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Osittaisdifferentiaaliyhtélot muodostavat tarkedn tyokalun matemaattisessa mallinnuk-
sessa. Niitd kiytetdan malleissa, joissa parametriavaruus on riittavan siled. Ensim-
méisid osittaisdifferentiaaliyhtéloité olivat aalto- ja limpoyhtilot avaruudessa R3.
Alkuaikoina osittaisdifferentiaaliyhtaloiden ratkaisemiseksi kytettiin muun muassa
muuttujien separointia, Fourier-sarjoja ja Greenin funktioita. Ndiden menetelmien
matemaattinen perusteleminen tapahtui vasta myohemmin.

Lineaaristen osittaisdifferentiaaliyhtéloiden teoriaan kehitettiin 1900-luvulla distribuutio-
ja Sobolev-avaruudet. Niiden avaruuksien avulla monet késitteet tdsmallisesti médritel-
tyd ja menetelmien toimivuus saatiin todistettua. Toinen 1900-luvulla ilmennyt asia
oli monistojen tirkeys matemaattisessa mallinnuksessa ja erityisesti fysiikassa. Suh-
teellisuusteoria osoitti, ettd aika-avaruutta kannattaa mallintaa monistona. T&lloin
myos muut fysiikan osittaisdifferentiaaliyhtélot kannattaa esitelld monistoilla. Kolmas
1900-luvun keksinto oli pseudo-differentiaalioperaattorit.

Tamén tyon tarkoitus on méaritelld modernin analyysin tyovilineitd monistoilla ja
soveltaa néité elliptisiin osittaisdifferentiaaliyhtéloihin. Painotamme differentiaaligeo-
metrialle tyypillisia koordinaatistovapaita méaritelmia ja tavoitteenamme on antaa
analyysin késitteiden maaritelmat myos koordinaatistovapaasti. Toisena ideana tyossé
on koota kattavasti modernin analyysin tyokaluja yhteen esitykseen. Tamén takia
olemme tehneet kompromisseja ja annamme joidenkin lauseiden kohdalla vain viitteen
todistukseen.

Maérittelemme ensin differentiaaligeometrian késitteitd, joiden pohjalta voimme luo-
da vektorikimpuille LP-avaruuksien kisitteen. Tamén jialkeen voimme méaéritella
distribuutioavaruudet ja esitelld LP-avaruuksien upotukset distribuutioavaruuteen.
Distribuutioteoriaan liittyen rakennamme myo6s yleisen matemaattisen kehyksen, joka
osoittaa mitd matemaattisia rakenteita distribuutioteoriaan tarvitaan.

Analyysille tiarkedt Sobolev-avaruudet méarittelemme kahdella tavalla: kiyttden
derivoinnin kaltaisia operaattoreita ja kiyttden Fourier-muunnosta. Differentiaaligeo-
metrian kisitteistd tangenttikimppu osoittautuu térkeédksi, koska sen avulla voimme
madritelld kovariantin derivaatan ja yleistda Fourier-analyysin koordinaattiriippumat-
tomasti monistoille. Annamme Fourier-muunnoksen hyodyllisyydestd muutaman
esimerkin euklidisen avaruuden osittaisdifferentiaaliyhtéloille.

Tyon toisella puoliskolla tarkoituksenamme on esitelld pseudo-differentiaalioperaattorit
ensin euklidisessa avaruudessa ja sitten kompakteilla reunattomilla monistoilla. Paino-
pisteemme on pseudo-differentiaalioperaattoreiden perusominaisuuksien ja operaat-
torikalkyylin esittelyssd. Lopuksi sovelluksena pseudo-differentiaalioperaattoreista
osoitamme parametriksien olemassaolon elliptisille operaattoreille.
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1 Introduction

The objective of this Master thesis is to give coordinate-free definitions of certain
concepts in modern analysis on vector bundles and to apply these tools to elliptic
partial differential equations. Topics that we cover are distribution theory, Sobolev
spaces and pseudo-differential operators. We study these topics on vector bundles
since they are used extensively in physics. Many physical laws are formulated on vector
bundles, for example, Maxwell’s equations and equations of continuum mechanics are
formulated using vector-valued functions. This work can be seen as a survey or an
overview of these topics on vector bundles.

We will also include definitions using coordinate charts as they are used in the literature.
Therefore, we need to define objects also in the Euclidean space R™. In that setting,
we can more easily give examples of how to apply the theory to the theory of partial
differential equations and we have done so to demonstrate the use of the theory. The
theory can be developed solely using charts but we have included coordinate-free
definitions as they give geometric constructions of the objects and since coordinate-free
definitions are often used in differential geometry.

We start by reviewing vector bundles and L2-spaces in Section [2| and then we will
study distributions in Section [3] where we will give a general framework of distribution
theory and then provide examples of distribution spaces. In Section [ we move on
to study Sobolev spaces and discuss them on R™, on open subsets of R"™ and then
introduce Fourier analysis and Sobolev spaces on vector bundles.

In Section 5 we will focus on partial differential operators on vector bundles. Our
goal is to introduce a coordinate-free definition of partial differential operators on a
vector bundle. After this, in Section [6] we will introduce pseudo-differential operators
on R™ and discuss the basic properties. The discussion of pseudo-differential operators
on vector bundles is handled in Section [7

In the last section, we are going to study the Fredholm theory of elliptic opera-
tors on compact manifolds. This requires a review of Fredholm operators. Using
pseudo-differential calculus, we will prove that elliptic pseudo-differential operators are
Fredholm operators. We end the section by giving an application to elliptic regularity
and studying the Poisson problem of an elliptic pseudo-differential operator.

Although we will review differential geometry and tensors, we assume that the reader
is familiar with ideas of differential geometry. However, one can read only parts where
the Euclidean space is used and skip parts where manifolds are needed. Since our
exposition is closer to a survey or an overview, we have taken some results without
proof and provided only a reference for the proof. This makes it possible to give a
wider overview of the techniques. In Section [J, we have pointed out some further
topics on the subject.



2  Vector bundles and L*-spaces

In this section, we give necessary definitions, notation and results of differential
geometry that we use later in the text. We start by reviewing manifolds, tensors and
smooth locally trivialisable vector bundles. We have used [1I, 2, 3] as our references
about differential geometry.

2.1 Manifolds

Definition 2.1 (Topological manifold). A topological manifold M is a topological
space which is second countable, Hausdorff and has the following property: Every point
p € M has a neighbourhood U and a function ¢y from U to an open set of R™ such
that the function is a homeomorphism. The pair (U, ¢y ) is called a coordinate chart
and values of ¢y (p) are called coordinates.

In topological manifolds, change of coordinates between charts is defined to be a
function ¢y = gyvody' : oy (UNV) — ¢y (UNV) whenever UNV is nonempty. Charts
¢y and ¢y are said to be C*-compatible if functions ¢ry and ¢yy are CF-mappings.
With this, we can define a C*-differentiable structure on a manifold.

Definition 2.2. A collection of charts A = {(U, ¢v), (V,ov), (W, dw),...} is said to
be a C*-differentiable structure on a manifold M if the following conditions hold:

o The sets U, V,W,... form an open cover of M,
e cvery pair of charts is C*-compatible whenever charts’ domains overlap,

e and A is mazximal. Meaning that if a coordinate chart (U, ¢y) is compatible with
charts on A, then (U, ¢y) € A.

Let M be a topological manifold and A be a C*-differentiable structure on M, then
we say that (M, .A) is a C*-manifold. A differentiable structure on a manifold is
uniquely determined by any open cover of compatible charts [3, p. 4]. In this thesis,
We consider only C'*°-manifolds and call them smooth manifolds.

Example 2.3. The simplest manifold is the Euclidean space R™. It is an n-dimensional
manifold with the differentiable structure determined by the chart (R",id).

Example 2.4. A smooth function f : M — R* on a manifold is a function such
that f o (bgl is smooth for every chart ¢y. For every smooth function f, the set
{(z, f(x)) € M x R¥|z € M} is a manifold with differentiable structure determined by
open sets U = {(z, f(x))|z € U, U is open} and charts ¢y opr, where pr, : (z,v) — z.
For every manifold M, we can construct an associated tangent bundle T'M. Elements
of the tangent bundle consist of points x € M together with equivalence classes of
curves 7 through the point x. The equivalence relation is given by the following
condition: The curves 7;(t) and 72(t) are equivalent if and only if 7,(0) = 72(0) =z
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and L]0 f(11(t)) = &],_0f(12(t)) for every smooth function f. An equivalence class
through a point x is called a vector on T, M. Every tangent vector determines a
linear functional on smooth functions by I, (f) = £|;—of(7(t)). The linear functional
representation provides a natural vector space structure for vectors 7, M. The map
p:TM — M taking a tangent vector to its associated point z is called the bundle
projection.

We say that a continuous mapping F' : M — N is smooth if for every chart (U, ¢y) on
M and (V, ¢y) on N such that F(U) C V, the function ¢y 0 Fogy,' is smooth. For every
smooth mapping F': M — N there exists an associated mapping F, : TM — TN
between the tangent bundles. This mapping is given by (z,v) — (F(z),w) where w is
the linear functional w(f) = v(f o F'). The mapping is called the differential of F'. Let
us have charts (U, ) on M and (V,4) on V. Then we have a local representation of F
= 1o Fo¢ "t and the local representation of the differential is DF. With these
oncepts, we can provide two general ways to construct manifolds. These examples
will involve concept of regular submanifolds of M. They are subsets S of M such that
every point x € S has a neighbourhood U and ¢y such that the set U N S is obtained
by vanishing £ coordinate functions of ¢;;. The dimension of the regular submanifold
in this case is dim(M) — k, see [II, p. 100]

Example 2.5. Let M, N be manifolds with dimensions m and n, respectively. We
say that a point c is a regular value of a smooth mapping F' : M — N if the preimage
of ¢ is empty or for every point x € F~'({c}) the differential F, : T,M — Ty N
is surjective. In this case, the set F~1({c}) is called a regular level set. Now it can
be shown that a regular level set is a regular submanifold of M and its dimension is
m — n. Especially the set F~1({c}) can be equipped with a smooth structure [I, p.
105]. The most common examples arise when N = R and F' is a smooth function. In
this case, it is enough to show that F, is nonzero, at every point of the level set.

Let the manifold M be the space R? with the standard differential structure and let
F(x,y,z) = 2> + y*> + 2% Then F(x,y,2) = 1 is the unit sphere in R3. Let us show
that the differential of F' is nonzero when x # 0. The differential is DF' = (2x, 2y, 2z)
which is zero only when (x,y, z) = (0,0,0). Since F'(0,0,0) = 0, we see that ¢ = 1 is
a regular value of ' and thus the sphere S? is a manifold.

Example 2.6. If we have a smooth function F' : M — N such that F' is injective and
the tangent map F, is injective at every point p € M, then F' is called an immersion.
It can be shown that F'(M) can be given a manifold structure and F'(M) is called an
immersed submanifold. However, the immersed manifold may not be a manifold with
respect to the subspace topology [I, p. 122]. When we require that F': M — F(M)
is a homeomorphism with respect to the subspace topology, then F(M) is a regular
submanifold of N. The mapping F is called an embedding and F(M) is called an
embedded or regular submanifold.

To show that an immersion is a homeomorphism it is useful to use the following fact: A
continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
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Intuitively the above discussion says that an immersion of a compact manifold is a
regular manifold. For example the image of S? under the map f(z) = Az + b, where
A is invertible matrix and b € R3, is a manifold. Thus, ellipsoids are manifolds as they
are obtained with this way.

2.2 Tensors

Tensors and exterior algebras are standard objects on manifolds. For example, they
are used to represent multilinear functions and differential forms. We collect and
revise definitions and results that we need later in this thesis. The exposition is based
on books [3, 1, 2] and [4]. We focus on the tensor algebra since its construction varies
in the literature. However, we discuss shortly exterior algebra as it is needed for
definition of differential forms. We will use Einstein’s summation convention while
discussing tensors.

Definition 2.7 (Dual space and dual pairing). Let V' be a finite dimensional vector
space with dimension n. Its dual space V* is the space of ccontinuous linear functionals
to R, that is, V* = Hom(V,R) :={f : V. — R | [ is linear and continuous}. We can
think of elements of V' also as elements of (V*)* as there is a natural dual pairing of
veV and f € V* given by (f,v) = f(v). We will reserve the notation (-,-) for the
metric tensor so we will sometimes use a standard abuse of notation and denote dual

pairing as v(f).

We will often use change of coordinates which induces a change of basis so it is necessary
to know how to work with bases. Let {e;}}_, be a basis for V. Then we define a dual
basis to be the set {f*}7_, such that f*(e;) = 0% where 6% is Kronecker’s delta. We
will denote the coordinate vectors of v € V, f € V* by v,f € R™*! with respect to
the bases {ex}7_,, {f¥}7_,. Then, by the definition we have v(f) = f(v) = f"v.

Let {&"}7_,, {f*}7_, be different bases of V and V* respectively. Then a change of
basis matrix P is a matrix for which the equation v = Pv holds. Then for dual bases,

the matrix P~ is the change of basis matrix for dual bases. This is seen from the
following calculation (P~Tf)TPv =f"P'Pv="fTv.

It is often useful to write a basis vectors e; and f* as a linear combination of another

basis. In notation above, this is written as e; = a{éj, fF = b;?fj. Now P, ag and b;?
are related: By evaluating P with standard basis vectors, we notice that a] = P;; and
similarly we get that b¥ = (P~7);, = (P,

Definition 2.8 (Tensor product space). Let Vi, Vs, ..., V,, Z be vector spaces. A
multi- or k-linear function is a function f : Vi X Vo x -+ x V,, — Z such that f is
linear in every argument: For every 1 < k < n we have

f(vr,v9, ... avg+bwy, ..., v,) = af (v, v, ..o, Uky ooy V) F0f (V1,09 o Wy ooy V).

We denote the space of Z-valued multilinear functions by L(V1,Va,... Vi3 Z). We
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define the tensor product space Vi @Va®---@V,, as LIV, V55, ..., V5 R). The space of
(k,1)-tensors is denoted by V¥ and is defined asV @ V@ - @ VeV @V '@.-.-@ V",

-~

~
k l

There is a natural way to form an element of V ® W with elements v € V,w € W,
namely, the tensor product of v ® w. The intuition behind the following definition is
that the tensor product will have following properties

(V1 + 1) QW =1 ®W+ vy @ W
VR (wy + ws) =0 @ w; + v we
(r)@w=v® (rw) =r(vew)

where r € R [4]. We want to generalize this for more than two terms so we give the
definition in the general case.

Definition 2.9. A tensor product @ : Vi x Vo x ++- xV, 2 Vi@V ® ---®V, is
defined via

®(Ul,?/2,~--7Un)(f1,f2>---,fn)ZHUk(fk)- (1)
k=1

The function is readily multilinear. This mapping is usually written as v @V Q- - - R,,.
We can extend this for elements of S € ViQVo®--- @V, and T € W1 @We®---@W,,
as

(SRT)(vy,vs,...,00 wi,wy,...,wy) =S, vs,...,0)T(w],ws,... w) (2)
where v; € V¥ for k=1,2,...,n and w; € W} for j = 1,2,...,m. Tensor products
are vector spaces so they have the concept of a basis as well. We can obtain a basis
of tensor product spaces by taking tensor products of bases. Local calculations on
manifold are done using of basis representations of tensors. Moreover, tensors and

tensor fields can be defined also by giving components and describing the change of
basis and frames.

Theorem 2.10 (Basis theorem) Let {v(k £, be a basis of Vi fork =1,2,.

Then the following set {v )®v( )® ®v(m) 1 < i < ng} is basis for Vi@Va®- - ®V .
Let {(f )(k)}izl be a dual basis of {vi k.. Then if we represent a tensor T as
THeztmy, @u, @ - @y, , we can calculate the coefficient T '™ with the following
formula

iz dim T(f(ill)7 f(2)> o fm)) (3)
If we have a different basis {w )} =, with v = agk)’jw]( , then the components change
as

T]ljgjm — Tilig...imagll)vjl agf)d? . ’Efn)fjm (4)
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Proof. Let us have dual vectors fu) = b, f(Jk) on spaces V;*, then following equalities
hold

T(fays fays - Fomy) = Ty £ b2yga flays -+ bomy g Sy
= T(f1f)- ,J??s)bU)Jlb@>Jz~--b0n»jm
= Tty oy, Sy g (e 3) - - 05 By fiy)
— TGy, ( )® v( )@ - ®U](-:)(f(1),f(2), o fam)-

(5)

This proves that the set spans the vector space Vi @ Vo®---®V,,. Linear independence
is proven in followmg way: When we apply dual bases to a linear combination of

Tz “"v( ) ® v( '®® v(m) and when we observe that v( )(f(]k ) = &/ for every k,

we get
— itiz.im (1) e 1
0="T ol O () - ol (F)
— Thiimgiigh gl (6)
— T‘71742-~.7m‘

So the set is linearly independent. Let us have another set of bases vik ="
Then applying algebraic properties of tensor product we get

T7le2 i (1)®,U()® ®,U( ):

im

Tilig...im<az(11)7j1w§})) ® (az(f) szj(s)) Q- ® (az(m),me§:)) _ (7)
Tilz‘Q...imal(ll)mal(z),mal(:)umwg) ® wg) Q- ® w( )‘
We can read the transformation of coefficients from the last line. O

The change of basis is essentially performed by writing old basis vectors as a linear
combinations of new basis vectors and using rules of tensor algebra.

Tensors are natural objects for representing multilinear functions. Every Z-valued
multilinear function f can be represented as a composition of the tensor product map
® : VixVox---xV,, = Vi®V,®---®V,, and a linear functionf VWL - -V, = 7,
that is, f = f o ®. This property is in fact enough to characterize tensors and is
used as a definition in some references. Furthermore, there exists an isomorphism
L EVIVy®- - @VE — LV, V,, ..., V,; E). This isomorphism is used to define
vector-valued (k,[)-tensors. We gather these facts to two theorems. In these theorems,
m
we will denote V; x Vo x -+- x V,,, by ] Vi.

k=1
Theorem 2.11. [5, p. 26/ Let T, V1, Vs, ...,V and Z be vector spaces. We say that

a pair (T,¢), where ¢ is a multilinear function ¢ : [[ Vi — T, has the universal
k=1

m m
mapping property for multilinear functions on [[ Vi if for every f: [[ Vi — Z there
k=1 k=1



exist an unique linear function f :T'"— Z such that the diagram

J \

Ii ’,:]S

commutes. Furthermore, if (T, ¢) is such a pair, then there exists an isomorphism
JVieVa®- - @V, = T such that j o ® = ¢.

Theorem 2.12. There exists an unique isomorphism
L EQVIRVy®-- -V — LV, Va,..., Vi E) (8)

such that for everye € E. fi e V', fo e VS, ..., fmn €V,
Ue® i@ fa® @ fu) (1,02, vm) = e [ ] filvw). 9)
k=1

Proof. The proof is based on [2, p. 159]. Let {fgk)}?:kl be a basis of V', let {e;}'5
be a basis of F and T € L(V},V,,...,V,; E). It is enough to show that the set

{u(ep ® fj1 fj2 e ,f{;”nq)) 0 1<k <ne1<jr <ng}isabasis. By the calculation
T(al('ll)vil, azé)vlé,‘ = aé:"l)vim) =
T (viy, Viys - - ,vim)al(l)azé) .. azm) = (10)
k im
Ttz i €KO) Ay - Ay =
Ty imtlen ® fiy ® f3 @ - ® fi35 )(U(lw 2)- > Um))
we see that the set {i(ex ® fj1 ]”2 ... .,f]:n")) : 1<k <nel<jr <ng} spans the
vector space L(V, Vs, .. Vn, E) The proof of linear independence is similar to the
proof used in proof of Theorem 2.10] O

There are two additional operations on (k,!)-tensors that are useful: contraction
and interior product. Contraction is way to produce a (k — 1,1 — 1)-tensor from a
(k,l)-tensor and the interior product is a way to evaluate a tensor with a vector. With
the definitions that we use, the interior product is a trivial operator but we need to
define it properly. These operators are important for tensor analysis.

Definition 2.13. Let € {1,2,...,k} and A € {1,2,...,1}, then a contraction C,, )
of (k,)-tensor T =0, @@ - Qup @ f1 @ f2@--- @ f' is given by

Cor(T) =0, ()01 @120+ @0, 0 @ue f @ f 0@ af (1)
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where hat notation U means that we omit the term. We extend this by linearity for the
whole space. This is well defined since v,(f*) is invariant under change of basis.

The interior product t, is defined as
W(T)=Cii(v@T)=T(v,+...,). (12)

The indices in Cy1 can be changed if needed. We omit these indices unless otherwise
stated.

Example 2.14. Let us show how we can represent a matrix as a tensor product. Let
the matrix be

A= (g g) (13)

with respect to the standard basis {e;, es} of R%. The element ¢; maps to the element
3e; + bes so combining this with the element e} of the dual basis we obtain the
term (3e; + Heg) ® ef. Similarly with ey, we get the term (7e; + 9es) ® e5. So the
representation is : 7' (A) = (3e; + Hea) ® e} + (Tey + 9e2) ® e5. The evaluation of this
representation with a vector v of R? is done by interior product with respect to second
factor of the tensor product so A(v) = C11(v ® ™ H(A)).

With tensor algebra, we can construct the exterior algebra. There the role of tensor
product is replaced by the wedge product. The exterior algebra is the building block
of differential forms which are used to define an integration theory on manifolds. We
will only introduce the exterior space and the wedge product. We start by discussing
even permutations and anti-symmetric tensors.

Definition 2.15. A permutation of the set I,, = {1,2,...,n} is a bijection o : I,, — I,,.
The set of permutations of I, is denoted by S,,. Fvery permutation o € S, can be
composed of swaps which are permutations that changes only two elements. With this
knowledge, we can associate a sign to a permutation

(o) 1, if the permutation is given by composition of even number of swaps
sgn(o) =
& —1, if the permutation is given by composition odd number of swaps.
(14)
Permutations form a group. We can form an associated group action on the space
V=V xV x---xV given by
O'(Ul, Vo, ... ,Un) = (Ua(1)7 UU(Q), . ,Ug(n)). (15)

This extends immediately as a group action on tensors by (¢7)(w) = T'(cw) where
T € V2 and w € V™. We say that a tensor T' € V,? is alternating if ¢T = sgn(c)T.
We denote the space of alternating n-tensors as A"(V') and call it exterior space of V
with degree n. We can define the following operator on tensors

A (T) = % Z sgn(o)oT. (16)

O'ESn
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Notice that if the tensor T is alternating, then A, (T") = T. Moreover, for an arbitrary
tensor T' € V0 the tensor A, (T) is alternating. The wedge product is defined as

SAT =4 (S®T) (17)
where S € A¥(V) and T € AY(V'). The wedge product has following properties:

Theorem 2.16. [3, p. 53] Let Si, Sy € A*(V), Ty, Ty € A{(V) and U € A™(V), then
the following equations hold:

o (S1+S)ANTy =S ATy + S5 NATy and St A (Th +T3) = S ATy + ST ATy,
.(Sl/\Tl)/\Uzsl/\(Tl/\U) and
L4 Sl/\Tl = (—1)le1/\Sl

2.3 Vector bundles

A vector bundle is a smooth manifold with a vector space structure on it.

Definition 2.17. A vector bundle is a triplet (E, M, ) where E and M are smooth
manifolds and m : E — M 1is a smooth mapping and the following properties hold:
For every point p € M the fiber E, = 7~ *(p) has a real vector space structure of
dimension k. Furthermore there exists an atlas {U;}°, of M and diffeomorphisms
U, : U; x RF — 771(U;) such that for every p € M, the function’s V;(p,-) image is E,
and it is a linear isomorphism.

Let a map ¢y be a chart on U C M then we can form a chart ®; of E as follows. Let
us define an auxiliary map pry : (p,v) = (¢(p),v). Then the chart &y is given by

Py = pr,o Uyl (18)
With these maps we can form an atlas of E. The inverse map <I>l}1 is given by

®, R x RY = E, (2,v) = Uy(o(2),v).
The map ¢, ! is linear with respect to v.

Vector bundles can also be characterized by transition mappings and cocycles. Let
Uy :UxRF = E, Uy : V xRF = E be bundle charts and p € M. Then there is a
function gyy : U NV — GL(k,R) such that

\11‘71 o Wy(p,v) = (p, gvu(p)v) V (p,v) €UNV x R, (19)

The mapping gy is called a transition map. Transition maps have the following three
properties.

e The functions gyy : U — GL(k,R) are smooth.

e For every p € U we have gyy(p) = id.

12



e For every pe UNV NW we have

guw (P)gwv (p)gvu(p) = id. (20)

Knowing transition functions and charts on a manifold is equivalent to knowing the
vector bundle structure [3, p. 71|. Let ¢y : U — U and ¢y : V — V be charts on M.
Then we have a formula

Oy 0 Ol (z,v) = Py (Vu(dy' (2),v)) = pry, (¥ (Yu (g (2),0)))

_ _ - (21)

= Pr¢v(¢U1 (x)agVU(¢Ul(x))U) = (¢VU($)79VU(¢U1(9U))U)
where ¢y = ¢y o (bﬁl is the transition map between charts on M. Let us define
dvu = gvu © ¢, then we have the change of variables formula

Dy 0 @5 (2,0) = (dpg (). Gvu (@) (22)

We denote the transformation from U to V by ®y . In this thesis, we use only locally
trivialisable vector bundles and omit the prefix locally trivialisable. To perform local
calculations and change of variables, we need only to know gyp(z). To make the
terminology exact, we give following definition of change of variables.

Definition 2.18 (Change of variables). Let U and V' be open sets on R". A change
of varitables formula for an operator P is its pullback under a diffeomorphic mapping
¢ from U to V which means that the following diagram commutes:

Ay 22 B

laVU lﬁVU

A(V) £ B(V)

where A(X), B(X) represent function spaces over X and ayy, Byy are isomorphisms
associated with the function spaces and ¢. If points of U and V are denoted by x and y
respectively, then there is a standard abuse of the notation to denote the diffeomorphism
also with y(x) so for example gﬁi would be written gzz M, p. 51]. In the case of
confusion, it is advisable to write mappings explicitly.

Vector bundles are convenient objects for generalizing vector-valued quantities such as
vector fields. They can be thought of as a generalization of the concept of a tangent
bundle and a section is a generalization of the notion of vector fields to vector bundles.

Definition 2.19 (Section). A smooth map s: M — E is called a smooth section if it
satisfies the property

mos=1id: M — M. (23)
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We denote the set of smooth sections by I'(E). We can represent a section s locally
by using a chart (U, ¢) and an associated bundle chart ® in the following way: Let us
have a point © = (21, Z3,...,x,) € ¢(U), then we can write a section locally as

dyoso0 gb_l(xl,xQ, ey Ty) = (1, Ty - Xy, aq(T), an(), .. ag (). (24)

where functions a; are smooth functions on M. Thus, when we define basis sections s;

on a chart (U, ¢) as

si(z) = @z, e;) = Oy (21,72, . . ., ,,0,0,...,1,0,...,0) (25)

where e; is the canonical i*" unit basis vector on R, then every section can be
represented as a sum

s(x) = a'(z)si(z) Vr €U (26)

i=1
We gather the above discussion to a theorem that we will use in the following sections.

Theorem 2.20. Every smooth section s of a vector bundle E can be represented
locally as a sum

s(x) = Z a'(z)si(r) Va € U;. (27)

i=1

Given two overlapping charts, we want to discuss a change of variables formula for
sections. It is a mapping D®yp : (U x R¥) to I'(V x R¥) and is defined so that
following diagram commutes.

Vv ouv U

lD‘bVU(S) ls

V x Rk 29 [ x R
We can read from the diagram that D®yy(s) = @I}%, 0 s 0 ¢yy or more explicitly

Doyys(y) = (v, gvu(duv (v))s(ouv(y))). (28)

There are at least four common ways to produce vector bundles from two vector
bundles F and E’: the dual bundle E*, the Whitney sum E @ E’, the tensor product
bundle E ® E' and the exterior space A¥(E). Let gy and gi,; be transition functions
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on I and E’ respectively. Then fibers and transition functions hyy of these spaces
are given by following identities

(E")p =E5, hvo = gypr
gvu 0
(E®E), =E, & B, hyvy = ( 0 g’w)
(E®E), =E,® B, hyu(v®v) = gyvu(v) @ ghy(v')
Ak(E)p :Ak(Ep)

where the tensor product of matrices A, B are define via A® B(v®@w) = A(v) ® B(w).

We have omitted the transition mapping in case of A*(E) since A*(E) is a subspace
of @*(E).

Example 2.21. A common example of a vector bundle is the tangent bundle (M, E, p)
mentioned earlier. If ¢y (x) is a change of coordinates, then the transition function
is the Jacobian gyy(r) = D¢yy. The dual bundle construction gives us the cotangent
bundle (M, E, 7) and its transition function is (D¢y )~ . From tangent and cotangent
bundle, we can construct (k,[)-tensor bundle T%!(M). Its transition function is given
by tensor product rule. However, tensors are often handled as a linear combinations
of basis vectors in local coordinates and the change of variables is easier to do by
substitution and using properties of the tensor product. For example in the case of
(1,1)-tensors: Let us have bases {v;}*_, and {#;}5_, on TU, dual bases {f;}*_,, {fi}\_,
and let us write bases as following linear combinations ¥; = afv,, f* = bF f* then

0 ® f = (at,) ® (B ') = a}bi, ® f (20)

The coefficients a; and bf can be read from D¢y with methods represented in end of
Definition The bundle of k—forms, A*(T*M), is a subbundle of T%*(M). Since
the wedge product is sum of tensor products, we can replace the tensor product with
the wedge product in above calculations. The space of sections of this vector bundle
is denoted by A¥(M) = I'(A¥(T*M)) and its elements are called differential k-forms.

We will use differential forms later as they provides us a notion of integration on
oriented manifolds and they are useful in examples of partial differential operators on
manifolds. Thus we will introduce the exterior derivative and integration of differential
forms.

Definition 2.22 (exterior derivative). The exterior derivative is a collection of unique
operators dy, : A¥(M) — A¥HL(M) such that following properties holds for any function
fel(M), X e(TM), wy,w; € A*(M) and wy € N (M)

[ dk(wl + CUQ) = dkwl + dkw’l
(4 dkﬂ-(wl A wg) = dkwl N\ wo + (—1)’%«]1 A djbdg
o do(f)(X) = X(f)
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o di1dyw =0 forallk € {1,2,...,dim(M)}

It is usual to drop the subscript from the operator and denote d; as d. In the local
coordinates, the exterior derivative is determined by the formula

d(fdx™ Ndz™ A - A da') = Z g—fda:j Adz™ Adx™ A A da' (30)

xJ

Vector-valued (0, k)-tensors are linear functions f : T,M x T,M x --- x T,M — E,
at every point p € M. By Theorem we can represent multilinear maps to £, as
tensors of @*T*M ® E up to a canonical isomorphism. Therefore, we can think of a
vector valued tensor as a section of T'(@*T*M ® E). This can be done similarly with
(k,l)-tensors or differential forms A*(M).

2.4 [P-theory and differential operators on vector bundles

A metric tensor on a vector bundle E gives a geometric structure to the bundle. To
our needs, it is enough to define a metric tensor as a smooth mapping g : £ ® F — R
which is fiber-wise a symmetric, positive definite bilinear form. Locally, with given
basis s; the metric tensor is determined by values of basis sections g;; = g(s;,s;). We
use also the notation (-, -) for the metric tensor.

If we have two or more bundles over M with metrics, then we can induce a metric
on a vector bundle that is constructed from them. The constructions can be done
inductively so we show only the case of two vector bundles.

Theorem 2.23. Let us have vector bundles Ey, Es and with metrics (-, )1, (-,)2
respectively, then we have induced metrices on the associated bundles:

1. The dual bundle E5 has the metric given by Riesz’s isomorphism mapping: Every
metric defines locally an unique symmetric invertible matriz G by (x,y) = 2" Gy
where z,y € R are local coordinate vectors. This matrixz determines a local
isomorphism G : E, — By such that (z,y) = G"x(y). We can carry the inner
product over to dual vector space via the inverse map G~ wia the formula
(v*, WY g = (G~Tv*, G~ Tw*)g. We obtain that the asssociated matriz of the
dual metric is G~ and locally it is given by (G~ ")7e; ® e; where vectors e; are
basis sections of E|y.

2. The Whitney sum FEy & Ey has the metric given by

<<U17w1)7 (’027 w2)> = <’01, U2>1 + <’LU17 w2>2- (31)

Locally the metric is given by > ¢7f @ fi4+ S g7t fft where
1<4,j<k1 1<4,j<k2

ki, ko are dimensions of fibers of Ey, By, respectively, and {fi}",, { fr4i 122, are
basis sections of Ef and E3, respectively.
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3. The metric on a tensor product Fy ® FEy is based on the formula
(U1 ® Wy, vy ® W) = (v, Va) (W1, Wa) (32)

and is extended linearly: Let {e; 11 and {fZ 1 be bases of Ey, Ey respectively.
Then using Finstein’s summation convention we deﬁne the metric as

(ae; ® f;,0Mer @ fi) = a6 (es, er)(f;, f1) = gingna”b". (33)
This is well-defined, that is, independent of choice of a basis.

4. We get a metric to differential forms A*(E) by observing that differential forms
form a subspace of the tensor product EQ E® ---® E.

k

Proof. 1) We need to show bilinearity, symmetry, nondegenerativity and smoothness.
In case of the dual bundle, the bilinearity and symmetry are seen from (z,y) = 2" G~ 1y.
The nondegenerativity follows from the fact that ker G~ = {0}. The inverse matrix
G~ can be written with Cramer’s rule and from that form we see smoothness.

2) Bilinearity and symmetry are also clearly read from the definition in the Whit-
ney sum. The nondegeneracy follows from choosing wy,ws such that (vy,w;) and
(v9,wq) are positive. This is possible since the metrics (-, )1, (-, )2 are nondegenerate.
Smoothness can be seen from the local representation.

3) Let us show that the metric given in the tensor bundle case is well-defined: Let
{ek . {e;}™, be bases for By and {fi}%2,,{fi}*2, be bases for E,. Then we have
e; = ste, and fj t fT SO

(ae; @ fj,bMe, @ fi) = a6 (s, ex)1(fj, fi)2
= a7 s 12 1 (U] s 12 Fra)
= (a7 ) (O SP42) By Epu )1 (s o)
= ((@7sP' ey, @ fry, (Ws22472)E,, @ fr).

(34)

The coefficients (a”s]'t}') and (b¥s;°t;?) are coefficients of tensors a”e; @ f; and
bfle, ® f; in the new basis so the definition does not depend on the chosen basis.
Bilinearity, symmetry and smoothness can be easily noticed from the definition. Every
tensor is a sum of elements of form v®w. To show nondegeneracy, let us use ortonormal
bases {eZ 1, and { fZ , for Ey, E5. Each element of Fy ® F5 can be written as sum

ae; ® f;. If we have a nonzero element v of E; ® F5 then its reprsentation has some
nonzero coefficient a“7!. Let us evaluate, without Einstein’s summation convention,
an inner product (v,a"'e;, ® f;). Since the bases are ortonormal, the only nonzero
term will be (a*)?. This proves the nondegenerativity. O

We need a notion of the support of a section s € I'(E).
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Definition 2.24. Let s be a section on a vector bundle E. The support of s is denoted
by supp(s) and is defined as

supp(s) = cl({z € M|s(z) # 0}).
Smooth sections with compact support form a vector space which is denoted by I'o(E).

Orientability of the manifold is a necessary condition for integration of compactly
supported n-forms on n-dimensional manifold. A manifold is orientable if there exists
a nowhere vanishing n-form on the manifold. We will assume that manifolds are
orientable. We will denote the integral of w € Afj (M) with

/M w. (35)

For orientable manifolds the Riemannian metric provides a notion of volume form
vol,, € A™(M) which allows us to integrate functions with compact support on a
manifold. This is done by the formula

/M fvol, (36)

where f € I'g(M). With these tools, we can define the p-norm of s € I'y(E) as

3 =

lsllo = ( /M (s, sy Evol, )b (37)

The space LP(F) is defined as the completion of I'y(E) with respect to the p-norm.

Also with the volume form, we can introduce the Hodge star operator. It is needed in
the formulation of Hodge Laplacian which is a generalization of Laplace operator.

Definition 2.25 (Hodge star). The Hodge star operator  : A*(M) — A""*(M) is a
bijection and is determined by the equation

sw AN = (w,n) vol,. (38)

With vector fields, we can introduce the notion of a connection which is a generalization

of differentiation of vector fields. An operator V : I'(T'M) x I'(E) — I'(F) is called
connection if for every v,w € I'(T'M), s1,s9 € T'(E) and f € C*°(M) operator has the
following propeties:

Voiws = Vs + Vys

Vs = fVys

V(1 + $2) = Vius1 + Vyse
Vo(fs1) = fVus1 +vu(f)s1.
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By observing that a connection is C*°-linear with respect to I'(T'M) variable and
recalling Theorem [2.12] we notice that we can think of connection as an operator
from sections to E-valued (0,1)- tensors, that is, V : I'(E) — I'(T*M ® E) up an
isomorphism. The evaluation by X € I'(T'M) is given by

(Vs)(X) =Vxs
where s € I'(E).

There exists a canonical connection associated to a metric g on the tangent bundle
TM called Levi-Civita connection which we denote by V¢ or VM. It can be extended
to act on vectors defined on curves. There exists an unique operator % associated to
every smooth curve 7(t) such that 2 coincides with the Levi-civita connection: Let

V(t) be a section on the curve and V' be a section of the tangent bundle such that
V(t) = V(y(t)), then we have the equation

DZ;t) = ViV (3(1) (43)

where W is a smooth vector field such that W (~(t)) = 4(¢). We will abuse notation
and denote % by V). The geodesic of manifolds are defined to be curves (t) such
that the equation

Vi y(t) =0 (44)

holds. Every point x € M has €, > 0 depending on x such that for every (x,v) € T, M
with ||v|| < €, there exist an unique geodesic y(¢) with unit length and initial values
7v(0) = x and 4(0) = v. Thus, geodesics produce an operator exp : U C TM — M
which maps the point (z,v) € U to the point (1) given by the unique geodesic ()
with v(0) = = and 4(0) = v where the set U is a neighbourhood of the zero section

given by the union |J U, where U, = {(z,v) € T,M | ||v| < €}
zeM

We can also define covariant derivatives along curves for arbitrary connection on a
vector bundle. This provides us the notion of parallel transport of a vector v. We say
that the vector V' € E, is parallel transported along curve v(¢) : [0, 1] — M if for V(¢)
we have V(0) =V and

ViV (t) =0 (45)

for every t € [0,1]. We say that a connection is metric compatible or a metric
connection with respect to gg if V(gr(s1,s2)) = ge(Vvsi, s2) + gr(s1, Vysy) for
every V € T'(TM) and s;,ss € I'(E). Parallel transport associated to a metric
connection will preserve the norm of vector. We will assume that connections are
metric compatible whenever there is given a metric on a vector bundle.

We would want to extend connections to tensor bundles and tensor products. If we
have two vector bundles E;, E5 and connections V!, V2 on them, we can create a
connection for the vector bundle F; ® E,. This is done by the formula

VX(Sl ® 52) = vﬁgsl &S+ 51X Vg(SQ (46)
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and extended by linearity to the whole bundle. We can also introduce a connection
for the dual bundle Ej. This is done by imposing that the connection will commute
with contraction, which means that

VoCur=0CuroV,
and imposing that the connection acts on smooth functions by the formula

Vx(f) = X(f). (47)
These conditions give the following equation for the dual connection V*:

X(s*,s) = (Vis", s)+ (s, Vxs). (48)

The above condition is equivalent with the requirement that the connection commutes
with contraction. This is seen from the following calculation. Let us assume that the
connection commutes with the contraction. Then we have

X(s",s) =Vx(s,s) = VxCi1(s"®s) = C11Vx(s'®s) = (Vis™, s)+(s", Vxs) (49)

where s € E,s* € E* and brackets (-,-) denote the dual pairing instead of inner
product. Now let us assume that formula holds, then following holds

VxCi1(s"®s) = Vx(s*,s) = X(s",5) = (Vys",s)+(s*, Vxs) = C11 Vx(s*®s) (50)

and proves the claim.

We can derive an evaluation formula for V : I'(®*T*M ® E) — T(@*VT*M @ E).

Theorem 2.26. Let us have vector fields Xo, X1,..., Xy € I'(TM) and a section
T e T(**M @ E), then we have

VT(Xo, X1, Xo, ..., Xi) = V5, (T(X1, X, ..., X))
k
=) T(X1, Xs,... VY X X).
i=1
Proof. Let us start by proving ¢, Vx,T = V¥, (¢,T) — L (w1 where ¢, T" was defined
0
as 01’1<U ® T)

LwVx,T =C11(v® Vx,T)
= Cl,l(vXo(U &® T) — V)]\?Ov & T)

51
= V)E(OClJ (’U & T) — 0171(v)]\(40 (U) & T) ( )
= VJ)E(O(%T) — L(Vév(lo(v))T.

We obtain the result when we apply the result above and notice that
VT(Xo,Xl,XQ,...,Xk) :LXkLinl...LleXOT. ]
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By the above definition, the composition of connections is well defined and we can
define the k-th covariant derivative of a section V¥ : T'(E) — T(T*M®* @ E) as

VF(s)=VoVo---0Vs. (52)
b

This will be used in the coordinate-free definition of Sobolev spaces. We can write a
recursive formula for evaluating the k-th covariant derivative:

(Vks)(Xm X1, Xo, ., Xp) = Vf(ovk_ls(Xh X, ..o, Xi)

k
=Y VES(X0, X, VX X,

i=1

3 Distributions

Distribution theory is an important part of modern analysis. Distributions are used
extensively in the literature. The main advantage of distributions is that they make it
possible to extend operators to wider function spaces. Our objective in this section is to
introduce a general framework for distributions and then give examples of distribution
spaces.

3.1 General framework

Let us have function spaces V', V; C V and V; over a space M and a bilinear form
By : V x Vi — W where W is a vector space, often the field R or C. We will call the
space V] as the test function space. The space of W-valued distributions D'(M, Vi, W)
is defined to be the space L(V;;W). However, we will omit the test function space
and vector space W from the notation D'(M, Vi, W) when they are clear from the
context. When W = R, then the space of distributions is the dual space V}*.

We have a natural embedding V' to D'(M). The embedding is given by
vy : V=D (M) v+ By(v,-). (53)

It is common to omit the embedding mapping and identify elements of V' as elements
of D'(M, V). We do the same whenever it is convenient. However, we insert a tilde
on elements of V' when we mean corresponding element of ¢y (V).

From the algebraic perspective, the triplet (V, V;, By ) captures the necessary structure
used in the distribution theory. However from a topological perspective, one has to
construct topologies for the space Vi which is not a trivial task. We assume that
V1 has the structure of a locally convex vector space and that the bilinear form is
continuous. The space D'(M) is often equipped with the weak*-topology. We will
review two basic concepts of functional analysis.
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Definition 3.1 (Transpose). Let us have a linear operator A :' V. — W. Then we can
form a linear operator A" : W' — V' given by W' 3 w — wo A.

Definition 3.2 (Adjoint). Let (V,{-,-)v) and (W, (-, -yw) be inner product spaces and
AV — W be a linear operator. Then we say that an operator A* is an adjoint
operator if the following identity holds

(Av,w)w = (v, A"w)y (54)
for allv € V,w € W. This notion can be extended to bilinear forms by replacing inner

products by bilinear forms.

Almost every construction in the distribution theory involves either the adjoint or
transpose of an operator. However, the terminology is not standard as some references
call a transpose operator as an adjoint operator and vica versa. We use the same
terminology as in Tréves’ book [6, p. 240, 252].

Let us have a distribution spaces (V, Vi, By) and (W, Wy, By/) and a linear operator
A Vo — Wy where Vo C V and Wy C W. We wish to extend the domain of A to
V. This can be achieved in multiple ways but when we have an adjoint operator

A* : Wy — Vp such that

Bw (Av,w) = By (v, A*w) (55)

holds whenever v € Vg and w € Wy, then we can use the adjoint to produce an
extension operator A : D'(V) — D'(W) via the formula

A(v) = vo A*. (56)

Operators A and A are connected to each other in the following sense: Operators and
embeddings commute whenever the element is in the original domain which means
that operators satisfy the equation

yoA=Aouy. (57)
In other words, the diagram
Vo —A4 W,
e Jow
D'(M,V) —2 D'(M, W)

commutes. Let us prove this: Given elements v € V) and ¢ € W, we have a chain of
equalities

w (Av))(9) = Bw(A(v), ¢)
= By (v, A%(9)) (58)

= Alw(v))(9).
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If the operators A, A* are continuous, then the extension is continuous as well. Any
operator A with property ty o A = Ao 1y is a sensible extension operator of A. For
example, extension by Cauchy sequences could be also possible since spaces are locally
convex vector spaces. However in this work, extension by adjoint operators is the
main focus.

With distributions one can speak about weak solutions of an equation. Given an
element w € W, we say that v € V is a weak solution for A(v) = w if A(?) =
holds. If there exists a strong solution A(v) = w, then it is also a weak solution by

the identity (57).

There are many possible choices in this framework. One can, for example, choose
freely bilinear forms and space of test functions. So the structure is flexible and can be
adjusted to different situations. The bilinear form is usually derived from the operator
A using integration identities and the space of test functions is chosen accordingly.
The following subsections give examples of distribution spaces.

3.2 Distribution spaces on Euclidean space

The theory of distributions is usually first developed in the space R". We choose
compactly supported smooth functions C§°(2) to be our space of test functions V;.
We will construct a topology for C3°(€2) and its dual. This will be done via Fréchet
topology and inductive limit topology.

A locally convex topological vector space X is called Fréchet if it is metrizable with
a translation-invariant metric and it is complete. Every Fréchet topology can be
constructed from a countable set of separating seminorms {p;};en for which the
induced metric

[e.e]

=27 ]1 +pj x 3)3/) 59

7j=1

is complete. A set of seminorms is called separating if for every nonzero v € X there
exists a seminorm p; such that p;(v) # 0. Thus, giving a locally convex vector space
a countably family of separating seminorms determines a Fréchet topology. [7, p.

417,418]

An inductive limit topology is a construction based on a family of Fréchet spaces. Let
us have a family of Fréchet spaces {X};c; such that for every X, C X, there exist
a space X, so that X; U X;, C Xj, and if X; C Xj, then the topology on Xj is
finer than the subspace topology induced by Xj,. Then it is possible to construct an

inductive limit topology for the union (J X;. However we will not give the construction
j€J

here. |7, p. 417,418]
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We will equip the space C2(Q2) = {u € C§°(R2)| suppu C K} with the Fréchet topology
given by following seminorms

pr(u) = sup |0%u(x)]. (60)

zeK,|a|<k

Let us have an increasing sequence of compact sets K; such that |-, K; = Q. Then

the space C§°(€2) is given the inductive limit topology induced by the sets {CF8 ()},

Definition 3.3. The space of distributions D'(Q2) is defined as the space of continuous
linear functionals on C§°(2) with a weak*-topology induced by the seminorms

ps(u) = lu(9)], (61)
where ¢ € Cg°(Q2). [8, p. 27]

The concept of convergence is important when studying topological vector spaces. We
give the convergence criteria for the space of test functions and for distributions but
omit the proof.

Theorem 3.4 (Convergence criteria). A sequence ¢y, € C§°(2) convergences to an
element ¢ if and only if there exists a compact set K C Q such that supp ¢, ¢ C K
and we have

lim sup 0% (65 — 6)()| = 0 (62)

for alla € Ng. [7, p. 11]

A linear functional u on the space of test functions is continuous if and only if for all
compact sets K C ) there exist k € Ng and C' > 0 such that

[(u, )| <C sup {|0%(x)|} (63)

zeK,|a|<k
for all ¢ € C3°(Q) with supp(¢) C K. [, p. 18]

A sequence of distributions uy converges to a distribution u if and only if the equation
lim (u, —u, ) =0 (64)
k—o0

holds for all p € C°(QY). [1, p. 26]

The distribution spaces have nice embedding properties with respect to the embeddings.
Let us demonstrate this by an example. Consider sets ' C €2. We have a canonical
embedding ¢ : C3°(£2') — CF(R2), namely the extension by zero. So we can define
an embedding * : D'(Q) — D'() via *(f) = f o This is also an example of a
construction by transpose operator.

We want study partial differential operators, which are naturally defined on smooth
functions C*°(2), and extend them to act on LP-functions. So in the general framework,
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we have V) = C°(Q2) and V' = LP(2). The embedding of L*(Q2) to D'(£?) is given by
the bilinear form

U 1, (P) = (u, P) = / ugp de. (65)
Q

Test functions have many useful properties with respect to this bilinear form which are

straightforward to prove by using basic results of integration theory. To state these

properties, let us denote [, fgdz by (f,g) and let ¢,¢, x € CF(Q) and f € C>*(Q).

The properties are:

L (¢ +¢,x) = (¥, x) + (o, X)-
2. Let us denote multiplication by f as My, then (¢, M @) = (M), ¢).
3. The integration by parts yields (0%, ¢) = (1, (—1)1*192(¢)).

We can read the adjoint operators for these basic operators from above identities and
extend these operations for distributions.

Definition 3.5 (Operators). Let f € C*(Q) and ¢ € C3°(Q), then we define multipli-
cation operator My : D'(2) = D'(Q) as (Mfu)(¢) = u(My @) and we extend 0% for
distributions as the operator 0% : D'(2) — D'(Q) given by (0°u)(¢) = (—1)1u(0%¢)
where a € Ny.

The Euclidean structure makes possible to introduce the notion of convolution. It is
an useful tool in the analysis of partial differential equations. With it and distribution
theory, we can study rigorously fundamental solutions of a partial differential equation.
Convolution of two f,g € L'(R™) functions are defined as

frglx) = . flx —y)g(y) dy. (66)

Convolution of two C§°(R™) functions is again a smooth function. So we can search for
an adjoint identity. Let us define an operator C, as convolution by ¢ so Cy4(f) = ¢ * f.
We have following identity for Cy:

(Coth, x) = (¥, Cyx) (67)

where ¢(x) = ¢(—x) [8, p. 40]. This operation is used in smoothing and approximation
procedures.

To extend the notion of convolution for distributions, we need to impose additional
conditions for distributions. For example, we can study distributions that have smooth
functions C'*°(£2) as their test functions. The distribution space induced by smooth
functions is denoted by &'(£2). We do not discuss the topology of the space of £'(2).
To gain more information, the reader can consult the reference [7] or a standard text
on distribution theory such as [9]. Notice that the space £'(Q) is called distributions
with compact support in the literature.
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We can generalize convolution to a map * : £'(Q2) x D'(R") — D'(2). We need the
following theorem to make things well-defined. We denote the dual pairing with (-, )
in the following discussion.

Theorem 3.6. [0, p. 284/ Let us have a function ¥(z) : Q@ — E where E is a

topological vector space. If 1 is a C*-function with respect to x, then for every linear
functional T € E*, the function (T, (z)) is a C*-function with respect to x and we
have for any |a| < k the following identity

O (T, () = (T, 97 (x)). (68)

In our case, we take E to be C3°(R™) and 1 can be thought as a function ¢ : QxR" — R
such that ¢ (z,-) € C§°(R") for every « € Q. Let us have a function ¢ € C§°(2). We
can extend ¢ by zero to a function ¢ € C°(R"). Let S € £ () and T € D'(R"), then
by Theorem [3.6] the following distribution is well-defined

S+ T(¢) = (5(x),(T(y), o(z +y))) (69)

where T'(y) denotes the distribution evaluated with respect to function of variable y
and similarly for S(z). By the definition of distributional derivative we have

0°(S * T)(¢) = (S(x), (~1)I*AT(y), 0*d(z +y))) (70)
= (S(x), (9°T (), d(z +)))-

We have proven that 0%(S «T') = S % 0*T. With this knowledge, we can prove the
following theorem.

Theorem 3.7. Let us assume that we have a constant coefficient partial differential
operator P defined on the space R™ and let E € D'(R") be a fundamental solution of
P, that is, PE = &y where g is the distribution defined by do(¢p) = ¢#(0). Let f belong
to £'(Y), then u = f x E is distributional solution to Pu = f.

Proof. By direct calculation, we have

Pu(¢) = P(f x E)(¢)
= f*(PE)(¢)
= f*do(¢) i (71)
= (f(@), (0o(y), d(x +)))
= (f(z), o(z))
=(f,9)
which concludes the proof. n

Distributions, convolutions and Fourier theory form together a toolbox that is used to
study partial differential equations via fundamental solutions. It is possible to build
the fundamental solutions by taking Fourier transform of the equation PE = dy and
searching for a suitable fundamental solution. The Fourier transform will be studied
in the next section.
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3.3 Distributions on vector bundles

This section is based on the reference [10]. We start by discussing seminorms for
compactly supported smooth sections I'o(M, E) and convergence with respect to
seminorm topology.

Definition 3.8. Let K be a compact subset of M and let s be a section in U'g(M, E).
The C*(K)-seminorm ||s||cx k) s defined as

_ j
Isllenz) = max max|[V7s(z)]. (72)
We say that a sequence u, € I'o(M, E) is convergent to u € U'g(M, E) if there exists a
compact subset K such that supp(uy,),supp(u) C K and for all k € N we have

Timn [~ uller ey = 0. (73)

These seminorms define a topology on I'g(M, E). A characteristic property of the
topology is that a linear operator T' : T'y(M, E) — R is continuous if and only if

lim u,, = 0 implies lim 7'(u,) = 0. This topology is independent of metric and
n—00 n—0o0

connection on E. We denote the space of I'g(M, F) with above topology as D(M, E).

There are two suitable choices for the space of test functions, D(M, E) and D(M, E*).
If we have an metric tensor on E, then we have a natural bilinear form L*(M, E) x
D(M, E) — R given by

(u, ) = /M(u,qz5>E vol,, . (74)

However, the space D(M, E*) has a natural bilinear form with respect to L*(M, E)
which does not need any other structures than integration of scalar functions: Let
uw € L*(M, E) and ¢ € D(M, E*), then the bilinear form is

(u, ) = /M ¢(u) vol, . (75)

Both spaces D(M, E) and D(M, E*) have suitable scalar-valued bilinear forms for
distribution theory. We choose to follow the references [10],[IT] and choose the test
function space to be D(M, E*).

Definition 3.9. We define the space of distributions to consist of continuous linear
functionals T : D(M, E*) — R. We denote this space as D'(M, E). We equip it with
the weak*-topology: A sequence T, converges to an element T if for all ¢ € D(M, E*)
we have nh_g)lo T.(¢) = T(¢).

Example 3.10. Differential forms are common objects in the theory of PDEs. Many
physical laws can be written using them. For example, Maxwell’s law can be written
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with differential forms. We will introduce three distribution spaces that can be used

with differential forms. Using the definition gives that the test functions are sections
of To((A*(TM))*) and the bilinear form is

(u, p) = /M u(¢) vol, (76)

where u € QF(M) and ¢ € To((A*(T'M))*). However, the discussion in the previous
section provided the notion of Hodge star which can also be used to produce a bilinear
form for differential forms. Let us use elements of A%(M) as our test functions. In
this case, the bilinear form is given with help of Hodge star as

(4, 6) = /M u(®) A (). (77)

Finally, we can also use A7 *(M) as our test function space and following bilinear
form

(u, 6) = /M wAb. (78)

This way to form distributions leads to the theory of currentd’| which were introduced
by de Rham [12] p. 31, 33].

4 Sobolev spaces

Functions in the space L?(€2) can be regular or irregular with respect to differentiability.
For example, functions in C§°(Q2) are highly regular but on the other hand, there exist
continuous integrable nowhere differentiable functions as well. We want to study the
regularity of L?-functions. Sobolev spaces are a way to introduce regularity classes for
L2-functions.

Sobolev spaces are formed by requiring additional properties from LP-functions or
distributions. The following three conditions are characteristic properties for Sobolev
spaces WFP(Q):

e They are complete normed spaces, that is, Banach spaces.

e Sobolev spaces are nested:
WO (Q) D W (Q) D W*P(Q) D ... (79)
e The function space of compactly supported classically differentiable sections
C{"(X) is a subspace of the Sobolev space WP (Q), that is,

Cyt(Q) Cc W™P(Q), (80)

INot related to the electrical currents
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The first condition assures that the space is topologically well-behaved. The second
statement says that the parameter m measures level of regularity. The latter property
demands that classically differentiable functions with compact support belongs to the
corresponding Sobolev space. Any sensible theory of Sobolev functions on manifolds
would need fulfill these three properties.

There are many different constructions of Sobolev spaces on 2 C R™. Each definition
gives us a different way to study problems. Sobolev spaces can be divided into classical
and fractional Sobolev spaces. Classical Sobolev spaces are defined by introducing a
norm for smooth functions and taking a completion of the vector subspace of C*({2)
whose elements have finite Sobolev norms.

Fractional order Sobolev spaces are generalizations of classical Sobolev spaces. These
generalizations introduce spaces W*?(§2) where the order s can be a real number. A
desirable property for generalization is that when s = k, we obtain classical Sobolev
spaces WHP(QQ). There are many different ways to form these spaces and they utilize
additional structures of the set 2. We gather different constructions to a list and give
references for them.

e Hajlasz-Slobodeckij spaces uses the metric and measure space structure to
generalize Sobolev spaces [13].

e Interpolation theory uses Banach space structure to introduce H*(2) spaces for
k < s < k+ 1 as interpolation of spaces H*(Q2) and H**(Q) [14].

e Fourier theoretic generalization uses Fourier transform or Fourier series to
introduce H*(R") for s € R and these spaces are sometimes called Bessel
potential spaces. This construction can be extended to suitably regular open
sets (2 via an extension map [8] [15].

Each construction can be used in different setting. In fact, Sobolev spaces are just
one possible type of function spaces that one can study. One could study Holder,
Lipschitz, B.V., Hardy or some other space as well. But Sobolev spaces are well suited
for the analysis of partial differential and pseudo-differential operators.

In this thesis, we discuss only classical Sobolev spaces and Fourier theoretic construction
of fractional Sobolev spaces. These constructions can be generalized to compact
manifolds. We start by studying Sobolev spaces on R” which has additional structures
and properties that allow us to define Sobolev spaces using simpler definitions than in
the case of general manifold.

4.1 Classical Sobolev spaces on R” and on open sets {2 C R"

In the theory of partial differential equations, methods of topology and functional
analysis are widely used. Topological arguments often rely on the completeness of
metric spaces. To utilize these methods for smooth functions we need to introduce
a norm to the space C*(2). The natural way is to derive a suitable norm utilizing
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LP-norms. The resulting norm will be

1
lullep = (S 0°ull)? (s1)
0< o <k
and is called Sobolev norm. The subspace of C'*°(£2) functions, whose Sobolev norm
is bounded, is transformed into a normed space. However, the resulting space is not
complete. For this reason, we need to take completion. This leads to the following
definition.

Definition 4.1. Let Q C R™ be an open set and k € N,;p € [1,00). The classical
Sobolev space W*P(Q) is defined as the completion of the following normed space

({u e O [ lullkp < oo} |- [lkp)-

This is not the most used definition. The usual definition uses weak derivatives to
define Sobolev spaces: A function f € LP(2) belongs to W*P(Q) if it has partial
derivatives 0“f up to |a| < k where derivatives are understood as distributional
derivatives. To show the equivalence of these definitions, it is enough to show that the
space is complete and the compactly supported smooth functions are dense in that
space. The proof will use bump functions and convolution. We gather the result into
the following theorem.

Theorem 4.2. We will use notation from @) to represent a LP-function as a
distribution. The space W*P(Q) is equivalent to a norm space

{ue LP(Q) | V|a| < k 3g, € LP(Q) s.t. 0% = 14, } (82)

equipped with the same norm. Especially smooth functions are dense in the space given
above.

Let us show that the above space is indeed a Banach space.

Theorem 4.3. The space

{ue LP(Q) | V|a| <k Fg, € LP(Q) s.t. 0%y = 1y, } (83)
with the Sobolev norm is a Banach space.
Proof. Let (u,)7, be a Cauchy sequence. Let us study the distributional derivative

0%u,, for fixed a. By estimating other terms below by zero, we obtain following
inequality

[0%wally < Nullew = (Y 10%uallp)” (84)

0<|a|<k

thus 0%u,, is also a Cauchy sequence. Since LP(€)) is complete, there are limiting
functions u,, — u, 0%u,, — go. Moreover, we have for any ¢ € C§°(Q2)

<aau, (b) = nh_{go<aa (u - un)? ¢> + <8aun7 ¢>
= nhjgo<8a (u - un)7 gb) + <8aun — Ya, §Z5> + <gom ¢> (85)
= <ga7 ¢>
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Thus the weak derivative 0“u of u exists and is g,. So there exists a limit function
u € WFP(Q) and thus W*P(Q) is complete. O

The above definitions give quite abstract characterizations of Sobolev spaces. There are
more concrete ways to characterize Sobolev spaces. Three possible characterizations
are maximal function, difference quotient and ACL characterizations. We do not
discuss them but we want to point out that those are useful while studying some
problems.

Studying the regularity of Sobolev functions is important for applications. As Sobolev
regularity of k increases, it would be useful to know if classical differentiability increase
as well. The following theorems give tools for showing regularity in LP and C*-sense.
The theorems that give results about the regularity of Sobolev functions are often
called embedding theorems. There are two basic results: Sobolev-Gagliardo-Nirenberg
inequality and Morrey’s inequality. To state these result let us assume that €2 is a
bounded set with smooth boundary. The Sobolev-Gagliardo-Nirenberg inequality
states that

[ull- < CIVul, (86)
where z% = % — % This inequality and an interpolation argument gives the inequality
[ully < Cllullp (87)

where ¢ € [p, p*]. Morrey’s inequality can be stated in the following manner: When
p > N, we have an inequality

u(z) —u(y)| < Cllullplz —y[*  ae 2,y cQ (88)

where a = 1 — %. These results are usually proven first in the space R™ and then

they are extended to subsets {2 C R". This is done by proving that there exists an
extension map F : W'?(Q) — WHP(R") for which ||Eul|;, < C|lul|1, and (Fu)|qg = u
for almost everywhere.

The Sobolev-Gagliardo-Nirenberg inequality gives us tools to trade derivatives for
higher integrability and Morrey’s theorem says that when a Sobolev function is
sufficiently integrable, then it is Hélder continuous. This gives a strategy to show
regularity of a function: To show the regularity of a function f it is enough to show
that 9“f belongs to W14(Q) with ¢ > n. This can be shown by trading Sobolev
derivatives for higher integrability and applying Morrey’s inequality to 0“f to show
its continuity. With these tools, we can formulate the Sobolev embedding theorem.

Theorem 4.4 (Embedding theorems). [16, p. 182] Let Q2 be an open set of R™ and
letl1<j<kandl<p,q<oo.
1. if k — % >j— %. Then we have a continuous inclusion
WHEP(Q) — WH(Q). (89)

Furthermore, if inequality is strict and the domain is compact set with a smooth
boundary, then the inclusion map is compact.
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2. if k — % > 7, then we have a continuous inclusion
WHEP(Q) — C9(Q) (90)

which s a compact map when the domain is a compact set with a smooth
boundary.

4.2 Fractional order Sobolev spaces on R"

In the definition of classical Sobolev spaces W*P(R") the number p can be any number
greater or equal to 1. When we study the case p = 2, we can utilize Fourier analytical
methods and Fourier transform. This leads to a different characterization of Sobolev
spaces, different proofs and a generalization of classical Sobolev spaces. We start
by reviewing basic definitions and results about Schwartz spaces and the Fourier
transform. We have used the books [8, [7] and lecture notes [I7] as our references on
Fourier analysis and Schwartz spaces.

Definition 4.5 (Schwartz class). Schwartz class S(R™) is a vector subspace of the
space of smooth functions C*(R™) and is given by

S(R™) = {¢ € C=(R™) | sup|2’9%¢(x)| < o0, Ya, 3 € NI} (91)

zeR”

where we use the standard multi-index notation. The condition (91)) is equivalent to

Vm € Ng, Yoo € Nj 3Ch0 > 0 5.t [0%0(2)] < Cppo(1 + |z])7™. (92)

Every function of Schwartz class is also in LP(R™) for all p € [1, 00]. Furthermore, it
is the most convenient space to perform Fourier analysis on the Euclidean space R™.
This can extended to vector valued functions by requiring that components belong to
Schwartz class. We denote vector-valued Schwartz class as S(R™;R¥). Schwartz class
is closed under many useful operators.

Theorem 4.6. If u,v € S(R") and p(&) is a polynomial on R™, then uv,u * v, 0*u
and p(§)u all belongs to Schwartz class and the mappings are continuous. [7, p. 94]

Now, the Fourier transform can be defined in the Schwartz class and can be shown to
be a bijection.

Definition 4.7. The Fourier transform of u € S(R") is defined as

ile) = F@(© = | e Oula)do. (93
For vector-valued functions the Fourier transform is defined component-wise.
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Theorem 4.8. Let us assume that u,v € S(R*), a € Nj. Then Fourier transform
has the following properties:

e the Fourier transform F(u) belongs also in S(R™).

e [ourier transform is a bijection F : S(R*) — S(R") and the inverse is given by

n

F u)(w) = (2m)7" / e'ru(g) de. &9

e Fourier transform is almost an isometry on S(R"), that is, the following identity

holds

/n u(z)v(x)de = (2m)™" | F(u)F(v)(z)de. (95)

Rn
The Fourier transform can be extended to L*(R™) and these properties hold still [S, p.
97,100].

In Schwartz class, the Fourier transform has good properties with respect to derivatives
and multiplying by polynomials. We gather the most important properties of the
Fourier transform in the following theorem.

Theorem 4.9. Let u,v € S(R"), then following algebraic-differential identities hold
o F(0%u)(§) = (1) F(u)(€)
e O*(F(u)(€)) = F((—iz) u)(§).
Furthermore, the convolution operator has following properties:
o F(uxv)=F(u)F )
o F(uv) = (2m)~" F(u) * F(v).

One possible way to motivate the definition of Schwartz space is to find a space where
this theorem is true.

We can define distributions with Schwartz space as the space of test functions. The
distribution space will be called the space of tempered distributions and is denoted by
S'(R™). The space LP(R™) can be embedded into S’'(R™) by the standard inclusion map
f={f,0) = [p. f(x)o(x)dx. Observe that we do not include complex conjugate in
the integral. The usual operations can be extended for tempered distributions as long
as we check that required adjoint identities hold true. Especially we are interested in
the adjoint of Fourier transform.

Theorem 4.10. [7, p. 119] Let u € L*(R") and v € S(R™), then we have the following
identity for the Fourier transform

(Fu,v) = (u, Fv). (96)
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With this identity, we can readily define the Fourier transform of tempered distributions
and it will be used in the definition of fractional Sobolev spaces.

Definition 4.11. Let S € S'(R™), then we define the Fourier transform of S as
F(5)(9) = S5(F(9)). (97)

The isometry property of the Fourier transform, (u, ) = (27)™(F u, F v), is often
called the Parseval-Plancherel theorem. It provides an important connection between
classical Sobolev spaces and Fourier analysis as following propositions will show.

Proposition 4.12. Let us have a function u € H*(R"), then for every |o| < k
F(0%u)(§) = (—i&)" F(u)(§)- (98)

Proof. Since by the definition u € H*(R™) belongs to L?(R") and C§°(R") is dense in
S(R™), we can extend u to the space S'(R™). Let |a] < k and 0“u = ¢,, then by the
definition of the weak derivative we have
(9as B)2 = (u, (=1)111979),
= (F(ga), F(0))2 = (F(u), (=1)lIF(9°¢))>
= (Flga), F(@))2 = (F(w), (=1) (i) F(6))2
= (F(9a) — (i) F(u), F(9))2 = 0.

This holds for every ¢ € S(R"). Since the Fourier transform maps S(R") bijectively
to S(R"), F(¢) attains all elements of C§°(R™). Therefore, we can apply the Du
Bois-Reymond lemma and it shows that F(g,) — (i€)* F(u) = 0 which concludes the
proof. O]

(99)

H

When the weak derivative exists, then we know that (i€)* F(u) belongs to L?(R"),
that is, £2*| F(u)|? is integrable. Now the weak derivative could be defined via .
This raises a question: When this can be done and what is the necessary and sufficient
condition for £2%| F(u)|* to be integrable for all |«| < k? To answer this question, we
will need the following lemma.

Lemma 4.13. Let us define an auxiliary function

(€ =@+ &l*)z. (100)
Then we will have inequalities for any |a| < k:
gy <t <o) € (101)
1BI<k |BI<k

Proof. Using multinomial identity, we can write (£)%* as

(OF =1+ =) Cpe” (102)

18I<k
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where C is the multinomial coefficient ﬁ,(kkf'w), The inequalities will follow when we

use estimates 1 < Cs < C = |rgl‘ax Cps. O
<k

Using this lemma, the answer to the above question can be read from the following
theorem.

Theorem 4.14. The following equivalence is true:

w € HF(R™) if and only if | (£)**| F(u)(€)|* d¢ < . (103)

R’IL

Proof. Let us assume that weak derivatives exists for || < k, then by we have that
(i€)™ F(u) is the Fourier transform of the weak derivative and thus [, £*| F(u)[*(£)d¢

is finite so by (101)) we have

[eFmra < [ @Mrw@ra ey [ e rwlis <. 10

lal<k

Now, let us assume that [, (€)% F(u)|? d¢ exists. The above inequality proves that
(i€)* F(u)(&) € L*(R™) so we can define the weak derivative by taking the inverse
Fourier transform in (08). O

This theorem motivates following definition of space H*(R").
Definition 4.15. Let s € R, then the Sobolev space H*(R™) is defined to be the set
H*(R") = {u e S'(R") | (§)%i € L*(R")}. (105)

This space can be equipped with the inner product

(u ). = 2m) ™ [ (% Flu)OFTIE de. (106)

n

We want to extend fractional Sobolev spaces to subsets 2 C R™. There are at least
two ways to construct fractional Sobolev spaces for open sets: We can define H*({2)
as a suitable restriction of H*(R") given by

H*(Q) = {u € L¥(Q) | Fv € H*R") : v]q = u}. (107)

We can also define fractional local Sobolev spaces by using cut-off functions. We define

Hi () as

loc

HS

e () = {u € L*(Q) | Vo € C3°(Q) : gu € H*(R")}. (108)
We can extend the regularity theorem for H*(R™).
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Theorem 4.16. [I8, p. 215/ Let us assume that s > % + k, then H*(R") can be
continuously embedded to C*(R™) which is equipped with C*-norm. Furthermore, when
Q has a k-extension propety, that is, H*(Q) can be embedded to H*(R™), then if
k> 2+ j we have H¥(Q) C CY(Q).

The theory that extends Fourier analytical methods to LP(R™) spaces is called LP-
multiplier and Littlewood-Paley theory. The main idea in those theories is to study the
question: For what multipliers m(€) the function F~'(m(€) F(u)(€)) is LP-continuous
when v € S(R") and S(R") is equipped with L%-norm?

We will end this subsection with two examples of how Fourier analysis and distribution
theory can be applied to PDEs.

Example 4.17. Let us study the heat equation on R™ x (0, c0) with initial values in
the set {(x,0) € R"" | x € R"}. The equation is

{Otf (2,1) = Ao f (1) (109)

f(z,0) = h(x).

When we take Fourier transform of the equation with respect to a variable and denote
F.(f) = fu, we obtain following ordinary differential equation for f,

{atfm(gat) = _HS”sz(g)t) (110)

Fo(€,0) = h(€).

The solution of this equation is given by f,(¢,t) = h(€)e I€I*. Taking the inverse
Fourier transform we notice that the solution f(z,t) is obtained as a convolution
f(x,t) = h(z) * F71 (e I€1”). Now the inverse Fourier transform can be calculated

from knowing that ‘/—"(67“21” )= (27‘(‘)%67“2&' . Now

)

5 1 . 2
Foi(em ey = / i) o —tlEl? e

RTL
1 1 Sy T e
— - e Vet le T2 dz (111)
(2t)2 (2m)" /n
B 1 6—\5\\2
IOk
—llz—y] 2

We get that f(x,t) = m Jgn R(y)e™ 3~ dy is a solution for the heat equation.

Example 4.18. This example is based on the reference [7, p.218|. Fourier analytical
methods are an effective way to calculate fundamental solutions of partial differential
equations. We demonstrate this via calculating the fundamental solution E for the
Laplace operator when the dimension of the Euclidean space is n > 3. The distribution
E fulfills the equation AE = §. Taking the Fourier transform of both sides of equation,
we obtain the equation —||¢[|2E = 1. So E = W Finding the inverse transform
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requires more tools: If a function f(z) is homogeneous of degree d, then the Fourier
transform f is homogeneous of degree —n — d. This can be seen from following
calculations

FHOE) = / 29 £ (1) du

:(/}e‘“%af(i)A_"dz

= )\_"_d/ e‘“z’@f(z) dz
= AT FE ().

The second tool that we need is rotational invariance. If the function is rotation
invariant, then the Fourier transform is also rotation invariant. This is shown with a
similar calculation:

FUNRE) = [ e p(z) da

n

= [ R ) de(R) ) d:

:/ e_i<z’5>f(z) dz
= F(£)(E).

Let us calculate the Fourier transform of f(z) = ||z||=¢ for d € (0, n).

(112)

(113)

#iie =7 ()

_ Hng—" F(f) (ﬁ)

= €14 F(£)(R(0,0,...,1)) for some rotation matrix R
= [l€l" F(£)(0,0,...,1)
= callél|"™"

where ¢ = F(f)((0,0,...,1)). When we impose that d —n = —2 we obtain that
d = n — 2 so the inverse Fourier transform is form of

FAEN) (@) = —

Cn—2

(114)

[l (115)

so the fundamental solution is E(x) = ﬁ”x”z_" We will omit calculation of ¢,_s.

To justify the use of the Fourier transforms, we need to show that ||z||~2 is in S'(R")
for n > 3. When ¢ € S(R"), then we have

loll 2o(eydo = [ ol Po(ydo+ [l Pon)de (10
Rn B(0,1) R

"\B(0,1)
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The second term is observed to be finite when we notice that & ”2 < 1 and that
any Schwartz function is integrable. The first mtegral can be estimated using polar

coordinates which leads to an estimator C( mz(xx : lp(z) fo p" V=2 dp which is finite
B(0,1

for n > 3. The case n = 2 needs different methods and we refer the reader to look it
up for example from [7, p. 218|.

Fourier analytical methods can be used similarly to calculate fundamental solutions of
other partial differential equations. Moreover, one can prove more general statements
about fundamental solutions of PDEs, namely the Malgrange-Ehrenpreis theorem and
its following extension.

Theorem 4.19. [7, p. 198] Every nonzero constant coefficient partial differential
operator P on R™ has a fundamental solution E € S'(R™) such that P(E) = ¢ in
S'(R™).

4.3 Sobolev spaces H*(M, E) on vector bundles

There are at least two ways to define Sobolev space on vector bundles: The coordinate-
free way to define Sobolev spaces is to define them as the completion of I'(E) with
respect to Sobolev norm. The second definition is a local definition which is based on
coordinate invariance of Sobolev spaces on open sets 2 C R. We give both definitions
in this subsection.

Definition 4.20. Let u be a section of To(E). Then we define W*P-Sobolev norm as

1
lulley = O [1V7ully)?. (117)

i<k

With this norm, we can introduce the Sobolev space W*?(M, E). Furthermore, we
can introduce the space of sections with continuous k-th derivative C*(M, E).

Definition 4.21. The Sobolev space W*P(M, E) is defined as the completion of the
set {u € I'g(E) | ||ul|rp < oo} with respect of the Sobolev norm || - ||k.p-

The space C*(M, E) is defined as the set of continuous sections u such that for every
j <k, function’s j-th covariant derivative V/u exists, is continuous and its L>-norm

|V*u|| oo is finite where the L -norm is ||ul|o = sup||u(z)||z. This space is equipped
xeM
with norm

[0 = IgngVkUHm- (118)

This definition has the benefit that it is similar to the definition of LP spaces and
it uses only the method of completing a normed space. Furthermore, the definition
uses only coordinate-free operations of manifolds and, thus, gives a coordinate-free
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way to define Sobolev norm. One can prove that this definition is equivalent with the
following local definition.

Definition 4.22 (Local Sobolev spaces). Let M be a compact manifold and w : E — M
N
a vector bundle of dimension n. Let us have a cover M = | Uy such that there exist

=1
charts ® : 7= (Uy) — Vi x R™ on the bundle E. As every section s € I'(E) can
represented locally as linear combination of basis sections, we can study push-forward
section (D®y)s : T(m 1 (Uy)) — T'(Vk x R™) which are defined by the local representation
z = (D®;s),(x), (DP;5)o(x), ..., (DPss),(x)). We can define a Sobolev WrP-norm

as
N n
Isllwrore =Y D 1(DBis);llwen,- (119)
i=1 j=1
A section s belongs to WHP(M, E) if its above norm ||s|wrsr g is finite.
Theorem 4.23. [16, p.181] Different atlases of M produce topologically equivalent
local Sobolev norms. Furthermore, these norms are also equivalent to the coordinate-
free norm. So the coordinate-free definition and local definition produce the same

Sobolev space. Especially a section of E belongs to a Sobolev space if and only if for
every chart, the components belong to the corresponding Sobolev space.

This theorem implies that we can prove results for Sobolev spaces of vector bundles
by proving them for scalar functions and then extend results to sections by using
partition of unity. The Sobolev embedding theorem is an example of this.

Theorem 4.24. [16, p. 182] Let E be a vector bundle over a compact manifold M.
Let j <k and 1 <p,q < co.
1. if k — % >j— %, then we have a continuous inclusion
WkP(M, E) — WH(M, E). (120)
Furthermore, if the inequality is strict, then the inclusion map is compact.
2. if k — ;71 > 7, then we have a continuous inclusion
WHhP(M, E) — CI(M, E) (121)
which s a compact map.

These embeddings are often used to prove regularity results for solutions of equation
Pu = f. To show the regularity, a common strategy is to prove that the operator has
the property

Puc WHP(M; E) = ue WHP(M; E). (122)

Then the smoothness of solution on a compact base manifold M follows immediately

when we notice that T'(E) = (| W*P(M; E) which is consequence of the Sobolev
keN
embedding theorem. Thus if f € I'(E) then u € I'(E).
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4.4 Fourier analysis and H;

(M, E) spaces on vector bundles
In the manifold case, we lack the vector space structure that we used to define the
Fourier transform on L?-spaces over the space R”. However, we get an inner product
space structure to our use when we consider sections over the tangent bundle and
the cotangent bundle. To use this, we need to lift functions from the manifold to the
tangent bundle. We start by defining a micro-local lift and then the Fourier transform
between the tangent bundle and the cotangent bundle. This section is based on the
article [19].

Throughout this subsection, let assume that (M, g) be a Riemannian manifold, £ and
F are vector bundles over M with metric tensors (-,-)g and (-, -)r and s is a section
of I'(E). We need following technical lemma.

Lemma 4.25. Let us denote the tangent bundle as p : TM — M. There is a
neighbourhood W of the zero section of TM such that the function (p,expy) maps
W diffeomorphically into neighbourhood of diagonal of M x M. Then there exists a
smooth function ¢ : TM — [0, 1] such that supp(y)) C W, supp((z,-)) is compact

for every x € M and 1|5, = 1 for some open set W including the zero section of T M.
The function 1 is called a cut-off function.

With a cut-off function and the parallel transport 7,x1)0) : Ey0) — E,1) we can
define a microlocal lift as follows.

Definition 4.26. The micro-local lift of f is given by
[ (o) = 0()7d o Flexp(v), for any ve W (123)

and extended by zero for TM \ W.

We get the original function back when we evaluate the microlocal lift at the zero
section of the tangent bundle. So we do not lose information when we lift a function
to a tangent bundle. To study function’s local properties it is enough to consider
properties of the micro-local lift at each fiber. We can now introduce the Fourier
transform on vector bundles. We need the following functions space in the theory of
Fourier transforms.

Definition 4.27. The space of smoothing symbols S (T'M, E) over the tangent bundle
1 defined as a set of smooth functions a : TM — E such that for every open set
U C M and every open set V- C ¢(U), such that trivializations exist, the following
property holds: For every trivialization ¥ : E|y, — V x RN, compact set K C V,
a, 8 € N? and pu € R there exists a constant C = Cy g1, > 0 such that the following
wnequality holds in K :

v 98

|5z ez Y@@ < CO+ el (124)
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where € € p~'(¢p7H(K)).

A smoothing symbol restricted to every fiber T, M belongs to the Schwartz class.
So it is useful to define smoothly varying tempered distributions on the tangent
bundle S (T'M, E)* as functions which relate to every point z € M a distribution
u € §'(T, M) such that u(f) € C>°(M) for every f € S™(TM, E).

Notice that we could have replaced the tangent bundle with the cotangent bundle in
definitions and the result above. Thus, all definitions can be given also in the case of

the cotangent bundle. We need a notion of L?-space on a fiber. We say that a section
u: TM — E belongs to L2(T'M, E) if the integral

/ M<U(x7€),U(:v,£)>E dg (125)

is finite for all z € M where the measure will be given by the volume form associated
to the metric’s matrix representation at point x. We have the following useful lemma
about L?-spaces.

Lemma 4.28. Let f € L*(E) then f¥(v) € L2(TM, E).

Proof. Letv € T, M and let us denote 1 (z, v) by ¢(v), thus f¥(v) = gb(v)Te;;(v)f(exp(v)).

Since parallel transport preserves the inner product, we have
(D(0) Ty (exD(0)), d(v) 7o (exp(v)) = ¢*(v){f(exp(v)), f(exp(v))) (126)

and it is enough to consider [, , #*(v)(f(exp(v)), f(exp(v)))r dv. Since supp(¢) is
compact, the local presentation of volume form in normal coordinates, g, obtains a

minimum C' > 0 on the set V' = exp(supp(¢)) where ¢ is determined by vol(M) =
gdz1dzy . . . dz,. Let us denote the image of the set V' under normal coordinates by V.
Now the estimate

/(f(iﬂ),f(ﬂﬁ»volM(fﬂ) > C/ (f(2), f(2)) dzrdza ... dzy (127)
V /

holds and thus fv/ 2), f(2))dz1 dz . .. dz, is finite. The claim follows when we ex-
pand [;. , &*(v){f (exp( ), f(exp(v))) g dv in normal coordinates and use the estimate
lp(v)| < M for some M:

*(v){f(exp(v)), f(exp(v))) g dv < MQ/ (f(2), f(2))dz1dz ... dz,. (128)
T, M ’
O
Definition 4.29. The Fourier transform over the tangent bundle is a mapping
F:S®(TM,E) — S™(T*M, E) given by
1

ALY — —i(§,v)
u— u(é) = 2n)? /,r(@M e u(v)dv. (129)
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This operator has an inverse F~*: S°(TM, E) — S(T*M, E) given by

1
(2m)2

o= u(v) = /T . eV (€)dE. (130)

w(v)

The Fourier transform depends only on the fiber. Therefore, we can extend the Fourier
transform to an operator F : L2(TM, E) — L:(T*M, E) and this is well-defined by
properties of the Fourier transform on the space R".

We define the Fourier transform F : S®(TM, E)* — S(T*M, E)* on smoothly
varying distribution as F(u)(f) = uw(F ' (f)) where f € S°(T*M, E). Since we study
the Fourier transform fiber-wisely, this definition makes sense and the adjoint property
follows from the adjoint property on the fiber over the point x. We can define a

fiber-wise lift of D'(M, E) to the space S°(T'M, E)*. Let us fix a point « € M, then
we push locally a function f € S (T'M, E) to the base manifold via

fua(y) = v(exp; () f(y,0) (131)

where 1) is a cut-off function. The function f, , belongs to the space I'g(M, E) so we
can use it as a test function. We can define the local lift as u¥(f)(z) = u(fy.). This
makes possible for us to use the Fourier transform on distributions D'(M, E).

With the Fourier transform on a vector bundle, we can define fractional Sobolev spaces
on a vector bundle using the Fourier transform.

Definition 4.30. Sobolev spaces
(i) Let s > 0, we define HY (M, E) to be the set

Hiyo(M, E) ={u € L*(M, E) | (£)° F(u")(¢) € L{(T"M, E)

. (132)
for all cut-off functions 1}
(11) And more generally we can set s € R and define HY (M, E) as
B (M.B) ~{u € DOLE) | FO)O € ATME)

for all cut-off functions 1}

(11i) When the base manifold M is compact, then the Sobolev space can be defined
as follows. Let {B(x;,7;)}., be a finite cover of M such that w(exp;jl(y)) is
positive for every y € B(x;,1;), then let us define H*(M, E) as

H*(M,E) = {u € L*(M,E) | (§)" F(u")(x;,") € L*(T; M)} (134)
and define a norm |ju| = f} \|<§)SF(U¢)(QC]-,-)HL§ and the associated inner
=1

product (u,) — i (€ Fu?)(w5,), )" F (@) (w5, )
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5 Partial differential operators

A linear partial differential operator of degree k£ on the space R™ is defined as a linear
operator which can be written in the form of

ol
P=>" aa(x)g$a. (135)

|| <k

A natural way to extend partial differential operators to vector bundles is to require
operators to look like ordinary partial differential operators on every chart. There are
also two other ways to define partial differential operators: Definition based on Peetre’s
theorem and an algebraic definition. In this section, we give all three definitions.

Let E, F be vector bundles with dim(F) = k and dim(F') = m. Let s be a section

of E and Y a’(z)s;(x) be its local representation. For an arbitrary linear operator
j=1

P:T(FE)— I'(F), we obtain

n k

Py d(z)s;(2)) = Y P(a’(2)s;(x)). (136)

J=1 J=1

We need to take account that £ and F' have different bases so the most general linear
transformation rule available is

P(a'(z)s)(z)) = Z Pii(d'(x))3' (x) (137)

where P, is linear operator on 2 C R" and & is another local basis. We get the
following definition.

Definition 5.1 (Partial differential operators in local coordinates). We say that P is
a partial differential operator T'(E) — T(F) if for all local bases s’(x) and §(x) we
have

k

k
P(Y_ ' (@)si(a) = 30 Y Pylai(a))5(a). (138)

i=1 j=1
where P;; are ordinary partial differential operators. If we represent coefficients of
local basis as column vectors, then the definition can be written as

k PH Ce Plk CLl (.l’)

P() d(z)si(z)) = | 1 . Ll (139)
i=1 Poi ... Pl |d®(x)

This definition is convenient for local calculations and looks similar to the Euclidean
case. To check that this definition is coordinate invariant, we need to introduce the

change of variable formula. We show how to derive it.
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Let U and V be charts on M and let P : Ii( )

,R¥) = T'(U,R™) be a partial differential
operator. Then the natural constrain for P : I'(V,

%
R*) — I'(V,R™) is that the diagram

D(V,RF) 220% ({7, R¥)

g I

r(V,R™) 229% p(@, Rm)

commutes. Thus, the operator is given by P = D<I>61\7 o Po D®gy. From this, we can
read that the pull-back operator is also a partial differential operator.

Definition 5.2. The degree of a partial differential operator is the largest degree
among degrees of P;; of all local representations.

We see from the change of variables formula that the degree of the partial differential
operator is independent of choice of charts. Furthermore, the degree has the following

property.

Proposition 5.3. Let f € C*(M), P be a partial differential operator of degree k
and s be section, then the operator

[P, f1(s) = P(fs) — fP(s) (140)

s a partial differential operator and degree k — 1.

Proof. By the linearity of operators, it is enough to show this for an operator consisting
only of a,(x)0:

ao(2)0%(f3) — an(x) f(2)0%s = as(x) < Z (a) I foPs — f@“s)

0<B<a b

= 4 () <1<§6;a (g) 9 f@%%)

since the inequality |o — 3| < k — 1 holds in the sum, we have shown the claim. [

(141)

This gives motivation for the algebraic definition. We define a sequence of operator
spaces PDOF(E, F'). We do this inductively. Let

PDO’(E, F) = {P € Hom(FE, F)|[P,u] = 0 Yu € C*(M)} (142)
and then we define a space PDO*(E, F) as

PDO*(E, F) = {P € Hom(E, F)|[P,u] € PDO* ' (E, F) Yu € C*(M)}. (143)
With these spaces the definition of a partial differential operator is shortly as follows:
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Definition 5.4 (Algebraic definition). We say that P is PDO operator of the degree
k if P € PDO"(E, F).

This is a way to define partial differential operators in a coordinate-free manner.
The degree of a partial differential operator can be calculated by using algebra. Let
us demonstrate this by confirming that the exterior derivative and co-differential,
§: QF(M) — QF1(M) which is defined as § = (—1)* x~1 dx*, are operators with degree
one.

Example 5.5. Let us study degree of the exterior derivative:
d, fl(w) = d(fw) — fd(w) = fdw + df ANw — fdw = df N\ w. (144)

where f € T'(M). Since wedge product is C*°(M) linear, df A w is in PDO°. For the
co-differential we have equalities

[6, flw) = (=1 * 7 d* (fw) = f(-1)*x T dxw
= (—DF s df Axw+ F(=DF s dxw — f(—1D)F s dxw (145)
= (=DF 71 df A xw.

Now by C°°(M)-linearity of wedge product and Hodge star, we obtain that the operator
[6, f] belongs to PDO".

When we equip k-forms A%(M) with a Hodge inner product |’ W A *n. Then the
co-differential § will be an adjoint of the exterior derivative d, that is, (dw,n) = (w, on).
This can seen from following calculation: Let w € A*1 n € AE(M), then Stokes’
theorem implies that

O:/8M(w/\*n):/Md(w/\*77):/de/\*njL(—l)k1/ wAdx*xn (146)

M
and thus

/dw/\*n:/ w/\(—l)kd*n:/ wA (=1« dx . (147)
M M M

This shows that ¢ is an adjoint of d. With these operators, we can define the Hodge
Laplacian A = dd + dd which can be seen to be formally self-adjoint by straighforward
calculation. The degree of the Hodge Laplacian is two as can be concluded from the
following theorem.

Theorem 5.6. Let us have operators P € PDO*(M, E, F) and Q € PDO' (M, F,G),
then the composition QP belongs to PDOk+l(M, E, Q).

Proof. Let P € PDO*(M, E, F) and Q € PDO'(M, F, G) be partial differential opera-
tor, then we have the identity
[QP, flu=QP(fu) — fQP(u)
= Q(fP(u) + [P, flu) = fFQP(u)
= fQP(u) +[Q, fI(P ) Q([P, flu) — fFQP(u)
= [Q, f1(Pu) + Q([P, f])u.

(148)
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We see that the [QP, f] is a sum of composition of partial differential operators with
lower degrees. When one of the operator is degree 0, then one of the terms vanishes
in the sum. The theorem follows when we apply this identity k + [ times. O]

Partial differential operators have the property that they are local operators which
means that supp(Ps) C supp(s). This is easily seen from the local definition. Let us
prove that this holds also for the operators in PDO™(E, F').

Proposition 5.7. Let P be a partial differential operator of degree m and s be a
section T'(E) then

supp(Ps) C supp(s) (149)
holds.

Proof. We follow the idea of the reference [20, p. 423|. Let us prove the claim by
induction. In the case m = 0, the operator P € PDO™(FE, F’) has property

P(fu) = fP(u) Yu€eT(E),feC™(M). (150)

For any open set O D supp(u), we can find a smooth bump function ¢ such that
supp(¢) C O and ¢|supp(u) = 1. Using the equation (150) with f = ¢ we see that

supp(P(u)) = supp(P(¢u)) C supp(¢). (151)

We can take supp ¢ as close to suppu as we want which is enough to conclude the
claim in the case m = 0.

Now assume that the claim holds m = k. Then for any m = k+1, P € PDO*Y(E, F)
and f € C*(M) we have

P(fu) = [P, flu+ fP(u) (152)

by the induction step we have that supp([P, flu) C supp(u) because [P, f] is an
operator of degree k. Using same bump functions ¢ and the same argument again, we
conclude that

supp(Pu) = supp(P(¢u)) C supp(u) U supp(¢) (153)
which finishes the proof. O

This result shows that the value of a partial differential operator is determined by its
values on a neighbourhood of a point: Let u and v agree on a small neighbourhood
of = then the = belongs to the complement of the support of u — v. The proposition
will imply that supp(P(u — v))® O supp(u — v)¢ so Pu(z) = Pv(z). Thus, Pu is
determined by local information of w.

In fact, the property in Proposition is enough for a linear operator to be a partial
differential operator locally. When the manifold is compact, then the operator is a
partial differential operator globally. This is known as Peetre’s theorem. So we can
use the condition in Proposition as a definition for partial differential operators.
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Theorem 5.8 (Peetre’s theorem). [21, p. 196] Let M be a smooth manifold and
E1, Es be vector bundles over M with dimensions k and m, respectively. Let us suppose
that P is a linear operator such that, for all sections s, we have supp P(s) C supp s.

Then for any point a € M there exists a neighbourhood (U, ) such that the vector
bundles have trivializations and the pull back operator, P : T'o(U,R¥) — T'o(U,R™), can
be represent as a partial differential operator in the analytical sense: For all sections

(a1(x), as(x), ..., an(x)) € To(U,R¥) we have

) a'(z) Py ... Pu| |a(2)
P(| + )= . : (154)
a"(x) Pni ... Pual| |a™(x)

where Py are partial differential operators in U eR"

We have shown that the analytical definition implies the algebraic property and
that algebraic property implies the support property. Therefore, Peetre’s theorem
shows that all three definitions will be equivalent on compact manifolds. If we
study noncompact manifolds, then we can find operators that have the property
supp P(s) C supp s but the degrees of local partial differential operator representations
do not have a global upper bound.

6 Pseudo-differential operators

Main objects in the theory of pseudo-differential operators are the graded operator
algebra W>°(M; E, F) together with the graded symbol space S*°(M, Hom(E, F')). The
theory can be divided into two parts: Establishment of a pseudo-differential calculus
and applications of the calculus. The most important properties of pseudo-differential
calculus are L? and Sobolev continuity, the composition theorem, the existence of
adjoint operator and the asymptotic summation property. Our object is to establish
pseudo-differential calculus and to state rigorously above properties. Applications of
pseudo-differential operators are given in Section

There are three different definitions of pseudo-differential operators in the literature:
local, axiomatic and coordinate-free. Each way provides a different point of view to
pseudo-differential operators. We will include a local and coordinate-free definitions
in this thesis. The axiomatic definition takes properties of pseudo-differential calculus
and uses them as a definition. By including local and coordinate-free definitions,
we have tried to give a coherent picture of the theory. All three definitions will
lead to the same calculus of pseudo-differential operators. Since the local definition
uses pseudo-differential operators on R”, we start by introducing pseudo-differential
operators in the space R™ which is an important case by it own.
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6.1 Pseudo-differential operators in R"

The theory of pseudo-differential operators arose from harmonic and Fourier analysis.
In the space R", pseudo-differential operators can be viewed as a generalization of
partial differential operators in the Fourier analytical framework. Therefore, we will
introduce pseudo-differential operators through the Fourier analysis of Schwartz spaces
where we have the following theorem about partial differential operators.

Proposition 6.1. Let P(x,D) = > aq(x)0“ be a partial differential operator with
la|<m
coefficients in the S(R™). The symbol of P is defined as p(x,£) = > aq(x)(i€)~. Let
la|<m
u € S(R"), then we have a formula that connects the symbol and the operator:

P(x, Dyu(x) = (27) ™" / ¢ p i, €)il(€) d (155)

n

Proof. By the properties of the Schwartz class we have that (i£)“« is in the Schwartz
class and therefore it is also absolutely integrable. Thus, we can take partial derivatives
to under of the integral sign in the following calculation [22, p. 154].

P(z, D)u(z) = Y _ ao(x)0"u(z)

laj<m

= Y en ta@ [ T

n
laj<m

— 00" Y [ aalomme )

laj<m

=20 [ i) de

(156)

This shows the proposition. O

Pseudo-differential operators are generalization of this representation. In the case
of partial differential operator with constant coefficients, the symbol p(z,§) is a
polynomial with respect to £ variable. However for pseudo-differential operators, we
allow more general symbols to be used in the identity . The function spaces that
we will use, are called symbol spaces. We follow the notation used in the reference [§]
with minor changes.

Definition 6.2 (Symbol spaces). Letd € R, 0 < § < 1,0< p <1 and X be an open
subset of the R' for some | € N. The space Sﬁ‘f’é(E; R™*K) s called matriz valued symbol

space of degree d and type p,0 and is defined as subspace of matrix valued smooth
function C=(3 x R*;R™¥) such that for any p(X,€) € S95(3;R™F*) and for any
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compact K C X and for any o € N2, 8 € Ni following inequality holds for some cq g

10%0P(X, €)|| < cap (L + [[€]) P12, (157)

There are many suitable choices for X for developing the theory but in this thesis
we use 2 = R™ or ¥ = 2 C R™. Furthermore, we will restrict ourselves to the case
(p,0) = (1,0) and omit the subscripts. However, large part of the results will apply
also for p,d such that 0 <1 —p < < p < 1. When we study scalar valued symbol
spaces, then we denote simply symbol space as S¢(X). One can also use sets R" x R"
or £2; x )y as a choice for ¥ in the definition of symbol spaces. We will not discuss
these symbol spaces in the main text but introduce them shortly in Appendix. We
define the following spaces as well:

deR

deR

(158)

The symbol space S;°(3;R™**) is called the space of smoothing symbols. Symbol
spaces have the following elementary properties.

Theorem 6.3 (Properties of symbol spaces). Let d,d’ € R and p,q € S(3;R™*F)
and r € ST (X;R**) then we have:

1. p+q € S4X;R™*k)
2. pr € S (5, R,

We will need symbol series in the theory and the concept of asymptotic sum is the
correct notion to use. The definition of asymptotic sum is based on the following
theorem.

Theorem 6.4. [8, p. 166] Let {d;}52 be a decreasing sequence of real numbers such
that d; tends to —oo. Then for any sequence of symbols pa, € S (33 R™<F) there erist
a symbol p(X, &) € S%(X;R™k) such that for any k € N

k
=) P, (X, €) € St (S RH), (159)
j=0

We define the symbol p provided by the above theorem as an asymptotic sum of pg,
and denote this by p ~ > py;. Asymptotic sums are used in stating results about
pseudo-differential operators and in the construction of a parametrix. With symbol
spaces, we can now define pseudo-differential operators on the Schwartz space.
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Definition 6.5 (Pseudo-differential operators). Let u € S(R™;R¥) and let us have a
symbol p € SYR™;R™*). Then an operator Op(p) is defined as

Op(pu(e) = (2m) " [ =9p(a, )ale) de. (160

We say that an operator is a pseudo-differential operator if it can be represented
as (160). The operator space induced by S¢(R";R™**) is denoted by W¢(R";R™*F)
and is called space of pseudo-differential operators of degree d. Let us check that a
pseudo-differential operator is well defined on the Schwartz space.

Proposition 6.6. Let u and p be as in definition above, then Op(p)u € S(R™;R™).

Proof. |23, p. 40] We need to show that
sup |2°0” Op(p)u| < oo (161)
zeR™

for all @, 8 € NZ. By using integration by parts and calculating we have
2207 Oplo)ul =[2°0; | e *p(a, )a(€) ]
= | [ a0 p(, u(9)) de|
- / S (Meretenorpia i) ag
v<B

—| [ et Z(‘f’)af—%p(x,s))(ig)m(s))da

v<B

<\5\) (p(x,£)(i&)"0(€))) d]

S (5) () oo cnog-eranen e

(162)

Now the symbol condition (157) gives us that [0207 7 (p(x,€))| < C(1 + [¢])™ 1% and
we obtain that

/ o 50 (5 (7 notor i pa et

v<B <

e S () (M) ea e o sraeniac

v<B 6<a

U,
o2
<p

(163)

By the properties of Schwartz class (1 + ]5\)m_|5‘8§‘_5((i§)7ﬁ(§)) is bounded by the
estimate Cy(1 + |[£])™™ for some M that is large enough so the integral is finite. This
concludes the proof. n
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Symbols that are polynomials in £ and bounded in z with fixed £ are easily seen to
satisfy the symbol condition (157)). Especially this is the case when the symnol is given
by p(x,) = > aa(z)(i€)* with a,(z) € S(R"). Thus, we have following theorem.

la|<m

Theorem 6.7. A linear partial differential operators on the space R™ with coefficients
i the Schwartz class are pseudo-differential operators.

There does not exist the notion of the Schwartz class on open sets so we can not use
it to define pseudo-differential operators. However there are compactly supported
smooth functions C§°(£2; R¥) that we can use. Furthermore, we can take the zero
extension of compactly supported function and calculate the Fourier transform of
the extension. This provides a suitable object for the definition of pseudo-differential
operator on open sets.

Definition 6.8. Let p(x,&) € S4UQ;R™F), u € CP(;RY) and 4 be the Fourier
transform of the zero extension of u. We define Op(p) to be an operator given by

Op(p)ula) = [ e p(a, )a(e)de, (164)

There are also alternative definitions of pseudo-differential operators. If the open set
is a smooth domain, one can use the Fourier analytical methods on manifolds. This
approach is treated in the next section. One can also write the Fourier transform
explicitly and obtain a formal integral

Pu(z) = / / €, €)uly) dy d. (165)

R

In this formal integral, we can replace S%(2;R™**) with S4(Q x Q; R™<*) and use
symbols of form p(z,y, ). However, this leads to oscillatory integrals and we discuss
briefly this approach in Appendix.

6.2 Symbol map and its properties

An arbitrary pseudo-differential operator does not have as good properties as we
would hope for. Therefore, we need to consider two classes of pseudo-differential
operators: properly supported pseudo-differential operators and smoothing operators.
Properly supported operators have good properties with respect to the symbol map.
Moreover, they have an adjoint on the space C§°(€2) and they form an algebra under
the composition of pseudo-differential operators.

Definition 6.9. A support supp P C  x € is the complement of the largest open
set of form wy X wo such that wi,ws C Q2 and Pu = 0 in D'(wy) for every function
u € C§°(ws). We say that P is properly supported if the projections pry : supp P — Q
and pry : supp P — € are proper maps, that is, an inverse image of a compact set is a
compact set. [15, p. 180]
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A smoothing operator is an operator determined by an element of smoothing symbols
S10°(€2). The space of smoothing operators is denoted by W=>°(R"). These operators
have good regularity properties since they map Sobolev spaces to the space of compactly
supported smooth functions and their Schwartz kernel is smooth which means that
there exists a function K € C*°(Q x Q) such that

Pute) = [ K(e.g)uty)dy (166
where u € C3°(2) [15 p.179]. More about Schwartz kernels can be found in Appendix.

We have the following theorems about properly supported operators.

Theorem 6.10. [15, p. 181] An operator P is properly supported if and only if there
exists a decomposition

Pu = Z ©; P(¢ju) (167)

for some @;, ¢p; € C()).

Theorem 6.11. A properly supported pseudo-differential operator can be extended to
be a mapping P : C*(Q) — C*(Q). [15, p. 181]

It can be shown that every pseudo-differential operator has a decomposition into a
properly supported and a smoothing pseudo-differential operator.

Theorem 6.12. Every pseudo-differential operator P € W (3; R™k) can be repre-
sented as a sum of a properly supported pseudo-differential operator and a smoothing
operator.

Smoothing operators form a vector subspace of W4(2; R™**). So we can study equiva-
lence classes of symbol space S{(Q; R™**)/S76°(€; R™**) and corresponding operator
classes W{ (€; R™%) /075°(Q; R™*¥). The symbol mapping, which we define next,
has nice properties with respect to these equivalence classes.

The symbol of a pseudo-differential operator can not be defined in the same way as
the symbol of partial differential operators since the function ¢“*¢ does not have
a compact support with respect of . However, with any function ¢ € C3°(£2) the
function ¢(x)e’ @€ is compactly supported. Evaluating P with functions of the form
¢(x)u(x) is process known as localization. In fact, it can be shown that a localization
of any continuous linear mapping P : CP(€2) — C*°(2) can be represent as pseudo-
differential operator [15, p. 167]. We choose to use the term symbol instead of
localization. The symbol mapping is defined as follows.

Definition 6.13. Let P be a scalar pseudo-differential operator of degree d and ¢ be
a cut-off function near x, then a symbol of operator P is opy and is defined via

(,€) = P(8(y)e" "™ )ymo = e ETP($(y)e" )] s (168)

The mapping opg belongs to S{,(R™).
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We have an approximation theorem for symbol map.

Theorem 6.14. [15, p.171,173,182] Let us have P € 94(Q), ¢ € C&®(Q) and
ope(x,§), then we have the following regularity result

—lal

Tonme = D, P, Fé(x) € SN (). (169)
la|<N

This gives us an asymptotic sum

ol
TOp(p)6 ™~ D Z?@?p(x, §)0; (). (170)

«

If the operator is properly supported then ¢ can be chosen to be identically 1 on the
whole space, and the symbol is given by

p(z,€) = e "D P (x). (171)

The theorem above and theorem [6.12] imply that the symbol map and the quantization
map p(x,&) — P(x, D) are inverses to each other when they considered mappings
between S™(€2)/S™>°(2) and ¥™(§2)/¥~>(Q).

We have introduced the total symbol and discussed its properties. However, there
is a notion of a principal symbol that is useful in applications. Instead of studying
equivalent classes S™(€2)/S™>(Q2) we will study equivalence classes S™(€)/S™ 1(Q).

Definition 6.15. Let us have an operator P € ¥ (Q2) and an element ¢ € S™(Q2)
such that

opy—q€S"HQ). (172)
The principal symbol o,,,(P) is defined as the equivalence class of ¢ in S™(Q)/S™ ().
The following examples are based on the Proposition 1.5 in the reference [19, p. 5].

Example 6.16. If we have two symbols p;, po which are polynomial in the second
variable £ and belong in the same equivalence class S{(€2)/576°(€2). Then the symbol
condition implies that

C
1+ [l¢]l

|p1(l’,f) —p2($,€)| < (173)

and thus p; — py is bounded in ¢ variable. However, only bounded polynomials are
the constant functions. So when we let £ to tend infinity in the estimate (173]), we
obtain that p; — ps = 0, that is, p; = ps.
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Example 6.17. We say that a function f : R® — R is homogenous of degree s if
FAE) = A f(§). Let us study symbols that are homogenous of degree s with respect
to variable £&. We have following inequality for homogenous symbols

|F (e, ) = 1P f (2, 7o) < Cla) (1 + [I€1D)° (174)

£
el
where C'(z) is the maximum of |f(z,&)| on {z} x S"~1. By observing that 9“f(z, &)

is homogenous of degree s — |a|, we see that symbols p(z, ) whose C(z) estimate is
bounded, belongs to S*(12).

If we have two homogenous symbols that differ only by smoothing symbols, we can
show that they are equal by similar argument as the previous example: Let us have
¢ € S"1. Then the assumption p; — py € S™°(Q) leads to an estimate

[p1(2,€) = pa(. )| = [A7*[Ipa(w, AE) — pala, AE)| < IA[7*(1 + I AE])° (175)

for all d € R. Choosing small enough d, we get that |\|=5(1+]|\¢[|)? — 0 when A — oo,
0 p1(x, &) = pa(z, &) when £ € S"~1. Since a homogenous function is determined by
values on the sphere S™~!, we obtain that p; = p, everywhere.

The space of classical symbol of degree d is defined as symbols p € S¥(€2) such that
there exists sequence of symbols p,_; for [ € Ny such that p,;_; is homogenous of degree

d—1land p~ > psy. We denote that space with S¢(Q2). Now if we use inductively
IS\
our uniqueness result on principal symbols o4_;(p — > 04x(p)), we obtain that
0<k<l

classes in S4(Q2)/S7°°() consists only of one element.

6.3 Pseudo-differential calculus

Pseudo-differential operators have a similar operator calculus as partial differential
operators have. They have adjoint operators, the composition of operators and an
invariance under change of variables. These results rely on finding a suitable asymptotic
sum for the desired object and they are proved often with symbols of form p(z,y, ).
We start by stating adjoint operator theorems.

Theorem 6.18. [2], p. 43/ Let us have an operator P € W4(R™). Then there is an
adjoint operator P* such that

(Pu,v) = (u, P*v) (176)

holds for all u,v € S(R™). Furthermore, we can extend this for vector-valued operators.

This gives us a way to extend a pseudo-differential operator to act on tempered
distribution. In the case of open sets, we need to limit ourselves to properly supported
pseudo-differential operators.
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Theorem 6.19. [15, p. 18/,193] a properly supported pseudo-differential operator P
has an adjoint P* such that P* is a pseudo-differential operator with symbol p* such
that

* Z o Y
P~ 080 6). (177)

Since P is properly supported, it maps C3°(§2) functions to CF(Q) functions and the
adjoint will also be properly supported. Therefore, we can extend the operator P to
act on distributions D'(Q). Furthermore, the principal symbol of P* is the adjoint of
principal symbol of P:

om(P*) = om(P)". (178)

With help of the adjoint, we can calculate the Fourier transform of ¢Pu where
¢ € C3°(€2).

_ / P*(ge ") u(x) do

_ / =5 ¢=ie.6) P (i@ Yy ()

F(pPu)(€) = / e @8 o Pu(z) dx

(179)

PR | et ~Eu(a)da

Rn

so the Fourier transform of ¢ Pu is a weighted Fourier transform of u.

A composition of partial differential operators is again a partial differential operator.
A similar theorem holds for pseudo-differential operator with a minor change: One
of the operators has to be properly supported. This is not a major obstacle as the
decomposition Theorem [6.12] says that every pseudo-differential operator is a sum of a
properly supported and a smoothing operator.

Theorem 6.20. [15, p. 196,208 Let Q2 be an open set, pi(x,€) € SU(Q) and
p2(z, &) € S%(Q) such that one of the operators Py = Op(p1) and Op(ps) is properly
supported. Then we have

Op(p2(7,€)) Op(p1(7,§)) = Op(ps(z, €)) (180)
with ps € SU*42(Q) such that
j—lal

Ps(.6) ~ Y 0 pa(, )07 pi (4, ) (181)

«

Especially, we have
Od1+d2(P3) = UdQ(P2)0d1 (Pl) (182)
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If neither of the operators is properly supported, then Py(¢Py) is still well-defined for
every ¢ € CF(Q) and it has a symbol

i~ lal
> (e, 90 (¢(0)pi(,)). (183)

«

This theorem transforms the operator space ¥*°(Q2) /¥=>°(2) to an algebra which has
good properties with respect to the algebra S>(€2)/S™>°(Q)

Pseudo-differential operators are also invaria