in a way that the route is improved. The move is a special case
of do_3opt_move operator, and, thus, the one-point move neighborhood is a
subset of 3-opt neighborhood.

do_exchange_move checks if a route can be improved by swapping a customer on
the route with another on the same route.

do_1point_move checks if an improving move can be found when a customer on
a route can be moved to any position on another route. Thus, this can be
thought as an inter-route version of do_relocate_move.

do_2point_move checks if a customer on a route can be swapped to a position on
another route in a way that the solution would be improved. Thus, this is an
inter-route version of do_exchange_move.

do_insert_move inserts previously non-routed customers to a route and to the
position with least impairment to the objective function value.

do_2optstar_move is similar to do_2opt_move, but the edges can be from two
separate routes. Hence, more combinations are available for reconnecting the
tour segments.

do_3optstar_move is similar to do_3opt_move, but the edges can be from any
route and, thus, more combinations are available and checks are needed to
avoid generation of subtours.

do_chain_move is a computationally expensive move which involves three routes.
The complete canonical name for this type of operator seems to be node-
ejection chains (Rego, 1998). It tries to find an improving move where a
customer on the second route is replaced with a customer from the first route.
The replaced customer must then be inserted on a third route. The move was
introduced by Wren and Holliday (1972) and later explored in depth by Rego
(1998).

The names one-point-move and two-point-move are used to differentiate the
inter-route moves, from the intra-route (TSP) versions relocate and exchange. Here,
the inter-route operators move customers or swap edges between multiple routes,
whereas intra-route operate on a single route at the time. As one can see, we also
implemented inter-route variants of 2-opt and 3-opt, often coined as 2-opt* and 3-
opt*. However, operators that consider several nodes at the time such as Or-opt, or
cyclic transfers, are not included in the local search part of VeRyPy library because
they were not used by any of the implemented classical heuristics.

Regarding implementation of local search operators, we would like to point out
that there are several design choices that affect how the local search is carried out,
and what is the resulting solution:



Figure 2: The four intra-route local search operators in VeRyPy

(a) 2-opt (b) 3-opt (c) Relocate (d) Exchange

Figure 3: Three of the inter-route local search operators in VeRyPy

&

a) 1-pt.-move ) 2-pt.-move

1. Which local search operators are used?
2. In which order the operators are applied?

a) Run one operator until there are no improvements bhefore moving on to
the next operator.

b) Run all operators, one after another, and repeat as long as at least one
of the operators finds an improving move.

3. The strategy choice, e.g., between first-accept or best-accept.

4. In what order the routes and the customers on the route are considered?
Depending on the order, a different best move can be chosen if there are
several equally good ones.

The local optima that is eventually reached through the local search depends on
how the search was conducted, of the operator order, or any other detail outlined
above. These decisions may greatly influence the resulting quality of the solution.
Unfortunately, the aforementioned details are not usually described in full detail,
even when the local search is a critical part of the operation of a heuristic. This
makes replicating the results of the methods with local search problematic.



In general, the weakness of local search heuristics is their tendency to getting
stuck on local optimum, as they usually quickly converge and stop there. Therefore,
numerous different metaheuristics that complement the local search with exploration
capabilities have been proposed. Metaheuristics are outside of the scope of this
study, but the interested reader is referred to Chapter 4 of Toth and Vigo (2014)
and the survey part of the work of Vidal et al. (2013).

3 Literature Survey

The literature survey is divided into two parts. In the first part, we present a meta-
survey of the vehicle routing problem literature discussing algorithms and heuristics
to recognize the most prominent classical algorithms. The survey also includes a
high level descriptions for these algorithms. In the second part, we give the reader
an overview on the currently available open source vehicle routing software libraries.

3.1 Classical Vehicle Routing Heuristics

The concept of classical vehicle routing heuristics seems to be formed around the
time tabu search algorithms for the vehicle routing problem were first proposed
(Gendreau et al., 1994; Laporte, 1992). While the concept is used widely even in
the modern literature (see e.g. Braekers et al., 2016), it is not always clear which
algorithms should be included in the list of classical VRP algorithms. To remedy
this, we present a meta-survey on the topic and briefly describe the most central
early vehicle routing heuristics.

One of the distinguishing features of these methods is that they are capable of
starting from an empty solution and building a good (although, rarely optimal) feasi-
ble solution. Therefore, a name construction or constructive heuristics is sometimes
used when referring to these methods. Cordeau et al. (2002) refined their definition
with an observation that the classical heuristics are able to obtain a feasible solu-
tion quickly, and that the solution can then be improved with a postoptimization
procedure. However, Cordeau et al. (2002) also noted that only few heuristics are
sufficiently well-known to be truly ‘classical’.

Laporte and Semet (2002) further narrowed down the concept of classical heuris-
tics to concern the VRP methods that had been developed mostly between 1960 and
1990. This is a natural distinction, because after the late 1980s the focus in VRP
research moved on to more complex search algorithms (Eksioglu et al., 2009). Many
of the proposed methods of this later era relied on local search operators which were
orchestrated by a supervisor algorithm or a metaheuristic. These orchestration tech-
niques were varied, but metaheuristics can use stochasticity, perturbations, restarts,
self-adaptivity, or maintain diversity, e.g., via a population of solutions (Gendreau
and Potvin, 2010). The purpose of these techniques is to make the effective explo-
ration of the solution space possible.

It was the advances in computing that made these methods possible and, con-
sequentially, the metaheuristics often require significantly larger computational re-
sources than the early heuristics (Eksioglu et al., 2009). Furthermore, due to their
built-in stochasticity methods, the metaheuristic algorithms are not usually deter-
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ministic and the ultimate accuracy of the method is dependent on how the termina-
tion rule is selected. Thus, the experimental results have been since reported, e.g.,
as the best of 10 runs. Most metaheuristics also expose a number of parameters
that, while making them more versatile, require expertize and experimentation to
set them correctly. The main issue with these features is that the quality of the
solutions can vary greatly depending on the random seed and the values of these
parameters. Hence, a tuned set of parameter values are needed to get the algorithm
to consistently perform well on a specific set of problem instances. This makes test-
ing and comparing metaheuristics challenging (Laporte et al., 2000). Still, VRP
metaheuristics are currently the recommended method to solve multi-attribute and
large VRP instances (Vidal et al., 2013). Compared to them, the results provided
by the first generation of VRP heuristics were poor, with a typical gap of 10-15 %
to the best known solution (Renaud et al., 1996).

However, the early classical heuristics remain relevant to this day. In their re-
cent and extensive review of the VRP research from 2009 to 2015, Braekers et al.
(2016) showed that around 10 % of the published research still relied entirely on the
classical heuristics. This is probably because the performance of the simple classical
heuristics is often “good enough” for practical, real world vehicle routing. Only if the
operational fleet is capable of executing tightly planned routes, it is worth to pay
the price in extra complexity brought in by a more sophisticated method. And, even
then, the classical heuristics are usually used to provide a feasible initial solution or
upper bound for the more sophisticated methods (Laporte et al., 2014).

To get a balanced view on the topic, we looked into surveys from different eras
and from multiple different authors. We also considered the other meta-surveys on
the topic: In 2009 Eksioglu et al. did a taxonomic review of the VRP literature that
had, by then, become quite disjointed. In their review, they listed three works in the
category of ‘Survey, review or meta-research’. Out of these only the survey of La-
porte et al. (2000) is relevant to CVRP, because the other two surveys concentrated
on different extensions and variants. Also, the earlier version of the aforementioned
study from 1992 was mentioned when Eksioglu et al. (2009) discussed solution meth-
ods of the classical algorithms era. Furthermore, based on the number of citations
they have received, it seems that the earlier surveys from Eilon et al. (1971), Turner
et al. (1974), Golden (1978), Mole (1979), Christofides et al. (1979), and Watson-
Gandy and Foulds (1981) have a prominent presence in the literature. There is an
earlier survey from Pierce (1969) with a similar topic, but that mainly surveyed the
formulations and exact solution methods. Our set of included surveys is completed
by a number of more recent ones from Cordeau et al. (2002), Cordeau et al. (2007),
Laporte (2009), Vidal et al. (2013), and Laporte et al. (2014).

We intended to use our meta-survey to recognize the most central heuristic al-
gorithms and assumed that they are the ones most often mentioned when classical
constructive heuristics are discussed and surveyed. Also, while surveying the lit-
erature, we kept in mind our additional criteria: to be implemented in this study
the algorithm needed to be deterministic, (relatively) parameter free, capable of
solving problem instances at least up to 1000 customer points, and the original pub-
lication was required to contain enough details and an experimental study to allow
replication of the original results.
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Eilon et al. (1971)

Moving in a chronological order, we start from one of the earliest surveys on the
topic of vehicle routing algorithms. A chapter on vehicle scheduling in the book
Distribution management (Eilon et al., 1971) had a review on the prevailing solution
methods.

The approach from Clarke and Wright (1964) had a dedicated section in the sur-
vey of Eilon et al. (1971). This well-known savings algorithm starts from a solution
where each customer is served independently. Then, from the largest savings value
(best improvement) first, the algorithm merges the routes until there are no feasi-
ble merges left. The alternative savings calculation methods from Gaskell (1967),
and variants that explore a larger set of possible merges from Knowles (1967) and
Tillman and Cochran (1968), were also briefly described by the survey.

After the savings algorithm and its variants, the method from Hayes (1967)
was discussed. This algorithm mimics the way a human dispatcher would built the
routes. However, according to the description of Eilon et al. (1971), the algorithm
contains a random element and many free parameters, e.g., in the form of weights
for different characteristics that are used to determine which nodes should be con-
nected next. This makes the Hayes (1967) algorithm an unsuitable implementation
candidate for this study.

The survey also included a description of the “r-optimal tour method” from
Christofides and Eilon (1969), which works by improving a feasible random tour
serving all customers; a route is first improved with intra-route and inter-route 2-
opt procedure and then made 3-optimal. However, the efficiency of the algorithm
relies on the stochasticity in the initial solution generation, and, hence, it does not
satisfy our criteria either.

Turner et al. (1974)

Turner et al. (1974) surveyed the literature, formulations, exact methods, and heuris-
tics for the ‘transportation routing problem’. Out of the listed heuristics for VRP,
the algorithm by Dantzig and Ramser (1959) gives an impression that it relies on
steps that are intended to be carried out manually. Furthermore, their algorithm is
generally considered to been superseded by the algorithm from Clarke and Wright
(1964) and its extensions (Gaskell, 1967; Knowles, 1967; Tillman and Cochran,
1968). All these different savings variants were mentioned in the survey.

The survey mentioned also the man-machine algorithms from Hayes (1967) and
Krolak et al. (1972). The approach from Krolak et al. (1972) has a manual phase,
which is applied after an initial solution has been built by clustering the customers
and using local search to force the routes feasible and to improve them. Manual
interaction seems to be required to set up the many parameters of the algorithm.
This together with the built-in stochasticity excludes the surveyed algorithms from
Krolak et al. (1972), Hayes (1967), and Christofides and Eilon (1969) from our study.

Another algorithm covered by this survey is the one from Gillett and Miller
(1974). Their sweep algorithm assumes that the customers are located on a plane.
The algorithm assigns them to routes by their polar coordinates and constraints
with a sweep centered at the depot. The assignment procedure is complemented by
an improvement phase and a TSP optimization of the resulting routes.
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Golden (1978)

Golden (1978) presented a survey on ‘recent computational experiments with various
algorithms’ of the time. Some of the algorithms they listed are outside of the scope
of this study. For example, while the tree based search enumeration scheme from
Pierce (1969) is guaranteed eventually find the optimal solution, the search space
and runtime is expected to grow prohibitively large even for medium sized instances.
Another such algorithm mentioned in the survey was written by Russell (1977). He
proposed a heuristic called MTOUR that works by improving randomly perturbed
(and sometimes manually crafted) initial solutions via edge exchange operations. It
is not entirely clear from the MTOUR description if he considered only intra-route
or also inter-route improvements. However, the fact that the algorithm involves
random perturbations and interactive steps excludes it from our study.

Of the methods that fill our criteria the ones from Clarke and Wright (1964),
Gaskell (1967), Knowles (1967), and Tillman and Cochran (1968) were discussed.
Also, other extensions to the savings approach were listed: method proposed by
Yellow (1970) is an acceleration technique for parametrized savings function that
uses polar coordinates to calculate only those savings that are probable to lead to a
valid merge. However, due to the speed of modern CPUs and abundance of memory,
the technique is no longer relevant. Holmes and Parker (1976) proposed yet another
‘look ahead’ savings modification to the Clarke and Wright (1964) algorithm. Earlier
similar schemes had been proposed by Knowles (1967) and Tillman and Cochran
(1968). Another popular extension to the Clarke and Wright (1964) algorithm has
been to apply r-opt route improvement step. For example, Robbins and Turner
proposed an intra-route 2-opt phase for the savings algorithm. Note that Golden
(1978) referred to the preliminary work from the authors, but the final paper seems
to have been published later (Robbins and Turner, 1979).

Moving on from the savings algorithms, Golden (1978) continued to describe
Gillett and Miller (1974), Tyagi (1968), and Newton and Thomas (1969) algorithms.
While the research of Newton and Thomas (1969) concerned routing school buses,
the proposed algorithm can also be used in solving CVRPs. The algorithm solves a
VRP instance first as a TSP by omitting the depot and only routing the customer
points. Then, the TSP tour is split into separate routes according to the constraints.
Also the algorithm by Tyagi (1968) uses TSP algorithms; It works by assigning the
customers to routes using a sequential nearest neighbor route construction scheme,
which is then followed by two-point move and TSP optimization phases.

Please note that in a related study (Golden et al., 1977), Golden noted that
the algorithms from Clarke and Wright (1964), Tyagi (1968), and Gillett and Miller
(1974) had already been used to solve problems up to 1000 customers. This happens
to be one of the criteria for the algorithms to be included in this study, and the
observation supports inclusion of these algorithms as relevant to our study.

Mole (1979)

Many algorithms surveyed by Golden (1978) were also mentioned by Mole (1979) in
his survey. Algorithm from Clarke and Wright (1964), with its extensions (Gaskell,
1967; Knowles, 1967; Yellow, 1970; Holmes and Parker, 1976), were listed. However,
the idea of improving the savings solution with a 2-opt and 3-opt route improvement
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steps was attributed to McDonald (1972) and Beltrami and Bodin (1974) instead of
Robbins and Turner (1979) like it was done in Golden (1978). Thus, it seems that
this idea had been independently proposed by several different authors.

The surveyed algorithms that targeted TSP, the multi-depot case (MDVRP), or
problems with delivery time windows (VRPTW) were ignored. Furthermore, the
CVRP algorithms that are not applicable to our study were: Christofides and Eilon
(1969) due to random initial solutions, Russell (1977) due to random perturbations,
Krolak et al. (1972) due to its manual phase, and Dantzig and Ramser (1959) that
was superseded by the savings algorithm. Furthermore, generating a full set of
savings values is very fast on a modern computer, which makes the discussion on
saving the computational effort somewhat obsolete (including, e.g., Yellow, 1970).

The survey discussed the insertion heuristic from Mole and Jameson (1976) in
depth. It is useful to compare it to the Clarke and Wright (1964) savings where the
savings values are calculated in the beginning and the merges can only be applied
between the route ends. However, insertion algorithms use a more general savings
criterion which can merge, or insert, single customers or partial tours to arbitrary
position on the emerging routes. This involves updating the savings list whenever
these insertions are made. In addition, the insertion heuristic of Mole and Jameson
(1976) keeps the routes 2-optimal thorough the optimization and includes a “refine”
procedure. This procedure tries to move customers from one route to another if the
operation improves and maintains the feasibility of the solution.

The other two studies that were mentioned in the survey were from Wren and
Holliday (1972); Gillett and Miller (1974), and Foster and Ryan (1976). The method
from Wren and Holliday (1972) is very similar to the one of Gillett and Miller (1974)
in that the customers are assigned to vehicles by ‘sweeping’ the plane by their polar
coordinates. The sweeps are done in clockwise direction from four initial directions.
The main difference, however, is in how the improvement procedure is activated. The
Gillett and Miller (1974) heuristic alternates between the improvement procedure
and the clustering, but in (Wren and Holliday, 1972) the improvement procedure is
based on local search operators and is carried out after the initial assignment of the
customers on the routes is done. Similarly to the algorithms from Gillett and Miller
(1974) and Wren and Holliday (1972), the algorithm of Foster and Ryan (1976) uses
a sweep procedure to generate a large number feasible candidate routes or ‘petals’.
This is followed by a phase that alternates between solving a set covering problem,
where these petals are used to find a cover, and a heuristic inter-route improvement
phase that generates new petals for the next iteration.

Christofides et al. (1979)

A chapter in the book Combinatorial Optimization (Christofides et al., 1979) was
dedicated to the vehicle routing problem. The heuristic algorithms from Clarke and
Wright (1964), Mole and Jameson (1976), and Gillett and Miller (1974) were de-
scribed in detail. The sequential savings approach and its steps were also discussed,
but it was not attributed to Webb (1964), where it seems to originate. The stud-
ies of Dantzig and Ramser (1959), Gaskell (1967), Hayes (1967), and Tillman and
Cochran (1968) were briefly mentioned when the terminology is discussed, but their
algorithms were not described.
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Besides surveying existing methods, Christofides et al. (1979) also proposed two
new heuristic algorithms targeting CVRPs. The first is a tree-based search heuristic,
which, even if it is quite hard to see from the algorithm description, requires user
to set its parameters and involves randomized decisions in selecting the customer to
branch on. Furthermore, no default parameter values nor the number of repetitions
to achieve the reported quality for the solutions were given, which excludes the
tree-search based heuristic of Christofides et al. (1979) from our study. The other
proposed heuristic is a two-phase algorithm. In its first phase it uses a score to
greedily build routes around seed customers and in the second phase the heuristic
seeks to rebuild the routes using a more sophisticated procedure. Also this second
algorithm seems to rely on random choices of the seed points, but it seems feasible to
make these decisions deterministic. This would involve using a selection heuristic for
the seed points of the first phase. With these modifications the two-phase algorithm
of Christofides et al. (1979) is eligible for implementation in this study.

Watson-Gandy and Foulds (1981)

Few years later, the survey from Watson-Gandy and Foulds (1981) presented the
latest ideas from the literature of the time. The heuristic approaches were now
categorized into three classes: route-first (RF), cluster-first (CF), and relazed opti-
mization (RO) procedures.

The savings heuristic from Clarke and Wright (1964) with its various modifi-
cations and extensions (Gaskell, 1967; Knowles, 1967; Tillman and Cochran, 1968;
Yellow, 1970; Holmes and Parker, 1976) were noted to belong to the RF class. Note
that Watson-Gandy and Foulds (1981) attributed the sequential savings algorithm
to Webb (1964), which seems to be the earliest publication where this variant is
described. However, we were not able to gain access to this article or the conference
paper cited in (Gaskell, 1967), and, hence, we had to rely on the descriptions in
secondary sources such as Christofides et al. (1979, pp. 327-328). Also, the inser-
tion approach from Mole and Jameson (1976), as well as the two-phase algorithm
from Christofides et al. (1979), were described under discussion of RF algorithms.
However, in our opinion, it could be argued that the first phase of the Christofides
et al. (1979) algorithm defines the clusters by generating the seed points and that
the second phase uses these assignments to do the actual routing, thus making the
algorithm a CF heuristic.

Out of the CF methods, the algorithms from Wren and Holliday (1972) and
Fisher and Jaikumar (1981) were mentioned. The Fisher and Jaikumar (1981) al-
gorithm uses a sweep-like procedure to generate a number of seed points. Then it
relaxes the VRP and solves it as a generalized assignment problem (GAP). The ob-
jective function is kept linear by approximating the route length using the distances
to the seed points. We would like to note that because mathematical programming
is used to solve the GAP, the Fisher and Jaikumar (1981) heuristic could also be
categorized as a RO procedure. In addition to it, another two RO algorithms were
mentioned; the first being the Petal algorithm from Foster and Ryan (1976) and
the second the truncated branch-and-bound, tree-search based algorithm method of
Christofides et al. (1979).

Some algorithms surveyed by Watson-Gandy and Foulds (1981) were omitted
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from this meta-survey. As explained earlier, the algorithm from Christofides and
Eilon (1969) involves random initial tours, and thus, does not meet our criteria.
The same applies to the heuristic of Buxey (1979), where randomization of the
savings merges is used to improve the resulting quality of the solutions. Also, some
of the surveyed works concentrated their solving effort on other VRP variants, or
did not describe a complete procedure that could be written as a computer program.

Bodin et al. (1983)

In 1983, Bodin et al. wrote a special issue to the Computers and Operations Re-
search journal. The issue was entirely devoted to vehicle routing and crew schedul-
ing, including a classification of solution strategies used in vehicle routing (Section
2.4.4 Bodin et al., 1983, p. 98). The survey did not limit itself to CVRP, and, due
to the scope of this study, we did not consider the surveyed algorithms specializing
in stochastic, arc-routing, multi-depot, or fleet size and mix problems. Further-
more, the special issue contained an extensive bibliography on the topic, but not all
classical heuristics listed there are discussed in the text. This meta-survey aims to
concentrate only on the most central and influential classical heuristics, and, hence,
only the methods included in the main discussion on the VRP solution strategies
are noted.

From each class of algorithms only few meets our criteria: the cluster-first,
route-second (CFRS) sweep algorithm from Gillett and Miller (1974), the route-
first, cluster-second (RFCS) algorithm from Newton and Thomas (1969), and the
savings algorithm from Clarke and Wright (1964). Also, out of the relaxed mathe-
matical programming approaches the algorithms from Fisher and Jaikumar (1981)
and Stewart and Golden (1984), fulfill our criteria. The heuristic from Stewart
and Golden, later published in (Stewart and Golden, 1984), borrows the idea of
Lagrangian relaxation used in mathematical programming and uses it to steer an
infeasible initial solution towards better and feasible solutions through a series of
3-opt* moves.

Of the other heuristics mentioned in the survey, the two-phase improvement al-
gorithms from Christofides and Eilon (1969) and Russell (1977) rely on stochasticity
and are, therefore, omitted. Similarly, the interactive optimization approaches, such
as the one of Krolak et al. (1972), and ezact procedures are outside of the scope of
this study.

Laporte (1992)

Gilbert Laporte has written several algorithm surveys to serve the vehicle routing
community. His review article Laporte (1992) surveyed the main algorithms pub-

that describes four heuristic algorithms for solving CVRPs. These included the
familiar savings algorithm from Clarke and Wright (1964) with its well-known ex-
tensions (Gaskell, 1967; Yellow, 1970). As a more recent extension, the experimental
study from Paessens (1988) was mentioned. What makes his savings variant inter-
esting is the a computationally effective strategy to select the most suitable values
for parametrized savings function. Therefore, while the Paessens savings algorithm
contains parametrized components, there is no need to manually configure them.
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In the next section of the survey, the both variants of the sweep algorithm (Wren
and Holliday, 1972; Gillett and Miller, 1974) were described, followed by a descrip-
tion of the two-phase algorithm of Christofides et al. (1979). The heuristics based
on mathematical programming were discussed next under the section on exact al-
gorithms. Pure exact methods are outside of the scope of this study, but out of
the methods discussed earlier, the heuristics from Fisher and Jaikumar (1981) and
Foster and Ryan (1976) were mentioned.

Laporte (1992) also described the tabu search algorithm. While the algorithm
can be implemented to be deterministic, it is heavily parametrized. Also, the tabu
list size and iteration count can always be further increased to achieve even better
results. In fact, tabu search describes a more general framework for solving VRPs,
does not rely on any specific local search operator, and its termination rule must be
chosen carefully. Hence, it is usually classified as a metaheuristic. Its appearance
in the surveys can be considered to mark the transition from the era of classical
heuristics to the one of metaheuristics. As with other metaheuristics, we refrained
from including tabu search into our study.

Fisher (1995)

Fisher (1995) discussed the vehicle routing algorithms in three parts. The first
part was reserved for the first generation of simple heuristics. Here, the savings
algorithm from Clarke and Wright (1964) with its extensions from Gaskell (1967)
and Yellow (1970) were discussed once more. The sequential variant was mentioned
but, again, it was not attributed to Webb (1964). As a new addition to the family
of savings algorithms, the matching heuristic from Altinkemer and Gavish (1991)
was mentioned. It was noted to offer significant improvements over the existing
experimental results by iteratively solving a maximum matching problem.

The Christofides and Eilon (1969) algorithm with its 3-optimized random initial
solutions, as well as the algorithms from Russell (1977), and the work of Thompson,
that seems to be published later in (Thompson and Psaraftis, 1993), were mentioned
in the survey. However, all these three heuristics rely on stochasticity, so them,
and the other studies that concentrate primary on other VRP variants or on local
search, were outside the scope of our study. After the discussion on stochastic
local improvement methods, the two-phase heuristic of Gillett and Miller (1974)
was described and the heuristics of Christofides et al. (1979) and Tyagi (1968) were
briefly mentioned.

The second part of the Fisher (1995) survey discussed mathematical programming
based heuristics. Some of the mentioned papers are theoretical in nature and do not
present any experimental results that could be used to estimate their applicability.
However, also more practical algorithms were discussed; the GAP approach used in
Fisher and Jaikumar (1981) was described in depth including their method for seed
generation. Similarly, the heuristic of Bramel and Simchi-Levi, later published in
(Bramel and Simchi-Levi, 1995) was described: The algorithm determines the seed
locations by solving a capacitated concentrator location problem and, hence, shares
similarities with the GAP approach. This was followed by a detailed discussion of
the set partitioning approach. The one algorithm that fulfilled to our criteria is that
from Foster and Ryan (1976). Furthermore, out of the many papers discussed by
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Fisher (1995) it is seems to be the only heuristic that concentrates on CVRPs and
does not involve interaction with a human operator. The other cited papers mainly
concentrated on modeling side constraints like time windows or split deliveries and
were, therefore, omitted.

In the last part of the survey Fisher (1995) discussed the third generation of
VRP algorithms. This included the first metaheuristics that were surveyed together
with the latest advances in local search, followed by a thorough discussion of exact
methods. However, these topics are not relevant to the topic of this study and are
not listed here.

Laporte et al. (2000); Laporte and Semet (2002)

Laporte et al. (2000) and Laporte and Semet (2002) significantly extended the pre-
vious survey from 1992. In fact, an entire chapter in (Toth and Vigo, 2002b) was
dedicated to the classical heuristics for the CVRP, which indicates the concept of
had been more or less stabilized by the year 2002.

These surveys are almost identical, and both begin with a discussion on the
savings algorithms. There, the sequential version of the savings algorithm was ex-
plicitly mentioned and its operating principle explained. While the method seems
to originate from Webb (1964), it is not attributed to him in either of the surveys.
The usual enhancements to the Clarke and Wright (1964) savings heuristic were
mentioned (Gaskell, 1967; Yellow, 1970; Paessens, 1988). Mentioned are also the
works of Golden et al. (1977) and Nelson et al. (1985) which mainly contribute
to the implementation aspects of the savings algorithms. As a new category of
the savings approach, the matching algorithms (Desrochers and Verhoog, 1989; Al-
tinkemer and Gavish, 1991; Wark and Holt, 1994) were discussed. Of these, the
repeated matching algorithm from Wark and Holt (1994) relies on stochasticity in
certain circumstances, while the matching based approach presented by Desrochers
and Verhoog (1989) and extended in Altinkemer and Gavish (1991) appear to be
computationally quite intensive. The Mole and Jameson (1976) insertion variant of
the savings approach and the Christofides et al. (1979) two-phase algorithm were
discussed under the title of sequential insertion heuristics. However, including the
Christofides et al. (1979) algorithm to this class of heuristics seems a bit misleading
because the method does not, in fact, use insertions. Instead, it works by associating
customers to clusters based on their distance to a set of seed customers.

The discussion of two-phase methods included a general description of the sweep
algorithm with relevant references to both Wren and Holliday (1972) and Gillett and
Miller (1974). Of the cluster-first, route-second algorithms, the Fisher and Jaikumar
(1981) algorithm as well as a similar but later and more computationally demanding
capacitated concentrator location based algorithm from Bramel and Simchi-Levi
(1995) were briefly described. The truncated branch-and-bound tree-search based
algorithm from Christofides et al. (1979) was mentioned, but its stochastic and
parametric nature was not noted, even if it would have been relevant when discussing
the computational effort of the algorithms.

When discussing the algorithms solving the VRP as a weighted set covering
problem, it was mentioned that the Petal algorithm from Foster and Ryan (1976)
is expected to be able to solve large problems in a reasonable time. It was also
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noted that it can be further accelerated using the more efficient solution techniques
from Ryan et al. (1993). The Petal algorithm of Renaud et al. (1996) uses a dif-
ferent method for generating the petals, with allegedly improved the quality of the
solutions. However, this algorithm also comes with many parameters.

In these surveys, the idea of route-first, cluster-second approach was attributed
to Beasley (1983), although from the earlier surveys has become evident that the idea
had been proposed earlier, for example, by Newton and Thomas (1969). However, it
seems Beasley (1983) was the first who evaluated the performance of the route-first,
cluster-second approach on standard vehicle routing problems. Out of the surveyed
works, Beasley (1983) also seems be the only one of that presented experimental
results, whereas other similar works concentrated on bounds and theoretical anal-
ysis of the approach. The Beasley (1983) algorithm uses random initial TSP tours
through all customers in the routing phase, one can see how a deterministic variant
could be built using an optimal TSP tour.

From here, the surveys (Laporte et al., 2000; Laporte and Semet, 2002) continued
with the description of improvement heuristics. Most of the literature surveyed for
this topic concerned descriptions of different local search move operators. Complete
VRP algorithms are rare, but the Lagrangian relaxation heuristic from Stewart and
Golden (1984) can independently solve CVRPs. Also, the survey mentioned the
work from Fahrion and Wrede (1990), where they proposed yet another alternative
for improving the result of the Clarke and Wright algorithm with a chain-exchange
local search post-optimization step. Also, the algorithm of Thompson and Psaraftis
(1993) comes close to fulfilling our criteria, as they provide a complete algorithm
built around a cyclic transfer local search neighborhood. However, their local search
operator is parametrized and the proposed heuristic starts from a random initial
solution.

After discussion on other VRP variants and metaheuristics, Laporte and Semet
(2002) concluded their survey to a remark that there ‘is little room left for significant
improvement in the area of classical improvements’ and that the time has come to
shift the research focus towards local search and metaheuristics. This observation
further solidifies the concept of classical VRP heuristics.

Cordeau et al. (2002)

Cordeau et al. (2002) surveyed and summarized several of the most important heuris-
tics for the VRP. They made a clear distinction between the classical heuristics,
metaheuristics with local search, and population search. Of the classical heuris-
tics, the algorithm from Clarke and Wright (1964) with an optional 3-opt post-
optimization step was described. Savings improvements from Gaskell (1967) and
Yellow (1970) were mentioned as well as the usual computational enhancements
(Nelson et al., 1985; Paessens, 1988). The sequential savings was discussed, but,
again, it was not attributed to Webb (1964). Also, the savings matching algorithms
(Desrochers and Verhoog, 1989; Altinkemer and Gavish, 1991; Wark and Holt, 1994)
were recognized as an another stream of research on improving the Clarke and Wright
(1964) algorithm.

The sweep algorithm was described with appropriate references (Gillett and
Miller, 1974; Wren and Holliday, 1972). The survey also recognized the connec-
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tion between sweep algorithms and the Petal algorithm (Foster and Ryan, 1976)
and its extensions (Ryan et al., 1993; Renaud et al., 1996). The survey included a
description of the Fisher and Jaikumar (1981) GAP algorithm, but also mentioned
issues Cordeau et al. (2002) had had in replicating their results. Finally, location
based heuristic from Bramel and Simchi-Levi (1995) was briefly mentioned before
the focus of the survey turns towards metaheuristics.

Cordeau et al. (2007)

While the book Transportation edited by Barnhart and Laporte (1993) took a more
general view to the research developments in transportation, it also contained a
chapter dedicated to VRP (Cordeau et al., 2007). Classical heuristics were sur-
veyed using the algorithm classification from Laporte and Semet (2002). Out of
the route construction heuristics, parallel savings (Clarke and Wright, 1964) and
sequential savings (mentioned, not cited, Webb, 1964), insertion (Mole and Jame-
son, 1976), the two-phase heuristic (Christofides et al., 1979), and the matching
algorithms (Desrochers and Verhoog, 1989; Altinkemer and Gavish, 1991; Wark and
Holt, 1994) were listed. The cluster-first, route-second part of the survey on two-
phase heuristics contained a familiar set of algorithms (Wren and Holliday, 1972;
Gillett and Miller, 1974; Fisher and Jaikumar, 1981; Bramel and Simchi-Levi, 1995;
Foster and Ryan, 1976; Ryan et al., 1993; Renaud et al., 1996) and the truncated
branch-and-bound tree based method of Christofides et al. (1979). Of the route-
first, cluster-second methods the following were listed: Beasley (1983); Haimovich
and Rinnooy Kan (1985); and Bertsimas and Simchi-Levi (1996). However, only
Beasley (1983) describes a complete algorithm together with experimental results
on CVRP instances.

Before surveying metaheuristics, Cordeau et al. (2007) also discussed classical
route improvement heuristics. However, out of the cited works, only the one from
Thompson and Psaraftis (1993) can be considered to describe a complete CVRP
heuristic.

Laporte (2007, 2009)

To avoid bias in including too many surveys from the same authors, the two surveys
by Laporte (2007, 2009) are examined together. Besides giving a survey on the
several families of exact algorithms for the VRP, they discuss classical heuristics in
depth. According to Laporte (2007), the qualificative trait in classical heuristics is
that they perform descents, i.e., they always move towards better solutions. This is
in contrast to metaheuristics that may allow non-improving moves, or even moves
that make the solution temporarily infeasible.

The algorithm from Dantzig and Ramser (1959) was explicitly mentioned in
Laporte (2009), followed by the savings algorithm (Clarke and Wright, 1964) and
enhancements that can speed up the computations (Golden et al., 1977; Nelson
et al., 1985; Paessens, 1988). In this survey the parametrized savings variant was
attributed to Golden et al. (1977), even though the idea originates from earlier works
of Gaskell (1967) and Yellow (1970). Of the matching approach, the variants from
Altinkemer and Gavish (1991) and Wark and Holt (1994) were explicitly mentioned.
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The methods surveyed under set partitioning problem heuristics included Gillett
and Miller (1974), Foster and Ryan (1976), and the extensions to the latter from
Ryan et al. (1993) and Renaud et al. (1996). Under cluster-first, route-second heuris-
tics, the algorithm from Fisher and Jaikumar (1981) is mentioned together with its
extension from Baker and Sheasby (1999). Finally, in the discussion preceding the
one on metaheuristics the improvement heuristics due to Thompson and Psaraftis
(1993) is briefly described.

Vidal et al. (2013)

While the motivation for the work of Vidal et al. (2013) came from making a syn-
thesis of the recent research of multi-attribute VRPs, they also included a compre-
hensive survey on the classical heuristics. Also, the paper has been influential in the
recent VRP research , which further supports its inclusion to this meta-survey.

The surveyed algorithms included the savings heuristic of Clarke and Wright
(1964), with its usual extensions from Gaskell (1967) and Yellow (1970), as well
as the insertion algorithm of Mole and Jameson (1976). The sweep algorithm of
Gillett and Miller (1974) was briefly described, as well as the route-first, cluster-
second approach that was attributed to several authors (Newton and Thomas, 1974;
Beasley, 1983, are those relevant to this study). The last classical constructive
heuristic surveyed was the cluster-first, route-second algorithm from Fisher and
Jaikumar (1981). When the local-improvement heuristics were discussed, also the
cyclic transfers of Thompson and Psaraftis (1993) are mentioned.

Laporte et al. (2014)

The last survey in our meta-survey is the most recent update to the review series on
classical VRP heuristics from Laporte et al. (2014). They reviewed methods that
“have withstood the test of time or present some interesting distinctive features” and
the classical heuristics are discussed under constructive and improvement heuristics.

The parallel savings heuristic of Clarke and Wright (1964) was described to-
gether with some of its enhancements (Nelson et al., 1985; Paessens, 1988). The
other approach that they recognized of still having a practical value is the Petal
algorithm of Foster and Ryan (1976) with its extensions (Ryan et al., 1993; Re-
naud et al., 1996). Also, the very first VRP heuristic from Dantzig and Ramser
(1959) is briefly mentioned. Interestingly, Laporte et al. (2014) mentioned that it
may have inspired the later matching based heuristics from Desrochers and Verhoog
(1989); Altinkemer and Gavish (1991); Wark and Holt (1994). Again, of the listed
improvement heuristics only the work of Thompson and Psaraftis (1993) describes
a complete deterministic CVRP algorithm. Other surveyed works propose new local
search moves, or can already be considered to be basic metaheuristics.

The survey from Laporte et al. (2014) completes our meta-survey on classical
vehicle routing heuristics. Please find the analysis of the results of this meta-survey
in the beginning of Section 4 that is presented after the survey on open source vehicle
routing software below.
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3.2 Vehicle Route Optimization Libraries

VRPH! is a high performance library that has been shown to produce solutions to
CVRPs that are within one percent of the best-known ones on many of the well-
known academic benchmark problems (Groér et al., 2010). Also, this performance
can be further improved through automatic algorithm configuration (Rasku et al.,
2019b). VRPH implements seven local search move operators, three metaheuristics,
and two classical construction heuristics: the parametrized parallel savings algorithm
from Gaskell (1967) and the first phase of the sweep algorithms (Wren and Holliday,
1972; Gillett and Miller, 1974). However, the library is geared towards implementing
metaheuristics and because VRPH is written in C+-+, integrating external exact in-
teger programming solvers that are needed to implement certain classical heuristics
would have been laborious. Also, VRPH does not include any tests for the correct-
ness of the algorithms, and its development seems to have ceased. In our earlier
experiments and comparisons (Rasku et al., 2016, 2019b) we have found there to be
room for improvement in the code of VRPH, which makes it suboptimal foundation
to build on. However, the implementations of the heuristics are fast and the library
is published under the very permissive Common Public License (CPL), which makes
it a good tool for computational experiments on metaheuristics.

The open source OptaPlanner? is ‘a lightweight, embeddable constraint sat-
isfaction engine which optimizes planning problems’ (De Smet et al., 2016). It
is written in Java and is licensed under very liberal Apache Software License 2.0
(ASLv2). OptaPlanner is capable of solving VRPs and other combinatorial prob-
lems. It comes with generic construction heuristics such as cheapest insertion and
local search heuristics such as hill climbing variable neighborhood descent (VND).
While its heuristics could be used as a building blocks to implement classical vehicle
routing heuristics, the architecture as a generic combinatorial optimization suite is
quite sophisticated. The limitations of the architecture could potentially become
restrictive when implementing the classical heuristics, especially since the software
is quite extensive and geared towards general use. This generality would necessitate
modifying and including large amount of code not directly related to classical VRP
heuristics. Furthermore, properly building on top of OptaPlanner could require
including support for other variants of VRP (e.g., VRPTW and PDP).

Jspirit?® (Schréder and GraphHopper team, 2018) is an open source toolkit for
solving rich TSPs and VRPs. It is in many ways similar to OptaPlanner, as both are
written in Java and have a company committed to developing the software further.
They even share the same ASLv2 open source license. On the solver side, Jspirit
uses a single generic metaheuristic to handle many vehicle routing variants. The
metaheuristic was described in (Schrimpf et al., 2000) and was later extended with
ideas from Pisinger and Ropke (2007). The toolkit seems to be actively developed,
documented, well-tested, flexible, and easy-to-use. However, due to its many depen-
dencies, generality, and being written in Java, the architecture of the library seems
quite complex and it proved to be difficult to estimate the feasibility and effort of
extending it to support classical CVRP construction heuristics.

'https://projects.coin-or.org/VRPH
’https://www.optaplanner.org/
3https://github.com/graphhopper/jsprit
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OscaR’ (OscaR team, 2012) is a Scala toolkit for solving Operations Research
problem. It is published with GNU Lesser Genral Public License 3.0 (LGPLv3).
Among other solution approaches, it comes with constraint-based local search library
implementing standard neighborhoods: insertion, one-point-move, two-point-move,
relocate, exchange, cross-exchange, chain, 2-opt, and 3-opt. However, the main
focus of the toolkit is not in heuristics nor in VRP, and the same comments as with
OptaPlanner or Jspirit related to architecture, generality, and chosen programming
language apply.

Google Optimization Tools or OR-Tools® is a ASLv2 licensed software suite
for solving combinatorial optimization problems (Google, 2018) including vehicle
routing library for TSP and VRP. Of the construction heuristics OR-Tools has
nearest neighbor, cheapest insertion, sweep, and parametrized savings. It also comes
with local search with a large neighborhood search and other metaheuristics (guided
local search, simulated annealing, and tabu search). Of the local search operators the
library implements relocate, exchange, cross, cross-exchange, 2-opt, Or-opt, and Lin-
Kernighan usage heuristics. The code is well documented C++ with F#, Python,
Java and C# bindings with multiple examples. Also some tests exists, but seem to
be mostly concentrate on regression testing. OR-Tools would be a good platform
to extend, but as our aim was academic solver concentrating on simplicity and
readability, we were hesitant to use such an extensive library as a foundation for our
implementations.

Open-VRP®, while no longer being actively developed, is a well documented
academic open source software framework capable of solving different routing prob-
lems, including CVRPs. The library is written in Common Lisp and licensed under
Lisp lesser GNU public license (LLGPL). The architecture of the framework is clean,
and it seems easy to extend. However, currently only insertion heuristic and tabu
search metaheuristic are implemented and, thus, for implementing classical heuris-
tics, many local search heuristics should be added. Also, MIP software packages
rarely offer Lisp bindings, which would make implementing relaxed mathematical
programming VRP methods laborious.

While mainly being a generic open-source (under Eclipse Public License 1.0)
MIP solver, SYMPHONY (Ralphs and Giizelsoy, 2005) also has extensions and
an application for solving VRPs. The application has built-in heuristics for finding
the upper bound for the exact solver and its C source code 7 implements relocate
and exchange local search heuristics. The construction heuristics include a custom
clustering insertion; nearest neighbor; sequential savings; and a route-first, cluster-
second scheme with several TSP initialization methods. We tried to compile the
current version of 5.6.16 with the heuristics enabled, but this failed. After some
research into the issue, it became apparent that it is hard to estimate the extent of
the modifications to reuse the code. In addition there were significant amount of code
duplication, and using the SYMPHONY codebase would have required additional
refactoring effort.

“https://bitbucket.org/oscarlib/oscar/wiki/Home

5https ://developers.google.com/optimization/

6https ://github.com/mck-/0Open-VRP

"https://github.com/coin-or/SYMPHONY/tree/master/SYMPHONY/Applications/VRP/
src/Heuristics
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VROOM (Coupey, 2018) is another open-source (under BSD 2-clause license)
optimization engine for VRPs. It is written in C++14 and currently offers algo-
rithms for shortest path computation and solving TSPs using local search heuristics.
It’s being actively developed with a clustering CVRP heuristic to be added in the
near future. However, it is still in early stages of its development, and does not
currently offer a stable foundation for the classical heuristics.

While not being a traditional software library, another popular option for solving
VRP seems to be the Open Source Spreadsheet based Solver from Erdogan
(2017). Microsoft Excel is undoubtedly a good solution when trying to remove bar-
riers preventing the use of vehicle route optimization, but this technological choice
makes it hard for us to extend the solver to offer other algorithms than the large
neighborhood search (LLNS) metaheuristic that the package currently offers.

To conclude the literature review on open source vehicle routing libraries, we
note that there is a wide selection of readily available models and algorithms for
solving typical academic VRPs. However, while some of the libraries implement one
or two classical algorithms, there is no VRP library with a comprehensive collection
of classical heuristics. Most of the surveyed libraries are implemented with a spe-
cific metaheuristic in mind and one that includes, or would make easy to include,
relaxed mathematical programming approaches is missing. Also, while not surveyed
here, some of the more general purpose frameworks for designing local search algo-
rithms such as EasyLocal++ from Di Gaspero and Schaerf (2003) could be used as
a foundation for building VRP heuristics.

However, the existing libraries typically follow the object oriented paradigm
(OOP) (Booch, 1998) and are written in object oriented programming languages
(mainly Java and C+-+). While this paradigm allows building powerful abstrac-
tions, it can also lead to unnecessary structural complexity and inflexibility (Subra-
manyam and Krishnan, 2003). Hence, using a framework and OOP is to some extent
in conflict with our aims related to understanding, implementing, and replicating
the results of algorithms and producing a simple and easy to understand software
library for classical VRP heuristics. Thus, based on the earlier meta-survey on
classical vehicle routing algorithms, and the survey on the available open source
implementations, a decision was made to implement an independent open source
library of classical vehicle routing algorithms in Python following the functional
programming paradigm. This involved choosing the algorithms to be implemented,
which is discussed next.

4 The Implemented Classical Heuristics

Based on our meta-survey of classical heuristics in Section 3.1, we proceed to give
abbreviations to those methods that had been cited at least twice and in at least in
20% of the surveys published after the method had been proposed. These require-
ments are somewhat arbitrary, but also necessary to rule out methods that have
failed to stay relevant. Additionally, we use a key after the algorithm abbreviation
that indicates if the method requires human interaction ( x), if it is parametrized
(%), if it is stochastic (1), or if there are no published experimental results or we
were unable to gain access to the paper (o).
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The results of the meta-survey are summarized in Table 1, which lists how many
times the methods were mentioned in the literature. On the summary row, only
those surveys published after the introduction of the method are considered in the
calculation of the citing percentage. Please note that there is some room for con-
sideration in what is counted as a reference depending on the nature of the survey
and on the context in which the original work was mentioned. For example, the
fundamental VRP paper from Dantzig and Ramser (1959) is cited in every survey,
but their proposed algorithm for solving the truck dispatching problem is explicitly
mentioned only in few of them. Similarly, the sequential savings approach is not al-
ways attributed to Webb (1964), but to keep the citation counts commensurable, all
mentions of the sequential savings heuristic are marked in the column of We64-SS.
Also, please note that the route-first, cluster-second heuristic had already been pro-
posed in (Newton and Thomas, 1969, 1974) for solving a related school bus routing
problem, but in Table 1 we count all citations to those studies towards a later study
from Beasley (1983), who applied the approach to CVRP.

The list of algorithms to be implement was further shortened by using the spe-
cific criteria used in this study. Consequently. in the abbreviation list below, the
methods chosen to be implemented in VeRyPy are marked with ¢ and those omit-
ted are marked with X. In case an algorithm has been omitted, the main reason for
its elimination is given. In addition to our criteria, those methods that lacked ex-
perimental results on CVRP benchmark instances (e.g., Beltrami and Bodin, 1974)
or for which we were unable to verify that such data exists (Knowles, 1967; Tillman
and Cochran, 1968) were not chosen.

As we saw in the meta-survey, there are many ways to categorize and classify
VRP heuristics. The categories are usually somewhat overlapping and we are aware
that the taxonomy used in Table 1 and in the list below is somewhat arbitrary.
However, the used taxonomy allows clarifying the differences between the general
heuristic approaches.

One Phase Heuristics

X DR59-EM, the edge matching based heuristic of Dantzig and Ramser (1959).
Omitted from this study as it has been superseded by CW64-PS (according
to, e.g., Fisher, 1995).

v CW64-PS is the original parallel savings algorithm of Clarke and Wright
(1964).

v Web64-SS or sequential savings, attributed to Webb (1964) where it seems
to originate. The fact that another sequential algorithm from Yellow (1970)
was often cited, contributed to implementing the original sequential savings
heuristic from Webb (1964) in our study.

v Ga67-PS|r/\, the (parallel) 7 and A-savings algorithms of Gaskell (1967).

X Kn67-TBS° the tree-search savings method of Knowles (1967). It is omitted
because we were able to gain access only a secondary source description of the
algorithm (Eilon et al., 1971), and also because its similarity to HP76-PS |[IMS*.
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X TC68-2PS° is the look-ahead savings variant of Tillman and Cochran (1968)
for which we were also unable to find the published paper. This made repli-
cating the results impossible and it was omitted from this study.

X Ye70-PS|G1P* the sequential parametrized savings criteria heuristic of Yel-
low (1970). It has been partly superseded by Pa88-PS|G2P* that further gener-
alizes the savings criteria. The sequential route building behavior is sometimes
attributed to Yellow (1970), but the idea becomes more apparent in We64-SS.

v HP76-PS|IMS* is the iterative parallel savings merge suppression heuristic
of Holmes and Parker (1976).

v MJ76-SI is the sequential insertion heuristic of Mole and Jameson (1976).

Matching Heuristics

v DV89-MBSA, the Desrochers and Verhoog (1989) maximum matching based
savings heuristic.

X AG91-MM, the Altinkemer and Gavish (1991) two-phase maximum match-
ing heuristic with dummy nodes. Omitted due to being introduced quite late

to be considered classical heuristic. It is also only a marginal improvement
over DV89-MBSA.

X WH94-MM' Wark and Holt (1994) cluster splitting maximum matching
heuristic. It has a stochastic component and there is no straightforward mod-
ification leading to a deterministic variant. Thus, it was omitted.

Improvement Heuristics

X Ru77-MTOUR'* is the MTOUR local search improvement heuristic of Rus-
sell (1977). It is omitted due to its random perturbation and manual crafting
of initial solutions, both of which would make it hard to replicate the results.

v Pa88-PS|G2P is the Paessens (1988) two parameter parallel savings heuris-
tic with an intra-route 3-opt improvement phase and a parametrized savings
function auto-tuning strategy.

X TP93-PS|CT"™ uses random initial solution with cyclic transfer improvement
phase (Thompson and Psaraftis, 1993). It is omitted because of its stochas-
ticity and parameters.

Route-First, Cluster-Second Heuristics

X CEG69-rOPTY, is the stochastic r-optimal improvement approach (Christofides
and Eilon, 1969; Eilon et al., 1971). Omitted due to stochasticity.

v Be83-RFCST, the route-first, cluster-second algorithm for CVRP of Beasley
(1983), which was proposed for bus routing in (Newton and Thomas, 1969,
1974).
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Cluster-First, Route-Second Heuristics

v Ty68-SNN is the sequential nearest neighbor insertion heuristic of Tyagi
(1968).

v WH72-SwLS, sweep with local search improvement phase of Wren and Hol-
liday (1972).

v GMT74-SwRI, sweep with TSP solver and inter-route improvement of Gillett
and Miller (1974).

v CMT79-2P7, the Christofides et al. (1979) two-phase heuristic.

Relaxed Mathematical Programming Heuristics

v FR76-1PTL, the set covering Petal heuristic of Foster and Ryan (1976)

X CMTT79-TTS!, the truncated tree search heuristic of Christofides et al.
(1979). Omitted due to stochasticity.

v FJ81-GAP, the generalized assignment problem (GAP) heuristic of Fisher
and Jaikumar (1981).

v SG84-LR3OPT', the Lagrangian relaxation inspired 3-opt method of Stew-
art and Golden (1984).

X BSL95-CLP, the capacitated concentrator location problem seed generation
for the GAP heuristic from Bramel and Simchi-Levi (1995). Omitted due to
being computationally too expensive (see below). It has also been published
quite late to be considered a classical heuristic.

X RBL96-2PTL, the 2-Petal extension of Renaud et al. (1996). Omitted due
to being a computationally expensive extension to FR76-1PTL and due to late
publication date for a classical heuristic.

There are few omission decisions in the above list for which we would like to
give more details on: To decide if the Bramel and Simchi-Levi (1995) BSL95-CLP
algorithm could be included in our study, we estimated the computational effort
required to solve a 1000 customer problem. If we assume® that BM POWER1 CPU,
on which the results of Bramel and Simchi-Levi (1995) were computed, produces
around 70 VAX MIPS (around 40 MWIPS), then a modern day Xeon processor is
around 70 to 100 times more powerful (Longbottom, 2014). Extrapolating the com-
putational effort reported by Bramel and Simchi-Levi (1995) suggests that it would
take IBM POWERI1 from around 55 hours to 860 hours to produce a solution for the
hypothetical 1000 point problem. Thus, even the most optimistic estimate would
give a solution time in the ballpark of four hours of single threaded computation on
a modern 3.7 Ghz Intel i7 CPU, which makes it an infeasible approach to use on
large problems. This is also supported by Table 2 in Fisher (1995), which suggests

85/6000 350; POWER1 @ 41.6 Mhz, 40.7 MWIPS, 70 VAX MIPS, 44.7 MWIPS/DP VS. Intel;
Core i7 4820K @ 3700 MHz, 3063 MWIPS, 7270 VAX MIPS, 3257 MWIPS/DP
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that the (Bramel and Simchi-Levi, 1995) algorithm is significantly more computa-
tionally intensive than the other mathematical programming based heuristics such
as the ones from Fisher and Jaikumar (1981) and Foster and Ryan (1976).

Similar estimation can be done for the heuristics which rely on repeatedly solving
the maximum matching problem. Fitting a power curve to the computational times
given in Table 4 of Desrochers and Verhoog (1989) gives an estimate of 220 hours for
the solution time on a 1000 customer problem on their unspecified DAC VAX/VMS
computer. Assuming a top of the line VAX 8700 model of the era, and referring the
benchmark data of (Longbottom, 2014), a naive best case estimate of computing
a 1000 customer problem on a modern 3.7 Ghz Intel i7 CPU processor would be
around 80-120 minutes assuming single threaded computation®. Thus, based on
this estimation, it seems somewhat feasible to use a simple matching problem based
approach to solve large CVRP instances on a modern CPU. However, the extensions
from Altinkemer and Gavish (1991) (AG91-MM) and Wark and Holt (1994) (WH94-
MM) increase the computational complexity, and would probably require excessive
computing times on the larger problem instances. Based on this estimate AG91-MM
and WH94-MM were omitted from our study.

Also the omission of CMT79-TTS (Christofides et al., 1979) should be discussed.
It is a tree based search method inspired by a set partitioning formulation of the
VRP. Each tree node represents a feasible route and at each branching the algorithm
selects a route to serve nodes not yet served by any of the parent node routes. How-
ever, the method seems to rely strongly on stochastic components, is parametrized,
and involves use of another independent construction heuristic to get a upper bound
for the tree search. Thus, we decided to omit it from this study. However, the results
in Table 11.1 Christofides et al. (1979, p. 335) indicate that the tree based algorithm
is capable of producing high quality solutions with reasonable CPU effort. Also, the
approach is different from the others, which makes it potentially interesting future
addition to the relaxed mathematic programming heuristics offering of VeRyPy.

Looking ahead to the assessment of the algorithm features and their implemen-
tation details given later in this section, Cordeau et al. (2002) presents a useful list
of desirable criteria for a vehicle routing heuristic: accuracy, which usually is mea-
sured with a gap between the algorithm provided solution and the optimal value;
consistency of producing good accuracy over a large number of different problem
instances or parameter values; speed, or how quickly the algorithm is able to pro-
duce results with an acceptable accuracy; simplicity, which is a measure on how
hard the algorithm is to understand and implement (including the number of free
parameters); and flexibility as a measure on how easy it is modify the algorithm to
solve different VRP variants.

Please note that flexibility is linked to simplicity because simpler algorithms are
usually easier to extend to accommodate new side constraints. Furthermore, each of
our criteria for an algorithm to be implemented in this study is closely linked to these
five attributes: the main reason behind the requirements that the algorithm should
be parameter free and deterministic is to allow the results to be replicable. This is
best served through consistency and simplicity. On the other hand, ability to solve

"DAC VAX; VAX 8700 P8 @ 22.2 MhZ, 4.98 WMIPS, 1.16 MFOPS, 5.81 VAX MIPS, 3.41
MWIPS/DP VS. Intel; Core i7 4820K @ 3700 MHz, 3063 MWIPS, 7270 VAX MIPS, 755 MFLOPS,
3257 MWIPS/DP
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large instances requires speed and flexibility. Later in this section, the descriptions
of the heuristics and their results, as presented in the original publications, are
considered carefully against these requirements and attributes.

4.1 General Remarks on Replicating the Results

Reproducibility of the results should be central when the reliability of the research
field is considered. This is especially true in computational sciences, where effec-
tiveness of the proposed methodologies is usually demonstrated via empirical testing
(Barr et al., 1995). Barr et al. advocated that in addition to evaluating the contri-
butions with a necessary scientific rigor and reporting them objectively, one should
document the experimental design details and publish the necessary software arti-
facts required to independently verify the results. This is an important prerequisite
not only to estimation of the validity of the research but also to the accumulation
of knowledge in science.

Regarding computational testing of heuristic algorithms, Barr et al. (1995) called
for defining and documenting the termination rules, algorithm parameters (or rules
to set them), and all implementation details. Also, the circumstances and fac-
tors affecting the experiment and the implementation of the algorithm should be
discussed. Unfortunately, not nearly all details of the algorithms and their com-
putational benchmarking have been disclosed in the literature on classical VRP
heuristics. Hence, whenever we had to make design decisions or experimentation
with the experimental setup for the replication tests, we discuss these topics along
with the replicated results.

One such major factor that significantly affects the values coming from the com-
putational experiments in the literature is that of distance and objective rounding
or truncating conventions. These vary from author to author (Cordeau et al., 2002;
Laporte, 2007), and, based on our survey, it seems that at least following conventions
are used:

e rounding to a specified number of digits after the decimal point,

truncating after a specified number of digits after the decimal point,

e using exact distances (R) with the full floating point accuracy of 16/24/32/64
bits,

rounding to the nearest integer (I), or

truncating down to the closest integer (floor, F).

Unfortunately, the exact rounding convention is rarely explicitly specified, which
makes the replication of the results difficult and tedious. Sometimes the convention
can be inferred from the results or appendix of the paper, but not always. Further-
more, the solution value may have been independently rounded or truncated. That
is, the problem instance is solved using exact distances, but the result is given as an
integer. In the discussion of the replication results, we mention whenever we believe
that rounding convention had an effect on the replication results. Nonetheless, the
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considerations of rounding should be kept in mind when interpreting the replication
results. We give the type of rounding used with each benchmark problem instance.

In the tables for replication results following shorthands are used for constraints:
C is used for capacitated vehicle routing problems (CVRP) and D for distance or
duration constrained routes (DVRP, distance/duration constrained vehicle routing
problem). These can be combined with the labels for rounding conventions. Thus,
for example, I°" stands for a Capacitated and Distance/duration constrained VRP
instance with distance matrix values rounded to the nearest Integer.

Cordeau et al. (2002) have made an observation that ‘Accurate reporting of
computing time is another delicate issue in the scientific literature .. [and] strict
standards are not consistently enforced by VRP researchers when it comes to as-
sessing the speed of algorithms.” In our study, we were able to sidestep this to some
extent because we were more interested in the correctness of the implementation.
Even though we made sure suitable data structures and low level algorithms were
used, we mostly ignored the replication of runtimes of the implemented algorithms.

4.2 One Phase Heuristics

In this category we discuss the group of straightforward constructive heuristics that
build the solution using a single simple procedure and rules. However, we have also
included methods that extend these heuristics through iterations or an improvement
step. That is, the simple procedure can be repeated several times with different
parameters or with some of the previous decisions marked forbidden. Note that all
methods with a TSP algorithm based improvement step could be considered to be
cluster-first, route-second heuristics, but those whose origins can be traced back to
the one phase heuristics are discussed here instead.

The most well known of the one phase heuristics are the savings algorithms.
These heuristics build a solution by merging routes according to a sorted list of
savings that describe how much the solution is improved by merging the two routes.
The merges are applied from the largest saving first while ignoring those that would
break the constraints.

The original savings algorithm from Clarke and Wright (1964) is one the best-
known heuristics in operations research (Sorensen et al., 2019). Thus, it is not a
surprise that a large number of authors have proposed extensions and variations
to it through the years. Webb (1972) presented a computational comparison of
several savings variants, and Watson-Gandy and Foulds (1981) suggested that the
popularity of the extensions might be due to the relative simplicity of the procedure.
Still, Webb (1972) and related experimental work have demonstrated that despite
its apparent simplicity, minor changes in the merge order can have a significant and
hard to predict effect on the emerging route structures and, ultimately, resulting
quality of the solutions(Mole, 1979).

Implementation details and acceleration techniques for one phase algorithms can
be found, e.g., from the works of Yellow (1970); Golden et al. (1977); Nelson et al.
(1985) and Paessens (1988). However, due to the rapid growth of computational
resources, these contributions have become somewhat irrelevant (Cordeau et al.,
2002) and are not described in depth. Also, based on our meta-survey, only the
most well-known savings variants are discussed in this section.
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Overall, the main advantages of the one phase algorithms are related to their sim-
plicity and speed. Meanwhile, their accuracy and flexibility are not that good, and
adding new side constraints often leads to the algorithm’s already modest accuracy
to quickly deteriorate (Cordeau et al., 2002).

4.2.1 Savings

Are customers i and j
the first or the last
visit on their routes?

No

START Initialize routes,

one for each customer

Pop the best merge
(largest savings)
with customers i, j
from the queue

Calculate savings for
every customer pair
and sort them to a queue

OPTIONAL:
STOP Improve the routes
using a TSP-algortihm

Would the
merge break the
capacity constraint?

Is the savings
queue empty?

Merge routes with
customers i, j

Would the merge
break the max. route
length constraint?

Figure 4: Operating principle of the parallel savings algorithm

Clarke and Wright (1964) were the ones who first proposed the idea for the savings
algorithm (CW64-PS), and showed how it can be used to solve vehicle routing
problems. The parallel approach starts from an initial state where each customer is
served individually by a route. Then, best feasible merge is made at each step of the
algorithm, until no further feasible merges are in the savings list. The routes are
build in parallel and, thus, each merge reduces the number of routes by one. Clarke
and Wright (1964) proposed to calculate the savings from merging two routes by
connecting customers ¢ and j with:

s(i,J) = coi + coj — Cij- (1)

Here, ¢;; is the cost of traveling from ¢ to j and the savings value s(7, j) describes
the distance saved by merging the two routes by connecting ¢ and j with an edge,
given that that ¢ and j are connected to the depot (indicated by 0) with an edge
prior to the merge operation.

Gaskell (1967) explored the trade-offs of different savings functions and the order
of merges. He proposed two new savings function alternatives together with some
experimental results. These are referred to as Gaskell’s m and Gaskell’s A criteria
or Ga67-PS|m/\. Given ¢, as the average cost of all edges leaving from the depot,
the two criteria can be written out as follows:

sx(t,7) = sij(o + |coi — cos| — cig), (2)
sz (i,7) = coi + coj — 25 (3)
In his final comments Gaskell (1967) proposes one more savings criteria with

parameter ¢, but this variant is not included in his experimental study. Later,
Yellow (1970) called this a parameterized savings function:
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se(1,7) = coi + coj — bcij. (4)

An computational study on the effect route shape parameter 6 can be found in
(Webb, 1972) and (Golden et al., 1977). Webb (1972) compared savings criteria
(1), (2), (3), and (4) with different parameter values, but his results were inconclu-
sive. Later, Paessens (1988) proposed a further generalization of the parameterized
savings function by introducing two multipliers g and f. His function was of the
form:

ng(’i,j) = Cp; -+ Coj — gcij + flCOi — COj’- (5)

What makes the savings criterion of Paessens (1988) interesting to our study, is
that his algorithm Pa88-PS|G2P uses two strategies (M1 and M4) to find suitable
values for the parameters g and f. Because parallel savings is computationally cheap
algorithm generating a solution eight times, as it is done with the strategy M4, is
perfectly feasible.

Yet another alternative for the savings function is the prozimity criterion (Gaskell,
1967) with the savings function s,(4, j) = ¢;;. That is, the distance between the two
merge candidates is the savings value. Using this criterion is equivalent to a variant
of parallel nearest neighbor heuristic, where shortest edges are connected as long as
there are no more feasible route merges to be made.

Besides the savings function itself, the ordering of the savings values matters.
Usually, the savings algorithm does the merge with largest saving value first. Addi-
tionally, a merge is subject to the following restrictions:

1. customers ¢ and j are already not on the same route,
2. routes to be merged have an edge from 7 and j to the depot, and

3. the merge will not violate capacity or maximum route cost constraints.

If any of these restrictions is violated, the savings is rejected and the next candidate
is checked. However, if one wishes to minimize the number of vehicles used, also
those merges with a negative savings value can be applied.

As Gaskell (1967) pointed out, it is very possible for two or more merge candi-
dates to have identical savings values. In fact, our experiments revealed that this
is quite common. Originally, Clarke and Wright (1964) proposed that the choice
between the equally good alternatives is made randomly. Later, Gaskell (1967) pro-
posed a rule based scheme, where the priority is determined “by distance apart”.
That is, the customers closest to one another are connected whenever a choice be-
tween multiple merge alternatives must be made. Later, Hallberg and Kriebel (1979)
further validated this idea by showing that this approach ensures better quality solu-
tions for problems where customers are situated in a grid, while not producing worse
solutions for routing problems that do not have this structure. As we only wanted
to include deterministic algorithms to VeRyPy, we used the rule based approach of
Gaskell (1967).

The routes in a savings algorithm are typically build in parallel, that is, the
number of routes decreases as the algorithm merges the routes with largest savings.
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However, also a sequential version of the algorithm exists. We decided to follow
Watson-Gandy and Foulds (1981) and attribute the sequential savings heuristic
We64-SS to Webb (1964). However, as we were not able to gain access to his
original paper, we had to rely on secondary sources for its implementation details
(Christofides et al., 1979; Van Breedam, 1994, 2002). Similarly, we had to use the
experimental study of (Gaskell, 1967) to gain access to the reference results for the
sequential savings heuristic.

Sequential savings algorithm works via ‘route extension’, where a single emerging
route is built at the time (see Figure 5). The advantage of the approach is that it is
not necessary to initially generate all n? savings values which makes it fast, albeit
less accurate (Laporte and Semet, 2002). Another disadvantage of the sequential
savings approach is that the emerging routes need to be initialized with a seed
customer, which is another delicate choice that has a great impact on the resulting
quality of the solutions.

Pop the best merge
(largest savings) Has customer j

with customers i, j been routed
from the queue

START

No Yes No

Are there non-
routed customers? Is the savings No Is customer i first or

queue empty? last on the route?

No Yes
Yes

STOP

Py B Would extending
Calculate savings for customer i Initialize a route with a the route break the
with all nonrouted customers and nonr 0“(5@ see‘d customer capacity constraint?
merge them to the sorted queue. and set i and j refer to it

- No
Extend the route with

customer | at the end with i Mark j as routed

No Would it break the
max. route length
constraint?

Figure 5: Operating principle of the sequential savings algorithm

Regarding the VeRyPy implementation of the savings algorithm, computing the
savings values for the parallel version is an O(n?) operation. VeRyPy is intended
for solving at most 1000 customer problems, so storing the savings value in the main
memory is not a problem. To sort it, we can use the Python’s builtin list sorting
algorithm. When applying the potential merges, the list is just iterated through,
which makes it computationally cheap as the list is not modified in any way. If at
some point larger problem instances with tens of thousands of customers needs to be
solved with VeRyPy, the iterative computation method of Paessens (1988) or some
other acceleration technique (see, e.g., Yellow, 1970; Golden et al., 1977; Nelson
et al., 1985) can be used to enhance the computational efficiency of the savings
implementation.

We now move on to reporting the replication results comparing the quality of
the solutions between the implementations of VeRyPy and those published in their
original papers. Laporte and Semet (2002) has observed that “there is a great
variability in the numerical results for the saving heuristics”. For example, Webb
(1972) reported that he was unable to replicate Gaskell’s results. His work concerns
the sensitivity analysis on the parametrized savings function parameters, but he
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discounts the discrepancies to erratic rounding errors and differences in manual
calculations.

One of the earliest and highly cited savings publications is the one from Gaskell
(1967), where he proposes three new savings criteria and experimentally compares
two of these against the original one from Clarke and Wright (1964). Also, the
sequential route building variant of the savings heuristic of Webb (1964) is included
in the comparison, even if it is not described in detail. Our replications of the
(Gaskell, 1967) results are shown in Table 2 and Table 3. As one can see, the
accuracy of the original Clarke and Wright (1964) is replicated almost perfectly and
the average quality of the solutions of our Gaskell’s m and A implementations is
within our replication target of 0.1 %. The variant with savings function s, has a
slightly higher standard deviation, but the overall level in the quality of the solutions
is close enough on both to their targets.

The emerging route initialization method for the sequential savings heuristic
was not described in (Gaskell, 1967), but initializing it with the farthest non-routed
customer from the depot seems to give similar results to those reported in the
paper. For this target, the average quality of the solutions is within 0.2 % of the
reported results, but there is more variation between the instances (see Table 2). Our
experimentation with different route initialization methods shows that the sequential
variant is very sensitive to the choice of route seeds. The replication level of the
sequential savings algorithm is adequate given that no description or implementation
details are given for the algorithm in (Gaskell, 1967) and that we had to rely on
secondary sources for its implementation.

Table 2: Replicated results of parallel and sequential savings algorithms with Clarke
and Wright (1964) (CW64) criteria, as reported by Gaskell (1967) (Ga67). % = our
solution uses one additional vehicle.

Problem CW64-PS Web64-SS
no. source size type| fref f  gap(%)| fref [ gap(%)

1 Ga67 36 I°P 923 923  0.00 |947 947 0.00
2 CW64 31 1C [1427 1427 0.00 |1427 1434 0.49
3 Ga67 32 I°P 839 839 0.00 | 850 883 3.88
4 Ga67 21 I°P | 598 598 0.00 | 648 640 -1.23
5 Ga67 29 I°P | 963 963 0.00* |1017 982 -3.44
6 Ga67 22 I°P 955 958 0.31 | 949 963 1.48

average 0.05 0.20

st.dev. (0.12) (2.26)

There would be other possible targets for savings related replication experiments
like the parallel and sequential savings algorithms with 3-opt post-optimization step
with best and first accept in Laporte and Semet (2002), but we decided to include
a comparison to the results published in (Paessens, 1988). As one can see, the
results produced by our implementation (Table 4) are very similar. When comparing
the results to those of Paessens (1988) please note that we have not included the
allowance (modeled as a service time) to the result values on the (Gaskell, 1967)
instances to use the same convention in all results tables.

We have also included the unmodified parallel savings algorithm results, because
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Table 3: Replication results with Gaskell (1967) savings criteria.

Problem Ga67-PS|A Ga67-PS|m
no. source size type| frer f  gap (%) | frey f  gap (%)

1 Ga67 36 1I°P 913 907 -0.66 |857 857  0.00
2 CW64 31 1€ |1434 1456  1.53 |1500 1500  0.00
3 Ga67 32 I°P| 821 821  0.00 |80 850  0.00
4 Ga67 21 I°P 602 602 0.00 |598 598  0.00
5 Ga67 29 I°P | 979 960 -1.94 | 943 944 (.11
6 Ga67 22 1P| 988 1004* 1.62* |1015 1019 0.39

average 0.09 0.08

st.dev. (1.23) (0.14)

they were given in (Paessens, 1988). However, our parallel savings implementation
uses the secondary savings value sort criteria of Gaskell (1967) instead of the random
choice used in (Clarke and Wright, 1964). This is the most probable explanation for
the slightly better results of our implementation (C&W and C&W-+3-opt of Table
4). The quality of the solutions with the M1 parameter search strategy is replicated
almost perfectly. The small discrepancies are probably due to the usual differences
in floating point accuracy and local search operator order. The results of applying
the M4 strategy are also very closely replicated. The two smaller noteworthy dif-
ferences are the slightly better solutions our implementation finds on the instance
C2, and the slightly better solutions of the Paessens (1988) implementation on C10
(both instances from (Christofides et al., 1979)). However, there is one single larger
difference on instance G4 (M4 strategy). Paessens (1988) does not give the exact
quality values for the solutions prior to applying 3-opt, but, instead, a percentage
improvement achieved with improvement stage. We have calculated the target ob-
jective values in Table 4 for the solutions prior to the improvement phase based
on these improvement percentages. The value 0.3% given for G4/M4 in Table 5 of
Paessens (1988) is repeated twice on that very line, which might indicate a misprint.
The fact that our 3-optimal solution is very close to the reported on this target, even
if the initial solution is allegedly very different, seems to support this hypothesis.

Taken together, our implementation of the Paessens (1988) M1 and M4 strategies
replicates the results very close to those published in (Paessens, 1988). If we ignore
the single outlier value in the M4 strategy tests (with 3.44 % gap) we are within the
0.1 % target we have set for perfectly replicating the results.

Regarding other extensions to the savings algorithm, in his survey Mole (1979)
concludes that some elaborations of the savings method only produce marginal im-
provements while substantially increasing the computation times. On the other
hand, other improvements that make the procedure more computationally effective
have become irrelevant (e.g. Yellow, 1970). However, two extensions to the savings
approach, namely exploring several of the alternative savings merges (see Knowles,
1967; Tillman and Cochran, 1968; Holmes and Parker, 1976), and augmenting the
savings algorithm with a post-optimization step (see, e.g., Robbins and Turner, 1979;
Beltrami and Bodin, 1974; McDonald, 1972; Paessens, 1988) stood out in our liter-
ature survey. It would be trivial to recreate, for example, the Robbins and Turner
(1979) algorithm by adding a 2-opt* post-optimization step to the parallel savings
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heuristic. However, as outlined above, the advantage of the Paessens (1988) over
its competition is the strategy for finding the parameter values for the generalized
savings criteria. Of the savings merge search / look-ahead approaches, we were only
able to gain access to the paper from Holmes and Parker (1976). Their algorithm
HP76-PS|IMS* iterates on the parallel savings heuristic with Clarke and Wright
(1964) criteria and on each iteration suppresses some of the best merges from the
previous iterations.

Table 5: Replicated results of the Holmes and Parker (1976) savings suppression
heuristic.

Problem HP76-PS[IMS
no. source size type|frer f  Gap (%)
1 Hayes (1967) 6 I° [114 114 0.00

2 Christofides and Eilon (1969) 50 I¢ |573 580 1.22
3 Christofides and Eilon (1969) 75 I¢ |886 868 -2.03
4 Christofides and Eilon (1969) 100 1€ |876 876  0.00

average -0.20
st.dev. (1.17)

As can be seen from Table 5, our implementation replicates the average quality
of the Holmes and Parker (1976) results to a reasonable degree. We were unable
to gain access to two of the three smaller problems, but differences between imple-
mentations would be in any case expected to manifest only on the larger instances.
Regarding variation in the results, note that Holmes and Parker (1976) did not spec-
ify a strategy for the situation where two merges share a savings value, and this is
the probable cause for variation in our replication results.

Overall, implementing HP76-PS|IMS* proved that our parallel savings imple-
mentation is quite flexible, and a similar approach could be used to implement the
other savings extensions (e.g., Knowles, 1967) in the future.

4.2.2 Insertion Heuristics

In 1976, Mole and Jameson proposed a generalization to the savings algorithm.
Instead of allowing merging two routes only between the first or the last customers
of the routes, the routes are build sequentially one at the time and the non-routed
customers can be inserted between any two consecutive nodes on the emerging route.
Their motivation was to seek for new solution methods which would require less
computation time than the previously proposed extensions to the savings algorithm.
This goal leads one to assume that the insertion heuristic MJ76-SI is capable of
solving large problem instances.

For each insertion, the algorithm needs to decide a) which non-routed customer
to insert and b) where to insert it. These decisions are made according to two cri-
teria. The first calculates the increase of strain in inserting the customer u between
consecutive nodes 7 and j on the emerging route:

$1(4,u, ) = Ciuy + Cuj — HCi5. (6)
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The insertion must be feasible, i.e., it should not violate the capacity or maximum
route constraints. The second criteria considers the distance to the depot and is
defined using the first criteria:

SQ(iauvj) - )\COU - Sl(iauaj)a

59(4,u, j) = Aoy — Ciu — Cuj + HCij.

(7)

Also, for what seems to be for performance reasons, Mole and Jameson (1976)
proposed determining the insertion specifics in two steps. First, s is used to select
the next customer u* to insert. Then, s; determines the nodes i* and j*, and the
customer is inserted between these nodes:

u* = argmax s (i,u, j),
u

i*, 7% = argmin s (7, u*, ).

12

Pop the queue: try
inserting customer u
between nodes i, j

Is customer u still
not routed and i and j
still connected?

OPTIONAL:
Improve/'refine’
the routes with

local search

STOP

Initialize a new
emerging route

START

Mark all as
non-routed

Would the
insertion break the
capacity constraint?

Is the
insertion queue
empty?

Calculate insertion cost

for each non-routed customer
between any two nodes
on the emering route and

create a new priority queue

and mark all its
customers routed

Calculate insertion cost
for each non-routed customer Insert customer u
betweenianduanduandj |q between nodes i, j
on the emering route and Mark customer u
push it to the priority queue as routed

‘Would the insertion
break the max. route
length constraint?

Figure 6: Operating principle of the sequential insertion heuristic

We decided to use a more straightforward approach: because the term Acg,» is
the same for all considered insertion positions of u* in the emerging route, we can
find the customer to be inserted and its position in one step by getting the largest
savings value sy over all feasible combinations of (,u, j).

To avoid recalculating the savings values, we store the s, values with the insertion
details in a priority queue, as implemented in the Python module heapqg. The
binary tree structure makes pushing and popping from the heap computationally
inexpensive. Both operations are used extensively; whenever the emerging route
grows the insertion queue is updated accordingly. The route may have changed
since the insertion was pushed to the heap, which (as can be seen from Figure 6)
means that following conditions are checked after an insertion candidate is popped
from the heap:

1. u* has not already been inserted,
2. there is still an edge between ¢* and j*, and

3. the insertion will not violate constraints.
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Route initialization is an important detail that can have large effect on the
resulting quality of the solutions. In the algorithm of Mole and Jameson (1976),
the emerging route initialization depends on the values of parameters A and p: if
(A—1) # p, the emerging route is initialized by a farthest non-routed customer from
the depot. However, if (A — 1) = p, then the emerging routes are initialized with
the customers p and ¢ that have the largest savings criteria value s5(0,p,q). This
corresponds to the savings function:

s'(p,q) = pcop — Cpg + ficog-

Similarly to the original savings algorithm, it is possible (and required to avoid
a corner case of leaving one customer unrouted) that p = g. Also, because two pairs
can easily have the same savings value, a secondary criteria needs to be used to
make the choice deterministic.

The results of Mole and Jameson (1976, Table 3) suggest that the heuristic is
very sensitive to the order in which the insertions are made. Furthermore, our
experiments showed that strain value collisions are very common (i.e., the value
given by Equation (7) is the same for two or more possible insertions). The method
of resolving these situations has a great effect on the quality of the resulting solution.
Unfortunately, Mole and Jameson (1976) do not specify in which order the customers
are inserted if the stress values are equal. Through experimentation, we decided
to use the Equation (6) values as the secondary insertion criteria, and because
the collisions still were occasional, we calculated a savings value for each insertion
(that is, how much worse the solution would be if the customer would be served
individually) and use that as tertiary sorting criteria. This allowed us to replicate
the results reported by Mole and Jameson (1976) to some extent. While there is
a lot of individual variation in the results on a instance-to-instance basis, Table 6
shows that, in aggregate, our results are 0.1 % better than those reported in (Mole
and Jameson, 1976). The differences are most likely due to the different insertion
order, but verifying this is not possible because the tie breaking method used in
the original work of Mole and Jameson (1976) was not documented. The fact that
sometimes the difference between our solution and the one reported in Mole and
Jameson (1976) can be as high as 8% (assuming this is not due to a misprint)
suggests that the choices of individual insertions a great impact on the quality of
the final solution with this heuristic. Hence, using a single stress function will cause
inconsistent accuracy, but that the method stabilizes if all proposed stress functions
are considered.

Another source for replication discrepancies may be in the use of local search.
The algorithm keeps the route 2-optimal, which means that the 2-optimality is
checked after each insertion. If the route needs to be changed to make it 2-optimal,
then the insertion values are updated accordingly. After all customers have been
routed, there is a post-optimization refinement phase, where the routes created by
the insertion heuristic are improved using three local search operators: one-point-
move, 2-opt, and redistribute. The redistribution is attempted only on the route
with smallest total demand. As explained in Section 2, the result of local search is
dependent on the order of the operators and on the number of combinations that
are tried. The description of the refinement procedure in Mole and Jameson (1976)
is vague. For example, the redistribution heuristic can try different permutations of
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customers and routes to find an insertion combination that allows inserting all of
the redistributed customers, but it is not specified if a greedy or more exhaustive
strategy is used.

As some of the results are quite far from identical to those reported in Mole and
Jameson (1976), we cannot verify that our implementation of the algorithms is in
all parts equivalent to theirs. The operating principle and overall accuracy level
are similar, but we did not meet our replication target for all of the stress functions
because even after extensive experimentation we still could not determine for certain
which secondary insertion criteria (if any) Mole and Jameson used. However, if the
accuracy is aggregated over all of the stress functions, our implementation produces
a slightly better average quality for the solutions than the original implementation
of Mole and Jameson (1976).

4.2.3 Nearest Neighbor Heuristics

The nearest neighbor heuristics are greedy heuristics that build the routes by insert-
ing one of the nearest neighbors of the previously added customers on the emerging
route. The algorithm was one of the first algorithms proposed for solving TSP and
can be adapted to VRP by starting a new route from the depot whenever a capacity
or route length constraints are violated. Reflecting upon the attributes for heuristics
in Cordeau et al. (2002), the nearest neighbor approach scores high in simplicity, as
the implementation is rather trivial, and also in speed, as they are typically very
fast. Furthermore, the flexibility of the algorithm is good as it is easy to extend it
given that the problem is not too constrained. Incorporating alternative objectives
is more difficult and, for example, we are not aware of a deterministic variant that
is capable of minimizing the number of vehicles used. Also, in the case of VRP, the
heuristic has a tendency to produce poor quality routes where the return trip to the
depot from the last customer on the route is unnecessarily long. We were unable to
gain access to the report from Klincewicz (1975) where he presented a computational
study on nearest neighbor heuristics in VRP, but according to (Golden et al., 1977)
Klincewicz’s implementation of the Tyagi nearest neighbor algorithm produced so-
lutions with a poor quality. Despite this, and for the sake of completeness, a nearest
neighbor algorithm Ty68-SNN from Tyagi (1968), along with two other nearest
neighbor variants similar to those presented in (Van Breedam, 1994, 2002)), have
been included in VeRyPy.

The nearest neighbor heuristic presented in (Tyagi, 1968) can be considered to
be a cluster-first, route-second algorithm, but here we categorize it as a constructive
heuristic with a post-optimization phase. The algorithm works as follows: The
customers are first divided into groups using a greedy nearest neighbor heuristic,
where the algorithm initializes each group G; with a (“first customer”), and then
proceeds to add the nearest neighbor to the previously added customer until the
capacity constraint C'is violated. This far the Tyagi method has followed the generic
approach of the nearest neighbor heuristic illustrated in Figure 7.

However, here the algorithm diverges from the this simple idea. This is due to the
algorithm prioritizing minimizing the number of vehicles by interchanging (similar to
the local search two-point-move operator) the customer that was first or last added
to (G; with the customer whose inclusion to G; would have violated the constraint,
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Figure 7: Operating principle of the sequential nearest neighbor heuristic

but only if the interchange brings the route demand closer to the capacity limit
C. After the interchange is accepted or rejected, a new group is initialized and the
process repeated until all customers have been assigned into one of the groups. In a
case there is a group with only a single customer, the grouping of the first iteration
is discarded and the best single customer is selected from a group of special single
route candidates in such a way that the utilization of vehicles is maximized. This
means running as many iterations of the algorithm as there are these single route
candidates. After the clustering phase, the groups G,;Vi € {1... K} are routed as
a symmetric TSPs. Tyagi (1968) describes a heuristic for this task, but in our
implementation we opted to use the LKH implementation (Helsgaun, 2000, 2009) of
the more established Lin-Kernighan algorithm for TSP routing (Lin and Kernighan,
1973).

The inaccuracies in the description of the Tyagi (1968) algorithm suggests that
it has not been applied manually and not coded to a computer. Studying the
provided illustrative example carefully suggests that Tyagi (1968) uses different un-
documented variant of his heuristic to solve this 12 customer problem from (Dantzig
and Ramser, 1959). The discrepancies are listed below:

1. The first inconsistency is that even though the customer 5 seems to be chosen
to be served individually with a separate route, it does not fulfill the criteria
for the single customer as specified in (Tyagi, 1968, p. 80).

2. Considering the group G, and looking at the distance matrix presented in
Table 1 (Tyagi, 1968, p. 80), the customer 7 would be the nearest to the
customer 6 which is the first customer. However, it is omitted and customers
8 and 9 are included instead. The interchange operator does not help to explain
the discrepancy, as one gets the impression from (Tyagi, 1968, p. 80) that only
the first (beginning) or the last (end) point of a group G; can be interchanged.

3. Finally, the presented grouping is not the one that “makes the sum of the
deliveries more near to C”. The customer 5 is not the one with the biggest
or smallest demand and we see no reason for the algorithm, as presented in
(Tyagi, 1968, p. 80), to select the alternative where customer 5 is served by
an individual route.

In order to implement the algorithm, some details, like how to maximize the
utilization of the vehicles in the last point of the list above, are missing and need
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to be addressed. The choice of using the first customer to initialize a group seems
arbitrary (and it is not explicitly specified in the description of the algorithm).
Also, it has not been specified what to do if a single customer group is part of
the grouping but there are no customers that fulfill the criteria for customers that
can be served individually with a single route. Therefore, to replicate the grouping
of the customers in the illustrative example of Tyagi (1968, p. 86), we needed to
slightly modify the algorithm, which leads to the following changes and options in
our implementation:

1. Allow any customer to be served individually if the algorithm produces such a
solution after the first iteration instead of allowing only the customers fulfilling
certain criteria. This is required for the customer 5 to be served individually
in the illustrative example.

2. Allow any customer in a group to be interchanged with the nearest neighbor of
the last added customer. This allows grouping customer 9 instead of customer
7 in the illustrative example group Gb.

3. Do not select the grouping with largest total demand in non-single customer
routes, but the one that has smallest penalty from traveling with unused ca-
pacity. The penalty is the sum of distance traveled times unused capacity.
We assumed from the description that this penalty can be expressed as an
equation

Z (C - dr)cm (8)
rel. K
where ¢, is the total cost (length) of the route r, and d, is total demand. The
description of the penalty calculation is not very clear (Tyagi, 1968, p. 79),
but our interpretation allows our implementation to make the same choice that
is done in the illustrative example: that is, the penalty selects the customer
number 5 to be served individually.

Table 7: Replicated results of the Tyagi (1968) sequential nearest neighbor algorithm
(Ty68-SNN).

problem original modified
source size| frep  f 8ap (%) | frep 82D (%)
Dantzig and Ramser (1959) 12]290 342 179 |290 290 0.0

The grouping of the customers in the illustrative example is replicated with
the aforementioned modifications. Furthermore, the modifications allowed us to
replicate the results and the corresponding quality of the solution (see Table 7).
Unfortunately, it is impossible to reliably judge if our proposed modifications are
similar to those used by Tyagi (1968). Therefore, as shown also in Table 7, our
implementation allows running the algorithm as described in the paper (that is,
without the modifications).

Note that VeRyPy implements sequential (vB94-SNN) and parallel (vB94-PNN)
versions of the nearest neighbor heuristic. These lack the route improvement pro-
cedures of the Tyagi algorithm, and instead roughly follow the descriptions in
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(Van Breedam, 1994, 2002). Unfortunately, we were unable to find experimental
results on the performance of these algorithms. Therefore, we were unable to do
replication examination on these nearest neighbor variants.

4.3 Cluster-First, Route-Second Heuristics

The cluster-first, route-second (CFRS) algorithms work in two phases. First they
group the customers to clusters and then apply a TSP algorithm to route the clus-
tered customers. To ensure that the solution is feasible, it might be necessary to
repeat the process. Alternatively, the clustering may be used to ensure that it is
possible to do a feasible routing.

The approach used in the two-phase algorithm of Christofides et al. (1979) is
hard to classify. It shares similarities to the savings approach, but was discussed
with insertion heuristics in (Cordeau et al., 2007), even though it does not actually
calculate insertion costs. It works by associating customers to seed customers and
then optimizes the emerging routes. Therefore, we chose to describe it here under
the CFRS algorithms.

Both the nearest neighbor Tyagi (1968) and Fisher and Jaikumar (1981) can
be considered to be CFRS algorithms (although, in this study they are discussed
under different categories), but perhaps in it’s purest form the approach exists in the
family of sweep algorithms. The idea behind the algorithm was proposed in (Wren
and Carr, 1971; Wren and Holliday, 1972), but also in Gillett and Miller (1974) who
gave the sweep its name.

Is the current
customer same as the
first customer?

Would inserting
the current customer break
the capacity constraint?

Convert cartesian coordinates

into polar coordinates

Select a first customer
and initialize an emerging
route containing it

)

Select a next customer Initialize a new emerging
(counter)clockwise route ining only
from the previous one the current customer

Insert the customer
on the emerging route

Route the emerging route also
including the current customer
using a TSP-algortihm

Would insertion break
the maximum route length
constraint?

Figure 8: Operating principle of the basic sweep approach

The basic operating principle (Figure 8) of the sweep algorithm is simple: The
algorithm assumes that the coordinates of the customers and the depot are known,
the distances of the VRP are symmetric, and, furthermore, that the points are
located on a plane. The Catresian coordinates of these customers in relation to the
depot are converted to polar coordinates (p, ¢), and subsequently sorted by their ¢
values. Starting from an arbitrary customer a new emering route is initialized and
then, going to the clockwise or counterclockwise direction, the next adjacent non-
routed customers are inserted until a constraint is violated. When this happens, the
procedure repeated from the next customer until all customers are routed. Usually,
the routes are then optimized using a TSP algorithm.

We would like to point out some practical optimizations to the simple procedure
presented in Figure 8. Computing the TSP repeatedly, even with warm starting, is
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computationally inefficient. Instead, if there is no maximum route length constraint,
computing the optimal TSP tour for the route can be done after all customers have
been assigned to routes. For the same reason, computing an upper bound for the
TSP solution and updating the exact route length only when the upper bound
violates the constraint is beneficial. Depending on how tight the constraints are
compared to one another, the TSP tour can also be computed after the capacity
constraint is violated. Then, the sweep is backtracked (Gillett and Miller, 1974) and
the customers removed from the emerging route until the maximum route length
constraint is no longer violated.

The basic sweep algorithm is simple to implement, but loses to the savings ap-
proach both in terms of accuracy and speed. Also, it depends heavily on the as-
sumption that constraints can be satisfied by using the planar structure (Cordeau
et al., 2002). This had to be into account when implementing the two different
sweep variants. The algorithms are described in detail below. First is the algorithm
from Wren and Holliday (1972) and the second from Gillett and Miller (1974). The
main differences between the algorithms are in the number of sweeps and in the
route improvement procedures.

4.3.1 Wren and Holliday Sweep Heuristic

In the Wren and Holliday (1972) algorithm WHT72-SwLS, the sweeps are made
from four evenly spaced seed customers. Out of the generated four initial solutions,
the best is selected to be improved in the next phase.

The improvement procedure involves applying several refining processes consec-
utively and iteratively until no further improvements can be made. In the modern
heuristics literature, the refining processes are known as the ocal search operators.
The iterative approach proposed in Wren and Holliday (1972) is very similar to
the variable neighbourhood descent (VND) metaheuristic (Hansen and Mladenovi¢,
1999). More specifically, the improvement phase consists of applying what Wren
and Holliday call inspect, single, pair, complain, delete, combine, and disentangle
heuristics. Most of these heuristics have a modern local search counterpart but with
a different name: inspect is the intra-route 2-opt operator, single corresponds to
combination of the relocate and one-point move operators, and pair is similar as
the chain move. For details on these refinement heuristics we refer to (Wren and
Holliday, 1972) and Section 2.

The improvement procedure is illustrated in Figure 9 adapted from (Wren and
Holliday, 1972). We implemented the necessary local search procedures and the
improvement scheme and followed the order of applying the operators as specified
in (Wren and Holliday, 1972). However, the exact order in which the search space is
explored by the local search operators was not specified in the original paper. Thus,
all of the caveats listed in Section 2 apply, and the local optima reached via VeRyPy
local search can differ from the one reported in (Wren and Holliday, 1972). For
example, our implementation of the single heuristic uses do_relocate_move and
do_1point_move operators sequentially, which may cause the improvements to be
applied in different order than in the implementation of (Wren and Holliday, 1972).

Replicating the results published (Wren and Holliday, 1972) proved in some parts
challenging as can be observed from the replication results in Table 8. Based on our

46



Omitted

Yeg,| COMPLAIN
customers

START

Has solution
improved? OR
Any omitted

assigned?

INSERT omitted

Generate 4 solutions with
SWEEP and choose the best,
deleted = true

Omitted
customers?

INSPECT (2-0pt) |
SINGLE (one-point-move, relocate) ‘

Is
problem
smal]

Was
DELETE
suuesful”

DELETE

Figure 9: Operating principle of the Wren and Holliday route improving sweep
algorithm (Wren and Holliday, 1972)

Table 8: Replicated results of the Wren and Holliday (1972) sweep algorithm (WH72-
SwLS).

Problem Rule based term. | Full convergence |Best sweep position

no. source size type| frer f Gap (%)| frey [ Gap (%)|fref [ Gap (%)
1 Ga67 36 I°P[851 846 -0.59 |851 846 -0.59 [842 838  -0.48
2 CW64 31 I |1406 1417 0.78 |1406 1417 0.78 - 1401  -0.36
3 Ga67 3217|812 822 123 |[812 809 -0.37 - 809 -0.37
4 Ga67 21 I°P|593 609 270 [593 605  2.02 - 599 1.01
5Ga67 29 I°V 888 948 6.76 |888 948 6.76 | - 873 -1.69
6 Ga67 22 I°P 964 952 -1.24 | 954 949 -0.52 - 949 -0.52
7 CE69 50 I° | 551 522 -5.26 |551 522 -5.26 | - 521 -5.44
SCE69 75 1€ |900 863 -4.11 |863 863  0.00 - 87 -0.70
9 CE69 100 I€ | 851 828 -2.70 |851 828 -2.70 - 825 -3.06
average -0.27 0.01 -1.29
st.dev. (3.47) (3.09) (1.80)

Ga67 = Gaskell (1967), CW64 = Clarke and Wright (1964),
CE69 = Christofides and Eilon (1969)
Results with a z-score over 1.0 are in bold typeface.

experiments, the quality of the solutions with the basic sweep approach is highly
dependent on the customer where the sweep is initiated. Furthermore, depending
on how the Cartesian coordinates are interpreted and how the conversion to Polar
coordinate system is made, the direction of increasing angular coordinates may be
clockwise or counterclockwise. Looking from the depot, Wren and Holliday (1972)
suggest starting from the direction where the customers are most sparse. However,
they do not give formal definition on how this, or the other four seed customers
for the initial sweep solutions, are chosen. The description (Wren and Holliday,
1972, p. 337) leaves some ambiguity how the pole of the polar coordinate system
is chosen, to which direction the sweep is carried out, and to which interval the
angular coordinates are limited. Additionally, it is unclear if the list of polar angles
is sorted in the descending or ascending order, and if the four starting points are
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taken from the list by index or by evenly spaced angles. In our implementation, we
determine the most sparse direction by calculating the average x and y coordinates
over all customers with the depot as the origin, weighted by their demand. Then,
the polar coordinate of this average point in relation to the depot is calculated. The
most sparse direction is thus 180 degrees from this direction. The seed customers
are determined by segmenting the full circle by 90 degree intervals and selecting the
next or previous customer to this dividing ray depending on the sweep direction.

These ambiguities, in addition to those of the local search, create a serious source
of result replication errors. The initial solution for the local search after the sweep
can be different than the one used in (Wren and Holliday, 1972), and the local
search may converge to different local optima. We tried to alleviate this issue to
some extent by including sweeps in both directions in our experiments. However, the
average accuracy of our implementation is reasonably close to the one of Wren and
Holliday (1972), which is a good result considering the many potential sources for
the replication issues: the significantly different implementation technique (Fortran
66 vs. Python 2.7), the computational hardware (36-bit IBM 7090 vs. 64-bit Intel
Core i5 520M), ambiguities in sweep seed selection, sweep direction, and even in
termination criteria. In addition, there are the usual difficulties concerning how the
local search was originally applied (see Section 2).

While there is large variation in the replication results from instance to instance,
there is very slight difference in the average quality of the solutions for the algorithm
when using the rule based convergence. Also, the average quality produced by
our implementation at full convergence is extremely close to the that of Wren and
Holliday (1972) (at an average gap of 0.01 %). However, for the problem instance
number 7 the difference is so large that we cannot rule out the possibility of a
different problem instance. If the outliers (cases number 5 and 7) are omitted, the
general algorithm accuracy level of our implementation is slightly better than the
original (average gap of -0.20 % for the full convergence case) while also significantly
lowering the variability of the replicated results.

Taken together, our implementation was unable to fully replicate all of the re-
sults, but, omitting outliers, replicates the general solution accuracy level almost
perfectly. The rightmost columns of Table 8 shows the results if all initial solutions
are explored. Only one such result, namely the cost of 842 for problem number 1
is given in (Wren and Holliday, 1972), and, for the others we use the values given
for the full convergence results in (Wren and Holliday, 1972, Tables 1 & 2). As one
can see, we are able to reach the same, or better, solutions for all but one instance.
Furthermore, note that our local search is able to improve the 36 customer case by
0.48 %. Also, this allows our implantation to find a good solution for the case num-
ber 5, which it fails to do with rule based termination and full convergence. This
further illustrates how the algorithm’s ability to find good solutions is dependent on
selecting a correct seed solution, which is addressed only in a high level discussion
of Wren and Holliday (1972, p. 337) paper.

4.3.2 Gillett and Miller Sweep Heuristic

In contrast to Wren and Holliday (1972), who had proposed an post-optimization

3

local search step to the sweep approach, Gillett and Miller (1974) had independently
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discovered a similar method that works in tandem with the sweep. The operating
principle of their algorithm GM74-SwRI is illustrated in Figure 10.

There are few critical differences to the basic sweep scheme: whenever adding
a next customer on the route would break the capacity constraint, if applicable,
an additional feasibility check is made. If the maximum route length constraint
is set and violated, the route will be made feasible by removing previously added
customers and stepping the sweep back in the order of the polar coordinate angles.
The second difference is the improvement scheme (the black octagon of Figure 10).
Using a selection criteria, again based on polar coordinates, the algorithm checks
if swapping a customer on the emerging route with one or two customers close to
the last added customer, and each other, would improve the expected quality of the
solution. Here, in addition to the length of the emerging route, also the expected
length of the route to be built next is taken into account. During this check, both the
emerging and expected routes are optimized with a TSP algorithm. The emerging
route must naturally also be feasible after any modifications.

START No
iteration
I

Convert cartesian

coordinates into

polar coordinates
(Steps 1&2)

)

Select the customer
with smallest
angular coordinate
and initialize an
emerging route
containing it
(Step 3)

Initialize a new emerging
route containing only
the current customer

(Step 10)

Would
inserting the
current customer
break the capacity
constraint?
(Step 5)
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get the next non-routed
customer and set it as
the current customer

(Step 4)

Does the
TSP-optimized
route violate
the max. route
length constraint?
(Step 7)

customers
routed?
(Step 6)

Insert the current customer
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(Step 6)

Does the
TSP-optimized
route violate
the max. route
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(Step 16)

Remove previosly
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from the route
(Steps 7&17)

STOP No
iteration

Figure 10: Operating principle of the Gillet and Miller sweep algorithm. The step
numbers refer to Appendix A of (Gillett and Miller, 1974).

The algorithm, if implemented as described step-by-step in Appendix A of (Gillett
and Miller, 1974), does not seem to have a mechanism to handle the customers that
are swapped out during the route improvement phase. The main text is similarly
vague: “the replaced location is left unassigned, to be picked up by a later formed
route.”. However, the index J iterating the sweep in the Appendix A only steps
backwards with J = J — 1 when the maximum route length constraint violation
is lifted, and terminates the sweep on J = N. This will potentially leave some
customers unassigned. Also, the Steps 11 and 13 of the Gillett and Miller (1974)
algorithm require that the insertion candidate customers are situated after the cur-
rent customer on the sweep. This makes it impossible for the later formed route
to “pick up” the swapped and skipped customers. Every execution path that goes
through Step 4 advances the sweep leaving the current customer without routing if
an improvement to the emerging route was accepted. Thus, the algorithm described

49



in Appendix A of (Gillett and Miller, 1974) does not necessarily route all of the
customers and can produce an infeasible solution.

Unfortunately, also the textual algorithm description (p. 342 Gillett and Miller,
1974) has many ambiguities. From the description, one gets an impression that the
improvement heuristic takes over and tries to move customers from one route to
another first only after the sweep is completed. However, in the algorithm provided
in the appendix of (Gillett and Miller, 1974), the improvement heuristic is run only
if adding a customer to the route will not break the capacity constraint and it
has been made sure that the route satisfies the maximum tour length constraint.
Additionally, not all steps of the improvement procedure given in the appendix are
explicitly stated and explained in the main text and vice versa. For example, after
the emerging route cannot be further improved, checking for the inclusion of the
customer two steps further on the sweep is missing from Appendix A, but explicitly
mentioned in the main text.

There is another clear issue that may lead to infeasible solutions. If the Steps 16
and 17 of Appendix A (Gillett and Miller, 1974) are followed as written, last route
can remain infeasible due to how the maximum route length constraint is checked
and feasibility is proposed to be regained: the Step 17 allows only removing one
customer before the route is recorded. It can be expected that regaining feasibility
requires removing several previously added customers. We have rectified this issue
in our implementation as illustrated in Figure 10 by returning the control flow to
the procedure of Step 7 if an infeasibility is detected. This means that Step 17 is
not needed and it is not, hence, present in Figure 10.

Regarding smaller issues, the improvement heuristic (Steps 8-15, Appendix A,
(Gillett and Miller, 1974)) can include any of the four future sweep customers to
the current route. However, in Steps 4-6, where the active customer of the sweep
is updated, there is no check if the customer is already routed. To remedy these
issues, our implementation follows the structure of Figure 10 by keeping track of the
customers that have been routed and a backlog of customers that were not routed
during the sweep. In case some customers remain in the backlog after the full sweep,
they are handled as if the sweep would still continue with the backlog customers.
Also, minimizing the distance is referenced in at least three different ways in the
Appendix of (Gillett and Miller, 1974)): “calculate the minimum distance”, “evaluate
the minimum distance”, “determine the distance”. It is left unclear if all of these refer
to optimizing the route with a TSP algorithm, or something subtly different. For
example, is unclear if the route is re-optimized each time a customer is removed
from the optimized solution to regain feasibility. On top of this, Gillett and Miller
(1974) did not specify the TSP algorithm, but the earlier PhD thesis of Miller (1970)
indicates that 3-opt was used.

One of the most blatant problems was in selecting the customer to be removed
during the improvement steps. Gillett and Miller (1974) suggest using a function:

LK = argmin(pi + qﬁng), Vi e R.,
where R, is the set of customers on the emerging route, p; the distance of the
customer i to the depot, ¢; is the connected polar angle, and ¢ is the average depot
distances of all customers. Our major critique is that the ¢; angle is not scaled in
any way for the route. Thus, in different parts of the sweep the angle value will
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be bigger and the significance of the distance term is diminished. Analytically this
makes no sense. The other issue with the formula is in that because the function is
minimized, and ¢; grows as the sweep progresses, the formula prioritizes customers
farthest from the next route. This is in conflict with the text description (Gillett
and Miller, 1974, p. 342), which clearly states that “this provides a location that
is close to the depot and also close to the next route”. If implemented as given, a
customer /location close to the depot, but farthest from the next route gets selected.
Our implementation inverts the sign of the ¢ values in the formula for this calculation
to remedy this.

Regarding replication of the results, in the Appendix B of Gillett and Miller
(1974) only one of the solutions produced by their algorithm is printed. The so-
lution is for Problem 3 with 29 customers, allowance of 10 units, vehicle capacity
of 4500 and route mileage limit of 240 originating from Gaskell (1967). We were
able to replicate this specific result perfectly. Additional solutions produced by an
earlier version of the Gillett and Miller (1974) heuristic can be found from the PhD
dissertation of Miller (1970). However, if contains further errors. For example, some
of the problem instance descriptions have misprints and some of the given solutions
are infeasible. As the solutions and problems were not reprinted in (Gillett and
Miller, 1974), it is impossible to tell if the same implementation was used or if the
feasibility of the resulting solutions was checked at all. Some of the best solutions in
Miller (1970) that are feasible, such as the 22 and 23 customer problems originating
from Gaskell, seem to be impossible to replicate using the procedure described in
(Gillett and Miller, 1974).

Table 9: Replicated results of the Gillett and Miller (1974) sweep algorithm.

Problem GM74-SwRI
no. source size type| fref [ Gap (%)
1 Ga67 21 RP®[ 591 608 2.88
2 Gab67 22 RPC| 956 968  1.26
3 Ga67 29 RP€| 875 875  0.00
4 Gab7 32 RP€| 810 810  0.00
5 CE69 50 R® | 546 532 -2.56
6 GM74 (CE69) 75 R® 1127 1135 0.71
7 Ga67 75 RC | 865 884  2.20
8 GM74 (CE69) 75 RE | 754 757  0.40
9 GM74 (CE69) 75 RC | 715 706 -1.26
10 GM74 (CE69) 100 R® [1170 1183  1.11
11 CE69 100 RC | 862 849  -1.51
12 Mi70 249 RP€|5794 5830  0.62
average (.32
st.dev. (1.48)

Ga67 = Gaskell (1967), CE69 = Christofides and Eilon (1969), GM74 (CE69) = Gillett
and Miller (1974) instances modified from CE69 instances, Mi70 = Miller (1970)
Outliers (z-score > 1.5) are in bold typeface.

Despite the basic sweep approach being very simple, the extension of Gillett and
Miller (1974) was one of the trickiest algorithms in VeRyPy to implement because
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many implementation details had to be fixed trough trial-and-error to get perfor-
mance reasonably close to those reported in (Gillett and Miller, 1974), while still
keeping the implementation true to its original description.

Taking the issues outlined above into account, it is not surprising that we were
unable to fully replicate the reported results. However, we were eventually able to
reach generally the same level of accuracy. Our implementation was, on average,
0.32 % worse on the 12 problem instances included in the computational results
of Gillett and Miller (1974) (see Table 9). Additionally, there is quite a lot of
variation from instance to instance as indicated by the standard deviation of 1.48
percentage points. As noted above, the algorithm description and its computational
details have many ambiguities, and it is very hard to reliably estimate where the
replication issues originate.

As a final note on the Gillett and Miller (1974) algorithm, we would like to point
out that there is an alternative way of implementing the algorithm, which would
apply the basic sweep approach first, followed by a local search post-optimization
step with one-point move and two-point move. This implementation would be a
relatively close approximation of the basic idea of the algorithm. However, as our
intention was to implement the algorithms as close to their original descriptions as
possible, we opted to follow the improvement scheme described in the Appendix A
of Gillett and Miller (1974) with the difficulties and results presented above.

4.3.3 Christofides, Mingozzi, and Toth 2-Phase Heuristic

Besides introducing the popular CM'T benchmark set with 14 problem instances for
CVRP, the book chapter (Christofides et al., 1979) also proposes two heuristic algo-
rithms for solving those problems. First one is a heuristic tree based search method,
which, due to our requirements for speed and determinism, was not implemented.
However, the second algorithm is a novel two-phase algorithm CMT79-2P, which
uses two different phases with different criteria to associate customers to routes with
seed customers. The operating principle of the algorithm is illustrated in Figure 11.

In the first phase of the algorithm, a customer i, is selected in random to initialize
aroute, and then the association score values 6; = cy;+Acy;, are calculated for all non-
routed customers. Here, A is a parameter for specifying how closely the customer is
associated to the route seed 7. Then, from the smallest ¢ first, all feasible insertions
to an emerging route are made. The emerging route is kept 3-optimal (Lin and
Kernighan, 1973) through these insertions. When no feasible insertions remain, a
new route is initialized with a new random customer, and the association scheme is
repeated until no customers remain.

The K seed customers of the first phase are carried over to the second phase,
where K routes, each serving different seed node i,, are constructed. Then, another
set of customer to route association criteria values €,; = co;+ f1ci;, — coi, are computed
for each seed and non-routed customer pair. Using these values, each non-routed
customer [ is associated with a route with minimal € value €. In the next step, one
route is chosen (represented by the index 7) from the set of routes S. The route
is then removed from S and scores 6, = €,; — €7 are computed for all customers
associated with the route. Here, ¢,, is the € the customer [ was associated with 7,
and €7 is the smallest epsilon for [ among the remaining routes of S. All feasible
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Figure 11: Operating principle of the Christofides et al. (1979) 2-phase heuristic.
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insertions to the chosen route among the customer associated to it are made in
descending ¢&; order. Like in Phase 1, the route is kept 3-optimal throughout. New
routes are chosen and filled until the set of routes S'is empty. If non-routed customers
remain after completing Phase 2, steps of Phase 1 are repeated followed by Phase
2 with different set of (random) seed customers from Phase 1. When the Phase 2 is
successfully completed, the algorithm is terminated.

The description of the heuristic is very concise in Christofides et al. (1979),
which creates an illusion of simplicity. However, writing an effective and simple
implementation of the algorithm proved tricky, mostly due to the two layer customer
association scheme of Phase 2. As a result, implementing the algorithm led to a quite
complex and verbose Python code.

The description of the heuristic in Christofides et al. (1979) does not cover all
special cases. Especially regarding the implementation of the Phase 2 we would like
to point out an ambiguity in the algorithm description (Christofides et al., 1979,
chapter 11.4.5, Phase 2, Step 2, p. 333): If choosing the route R; and removing it
from the set of routes S leaves no routes in S, which happens every time when the
customers associated to the last route are processed, it is undefined how the ¢ should
be computed. Disregarding the calculation of ¢ is not an option, as this would leave
the customers that could be assigned to the last remaining route unrouted. We
decided to omit the calculation of €,,;, meaning that 6 = —e5; when S = @, which
fixes the issue.

According to the algorithm description, Step 4 of Phase 2 jumps the heuristic
back to the start of Phase 1 if some customers are left unrouted. In our preliminary
experiments we repeated the algorithm 100 times with parameters values taken from
an uniform distributions A € [1.0,3.0] and x € [0.0,2.0], but it turned out that the
Phase 2 was able produce a solution only for 7.1 % of the trials. Furthermore, while
Phase 2 solution was better than that of Phase 1 in 98% of these cases, the successful
Phase 2 solutions were concentrated only on three of the 14 problem instances. As
suggested in (Phase 2, Step 4 Christofides et al., 1979), the probability of successfully
completing Phase 2 can be increased by redoing the seed customer generation of
Phase 1. However, it is possible, and according to our experiments, even probable,
that Phase 2 is not able to produce a solution with any seed configuration. Thus,
a procedure with a rule requiring a valid Phase 2 solution might get stuck in an
infinite loop. To address the issue in our implementation, we set a cap of 10 random
retries on the algorithm in case Phase 2 solution is not found. This increases the
chance of finding Phase 2 solution with a single run of the algorithm from 7.1% to
28.4%. This way, with 100 repetitions and with different random seeds, at least one
matching Phase 2 solution was found for 10 of the 14 problem instances reported in
(Christofides et al., 1979).

The ambiguities in the description of the algorithm, its stochastic nature, and
the complexities in the implementation made replicating the results of (Christofides
et al., 1979, p. 335) Table 1.11 very difficult. Christofides et al. (1979) did not
specify how the distance matrix was calculated, but the fact that quality of the
solutions is given as integers together with our replicated results seem to indicate
that the distances were truncated or rounded to the nearest integer. However, the
exact distances are typically used with this problem set and we decided to follow
this modern convention.
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However, the most problematic omission from the replication point of view is
that the values or even ranges for the A and p parameters are not given, nor is
the number of repetitions that were required to produce the solutions of Table 1.11
(Christofides et al., 1979, p. 335). We assumed that the final result given in the
table was best of some, undefined, number of runs.

To summarize, the results depend on:

1. if the distance matrix costs are exact or if they are rounded or truncated;

2. whether the number of vehicles or the total mileage is the primary optimization
target;

3. how many times the stochastic algorithm is run;

4. if some statistical descriptor such as best, median or mean is given as the
measure of the quality of the solutions; and

5. which parameter A\ and p values are used, if they are tuned per problem in-
stance, and from which random distribution they are drawn from if they are
chosen randomly.

Unfortunately, these details are not disclosed in (Christofides et al., 1979) and we
had to specify our own experimental design to replicate the results of the algorithm
(E in Table 1.11 (Christofides et al., 1979, p. 335)). The algorithm was run 100
times with parameters values drawn from uniform distributions A € [1.0,3.0] and
@ € [0.0,2.0]. If Phase 2 was unable to produce a feasible solution, each run was
allowed to try to repeat Phase 1 seed generation followed by Phase 2 attempt at
most 10 times.

Our implementation optimizes the emerging route with an intra-route 3-opt op-
erator. To save computational effort, this is done after an insertion only if maximum
route length constraint L is specified and the upper bound updated by naively in-
serting the new customer to the end of the route indicates that the constraint may
be violated. If the maximum route length constraint is not set, the routes are made
3-optimal after all customer to route associations have been made.

The replicated results of the stochastic CMT two-phase algorithm as proposed in
(Christofides et al., 1979) are presented in Table 10. Average and standard deviation
for the quality of the solutions are given for each problem instance. It seems that in
1979 it was customary to report only the best result over several runs (Christofides
and Eilon, 1969; Mole and Jameson, 1976), and, therefore, the best of 100 trials is
also given in columns f* and gap*.

As can be seen from Table 10, best results from our implementation seem to be
able to replicate the results, save for the instances CMT1, CM'T5, and CMT10. The
average gap to the reported results without these three instances is 0.15%. And,
even with the all 14 instance of the problem set, the stochastic results are within
0.39% of the ones published in (Christofides et al., 1979).

Our replication experiments revealed that the CMT79-2P heuristic is extremely
sensitive to the insertion order and A and p parameter values, which is reflected
by the large variation in the quality of the solutions between the trials (Table 10,
the standard deviations given inside parenthesis). Therefore, due to the stochastic
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Table 10: Replicated results of the original stochastic Christofides et al. (1979)
two-phase algorithm, with 100 repetitions.

Problem CMT79-2P, stochastic
no. size| frer f gap (%) | [* gap” (%)
1 50| 547 604.9(45.2) 10.6(8.3) | 534 -2.4
2 75| 883 1079.0(108.1) 22.2(12.2)| 883 0.0
3 100| 851 988.0(89.5) 16.1(10.5)| 849 -0.2
4 150(1093 1368.8(107.3) 25.2(9.8) |1104 1.0
5 199]1418 1741.9(139.2) 22.8(9.8) | 1452 2.4
6 50| 565 639.1(36.1) 13.1(6.4) | 576 1.9
7 751969 1079.7(49.0) 11.4(5.1) | 975 0.6
8 100|915 1019.6(66.6) 11.4(7.3) | 915 0.0
9 1501|1245 1411.6(131.1) 13.4(10.5)|1255 0.8
10 1991508 1731.9(149.5) 14.8(9.9) | 1566 3.8
11 120|1066 1181.2(113.4) 10.8(10.6)[1050  -1.5
12 100| 827 929.3(132.4) 12.4(16.0) | 829 0.2
13 120|1612 1717.0(147.1) 6.5(9.1) [1583  -1.8
14 100|876 990.8(124.4) 13.1(14.2)| 881 0.6
average 14.57 0.39
st.dev. (1.59)

CMT79 = Christofides et al. (1979)
Outliers (z-score > 1.5) are in bold typeface.

nature of the algorithm, due to its sensitivity to the parameters, and due to missing
description of the experimental setup in (Christofides et al., 1979), some uncertainty
remains on how close our implementation actually is to the from Christofides et al.
(1979). According to Paessens (1988), there has been a previous reimplementation
and replication effort from Heins (1981), but unfortunately we were not able to gain
access to this paper.

One of the criteria for an algorithms to be included in VeRyPy was that it had
to be deterministic. In case of the two-phase algorithm there is stochasticity in
two steps: selecting seed customers in Phase 1 and selecting the order in which the
routes are built in Phase 2. To build a deterministic version of the Christofides et al.
(1979) two-phase algorithm, we propose always selecting the non-routed customer
that is farthest from the depot as the route seed point in Phase 1, and selecting
the route with most associated candidate customers in Phase 2. We remind that
from the preliminary experiments we learned that the algorithm’s performance is
depended on successfully completing the Phase 2. To further increase this chance, we
implemented an option in the algorithm to reset the set of routes .S and run Steps 2-4
of Phase 2 repeatedly until no insertions are made in case the possibility of changing
route associations allow further insertions of the customers on the emerging routes.

With the proposed deterministic approach, the impact of suitable values for the
algorithm parameters A and g becomes even more pronounced. To configure the
parameters of the deterministic version for the 14 problem instances in (Christofides
et al., 1979), we used the automatic algorithm configuration tool SMAC (Hutter
et al., 2011). Using our previous work (Rasku et al., 2019b) as a guideline, we set the
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Table 11: Results of the deterministic Christofides et al. (1979) two-phase algorithm.
Outliers (z-score > 1.5) are in bold typeface.

Problem CMT79-2P, deterministic
no. size| frey f  gap (%)| A p [t(s)
1 50| 547 550.5 0.65 [1.9 1.3]|0.0
2 751883 8933 1.17 |2.7 0.8]0.0
3 100|851 860.7 1.14 (2.0 1.0]0.1
4 150(1093 1089.2 -0.35 [2.0 1.0]|0.2
5199|1418 1379.8 -2.69 |2.0 1.0]0.2
6 b50|565 5864 3.79 |19 1.3]0.2
7 751969 9576 -1.18 |1.9 1.3/0.2
8 100|915 913.0 -0.22 |2.7 0.8/ 1.2
9 1501245 12495 0.36 |2.0 1.0]2.8
10 1991508 1492.1 -1.05 |2.0 1.0]4.2
11 120/1066 1064.3 -0.16 |2.0 1.0]0.2
12 100 827 8323 0.64 |2.0 1.0]0.1
13 120/1612 15794 -2.02 |1.9 1.3]2.3
14 100| 876 875.0 -0.11 |2.7 0.8]0.5
average  0.00
st.dev. (1.51)

evaluation budget to 2000 and ran four parallel configuration tasks. Unfortunately,
SMAC was not able to find a single parameter configuration that would provide
satisfactorily quality for the solutions for all 14 instances, so we configured the
algorithm separately for instances number 12 and 6 which were the two outliers
giving poor solutions when using the default parameters A = 2.0 and p = 1.0. With
the default values augmented by two sets of configured parameters, we got a similar
level of performance as with the original stochastic algorithm of (Christofides et al.,
1979) (see Table 11). However, because our proposed variant is deterministic, it
uses only a fraction of the computational effort required by the stochastic algorithm
to reach similar quality for the solutions.

4.4 Route-First, Cluster-Second Heuristics

The algorithm Be83-RFCS from Beasley (1983) relies on a route-first, cluster-
second (RFCS) approach. The general idea had been proposed earlier, for example,
by Newton and Thomas (1969), but Beasley was the first to test the approach
experimentally against the standard CVRP benchmark instances.

During the first routing phase, the Beasley (1983) algorithm generates a 2-
optimal TSP tour (Hamiltonian path) that visits all customers. The algorithm
omits the depot from this TSP tour to give more flexibility in the second phase
of the algorithm, where a required number of visits to the depot are added on the
TSP tour using an auxiliary graph. Here, all costs of feasible 2-optimal routes of
consecutive customers on the TSP tour are calculated and collected to a cost matrix
indexed by the start and the end of the route. Infeasible sequences have their costs
set to infinity. Thus, the matrix represents a directed graph of shortcuts from the
beginning of routes to their ends. A shortest path around the TSP tour through
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these shortcuts can be found using the Floyd-Warshall algorithm and the visits to
the depot are added according to this path. Finally, Beasley (1983) make sure the
resulting routes are 3-optimal. The general principle of the algorithm is illustrated
in Figure 12.

Get a giant TSP tour by Fill in a matrix of all

routing all customers feasible route costs along Find a shortest path
START with agTSP aleorithm [ the concecutive customers [—f of routes around the giant STOP
& on the giant TSP tour TSP tour using the matrix

(omit the depot) ( ble are made infinite)

Figure 12: Operating principle of a route-first, cluster-second heuristic.

The algorithm presented in (Beasley, 1983) is stochastic, but due to the lack of
RFCS heuristics, and because it was easily converted to be deterministic, an variant
of the algorithm was implemented and included into VeRyPy. Instead of multiple
randomly generated 2-optimal initial routes, our variant generates a single optimal
(or near optimal) TSP solution, which is then partitioned into paths of feasible
consecutive routes that satisfy problem constraints such as the capacity constraint
or maximum route length constraint. As with (Beasley, 1983), the routes are then
individually made 3-optimal and the resulting solution is returned as the solution
to the original problem.

Related to the proposed use of separate TSP local search operators for shortcuts
and for final routing, our extensive experimentation (see Section 6) revealed a rarely
occurring issue in the algorithm, which is also connected to general issues with local
search outlined in Section 2. A final 3-optimal route can sometimes, albeit very
rarely, be worse than the tour that was kept 2-optimal when building it one customer
at the time. This is because the TSP local optima of the final routes depends on the
order of moves and the strategy (e.g., first accept or best accept). This may cause
a significant problem if a problem has a maximum route cost constraint. Now, the
2-optimal route can be feasible, but there is a possibility that the final 3-optimal
route is not. Our proposed solution to fix this was to build new 2-optimal routes
also after applying the Floyd-Warshall algorithm. The 3-opt improvement heuristic
is then applied on these 2-optimal routes.

For generating the initial TSP tour, our implementation relies on an external TSP
solver. This is by default the state-of-the-art TSP solver LKH (Helsgaun, 2000, 2009)
with a fixed seed. Because our deterministic implementation cannot improve its
performance through the use of randomized restarts, the closest comparison target
is the 1 trial results in (Beasley, 1983) (see Table 13). However, the deterministic
variant loses clearly to the stochastic with, for example, 10 repetitions. The results
by the stochastic variant of our implementation are given in Table 12.

In stochastic solvers the randomness plays a major part. Unfortunately, Beasley
(1983) reported only the best results after 1, 5, 10, and 25 repeated runs without
averages nor standard deviations. Thus, it is hard to estimate the distribution on
the quality of the solutions from the repeated trials. To replicate the results we
did each of the 1, 5, 10, and 25 trial targets 10 times and reported the average and
standard deviation. As expected, it is statistically improbable to perfectly match
the solutions published in (Beasley, 1983), especially when there are only one or five
repetitions, but the accuracy profiles become really close to one another when the
number of trials increases. The final average gap is at -0.10% in 25 trial case, which
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Table 12: Replicated results of the Beasley (1983) route-first, cluster-second TSP
tour partitioning algorithm (Be83-RFCS).

Problem 1 trial 5 trials

no. name size type| fref1 f gap (%) | fress f gap (%)
1 Ha67 7 1° | 114  114.0(0.0) 0.0(0.0) | 114  114.0(0.0) 0.0(0.0)
2 DR59 13 1¢ | 296  293.2(2.9) -0.9(1.0)| 290 291.8(2.3) 0.6(0.8)
3 Ga67 22 RPC| 608  595.0(5.3) -2.1(0.9)| 585 588.4(2.5) 0.6(0.4)
4 Ga67 23 RPC| 1017 1007.2(12.1) -1.0(1.2)| 994 987.1(16.2) -0.7(1.6)
5 Ga67 30 RPC| 879  876.6(1.9) -0.3(0.2)| 876  875.1(0.3) -0.1(0.0)
6 CW64 31 1I¢ | 1360 1376.1(68.1) 1.2(5.0) | 1298 1359.2(19.0) 4.7(1.5)
7 Ga67 33 RPC| 848 827.5(17.0) -2.4(2.0)| 815 816.1(7.7) 0.1(0.9)
8 CE69 51 RE | 564 570.2(8.3) 1.1(1.5)| 564  561.2(8.0) -0.5(1.4)
9 CE69 76 RS | 906 898.5(14.7) -0.8(1.6)| 895  882.3(7.1) -1.4(0.8)
10 CE69 101 R© | 902 895.5(15.7) -0.7(1.7)| 880  876.2(9.7) -0.4(1.1)

average -0.6 0.3

st.dev. (1.1) (1.67)

Problem 10 trials 25 trials

no. name size type freflO f gap (%) fref25 f gap (%)
1 Ha67 7 1° [ 114 114.0(0.0) 0.0(0.0) | 114  114.0(0.0) 0.0(0.0)
2 DR59 13 1° | 290  290.4(1.2) 0.1(0.4) | 290  290.0(0.0) 0.0(0.0)
3 Ga67 22 RPC| 585  587.6(2.8) 0.4(0.5) | 585 585.4(1.2) 0.1(0.2)
4 Ga67 23 RPC| 968 975.6(14.9) 0.8(1.5) | 956 959.7(11.1) 0.4(1.2)
5 Ga67 30 RPC| 875  875.2(0.4) 0.0(0.0) | 875  875.0(0.0) 0.0(0.0)
6 CW64 31 1 | 1280 1331.4(33.1) 4.0(2.6) | 1280 1299.7(39.9) 1.5(3.1)
7 Ga67 33 RPC| 814  813.6(0.8) -0.0(0.1)| 822  813.4(0.9) -1.0(0.1)
8 CE69 51 RY | 564 553.9(5.4) -1.8(0.9)| 552  551.2(5.7) -0.1(1.0)
9 CE69 76 R® | 895 878.9(4.6) -1.8(0.5)| 884  878.1(4.8) -0.7(0.5)
10 CE69 101 R® | 878  872.9(5.5) -0.6(0.6)| 873  863.1(7.5) -1.1(0.9)

average 0.1 -0.1

st.dev. (1.5) (0.7)

Ha67 = Hayes (1967), DR59 = Dantzig and Ramser (1959), Ga67 = Gaskell (1967),
CW64 — Clarke and Wright (1964), CE69 — Christofides and Eilon (1969)
Exact distances are used, with the quality of the solutions rounded to the nearest integer.
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Table 13: Results of deterministic variant of Beasley (1983) route-first, cluster-
second TSP tour partitioning algorithm. Same problem instances and rounding as
with the stochastic variant in Table 12

Problem Be83-RFCS (deterministic)
no. name size type | f |frer1 82p1(%) | frefi0 8apio(%)
1 Ha67 6 CI 114 | 114 0.00 114 0.00
2 DR59 12 CI 298 | 296 0.68 290 2.76
3 Ga67 21 RPC | 608 | 608 0.00 585 3.93
4 Ga67 22 RPC | 993 1017 -2.36 968 2.58
5 Ga67 39 RPC | 875|879 -0.46 875 0.00
6 CW64 30 CI [1360[1360 0.00 1280 6.25
7 Ga67 32 RPC | 814|848 -4.01 814 0.00
8 CE69 50 CR 564 | 564 0.00 564 0.00
9 CE69 75 CR | 907 | 906 0.11 895 1.34
10 CE69 100 R® 870 | 902  -3.55 878 -0.91
average -0.96 1.60
st.dev (1.60) (2.14)

means the results of the stochastic algorithm are replicated almost perfectly.

Please note the large variation in the resulting quality for the problem number 6,
which is the 30 customer problem instance from Clarke and Wright (1964). Closer
examination of the results reveals that with this instance the algorithm is extremely
sensitive to the routing of the generated TSP tour, and it is not guaranteed that the
good quality solution reported in (Beasley, 1983) is found, even after 25 trials. The
other problem instances showing similar, but not as distinctive, behavior are prob-
lems number 4 and 7 (22 and 32 customer problems from Gaskell (1967)). Despite
these discrepancies, the results suggest that the implementations produce remark-
ably similar solutions and the differences can be attributed to statistical variation.

To summarize, we have implemented the stochastic algorithm from Beasley
(1983) and derived a deterministic variant. Solid statistical testing on the replicated
stochastic method results is not possible due to insufficient data in the original pub-
lication, but getting the average quality within 0.1% of those reported in (Beasley,
1983) gives high confidence on the correctness of the results and our implementation.
Beasley (1983) proposes ways of including handling of additional constraints with
the algorithm and in their recent survey of RFCS algorithms for VRPs Prins et al.
(2014) give further examples in incorporating additional VRP constraints. Thus, in
addition to scoring high on simplicity, the RFCS approach also seems to be rather
flexible.

4.5 Relaxed Mathematical Programming Heuristics

Exact methods for solving vehicle routing problems have been under extensive study
over the years (Laporte and Nobert, 1987; Toth and Vigo, 2002a). Because even
the modern methods are able to solve only small to mid-sized problem instances,
some authors have drawn inspiration from the research on exact methods to derive
hybrid approaches for larger problems. These heuristic algorithms usually include
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a step where a mixed integer programming techniques are used to solve a relax-
ation or a subproblem of VRP. In the literature these hybrids are referred to as
relazed optimization (Watson-Gandy and Foulds, 1981), mathematical programming
based approaches (Bodin et al., 1983; Fisher, 1995), or, more recently, matheuristics
(Maniezzo et al., 2010; Archetti and Speranza, 2014).

The main limitation of these hybrid methods is that the mathematical program-
ming models and computation times can still grow prohibitively long when the
problem size increases. Also, unlike the exact methods, they do not guarantee to
find the optimal solution, and on some problem instances it is even possible that
the final solution is inferior of that from the simpler heuristics.

Based on our literature meta-survey, we have chosen to implement four heuristics
inspired by mathematical programming models. Three of these use a MIP solver
as a part of the solution process, and the fourth relies on local search and draws
inspiration from Lagrangian relaxation where some of the constraints are moved to
the objective function. Each of these four approaches are detailed together with the
replication results.

4.5.1 Maximum Matching

The tendency of the savings approach to make early merges that lead to poor so-
lutions has been independently recognized by several researchers (Cordeau et al.,
2002). To remedy this, and to simultaneously make the estimation of the merged
route quality more accurate, Desrochers and Verhoog (1989) proposed a new sav-
ings heuristic MBSA (DV89-MBSA), where the merges are chosen by repeatedly
solving a maximum weighted matching problem. The matching problem involves
finding a set of edges in a graph so that no two edges share a node. When each edge
is given a weight w;;, maximum matching is the set of edges with this condition that
has the largest sum of weights. Written as a mathematical programming model it
becomes:

K
max E Wij 45

i=1,j=1
K
s.t. E Ti; = 1, Z:]_,,K
7j=1
i=1,...K
z;; = Oorl, G=1,.. K

The Figure 13 illustrates how the emerging solution is initialized similarly to
the parallel savings algorithm. That is, there are K routes each serving a single
customer. Each route forms a node in the matching problem graph and the edge
weights represent the improvements of the solution if the corresponding routes are
merged. Desrochers and Verhoog (1989) proposed using a TSP-algorithm to get the
exact merged route cost, which lifts the requirement of the routes needing to be
joined at the route ends. Thus, the savings value doubling as the matching graph
weight is calculated as follows:

w(i, ) = TSP(R;) + TSP(R;) — TSP(R; U R,), 9)
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where R; is the set of the customers and the depot of the route i, TSP(R;) is the cost
of a TSP-optimized routing through these locations, and the savings value w(i, 7) is
the saving in cost achieved my merging routes ¢ and j to for a new TSP-optimized
route. Our implementation uses Gurobi (2018) in both solving the maximum match-
ing problem and the TSP, although the implementation optionally supports using a
local search TSP algorithm for very large problem instances.

Solve a maximum matching
problem with savings values as
weights and find the matching
edge (i,j) with a largest weight

Merge routes i and j

Initialize routes, one
for each customer

Calculate and record
savings values for
every feasible route
pair combination

Remove savings values
with routes i and j

Calculate and record
savings values for
feasible conmbinations
of the merged route
and the other routes

Are there positive
savings values?

Figure 13: Operating principle of a maximum matching based savings heuristic.

If a maximum matching solution is found, then the routes with a connecting
matching edge with the largest weight are merged and the savings weights updated
accordingly. This means removing all weights that were associated to the routes
prior to the merge and calculating the new weights for connecting the merged route
with the other routes.

Our early experiments revealed that it is possible that two decision variables have
the same largest savings value when solving the maximum matching problem. With
our implementation this happened on 12 of the 18 problem instances. Unfortunately,
Desrochers and Verhoog (1989) did not specify how these ties should be resolved.
We decided to use a secondary criteria that allows choosing the merge that has the
poorest alternative merges. To be more specific, this is selecting the merge with the
smallest sum of savings values for the other optional merges:

K o k=iVk=jV

o Z wye, 2
Wsecondary (1; ) = —2wi; + {0 otherwiqje (10)

k=1,=1 L S

Despite its good accuracy, especially for the iterative variant from Wark and Holt
(1994), Cordeau et al. (2002) score the matching based approach low on flexibility,
speed, and criticize it for its high complexity. Our replication efforts somewhat vali-
date the critique on the complexity but the bigger issue in our opinion is consistency:
while the heuristic is reasonably simple to implement if one has access to MIP and
TSP solvers, the algorithm seems to be very sensitive to the implementation details.
In Table 14 this can be seen as a large average replication gap of 0.81%, and in a
large instance to instance variation as indicated by the standard deviation of 2.3
percentage points. Our implementation produces clearly worse solutions especially
on the problems 10 and 12 when compared to the results given in (Desrochers and
Verhoog, 1989). If we omit the outliers (marked in bold typeface in Table 14) the
average replication gap shrinks to 0.4%. Also, looking closely the results, it seems
that the replication difficulties concentrate on the problem instances that have the
maximum route length constraint L. If we calculate the average replication gap only
for the CVRP instances 5-9, 15 and 16, our implementation is actually 0.7% better
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than that of Desrochers and Verhoog (1989) together with much more reasonable
variation in instance to instance gap.

Table 14: Replicated results of the Desrochers and Verhoog (1989) maximum match-
ing based savings heuristic.

Problem DV89-MBSA
no. source size type| fref f  gapc(%) gapr (%)
1 Ga67+#4 21 1°P | 587 598 1.87
2 Gab7#6 22 1°P | 970 958 1.24
3 Gab7#5 29 1°P | 939 962 2.45
4 Ga67#3 32 1¢P | 833 839 0.72

5 CMT794#01 50 RC | 586 580  -1.02

6 CMT79+#02 75 R® | 885 889  0.45

7 CMT79+#03 100 R® | 889 896  0.79

8 CMT79#04 150 R® [1133 1122  -0.97

9 CMT794#05 199 RC |1424 1383 -2.88

10 CMT79#06 50 RPC| 593 617 4.05

11 CMTT79407 75 RP¢| 963 973 1.04

12 CMTT794#08 100 RP¢| 914 982 7.44

13 CMT794#09 150 RP€|1292 1314 1.70

14 CMTT79#10 199 RPC|1559 1581 1.41

15 CMT79+#11 120 R® |1058 1046 -1.13

16 CMT79+#12 100 RC | 828 828  0.00

17 CMT794#13 120 RPC|1562 1580 1.15

18 CMT794#14 100 RPC| 882 871 -1.25
average -0.68 1.76
st.dev. (1.14)  (2.30)

total average 0.81
total st.dev. (2.27)

Ga67 = Gaskell (1967), CMTT79 = Christofides et al. (1979)

Results with a z-score over 1.0 are in bold typeface.

There are at least two possible causes for the difficulties in replicating the results.
In addition to the method that is used to resolve equally good matching results, a
potential source of variation is in the calculation accuracy of the real distances.
Recalculating the solutions and route lengths for the two new best solutions in Ap-
pendix A2 of Desrochers and Verhoog (1989) (and correcting the multiple misprints
in the solutions) reveals inconsistencies: On average, the values given for the route
length in the paper are 0.04 units off to our calculations with 32-bits of floating
point accuracy, and worst per route difference is almost 0.1% off. This is probably
due to differences in real distance representation and arithmetic. Unfortunately, the
slight differences in route length calculations can change the results of the maximum
matching, ultimately leading to a completely different solution.

Summarizing the replication results regarding DV89-MBSA, we cannot be certain
if the main reason for not being able to replicate the general solution quality level is
due to 1) differences in resolving the ties in choosing the maximum matching edge
or 2) in floating point representation accuracy. The fact that we were able to match
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and even surpass the quality of the solutions reported in (Desrochers and Verhoog,
1989) on the capacity constrained instances suggests that our implementation works
correctly and is able to solve the problem instances effectively. As Desrochers and
Verhoog (1989) did not publish all solutions of their experiments, it is hard to
troubleshoot why our implementation fails to find satisfactory solutions for the few
remaining instances with a maximum route length constraint.

4.5.2 Local Search with Lagrangian Relaxation

The basic idea of this heuristic is to start from an infeasible solution and use local
search to move this initial solution towards better and, eventually, feasible solutions.
The constraint checks in the local search are removed and replaced with a penalty in
the objective function that is dependent on the amount of the constraint violation in
the incumbent solution. The heuristic is discussed here under relaxed mathematical
programming methods because the idea is borrowed from the Lagrangian relaxation
technique used in mathematical optimization.

Is the
solution
feasible?

Create No
an initial
solution

(feasible or

!

Initialize the
Langrange —
multipliers

Found an
improving
move?

Double the value of
Langrange multipliers

Try to find a local
search move that
improves the solution
and decreases penalties

Apply the move

Figure 14: Operating principle of the Stewart and Golden (1984) heuristic.

For solving CVRPs, this technique was proposed in 1984 when Stewart and
Golden introduced their LR3OPT heuristic that combines 3-opt* local search with
Lagrangian relaxation. The operating principle of the heuristic is illustrated in
Figure 14. They proposed the following objective function to model the penalties:

Z CijTijk + Mg Z (Z diyik)- (11)

ij.k keK* i
The decision variables x;;;, and y;, are the same as in three-index vehicle-flow for-
mulation (Golden et al., 1977) and dictate if an edge is traversed by a vehicle k but
also if the customer ¢ is served by that vehicle. Here, ¢;; and d; are the edge weight
and the customer demand, K™ is the set of routes that would violate the capacity
constraint, and A, is the Lagrange multiplier that is iteratively increased to steer
the search towards feasible solution.
To extend the algorithm for solving problem instances with maximum route
duration/length constraint, we propose the following modification to (11):

Z CijTijk + Z (A1e Z(diyik —CO)+ Ay, Z(%Iijk —L)).
(B keK* i i,j

Regarding the multiplier values, Stewart and Golden (1984) propose that the first
multiplier is initially set to value Aj, = d/(20maxc;;), where d is the average
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customer demand. For exceeding the maximum route duration/length we propose
using a similar initial value for the multiplier: A} = >, (min;; ¢;;)/(n10 max ¢;;).

In the implemented SG84-LR3OPT algorithm the constraint checks of the
vanilla 3-opt* local search heuristic were replaced with penalty calculations. Per-
formance considerations became apparent after preliminary experiments, and we
decided to use the 3-opt* version with first-accept strategy that operates on the
entire solution (as opposed to individual routes). This version checks both intra-
and inter-route moves on one pass and we assumed that this is also the way which
it was implemented in (Stewart and Golden, 1984). As the search progresses, only
the modified edges are checked and the objective function update for the move has
a constant time complexity. We made sure there is always an empty route available
for the 3-opt* to link solution segments to, as this allows the algorithm to increase
the number of routes when it needs to reach feasibility.

Whenever the local search procedure ceases to find improving moves, we check
if the incumbent is a feasible solution. If it is, the incumbent is returned as the
solution to the problem. However, if the solution remains infeasible, we increase
the penalties by doubling the multiplier values as proposed by Stewart and Golden
(1984) and the local search continues.

Stewart and Golden (1984, p. 88) propose initializing and repeating the heuris-
tic with multiple random solutions. To create a deterministic variant, we propose
initializing the algorithm with a LKH computed TSP tour through all customers
and the depot. Consequently this also somewhat mitigates the 3-opt*’s high com-
putational time complexity of O((n + k)?), as the LR3OPT procedure is run only
once.

Stewart and Golden (1984) did not report CPU times of their computational ex-
periments, but omitting the 250 customer problem from the Gillett and Miller (1974)
problem set suggests that the computation times for that specific instance became
prohibitively long. As a comparison, our implementation solves a 100 customer
problem in just under 5 minutes on a Intel Core i5 M460 CPU. This, together with
the relatively poor computational performance of our pure Python 3-opt* implemen-
tation, limits our implementation to small and medium sized problem instances. To
illustrate the point, if a third order polynomial is fitted to the performance data
of LR3OPT, it can be estimated that the CPU time for solving a 1000 customer
problem would be around 40 CPU days.

Unfortunately, the extensive computational effort of LR3OPT became apparent
only after we had implemented the heuristic. Still, because it is an interesting and
effective approach for solving smaller problems, we decided to include it to VeRyPy
and implemented a greedy backup heuristic to make the incumbent solution feasible
if the heuristic is interrupted.

Regarding replication of the results in (Stewart and Golden, 1984), we have
already discussed the potential issues in replicating the result of heuristics that rely
on local search in Section 2. In addition to those, reproducing the results of a
stochastic algorithm can be problematic and this is also the case with LR3OPT:
Stewart and Golden (1984) Table 1 only gives the best solutions and there are no
descriptive statistics for the distribution of the solution quality. Another source
of variation is in the initial solutions. Stewart and Golden (1984, p.88) started
the heuristic ‘several times from different random starting solutions’. However, the
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Table 15: Replicated results ofthe Stewart and Golden (1984) 3-opt™ heuristic with
Lagrangian relaxation (SG84-LR3OPT).

Problem LR3OPT§T() LRSOPTDET
no. source size type| fyes |trials f gap(%) | f* gap(%)| f gap(%)
1 CW64 30 CI |1212| 10 1246.3(11.1) 2.8(0.9) (1213 0.1 |1250 3.1
2 CE69 50 CR|521| 10 543.2(11.0) 4.3(2. 525 0.8 |525 0.8

)

)

1)
3GM74 75 CR|1058] 7 1057.7(9.5) -0.0(0.9)|1043 -1.4 |1074 1.5
ACE69 75 CR|847| 28 870.8(11.8) 2.8(1.4) (8479 0.09 |867 2.4
5GM74 75 CR|751| 10 769.5(11.6) 2.5(1.5)|748 -04 |756 0.7
6 GM74 75 CR|692| 20¢ 711.8(7.8) 2.9(1.1)|696% 0.6 |697 0.7
7 GM74 100 RC[1117] 3 1123.7(6.6) 0.6(0.6)|1119 0.2 |1150 3.0
8 CE69 100 RC|829| 12¢ 852.9(7.7) 2.9(0.9)|838% 1.1 |851 2.7

average 2.33 0.1 1.9
st.dev. (0.7) (1.0)

CW64 = Clarke and Wright (1964), CE69 = Christofides and Eilon (1969),
GM74 — Gillett and Miller (1974)
¢ = similar quality level reached only after additional trials

exact method used to generate these random solutions was not specified. In our
replication experiments we assumed a random tour through all of the customers and
the depot.

We initially used the same number of trials as Stewart and Golden (1984), but
were unable to find as good solutions for problem instances 4, 6, and 8. We would like
to point out that a stochastic algorithm can produce a good solution after just few
trials by pure chance, even if the general level of quality of solutions is much lower.
This is the reason why rigorous statistical testing is so important when designing
experiments for stochastic heuristics (Barr et al., 1995). Considering this, we decided
to increase the number of trials for the three remaining instances, which allowed our
implementation to produce the remaining good best solutions. The number of initial
solutions and the final results of our replication efforts are reported in Table 15.

As can be seen from the table, our implementation has an average accuracy that
is very close to the original results (within 0.11%). The low standard deviation
value suggests that when enough initial solutions are explored, the algorithm can
consistently produce the reported level of quality of solutions. However, as can be
seen from the per instance standard deviations of Table 15, the LR3OPT heuristic
seems to be sensitive to how it is initialized. We can also see that if the heuristic is
initialized with a TSP tour, then the results are clearly inferior to the best results
of the stochastic version. However, the average results produced by the determin-
istic version are better than the average performance of the stochastic one, which
validates that the TSP tour is generally a good starting point.

Taken together, the SG84-LR3OPT from Stewart and Golden (1984) is an in-
teresting approach for solving vehicle routing problems. Implementing the 3-opt*
local search for VRP can be tricky, but otherwise the algorithm is fairly simple. It
is also flexible as most constraints can be relaxed using suitable penalty scheme.
However, balancing the more complex objectives, such as primarily minimizing the
number of vehicles, can be difficult. This is because finding correct weights for the
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different penalties during the search is hard. Consequently, minimizing the number
of vehicles was not considered by Stewart and Golden (1984) and it is also missing
from our implementation. According to our preliminary experiments, the algorithm
is accurate but slow, and it also seems that the robustness of the heuristic is rather
poor as the accuracy is sensitive to the initial solution. Thus, the method is limited
to solving instances of at most few hundred customers.

4.5.3 Generalized Assignment

As one of the best known (Laporte and Semet, 2002) cluster-first, route-second
algorithms, the Fisher and Jaikumar heuristic FJ81-GAP relies on solving a Gen-
eralized Assignment Problem (GAP) relaxation of the VRP to form clusters for the
routes. The algorithm has three phases: First, a seed point is selected or generated
for each proto-route (cluster). Then, in the second phase, a generalized assignment
problem (GAP) is solved. In the GAP model, the seeds from the first phase are
used to approximate the customer node service costs. Finally, in the third phase,
the customer assignments of the GAP solution are routed to create a VRP solution.
Please refer to Figure 15 for a high level description of the process.

START

SEED GENERATION ASSIGNMENT AND ROUTING

Convert coordinates into For each group find a Solve a GAP

polar coordinates, select seed point at the center of approximating the

a first customer and init. an arc enclosing 0.75% route costs using
a group containing it of the group demand the seeds

l -~

\
\
Select a next customer i
(counter)clockwise
from the previous one

T

Initialize a new group
for the customer i and
the part of its demand
that did not fit to
the previous group

|
N
| | Tigthen the GAP |
| | model max. route
I

|

I

Could we find
a GAP feasible
assignment?

Is customer i
same as the
first customer?

cost constraints |
L= -2

3

Insert the customer i Route the assigments I Relax the GAP Lol
No to the current group with using a TSP-algortihm | | model max. route
all or part of its demand to form a solution | cost constraints | ;

Does the solution
satisfy the max. route
cost constraint?

Is the group demand
more than its share of the
total demand

Figure 15: Operating principle of the Fisher and Jaikumar heuristic. The dashed
part is our extension with the repeated self-adjustment for solving problems with a
maximum route length /duration constraint.

For the seed generation, Fisher and Jaikumar (1981) proposed using a sweep-like
process to divide customers into K groups, that is, one for each vehicle. The major
differences to sweep are that K is predefined (or precalculated using demands and
capacity) and that the customer demands can be split between adjacent groups.
Each group is formed between two rays leaving from the depot. The rays are not re-
quired to exactly bisect the angle between two consecutive customers. Instead, these
rays are selected in a way that they create a cone that captures exactly > d;/(KC)
of the total demand for each group. Then, the angle between the rays is bisected
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and a seed point is set on this bisection. The distance from the depot to the seed
point is determined using the sector area. More specifically, the distance is the
length of the radius lines of the sector when the sector captures a demand equal
to 0.75) d;/K. Similar cone covering seed generation method has also been used
by Baker and Sheasby (1999) and one can refer to Appendix A of that paper for
details.

The second phase concerns finding a good assignment of customers to the ve-
hicles. This is achieved by solving a linear generalized assignment problem with
an objective function that approximates the routing cost. Here, the seed points
1r generated in the previous phase are used to calculate the approximate costs
Qi = Coi + Cii,, — G0 of including a customer 7 on the route k. Thus, if each
yir. 1S a decision variable assigning customer ¢ on the route k, d; is the demand of
customer ¢, and C'is the vehicle capacity, the assignment problem relaxation of VRP
can be written as:

K n
min Zzaikyzk
k=1 i=1
st Y dys < C, k=1,....K
ZQOk - K7
k
Z%‘k = 1, i=1,...,n
k
ye = Oorl 2k

)

Additionally, while not formally expressed in the paper, the wording in Fisher and
Jaikumar (1981, p. 121) suggests that constraints for the maximum route length or
distance L can be modeled using the approximation of the objective function. We
assumed that this means including following constraints to the GAP:

Zaikyik < L, k’Zl,,K (12)
7

After solving the GAP, the assignments in the solution are used to create the
clusters of customers, each served by a single route. This is followed by the final
third phase where the clusters are routed using a TSP algorithm. The result is K
routes that form a solution of the original VRP.

The implementation of the seed generation of the first phase is problematic since
the description of the cone covering seed generation is somewhat vague. The first
part that uses a variant of the sweep approach (Wren and Holliday, 1972; Gillett
and Miller, 1974) is quite straightforward. However, it is unclear how the partial
cones are considered to contribute to the total demand of the cone. Fisher and
Jaikumar (1981) give one example on seed generation for an unspecified problem
instance with 10 customers and a vehicle capacity of 30. Unfortunately, only a figure
illustrating the result is given (Figure 4 in Fisher and Jaikumar, 1981, p. 119) and
no specifics or numerical representation of the problem or the seed points are given
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in the paper. To test our seed generation implementation, we converted the problem
into a TSPLIB compatible .vrp file using the blob detection of image processing
tool ImageJ (Schneider et al., 2012). ImageJ allowed us to extract the coordinates
of the blob centers for the depot, customers, and the seed points wq, wy, and wz. We
interpreted the numbers printed on the figure as the demands of the customers (the
number 2 was ignored as this seems to be misprint). Please note that the distances
of the illustration may be inaccurate as it originates from an earlier published report
where the illustration appears to be hand drawn. Despite these potential sources of
error, our implementation is able to generate the seed positions with 3.5% accuracy
in this example (relative to the depot-seed distance, see Figure 16).

Figure 16: Replication of the Fisher and Jaikumar (1981) example seed point gen-
eration. where [J = the reference seed location, x = the seed generated by our
implementation.

As a side note on the seed generation, our implementation also allows generating
them using k-means or the two other selection criteria suggested by Fisher and
Jaikumar (1981): the customers with large demands and customers at the end
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of thoroughfares. However, as no experimental results were given for these seed
selection methods, replication of results is not possible.

Moving on to second phase of the algorithm, the distances from all customers to
the generated seeds are calculated and appended to the distance matrix. Then, the
GAP is solved using Gurobi (2018). We used the default settings of Gurobi and let
it select the most convenient solving approach. This was chosen instead of relying
on the specialized GAP solving technique referred in the paper and later described
in (Fisher et al., 1986). Then, the customers that are assigned to the clusters are
routed by solving the set of corresponding TSPs with Gurobi.

Regarding replication the results, there seems to be multiple discrepancies with
the CMT (Christofides et al., 1979) problem instances in (Fisher and Jaikumar,
1981): they report a result value 1014 for CMT4 which is better than the optimal
solution of 1028.48 listed in (Uchoa et al., 2017). This suggests that either the in-
stances are different, the solution costs are calculated incorrectly, it is infeasible,
or that they truncate the travel distances. Similar issue exists with the Fisher and
Jaikumar (1981) problem 12 (CMT14) as the solution with total route length of 848
is better than the best known solution of 866.37 for that problem. Unfortunately,
Fisher and Jaikumar (1981) do not specify the distance rounding convention they
had used, which would have allowed to rule out or confirm it as the reason for these
discrepancies. Please note that the issues caused by the use of varying rounding con-
ventions has been recognized earlier, for example, by Laporte (2009, p. 412). These,
and other issues related to the problem instances outlined below, make replicating
the results of Fisher and Jaikumar (1981) algorithm very challenging.

Furthermore, it is not always clear which CMT instance the numbering used by
Fisher and Jaikumar (1981) refers to. Fisher and Jaikumar (Table I in 1981, p. 120)
lists two problems with 100 customers and tightness 7' =) . d;/(KC) of 0.91, which
one would expect correspond to CMT12 and CMT14 of (Christofides et al., 1979;
Uchoa et al., 2017). However, the later details in (Fisher and Jaikumar, 1981, p.121)
do not mention a restriction to route time for problem 12. As the given solution
value is close to the one of CMT14 we assumed this information was omitted by
accident and in our replication experiments the CMT12 is used as the problem 11
and CMT14 as the problem 12.

There are also inconsistencies regarding the tightness scores in the problem char-
acteristics Table I in Fisher and Jaikumar (1981). For example, tightness score
of 0.94 for CMT4 differs from the 0.93 calculated from the problem instance of
(Christofides et al., 1979). There are similar discrepancies in the given tightness for
problems 3, 4, 5, 8, 9, and 10, where the differences are between 0.1 and 0.3. How-
ever, for the problem 10 the difference is 0.7, which is puzzling, since the instance
should be the same as problem 5, only with an additional maximum route duration
constraint. However, the tightness value of 0.77 for CMT10 in (Table I in Fisher
and Jaikumar, 1981, p. 120) might also be a misprint instead of an issue with the
problem instance data.

Regarding replication of the results there are other issues as well: firstly, Fisher
and Jaikumar (1981) does not specify how the first customer of the sweep is se-
lected or if the algorithm is repeated from multiple sweep start positions. Based on
our experiments the quality of the solutions produced by the Fisher and Jaikumar
heuristic is very sensitive to small changes in the seed positions, which is an impor-
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tant shortcoming of the algorithm that they fail to discuss in the paper. Also, in
our replication experiments, we were unable to reach similar accuracy without an
extensive search of optimal seeds (that is, applying the sweep heuristic variant for
determining the seed points from all N possible starting positions). In practice, this
means repeating the procedure (Figure 15) N times.

A more serious issue for the replication was that of handling maximum route
duration constraint. Fisher and Jaikumar acknowledge that because the route dura-
tion is approximated, a final feasibility check on the maximum route duration /length
constraint is required. In practice, this check fails frequently, but unfortunately they
did not specify what to do if that happens. We are not first who are puzzled on how
the maximum route duration/length constraint is handled by the algorithm and it
seems that the previous replication efforts have been unsuccessful (see, e.g., Laporte,
2009, p. 412).

Our experiments revealed that the approximated route cost can be significantly
different to the TSP optimized actual route cost, which causes the GAP assignments
to be infeasible because of the VRP maximum route duration constraint. To counter
this, we devised a self-adjusting correction factor to the constraints (12), which is
tightened if an infeasibility is detected. If the GAP becomes unsolvable, then the
maximum route duration constraints are relaxed and violations penalized quadrat-
ically with Gurobi feasrelax procedure. We optionally also allow the number of
vehicles K to be temporarily increased by, for example, 10% if relaxing the maxi-
mum route duration constraint does not lead to a feasible solution. This procedure
is illustrated with the dashed parts of Figure 15. While this does not guarantee
that a feasible solution is found, it allows solving problems with the maximum route
duration constraint. We also had to impose a time limit to Gurobi because solving
GAP iterations for some pathological seed configurations took excessively long time
in our replication experiments. It is possible that a more specialized Lagrangian re-
laxation multiplier adjustment method that was published few years later by Fisher
et al. (1986) would help to resolve this issue. It could also allow us to more closely
replicate the original results. However, implementing it would not have been pos-
sible given the details of the 1981 paper. Also, implementing a specialized MIP
method for a single heuristic was deemed too laborious for this study.

The results of our replication efforts are documented in Table 16. We computed
the results with the exact (real) distances and with a truncated distance matrix
(rounded down to the closest integer). The distances of CMT instances are usually
calculated using real distances, but the fact that some of the results reported by
Fisher and Jaikumar (1981) were better than the optimal or best known results led
us to assume that truncated distances were used.

As can be seen from the table, we were unable replicate the results when using
exact distances. However, for the truncated distances, the quality of the solutions
produced by our implementation is reasonably close to those reported in (Fisher and
Jaikumar, 1981, p. 122, Table II). We suspect that the discrepancies are mostly due
to differences in problem instance data and in how the seed positions are determined.
Also, incorporating the maximum route length constraint to the model seems to have
a significant effect to the replication results as the largest differences happen on the
problem instances with this side constraint.

Our experiments recognized a failure mode where the algorithm may be unable
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Table 16: Replicated results of the Fisher and Jaikumar (1981) Generalized Assign-
ment Problem VRP approximation algorithm (FJ81-GAP).

Problem Exact Truncated
dis- dis-
tances tances

no. source size type| frer | fr  gap(%)| fi  gap(%)

1 CMT1 50 C [5241] 536 229 | 522 -0.38
2 CMT2 75 C | 87| 80 035 | 820 -4.32
3 CMT3" 100 C [833] 860 3.24 | 84 -1.08
4 CMT4" 150 C |1014| 1067 5.23 | 1021  0.69
5 CMT5F 199 C [1420] 1338  -5.77 | 1297 -8.66
6 CMT6 50 CD|560| 570 1.79 | 549 -1.96
7 CMT7 75 CD|916 | 1011 10.37 | 992  8.30
8 CMTS8" 100 CD | 885 | 962* 870 | 891  0.68

9 CMT9" 150 CD |1230|1300* 5.69 |1241 0.89
10 CMT10T 199 CD |1518|1634* 7.64 |1556* 2.50
11 CMT12 100 C |824 | 872 583 | 845  2.55
12 CMT14 100 CD | 848 | 912 7.55 | 886* 4.48
average 4.41 0.31
st.dev. (4.20) (4.09)

CMT = Christofides et al. (1979), 1 = tightness score discrepancy, * = our solution uses
one additional vehicle.

to produce a feasible solution: According to the algorithm description in (Fisher and
Jaikumar, 1981) the number of vehicles K is calculated with K = [} d;/C'|, which
usually works for synthetic cases. However, real world demands may be distributed
in a way that there is no feasible assignment for K vehicles. To overcome this, our
implementation restarts the procedure with a larger K value if finding a feasible
solution fails. Also the option to increase K temporarily, as described above, can be
used on time constrained cases and when it is important to find a feasible solution
early in the search process.

Based on the quality of the solutions reported in Fisher and Jaikumar, the accu-
racy of the method seems good. However, issues with the reported solution values
have been previously recognized (e.g., Wark and Holt, 1994; Cordeau et al., 2002;
Laporte, 2009). Our replication efforts suggest that the reason of these discrepancies
may be in the use of the truncated distances. Also, because the seed generation pro-
cedure is hard to replicate accurately due to proper reference results, and because
the heuristic requires additional tweaks and modifications to be more robust, we
side with Cordeau et al. (2002) on that the algorithm scores low on simplicity and
flexibility. Thus, our replication efforts validate some of the criticism towards the
Fisher and Jaikumar algorithm.

Regarding the CPU time requirements of the algorithm, we recognized that the
GAP solve time varies greatly depending on the positions of the seeds or partic-
ularities of the GAP model. Additionally, a maximum route duration constraint
can cause the runtime of the algorithm to increase significantly and become very
hard to predict. Usually the GAP iterations are solved in a few seconds or less
but there seems to be some pathological configurations, especially for instances the
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maximum route cost constraints, that Gurobi is unable to solve in a reasonable
time. In our replication tests, we used an one minute timeout for the GAP solver to
allow the algorithm to move on to the next seed configuration if a pathological GAP
model was encountered. The MIP solver timeout is not the only free parameter that
strongly affects the quality of the solutions. Similarly, the maximum route dura-
tion constraint adjustment factor has to be set for the problem instances with such
constraint. We used the base value of 0.85 incremented by at most 10 steps of 0.12
until a feasible solution for given set of seed points was found or the current seeds
were rejected. Furthermore, regarding seeds, the method seems to rely heavily on
generation and exploration of multiple seeds which makes it computationally more
demanding than Tables IT and 11T in Fisher and Jaikumar (1981) suggest. For exam-
ple, solving the maximum route cost constrained 199 customer problem (CMT10)
with our implementation takes almost 20 hours. This involves checking all possible
seed configurations, which is further amplified by repeated solving attempts with the
self-adapting constraint multiplier and frequently hitting the MIP timeout. Hence,
we must assume that the values given in the original tables report only the runtime
of a single trial on a single seed configuration. This is misleading since checking only
one seed is typically inadequate for finding good solutions.

In our further experiments, we found out that there can be order of magnitude
variation in GAP solve time from similar sized instances. This inherent variability
of modern MIP solver performance is a well known issue (see, e.g., Koch et al.,
2011, Section 5). This seems to be an undesirable property for a VRP heuristic.
To illustrate the point, checking a single seed configuration for the 385 customer
problem instance from Taillard (1993) with a 8 core Intel Xeon E5-2673 takes 9
hours. Computation times such as this makes trying all possible seed configurations
for large problem instances infeasible. Therefore, the method does fully meet our
requirements as it is not able to fully solve instances with 1000 customers.

Taken together, we were unable to reach the reported level in the quality of the
solutions using exact distances. While the results of Fisher and Jaikumar (1981)
algorithm were originally compared against those calculated with other algorithms
that use rounded or exact distances in (Fisher and Jaikumar, 1981, p. 122, Table II),
it seems probable that unconventional truncation of travel costs was used. With this
assumption, our implementation seems able to replicate the general level of quality
of the solutions, albeit with a large instance to instance variation. Also the way
algorithm runtime is reported in (Fisher and Jaikumar, 1981) seems misleading.
However, we cannot be sure if the source of the discrepancies is in the problem
instances, in misunderstanding some part of the algorithm, or in an implementation
error from our part.

4.5.4 Set Covering

The basic operating principle of the Petal heuristic FR76-1PTL from Foster and
Ryan (1976) makes solving CVRPs simple. First, a large set of routes L, called
petals, are generated. These routes can overlap and contain shared customers, but
every customer should be served at least by one route. Then, a solution can be
found by solving a weighted set covering problem:

73



min Z cxy (13a)

leL
s.t. > aym =1, i=1,....n (13b)
leL
Y m <K (13¢)
leL

xp=0or1, leL. (13d)

where the decision variable z; selects the route [ as the part of the solution, ¢; is
the cost of petal (route) [. In the constraints, the constant a; equals 1 if customer
1 is served by the route [ and 0 otherwise. Depending on how the routes in L are
generated, the problem may be unsolvable. It is, however, possible to generate more
petals or allow a customer to be served multiple times. Any overlapping routes in
the solution can be improved by removing the duplicate customers in the order that
improves the solution the most until all customers are served exactly once.

Foster and Ryan proposed to use a method similar to the sweep heuristic (see
Figure 8 on page 45) to generate all feasible routes of radially consecutive customers
and optimize them using a TSP-algorithm. They also proposed that these petals
are divided into three petal sets with increasing number of petals. The first set is
the restricted set, where the total demand of each petal route is larger than 0.75C'
The second is the reduced set, where the total demand of each route is larger than
a lower bound C}; which is determined as follows:

Cl - Zdz - (KLB - 1)0,
i=1

where the number of required vehicles Kjp is estimated with:

"o,
—ZZZI —i—e—‘.

KLB:’V C

The third extended petal set contains all of the generated routes, even those
serving only a single customer. Between these, the heuristic moves progressively to
larger petal sets if set covering is unable to find feasible solutions, or if growing the
petal set is expected to lead to improved solutions. Also, the extended set is used
if the number of petals (routes) in the SCP solution with the reduced set is more
than Kppg. This entire procedure is illustrated in Figure 17.

For solving the SCP the current petal set is always complemented with a set
of relaxed petals. Initially this set is empty, but new petals are generated on each
iteration from the current SCP solution using a custom local search operator. Foster
and Ryan (1976, p.374) call this step a relaxation of the over-constrained petals. The
operation involves trying to move a customer from one route to another. If the move
would improve the total quality of the solutions, and a constraint is broken, existing
customers on the receiving route are redistributed if it is necessary to do so to regain
feasibility. It is required that after redistribution the total quality of the solution
will still be improved from the original. All possible moves are tried and improving
and feasible solutions are added to the petal set.
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Figure 17: Operating principle of the Foster and Ryan (1976) Petal heuristic.
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To allow the SCP solver to generate previously unseen solutions, the heuristic
adds constraints forbidding previously seen petal combinations (solutions) to the set
covering problem formulation (13a)-(13d). The constraints are of the form:

dwm— ) m<|F 73 (13e)

IEF; IEL\F,

where Fj is the set of petals forming the solution to forbid. The inequality forbids
that exact petal configuration to be returned as a solution to the SCP and a new
constraint row is generated for each new SCP solution.

Unfortunately, Foster and Ryan (1976) do not explicitly state the termination
criteria. This makes replicating the results difficult (Barr et al., 1995). From the
description, we assumed that new solutions are generated until the quality of the
solutions from the SCP solver starts to degrade. This is supported by the mention
of ‘a sequence of feasible solutions are produced with mileages decreasing to the final
solution” where the numerical results are discussed (Foster and Ryan, 1976, p.379),
even though such requirement is not given in the main algorithm description.

Foster and Ryan allow loosening the constraint specifying the number of vehicles
(13¢) and relaxing from restricted to ‘complete’ petal set when no further improve-
ments are found (Foster and Ryan, 1976, p. 375, first paragraph). We assumed
that by ‘complete’ petal set they mean the restricted set as opposed to the extended
set, but the terminology is not very accurate here. Also, based on the experimental
results (Table 2, Foster and Ryan, 1976), the SCP solver they used was allowed
to return infeasible solutions where one or more customers are left unserved. It is
difficult to see from the algorithm description how these relaxations came to be, but
we decided to rely on Gurobi’s built-in relaxation routine to lift minimum number
of (13b) constraints to get a solution. This solution will be infeasible per original
constraints, but since relaxations that improve the solution can be found also among
the infeasible solutions, this can eventually lead to better feasible solutions. How-
ever, our procedure does not allow infeasible solutions after the first feasible solution
is found.

Foster and Ryan have attached all solutions produced by their implementation as
an Appendix to their paper. This allowed us to notice that the Clarke and Wright
(1964) instance used in Foster and Ryan (1976) seems to have slightly different
distance matrix than the original. If the mileage of the solution given in Appendix
(Foster and Ryan, 1976) is recalculated with the correct data, we get a result 1419
as opposed to 1377 given in the Appendix and Table 2 of (Foster and Ryan, 1976).
Please note that the original problem definition gives place names but does not
specify their coordinates. These would have to be guessed either using geocoding or
some multidimensional scaling technique, neither of which does guarantee that the
locations are same as those used in (Foster and Ryan, 1976). Therefore, we decided
to omit it from our replication problem set.

As can be seen from our replicated results (Table 17a), we are able to get rea-
sonably close to the results of petal MIP given in Foster and Ryan (1976, Table 2)
with the average quality gap of 0.4%. This can be considered to be a good repli-
cation result considering that the order in which the customer serving constraints
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Table 17: Replicated results of the Foster and Ryan (1976) Petal weighted set
covering problem (FR76-1PTL) heuristic.

Problem (a) Petal MIP
no. source size type||Lyef| |L|  fref f gap(%)

Ga67#4 21 I 30 31 607 607  0.00
Ga67+#6 22 1°¢ | 97 97 863* 87T  1.62
Gab7#5 29 1€ | 188 188 813* 833* 2.46
Gab7+#3 32 I°C| 67 67 T792* 805 1.64
Ga67+#1 36 IP | 286 285 841 841  0.00
CE69#8 50 I¢ | 79 79 523 528  0.96
GM7446 75 1€ | 150 152 1084* 1089* 0.46
9 CE69#9 75 I° | 157 153 864* 860* -0.46
10 GM74#48 75 1¢ | 495 315 768 753 -1.95
11 GM74#9 75 I€ | 731 729 692 692  0.00
12 FR76#12 75 IPC | 152 148 852* 856* (.47
13 GM74#10 100 I€ | 733 730 1174 1174  0.00
14 CE69#10 100 I¢ | 964 967 825 827  0.24
15 FR76#15 100 I°P | 921 925 827 833  0.73
average 0.44
st.dev. (1.02)

O~ O Ut W N =

(b) With relaxations, terminate by
Problem rules iteration cap

no. source size type| frer | f  Gap (%)| fso gap(%)
Ga67#4 21 I°P|585[592 1.20 |58  0.00
Ga67#6 22 1°P | 953 [958  0.52 | 958  0.52
Ga67#5 29 I°P | 873|936 7.22 | 838 1.72
Ga67#3 32 I1°P | 809 [ 809  0.00 | 809 0.00
Ga67#1 36 1" | 838|841  0.36 | 841 0.36
CE69#8 50 IC | 521|524 058 |524 (.58
GMT7446 75 I° [1081|1101 1.85 |[1087 0.56
9 CE69#9 75 I° | 852853  0.12 |83 0.12
10 GMT7448 75 1€ | 760 | 751  -1.18 | 744 -2.11
11 GMT7449 75 1° [ 692 | 692  0.00 | 692  0.00
12 FR76412 75 I°P | 865 | 861  -0.46 | 859  -0.69
13 GMT74410 100 I |1116[1112 -0.36 |1107 -0.81
14 CE69410 100 1€ | 825|825  0.00 | 825 0.00
15 FR76415 100 I°P | 826 | 831  0.61 | 830 0.8
average 0.75 0.05

st.dev. (1.93) (0.84)

Ga67 = Gaskell (1967), CE69 = Christofides and Eilon (1969)
GM74 — Gillett and Miller (1974), FR76 — Foster and Ryan (1976)
« = infeasible solution, outliers (z-score > 1.5) are in bold typeface

CoO ~1 O Ot W N

(13b) are relaxed is not specified in the paper. To control this, we can omit the in-
stances with infeasible solutions and the average quality gap becomes 0.00%. That
is, our implementation almost perfectly replicates the general quality of solutions
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after first iteration of Foster and Ryan (1976) implementation. The number of gen-
erated petals (|L,ef| vs. |L|) is also very similar. The minor differences may be
attributed to different floating point accuracy in polar coordinate transformation
and comparison. Only on the problem instance 10 our implementation, for some
unknown reason, includes significantly fewer petals in the reduced petal set (315 vs.
495).

The other set of results given in (Foster and Ryan, 1976, Table 2) titled ‘Relaz-
ations’ have been produced by solving the SCP iteratively and generating relaxed
petals for each solution as described above. Unfortunately, replicating these results
proved tricky. The usual replication issues with local search components (see Sec-
tion 2) can manifest also in the solution relaxation procedure, especially since the
description of the node relocation with a redistribution heuristic that is used in the
paper is not very accurate. Trying all possible combinations for each potential relo-
cated candidate would be impossible, as this would mean removing and re-inserting
all customers on the receiving route, in all possible insertion orderings, on all pos-
sible receiving routes, in all possible receiving route orderings. As one can expect,
this leads to combinatorial explosion, which makes it unlikely that Foster and Ryan
(1976) did an exhaustive search and instead used an unspecified greedy heuristic.
However, the specifics are not given.

Our local search implementation checks all combinations of removing customers
from the receiving route that free enough carrying capacity or travel time slack to fit
the relocated customer. If a combination of removed customers frees enough capacity
and cost, further removals on top of that combination are not considered. This forms
a breadth-first search pattern, where the branches are pruned if a combination frees
enough capacity or cost. The removed customers are redistributed in the order
they were on the receiving route and the routes that are candidates for accepting
the redistributed customers are in the petal generation order, followed by the route
where the relocated customer was removed and an empty route. Even with these
assumptions, a combinatorial explosion may make it infeasible to find relaxed petals
for larger instances. Therefore, as the number of customers of the longest route
grows, we limit the maximum number of removed customers from the receiving
route. This was necessary to allow solving also the larger problems.

As can be seen from the Table 17b, our implementation produces worse results
(the average gap is 0.75%) if the rule based termination is used. In these results,
there is a single clear outlier, namely the problem 3, where our implementation is
unable to find the good feasible solutions. The difference in the quality of solutions
for this instance is large if it is compared to that reported by Foster and Ryan (1976)
(7.22% difference). Omitting this outlier brings the average replication error on our
relaxed Petal implementation down to the acceptable level of 0.25%. Furthermore,
based on our results and extensive experimentation, it seems the our termination
criteria differs from the one of Foster and Ryan (1976). Specifying lower bound
for the number of iterations allows our implementation to explore a larger number
of solutions, which in turn allows discovery of relaxed petals ultimately leading to
better final solutions at the expense of longer computation time. Through experi-
mentation, we set the minimum number of iterations in the final set of replication
experiments to 50, which allowed us to almost perfectly replicate the ‘Relazations’
results reported in (Foster and Ryan, 1976, Table 2). These results are reported in
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the rightmost columns of Table 17b.

Taken together, while it seems that our implementation is able match the quality
of the solutions reported by Foster and Ryan (1976), some open questions remain
especially regarding the termination criteria, where we had to parametrize and man-
ually set the termination criteria in order to reach our replication target of 0.1%.
Despite extensive experimentation and troubleshooting, we were unable to find a
rule-based criterion that would terminate the algorithm exactly like in (Foster and
Ryan, 1976). However, another possible source of replication errors is in local search
and solving TSPs. The local search is not described in sufficient detail and the solver
we used for solving TSPs was LKH (Helsgaun, 2000, 2009) instead of the obsolete
heuristic described in (Foster and Ryan, 1976).

Please note that our implementation can use the first of the secondary additional
relaxations presented in the end of (Foster and Ryan, 1976). This is done by specify-
ing a desired number of iterations, which forces the code to iteratively forbid feasible
solutions to the set covering problem. This may allow finding relaxed petals that
together with the extended petal set can produce an improved solution. However,
the second secondary relaxation involving movement of consecutive customers from
a route to another in the relaxed petal generation was not implemented.

Cordeau et al. (2002) score the Petal high on accuracy, at least compared to
other classical heuristics; high on simplicity, given that the petal generation is kept
straightforward; and high on flexibility as different constraints can easily be accom-
modated to the petal generation phase. The weakness of the method is in that
good results depend on a comprehensive collection of suitable petals and for larger
problem instances the petal generation may become computationally infeasible.

5 Technical and User Documentation

One of the main goals of our work was to provide and publish the software artifact,
that is, the classical algorithms, in a readily available, permissively licensed package
that is easy to extend. The source code and the related documentation can be found
and downloaded from Github '°. During the development, we tried to minimize
the internal and external dependencies. This allows researchers and practitioners
select only those parts that are relevant to their work. This section was written to
clarify decisions behind including the dependencies, and to help the reader to gain
understanding of the overall performance considerations, structure, and the use of
the library.

5.1 General Performance Considerations

Our main concern in implementing the algorithms for VeRyPy was the replicating
of the results. However, we also made sure the code remained easy to read, un-
derstand, and extend. On the other hand, while appropriate data structures and
low level algorithms were used when implementing the performance critical parts
of the algorithms, reaching state-of-the-art performance nor computation speed was
not our top priority. This design choice allowed us to fully utilize the strengths of

10 https://github.com/yorak/VeRyPy
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Figure 18: Flame graphs of the profiling data on three runs with all algorithms
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Python as an expressive, high level, multi-paradigm language (Perez et al., 2011).
Also, Python standard library comes with optimized implementations of usual data
structures and low level algorithms which saved us effort to implement them or in-
cluding them from extension modules, which, in turn, made it possible to keep the
number of external dependencies small.

We acknowledge that Python as an interpreted and dynamically typed language
can cause significant performance overhead compared to, say, algorithms imple-
mented in C or Fortran (Cai et al., 2005). Also, utilizing multiple processor cores
effectively to speed up the computations is difficult due to the global interpreter lock
(GIL) of the CPython interpreter. Despite these considerations, our a Python imple-
mentation still allows several alternative possibilities of improving the performance
if the need arises, which are explored in detail below.

When doing performance analysis and code optimization, it is critical to recog-
nize and concentrate on those parts of the algorithms where most of the computing
time is spent (Graham et al., 1982). This is typically done using a profiler tool that
gathers information from a running program. We used the PyFlame tracing profiler
(Klitzke, 2016) to gather the necessary profiling data and flame graphs from Gregg
(2016) to visualize it. Each box in the flame graph represents the time spent in their
corresponding functions, the call stack depth is shown by the vertical stacking of
the boxes, and the horizontal span roughly corresponds to the time spent in those
functions. Colors do not have a significant meaning but help to separate the layers
from each other.



The profiling data for solving three classical problem instances using all of the
15 classical algorithms is visualized as a flame graphs in Figure 18. The first CVRP
problem instance is from Gaskell (1967) and has 32 customers with the maximum
route duration constraint in addition to the capacity constraint. The other two are
the 50 and 100 customer capacitated problem instances from Eilon et al. (1971).
Few things quickly become apparent when observing the flame graphs. Firstly, the
poor quality of the route duration approximation in FJ81-GAP, especially when
combined with the trial and error approach required to find feasible solutions, make
that algorithm to use disproportionate share of the computing time (see Figure 18a).
Almost two-thirds of the total computing time is spent in function _solve_gap
which is called to repeatedly solve Generalized Assignment Problems with Gurobi.
However, the share of total computing time used by FJ81-GAP is smaller for the
problems without the maximum route duration constraint, and as the number of
customers increases the SG84-LR3OPT starts to use a greater share of the total
time (see Figures 18b&c). This is mostly due to the time complexity of 3-opt™*
and amplified by the pure Python implementation that was used to implement
SG84-LR3OPT. If FJ81-GAP and SG84-LR3OPT are ignored, one can see how a
significant part of the CPU time is spent solving TSPs. Therefore, we can recognize
these three as bottlenecks and promising future targets for performance improvement
efforts.

The prominence of TSP solving in the profiling data is not a surprise, as many
classical algorithms make the individual routes r-optimal by solving the route as
a TSP with 2-opt, 3-opt, or Lin-Kernighan algorithms. If the maximum route
distance constraint L is set, then TSP is solved repeatedly in some algorithms to
make sure that the emerging route stays feasible. For example, the sweep algorithm
from Gillett and Miller (1974) uses the following heuristic to fix a maximum route
distance constraint violation: the customers are removed from the emerging route
in the reverse insertion order until feasibility is regained. This involves solving a
TSP each time after a customer is removed.

For state-of-the art heuristic solving of TSPs, we used the Lin-Kernighan im-
plementation of Helsgaun (2000, 2009). We would like to point out that there is a
slight overhead in the way LKH is invoked in VeRyPy: Whenever there is a need
to solve a TSP, we use Python’s popen to fork a new process for the LKH exe-
cutable. This method also requires writing a parameter file for the executable and
processing the LKH output from the stdout and output file. A more efficient ap-
proach would be to wrap the LKH code as a Python module, where it would not
require disk access. This is possible as the authors of LKH have made the source
code publicly available. Unfortunately, the LKH code heavily relies on the use of
global variables, which makes it hard to use or extend to a callable extension li-
brary. Also, the license of LKH source code is not very permissive as it distributed
only for research use and the original authors reserves all rights to the code. This
makes contributing to the code base complicated. Therefore, we decided to use the
unmodified LKH executable and call it from the Python. We have also included
an option to use ACOTSP (Stiitzle, 2002) as a TSP solver, and the standalone
acotsp executable can be called similarly to LKH. Our slightly modified ACOTSP
(available from https://github.com/juherask/ACOTSP) allows disabling the ant
systems, disabling randomization of route order, and initializing routes with the
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nearest neighbor procedure. This facilitates the use the extremely fast pure C lan-
guage implementations of the 2-opt and 3-opt local search that comes with ACOTSP
and allows it to be deterministic.

For exact solving of TSPs, we use Gurobi and a modified version of the TSP
example model provided as a part of the online reference documentation®'. A more
specialized exact TSP solver such as the Concorde TSP Solver (Applegate et al.,
2006) could be faster on large problems but the TSP instances we faced were small
enough to be solved with a generic MIP solver.

If the overhead of calling the LKH executable begun to dominate (when the
number of nodes to solve the TSP was very small), we also had the option to
use the internal intra-route local search implementations. Please see Table 18 for
our experimental results comparing our Python implementation of 3-opt, LKH with
default parameters, our modified ACOTSP with ants disabled and with deterministic
local search, and the Gurobi TSP solver. Problems of two small classical VRP
instances were interpreted as TSPs and also the nine of the TSPLIB (Reinelt, 1991)
instances with less than 100 customers were included in this comparison. Solvers
were run single-threaded on a machine with Intel Xeon Platinum 8168 CPU. The
results suggest that after the route size grows over around 10 customers long, the
overhead of calling LKH becomes negligible, and LKH becomes the recommended
method of solving TSPs if the accuracy is the main concern. However, there is a
tradeoff to be made between speed and accuracy: if the routes are long with many
customers, one has the option to use the ACOTSP based local search solver. Please
note that these results apply to these specific implementations and, for example, the
built-in 3-opt could be made significantly faster by using the well-known TSP r-opt
search acceleration methods (see, e.g., Helsgaun, 2000; Funke et al., 2005).

Also, we would like to point out the differences in resulting TSP tour length
between ACOTSP and the VeRyPy built-in 3-opt heuristic. This variation in the
quality of the solutions illustrates the point made in Section 2 that the search order
and move acceptance decisions can have a major impact on the result, even in cases
where both of the solvers use the same heuristic optimization method.

Besides algorithm choice, using upper and lower bounds is another option to im-
prove the performance for cases with a maximum route length constraint. As noted
above, solving TSPs may take a significant portion of the total CPU time of an
algorithm, and the effect becomes more pronounced in cases where the maximum
route length constraint is tight compared to the capacity constraint. Calculating
and updating a TSP lower bound (e.g., with Held-Karp algorithm Held and Karp,
1970, 1971) for the emerging routes would allow avoiding costly re-computation of
the cheapest TSP tour. This re-computation is required when algorithms check if
inserting a customer to the route would break the maximum route length constraint.
In some cases our implementations already utilizes upper bound: the inserted cus-
tomer is naively appended to the route, and the actual TSP solution is checked only
after the upper bound violates the constraint. A tight lower bound would allow
more accurately to determine when to check the possibility to insert the customer
without the computational expense of solving the actual TSP. The issue of exces-
sive TSP constraint checks is apparent, for example, in Christofides et al. (1979)

Unhttp://examples.gurobi.com/traveling-salesman-problem/
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Table 18: Comparison of the TSP solvers used in VeRyPy. Results in bold typeface
are optimal (length) or fastest (time).

problem length, time (s)
file size| ACOTSP Gurobi LKH built-in 3-opt
eil7.tsp 7 66 0.00 66 0.00 66 0.00] 66 0.00
eill3.tsp 13| 142 0.00| 142 0.00| 142 0.01| 142 0.01

ulysses16.tsp 16 |8150.7 0.00| 8150.7 0.01| 8150.7 0.02] 8155.4 0.01
ulysses22.tsp 22 | 8362.1 0.00| 8300.5 0.02| 8300.5 0.02]8300.5 0.01
att48.tsp 48 | 3404.0 0.00| 3377.0 0.10| 3377.0 0.03| 3408.0 0.47

eil51.tsp ol 440 0.01| 426 0.07| 426 0.06| 435 0.92
st70.tsp 70 684 0.01| 675 0.20] 675 0.12| 694 2.76
€il76.tsp 76 260 0.01| 538 0.09] 538 0.10| 543 5.77
pr76.tsp 76 | 112866 0.01| 108159 2.42| 108159 0.39| 111548 4.77
gr96.tsp 96 |55626.3 0.01|53669.6 2.11|53669.6 0.23|54600.2 3.47

rat99.tsp 99 | 1217 0.01| 1211 041, 1211 0.09] 1264 6.74

2-phase heuristic CMT79-2P, where every non-routed customer is tested for feasible
insertion for each emerging route. This leads to excessive number of expensive fea-
sibility checks. A performance improvement would be keeping track of the current
smallest available demand, as this would make it possible to terminate the search
for capacity-feasible insertions early. Similar modification would be possible for the
minimum route length checks via calculation of a lower bound for the TSP-optimized
route length. However, these modifications would involve keeping track and updat-
ing several bounds, which would add significant complexity to the implementations.
As the performance was not the main concern, these changes were not implemented
but is documented here as part of the performance considerations.

Still, optimizing the built-in local search algorithms would be a good target to
increase the overall performance of the library and to remove external dependencies.
Especially the algorithms that heavily rely on using the internal local search module
to solve TSP or improve VRP solutions (that is, most of them) would benefit from
faster and more efficient local search implementations. Some easy options to improve
the performance of the current implementation is to utilize Numba (Lam et al.,
2015), which allows compiling the low level local search Python code to native
machine instructions. Similar enhancement could be achieved by porting the local
search module code to Cython (Behnel et al., 2011) which should allow achieving
C-level performance with minor changes to the local search module code. Also,
parallelization with multithreading

Further performance could be gained with the cost of additional code complex-
ity, for example, by adapting the ideas from sequential search (Irnich et al., 2006),
in which the move operators are systematically decomposed and a move can be re-
jected already after a partial evaluation. Another typical improvement technique
is pruning those parts of the neighborhood that are less important (Funke et al.,
2005) by considering only those customers that are close to each other. This ap-
proach can be parametrized as proposed in granular neighborhoods of Toth and
Vigo (2003a). Further speed-up techniques such as dynamic programming, branch-
and-bound, utilizing network optimization algorithms for shortest paths or cycles,
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matchings, and keeping auxiliary data structures that allow faster evaluation of the
objective function and feasibility checking are also possible, again with the cost of
added complexity. Furthermore, techniques such as fixing edges, candidate lists, and
combinatorial structure approaches for accelerating VRP local search, as listed in
Funke et al. (2005, Section 3). All these could be adapted to further accelerate the
local search implementations of VeRyPy.

While we do not use the more sophisticated and complex techniques of the previ-
ous paragraph, our implementation includes some performance optimizations. Cur-
rently, the internal local search module has been implemented in a way that makes
constraint checks and objective calculations constant time (Savelsbergh, 1992, see,
e.g.,). The do_local_search function also keeps track of the routes and operator
combinations that have already reached the local optima and it re-applies the op-
erators only when the situation changes. However, it should be acknowledged that
this could be further improved by extending this to individual moves similarly to
static move descriptors (SMD) of Zachariadis and Kiranoudis (2010).

All local search operators of VeRyPy can optionally take a required level of
improvement as an argument, which allows terminating the search if it becomes
clear that a good enough improvement cannot be made (similarly to sequential
search). This can reduce search effort, for example, when multiple operators are
compared and only the best move is applied. However, after the do_local_search
function terminates, this auxiliary information is lost. Thus, warm-starting the local
search and TSP solver could be another interesting improvement. Currently this is
limited to passing the existing solution from the previous checks as the base solution
for the modified problem.

There are also some further potential performance improvements in relation to
how Gurobi is used. Most of the relaxed mathematical programming methods solve
the same mixed integer problem repeatedly, where our implementation instantiates
a new model every time. In some cases it would be possible to just update the
constraint coefficient matrix values, or modify the model using column generation
functionality of Gurobi. This would sometimes even allow a warm start for the
solver.

The VeRyPy software library comes with unit, integration, and result replication
tests. The unit tests mostly concentrate on the local search component, which, as
a result, has good test coverage. Also few of the functions implementing some part
of the classical algorithms have unit tests if the functionality was easy to separate
from the main algorithm code and the implementation had features that made it
error prone. The integration tests are mostly smoke tests that do not throughly
test the functionality of the algorithms, but recognize failures in the most typical
code paths. Finally, the replication tests are used to produce the data presented in
Section 4. These test the algorithms on a limited amount of problem instances, but
usually quickly catch incorrect operation or regressions after code modifications.

5.2 Code Structure and Dependencies

We tried to keep the dependencies to external code and libraries minimal (they
are illustrated Figure 19). However, for some operations, such as calculating the
distance matrix D, VeRyPy uses NumPy to make vector and matrix operators fast
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and convenient. Numpy is also used by the sweep algorithms WH72-SwLS, GM74-
SwRI, and consequently in FR76-PTL and FJ81-GAP, which borrow some of the
functionality from the sweep implementation. In addition, CMT79-2P two-phase
heuristic and Floyd’s algorithm in Be83-RFCS rely on NumPy to implement the
algorithms.

Figure 19: Algorithm dependencies to the external modules, executables and local
search
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(b) Insertion, nearest neighbor and relaxed mathematical programming algorithms

Scipy’s spatial module is only used to make distance matrix calculation more
convenient but this dependency would be trivial to remove by implementing it in
pure Python. The dependency can also be ignored if the distance matrix is given
as part of the problem description. Also, please note that algorithms WH72-SWLS,
GM74-SwRI, FR76-PTL, and FJ81-GAP require the coordinates of the depot and
the customers to be known. Scikit-learn is used to generate missing coordinate points
with SMACOF if only the distance matrix is given. Additionally, Scikit-learn’s
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clustering algorithms are used in FJ81-GAP, where they are used to implement
optional GAP seed generation methods.

Omitting the few exceptions mentioned above, the use of NumPy, SciPy, and
Scikit-learn are well contained in the CLI (command line user interface) code and
removing these dependencies is relatively straightforward task, if the user so wishes.
The algorithms themselves do not depend on NumPy, SciPy, or Scikit-learn, unless
otherwise explicitly stated above. Thus, by design, the algorithms can easily be used
as stand-alone solvers: while the CLI requires those libraries in order to read the
TSPLIB formatted problem files and prepare the data, these dependencies can be
ignored if the necessary problem details can be provided to the algorithm directly.

Regarding the third-party Python modules, MJ76-SI uses the llist module!?
and its doubly linked list d11ist data structure to make insertions constant time
operations. Additionally, WH72-SwLS, GM74-SwRI, and CMT79-2P require the
OrderedSet module!® to maintain the order of the non-routed customers or emerg-
ing routes. Finally, the CLI script uses natsort module'* to solve the .vrp files in
a directory in a lexicographical order. All of these packages can be installed from
the PyPI Python package index using the Python package manager pip.

VeRyPy uses several external applications and libraries. Gurobi (2018) is used to
solve mixed integer programming models in DV89-MBSA, FR76-1PTL, and FJ81-
GAP. Furthermore, the TSP solver LKH (Helsgaun, 2000, 2009) is used by SG84-
LR3OPT and Be83-RFCS to quickly generate an optimal or nearly optimal TSP
route through all customers. LKH is also used in Ty68-NN to route the customers
clustered in the first phase of the heuristic.

As can be seen from Figure 19, many of the algorithms use the built-in local
search implementations. As outlined in the previous section, there are potentially
quite many optimization opportunities for the local search implementation. Option-
ally to these improvements, the built-in local search can often be switched to an
external TSP solver with the expense of adding another dependency.

As a final note on the topic of dependencies: to make the code loosely coupled
to the dependencies, we have preferred to use the Python “from <here> import
<this>” convention. This has allowed us to more explicitly state which parts of the
imported module or library was used. This, in turn, makes it easier to swap the
dependency to another implementation if needed. For the same reason we have used
import aliasing, for example, to make changing the TSP algorithm for a heuristic a
simple one import line edit.

5.3 Usage

From the user’s perspective, there are three alternative ways of using VeRyPy. The
first is to use the provided vehicle routing algorithms through the main VeRyPy.py
script, which acts as an executable command line interface (CLI) to the library. One
can get help by executing it with an argument:

P2https://pypi.org/project/1list/
Bhnttps://pypi.org/project/orderedset/
Unttps://pypi.org/project/natsort/
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$ ./VeRyPy.py --help

The most central command line arguments are -a <algoname> for selecting the
classical algorithms to use and -v <verbosity_level> for adjusting how much
output is provided. Please note that one can use -a all to use every algorithm
provided by the library or -a classic to use only the classical algorithms presented
in Section 4. The CLI uses shorthands for the algorithm names but also the two
part names used through this study can be used. One can get a list of supported
algorithms with their shorthands by invoking the CLI with the -1 argument:

$ ./VeRyPy.py -1

The last argument of the command line invocation should always be a TSPLIB
formatted (Reinelt, 1991) .vrp file, a folder containing .vrp files, or a text file with
full paths to .vrp files. Given that the algorithm(s) and the problem(s) to solve
have been specified, the program proceeds to solve all given .vrp files with the
specified algorithm(s). However, typical command line use case would be to solve
a single problem with a specific algorithm and objective. In the following example,
the Clarke and Wright (1964) heuristic with a minimal amount of logging is used
to minimize the number of routes K and route cost on the 50 customer problem
instance from Eilon et al. (1971):

$ ./VeRyPy.py -v 0 -o K -a CW64-PS E-n51-k5.vrp
Solving E-n51-k5 with CW64-PS

SIZE: 51

CAPACITY: 160
DISTANCE: None
SERVICE_TIME: None

SsoLuTION: [0, 6, 24, 43, 7, 23, 48, 1, 32, 27, 0, 8, 26, 31, 28, 3,
— 36, 35, 20, 2, 22, 0, 10, 49, 9, 50, 29, 21, 34, 30, 39, 33,
— 45, 15, 0, 12, 5, 38, 16, 11, 46, 0, 14, 25, 13, 41, 40, 19,
— 42, 44, 37, 17, 0, 18, 4, 47, 0]

FEASIBLE: True

SOLUTION K: 6

SOLUTION LENGTH: 580

Please note that if one is solving larger problems and wishes to gain extra perfor-
mance, or the CLI still outputs too much even with minimal verbosity -v 0, turning
on the basic optimizations of the Python interpreter will disable logging altogether:

$ python -0 VeRyPy.py ...

The algorithm may return an infeasible solution. Usually this happens when
the algorithm is interrupted with Ctr1+C or with SIGINT. This will only happen for
some algorithms, but it is recommended to check the solution feasibility after the
algorithm terminates.
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If one is more interested in using specific algorithms, the Python files in the
classic_heuristics folder contain the implemented algorithms and offer a similar
CLI to the main script. This, together with the minimal architecture and loose
dependencies makes it possible to select only the implementation of an individual
algorithm and use it independently of the CVPRI library. Below is an equivalent
example to the earlier one for solving the 50 customer Eilon et al. (1971) instance
with Clarke and Wright (1964) heuristic illustrating this use case:

$ ./classic_heuristics/parallel_savings.py -v O -o K E-nb1-k5.vrp

The third option is to import the library as Python modules. This allows fine-
grained access to the implementations of local search (with 2-opt, 3-opt, one-point-
move, two-point-move, 2-opt*, 3-opt*, relocate, exchange, chain, insert, and redis-
tribute operators), three TSP solvers (3-opt, LKH, and Gurobi), 20 CVRP heuris-
tics, and functionality to reading, writing and processing vehicle routing problem
files and models. An interactive Python session example that reads a TSPLIB
formatted file, solves it with Clarke and Wright (1964) heuristic, and prints the
resulting solution route-by-route is given below:

>>> from VeRyPy import cvrp_io

>>> from VeRyPy.classic_heuristics.parallel_savings import
— parallel_savings_init

>>> from VeRyPy.util import sol2routes

>>> problem = cvrp_io.read_TSPLIB_CVRP("E-n51-k5.vrp")

>>> solution = parallel_savings_init(
D=problem.distance_matrix,
d=problem.customer_demands,
C=problem.capacity_constraint)

>>> for route_idx, route in enumerate(sol2routes(solution)):
print ("Route %d : %s"/%(route_idx+1l, route))

Route 1 : [0, 8, 26, 31, 28, 3, 36, 35, 20, 2, 22, 0]

Route 2 : [0, 18, 4, 47, 0]

Route 3 : [0, 12, 5, 38, 16, 11, 46, 0]

Route 4 : [0, 15, 45, 33, 39, 30, 34, 21, 29, 50, 9, 49, 10, 0]
Route 5 : [0, 17, 37, 44, 42, 19, 40, 41, 13, 25, 14, 0]

Route 6 : [0, 27, 32, 1, 48, 23, 7, 43, 24, 6, 0]

The application programming interfaces (APIs) are documented with docstrings
interleaved with the code, and, as demonstrated with the example above, they should
be straightforward to use. This API documentation complements this document
with additional implementation details and role descriptions of different components
in the VeRyPy library.
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6 Computational Experiments

In addition to the reproduction of the results, we were also curious about the differ-
ences between the accuracy and performance of the implemented algorithms. It is
hard to gain a clear view on the strengths and weaknesses of the classical algorithms
from the literature alone, as they are rarely tested on the same instances, and even
if they are, only some selected results are typically reported. Unfortunately, this
has also meant that the classical algorithms have not always been tested against
the best competition of the time, which is the recommended practice (Barr et al.,
1995). Furthermore, the computing environments and implementation techniques
have varied greatly from a publication and decade to another, which has made most
computation time comparisons meaningless.

We have already touched the topics of algorithm simplicity (how easy it was
to implement), speed, accuracy, and robustness in Section 4. In addition to these
features, Barr et al. (1995) also lists innovativeness and which kind of revealing
insight into VRP or general heuristics they offer. This all contributes to the impact
of the research. Also relevant is the ability to generalize the performance over a
broad range of problems. These all are desirable and important properties for a
good heuristic algorithm. However, it is hard to estimate these without extensive
experimentation on a wide range of different problem instances. Hence, we set out
to design an experimental setup to thoroughly measure the implementations of the
classical CVRP algorithms.

While the decision to use a heuristic instead of exact methods in a specific
application is usually based on requirements of fast solution time, in our experiments
we were mostly interested in the accuracy of an algorithm (i.e., the quality of the
solutions). This aim is in line to, what is according to Barr et al. (1995), the ultimate
goal of heuristic methods: providing high-quality solutions to important problems
with small to moderate computational effort.

6.1 Experiment Design

It is important to control the factors of a computational study, especially when
algorithm comparisons are made (Barr et al., 1995). In this section, we document
our experiment design and setup. In designing the experiments, we followed the
recommendations from Barr et al. (1995) on empirical testing of heuristic methods,
because it is critical to ensure that the results given by individual algorithms are
objective and comparable with each other. The selection criteria for the algorithms
to be implemented and compared ensured their determinism (i.e., they return the
same result for the same problem instance each time they are run) and had a well-
defined termination rules, which are both aspects Barr et al. (1995) recommends
considering carefully.

The primary optimization objective varies in the literature. Fixing the number
of vehicles K is typical in the literature on exact methods, but the later CVRP
problem sets usually allow the K to be chosen freely (Uchoa et al., 2017). The
surveyed works proposing classical algorithms use two alternative optimization ob-
jectives: in some the primary objective is to minimize the number of vehicles, while
others have chosen the simpler objective of minimizing the total route length. The
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algorithms of VeRyPy were implemented as per their original descriptions, but both
primary objectives were supported if the algorithmic procedure allowed this. For
some algorithms this was trivial. For example, with CW64-PS where allowing neg-
ative savings will minimize the number of vehicles, even with the expense of total
route length, or for FR67-1PLT where omitting the constraint for the number of
vehicles will allow finding the combination of petals with minimum cost. However,
some algorithms had been geared more towards minimizing the number of vehi-
cles such as the FJ81-GAP, where the initial number of vehicles is determined by
the to constraints. The algorithm was modified to minimize cost by allowing it to
continue increasing the current available number of vehicles until no improvements
were found. Of the algorithms in VeRyPy, only SG84-LR3OPT and the nearest
neighbor heuristics such as the Ty68-NN do not support minimizing the number
of vehicles. In Ty68-NN, minimization of the number of vehicles is built in feature
of the algorithm. Modifying SG84-LR3OPT would require balancing between two
parametrized penalty functions for constraint violations and increasing the number
of routes. Hence, because all algorithms can be modified to support minimizing the
route cost, and because adding the support to minimize the number of vehicles is
problematic for the two aforementioned algorithms, in our experiments we decided
to minimize the route length. According to Uchoa et al. (2017), not minimizing or
fixing the number of routes has become the usual practice with the later problem
sets. This, together with their rationale of doing multiple trips with the same ve-
hicle, and the fact that fixing the number of routes was not in the original CVRP
definition (Dantzig and Ramser, 1959), further supports our decision.

Regarding runtime, each algorithm was given at most one hour of wall clock
time to solve each problem instance. This is more than enough for most greedy
heuristics, and for the more sophisticated algorithms to solve small to medium sized
problem instances. However, the computational requirements for algorithms DV89-
MBSA, FR76-1PTL, and especially for FJ81-GAP and SG84-LR3OPT, can grow
prohibitively large for the larger instances. In those cases, the computation was
interrupted after the one hour limit and the current emerging solution (or the best
solution so far) was returned. Note that reading the problem instance from the file
and computing the distance matrix was included in the runtime of the algorithm
for the termination criteria, but not in the algorithm wall clock (real) time of the
reported results. Also, note that Gurobi MIP solver timeout was set to 10 minutes,
which is separate to the overall algorithm time limit of one hour.

For some algorithms, it did not make sense to evaluate all optional variants
separately. Ga67-PS|rA and MJ76-INS are very fast, and for them the solution was
produced using all savings/stress functions available for the algorithm and the best
result was returned as the solution. This allows more balanced and fairer comparison
with the more sophisticated heuristics (Rardin and Uzsoy, 2001, p. 268).

In case the algorithm had parameters they were left to the values specified in
the original publications or in Section 4. For example, the deterministic CMT79-2P
was run with the default parameters A = 2.0 and p = 1.0, and Pa88-G2P used the
parameter search strategy M4.

According to Barr et al. (1995), to keep the results comparable the algorithms
should not only be run on the same computer, but also written in the same pro-
gramming language by the same expert programmer. The first author of this study,
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who also implemented all the algorithms, has over 15 years of professional software
engineering experience. He had been using Python as his primary programming lan-
guage for six years prior to starting implementation work on the algorithms. Thus,
the effect of these experiment factors were controlled.

The computations were run on a computing server with Python 2.7.12, NumPy
1.11, SciPy 0.17, Scikit-learn 0.17, Gurobi 7.5.2, and LKH 2.0.7. We also had an
option to use a slightly modified version of ACOTSP v.1.03. Following additional
packages were used from PyPI: natsort 5.3.2, orderedset 2.0.1, and llist 0.6. The
server had Intel Xeon Platinum 8168 CPUs with Ubuntu 16.04.4 LTS operating
system using Linux kernel 4.15.0. For orchestrating the parallel computations, we
used GNU parallel 20141022 (Tange, 2011).

Considering the factors described earlier, together with the requirements of de-
terminism and being parameter free, we were able to overcome most of the objections
on competitive testing made by Hooker (1995). Next, we will continue by describ-
ing how we addressed some of the concerns in choosing the test problems (Hooker,
1995).

6.2 Problem instances

The performance of the algorithms is typically measured against a set of well known
problem instances. Sometimes these instances are modified, for example, to in-
clude necessary information for additional constraints, but for a specific variant an
established benchmark set can usually be recognized.

To give a comprehensive view on experimental performance and accuracy of
classical CVRP heuristics, and to lessen the effect of selective advantage for any
particular algorithm due to limited set of benchmark problems (Hooker, 1995), we
decided to consider all instances listed by Uchoa et al. (2017) complemented with
several other benchmark sets. The benchmark instances cover a large variety in
problem size, generation method, and variation in how realistic they are, thus satis-
fying the recommendations made by Rardin and Uzsoy (2001) concerning sourcing
the test instances. Understanding where the instances come from, how they are
generated if they are artificial, and if there are some special remarks is relevant to
the goals of this study. Therefore, short descriptions of the benchmark sets are given
below, but for a more complete review of the CVRP problem instances please refer
to (Uchoa et al., 2017).

Sets A,B that were proposed in (Augerat, 1995). The instances are randomly gen-
erated to have sizes (V) between 30 and 80 customers, capacity @ of 100, and
average demand of 15.0 with 10% of the demands multiplied by 3. The cus-
tomers in set A (27 instances) are uniformly located inside a 100 x 100 square.
The customers in set B (23 instances) are distributed in a more clustered
fashion.

Set E was collected by Christofides and Eilon (1969). It includes 6 earlier small
instances from the literature and three new larger ones, with 50, 75, and 100
customers, respectively. Later, Gillett and Miller (1974) added four instances
to the set by varying the capacity in the 75 and 100 customer instances.
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Figure 20: Example instances from the ABEFGMPVX benchmark problem sets
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Set F contains three instances based on real world routing scenarios as reported in
(Fisher, 1994) with 44, 71, and 134 customers.

G is a set with only one instance with 261 customers adapted from Gillett and
Johnson (1976).

Set P also comes from Augerat (1995). The 24 instances are based on selected ones
from A, B, E, and M sets, and are created by decreasing the capacity of the
original problem instances.

Set M contains five instances from 100 to 199 customers. The instances were in-
troduced by Christofides et al. (1979) and only very recently the two largest
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Figure 21: Example instances from the other benchmark problem sets
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instances with 199 customers in this set have been solved to optimum (Pecin
et al., 2017). These two largest instances are interesting also because, accord-
ing to Uchoa et al. (2017), the 17 route version of these problems is the only
instance in the entire collection where the fixed number of routes is less than
the optimal number of routes.

Set V contains 13 instances that were converted from the TSPLIB instances (Reinelt,
1991). They are interesting as they vary greatly in size and origins.

Set X Uchoa et al. recognized in 2017 that existing CVRP benchmarks were too
artificial, too homogeneous, and had become too easy for the state-of-the-art
algorithms. They proposed a new problem set of 100 instances. The instances
have sizes from 100 up to 1000 customers with varied attributes in depot
positioning, random customer and demand distribution, and average route
customer count.

All distances above are given as integers or rounded to the nearest integer. The
ABEFGMPVX collection was further completed with six other benchmark instance
sets from the literature:

Gaskell instances were popular in papers that introduced early heuristics. The size

of the problems is quite small, as all have under 36 customers, but five of the
six problem instances have maximum route duration constraint, and only the
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largest of the instances are synthetic, with the rest being derived from a set of
real world transportation problems (Gaskell, 1967). These properties make the
problem set interesting. The problem set also contains the real world problem
instance from Clarke and Wright (1964), with the corrected value for the one
distance that had been misprinted in the original publication. The value in
(Gaskell, 1967, Table A4) seems to be a misprint as the 210 is also given along
with the sample solution in the paper. Thus, for Case 4 we used the maximum
route cost value of 210. All distances are rounded to the nearest integer.

CMT is another well-known set of 14 problem instances (Christofides et al., 1979),
on which the sets E and M were based on. While the demands and node loca-
tions are identical, the distances between nodes in the CMT set are calculated
using real floating point accuracy instead of rounding them to the nearest in-
teger. Therefore, despite the same origin, the corresponding instances in E
and M have different solutions. Also, half of the instances in this set include a
maximum route duration constraint. Thus, despite their similarities, including
CMT set in this study is well justified.

van Breedam introduced a synthetic set of 20 geometric problem prototypes (with
spread patters: uniform, concentric, 50% central, and compressed which were
combined with grouping patterns: singleton, clusters, 50% clusters, cones, 50%
cones), which after combinations with different depot locations (central, inside,
and outside) and capacities (50, 100, and 200) produce a benchmark set of 180
instances. Size of each instance in this set is 100 customers and demand of
each customer is 10. He used this problem set to analyze the behavior of VRP
heuristics and the effects of their parameters, which makes it an ideal addition
to this study (Van Breedam, 1994). The set uses real distances.

RT contains 13 instances with real distances. Only one of the instances (tai385)
is based on real geographical data, but others are generated as described by
Rochat and Taillard (1995). Their generator produces real-world-like non-
uniform routing instances with sizes from 75 to 150 and variable number of
clusters. Customer demands follow exponential distribution.

Golden set was proposed in Golden et al. (1998) and it contains 20 instances where
customers (N ranging from 240 to 420) are placed in concentric geometric
figures: stars, squares, circles, and rays. The demands of the customers also
follow this symmetry. Instances use real distances, are homogeneous, and
difficult to solve effectively using heuristics (Uchoa et al., 2017).

Li is a set of 12 large-scale duration-constrained instances from Li et al. (2005). The
instance size goes from 560 up to 1200 customers and can be considered to
be an extension of the Golden problem set. Like in Golden set, the instances
are geometric (synthetic) with the clients placed on a sector like symmetric
structures with real distances.

Figures 20 and 21 show one instance from each of the benchmark sets. From
the figures reader can get an impression the differences and similarities between
the CVRP benchmark instance sets. However, the instance to instance variation
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within a problem set can be large, and it should not be assumed that all of the
instances in the set are exactly similar to the one presented in the figures. The
problem instances were plotted using the visualization tool that comes with VRPH
(Groér et al., 2010). For those readers looking for a more in-depth analysis on the
differences between classic CVRP instances, please see (Steinhaus, 2015, p.84-) and
(Rasku et al., 2016), which both include a look into problem characteristics and the
diversity in benchmark problems.

The real valued distance matrix is usually calculated using the native floating
point accuracy of the computation platform. However, during our replication efforts
we made the same observation as Fisher (1995) that some researchers have rounded
the distances to the nearest integer, or in some cases even truncated to the next
smaller integer. The rounding convention used can have a significant effect on the
solution cost (Fisher, 1995). Additionally, there seems to be some confusion on how
to calculate the geographical GEQ distances in TSPLIB files. We used an imple-
mentation for the GEQ distance calculation that follows the specification in Reinelt
(1991) and reproduces the optimal solution cost for the original TSPLIB instances
ulysses16.tsp and ulysses22.tsp. After changing the SYMPHONY geographi-
cal distance calculation to follow the specification of TSPLIB, we got the optimal
values 8077 and 9291 for these two instances.

For the other problem instances, to get the optimal or best known solution values
we relied on (Uchoa et al., 2017) and also consulted other literature sources. Please
note that because we optimized for the route length, and did not minimize the
number of vehicles, some found results may be better than the optimal solution for
a fixed K. This happened for B-n51-k7, B-n57-k7, E-n30-k3, P-n22-k8, P-n55-k15,
and P-n55-k8, where we used the SYMPHONY to find the optimal solution for a
larger number of vehicles than the minimal one. Here, VRPH was used to provide
an upper bound for SYMPHONY. If SYMPHONY failed, we used VRPH to find a
best known solution. Additionally, only few best known solutions seem to have been
published for the van Breedam instances (Alba and Dorronsoro, 2006). We made an
attempt to solve these problem instances exactly with SYMPHONY and succeeded
to find new optimal solutions for 65 of the 180 van Breedam CVRP instances. Again,
if the optimal solution was not found, the heuristic solution value from VRPH was
used as the best known solution value for that instance.

If the coordinates for the customers and the depot were not specified in the prob-
lem instance file, our implementation generates this missing data from the distance
matrix using multidimensional scaling algorithm SMACOF. While SMACOF is a
stochastic algorithm, we use a fixed seed for the random number generator to get
reproducible results. However, please note that the generated coordinates are not
necessarily the same as those that are used in the computational experiments in the
earlier literature.

Usually the route length stayed quite short in the CVRP academic benchmarks
and each route serves around 10 customers. Of the benchmark sets presented above,
only instances in the Golden et al. (1998) and Li et al. (2005) sets have routes with
significantly longer routes. As an extreme example, some Li et al. (2005) problem
instances require that a route can serve over 100 customers. Finding a solution
for these instances with the maximum route duration constraint required fast and
effective TSP solvers.
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During collecting the problem instances for the experimental study, we observed
some inconsistencies in the publicly available problem instance data compared to
the original data tables in the literature. The 30 customer instance in the set E is
subtly different from (Clarke and Wright, 1964) where it originates from. As can be
seen from (Clarke and Wright, 1964, Appendix II, Midlands II table) “Birmingham?”,
or the customer 19, is listed twice. Taking into account that there is 20 hundred-
weight (Cwt) in a ton (T), the first has a demand of 33 and the other demand of
140. However, the one with a demand of 140 is missing from the problem instance
e1131/E-n31-k7. This second customer in “Birmingham” with the demand of 140
must be served with a separate one customer route due to the demand being exactly
equal to the vehicle capacity of 140. Thus, it can be omitted from the optimization
problem with the cost of 164 miles induced by this single delivery added after the
problem has been optimized. However, the TSPLIB file format does not have a
support for adding constant terms to the objective function. If the customer with
the demand of 140 is modeled as an additional customer, then all results are no
longer replicated because some heuristics, such as the sweep heuristic from (Gillett
and Miller, 1974), rely on customers forming consecutive chains. The issue with
the Clarke and Wright (1964) problem instance has been noted earlier by Beasley
(1983). Furthermore, while replicating the results we noticed that there was an error
in the problem set E data: E-n33-k4.vrp has the depot at (292,495), whereas the
coordinates given in (Gaskell, 1967) are (292,425). However, as the instances are
different due to CVRPLIB version lacking also the maximum route duration con-
strain, we decided to include E-n33-k4.vrp without correcting the depot coordinate
and include the original 32 customer Gaskell (1967) instance as part of the Gaskell
problem set.

To summarize, a total of 454 well-known benchmark instances were collected
from the literature to carry out our experimental study. To our knowledge, classical
algorithms have not been previously tested on such a variety of problem instances.
We acknowledge that using a problem generator would have been another option
to make an extensive experimental study, but randomly generated problems from a
single source are often quite similar to one another, and typically produce only slight
variations of the same patterns (Rardin and Uzsoy, 2001). We expected evaluating
the performance and accuracy of the implemented algorithms on instances from
varied sources to better reveal the algorithms’ respective strengths and weaknesses.

6.3 Results

After an initial run, it turned out that FR76-1PTL, CMT79-2P, and F.J81-GAP are
not able to produce feasible solutions for all of the problems in our problem sets
with their default settings. Thus, some modifications were needed to the algorithms
and their parameters to solve some of the renaming problem instances. A more
generous Gurobi time limit of 1 hour was attempted to help FR76-1PTL and FJ81-
GAP to find feasible solutions on the remaining instances. The rationale was that
the more generous timeout will allow Gurobi to solve the models that eventually will
converge to optimum. Also, for FJ81-GAP, a stricter timeout of 1 minute should
allow wider exploration of several iterations in case some of them have abnormally
long MIP solution time (which is to be expected. See, e.g., Koch et al., 2011).
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These changes allowed us to produce feasible solutions for some of these problematic
problem instances.

In its default configuration (as described in Section 4.5.4), FR76-1PTL is unable
to produce results for 8 of the 12 Li instances and for some of the larger ones in the
X problem set. For some, it seemed that TSP procedure took too long to generate
all petals, and for others, the default Gurobi time limit of 10 minute was too strict.
After generating the petals using LKH (with only one iteration), increasing the
Gurobi time limit to one hour, and starting straight from the extended petal set,
we allowed us to get a feasible solution for all but the four largest problems in Li
et al. (2005) problem set. Note that all problem instances in the Li set have the
maximum duration constraint, and three out of these four problem instances have
over 1000 customers. Thus, FR76-1PTL only partially manages to fulfill the criteria
on the problem size as it is able to solve the 1000 customer instances in the X set,
but not those in the Li set. Ehen considering the results, one should keep in mind
that the algorithm is interrupted on many of the large instances. This is because
the algorithm did not have the time to trigger the termination rule. Also, related to
these issues, our implementation does not allow postponing the TSP routing of the
complete petal set, which, due to the large number of petals to be generated for the
larger instances, may be the reason the last few Li problems remain unsolved with
our implementation.

The CMT79-2P has a similar issue as FR76-1PTL with the Li et al. (2005)
problem set. When a problem instances has the maximum route constraint, rejecting
the remaining customers from the emerging route can only be done after solving the
TSP with that customer included on the route. When the routes become sufficiently
long, the time spent by this rejection procedure starts to dominate. Christofides
et al. (1979) did not explicitly specify the method used for the feasibility check,
but we assumed that their method does not include calculating and updating lower
bounds for the insertions. We use a lower bound, but it only saves computational
effort when there is still room in the emerging route. Hence, using a lower bound
does not allow rejecting customers in this case. To make CMT79-2P solve these
instances, we changed it to use the faster ACOTSP solver, which allowed it to solve
all the remaining large instances.

Compared to FR76-1PTL and CMT79-2P, the failures with FJ81-GAP are more
common and less systematic. Especially FJ81-GAP seems to have difficulties with
the large problems and those instances with maximum route duration constraint.
When replicating the results from Fisher and Jaikumar (1981) (see Section 4.5.3)
we discovered that it may take hours for FJ81-GAP to find the first feasible solution
for the larger CMT instances with maximum route duration constraint. Our later
computational experiments revealed that the same applies to most of the maximum
route duration constrained Golden and Li instances. Furthermore, many problem
instances in the X set remained unsolved for FJ81-GAP. Enabling an option to
allow at most 10% temporary increase in vehicle count K for seed configurations
and varying the Gurobi time limit first from 10 minutes to 1 minute and then to 1
hour allowed our FJ81-GAP implementation to find feasible solutions for further 64
cases that it was unable to solve with the default parameters. Temporary increasing
seems to have the biggest effect as it allows the algorithm to increase the number of
vehicles earlier in the search process, an important variation to the search scheme in
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time constrained runs. Further increasing the K up to 50% of its initial value allowed
to solve additional 21 of the remaining problem instances. After these additional
experiments, our FJ81-GAP implementation is able to find a feasible solution for
all of the Golden instances, for 11 of the 14 CMT instances, and for 9 of the 12
Li instances. However, ten of the X instances remain unsolved. These seem to be
those with a large number of routes in relation to the number or customers. It
also seems some of the solving attempts on the remaining problem instances lead to
pathological GAP models, which are difficult for the Gurobi MIP solver. We tried to
use the Gurobi Model.tune() procedure to automatically configure its parameters
and after tuning Gurobi for 40 CPU days on a single GAP model we got a result
that recommends the use of MIPFocus 3 to make Gurobi concentrate on the bounds
and somewhat ignore the objective function. Unfortunately, this did not help us to
solve the remaining instances, and 16 of the 454 problem instances remain unsolved
for our FJ81-GAP implementation given the one hour time limit.

It can be argued that tuning the parameters for the few problematic cases for
CMT79-2P, FR76-1PTL, and especially FJ81-GAP gives these algorithms some un-
founded advantage. However, we argue that the issues with these algorithms were
to some extent implementation specific, and we decided to make an effort to allow
them to produce a feasible solution if it was possible without deviating too far from
their original descriptions.

Moving on to the performance of the heuristics: Computation times of different
classical heuristics are hard to compare because the variety of computational setups
used in the original experiments (Laporte, 2009). Our experimental setup allowed
us to control the factors from all thee categories: problem, algorithm, and environ-
ment (Barr et al., 1995). Thus, we can present the first controlled analysis on the
computation time differences between the 15 classical heuristics. We acknowledge
that some of the differences in algorithm runtimes are still implementation specific,
but a some general remarks can be made.

To best illustrate the relative differences in the speed of the algorithms, an at-
tempt was made to fit the algorithm runtimes to a set of time complexity curves.
The most typical curves (linear, quasilinear, quadratic, cubic, several different ex-
ponential, and factorial time) were tried for the results of each algorithm and the
best fit was kept and plotted. Fitting was done using Scikit-learn’s curve_fit, or
when there were clear outliers or multimodality in the algorithm performance data,
we used xcrvfit, which is an interactive program to fitting the parameters of a
function to a given set of scientific measurement data (Boyko and Sykes, 2012). The
results where the time cap was reached were removed from this analysis and the
curve fitting was done separately for capacity constrained problem instances (C)
and for capacity and maximum route duration constrained problem instances (CD).

As can be seen from Figure 22, the savings algorithms CW64-PS, We64-SS,
and Ga67-PS|r\ are among the fastest algorithms in this study. They all have
a very similar quadratic O(n?) time complexity with very small coefficients. The
more sophisticated savings algorithms HP76-PS|IMS and Pa88-PS|G2P seem to have
a higher time complexity, which based on the curve fit is cubic O(n?®) or higher.
However, also these methods are able to solve all of the problem instances in a
reasonable time.

Of the two-phase algorithms, CMT79-2P can be very fast and its best case per-
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Figure 22: Time complexities for the algorithms derived from the recorded runtimes.
Dashed lines are worst and best case complexities for those algorithms that have a
bimodal runtime distribution.
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formance seems to be very close to linear time complexity O(n). However, especially
for problems with the maximum route duration constraint, its runtime grows sig-
nificantly as a TSP has to be solved before a non-routed customer can be rejected.
Same happens for MJ76-INS, where the insertion feasibility checks for the route
duration constraints starts to dominate as the problem size grows: when the max-
imum duration is more constraining than the capacity, rejecting the insertions is
costly due to solving TSPs with 2-opt for each candidate. This causes MJ76-INS
runtime distribution to appear bimodal. The Ty68-NN algorithm has a similar bi-
modal runtime disribution but for a different reason. We remind that in Ty68-NN
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the nearest neighbor greedy heuristic can be run several times if a single customer
route is formed during the initial route building step and solving such problem in-
stances takes significantly longer. Therefore, while the typical time complexity of
the Tyagi heuristic seems to be quadratic O(n?) with a small coefficient, our best
curve fit becomes cubic O(n?) for problem instances with a single customer route.

The runtime of the GM74-SwRI sweep algorithm varies a lot depending on the
structure of the particular problem instance. The reason can be found from the
details of the improvement procedure. If a potential improving move is not rejected
early, then the TSP algorithm may have to be called multiple times, which, in turn,
causes the runtime of GM74-SwRI to be erratic. This is in contrast with another
sweep algorithm WH72-SwLS, which uses local search only after clustering the cus-
tomers. As a result, the algorithm shows quite predictable computational effort with
a time complexity that seems to be cubic O(n?). However, introducing a maximum
route duration constraint makes the local search in WH72-SwLS significantly slower
due to the TSP check made in when checking for redistribute moves. Thus, when
the maximum route duration is introduced, we can see how WH72-SwLS changes
places with another two-phase algorithm (Be83-RFCS) in the execution time com-
parision. Please note, however, that Be83-RFCS is still empirically assigned to the
same cubic O(n?) time complexity class as WH72-SwLS.

The runtime of the relaxed optimization algorithms FR76-1PTL and FJ81-GAP
are hard to predict. In FR76-1PTL, where the relaxed routes are used to find
even better solutions on the next iteration, the search is terminated sometimes
early (where further improvements cannot be found) or later (when relaxed petals
allow exploring new combinations which in turn allow more relaxed petals to be
generated). Based on our experimentation, the erratic runtime of FJ81-GAP is
caused by the varying solution time of GAPs. Predicting the runtime of a MIP
solver, such as Gurobi, using only the size of the problem is known to be very
difficult (Koch et al., 2011). This, together with its issues in solving maximum route
duration constrained problem instances with FJ81-GAP, means that the method is
unable to consistently solve problems with around 1000 customers in a reasonable
time. In fact, of the relaxed optimization algorithms, only DV89-MBSA and FR76-
1PTL have a chance of solving the larger problems within the given one hour time
budget. SG84-LR3OPT has the longest runtime of the compared algorithms and is
able to solve problems up to around 200 customers in a reasonable time. The high
computational requirements of the SG84-LR3OPT and FJ81-GAP can clearly be
seen from the best fit computational complexity curves which are exponential O(e")
as opposed to the empirical (best fit) time complexity of O(n?) of FR76-1PTL and
DV89-MBSA.

Now we turn to examine the quality of the solutions produced by the algorithms,
which is usually measured using the optimality gap. The gap is the deviation from
the best known solution and is often given as a percentage difference to the best
known (or optimal, if proven so) solution. The average algorithm performance gaps
between the solved instances grouped by the benchmark sets are given in Table 19.
To find the algorithms that were statistically significantly better than the rest, we
used the non-parametric paired samples Wilcoxon signed-rank test with Bonferroni
correction. The required significance level for the tests was p = 0.05. The advantage
of this statistical method is that it is not sensitive to outliers, which exist in our
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data for some methods due to reaching the time limit. However, if a result was
completely missing, it was removed from all pairwise comparisons. Also, while
all algorithms have well defined termination rules due to being deterministic, they
do not consume an equal amount of computational resources, which is typically
recommended practice when doing computational comparisons (Rardin and Uzsoy,
2001). Thus, we also give the average CPU wall times in Table 19 to allow estimating
the effort-accuracy tradeoff.

In the benchmark set-wise comparison, the null hypothesis of no single best al-
gorithm can be rejected only for the two largest problem sets (X and van Breedam)
where two algorithms, the Paessens (1988) savings algorithm Pa88-PS|G2P and the
Fisher and Jaikumar (1981) Generalized Assingment Problem relaxation heuristic
FJ81-GAP, are statistically significantly better than their competitors. There is
insufficient statistical evidence for choosing the best algorithm for the other bench-
mark sets. This is mostly due to the conservative multiple comparison correction
and the small number of problem instances in those other sets. Despite this, in
many cases there are clear statistically significant differences in the quality of the
solutions between the pair-wise comparisons. For example, while FJ81-GAP is the
best in solving van Breedam instances, also SG84-LR3OPT shows statistically good
performance on the benchmark sets together with Be83-RFCS and Pa88-PS|G2P.
FJ81-GAP is also a good choice to solve the problems in the set P followed by SG84-
LR3OPT. Overall, SG84-LR3OPT seems to be a good choice when solving small
problem instances. However, its accuracy is poor on the larger instances due the time
cap that interrupts the algorithm before it reaches the inter-route 3-optimality. Also,
FJ81-GAP, Pa88-PS|G2P, and SG84-LR3OPT are statistically significantly better
than the other algorithms on sets A and B, and CW64-PS and its extension HP76-
PS|IMS show almost as good statistically significant performance as Pa88-PS|G2P
on the set X. Hence, we can make observations such as the savings approach seems
to be well suited for solving the problems proposed by Uchoa et al. (2017).

If we consider the overall accuracy of the methods over all problem instances, our
Pa88-PS|G2P and FJ81-GAP implementations are statistically significantly better
than the others according to the Wilcoxon signed-rank test. Please note that even
if their average accuracy is similar, the Pa88-PS|G2P is significantly faster than
FJ81-GAP on all tested problem instances. Actually, FJ81-GAP is unable to search
all seed configurations due to being interrupted because of the time limit in around
one third of the problem instances and some of the larger problem instances in X
and Li sets in addition to two problem instances in CMT set are not solved at all.
Thus, the average accuracy of FJ81-GAP would be expected to improve with a more
generous maximum runtime limit.

Further observations on the differences of the algorithm accuracy can be made
from Figure 23 if we consider how the problem size and constraints are varied. This
is because the figure illustrates how the cumulative gap to the best known solutions
grows as the function of the problem size. The shape and composition of the cu-
mulative curve should reveal any major systematic advantages or disadvantages of
the methods in regard to problem size or presence of maximum route duration con-
straints. Please note that to keep the cumulative curves comparable, all results for
the 18 problems instances for which FJ81-GAP and FR76-PTL were unable to pro-
duce feasible solutions are removed from this analysis. Also, the different shadings
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Figure 23: Cumulative optimality gap of the algorithms over the 454 problem in-
stances with the problem size increasing from left to right.
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of Figure 23 allow observing the differences in the cumulative quality gap between
those instances with capacity constraint (C) and with those that have the additional
maximum route duration constraint (CD).
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Because the plots are arranged chronologically from left to right and top to
bottom we can see how the research on CVRP heuristics has allowed closing the op-
timality gap through the years. For example, it is interesting to see that the original
savings heuristic from Clarke and Wright (1964) (CW64-PS) still holds its ground
against the later classical methods, and the latest of its tested derivatives Pa88-
PS|G2P has one of the smallest cumulative gaps in our study. When considering
the chronology, please note that the basic principle of Be83-RFCS had been intro-
duced already in 1969 and would compare favorably to the contemporary methods
of the early 1970s. Furthermore, similarly to CMT79-2P, the original Be83-RFCS
heuristic also relied on stochasticity and our deterministic implementation does not
quite reach the level of accuracy and robustness of the original.

Comparing the different savings algorithm variants allows us to conclude which
extensions are the most beneficial. The advantages of HP76-PS|IMS and DV89-
MBSA over the original savings algorithm CWG64-PS are modest, but clearly ap-
parent. However, the same does not apply to Ga67-PS|mA. While our experiments
confirmed that the savings functions s, and sy of Ga67-PS|m\ are able to find better
solutions on the problem instances in the Gaskell set, as shown in (Gaskell, 1967),
the average and cumulative quality of solutions of Ga67-PS|mA is worse than that
of CW64-PS. This result illustrates how benchmarking the proposed algorithm on
only a handful of problems can lead to overfitting and give a misleading impression
on the performance of the algorithm. Of the savings variants, the Pa88-PS|G2P
with its parametrized savings function, parameter search strategy, and the 3-opt
route post-optimization step clearly outperforms other savings variants. The good
accuracy of Pa88-PS|G2P is probably related to the observations from McDonald
(1972) and Webb (1972) that even a minor change in the merge order can have
a significant effect on the route structures, and, thus, on the final quality of the
solutions. The parametrized savings function and parameter value search strategy
allows the Pa88-PS|G2P heuristic to explore several different route structures, which
eventually leads to good solutions on the tested CVRP instances.

Compared to their overall accuracy, the sweep algorithm GM74-SwRI is able to
find good solutions for the CD instances in this study. From the figure we can also see
that the CD instances contribute very little to the overall cumulative gap on FR76-
PTL. In fact, FR76-PTL has better accuracy than many metaheuristics published
almost 30 years later (Prins, 2004; Toth and Vigo, 2003b; Li et al., 2005; Kytojoki
et al., 2007) on the CD instances of the Golden problem set. It reaches a similar level
of accuracy as D-Ants metaheuristic from (Reimann et al., 2004), and is only slightly
worse than the guided evolution strategies of Mester and Briysy (2005). Thus,
FR76-PTL seems to be a good choice for solving large maximum route duration
constrained instances. However, this performance does not generalize to the C
instances where FR76-PTL is clearly inferior to the aforementioned metaheuristics.

The two lighter colors on Figure 23 illustrate the quality gap accumulated from
solution attempts that were interrupted due to reaching the time cap. We can see
that FJ81-GAP is affected by the time capping quite early and solving attempts
after 100 customers are consistently interrupted. Based on its good accuracy on the
small instances, it can be expected that further performance optimizations or a more
generous runtime limit could allow FJ81-GAP to produce even better solutions for
the larger problems.
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Similarly to FJ81-GAP, also GM74-SwRI, SG84-LR3OPT, and DV89-MBSA are
affected by the one hour time limit. SG84-LR3OPT shows promising performance on
the smaller problem instances, but after around 200 customers the solution attempts
start to be terminated early and the resulting quality degrades significantly. A faster
intra-route 3-opt procedure preferably with acceleration techniques (see Section 5.1)
would allow one to confirm whether the good performance generalizes for the larger
problem instances with over 200 customers. For DV89-MBSA the time cap starts
to affect quite late and the quality of the solutions is impacted only slightly due
to an separate greedy savings heuristic we used in the interrupt handler. With the
one hour time limit, this happens around 650 customers on the CD instances and
around 950 customers on the C instances.

From the overall height of the cumulative curves (Figure 23), we can see that
the accuracy of Ty68-NN and We64-SS are clearly worse than their competitors,
which verifies the earlier observations (e.g., Gaskell, 1967; Kirby and McDonald,
1973; Golden et al., 1977; Cordeau et al., 2002). Furthermore, from the shapes of
the curves, we can observe that Pa88-PS|G2P seems to work very well on the larger
instances. It cumulates only modest gap over the best known solutions on the right-
hand side of the curve, whereas WH72-SwLS shows promisingly good accuracy on
small instances, but is inferior to savings algorithms on larger instances. Thus, our
results allow only partial confirmation of the observation by Cordeau et al. (2002)
that sweep does not seem to be superior to savings approach.

Because our implemented algorithms are deterministic, we can analyze their
accuracy by counting how many times the implementation was the single best algo-
rithm over all problem instances. In case there are ties, i.e., the resulting quality of
the solutions is equal, the faster algorithm was marked as the winner. The results
of this analysis are presented in Table 20. As we can see, the algorithms FJ81-GAP
and Pa88-PS|G2P are most capable of finding good solutions for the 454 well known
academic problem instances from the literature. Together, these two are responsible
of finding 42% of the best solutions in the study. FR76-PTL and SG84-LR3OPT
are also often able to find good solutions (together, these four algorithms find 72%
of the best solutions). Additionally, FR76-PTL seems to show its best performance
on the problem sets with maximum route duration constraint (sets CMT, Golden,
and Li) and SG84-LR3OPT on instances originating from Augerat (1995) (sets A,
B, and P).

Another interesting observation from Table 20 is that all algorithms except We64-
SS are able to be the single best algorithm for at least one problem instance. That is,
we have managed to verify empirically that the no free lunch theorem (Wolpert and
Macready, 1997) applies also on classical vehicle routing heuristics. Our results also
verify the observation of Cordeau et al. (2002) that the parallel version of the savings
algorithm is in practice much better than the sequential approach. If we make
a pairwise comparison between the our CW64-PS and We64-SS implementations,
We64-SS is better only for three problem instances out of 454.

Robustness (i.e., consistency) was one of the attributes mentioned in (Cordeau
et al., 2002). Generally, robust heuristics are superior to those that are sensitive
to small changes in the parameter values (Barr et al., 1995) or to the variation
between problem instances. All of the implemented algorithms are parameter free,
use defaults, or an automatic strategy to set them, and, thus, we can on disregard
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Table 20: Best algorithm counts for each problem set. The number indicates the
number of problem instances for which the algorithm was quickest to produce the
best solution.

H

~< n = 2 5 & =
P PR

R TR - VR < B B~ G, B e R
STEéStEE RS 2% %8¢

Set  Cnt.| O é CCD6 =S % g g % = A 8 & E
A 2710 0O O 1 0 0 1 0 0 9 3 8 4 0
B 2310 1 0 2 0 0 O 2 0 6 1 8 2 0
E 3 1. 0 0 0 0 0 0 O 3 2 4 1 1 1 0
F 3 0 0 0 0 0 0 0 O 1 0 0 0 0 1 1
G 110 0 0 0 0 0 0 O 0o 0 *0 0 0 1 0
M 5( 0 0 0 O O O 0 O 2 0 *0 0 0 2 1
P 24,0 0 0 0 3 0 0 O 4 2 5> 0 8 2 0
A% 3 2 0 0 0 1 0 0 1 2 1 2 1 3 0 0
X 00,0 0 0 0 1 0 1 5 *8 2737 5 6 54 6
Gask. 6| 0 0 0 0O O O 0 1 1 1 1 1 1 0 0
CMT 14/ 0 0 0 0 1 0 0 0 5 1 * 1 2 2 1
vanB. 180 5 0 3 7 4 0 0 3 43 24 38 14 14 20 5
RT 130 0 0 0 1 0 0 O 0o 0 *2 0 4 5 1
Gold. 200 0 0 O O O 0 0 O 8 2 *7 0 0 3 0
Li 12,0 0 0 0 0 & 0 0 7 *0 [0 1 0 1 0
Total 454{10 0 4 7 14 3 1 11 81 35 92 28 55 98 15
% 2.2 0.0 0.9 1.5 3.1 0.7 0.2 24 17.8 7.7 20.3 6.2 12.1 21.6 3.3

The results where the algorithm was interrupted are marked in italics.

The results where manual changes to the algorithm parameters were required to allow
solving some of the remaining instances are marked with an asterisk(*).

Results where some of the problem instances remain unsolved are marked with a small
circle (°).
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Figure 24: Boxplots of the accuracy of the 15 algorithms for illustrating the quality
of the solutions and the robustness of the algorithms. Missing results (°) and those
that hit the time cap (*) have been removed from this analysis.
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the sensitivity to parameter values when comparing the robustness between the
algorithms.

The differences in the algorithm robustness can be observed from the boxplot
of the quality of the solutions in Figure 24. Please note that the results where the
algorithm was interrupted before it was able to reach the termination criteria were
omitted from the data in this analysis. The box of each algorithm extends from the
lower to upper quartile and the whiskers show the range of these values. There are
some outliers that are situated beyond the right side of the plot as the optimality
gap range of the figure was adjusted to allow better resolution when comparing the
median behavior.

From Figure 24 it appears that, when ignoring the interrupted results, FJ81-GAP
is the most robust algorithm in our study followed by SG84-LR3OPT, and Pa88-
PS|G2. All three are able to consistently produce solutions with a good quality
for the problem instances in our study. However, SG84-LR3OPT and FJ81-GAP
were not able to solve all of the problem instances within the given time. Of the
methods with large variation in the quality of the solutions, We64-SS, Ty68-NN,
and GM74-SwRI all use rather simplistic approach and their accuracy seems to
be quite unpredictable. Another observation can be made using the outliers in
Figure 24: the quality value distribution of Ga67-PS|r\, CMT79-2P, Be83-RFCS,
and DV89-MBSA appears to be multimodal. This indicates that the approach of
these algorithms works well on some problem instances but fails on the others.
The multimodality is most apparent for CMT79-2P, where the failure of the second
phase to find a feasible solution is the most probable explanation for the apparent
bimodality of the quality value distribution, whereas Be83-RFCS is expected to
perform poorly on problem instances where the optimal combination of customers
according to their demands is more important than the shortest path routing.

It is very difficult to objectively estimate the simplicity of an algorithm. To
sidestep this issue, we used a derivative of the source code maintainability index
(see, e.g., Coleman et al., 1994). It was calculated by the Python code analysis
tool Radon'® and used as a proxy of the implementation complexity, which should

https://pypi.org/project/radon/

107



strongly correlate on how simple the algorithm is to implement. This is verified by
the fact that the rankings given in the Simplicity column of Table 21 correspond
quite well to our objective intuition of the simplicity of the algorithms.

Table 21: Summary of replication results and measuring heuristic according to four
attributes.

= =
= R

g g : £ % |z . &

= =z ., E é 'z s 2 2

= == & w g®|la B & T

g g% | ° ° E<|E g B8 %
Algorithm ~ 2 ~ 8 *+ #H =ZE|ln < O o
CW64-PS A p. 35, 37 613| 1 5 5 1
We64-SS B p. 30 56.5 | 2 11 9 2
Ga67-PS|mA A p. 36 ol.7| 3 7 4 3
Ty68-NN D! p. 44 24419 10 9 4
WH72-SwLS B p. 47 8 00 |14 8 o6 10
GMT74-SwRI C p- 51 26 232 110 9 8 13
HP76-PS|IMS B p. 38 50714 3 5 6
MJ76-INS C/B? p. 41 1 11.3 113 2 4 7
FR76-1PTL C/A3 p. 77 6 4* 00 |15 2 4 11
CMT79-2P D/B* p. 56, 57 o 2758 7 7 8
FJ81-GAP C p. 72 104 16* 125 (12 1 3 14
Be83-RFCS A/C* p. 59, 60 36216 2 4 9
SG84-LR3OPT A p. 66 118 220|111 6 1 15
Pa88-PS|G2P A p. 37 31.2 7 1 2 5
DV89-MBSA C/B5 p. 63 13 417 | 5 4 5 12

* = After manual adjustment of the algorithm parameters and timeouts and using a
faster TSP solver.

Replication success levels:

A nearly perfect replication of the algorithm accuracy results

B difference in accuracy is small, but the standard deviation is slightly elevated
C as with B, but larger instance to instance accuracy variation

D significantly worse accuracy or other major uncertainties

I There is only one published result for a single problem instance and we were able to
replicate the result only after developing extensions to the algorithm.

2 The replication of individual stress functions is at level C, but the overall accuracy
when using the best function for each instance is at level B.

3 We were unable to recreate the exact termination rule used in (Foster and Ryan, 1976).
After manually setting the number of iterations for our implementation, we are able to
replicate the results.

4 The original algorithms use stochasticity and repeated runs. The first level shows the
replication with a stochastic and the second with a deterministic version.

® There are outliers in replication results of DV89-MBSA, and without these the

replication level would be B.

The score, and our experience in implementing the algorithm, agrees with the
literature in that the savings algorithms are simple to implement and extend. The
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same applies to the route-first, cluster-second heuristic Be83-RFCS from Beasley
(1983). The basic principle of the nearest neighbor heuristic is also very simple, but
the improvement scheme together with the extensions that were needed to replicate
the results of Tyagi (1968) add a layer of complexity to Ty68-NN. Similarly, the basic
idea of sweep heuristic is simple, but the improvement procedures of WH72-SwLS
and GM74-SwRI require extensive implementation effort. Overall, local search in a
heuristic algorithm makes it more complex to implement as implementing efficient
local search operators can be tricky. The heuristics inspired by relaxed mathematical
programming rank low on simplicity because they usually require modeling a MIP
in addition to a local search or other heuristic components.

We have already provided a detailed discussed on the differences in the accuracy
of the algorithms, but Table 21 summarizes this by ranking the algorithms by av-
erage accuracy. The ranking is statistically significant according to the Wilcoxon
signed-rank test (p = 0.05). Please note that results that were interrupted due
to the time limit of one hour are included in these comparisons, which to some
extent penalizes GM74-SwRI, FJ81-GAP, SG84-LR30OPT, and DV89-MBSA. The
Pa88-PS|G2P heuristic and the generalized assignment problem solving heuristic
FJ81-GAP are ranked as the most accurate algorithms in this study. MJ76-INS,
FR76-PTL, and, somewhat surprisingly, Be83-RFCS share the second place. The
sequential savings algorithm We64-SS and nearest neighbor algorithm Ty68-NN are
clearly the two least accurate of the compared classical heuristics. Please note that
the We64-SS algorithm (Webb, 1964) was implemented using secondary sources as
we were unable to gain access to the original paper. Some details of the algorithm
such as how the emerging routes are initialized may be different than in the im-
plementation of Webb. Furthermore, according to Cordeau et al. (2002) matching
significantly improves upon the Clarke and Wright (1964), but our results are more
inconclusive, at least when the accuracy of CW64-PS is compared to our implemen-
tation of matching heuristic DV89-MBSA of Desrochers and Verhoog (1989).

The ranking of Be83-RFCS can also address the knowledge gap identified by
Laporte and Semet (2002) regarding computational evidence on showing that route-
first, cluster-second heuristics are competitive with other approaches. In our ex-
periments, Be83-RFCS was the best algorithm for 28 of the 454 problem instances
(Table 20), and even if we rule out the cases where it was selected based on a faster
solution time, it was the single best algorithm on 21 problem instances.

The ranking by consistency (robustness) is also included. In this comparison, we
ignored the results where any algorithm was interrupted by the time limit as it would
make the comparison unreliable. Thus, a subset of the results with 319 problem
instances which all algorithms were able to solve within the given time limit were
used. We used Levene’s test (p = 0.05) to rank the algorithms by their standard
deviation of the optimality gaps. The SG84-LR3OPT heuristic seems to be very
robust on the problem instances that it is able to solve without being interrupted
due to the time limit. Also, Pa88-PS|G2P and FJ81-GAP seem to be stable and
both are consistently able to produce good solutions. The least accurate algorithms
are also the least robust as there is large variation in the quality of solutions for the
We64-SS and Ty68-NN heuristics.

Table 21 also summarizes the replication results and some reproduction and im-
plementation considerations. We were able to replicate the results of CW64-PS,
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We64-SS, Ga67-PS|r\, WH72-SwLS, HP76-PS|IMS, Be83-RFCS, SG84-LR3OPT,
and Pa88-PS|G2P with high confidence. However, while any publication proposing
new algorithms should include sufficiently detailed information to allow reimple-
mentation of the algorithm and replication of results (Cordeau et al., 2002), this
was not always the case and some of the classical algorithms were not described in
sufficient detail to allow the results to be fully replicated. In our replication results
this was, at least so some extent, the case with Ty68-NN, GM74-SwRI, MJ76-INS,
FR76-1PTL, CMT79-2P, FJ81-GAP, and DV89-MBSA. As described in Section 4,
we had to make many design choices when implementing the heuristics and local
search operators. Those that we believe had the greatest effect on our replication
results are listed in the notes of Table 21 and below:

e The insertion heuristic MJ76-INS from Mole and Jameson (1976) uses a redis-
tribute local search operator, but the details concerning the combinations that
are tried in this operation were missing from the paper. We decided to use a
greedy search, where the redistribution is done in the order the customers are
on the dismantled route.

e For WH72-SwLS we had to make many design decisions concerning seed cus-
tomer generation and local search because description of these details is in
many places ambiguous in (Wren and Holliday, 1972). However, despite these
efforts, our replication results contain two outlier problem instances, where
the quality of the solutions is very different from the original results.

e The description of GM74-SwRI in (Gillett and Miller, 1974) has several ambi-
guities and contradictions concerning the emerging route customer swap candi-
date selection. We tried to find the correct implementation through extensive
experimentation while staying true to the description of the algorithm, but,
despite being close, we were unable to perfectly reproduce the results.

e The experimental setup for measuring the performance of the stochastic two-
phase algorithm in Christofides et al. (1979) is not explained in sufficient detail
to reproduce the computational study. Therefore, major uncertainties remain
in the replication study of this algorithm. Furthermore, our implementation
CMT79-2P is deterministic, and while after parameter tuning it replicates the
results of Christofides et al. (1979) fairly well, it remains undecided if the
basic operating principle of our implementation is equivalent to the original
two-phase algorithm.

The replication results in Table 21 together with the simplicity ranking in the
same table can be used to determine which classical heuristics are complicated to
understand and implement: It seems impossible that the example given in Tyagi
(1968) is produced if the algorithm is implemented as described in the paper. To
replicate the result changes were made to the Ty68-NN heuristic, which consequently
made the algorithm more complicated. While the improvement procedure for GM74-
SwRI is given in a pseudocode format, but in addition to being quite complicated,
there are some ambiguities and contradictions between the text, formulas, and the
pseudocode. As a result, we were unable to fully reproduce the results given in Gillett
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and Miller (1974) and the source code of the heuristic has become quite complex.
The complexity for WH72-SwLS is very high with the poorest maintainability of
all the implementations. This is mostly due to the many local search operators
used by this heuristic which adds significant implementation effort and complexity.
Furthermore, the process orchestrating the local search is not as straightforward as
in many later local search metaheuristics.

There is always some uncertainty in replication of results of stochastic methods.
This is especially true if the computational experiment is not described in sufficient
detail to allow reproducing the results. This was the case with the 2-phase algorithm
(CMT79-2P), where the number of repeated tries nor used parameter value ranges to
produce the results in Christofides et al. (1979) were not given. To amplify the issue,
our experiments exposed that the performance and resulting quality of solutions for
this algorithm are very sensitive to the selection of the route seed customers, which
is apparent from the poor consistency ranking of the deterministic CMT79-2P.

Implementation of the relaxed optimization heuristics is significantly more com-
plicated than that of the simple heuristics, and as a result, their implementations
become difficult to manage and the results hard to replicate. This is especially
true for FR76-1PTL and FJ81-GAP. DV89-MBSA is simpler than aforementioned
heuristics as it is built on top of the savings framework, but added complexity of
the MIP solver still made the results harder to replicate. SG84-LR3OPT does not
use a MIP solver, which is probably the reason why we were able to reproduce the
results of Stewart and Golden (1984) almost perfectly.

7 Conclusions

In this study, we recognized and implemented 15 classical capacitated vehicle routing
problem (CVRP) heuristics from the literature. We sought to replicate the original
results and provide a comprehensive comparison of these classical heuristics based
on their accuracy, consistency (or robustness), speed, and simplicity (for definitions,
see Cordeau et al., 2002) on 454 well-known CVRP problem instances from the
literature.

The implemented 15 classical heuristics are: the influential parallel savings al-
gorithm from Clarke and Wright (1964, CW64-PS), sequential savings algorithm
from Webb (1964, We64-SS), savings variant by Gaskell (1967, Ga67-PS|w)), near-
est neighbor algorithm with a capacity utilization improvement step from Tyagi
(1968, Ty68-NN), sweep algorithms from Wren and Holliday (1972, WH72-SwLS)
and Gillett and Miller (1974, GM74-SwRI), parallel savings algorithm with a merge
suppression scheme from Holmes and Parker (1976, HP76-PS|IMS), sequential in-
sertion algorithm from Mole and Jameson (1976, MJ76-INS), Petal algorithm from
Foster and Ryan (1976, FR76-PTL) that iteratively solves VRP as a weighted set
covering problem, Christofides et al. (1979) 2-phase heuristic (CMT79-2P), heuristic
based on solving generalized assignment problems from Fisher and Jaikumar (1981,
FJ81-GAP), Lagrangian relaxation 3-opt heuristic from Stewart and Golden (1984,
SG84-LR3OPT), route-first, cluster-second heuristic as proposed by Beasley (1983,
Be83-RFCS), extension to the generalized parallel savings algorithm from Paessens

(1988, Pa88-PS|G2P), and parallel savings heuristic with maximum matching based

111



merge scheme from Desrochers and Verhoog (1989, DV89-MBSA).

These classical algorithms were introduced between 1964 and 1989. During those
early years the research of different VRP variants had been somewhat intertwined,
but we were able to recognize the aforementioned CVRP heuristics that have been
widely cited in the previous surveys on the topic. In addition to being well-cited, the
implemented methods were required to be deterministic (or to be easily converted to
be such), relatively parameter free, and expected to be capable of solving instances
up to 1000 customers.

The timeline of the classical heuristics is illustrated in Figure 25, which also
shows the shared ancestry and the flow of ideas between the different heuristics.
The dashed rectangles represent general ideas, which were usually borrowed from
the literature on solving the traveling salesman problem. Please note that their
positions in the figure do not indicate the exact years the ideas were originally
introduced. Instead, they are used to illustrate the shared foundation of different
classical algorithms. One can, for example, see how the idea of savings, or the idea
of radially sweeping the customers when looking from the depot, are the two most
influential ideas among the classical CVRP heuristics. Also, the idea of local search,
that is, improving an initial solution via heuristic perturbation operators (or moves),
has been used to improve the accuracy of many classical methods.

All included algorithms have been implemented in Python following the func-
tional paradigm with an emphasis on code readability and correct operation. Fur-
thermore, there are very few external dependencies that should allow easy portabil-
ity, reusability, and extendability. The most notable dependencies are Numpy, used
for doing linear algebra; Gurobi (2018), which is mainly used to solve the mixed
integer linear programming relaxations of VRP; and LKH (Helsgaun, 2000, 2009), a
high-performance implementation of the Lin-Kernighan algorithm for solving TSPs
(Lin and Kernighan, 1973).

Our work is complementary to the existing open source VRP algorithm software.
The closest counterpart to VeRyPy is probably the VRPH local search library from
Groér et al. (2010). However, the focus of existing libraries is in high-performance
local search and metaheuristics (Groér et al., 2010; OscaR team, 2012) or in real-
world delivery routing (De Smet et al., 2016; Schroder and GraphHopper team, 2018;
Google, 2018), whereas our software library is aimed to be more comprehensive
(breadth instead of depth) and focused on understanding and replication of the
existing extensive academic research on the topic. Furthermore, we believe that our
implementation with its functional programming style allows easier extendability
and experimentation than the existing libraries.

A major contribution, in addition to the open source implementations them-
selves, are the detailed descriptions of the algorithms and the implementation notes
included in this report. These document many of the important design decisions
that had been left out from the original papers. Thus, our work addresses the
concerns raised by Cordeau et al. (2002); Several of the heuristics they surveyed
are rarely implemented either because of their inherent complexity, due to missing
necessary details, or because the details are hidden in pseudocode or antiquated
program listings. In this study, we have made a serious replication effort also on the
more complex classical CVRP heuristics. Our implementations and documentation
clarify some of the finer aspects of these well-known algorithms and should allow
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Figure 25: Timeline of the implemented classical vehicle routing algorithms
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researchers to effortlessly utilize the existing extensive literature on how to solve ve-
hicle routing problems. We agree with Barr et al. (1995) and Sorensen et al. (2019)
in that there is significant scientific merit in giving detailed description of all factors
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in a computational study and in making the code available to other researchers of
the field. Freely available and well documented implementations makes the algo-
rithmic experimentation more productive and approachable. According to Hooker
(1995), this is the frontier where valuable insights and deep knowledge that advance
the field are created.

Regarding correctness of our implementations, we were, in most cases, able to
replicate the results of the classical papers. Hence, we can be reasonably certain that
most of our implementation closely correspond to the algorithms described by their
original authors. However, our reproduction efforts also confirmed the observation
of Cordeau et al. (2002, p. 514) that many of the heuristics are very sensitive to
minor implementation details. Our reproduction work revealed that implementing
Tyagi (1968), Gillett and Miller (1974), Mole and Jameson (1976), and Fisher and
Jaikumar (1981) heuristics is difficult due to insufficient and contradicting algorithm
details. For the algorithms from Foster and Ryan (1976) and Desrochers and Ver-
hoog (1989), the reason why the results are not perfectly reproduced remained more
elusive. However, even for the aforementioned heuristics, we were able to reproduce
some of the results, and the overall quality of solutions is, in most cases, very similar
to that of the original publications. Based on our replication experiences, it is easy
to agree with Cordeau et al. (2002) in that heuristics should be reasonably robust
to different minor implementation decisions. This is because otherwise replication
of their results becomes extremely difficult.

When discussing reproducibility it is always important to address stochasticity,
which is also used in many classical VRP algorithms. Even the original savings
algorithm from Clarke and Wright (1964) used randomness to resolve ties between
merges with the same savings value. Introducing stochasticity can improve the ac-
curacy of any algorithm as it allows wider exploration with the cost of an increased
execution time. However, it also makes it harder to define a termination criteria be-
cause each successive iteration has the potential to improve the best found solution.
Furthermore, with stochastic methods, reproducing the results requires the use of
statistical testing. To sidestep these issues in this study, we modified savings algo-
rithms to resolve the ties similarly to Gaskell (1967) by using a secondary savings
criteria, and proposed deterministic variants for the CMT79-2P (Christofides et al.,
1979) and Be83-RFCS (Beasley, 1983) algorithms. We showed that our determin-
istic CMT79-2P implementation has similar performance to the stochastic version
but uses only fraction of the computational resources.

Based on our extensive computational testing, where the 15 classical heuristics
were used to solve 454 CVRP problem instances from the literature, we could rank
the heuristics according to the following attributes: accuracy, consistency (or ro-
bustness), speed, and simplicity. This made it possible to reliably compare for the
first time them along these different qualities. These results validated many earlier
observations in the literature (e.g., Cordeau et al., 2002). Overall, our comprehensive
experiments show that the first generation of VRP heuristics has better accuracy
than previously thought: according to Renaud et al. (1996) one can expect classical
heuristics to be within 10-15% of the best known solution. Based on our exper-
iments, one can expect a better accuracy, especially when selecting the heuristic
carefully considering the idiosyncrasies of a problem instance. The average gap over
all of our experiments is 8.3% (with infeasible and interrupted results removed), and
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most heuristics have an average optimality gap of around 5%. If only the best algo-
rithm for each of the 454 CVRP problem instances is considered, then the optimality
gap shrinks down to 1.7%.

Our results also allow making interesting observations about the relative speed
and accuracy trade-offs of the heuristics, and offer insights into the relative strengths
and weaknesses of different classical algorithms. For example, GM74-SwRI and
FR76-PTL have excellent accuracy on the problem instances with a maximum route
duration constraint, and Pa88-PS|G2P is well suited for solving larger problem in-
stances. All three: FR76-1PTL, FJ81-GAP, and Pa88-PS|G2P all show good general
performance over all of the problem instances. Pa88-PS|G2P is significantly faster
than the other two accurate heuristics, and, in fact, FJ81-GAP and FR76-1PTL
were unable to finish before the one-hour time limit when solving the largest prob-
lem instances. Hence, our results can help to select a suitable construction heuristic
for particular use case depending on individual requirements on algorithm simplicity,
accuracy, consistency, or speed.

There are several aspects to consider regarding the validity of our conclusions:
reproduction of the results, stochasticity, composition of the problem set, and the
algorithm configuration effort. As described earlier, many design decisions were
required to successfully implement the 15 classical heuristics included in this study.
While this we were able to mostly replicate the earlier results from the literature,
some uncertainty remains whether Ty68-NN, GM74-SwRI, FR76-1PTL, FJ81-GAP,
DV89-MBSA, and the stochastic version of CMT79-2P correspond to the algorithms
proposed by their original authors. Some of the reproduction and replication issues
that concern missing details or the specifics of the original experimental setup are
well known in the literature, but we have also discovered new issues and have done
our best to address them.

We acknowledge that removing stochastic elements from a heuristic can have
significant effect on its general level of accuracy and robustness. The original versions
of the CMT79-2P and Be83-RFCS algorithms relied heavily on stochasticity, but
our implementations disable stochasticity by default. However, we have proposed
extensions to these two algorithms to compensate this.

In our experiments we allowed at most one hour for each heuristic to solve each
of the 454 problem instances. This has an effect on the reproducibility of the results
and causes some results to be missing or being finished by a complementary greedy
heuristic. This has an effect on validity of the average accuracy and runtime results,
but the impact is limited to the results of GM74-SwRI, FJ81-GAP, SG84-LR3OPT,
and DV89-MBSA on the largest problem instances. However, we emphasize that
the results and conclusions of our computational study strictly apply only to these
specific implementations, and complementary replication efforts would be welcomed
to see how well our observations generalize.

One should also keep in mind that many of the 454 problem instances from
the literature are quite artificial, and some are variations of the earlier problem
instances. However, together the instances create a fairly heterogeneous problem
set, and by comparing the provided results on a problem set basis can allow reader
to concentrate on those features the reader one is most interested in.

Although most of the classical algorithms are parameter free or come with sensi-
ble defaults, it is normally advisable to configure any free parameters, for example,
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by using some suitable configuration tool such as SMAC from Hutter et al. (2011).
Due to the scope of our study, such automatic algorithm configuration was omit-
ted from the experiments. However, some manual configuration was required to
make FJ81-GAP, CMT79-2P, and FR76-1PTL solve some of the larger instances,
and this may give them some unfounded advantage. For a thorough introduction
on the topic of automatic algorithm configuration in the context of vehicle routing
problems, please refer to (Rasku et al., 2019b), where we compared the performance
of several methods in a task of configuring vehicle routing metaheuristics.

As a final point regarding validity, please note that the performance measures
are always dependent on the problem instances, algorithms, and test environment
factors (Barr et al., 1995). In this study, we carefully controlled the factors and
conscientiously documented them and our underlying assumptions. Thus, we argue
that the we have addressed the main concerns regarding validity and, despite the
aforementioned issues, convincing and repeatable observations can be made.

Proposing and implementing new enhancements to the existing classical algo-
rithms was outside of the scope of this study. We acknowledge that many of the is-
sues we had with the performance of FR76-1PTL, DV89-MBSA and SG84-LR30OPT
could be resolved with faster and more modern local search procedures. For example,
implementing accelerated 2-opt, 3-opt and 3-opt™ search procedures using the meth-
ods suggested by Funke et al. (2005) would allow VeRyPy implementations to solve
larger instances in a more reasonable time. Furthermore, implementing a procedure
that can quickly calculate a TSP lower bound for a route, and update it after inser-
tions are made, would make some algorithms, such as CMT79-2P, faster on route
distance or duration constrained problems. Additionally, using programming tools
and techniques that are better suited for array manipulation, such as Numba (Lam
et al., 2015), Cython (Behnel et al., 2011) or pure C extensions, would significantly
improve the performance of our local search implementations.

Regarding extending the VeRyPy library with new heuristics, there were many
interesting algorithms that could be considered to be classical, but which were not
included in VeRyPy as they did not meet all or some of the criteria used in this study.
These include the parametrized characteristics based heuristic of Hayes (1967), r-
optimal improvement approach as proposed by Christofides and Eilon (1969), M-
TOUR heuristic from Russell (1977), and capacitated concentrator location problem
heuristic from Bramel and Simchi-Levi (1995). Other interesting variants to the al-
ready implemented methods include the savings maximum matching extensions from
Altinkemer and Gavish (1991) and Wark and Holt (1994), and the 2-Petal heuristic
from Renaud et al. (1996). Implementing them using the existing framework is pos-
sible, and in some cases trivial. VeRyPy could also be extended to implement several
of the popular metaheuristics. The scaffolding in the form of input and output, local
search implementations, feasibility checkers, and objective evaluations are already
implemented, which would make implementing some of the simpler metaheuristics
straightforward.

As a result of our reimplementation efforts, our comprehensive and easy-to-
extend VRP algorithm library can open up new possibilities for future research.
For example, as a future research topic one could see which heuristics have been
underutilized in solving specific VRP variants and which heuristic-problem variant
combinations could be promising. As an example of such work, Prins (2002) sought
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to implement an effective heuristic for a real world heterogeneous fleet multitrip
VRP (HFMVRP) based on several classical methods. Additionally, the implemen-
tations and the results of our work could allow testing different hypothesis about
algorithmic components and how problem characteristics influence the behavior of
different heuristics (see, e.g., Hooker, 1995; Rardin and Uzsoy, 2001). Our study
already contains some insights on this, and we have published a study on VRP
algorithm selection (Rasku et al., 2019a).

Besides making aforementioned experimental work more accessible, we believe
that sharing code will benefit the community as a whole. Sharing the source code “re-
lieves the community from the burden of programming everything from the scratch,
time and time again” (Sorensen et al., 2019). The presented work of reimplementing
and reproducing the results of 15 classical CVRP heuristics provides a practical,
comprehensive, and approachable introduction to the topic With it, a new or a sea-
soned researcher alike are able to understand and leverage the extensive research on
classical vehicle routing heuristics. According to the recent review from Braekers
et al. (2016), the classical methods had still been applied in around 10% of the sur-
veyed papers published between 2009 and 2015. Thus, the classical heuristics seem
to remain relevant both to the research and practice, and our study can be used to
recognize and utilize the different strengths and advantages of the classical vehicle
routing heuristics.
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Abstract. Many exact, heuristic, and metaheuristic algorithms have
been proposed to effectively produce high quality solutions to vehicle rout-
ing problems. However, it remains an open question which algorithm is
the most appropriate for solving a given problem instance, mostly because
the different strengths and weaknesses of algorithms are still not well un-
derstood. We propose an extensive feature set for describing capacitated
vehicle routing problem instances and illustrate how it can be used in al-
gorithm selection, and how different feature selection approaches can be
used to recognize the most relevant features for this task.

1 Introduction

Vehicle routing problem is one of the most intensively studied problems in op-
erations research because of its many applications. Recently we proposed using
an autoencoder based approach [6] to recognize interesting Capaciated Vehicle
Routing Problem (CVRP) features [7]. These features were proposed earlier in
[14], where we demonstrated that the features can be used in algorithm config-
uration and unsupervised learning. In this study we focus on feature selection
and gaining a deeper understanding on feature relevance in meta-optimization.
More specifically, we study the predictive accuracy of subsets of the proposed
features in a task of algorithm selection of classical CVRP heuristics.

Automatically selecting the most suitable algorithm for solving Traveling
Salesman Problems (TSPs) has been studied for example in [16, 5, 10] and for
Vehicle Routing Problems (VRPs) in [8, 11, 21, 18]. However, recognizing the
most relevant features has received little attention. The questions by Smith-
Miles and van Hemert [16] are relevant here: Which of the features prove useful
when predicting algorithm performance and solution quality?

According to Rice’s framework [15, 17] the requirements for successfully ap-
plying algorithm selection on a given problem are: (i) that there are large and
diverse problem instance sets available, (ii) there are several competitive algo-
rithms for solving those problem instances, (iii) there is a way to measure the
algorithm performance or accuracy, and (iv) access to features that are suitable
to describe the problem instances can be recognized. Addressing (i) and (iii)
is trivial as the quality of a VRP heuristic algorithm is usually measured with
the optimality gap and there are many well-known problem sets for CVRP [22].
For the other requirements we have proposed feature extractors for CVRP in
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[14] and have implemented 15 classical heuristics in [13]. To recognize the most
relevant features, we propose two algorithm selection scenarios and use them to
show how an ensemble of VRP algorithms can yield high quality solutions.

2 VRP Feature Extraction and Selection

In this study, we consider the classical capaciated vehicle routing problems.
Through the years, several algorithms have been proposed to solve them effec-
tively [20]. The modern metaheuristics rely on stochasticity to produce high
quality results in a reasonable time, but the stochasticity can make experimen-
tal study of heuristic algorithms tricky [12]. Furthermore, the computational
experiment conventions have been inconsistent and limited, which makes build-
ing algorithm selection scenarios from the results published by different authors
impossible. To sidestep these issues, we used our open-source library of classical
CVRP algorithms [13]. The classical heuristics are ideal for experimentally ver-
ifying the suitability of our proposed feature set because of their deterministic
behavior and ability to solve also the larger problem instances.

Problem instances come from the CVRPLIB! problem sets A, B, E, F, M,
P, X, CMT, RT, Golden, and Li, together with additional CVRP instance sets
Gaskell, V, and van Breedam. Together, these form a heterogeneous set of
454 problem instances. For descriptions of these sets we refer to [22] and [13].
To characterize the instances, we further extended our comprehensive set of
CVRP features proposed in [14]: The measurements of the number of checked
and accepted local search moves, as proposed earlier for TSP in [10], are now
included. Additionally, the ratio between integer and non-integer values and
their distribution from an exact solver probing are recorded similarly to [5].
The problem instances with the maximum route duration constraint in this
study warranted additional features describing the tightness of this constraint.
This was calculated using a greedy TSP algorithm and the DBSCAN clusters.
In total, our feature extractor set? produces 433 values for each instance.

As one can see, we followed the recommendation of [3] and erred on the side
of being inclusive instead of risking to omit useful information in the feature
construction stage. Unfortunately, this means that the proposed feature set
is quite extensive and the issues due to the curse of dimensionality must be
addressed, especially since we only have relatively few problem instances. The
canonical way is to use principal component analysis (PCA), but also many
feature selection (FS) methods can be used. These allow recognizing a relevant
subset F;. of the set of features [3], which has an additional advantage of being
able to omit the computation of any unnecessary features.

Ihttp://vrp.atd-1lab.inf.puc-rio.br/index.php/en/
2http://users.jyu.fi/\%7Ejuherask/selection/FEtable.pdf
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3 Experimental Procedure

Infinite feature values were replaced with a value 10 times the largest real valued
measurement and the features were normalized by scaling the values to the [0, 1]
range. Furthermore, similarly to Pihera and Musliu [10], we did our experiments
also with discretized feature data. As a discretization algorithm we used the
MDLP multi-interval algorithm of Fayyad and Irani [1].

Using the algorithm performance and accuracy data from [13] we set the
classification label to be the best algorithm for each problem instance. Here, the
total solution cost was the primary comparison criteria and the ties were resolved
by solution time. Hence, the class label of each problem instance is determined
by the best algorithm. Predicting this class among the 14 alternatives (see Fig.
3 and [13] for a list) is our first scenario. Foreseeing that this is a difficult task,
we also prepared an easier scenario where the class is predicted among the three
most successful algorithms: GAP, PTL, and PS|G2P.

In addition to PCA we applied three different F'S methods: minimal-redun-
dancy-maximal-relevance criterion (mRMR) [9], Correlation-based Feature Se-
lection (CFS) [4], and feature boosting with extremely randomized trees [2]
(ERTB). Then, four classifiers: 3-nearest neighbor (3NN); multilayer percep-
tron Softmax classifier (MPL) with hidden layer of |F}.| neurons, sigmoid acti-
vation functions, and quasi-Newton backpropagation; random forest with 100
trees and max. depth of 10 (RF); and C-support vector machine (SVM) with
C = 1.0 and v = 1/|F;| were trained and evaluated. We used leave-one-out
cross validation with and without MDLP discretization, and GNU parallel [19]
and Scikit-learn on a 72 core F-series Azure VM to compute the results.

4 Results and Conclusions

It turned out that many of the proposed features do not have any MDLP [1] cut
candidates that satisfy the minimum description length criterion. For these, all
values belong to the same bin and they no longer contribute to the algorithm
selection task. With those features removed, we are left with 163 features on
the 14 algorithm scenario and 190 on the three algorithm scenario.

According to the feature importance analysis (see Fig. 4), there is a sharp
change in feature importance after 10 features. These 10 features together with
the ones recognized by other feature selection methods are presented in Fig.
1 together with the earlier results from the autoencoder (AE) based method
[7]. Unsurprisingly, the final scoring reveals that the local search probing (LSP)
features are highly relevant in the heuristic selection task, but also features
related to exact solving attempt (BCP), constraints (DC), and nearest neighbor
digraph (NN) are important.

For the scenario of selecting between the 14 heuristics the baseline accuracy
(majority class heuristic) is 21.6%. The best measured accuracy was 48.5%
with the RF classifier and 100 features from the mRMR feature selection. This
was also the upper limit for the number of features in our experiments, and it
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Fig. 1: Top 10 discretized features on the three algorithm scenario.

is possible that RF could have benefited from additional features. The most
problematic decision boundaries seem to be between GAP, PLT, and PS|G2P
heuristics (see Fig. 3). Please note that in this scenario the best algorithm can
be determined with a very small margin. If we accept predictions where the
heuristic is among the three best for each instance the accuracy rises to 75.3%.

PCA ERTB mRMR CFS

3NN
MLP
RF
SVM
baseline
3 class

Accuracy (%)

1 - == 14 class

20 — T T T T T T
0 25 50 75 100 O 25 50 75 100 O 25 50 75 100 O 25 50 75 100
Number of features

Fig. 2: Savitzky-Golay smoothed classifier accuracy on the discretized data.

For the three algorithm scenario, the baseline is 41.4% and the best accuracy
is 74.0% with 75 features chosen using ERTB (see Fig. 4). The accuracy level
and the improved the selection accuracy when using discretization are similar
to the 3-class experiments in [10] where the accuracy ranged from 64% to 69%.
Steinhaus [18] managed to choose the best performing algorithm with 84 %
accuracy between three alternatives. However, in our study the algorithms
were chosen according their proven performance, which makes our three class
scenario more challenging than the one of Steinhaus.
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Fig. 4: Feature importances on dis-
classical CVRP heuristics.

cretized values in three class scenario.

Regarding the validity of our results, please note that we did not use a sep-
arate training set for the feature selection or discretization due to the limited
number of samples. We acknowledge that this may induce some positive bias to
the selection accuracy. In an extended study it would be advisable to use nested
cross-validation, although it would probably necessitate the use of problem gen-
erator with the related pitfalls [12, p. 271-273]. Furthermore, while our feature
extraction framework is already quite comprehensive, it would be possible to
further extend it to describe other VRP variants, and, e.g., to include addi-
tional metrics typically used in TSP and VRP solution space analysis. Here,
algorithm selection of automatically configured modern metaheuristics would
be the most natural, albeit computationally intensive, direction to extend our
study to. Aforementioned extensions to the experiments would enable a more
in depth analysis of the discriminatory power of the most important features.

Taken together, feature and algorithm selection allowed us to recognize the
most interesting and relevant features among the extensive set of 433 features
proposed in this study. Additionally, we have shown that the feature set has a
good discriminating power and it can be used to leverage an ensemble of vehicle
routing heuristics with good results.
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Abstract

Many of the algorithms for solving vehicle routing problems expose parameters that strongly influence the quality of obtained
solutions and the performance of the algorithm. Finding good values for these parameters is a tedious task that requires exper-
imentation and experience. Therefore, methods that automate the process of algorithm configuration have received growing
attention. In this paper, we present a comprehensive study to critically evaluate and compare the capabilities and suitability of
seven state-of-the-art methods in configuring vehicle routing metaheuristics. The configuration target is the solution quality
of eight metaheuristics solving two vehicle routing problem variants. We show that the automatic algorithm configuration
methods find good parameters for the vehicle route optimization metaheuristics and clearly improve the solutions obtained
over default parameters. Our comparison shows that despite some observable differences in configured performance there
is no single configuration method that always outperforms the others. However, largest gains in performance can be made
by carefully selecting the right configurator. The findings of this paper may give insights on how to effectively choose and
extend automatic parameter configuration methods and how to use them to improve vehicle routing solver performance.

Keywords Vehicle routing problem - Automatic algorithm configuration - Metaheuristics - Meta-optimization

1 Introduction

The vehicle routing problem (VRP) is a practical, relevant,
and challenging problem that has been extensively studied
by the artificial intelligence (AI) and operations research
(OR) communities. One of the main trends in solving VRPs
is the shift toward more generic and robust route optimi-
zation algorithms [56]. However, optimization models
and algorithms are still typically hand-tuned by experts
on a case-by-case basis [14, 56]. The need for an expert
in this process creates a barrier for the widespread use of
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the latest scientific advances to solve real-life optimization
problems. Therefore, to build more flexible academic and
commercial solvers for routing problems, the hand-tuning
of the algorithms should be automated. One step toward
this goal is to automate the search of the right optimization
parameters [14, 31]. This opportunity has been recognized,
e.g., by Hutter et al. [30]: “automated algorithm configura-
tion methods ...will play an increasingly prominent role in
the development of high-performance algorithms and their
applications.”

Automatic algorithm configuration [31] (or parameter
tuning [15]) means off-line modification of an algorithm’s
parameters. Recently, researchers have proposed several
automatic configuration methods, which have proven suc-
cessful in different domains such as evolutionary compu-
tation [55], Boolean satisfiability [1, 30], and mixed-inte-
ger programming [25, 34]. In the field of vehicle routing
research, Pellegrini and Birattari [48] compared the perfor-
mance of different metaheuristics with and without auto-
matic algorithm configuration and concluded that, in every
instance, the automatically configured version of the solu-
tion algorithm yielded better results than the correspond-
ing non-configured one. Furthermore, automatic algorithm
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configuration enabled a fair comparison, which makes it a
recommended practice for algorithm developers [16].

Besides our preliminary work presented in [52], there is
no comprehensive comparative study on automatic algo-
rithm configuration of vehicle routing solvers. Consequently,
this study addresses this knowledge gap by investigating the
performance of recent automatic configuration methods in
the domain of routing algorithms. In particular, our aim is
to answer the following questions:

1. Are existing automatic algorithm configuration methods
suitable for configuring routing algorithms?

2. How do these configurators compare, and are there
methods that should be preferred when configuring rout-
ing algorithms?

3. How does the performance of configurators vary with
different metaheuristics, vehicle routing variants, and
problem instances?

4. How robust are the methods in configuring routing algo-
rithms?

To address these questions, we compare the performance
of seven state-of-the-art automatic algorithm configura-
tion methods on metaheuristics for two different variants
of the vehicle routing problem. This extends our previous
study [52] by adding new configuration targets, improving
experimental setup, and including a thorough analysis of the
configuration method performance and resulting parameter
configuration values. In our experiments we concentrate on
optimizing solution quality instead of algorithm runtime on
relatively small problem instance sets. Our results confirm
that with these conditions the algorithm performance can
be clearly improved by using automatic configuration. Also,
while some configuration methods perform better, and are
more robust in some algorithm configuration tasks, no single
method invariably outperforms all the others.

The paper is structured as follows: Sects. 2 and 3 intro-
duce the vehicle routing and the algorithm configuration
problems, and describe the automatic algorithm configura-
tion methods used in this paper. Section 4 contains a litera-
ture review on algorithm configuration in routing. Section 5
describes the experimental design used to test the configu-
rators followed by Sect. 6 where the numerical results and
analysis are presented and discussed. Finally, Sect. 7 con-
cludes the study and proposes topics for future research.

2 The vehicle routing problem

In the classical vehicle routing problem (VRP) the goal is
to find optimal routes for vehicles leaving from a depot to
serve a specified number of customers. Each customer must
be visited exactly once by exactly one vehicle. Each vehicle
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must leave from the depot and return there after serving all
customers on its route. Typical objectives are to minimize
the number of vehicles and the total length of the routes.
Thus, VRP is a generalization of the well-known travelling
salesman problem (TSP).

Multiple extensions and variants of VRP have been pro-
posed in the literature. Many of these add new constraints,
such as vehicle capacity, maximal route length, and time
windows, or introduce new features, such as stochasticity,
split deliveries, or multiple depots. For an introduction to
different variants and extensions to VRP, refer to [32]. Prob-
lems where several constraints and complex objectives are
combined to tackle real-world cases are called ‘rich’ VRPs
[12].

In this paper, we focus on two variants: the capacitated
vehicle routing problem (CVRP) and the vehicle routing
problem with stochastic demands (VRPSD). In CVRP, each
customer has a demand that needs to be fulfilled and each
identical vehicle has a capacity that cannot be exceeded. The
objective is to find feasible routes so that the number of vehi-
cles and the total distance of routes are minimized. Also the
vehicles in VRPSD have limited capacity, but in this variant
the exact demands of the customers are not known until they
are served. However, the distributions of the demands are
known and should be considered in the optimization of the
routes [8].

Algorithms for solving the VRP can be divided into two
families: exact and heuristic. The aggregated results from
Uchoa et al. [59] suggest that exact algorithms cannot con-
sistently solve CVRP instances with more than two hun-
dred customers, and, therefore, different (meta)heuristics
have been proposed to solve larger problems. Examples of
such methods include simulated annealing (SA), tabu search
(TS), evolutionary algorithms (EA), ant colony optimization
(ACO), and iterated local search (ILS). For surveys of the
topic, refer to Laporte [35] and Mester and Briysy [42].

Recently, the trend has been toward developing adaptive
and cooperative hybrid algorithms [4, 33, 49, 56], but as Hut-
ter et al. [31], Battiti and Brunato [6], and Sevaux et al. [54]
have noted, even these tend to have many parameters that
need to be fixed. Therefore, these new approaches further
emphasize the need for automatic algorithm configuration.

3 The algorithm configuration problem

Many advanced search algorithms have free parameters that
can be set by the user. The parameters are usually used to
balance the algorithm elements and make trade-offs between
diversification, intensification, co-operation, and other
aspects [61]. These parameters must be configured in order
for the method to perform well, which is a nontrivial task.
In fact, Smit and Eiben [55] point out that finding the right
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values for the parameters “is a complex optimization task
with a nonlinear objective function, interacting variables,
multiple local optima, and noise.” With stochastic local
search (SLS, see [24]) algorithms for VRP, this noise comes
from the random problem instance selection and stochastic-
ity of the algorithm that is being configured.

One of the main challenges of automatic algorithm con-
figuration according to Eiben et al. [15] comes from the
complex interactions between the parameters. Sometimes
the parameters can be configured individually, but the result
may be suboptimal, whereas trying all different combina-
tions is often impossible due to the sheer number of possible
combinations.

Next, we define the algorithm configuration problem and
describe approaches that have been proposed to solve it.

3.1 Introducing the problem

Hutter et al. [30] defines the goal of automatic algorithm
configuration to be finding a set of parameter values, a
parameter configuration, for a given target algorithm so
that the algorithm achieves the best possible performance,
or utility, on the given input data set. Formal definitions of
the problem are presented by Birattari et al. [9] and by Hut-
ter et al. [30].

Depending on when the algorithm parameters are
changed, automatic algorithm configuration and parameter
control can be distinguished from each other [15]. Auto-
matic algorithm configuration is the off-line task of finding
good values for the parameters before the actual deployment
of the algorithm into production. In contrast, parameter con-
trol reactively changes the values of the parameters while the
algorithm is running.

Algorithm parameters can be numerical, ordinal, or cate-
gorical. Numerical parameters have a value that is an integer
or a real number. Ordinal and categorical parameters have a
finite set of values that the parameter may take, but categori-
cal parameters cannot be ordered in a meaningful way.

3.2 Automatic algorithm configuration methods

The performance of different configuration methods (or con-
figurators) has been studied earlier, for example, for mixed-
integer programming solvers [26], evolutionary algorithms
[45, 55], and SAT solvers [1, 30, 37]. Actually, Kadioglu
et al. [34] states that there has been a renaissance in the field
of automatic algorithm configuration during the first decade
of the 21st century. For a recent review of these methods see
Hoos [23]. Eiben and Smit [16] presents a similar survey for
the evolutionary algorithm tuning community. In addition to
exploring the concepts such as robustness and performance
measures, they propose a useful taxonomy for the configura-
tion methods.

Recently, the focus has been in overcoming the chal-
lenges posed by heterogeneous and large problem
instances. Prime examples of this research are recent
studies from Styles and Hoos [57] and Mascia et al. [41],
where new techniques for reducing computational effort
are proposed. These alone are not always sufficient, as
finding good parameter configurations still often requires
considerable computational resources. Combining auto-
matic configuration with parallel and cloud computing
demonstrates how increased availability of computational
resources can allow performing the configuration tasks
within reasonable time [18, 28].

In this study, we focus on seven state-of-the-art algorithm
configuration methods: CMA-ES [21, 64], GGA [1], Iterated
F-Race [3], ParamILS [30], REVAC [46], SMAC [27], and
URS [64]. The primary criterion to include a method into
this study was previously documented use of the automatic
algorithm configuration method on VRP or TSP targets. The
secondary criterion was the availability of an implementa-
tion, as not all recently introduced automatic configuration
methods are publicly available. Short descriptions for each
of the selected methods are given below.

CMA-ES is a continuous optimization method that was
proposed by Hansen [21]. The method is based on the
ideas of self-adaptive evolution strategies. It works by
sampling new vectors from a multivariate Gaussian distri-
bution, whose covariance matrix is cumulatively adapted
using the search evolution path to form rotationally invar-
iant scatter estimates. CMA-ES is known to be reasonably
robust and is therefore suitable for automatic algorithm
configuration [55]. We extended CMA-ES with a basic
discretization scheme to make it support ordinal and cat-
egorical parameters, as they were not supported natively.
Recently, Vidal et al. [60] used CMA-ES to configure a
hybrid VRP solver with eight numerical parameters.

GGA (Gender-Based Genetic Algorithm) is a robust pop-
ulation-based automatic algorithm configuration method
proposed by Ansétegui et al. [1]. The method divides the
population into two genders, where the selection pressure
is only on the other gender. If the dependencies between
the configured parameters are specified, they are taken
into account in recombination phase. In addition, GGA
uses the aging and death of individuals, and random
mutations in the new offspring. The parameters of GGA
include truncation percentage X for breeding selection,
tree branch inheritance probability B, mutation rate M
along with mutation variance S, and maximum age A.
GGA also requires the initial population size P and num-
ber of generations G to be set. Ansotegui et al. [1] did not
report the number of optimized parameters being con-
figured in their experiments, but according to [30] the
number of parameters for these targets ranges from 4 to
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26 with varying composition of categorical and numeri-
cal parameters.

F-Race [9] races a finite set of candidate parameter con-
figurations against each other. The method draws inspira-
tion from Maron and Moore [39] where racing was used
to solve a similar problem. At each step of F-Race, can-
didates are evaluated by running the target algorithm on
a single problem instance from the training set. A Fried-
man test is then used to eliminate those configurations
that are significantly worse than the best one. The race is
terminated when a maximum number of configurations
have been sampled, when the predefined computational
budget is used, or when the Friedman test indicates that
a dominating best configuration is found.

I/F-Race (Iterated F-Race) is an iterated extension of the
F-Race proposed by Balaprakash et al. [3]. In I/F-Race,
a relatively small set of new candidates is sampled dur-
ing each iteration. After each race iteration some or all
of the surviving candidates are promoted as elite. Each
candidate in the new iteration is sampled from a distri-
bution centered on a randomly selected elite candidate.
The standard deviations for this distribution are reduced
on each iteration [37]. I/F-Race is parametrized by the
number of iterations /, the computation budget for each
iteration eb;, the number of candidates for each itera-
tion N,, and the stopping condition parameter N, . The
additional stopping parameter allows a race iteration to
be terminated when only N, ;, candidates are remaining
[9, 37], which will help ensure sufficient exploration in
the parameter configuration space [10]. The experiments
described by Birattari et al. [10] contained at most 12
configured parameters.

ParamlILS [30] uses iterated local search (ILS), which
has proven to be a good heuristic for solving a variety
of discrete optimization problems [38]. It uses an one-
exchange neighborhood (one change to one parameter
at a time) to search the space of all possible algorithm
parameter value combinations. The ParamILS algorithm
starts by sampling R random parameter configurations
from which it selects the one performing best on the tar-
get algorithm. Then it performs a local search where it
moves toward a local optimum. To avoid getting stuck,
ParamILS employs random perturbations and restart
strategies. The ILS approach allows ParamILS to con-
figure any algorithm, even those with many parameters.
However, ParamILS is able to handle only ordinal and
categorical parameters and requires discretization of con-
tinuous parameters.

REVAC (Relevance Estimation and Value Calibra-
tion) by Nannen and Eiben [46] is a population-based
estimation-of-distribution algorithm. REVAC starts
from an assumption of a uniform distribution over the
range of each free parameter. It samples new individu-
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als from the constantly updated parameter distribu-
tions and aims, through transformation operations with
multi-parent crossover (where N best individuals are
selected) and an interval shrinking operation governed
by a parameter H, to narrow down on the most promis-
ing range of each parameter. After the initial population
of size M has been evaluated, only one new individual
is sampled at each iteration. After the method has fin-
ished, relevance estimates can be used to recognize
which parameters are essential to the performance of
the target algorithm. Categorical parameters are not
supported. EA targets configured by REVAC seem to
typically have around six parameters [55].

SMAC [27] is the latest configurator from a series of
sequential model-based optimization (SMBO) methods
[5, 25, 29]. SMBO is an iterative framework for meth-
ods that alternate between fitting a regression model,
and using that model to predict performance of new can-
didates. However, SMAC is the first one to extend this
paradigm to general algorithm configuration problems.
Thus, while Bartz-Beielstein et al. [5] were one of the
first to use these black box continuous optimization meth-
ods in algorithm configuration, Hutter et al. [27] further
extended the applicability of SMBO by adding support
for multiple instances, categorical and conditional param-
eters, and an option to model the parameter configura-
tion response surface more accurately. More precisely, a
random forest with instance features is used to create a
surrogate model for the algorithm’s performance, which
is then used in local search of promising configurations.
SMAC and ParamILS were used and tested in scenarios
with nearly 80 free parameters by Hutter et al. [28].
URS (Uniform Random Sampling) [64] is used in this
study as a reference parameter configurator. During an
iteration, a candidate is sampled uniformly from the set
of all possible parameter configurations and evaluated on
all instances in the training set, while keeping track of
the best encountered configuration. The method sets a
baseline for the more sophisticated configuration methods
presented above.

The features of the seven automatic algorithm configuration
methods are summarized in Table 1. The first group of col-
umns from the left shows which target algorithm parameter
types are supported by the configurator. The second group
shows the algorithmic building blocks that the configurators
employ to allocate search efforts effectively. Here, effective
allocation is one that concentrates the target algorithm evalu-
ations mostly on the promising parameter configurations.
The features also ensure that exploration and exploitation
are balanced and the stochasticity of the search and target
algorithm properly addressed [64]. Sampling is a strategy
that all configurators share, but otherwise these methods
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Table 1 Features of the automatic algorithm configuration methods used in this study

Number of
features

Effort reduction techniques

Algorithmic concepts

Parameter types

Method

Cond.

Seed

Restarts Capping Racing Blocking Sharpen-

Local

Statis-
tical

Sampling Popula-

Continu-
ous

Ordinal Numeri-

Categori-
cal

params.

configs.

ing

search

tions

cal

model

CMA-ES
GGA

10
12
11

4

ParamILS v

REVAC
SMAC

I/F-Race
URS

12

v

use different approaches to solve the automatic algorithm
configuration problem.

The third group lists effort reduction techniques that are
used to save parameter configuration evaluations by chang-
ing how candidate configurations are tested: Capping [30]
terminates the evaluation as soon as it becomes clear that
the candidate configuration cannot produce a good param-
eter configuration. This is convenient when the objective is
to minimize the runtime of a target algorithm, but capping
is not applicable to solution quality-based configuration
that we are doing in this paper. In racing [9] good and bad
parameter configurations are recognized early by increas-
ing the number of instances and random seeds to evaluate
on each step of the race. This technique is closely related
to blocking [40], where the parameter configuration candi-
dates are evaluated on the same instances and seeds called a
block. These techniques control the noise from the variance
in the configuration objective between instances and seeds.
Sharpening [55] controls the number of available problem
instances per iteration, and seed configurations allow the use
of the default or other user-provided parameter configura-
tions at initialization.

The concepts racing, blocking, and sharpening can be
combined like in the intensify approach of ParamILS and
SMAC [27, 30]. There, the history of evaluations on the best
parameter configuration is stored and after a new evalua-
tion is added, new configurations are compared against the
history on the same problem instances and seeds. New con-
figurations are rejected or declared as the new best-known
configuration early, that is, after there is enough evidence.

Conditional parameters, also known as parameter hier-
archies, were introduced in ParamILS [31]. They allow the
user to specify that algorithm parameters are active only
with activation of some other parameter, and, thus, available
for automatic configuration. This prevents the configurator
from changing parameter values when they have no effect.
An in-depth survey of techniques and concepts related to
automatic algorithm configuration is given by Hoos [23].

The rightmost column of Table 1 shows the total number
of features for each configuration method. Out of the listed
methods, CMA-ES, URS and REVAC, rely on a smaller
number of features compared to others as they do not use
the more sophisticated search effort reduction techniques.
We are aware that generic continuous optimization methods
such as CMA-ES and URS can be augmented with effort
reduction mechanisms. For example, in [64] they were used
to identify good parameter configurations with minimal
evaluation effort, similarly to racing in I/F-Race. However,
CMA-ES has also been used in algorithm configuration
without such extensions (see, e.g., [60]), and, addition-
ally, our research was better served with distinctly different
approaches to automatic algorithm configuration than vari-
ations on the I/F-Race pattern. Those interested in extending
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continuous optimization methods such as CMA-ES with
effort reduction techniques are referred to [64].

4 Automatic algorithm configuration
in routing

In this section, we give a short survey on configuring rout-
ing algorithms. Because the number of articles on automatic
algorithm configuration of VRP algorithms is relatively
small, we also survey the relevant studies for the traveling
salesman problem (TSP).

Coy et al. [14] recognized the importance of configuring
VRP metaheuristics already in 2001 and proposed a proce-
dure to find a set of good parameter values for a target VRP
algorithm. Their procedure is based on a statistical design of
experiments that requires expert knowledge on each step of
the process. Similar to the more recent automatic algorithm
configuration methods, their procedure contains local, inex-
act steepest descent search on the response surface and uses
an average of the locally optimal parameter configurations
as the final result. The authors concluded that their method
managed to improve the default settings of their VRP algo-
rithms, and that the procedure outperformed random param-
eter sampling.

Pellegrini [47] used F-Race to configure two heuristic
algorithm variants solving a specific rich VRP variant, a
VRP with with multiple time windows and heterogeneous
fleet. Later, Pellegrini and Birattari [48] showed the ben-
efits of automatically configuring VRP metaheuristics. They
configured the IRIDIA VRPSD solvers with F-Race and
noted that the configured algorithms were able to clearly
outperform the out-of-the-box implementations with default
parameters. Becker et al. [7] used racing to configure the
parameters of a commercial VRP solver on a heterogeneous
training set of 47 real-world routing problem instances.

Balaprakash et al. [3] used automatic algorithm configu-
ration on three different routing variants, including VRPSD,
to show the advantages of the iterated F-Race over the stand-
ard F-Race. Garrido et al. [17] proposed a hyperheuristic
where REVAC was used to choose the low-level heuristics
solving CVRPs. More recently, Vidal et al. [60] used CMA-
ES to automatically configure his record breaking hybrid
genetic algorithm (GA) for multi-depot and periodic vehicle
routing problems. By using a meta-GA to configure a hybrid
GA, Wink et al. [62] were able to reduce the optimality gap
on CVRP benchmark instances from Augerat et al. [2] by
91 % (a 0.55 percentage point improvement) compared to an
extensively hand-tuned hybrid GA. They were also able to
find a new best-known solution for a 200-customer instance
in another problem set by using the same automatic configu-
ration approach.
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Even though there are studies of automatic algorithm con-
figuration of routing solvers, we were able to find only three
comparative studies on automatic algorithm configuration of
TSP solvers. Montero et al. [44] compared F-Race, REVAC,
and ParamILS to recognize unused operators in solving the
TSP with an evolutionary algorithm. In a second study,
Montero et al. [45] focused on comparing the performance
of the three previously mentioned configurators. They con-
cluded that all three methods have comparable configuration
performance and that they are able to improve the perfor-
mance of metaheuristics targeting single problem instances.
Yuan et al. [64] compared CMA-ES, URS, and three other
methods in configuring the ACO algorithm for the TSP, and
Styles and Hoos [57] introduced two racing protocols that
allow different levels of difficulty of problem instances in
training and validation sets. To solve the TSP instances they
used an implementation of the Lin—Kernighan algorithm
(LKH). They concluded that for various sizes of configu-
ration problems, especially for those with many numerical
parameters, CMA-ES appears to be a robust algorithm.

In addition to our workshop paper [52] reporting some
preliminary results, we are not aware of comparative studies
on automatic algorithm configuration methods configuring
vehicle routing solvers. VRP solvers have been configured in
many studies, but the lack of comparative experiments with
different automatic algorithm configurators makes it hard
to determine which method one should use when dealing
with different VRP metaheuristics. Also, from the existing
literature, it is hard to infer how much the solution quality
is expected to improve when a VRP metaheuristic is config-
ured with automatic algorithm configuration.

5 Comparison of methods for configuring
VRP solvers

Next, we will describe our computational comparison for the
automatic algorithm configuration methods. We will explain
the experiments that we carried out, and the costs and ben-
efits of adding a layer of meta-optimization on top of a VRP
solver. As noted in the study by Hepdogan et al. [22], the
configurator for heuristic algorithms should be fast, efficient,
and outperform random parameter value selection. Thus, the
additional complexity caused by the automatic algorithm
configuration must be empirically justified. We will also pre-
sent the VRP solvers used as the target algorithms.

5.1 Solvers and benchmark problems

VRPH is a heuristic solver library for the CVRP developed
by Groér et al. [20]. The library uses the Clarke-Wright
construction heuristic and a selection of well-known local
search operators: one-point-move (1ptm), two-point-move
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Table 2 Free parameters of the

VRPH Name Type Default Range VRPSD Name Type Default Range
VRPH and VRPSD solvers

Shared  1ptm B 1 {0,1} Shared p B 0 {0,1}
2ptm B 1 {0,1} t B 0 {0,1}
two B 1 {0,1} ACO m I 7 [1, 100]
oro B 0 {0,1} T R 0.5 [0.0, 1.0]
tho B 0 {0,1} W R 0.3 [0.0, 1.0]
3ptm B 0 {0,1} p R 0.1 [0.0, 1.0]

EJ m 1 10 [0, 45] q R le7 [10.0, 1e7]
t 1 1000 [0, 1e4] a R 1.0 [0.0, 5.0]
s B 0 {0,1} EA p I 10 [1, 1e3]

RTR D I 30 [1, 100] mr R 0.5 [0.0, 1.0]
1) R 0.01 [0.0, 0.1] amr B 0 {0,1}
K I 5 [0, 100] ILS X R 10.0 [0.0, 1e3]
N I 4 [0, 75] SA u R 0.01 [0.0,0.1]
P 1 2 [1, 10] a R 0.98 [0.0, 1.0]
p B 1 {0,1} W I 1 [1, 100]
a B 1 {0,1} p I 20 [1, 100]
t 1 0 [0, 50] TS 1tf R 0.8 [0.0, 1.0]

SA T R 2.0 [0.0, 10.0] Dy R 0.8 [0.0, 1.0]
n 1 200 [0, 1e3] D, R 0.3 [0.0, 1.0]
i I 2 [0, 10]
a R 0.99 [0.8,1.0]
N I 10 [0, 100]

The following parameter type key is used: ‘B’ for Boolean switch (was treated as numerical, or as categori-
cal if the option was available), I for integer values (numerical), R for real values (numerical, continuous)

(2ptm), three-point-move (3ptm), two-opt (two), three-opt
(tho), and Or-opt (oro). These operators can be enabled and
disabled using six switches common to all solvers (listed
as shared in Table 2). VRPH implements also the cross-
exchange operator, but we disabled it because of its tendency
to produce infeasible routes.

Other solver parameters do not have an effect on the
behavior of the local search operators. Use of the library’s
local search operators is orchestrated by three metaheuris-
tics: Record-to-Record travel (RTR, 6 + 8 free param-
eters, where the first 6 are the shared parameters between
all VRPH metaheuristics and the other 8 parameters are
specific to the RTR metaheuristic), Simulated Annealing
(SA, 6 + 5), and neighborhood ejection (EJ, 6 + 3). We
omit the descriptions of the heuristics, metaheuristics, and
solver parameters and refer the reader to Groér et al. [20]
and Table 2.

The other set of solvers we used in our experiments was
the IRIDIA VRPSD metaheuristics presented by Bianchi
et al. [8]. For local search, the IRIDIA VRPSD solvers rely
on only one operator, Or-opt. For the metaheuristic, one
can choose between ant colony optimization (ACO, 2 + 6
parameters), evolutionary algorithm (EA, 2 + 3), iterated
local search (ILS, 2 + 1), simulated annealing (SA, 2 + 4),
and tabu search (TS, 2 + 3). The two shared parameters, p

and ¢, are related to determining the local search move cost
approximation method. For a thorough explanation of the
solver parameters refer to Table 2 and Bianchi et al. [8].

The size of the training set is an important variable when
doing automatic algorithm configuration. If the training set
is excessively large, evaluating every parameter set on all
instances, as it is done in URS and REVAC, becomes infea-
sible. Even the more sophisticated configuration methods
require a significant subset of a large heterogeneous training
set to get a reliable estimate on the parameter configura-
tion utility. Conversely, if the training set is small, there is a
danger that it is not a representative sample, and even if the
resulting parameter configuration can be used to solve the
training set effectively it may have been over-tuned and its
performance does not generalize [1]. For our configuration
tasks, we decided to use a training and validation set size
of 14 instances, which is consistent with the experiences
of Becker et al. [7] from configuring real-world routing
problems.

We acknowledge that the chosen number of instances is
atypically small for automatic algorithm configuration tasks.
The reasons leading to small number of training instances
was threefold: 1. Out of the compared configuration meth-
ods, only the advanced ones support sharpening and block-
ing. To avoid major modifications and extensions to the less
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Fig.1 The experiment setup
where the total number of con-
figurators, configuration targets,
and VRP problem instance sets
are given in the parenthesis

sophisticated configurators, we simply evaluate the entire
training set for each parameter configuration candidate. A
large training instance set would make this approach infea-
sible. 2. We wanted to keep the size constant over all targets,
and 14 was the size of the smallest problem set used in our
experiments. 3. Finally, we would like to point out that a
promising practical application of automatic configuration
in vehicle routing is the automatic fine tuning of algorithms
used in real-world routing [11, 53]. Especially in industry
one might not be able to access a large number of specific
routing problems because of time and human resource limi-
tations. By using a restricted problem set size we tried to
ensure that this study stays relevant to this audience.

For the VRPH solving CVRPs, we used the classic
benchmark set CMT with 14 problem instances originating
from Christofides et al. [13], which has problems with sizes
ranging from 50 to 200 customers. Paired with the three
metaheuristics, this creates configuration targets VRPH-EJ-
C, VRPH-RTR-C, and VRPH-SA-C. We used a threefold
cross-validation with stratified sampling by problem size for
this benchmark set because dividing this set into separate
training and validation sets would have produced prohibi-
tively small problem sets.

In order to examine the effect different problem sets can
have on configuration performance, and how well the per-
formance gains generalize to similar problems, we used the
A and B CVRP sets from Augerat et al. [2]. These sets have
27 and 23 instances with sizes from 31 to 79 customers.
The problem sizes and demand distributions are similar, but
the customers in set A are uniformly distributed and in B
clustered. To fix one variable, the size of the training set,
we decided to use a subset of the original instance set in our
experiments. We used a stratified sampling of 14 instances
from set A and set B, to construct disjoint training and vali-
dation sets. This forms the next three configuration targets:
VRPH-EJ-A, VRPH-RTR-A, and VRPH-SA-A.

Finally, to test the IRIDIA VRPSD solvers, we used train-
ing and validation subsets, again with a stratified sampling
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of 14 instances each, from the IRIDIA problem set of 120
randomly generated instances with 50 to 200 customers [8].
Supporting material' for [8] includes the algorithms and
description of the problem instances. The configuration tar-
gets for VRPSD are: VRPSD-ACO, VRPSD-EA, VRPSD-
ILS, VRPSD-SA, and VRPSD-TS.

The experimental setup is illustrated in Fig. 1. To sum-
marize, we selected seven automatic configuration methods,
three target algorithms solving the CVRP, and five solving
the VRPSD. For each of the eight target algorithms solving
a set of VRP benchmarks, the configurators try to find a set
of parameters that maximize the quality of the solutions pro-
duced. This means there are interchangeable objects in the
three levels: a problem set, a solver with the metaheuristic
and local search operators, and a configurator that optimizes
solver performance. In addition, two of these levels have
free parameters: the solver has parameters being configured
and the configurator has its own parameters that must be set
manually by the experimenter. Furthermore, the selection of
the problem instances to the training and validation sets may
cause variability in the configuration performance.

5.2 Experimental design

The VRP solvers used in this study were considered to be
black boxes from the configurators’ point of view. Only the
free parameters and their ranges were known prior to starting
the configuration task.

When using heuristic algorithms, reaching the optimum
in a reasonable time is not guaranteed. Thus, we cannot
use the total running time of the target algorithm to com-
pare parameter configuration efficiency, even if it is a more
common target for automatic algorithm configuration (see,
e.g., [30]). Instead of solver time, we decided to optimize
for solution quality and set a 10 CPU second cutoff for all

! http://iridia.ulb.ac.be/supp/IridiaSupp2004-001/index.html.
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Fig. 2 Effect of a cutoff to the elapsed algorithm runtime and resulting

invocations of VRP solvers. If an algorithm had not stopped
after 10 s, it was terminated and with the quality of the cur-
rent best solution.

Choosing 10 s as the CPU cutoff was not arbitrary. The
experimental design presented here already creates a large
number of combinations to test, and the stochasticity in
the target algorithms and in the configurators themselves
requires multiple configuration trials for statistical reliability.
Thus, the algorithm runtime had to be reasonably small. Fig-
ure 2 illustrates the effect cutoff has on actual elapsed time
of the algorithm and the resulting solution quality. VRPH
solvers are able to utilize the more generous computational
resources only with two targets and the additional time gives
diminishing returns after 10 s. Also, while considering the
effect of this decision, please note the scaling of the x-axis.
The curves have a negative exponential multiplier, and thus,
the quality improvement is logarithmic (not linear) when the
CPU time is increased for VRPSD targets. Furthermore, the
selected cutoff is in line with [19], where the Augerat et al.
[2] instances are solved within 0.3 % of optimal solution
on average in 3.5 s. Similarly, Groér [19] reports that the
larger CMT [13] instances are solved close to optimality on
average in 12.94 s (RTR) or 21.9 s (EJ) on a 2.3 GHz AMD
processor.

From Fig. 2 we also see that VRPSD can utilize the more
generous computational resources. In their experiments Pel-
legrini and Birattari [48] used a slightly more generous CPU
timeout of 30 s for these targets, although with significantly
slower AMD Opteron 244 processor than the Intel Xeon E7
used in this study. Yuan et al. [64] used a 5 s cutoff for ACO
solving medium sized TSP instances, which was then config-
ured using, e.g., CMA-ES. These further validate the deci-
sion of using a relatively strict cutoff in such configuration
scenarios. Furthermore, because our comparison already had
many changing variables (configurator, target metaheuristic
and its parameters, problem sets and instances, and local
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“ 1100
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solution quality on an automatically configured solver

search operator selection), we decided to fix the cutoff for
all targets.

We acknowledge that the runtime of a routing algorithm
to solve large real-world problem with thousands of cus-
tomers may be measured in hours, especially in cases with
complex constraints such as dynamic travel times, com-
partment compatibilities, or other extensions including
separate pickups and deliveries or a heterogeneous fleet
[7]. Despite this, modern metaheuristics are usually able
to find proper solutions for all but the largest benchmark
problems in a few seconds.

As the utility metric we use an aggregated solution
objective function value over the training instance set.
Aggregation is a sum over the estimated objective func-
tion values for the resulting VRP solutions in the instance
set. Thus, the configuration task is to minimize:

minimize &= Z a(i, 0)

iel,

)

Here, ¢ is the utility metric estimator, /, is the training prob-
lem set, a is an estimator for the utility function for algorithm
a a, which in turn solves problem instance i € /, guided by
parameter configuration 6. Because the metaheuristic algo-
rithm a is stochastic, we also define a to be an estimator
of the algorithm solution quality. In practice, the estimate
is formed through repeated evaluation of the algorithm on
the same problem instance and parameter configuration, but
with different random seed.

Even if we did not solve rich problems in this study,
the number of evaluations that can be allocated into find-
ing a reasonably good parameter configuration remains an
important factor. Especially since we would like to keep
this study relevant to the operations research practition-
ers who are solving large-scale real-world vehicle routing
instances with complex constraints who could benefit from
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automatic algorithm configuration. In their case, the num-
ber of solver invocations cannot be too large.

In our experiments each configuration task was given an
evaluation budget that defines the number of solver invoca-
tions allowed during a configuration task. One call of the
routing solver with one parameter configuration and one
problem instance is counted as one evaluation. To compare
the effect of different budgets, every configurator—solver
combination was run with evaluation budgets of 100, 500,
and 1000. In addition, VRPSD-ACO was configured with
an evaluation budget of 5000 to see the effect of a larger
budget.

Whenever the option was available, configurators were
set to expect non-deterministic behavior from the target
algorithm. Thus, allocating the budget for new parameter
configurations and problem instances and controlling the
stochasticity through additional evaluations was left for the
configurator.

GGA, I/F-Race, ParamILS, and SMAC use effort reduc-
tion techniques that can save evaluations, for example, by
evaluating only a subset of the training instances on each
iteration, whereas CMA-ES, REVAC, and URS evaluated
all problem instances in the training set on each iteration.
All the tested target parameters could be represented with an
integer or real number with a suitable range and an optional
discretization step (in ParamILS).

All seven automatic algorithm configuration methods
contain a set of parameters related to the basic technique and
its actual implementation. The default parameters provided
by the original authors were used in the experiments when-
ever possible. A full listing of the configurator parameters
can be found in the online supplementary material for this
paper. Also, the target algorithm defaults were provided as
a seed configuration for all configurators excluding REVAC
and URS, which did not support it.

CMA-ES is claimed to be quasi-parameter-free [21],
so we did not change the initial parameters of the Python
implementation.” For optimization, all continuous param-
eters were normalized between 0.0 and 1.0 with an initial
standard deviation of o, = 0.5. The restart mechanism of
this CMA-ES implementation was not used, because it is not
applicable to fixed and relatively small evaluation budgets.
Also, instead of relying entirely on the self-adaptive param-
eters, on tasks with an evaluation budget of 100, we used a
population size of 7 to help CMA-ES stay within the speci-
fied budget.

For GGA, we used the implementation of [1] with
the default values (10, 90, 10, 3, 10) for (X, B, M, A, S).
Ansoétegui et al. used several different population and gen-
eration ratios. We decided to use the P/G = 2/1 ratio to

2 Version 0.9.93.4r2658, http://www.Iri.fr/~hansen/cmaesintro.html.

@ Springer

avoid extinction of the population. For evaluations with the
budget of 5000, we used the P/G = 4 /3 ratio that Ansétegui
et al. [1] used to configure SAT solvers. Using this ratio
we set the population size and number of generations care-
fully on a budget-to-budget basis, because in order to use the
evaluation budget effectively, the evolutionary process must
converge at the right time. Because GGA did not respect the
specified budget for evaluations, setting G and P was the
only way to get it to spend approximately the right number
of target algorithm evaluations. Also, GGA required each
instance to be paired with a fixed random seed.

F-Race is implemented for the statistical software envi-
ronment R. The Iterated F-Race automatic algorithm config-
uration method irace? from Lopez-Ibanez et al. [37] uses
it to implement the iterated variant of the racing method.
We used defaults, but for an evaluation budget of 100, the
parameter eb;, which governs the computation budget for
each iteration step, was set to 60 to make I/F-Race more
closely respect the evaluation budget.

ParamILS [30] and SMAC [27] are available online.*
For ParamILS, we used linear discretization of 10 steps for
each of the continuous free parameters. Selecting the most
suitable discretization for each parameter can be seen as an
additional level of configuration, and therefore, it was omit-
ted from this study. To take the stochastic nature of the target
algorithms into consideration, we used the ParamILS built-
in FocusedILS approach to limit the time spent on evaluating
each parameter configuration [30]. SMAC was used with
default parameters. Its ability to use problem instance char-
acteristics to improve the predictive power of the surrogate
model for the target algorithm was not used.

For REVAC, we used the implementation from Montero
et al. [44, 45]. To allow it to use the evaluation budget effec-
tively, the control parameters M, N, and H were set using
the ratios recommended in the literature: N = M /2 and
H = N/10 with a minimum value of 2 for H. For evaluation
budgets of 100, 500, and 1000, M was given values 5, 10,
and 20, respectively.

Similarly to [64], each configuration task had 10 trials for
VRPH-A and VRPSD targets. In threefold cross-validation
of the VRPH-C targets, the cross-validation was repeated
five times. The folds were different between repetitions but
the same between the target algorithms and budgets. This
blocking guarantees that the configuration tasks are compa-
rable between methods. After configuring the algorithms,
the resulting parameter configurations were evaluated by

3 Version 0.9, http://iridia.ulb.ac.be/irace/.

4 Versions 2.3.5 (ParamILS) and 2.0.2 (SMAC), http://www.cs.ubc.
ca/labs/beta/Projects/ParamILS/http://www.cs.ubc.ca/labs/beta/Proje
cts/SMAC/.
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Table3 Median automatic EB CMAES  GGA IF-Race  ParamlLS REVAC  SMAC  URS
configuration results for the
VRPH CMT targets with VRPH-EIJ-C, defaults: 0.96 (0.12)
threefold cross-validation 100 0.990.08 0.86(0.09) 0.72(0.09)* 0.93(0.10) 1.000.22) 0.81(0.10) 0.77(0.12)
500 0.83(0.12)% 0790707 0.71(0.06) 0.76(0.10)  0.68(0.09) 0.700.09) 0.73(0.10)
1000 0.78(0.09)  0.81(0.097 0.66(0.06) 0.71(0.09) 0.73(0.09) 0.69(0.09) 0.75(0.09)
VRPH-RTR-C, defaults: 1.42 (0.06)
100 1.240.14) 09000147 1.040.15% 1.00(0.11) 122(0.25) 0.94(0.06) 0.81(0.14)
500 0.820.15  0.840.03 075005 091(0.17) 1.060.14) 0.78(0.12) 0.83(0.10)
1000 0.76(0.08)  0.850.06) 0.630.09) 0.670.06) 0.740.03) 0.79(0.06) 0.78(0.06)
VRPH-SA-C, defaults: 0.80 (0.05)
100 1.70052) 0.88(0.18)  0.73(0.04)" 0.89(0.09) 1.68(0.36) 0.77(0.03) 1.39(0.26)
500 1.09021)  0.89(0.117 0.81(0.08 0.840.08) 129(0.10) 0.78(0.04) 1.04(0.18)
1000 1.030.16)  0.89(0.10) 0.790.08)  0.750.09) 1.150.12) 0.77(0.03) 0.97(0.13)

Results are given as percentage from the aggregated best-known solution (relative optimality gap). Statisti-
cally better results of the single best, or pair of best solvers (in cases where no single configurator domi-
nated), are in bold typeface. Evaluation budget (EB) violations of more than 5% are italicized, with * indi-
cating exceeding and ~ falling short of the budget

running them on all problem instances 10 times and cal-
culating the aggregated objective cost for each repetition.

All configuration tasks were run on a computing server
with 64 Intel(R) Xeon(R) CPU E7 2.67 GHz cores and 1
TB of RAM. The server was running the OpenSUSE 12.3
operating system.

6 Numerical results and analysis

The experiment data contain results of 2695 configuration
runs.” Together with the verification evaluations these took
around 250 CPU days to compute. Considering all results,
automatic algorithm configuration methods were able to find
improved configurations over defaults in 84.1% of the con-
figuration trials. This is a promising result considering that
the smallest used budget of 100 evaluations is a very tight
restriction for automatic algorithm configuration. Also, the
default parameters of the VRPH solvers are expected to be
tailored for typical scientific benchmark instances such as
those we used. The suitability of the defaults is even more
prominent in the case of VRPSD, where the solvers and the
benchmarks instances come from the same source.

S(BX3)XBX5))+((B+5%x3+1)x10)x7 The 3 VRPH-C
targets with 3 different budgets were configured using threefold cross-
validation repeated 5 times. The 3 VRPH-A targets and 5 VRPSD
targets, each with 3 different budgets, plus (1) VRPSD ACS with
a budget of 5000, with 10 trials each. All the previous experiments
were done for all the 7 automatic configuration methods.

6.1 Performance of the configurators

A median aggregated solution quality and median absolute
deviation were calculated for each configuration task. The
median was taken over a set of 10 evaluations on validation
set for each of the 10 resulting parameter configurations (that
is, over 100 aggregated quality values).

The median was used, because we were mostly interested
in measuring the typical performance of a configurator.
Meanwhile, the median absolute deviation gives an estimate
for the robustness of the configurators. The aggregated solu-
tion quality for each configuration task is given as a devia-
tion from the sum of best-known solutions for instances in
the validation set (relative optimality gap). The VRPSD
benchmarks had no recorded best-known solutions, so we
used the best observed solution for each problem instance
as the best-known solution. Please note that the result data,
with a full set of figures and tables with other descriptive
statistics, can be found in the online supplementary material.

The results in Tables 3, 4, and 5 are grouped by the tar-
get algorithm. The -C and -A suffixes are used to differen-
tiate between the CMT and Augerat et al. [2] benchmarks
for the VRPH targets. Each row shows results for a single
configuration task consisting of a triplet: target algorithm,
evaluation budget, and problem instance set. When com-
paring the results we note that out of the tested configu-
rators only ParamILS and SMAC strictly, and URS and
REVAC closely, respected the evaluation budget. Other
methods frequently ignored the input parameter for the
evaluation budget and exceeded or fell short of the budget.
Results deviating from the given budget by more than 5%
are marked with italics. A nonparametric Mann—Whitney
U-test (p < 0.05) was used with the Bonferroni adjustment
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Table 4 Median automatic EB CMA-ES  GGA F-Race  ParamlLS REVAC  SMAC  URS
configuration results for the
VRPH Augerat et al. [2] targets VRPH-EJ-A, defaults: 0.73 (0.03)
on the validation set B 100 042006) 0430.08) 0.50(0.14)% 0440.08) 042(0.07) 0.410.06) 0.38(0.03)
500 0.40(0.06)* 0.37(0.02)° 037(0.04)  0.42(0.09) 0.42(0.06) 0.37(0.02) 0.38(0.04)
1000 0.38(0.037F 0.40(0.05)  0.37(0.04)  0.37(0.02) 0.42(0.05) 0.35(0.02) 0.37(0.03)
VRPH-RTR-A, defaults: 1.40 (0.05)
100 0.38(0.07)  0.36(0.17)*  0.38(0.20)* 0.44(0.08) 0.50(0.16) 0.62(0.21) 0.37(0.22)
500 0.35(0.06)7 034(0.06) 0.42(023) 0.450.16) 0.32(0.08) 0.66(0.26) 0.37(0.09)
1000 0.34(0.06)  0.37(0.09) 034(0.11)  0.39(0.22) 038(0.11) 0.63(0.27) 0.34(0.06)
VRPH-SA-A, defaults: 0.90 (0.01)
100 0.90(0.19)  0.65(0.12)* 0.61(0.16)* 0.70(0.24) 0.98(0.10) 0.65(0.12) 0.73(0.17)
500 0.62(0.25)* 048(0.17)7 0.39(0.11)  0.61(0.12) 0.66(0.10) 0.38(0.24)  0.58(0.20)
1000 0.41(0.22)*  0.38(0.24)" 0.33(0.20)  0.38(0.22) 0.53(0.17) 0.34(0.15)  0.34(0.23)
Table 5 Median automatic EB CMA-ES  GGA UF-Race  ParamILS REVAC  SMAC  URS
configuration results for the
VRPSD IRIDIA targets on the VRPSD-ACO, defaults: 0.63 (0.04)
validation set 100 0.39(0.07)  0.43(0.07)*  0.41(0.04)* 0.39(0.04) 0.43(0.06) 0.37(0.02)  0.39(0.04)
500 0.31(0.050 0.38(0.03)  0.36(0.05) 0.36(0.04) 0.41(0.05) 0.30(0.08) 0.35(0.05)
1000 0.28(0.06)* 0.37(0.03)° 0.37(0.03)  0.33(0.07) 0.37(0.03) 0.27(0.07) 0.35(0.06)
5000 0.30(0.09)  0.32(0.06)  0.27(0.06)  0.26(0.06) 0.40(0.02) 0.16(0.06) 0.31(0.05)
VRPSD-EA, defaults: 0.77 (0.03)
100 0.72(0.10)  0.68(0.08)" 0.57(0.04)* 0.59(0.07) 0.67(0.06) 0.53(0.05) 0.58(0.05)
500 0.62(0.06)* 0.57(0.077 0.48(0.04) 0.57(0.06) 0.58(0.04) 0.51(0.04) 0.49(0.05)
1000 0.56(0.07)  0.56(0.06)" 0.48(0.04)  0.550.06) 0.57(0.04) 0.49(0.04) 0.49(0.05)
VRPSD-ILS, defaults: 0.78 (0.04)
100 0.710.06)  0.75(0.06)* 0.74(0.07% 0.76(0.03) 0.78(0.05) 0.72(0.03)  0.78(0.03)*
500 0.73(0.03) 0.72(0.08 0.76(0.05)  0.76(0.03) 0.77(0.13) 0.71(0.07) 0.78(0.03)
1000 0.73(0.03)  0.71(0.04)" 0.74(0.08)  0.76(0.03) 0.77(0.13) 0.77(0.03)  0.78(0.03)
VRPSD-SA, defaults: 0.79 (0.04)
100 0.83(0.05)  0.77(0.07)* 0.88(0.06)* 0.88(0.08) 1.18(0.23) 0.86(0.05) 0.87(0.06)*
500 0.84(0.03)  0.78(0.06)  0.87(0.06)  0.85(0.06) 0.88(0.12) 0.88(0.04) 0.86(0.06)
1000 0.84(0.03)  0.77(0.06)" 0.82(0.03)  0.85(0.06) 0.88(0.11) 0.85(0.02) 0.86(0.06)
VRPSD-TS, defaults: 1.86 (0.13)
100 0.750.08)  1.80(0.05 1.75(0.07)* 0.72(0.14) 1.77(0.07) 1.73(0.10) 1.78(0.04)
500 0.600.11)* 1.74(0.09)* 1.74(0.11)  0.61(0.12) 1.730.09) 1.74(0.07) 1.70(0.04)
1000 0.59(0.10)  7.75(0.09) 1.80(0.08)  0.59(0.10) 1.73(0.09) 1.83(0.10) 1.70(0.04)

to test whether the differences to defaults and other con-
figurators were statistically significant. Whenever a single
dominating method for an algorithm target was not found,
existence of a dominating pair of methods was checked.
Statistically significantly better automatic algorithm con-
figuration methods (or pairs) for each configuration task
are marked in bold typeface.

If we consider only the best configuration found for
each configuration task, and average over all targets,
automatic algorithm configuration was able to reduce
the optimality gap by 0.72. This is a 69.7% improvement

@ Springer

compared to using default parameters. According to our
results, this is the improvement that can be expected when
a suitable configurator is used. On average, the optimal-
ity gap was reduced by 0.27 (a 25.2% improvement over
defaults). The greatest single improvement was seen on
VRPSD-TS, where ParamILS was able to reduce the opti-
mality gap on by 1.51, allowing an 81.2% improvement
over defaults.

Before focusing on the differences between configuration
methods, we compare the performance of more sophisti-
cated methods against the reference configurator that was
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Table 6 Configurator performance on the metaheuristics, which are split into three difficulty classes (D,, 1 being easiest and 3 hardest)

Target #Pg/my ds. D. CMA-ES GGA I/F-Race ParamILS REVAC SMAC URS Rankon EB’s
defaults
100 500 1000
VRPH-EJ-C 9(712/0) 3 3 1 1 2 1 1 2
VRPH-RTR-C 14 (9/4/1) 3 3 1 1 3 3 2 1
VRPH-SA-C 11 (6/3/2) 1 1 1 1 1 2 3 3
VRPH-EJ-A 9(7/2/0) 3 3 1 2 1 1 2 2 3
VRPH-RTR-A 14 (9/4/1) 3 3 3 1 1 1
VRPH-SA-A 11(6/3/2) 2 2 2 2 2 3 3 2
VRPSD-ACO 8 (2/1/5) 3 1 3 4 1 1 1 1
VRPSD-EA 5@/1/1) 3 3 1 1 2 2 2 2
VRPSD-ILS 3(2/0/1) 3 1 1 4 3 4 4
VRPSD-SA 6(2212) 1 1 1 3 5 5 5
VRPSD-TS 5(2/0/3) 2 2 3 3 5 4 3 3
Total wins 6 2 7 3 0 10 3

Based on the results, the suitability of the default parameters (d.s.) is estimated. Here 1 stands for good default parameters. Middle columns keep
score for the statistically significantly best configurators for each target. The #P column indicates the number of parameters for each metaheuris-
tic, and #Pp, #P;, and #Pj, their division into Boolean, Integer, and Real valued parameters. Rightmost columns show the ranking between VRP
solvers with the default and the automatically configured parameters. Also, the table illustrates how the ranking changes when the solvers are
configured. Results with bold ranks are of better or equal utility in comparison to the best solver for that instance set with default parameters

the uniform random sampling (URS). Contrary to expec-
tations, the configurators are able to produce statistically
significantly better results over URS only in 35.8% of the
pairwise Mann—Whitney U tests (p < 0.05). In contrast, the
observed performance was worse than URS in 35.3% of the
pairwise comparisons. However, as can be seen from the
main result tables (Tables 3, 4, and 5), the results in con-
trast to URS are not evenly distributed. Additionally, the two
Augerat et al. [2] instance sets were included to see how well
the performance gains of automatic algorithm configuration
generalize to similar problems. Therefore, it was expected
a see that random strategy (URS) works well. According
to Coy et al. [14], such behavior can be caused by a large
heterogeneity among the problem instances in a problem set,
but it seems this applies also to heterogeneity between train-
ing and validation sets. Also I/F-Race, and to some extent
SMAC, show a good generalization ability from a problem
set to another on these targets.

Another noteworthy observation is that REVAC seems to
struggle with all algorithm targets and it is able to beat URS
only in 6.1% of the pairwise parameter configuration com-
parisons. As a whole, our results indicate that performance
of REVAC on routing targets is worse than that of SMAC
and I/F-Race. This is in contrast to results from Montero
et al. [44], where they reported only small differences
between F-Race, ParamILS, and REVAC in automatically
configuring an EA for the TSP. If we leave out the Augerat
et al. [2] targets and REVAC from the pairwise comparisons
against URS, configurators are better than URS in 50.4% and
worse in 26.4% of the tests. In addition, as the evaluation

budget is increased, the advantages of more sophisticated
configuration methods become more apparent (see, e.g.,
ACO in Table 5).

Table 6 shows that SMAC, I/F-Race, and CMA-ES are
the methods that most frequently tend to find good param-
eter configurations for the VRP metaheuristics in this study.
However, please note that CMA-ES, I/F-Race and GGA have
the tendency to exceed the specified evaluation budget. Of
the statistically significant results, only I/F-Race for the
VRPH-SA-C and VRPH-SA-A targets with a budget of 100
exceeded the given budget by more than 15% (by 25 % to be
exact) and this may give them some unfounded advantage.
Still, considering the competitive performance of I/F-Race
on those targets with budgets of 500 and 1000 this should
not induce significant bias into our analysis.

I/F-Race, together with SMAC, and in some cases URS,
seem to be the configuration methods to choose when faced
with a highly limited computational budget. These methods
are able to quickly produce relatively high-quality param-
eter configurations. However, no single method clearly
dominates the others. The summary of winning configura-
tors in Table 6 illustrates that different automatic algorithm
configuration methods are successful with different targets,
although if a method manages to find good parameter con-
figurations for a target with a specific evaluation budget, it
seems to be able do this with other budgets as well.

Regarding the parameter types and composition, our
results support the observation made by Yuan et al. [64] that
CMA-ES is suitable for configuration tasks with a high num-
ber of continuous parameters. We also note that I/F-Race
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Fig.3 Comparison of different configurators on two selected targets

seems to perform well in tasks that contain many Boolean
parameters.

Random sampling (URS) works surprisingly well on
VRPH-EJ, VRPH-RTR, and VRPSD-EA. The ruggedness
of the configuration target fitness landscape probably inter-
feres with the exploitation schemes of the more advanced
automatic configuration methods. URS is, by definition, very
explorative and is therefore capable of effectively explor-
ing large areas of the parameter configuration search space.
Hutter et al. [27] utilizes this in another configurator called
ROAR, which can be described roughly as URS with con-
figuration effort reduction techniques. However, as we can
see from the result of configuring VRPSD-TS, sampling is
not a strategy without disadvantages.

SMAC dominates in configuring VRPSD-ACO with a
budget of 5000 evaluations (Fig. 3a). We also observe a
possible case of over-tuning in the results of REVAC and
CMA-ES. The effect is smaller with CMA-ES so there is a
possibility that CMA-ES cannot effectively use the larger
budget and prematurely converges to a local optimum.

Overall, despite the relatively small training set size, there
is reasonably little over-tuning as can be seen from Fig. 4.
In a case of over-tuning the figure would show good perfor-
mance on training set, but poor performance on validation
set. That is, the data point would be clearly above the dashed
line designating unequal performance between the sets. The
largest over-tuning effect is seen on the left side of the fig-
ure where SMAC automatically configures VRPH-RTR-A
(Fig. 4a). In fact, VRPH-RTR-A and VRPH-SA-A targets
show relatively large difference in training and validation
set solution quality. This is due to the inherent differences
of the training and validation sets with the Augerat et al.
[2] targets. This is not surprising as this benchmark set was
included to test how well the performance gains of automatic
algorithm configuration transfer to solving similar problem
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instances. Furthermore, if the data is examined per configu-
ration method, none of the configurators shows a clear ten-
dency to over-tune.

To examine robustness, we study the median absolute
deviations (MAD) in Tables 3, 4, and 5. Out of the tested
configuration methods, SMAC is the most robust. That is, is
able to consistently produce good parameter configurations.
It closely followed by I/F-Race as they both have the lowest
average MAD and still provide good automatic configuration
performance. However, the differences over all experiments
are small, and even SMAC fails to always produce good
parameter configurations for configuring some targets such
as VRPH-RTR-A and VRPSD-TS where in turn CMA-ES
excels.

6.2 Configuration target difficulty

By comparing the configuration performance of URS against
other methods in Tables 3, 4, and 5, we recognize three
difficulty classes in the tested VRP algorithm targets (see
Table 6). The first class consists of targets VRPH-SA-C,
VRPSD-ACO, VRPSD-ILS, and VRPSD-SA, which seem to
have relatively smooth parameter configuration landscapes
where sophisticated intensification and search techniques
work well. Pellegrini and Birattari [48] reported similar
results that showed that ACO, ILS, and SA are metaheuris-
tics that respond favorably to automatic configuring and
that F-Race outperforms random sampling on these targets.
Note that the default parameters for the targets VRPH-SA-
C and VRPSD-SA seem to be already very good because
only 25.6% of the parameter configurations produced by
the configurators show improved performance over them.
GGA seems to be the best method to automatically configure
VRPSD-SA, although it, likewise, struggles to find better
configurations than the defaults. For the other targets in this
class, 95.3% of the produced configurations are better than
the defaults. As we can see from Fig. 3, the results also seem
to be getting better as we increase the evaluation budget.
The second class of automatic algorithm configuration
problems contains VRPSD-TS and VRPH-SA-A. Configu-
ration performance on these targets shows large variation.
For VRPSD-TS, only CMA-ES and ParamILS are able to
find parameter configurations that clearly outperform the
defaults, whereas other methods are able to only slightly
improve the solution quality. VRPH-SA-A shows similar
behavior with high variance. For this algorithm, all of the
configurators, except REVAC, were repeatedly able to pro-
duce a parameter configuration that allowed solving all of
the 14 instances in the Augerat et al. [2] validation set to
optimality. One such configuration is given later in Table 7.
In the third difficulty class, we have the targets VRPH-EJ,
VRPH-RTR, and VRPSD-EA. Based on our experiments,
these seem to be hard to configure effectively and even the

more sophisticated automatic algorithm configuration meth-
ods struggle to challenge the uniform random sampling on
these targets. As can be seen from Table 6 these targets share
the feature of having many binary parameters. If we examine
the boxplot of Fig. 5, the multimodal nature of these configu-
ration targets can be seen as clustering of outliers around a
local optimum of the configuration search space. However,
even for these targets, the configurators were able to improve
the solution quality over the default parameter configuration
with a success rate of 93.8%. Additionally, improvements
were often found even with an evaluation budget as small
as 100.

Our experiments clearly indicate that the nature of the
configured target or, more specifically, the solver algorithms
and the problem instance set, has great impact to the con-
figurability, configuration method selection, and generic
performance of the solver. In Table 6, the solver perfor-
mance is compared among the metaheuristics solving the
same problem set. In solving the CVRP, we can see that
VRPH-RTR clearly benefits from using automatic algo-
rithm configuration. For the CMT instances, VRP-SA-C
produces the best-quality solutions with default parameters,
but after configuration has been performed, it is beaten by
VRPH-RTR-C and VRPH-EJ-C. With Augerat et al. [2]
instances on small configuration budgets VRPH-EJ-A and
VRPH-RTR-A are performance-wise very similar. With an
evaluation budget of 1000, GGA is able to find very good
parameters for VRPH-RTR-A, which outperforms the other
two solvers on the Augerat instance set. Note that the large
median absolute deviation in VRPH-SA-A results indicates
that there is a lot of variation between the configured param-
eter configurations or their evaluations, which means that
this good performance is inconsistent. The reason behind
this may be in the optimal cooling schedule band for SA is
known to be narrow [43]. For the IRIDIA instances, auto-
matic configuration changes the ranking between the solvers
only slightly. VRPSD-ACO is the winner in solving given
VRPSD instances with VRPSD-EA being a close second,
not surprisingly given the state-of-the-art performance of the
evolutionary approach in the literature [50, 60].

6.3 Automatically configured parameters

The parameter configurations with the best median solution
quality can be found in Table 7. However, it is likely that
the parameter values are highly instance and solver imple-
mentation specific, which limits our ability to make general
recommendations. Also, please remember that a 10 s cutoff
was used in our experiments, and this should be consid-
ered when generalizing the parameter values. Still, the best
found parameter configurations offer a basis for our discus-
sion on algorithm nature and solution space structure in the

@ Springer



Journal on Vehicle Routing Algorithms

Table 7 The best median solution quality Q for a single parameter configuration

Local search operators

Optimized parameters

Oc [N 1pm/2pmitwoloroltho/3pm  m t s
VRPH EJ default 0.96 0.73 1/1/1/0/0/0 10 1000 0O
VRPHEJ C (SMAC) 0.54 1/1/1/0/1/1 17 7465 1
VRPH EJ A (SMAC) 0.34 1/1/1/0/0/1 19 5316 1
Q¢ 04 1pm/2pmitwoloroltho/3pm D 6 K N P pla t
VRPH RTR default 1.42 1.40 1/1/1/0/0/0 30 0.01 5 4 1 171 0
VRPH RTR C (GGA) 0.40 1/1/1/1/0/1 18 0.01 51 11 4 00 39
VRPH RTR A (GGA) 0.01 1/1/1/1/0/0 98 0.04 43 30 6 1/0 6
Q¢ 04 Lpm/2pmitwoloroltho/3pm T n i a N
VRPH SA default 0.80 0.90 1/1/1/0/0/0 2.00 200 2 0.99 10
VRPH SA C (GGA)  0.63 1/1/1/0/0/70 2.00 200 5 099 10
VRPH SA A (SMAC) 0.01 1/1/1/71/71/71 8.79 498 5 099 23
Obj.f. est. Optimized parameters
o p t m au Y p q o
VRPSD ACO default 0.63 0 0 7 0.50 0.30 0.10 1.0e7 1.00
VRPSD ACO (GGA) 0.15 0 0 1 0.53 0.85 0.41 4.2e6 3.12
(0] P t P mr amr
VRPSD EA default 0.77 0 0 0 0.20 0
VRPSD EA (GGA) 0.42 1 1 1 0.63 1
0 p t x
VRPSD ILS default 0.78 0 0 10.00
VRPSD ILS (SMAC)  0.70 0 0 29.80
0 p t H a v p
VRPSD SA default 0.79 0 0 0.01 0.98 1 20
VRPSD SA (GGA) 0.77 0 0 0.08 0.18 1 20
o P ? uf P Po
VRPSD TS default 1.86 0 0 0.80 0.80 0.30
VRPSD TS (CMA-ES) 0.51 1 0 1.00 1.00 1.00

conclusions. Table 7 also allows comparison of parameter
values and resulting solution quality between the default
configuration and the configured one. Out of the compared
configurators SMAC and GGA seem to be most successful
in finding very good parameter configurations. If this evi-
dence is combined with observations from boxplots such
as the one presented in Fig. 5, the overall impression is that
SMAC has more consistent performance, while GGA is
occasionally able find better configurations.

Analysis of the configured parameter configurations
reveals that in VRPSD-TS, where we observe strikingly dif-
ferent performance between two groups of configurators,
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the good utility is achieved when at least one of the values
for the parameters #tf, p,, and p, is at the minimum or maxi-
mum. This can also be seen from Table 7. Statistically, it
is improbable for a uniform sampling to produce exactly
the parameter endpoint value of an interval. Therefore,
methods that uniformly sample from within the given range
are unable to find these good parameter configurations for
VRPSD-TS, whereas configurators that use a robust statis-
tical model or local search are well-suited to the task. The
effect was not considered by Balaprakash et al. [3] when
they introduced the iterative sampling extension to F-Race,
and, to our knowledge, this effect has not previously been
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reported in automatic algorithm configuration literature.
The original F-Race would probably find the values of these
good parameter configurations, given parameter range end
points are chosen as design points in the factorial design.
However, VRPSD-TS is a special target in this regard, and
F-Race based on factorial design candidate configuration
generation would probably show far worse automatic con-
figuration performance on different kind of targets. This is
especially true in our configuration scenarios because a full
factorial design requires a rather large configuration budget.
Also, note that Pellegrini and Birattari [48] did not use the
iterative variant of F-Race, and, thus, this behavior did not
manifest in their results.

If we now turn to the resulting parameter configurations
of the VRPH targets, we can examine how the probability
of a local search heuristic to be selected changes with the
metaheuristic and the instance set (see Fig. 6). Out of the
tested targets, VRPH-SA-C seems to somewhat differ from
the rest in its composition of local search operators. With
this algorithm, configurations that avoid the more compu-
tationally intensive Or-opt, three-opt, and three-point-move
operations yield higher utility (routes with a lower cost).
Also, in VRPH-SA-C the selection of the operator plays a
major role in the resulting solution quality as the local search
operator composition of the top 10% parameter configura-
tions differs clearly from the worst 90%. A similar effect
can be observed in VRPH-EJ-A, where the use of two-opt
operators is preferred over other operations.

It seems that definite connections exist among the
composition of local search operators, performance of a
metaheuristic, and the instances to be solved. Automatic
algorithm configuration makes it possible to find suitable
local search operator composition to optimize the perfor-
mance of a routing solver. This verifies the observation made
by Garrido et al. [17] that careful selection of local search

Relative optimality gap (%)

operators for a set of instances is a relatively stable way of
improving the overall performance of a solver. However, in
this study we refrain from examining the differences in local
search operator selection between the configurators further.

7 Conclusions and future research

In this paper, we have presented a comprehensive empiri-
cal evaluation of seven well-known automatic algorithm
configuration methods in the task of configuring eight
metaheuristic algorithms solving two vehicle routing prob-
lem (VRP) variants. The tested configurators were CMA-ES,
GGA, I/F-Race, ParamILS, REVAC, SMAC, and URS. The
VRPH library, which is used to solve capacitated vehicle
routing problems, offers three solvers with EJ, SA, and RTR
metaheuristics. The IRIDIA solvers for the VRPSD uses
ACS, EA, ILS, SA, and TS metaheuristics. The solvers had
from 3 to 14 free parameters. Each configurator was given a
task to find a parameter configuration producing high quality
solutions for each algorithm used to solve a relatively small
benchmark set of VRP instances. Runtime of the solvers was
limited to 10 s.

The results show that, in general, the configuration meth-
ods were able to find parameter configurations that produced
better solutions than the solver default, even when restricted
to as little as 100 solver invocations. This is consistent with
previous research where it has been shown repeatedly that
automatic algorithm configuration can remarkably improve
the performance of stochastic search algorithms over the
default parameters. Despite this prior assumption, the low
computational cost of achieving performance improvement
can be considered surprising. Using just a plain random uni-
form sampling strategy with a highly limited computational
budget would often produce a clearly better performing

@ Springer



Journal on Vehicle Routing Algorithms
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parameter configuration than the defaults. Occasionally,
random sampling even beat the more advanced configura-
tors by a clear margin as sophistication does not dominate in
cases where the solution space has little structure to exploit.

To answer the question of configuration method suit-
ability, our analysis suggests that there is no single best
automatic algorithm configuration method for the tested
VRP metaheuristics. However, the statistically significant
evidence in this study verified that CMA-ES is a good
choice when dealing with targets that have many continu-
ous parameters, and that I/F-Race is well-suited for algo-
rithm configuration targets that have many on-off switches
for enabling and disabling solver features. Our experimen-
tation also revealed that GGA and REVAC require a lot of
trial-and-error and expertise to find parameter values that
enable them to use the evaluation budget effectively. This
creates an additional level of parameters to tweak on top
of the original problem, which makes it hard to effectively
apply these configuration methods.

We argue that robustness, and being parameter-free,
are desirable properties for an automatic configuration
method. Based on our survey, out of the tested configura-
tors CMA-ES, I/F-Race, ParamILS, SMAC, and URS ful-
fill these requirements. If good performance and robustness
is required, and a relatively generous evaluation budget is
available, we would recommend SMAC and I/F-Race. Based
on our experiments they are both capable of reliably produc-
ing good quality parameter configurations. Also GGA is in
some situations a competitive choice, but in our experiments
it was not as robust as SMAC and I/F-Race. While we could
not give a definite recommendation on which single con-
figurator one should use to configure VRP metaheuristics,
the results together with the provided survey should help
VRP researchers and practitioners to select a method that is
probably a good fit. Also, confirming that these results apply
with other metaheuristics, time limits, and problem instance
sizes will warrant additional computational experiments of
configuring VRP algorithms.
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The way a target algorithm responded to configuration
efforts varied between configurators, evaluation budgets, and
even between problem instance sets. We acknowledge that
the time limits do affect the results of the comparison of
metaheuristics or configuration methods. In our experiments,
we varied the evaluation budget and tested the configurator
performance on three problem instance sets, but used the
same time limit in all experiments. Considering this, the
results of our experiments conclude that there does not exist
a single, best configuration method for different algorithms.
However, we were able to distinguish differing configurator
behavior with the different evaluation budget constraints.
The results suggest that SMAC and I/F-Race would be most
appropriate configurators for larger instances with longer
execution times. Our study also showed that in our set of
configuration problems some configurators are more robust
than others.

Our recommended strategy to address the inconclusive
nature of the results is to have several state-of-the-art auto-
matic algorithm configuration methods at the user’s dis-
posal. Experimenting with different configurators helps
one to see when a good fit is found, as the solver usually
responds quickly to automatic configuration attempts even
with a small evaluation budget. Furthermore, our findings
have important implications for future practice. Contributed
evidence to the usefulness of automatic algorithm configu-
ration of VRP metaheuristics strongly suggests that rout-
ing algorithm developers should start using an automatic
algorithm configuration method in their experiments. This
is important in particular when making algorithm perfor-
mance comparisons, as configuring the parameters of a set
of algorithms allows one to avoid confirmation bias, that is,
the performance of the algorithm is not determined by the
suitability of its default parameters or the amount of manual
fine-tuning it receives.

Regarding generalization of the results, we see from
Table 1 that the included configurators address a large set
of different features and aspects of automatic algorithm



Journal on Vehicle Routing Algorithms

configuration. The same holds true for the various features
represented in benchmark problems and their solvers as
depicted in Table 2: we hypothesize that the experimental
results hold true also for different mixtures of the same solu-
tion method constituents. The use of these approaches is
common in designing heuristics for combinatorial optimiza-
tion problems [54].

Additional and extensive comparison between these con-
figurators with different experiment parameters, e.g., with
larger, more difficult, or ‘rich’ [12] problem instances or
with a longer metaheuristic CPU runtime, would be required
to reliably estimate how well our observations generalize.
The recent advances in the field of automatic algorithm
configuration addressing the issues with long running algo-
rithms are relevant here [18, 28, 41, 57]. The experiments
could also be extended with configuration targets that have
more binary and categorical parameters.

A typical use for a routing solver is to solve sets of slightly
different problem instances repeatedly. Automatic configura-
tion in such a scenario can be considered as modeling the
interactions of the triplet: instance, parameter configuration,
and solution quality. Further work is required to establish the
feasibility of utilizing these previously discovered interac-
tions in future solving tasks. This research avenue is also
recognized, e.g., in [61]. The reasonable next step could be
to explore the feature extraction of VRP instances, solutions,
and routes, and then investigate the suitability of instance-
specific algorithm configuration methods. These methods
use instance features to make utility predictions for the
parameter configuration candidates. SMAC can be used as
instance-specific method, but there are other methods, such
as ISAC from Kadioglu et al. [34]. Also, of particular inter-
est from practical operations research and vehicle routing
viewpoint would be extending our investigations to algo-
rithm selection. Especially applicability and implications of
using algorithm selectors, such as Hydra [63] or AutoFolio
from Lindauer et al. [36], should be explored.

It is also important to acknowledge the drawbacks of
automatic algorithm configuration. The configuration meth-
ods rarely provides useful information on why a certain
parameter configuration was selected. Here, domain knowl-
edge and understanding of the target algorithm is required to
understand the general implications of the resulting param-
eter configuration. This is especially important in academic
research, where understanding why an optimization strategy
works is of paramount importance. Therefore, we see imple-
menting in features like parameter sensitivity analysis and
visualization of the parameter configuration search space as
important development and research aims of configuration
method community.

Regarding validity of the study, we would like discuss
four things: configuration budget, CPU cutoff, problem

set size, configuration objective, and generalization of the
results to other VRP variants. The possible limitations of
the study are due to the extensive computational require-
ments required with each additional variability dimension
introduced to the comparison. Also, the research questions
and the specifics in solving vehicle routing problems made
it possible, or in some cases necessary, to fix some aspects
of the experimental setup.

In this study an evaluation budget was used to limit the
computational resources available during automatic algo-
rithm configuration. However, some configuration methods
failed to adhere to this budget. To control the effect this issue
might have on validity, we have addressed deviations from
the budget in our analysis.

We also acknowledge that future comparisons should
study the effect of a more generous configuration budget on
configuring VRP metaheuristics. In our study we tested a
single target with a budget of 5000 evaluations, which does
not allow analyzing the variation between configuration tar-
gets in the scenario of a larger budget.

The large number of experiments, and a decision to keep
as many of the variables constant as possible in the experi-
mental setup lead us to limit the CPU time of the solvers
to 10 s. We experimentally verified that the VRPH solver
performance stabilizes by the 10 s mark. However, it is likely
that this creates a bias to prefer parameter configurations
specifying a more explorative search strategy, especially on
larger instances of the CMT problem set and when solving
VRPSD instances. Similarly. the choice to use a problem set
size of 14 was done to keep it constant over all three con-
figuration target groups, and to include automatic algorithm
configuration methods that lack training set subset evalua-
tion mechanisms. We acknowledge that when using a small
training set, there is a danger of overfitting. However, in our
experiments only few selected configuration targets show
weak signs of such behavior, and these do not affect our
overall results and recommendations.

VRP is a challenging, well-known, and well-studied
combinatorial optimization problem that generalizes sev-
eral other problems. Therefore, it can serve as an interest-
ing benchmark for evaluating the robustness of automated
algorithm configuration methods and tools. In this study we
focused only on CVRP and VRPSD, but there are many
other variants with different constraints, objectives and
features. Also, even different problem instances of a single
variant can have differing characteristics (see, e.g., [51]).
Thus, we would like to see automatic algorithm configura-
tion method comparisons on the VRPTW (VRP with time
windows), PDP (pickup and delivery problem), large-scale
CVRP, and rich VRP benchmarks, which could show differ-
ent facets of configuring VRP solvers and perhaps provide
further support for our results.
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