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Osittaisdifferentiaaliyhtälöt muodostavat tärkeän työkalun matemaattisessa mallinnuk-
sessa. Niitä käytetään malleissa, joissa parametriavaruus on riittävän sileä. Ensim-
mäisiä osittaisdifferentiaaliyhtälöitä olivat aalto- ja lämpöyhtälöt avaruudessa R3.
Alkuaikoina osittaisdifferentiaaliyhtälöiden ratkaisemiseksi käytettiin muun muassa
muuttujien separointia, Fourier-sarjoja ja Greenin funktioita. Näiden menetelmien
matemaattinen perusteleminen tapahtui vasta myöhemmin.

Lineaaristen osittaisdifferentiaaliyhtälöiden teoriaan kehitettiin 1900-luvulla distribuutio-
ja Sobolev-avaruudet. Näiden avaruuksien avulla monet käsitteet täsmällisesti määritel-
tyä ja menetelmien toimivuus saatiin todistettua. Toinen 1900-luvulla ilmennyt asia
oli monistojen tärkeys matemaattisessa mallinnuksessa ja erityisesti fysiikassa. Suh-
teellisuusteoria osoitti, että aika-avaruutta kannattaa mallintaa monistona. Tällöin
myös muut fysiikan osittaisdifferentiaaliyhtälöt kannattaa esitellä monistoilla. Kolmas
1900-luvun keksintö oli pseudo-differentiaalioperaattorit.

Tämän työn tarkoitus on määritellä modernin analyysin työvälineitä monistoilla ja
soveltaa näitä elliptisiin osittaisdifferentiaaliyhtälöihin. Painotamme differentiaaligeo-
metrialle tyypillisiä koordinaatistovapaita määritelmiä ja tavoitteenamme on antaa
analyysin käsitteiden määritelmät myös koordinaatistovapaasti. Toisena ideana työssä
on koota kattavasti modernin analyysin työkaluja yhteen esitykseen. Tämän takia
olemme tehneet kompromisseja ja annamme joidenkin lauseiden kohdalla vain viitteen
todistukseen.

Määrittelemme ensin differentiaaligeometrian käsitteitä, joiden pohjalta voimme luo-
da vektorikimpuille Lp-avaruuksien käsitteen. Tämän jälkeen voimme määritellä
distribuutioavaruudet ja esitellä Lp-avaruuksien upotukset distribuutioavaruuteen.
Distribuutioteoriaan liittyen rakennamme myös yleisen matemaattisen kehyksen, joka
osoittaa mitä matemaattisia rakenteita distribuutioteoriaan tarvitaan.

Analyysille tärkeät Sobolev-avaruudet määrittelemme kahdella tavalla: käyttäen
derivoinnin kaltaisia operaattoreita ja käyttäen Fourier-muunnosta. Differentiaaligeo-
metrian käsitteistä tangenttikimppu osoittautuu tärkeäksi, koska sen avulla voimme
määritellä kovariantin derivaatan ja yleistää Fourier-analyysin koordinaattiriippumat-
tomasti monistoille. Annamme Fourier-muunnoksen hyödyllisyydestä muutaman
esimerkin euklidisen avaruuden osittaisdifferentiaaliyhtälöille.

Työn toisella puoliskolla tarkoituksenamme on esitellä pseudo-differentiaalioperaattorit
ensin euklidisessa avaruudessa ja sitten kompakteilla reunattomilla monistoilla. Paino-
pisteemme on pseudo-differentiaalioperaattoreiden perusominaisuuksien ja operaat-
torikalkyylin esittelyssä. Lopuksi sovelluksena pseudo-differentiaalioperaattoreista
osoitamme parametriksien olemassaolon elliptisille operaattoreille.
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1 Introduction

The objective of this Master thesis is to give coordinate-free definitions of certain
concepts in modern analysis on vector bundles and to apply these tools to elliptic
partial differential equations. Topics that we cover are distribution theory, Sobolev
spaces and pseudo-differential operators. We study these topics on vector bundles
since they are used extensively in physics. Many physical laws are formulated on vector
bundles, for example, Maxwell’s equations and equations of continuum mechanics are
formulated using vector-valued functions. This work can be seen as a survey or an
overview of these topics on vector bundles.

We will also include definitions using coordinate charts as they are used in the literature.
Therefore, we need to define objects also in the Euclidean space Rn. In that setting,
we can more easily give examples of how to apply the theory to the theory of partial
differential equations and we have done so to demonstrate the use of the theory. The
theory can be developed solely using charts but we have included coordinate-free
definitions as they give geometric constructions of the objects and since coordinate-free
definitions are often used in differential geometry.

We start by reviewing vector bundles and L2-spaces in Section 2 and then we will
study distributions in Section 3 where we will give a general framework of distribution
theory and then provide examples of distribution spaces. In Section 4, we move on
to study Sobolev spaces and discuss them on Rn, on open subsets of Rn and then
introduce Fourier analysis and Sobolev spaces on vector bundles.

In Section 5, we will focus on partial differential operators on vector bundles. Our
goal is to introduce a coordinate-free definition of partial differential operators on a
vector bundle. After this, in Section 6 we will introduce pseudo-differential operators
on Rn and discuss the basic properties. The discussion of pseudo-differential operators
on vector bundles is handled in Section 7.

In the last section, we are going to study the Fredholm theory of elliptic opera-
tors on compact manifolds. This requires a review of Fredholm operators. Using
pseudo-differential calculus, we will prove that elliptic pseudo-differential operators are
Fredholm operators. We end the section by giving an application to elliptic regularity
and studying the Poisson problem of an elliptic pseudo-differential operator.

Although we will review differential geometry and tensors, we assume that the reader
is familiar with ideas of differential geometry. However, one can read only parts where
the Euclidean space is used and skip parts where manifolds are needed. Since our
exposition is closer to a survey or an overview, we have taken some results without
proof and provided only a reference for the proof. This makes it possible to give a
wider overview of the techniques. In Section 9, we have pointed out some further
topics on the subject.
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2 Vector bundles and L2-spaces

In this section, we give necessary definitions, notation and results of differential
geometry that we use later in the text. We start by reviewing manifolds, tensors and
smooth locally trivialisable vector bundles. We have used [1, 2, 3] as our references
about differential geometry.

2.1 Manifolds

Definition 2.1 (Topological manifold). A topological manifold M is a topological
space which is second countable, Hausdorff and has the following property: Every point
p ∈ M has a neighbourhood U and a function φU from U to an open set of Rn such
that the function is a homeomorphism. The pair (U, φU) is called a coordinate chart
and values of φU(p) are called coordinates.

In topological manifolds, change of coordinates between charts is defined to be a
function φV U = φV ◦φ−1

U : φU (U∩V )→ φV (U∩V ) whenever U∩V is nonempty. Charts
φU and φV are said to be Ck-compatible if functions φUV and φV U are Ck-mappings.
With this, we can define a Ck-differentiable structure on a manifold.

Definition 2.2. A collection of charts A = {(U, φU ), (V, φV ), (W,φW ), . . . } is said to
be a Ck-differentiable structure on a manifold M if the following conditions hold:

• The sets U, V,W, . . . form an open cover of M ,

• every pair of charts is Ck-compatible whenever charts’ domains overlap,

• and A is maximal. Meaning that if a coordinate chart (U, φU ) is compatible with
charts on A, then (U, φU) ∈ A.

Let M be a topological manifold and A be a Ck-differentiable structure on M , then
we say that (M,A) is a Ck-manifold. A differentiable structure on a manifold is
uniquely determined by any open cover of compatible charts [3, p. 4]. In this thesis,
We consider only C∞-manifolds and call them smooth manifolds.

Example 2.3. The simplest manifold is the Euclidean space Rn. It is an n-dimensional
manifold with the differentiable structure determined by the chart (Rn, id).

Example 2.4. A smooth function f : M → Rk on a manifold is a function such
that f ◦ φ−1

U is smooth for every chart φU . For every smooth function f , the set
{(x, f(x)) ∈M ×Rk|x ∈M} is a manifold with differentiable structure determined by
open sets Ũ = {(x, f(x))|x ∈ U, U is open} and charts φV ◦prx where prx : (x, v) 7→ x.

For every manifold M , we can construct an associated tangent bundle TM . Elements
of the tangent bundle consist of points x ∈ M together with equivalence classes of
curves γ through the point x. The equivalence relation is given by the following
condition: The curves γ1(t) and γ2(t) are equivalent if and only if γ1(0) = γ2(0) = x
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and d
dt
|t=0f(γ1(t)) = d

dt
|t=0f(γ2(t)) for every smooth function f . An equivalence class

through a point x is called a vector on TxM . Every tangent vector determines a
linear functional on smooth functions by lγ(f) = d

dt
|t=0f(γ(t)). The linear functional

representation provides a natural vector space structure for vectors TxM . The map
ρ : TM → M taking a tangent vector to its associated point x is called the bundle
projection.

We say that a continuous mapping F : M → N is smooth if for every chart (U, φU ) on
M and (V, φV ) onN such that F (U) ⊂ V , the function φV ◦F ◦φ−1

U is smooth. For every
smooth mapping F : M → N there exists an associated mapping F∗ : TM → TN
between the tangent bundles. This mapping is given by (x, v) 7→ (F (x), w) where w is
the linear functional w(f) = v(f ◦F ). The mapping is called the differential of F . Let
us have charts (U, φ) on M and (V, ψ) on V . Then we have a local representation of F
as F̃ = ψ ◦ F ◦ φ−1 and the local representation of the differential is DF̃ . With these
concepts, we can provide two general ways to construct manifolds. These examples
will involve concept of regular submanifolds of M . They are subsets S of M such that
every point x ∈ S has a neighbourhood U and φU such that the set U ∩ S is obtained
by vanishing k coordinate functions of φU . The dimension of the regular submanifold
in this case is dim(M)− k, see [1, p. 100]

Example 2.5. Let M,N be manifolds with dimensions m and n, respectively. We
say that a point c is a regular value of a smooth mapping F : M → N if the preimage
of c is empty or for every point x ∈ F−1({c}) the differential F∗ : TxM → TF (x)N
is surjective. In this case, the set F−1({c}) is called a regular level set. Now it can
be shown that a regular level set is a regular submanifold of M and its dimension is
m− n. Especially the set F−1({c}) can be equipped with a smooth structure [1, p.
105]. The most common examples arise when N = R and F is a smooth function. In
this case, it is enough to show that F∗ is nonzero, at every point of the level set.

Let the manifold M be the space R3 with the standard differential structure and let
F (x, y, z) = x2 + y2 + z2. Then F (x, y, z) = 1 is the unit sphere in R3. Let us show
that the differential of F is nonzero when x 6= 0. The differential is DF = 〈2x, 2y, 2z〉
which is zero only when 〈x, y, z〉 = 〈0, 0, 0〉. Since F (0, 0, 0) = 0, we see that c = 1 is
a regular value of F and thus the sphere S2 is a manifold.

Example 2.6. If we have a smooth function F : M → N such that F is injective and
the tangent map F∗ is injective at every point p ∈M , then F is called an immersion.
It can be shown that F (M) can be given a manifold structure and F (M) is called an
immersed submanifold. However, the immersed manifold may not be a manifold with
respect to the subspace topology [1, p. 122]. When we require that F : M → F (M)
is a homeomorphism with respect to the subspace topology, then F (M) is a regular
submanifold of N . The mapping F is called an embedding and F (M) is called an
embedded or regular submanifold.

To show that an immersion is a homeomorphism it is useful to use the following fact: A
continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
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Intuitively the above discussion says that an immersion of a compact manifold is a
regular manifold. For example the image of S2 under the map f(x) = Ax+ b, where
A is invertible matrix and b ∈ R3, is a manifold. Thus, ellipsoids are manifolds as they
are obtained with this way.

2.2 Tensors

Tensors and exterior algebras are standard objects on manifolds. For example, they
are used to represent multilinear functions and differential forms. We collect and
revise definitions and results that we need later in this thesis. The exposition is based
on books [3, 1, 2] and [4]. We focus on the tensor algebra since its construction varies
in the literature. However, we discuss shortly exterior algebra as it is needed for
definition of differential forms. We will use Einstein’s summation convention while
discussing tensors.

Definition 2.7 (Dual space and dual pairing). Let V be a finite dimensional vector
space with dimension n. Its dual space V ∗ is the space of ccontinuous linear functionals
to R, that is, V ∗ = Hom(V,R) := {f : V → R | f is linear and continuous}. We can
think of elements of V also as elements of (V ∗)∗ as there is a natural dual pairing of
v ∈ V and f ∈ V ∗ given by 〈f, v〉 = f(v). We will reserve the notation 〈·, ·〉 for the
metric tensor so we will sometimes use a standard abuse of notation and denote dual
pairing as v(f).

We will often use change of coordinates which induces a change of basis so it is necessary
to know how to work with bases. Let {ek}nk=1 be a basis for V . Then we define a dual
basis to be the set {fk}nk=1 such that fk(ei) = δki where δki is Kronecker’s delta. We
will denote the coordinate vectors of v ∈ V , f ∈ V ∗ by v, f ∈ Rn×1 with respect to
the bases {ek}nk=1, {fk}nk=1. Then, by the definition we have v(f) = f(v) = f>v.

Let {ẽk}nk=1, {f̃k}nk=1 be different bases of V and V ∗ respectively. Then a change of
basis matrix P is a matrix for which the equation ṽ = Pv holds. Then for dual bases,
the matrix P−> is the change of basis matrix for dual bases. This is seen from the
following calculation (P−>f)>Pv = f>P−1Pv = f>v.

It is often useful to write a basis vectors ei and fk as a linear combination of another
basis. In notation above, this is written as ei = aji ẽj, f

k = bkj f̃
j. Now P , aji and bkj

are related: By evaluating P with standard basis vectors, we notice that aji = Pji and
similarly we get that bkj = (P−>)jk = (P−1)kj.

Definition 2.8 (Tensor product space). Let V1, V2, . . . , Vn, Z be vector spaces. A
multi- or k-linear function is a function f : V1 × V2 × · · · × Vn → Z such that f is
linear in every argument: For every 1 ≤ k ≤ n we have

f(v1, v2, . . . , avk+bwk, . . . , vn) = af(v1, v2, . . . , vk, . . . , vn)+bf(v1, v2, . . . , wk, . . . , vn).

We denote the space of Z-valued multilinear functions by L(V1, V2, . . . , Vn;Z). We
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define the tensor product space V1⊗V2⊗· · ·⊗Vn as L(V ∗1 , V
∗

2 , . . . , V
∗
n ; R). The space of

(k, l)-tensors is denoted by V k
l and is defined as V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸

k

⊗V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
l

.

There is a natural way to form an element of V ⊗W with elements v ∈ V,w ∈ W ,
namely, the tensor product of v ⊗ w. The intuition behind the following definition is
that the tensor product will have following properties

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w
v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

(rv)⊗ w = v ⊗ (rw) = r(v ⊗ w)

where r ∈ R [4]. We want to generalize this for more than two terms so we give the
definition in the general case.

Definition 2.9. A tensor product ⊗ : V1 × V2 × · · · × Vn → V1 ⊗ V2 ⊗ · · · ⊗ Vn is
defined via

⊗(v1, v2, . . . , vn)(f1, f2, . . . , fn) =
n∏
k=1

vk(fk). (1)

The function is readily multilinear. This mapping is usually written as v1⊗v2⊗· · ·⊗vn.
We can extend this for elements of S ∈ V1⊗V2⊗· · ·⊗Vn and T ∈ W1⊗W2⊗· · ·⊗Wm

as

(S ⊗ T )(v∗1, v
∗
2, . . . , v

∗
n, w

∗
1, w

∗
2, . . . , w

∗
m) = S(v∗1, v

∗
2, . . . , v

∗
n)T (w∗1, w

∗
2, . . . , w

∗
m) (2)

where v∗k ∈ V ∗k for k = 1, 2, . . . , n and w∗j ∈ W ∗
j for j = 1, 2, . . . ,m. Tensor products

are vector spaces so they have the concept of a basis as well. We can obtain a basis
of tensor product spaces by taking tensor products of bases. Local calculations on
manifold are done using of basis representations of tensors. Moreover, tensors and
tensor fields can be defined also by giving components and describing the change of
basis and frames.

Theorem 2.10 (Basis theorem). Let {v(k)
i }

nk

i=1 be a basis of Vk for k = 1, 2, . . . ,m.
Then the following set {v(1)

i1
⊗v(2)

i2
⊗· · ·⊗v(m)

im
: 1 ≤ ik ≤ nk} is basis for V1⊗V2⊗· · ·⊗Vm.

Let {(f)i(k)}
nk

i=1 be a dual basis of {v(k)
i }

nk

i=1. Then if we represent a tensor T as
T i1i2...imvi1 ⊗ vi2 ⊗ · · ·⊗ vim, we can calculate the coefficient T i1i2...im with the following
formula

T i1i2...im = T (f i1(1), f
i2
(2), . . . , f

im
(m)). (3)

If we have a different basis {w(k)
i }

nk

i=1 with v(k)
i = a

(k),j
i w

(k)
j , then the components change

as

T̃ j1j2...jm = T i1i2...ima
(1),j1
i1

a
(2),j2
i2

. . . a
(k),jm
im

. (4)
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Proof. Let us have dual vectors f(k) = b(k),jf
j
(k) on spaces V ∗k , then following equalities

hold

T (f(1), f(2), . . . .f(m)) = T (b(1),j1f
j1
(1), b(2),j2f

j2
(2), . . . , b(m),jmf

jm
(m))

= T (f j1(1)f
j2
(2), . . . , f

jm
(m))b(1),j1b(2),j2 . . . b(m),jm

= T j1j2,...,jmv
(1)
j1

(b(1),l1f
l1
(1))v

(2)
j2

(b(2),l2f
l2
(2)) . . . v

(m)
jm

(b(m),lmf
lm
(m))

= T j1j2,...,jmv
(1)
j1
⊗ v(2)

j2
⊗ · · · ⊗ v(m)

jm
(f(1), f(2), . . . , f(m)).

(5)

This proves that the set spans the vector space V1⊗V2⊗· · ·⊗Vm. Linear independence
is proven in following way: When we apply dual bases to a linear combination of
T i1i2...imv

(1)
i1
⊗ v(2)

i2
⊗ · · · ⊗ v(m)

im
and when we observe that v(k)

i (f j(k)) = δji for every k,
we get

0 = T i1i2...imv
(1)
i1

(f j1(k))v
(1)
i1

(f j1(k)) . . . v
(1)
i1

(f j1(k))

= T i1i2...imδj1i1 δ
j2
i2
. . . δjmim

= T j1i2...jm .

(6)

So the set is linearly independent. Let us have another set of bases v(k)
i = a

(k),j
i w

(k)
j .

Then applying algebraic properties of tensor product we get

T i1i2...imv
(1)
i1
⊗ v(2)

i2
⊗ · · · ⊗ v(m)

im
=

T i1i2...im(a
(1),j1
i1

w
(1)
j1

)⊗ (a
(2),j2
i2

w
(2)
j2

)⊗ · · · ⊗ (a
(m),jm
im

w
(m)
jm

) =

T i1i2...ima
(1),j1
i1

a
(2),j2
i2

a
(m),jm
im

w
(1)
j1
⊗ w(2)

j2
⊗ · · · ⊗ w(m)

jm
.

(7)

We can read the transformation of coefficients from the last line.

The change of basis is essentially performed by writing old basis vectors as a linear
combinations of new basis vectors and using rules of tensor algebra.

Tensors are natural objects for representing multilinear functions. Every Z-valued
multilinear function f can be represented as a composition of the tensor product map
⊗ : V1×V2×· · ·×Vm → V1⊗V2⊗· · ·⊗Vm and a linear function f̂ : V1⊗V2⊗· · ·⊗Vm → Z,
that is, f = f̂ ◦ ⊗. This property is in fact enough to characterize tensors and is
used as a definition in some references. Furthermore, there exists an isomorphism
ι : E⊗V ∗1 ⊗V ∗2 ⊗· · ·⊗V ∗m → L(V1, V2, . . . , Vm;E). This isomorphism is used to define
vector-valued (k, l)-tensors. We gather these facts to two theorems. In these theorems,

we will denote V1 × V2 × · · · × Vm by
m∏
k=1

Vk.

Theorem 2.11. [5, p. 26] Let T, V1, V2, . . . , Vm and Z be vector spaces. We say that

a pair (T, φ), where φ is a multilinear function φ :
m∏
k=1

Vk → T , has the universal

mapping property for multilinear functions on
m∏
k=1

Vk if for every f :
m∏
k=1

Vk → Z there
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exist an unique linear function f̂ : T → Z such that the diagram

T

m∏
k=1

Vk Z

f̂φ

f

commutes. Furthermore, if (T, φ) is such a pair, then there exists an isomorphism
j : V1 ⊗ V2 ⊗ · · · ⊗ Vm → T such that j ◦ ⊗ = φ.

Theorem 2.12. There exists an unique isomorphism

ι : E ⊗ V ∗1 ⊗ V ∗2 ⊗ · · · ⊗ V ∗m → L(V1, V2, . . . , Vn;E) (8)

such that for every e ∈ E, f1 ∈ V ∗1 , f2 ∈ V ∗2 , . . . , fm ∈ V ∗m,

ι(e⊗ f1 ⊗ f2 ⊗ · · · ⊗ fm)(v1, v2, . . . , vm) = e
m∏
k=1

fk(vk). (9)

Proof. The proof is based on [2, p. 159]. Let {f i(k)}
nk
i=1 be a basis of V ∗k , let {ei}

nE
i=1

be a basis of E and T ∈ L(V1, V2, . . . , Vn;E). It is enough to show that the set
{ι(ek ⊗ f j1(1), f

j2
(2), . . . , f

jm
(m)) : 1 ≤ k ≤ ne, 1 ≤ jk ≤ nk} is a basis. By the calculation

T (ai1(1)vi1 , a
i2
(2)vi2 , . . . , a

im
(m)vim) =

T (vi1 , vi2 , . . . , vim)ai1(1)a
i2
(2) . . . a

im
(m) =

T ki1i2...imeka
i1
(1)a

i2
(2) . . . a

im
(m) =

T ki1i2...imι(ek ⊗ f
i1
(1) ⊗ f

i2
(2) ⊗ · · · ⊗ f

im
(3))(v(1), v(2), . . . , v(m))

(10)

we see that the set {ι(ek ⊗ f j1(1), f
j2
(2), . . . , f

jm
(m)) : 1 ≤ k ≤ ne, 1 ≤ jk ≤ nk} spans the

vector space L(V1, V2, . . . , Vn;E). The proof of linear independence is similar to the
proof used in proof of Theorem 2.10.

There are two additional operations on (k, l)-tensors that are useful: contraction
and interior product. Contraction is way to produce a (k − 1, l − 1)-tensor from a
(k, l)-tensor and the interior product is a way to evaluate a tensor with a vector. With
the definitions that we use, the interior product is a trivial operator but we need to
define it properly. These operators are important for tensor analysis.

Definition 2.13. Let µ ∈ {1, 2, . . . , k} and λ ∈ {1, 2, . . . , l}, then a contraction Cµ,λ
of (k, l)-tensor T = v1 ⊗ v2 ⊗ · · · ⊗ vk ⊗ f 1 ⊗ f 2 ⊗ · · · ⊗ f l is given by

Cµ,λ(T ) = vµ(fλ)v1⊗ v2⊗ · · · ⊗ v̂µ⊗ · · · ⊗ vk ⊗ f 1⊗ f 2⊗ · · · ⊗ f̂λ⊗ · · · ⊗ f l (11)
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where hat notation v̂ means that we omit the term. We extend this by linearity for the
whole space. This is well defined since vµ(fλ) is invariant under change of basis.

The interior product ιv is defined as

ιv(T ) = C1,1(v ⊗ T ) = T (v, ·, . . . , ·). (12)

The indices in C1,1 can be changed if needed. We omit these indices unless otherwise
stated.

Example 2.14. Let us show how we can represent a matrix as a tensor product. Let
the matrix be

A =

(
3 7
5 9

)
(13)

with respect to the standard basis {e1, e2} of R2. The element e1 maps to the element
3e1 + 5e2 so combining this with the element e∗1 of the dual basis we obtain the
term (3e1 + 5e2) ⊗ e∗1. Similarly with e2, we get the term (7e1 + 9e2) ⊗ e∗2. So the
representation is ι−1(A) = (3e1 + 5e2)⊗ e∗1 + (7e1 + 9e2)⊗ e∗2. The evaluation of this
representation with a vector v of R2 is done by interior product with respect to second
factor of the tensor product so A(v) = C1,1(v ⊗ ι−1(A)).

With tensor algebra, we can construct the exterior algebra. There the role of tensor
product is replaced by the wedge product. The exterior algebra is the building block
of differential forms which are used to define an integration theory on manifolds. We
will only introduce the exterior space and the wedge product. We start by discussing
even permutations and anti-symmetric tensors.

Definition 2.15. A permutation of the set In = {1, 2, . . . , n} is a bijection σ : In → In.
The set of permutations of In is denoted by Sn. Every permutation σ ∈ Sn can be
composed of swaps which are permutations that changes only two elements. With this
knowledge, we can associate a sign to a permutation

sgn(σ) =

{
1, if the permutation is given by composition of even number of swaps
−1, if the permutation is given by composition odd number of swaps.

(14)

Permutations form a group. We can form an associated group action on the space
V n = V × V × · · · × V given by

σ(v1, v2, . . . , vn) = (vσ(1), vσ(2), . . . , vσ(n)). (15)

This extends immediately as a group action on tensors by (σT )(w) = T (σw) where
T ∈ V 0

n and w ∈ V n. We say that a tensor T ∈ V 0
n is alternating if σT = sgn(σ)T .

We denote the space of alternating n-tensors as Λn(V ) and call it exterior space of V
with degree n. We can define the following operator on tensors

An(T ) =
1

n!

∑
σ∈Sn

sgn(σ)σT. (16)
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Notice that if the tensor T is alternating, then An(T ) = T . Moreover, for an arbitrary
tensor T ∈ V 0

n the tensor An(T ) is alternating. The wedge product is defined as

S ∧ T = Ak+l(S ⊗ T ) (17)

where S ∈ Λk(V ) and T ∈ Λl(V ). The wedge product has following properties:

Theorem 2.16. [3, p. 53] Let S1, S2 ∈ Λk(V ), T1, T2 ∈ Λl(V ) and U ∈ Λm(V ), then
the following equations hold:

• (S1 + S2) ∧ T1 = S1 ∧ T1 + S2 ∧ T1 and S1 ∧ (T1 + T2) = S1 ∧ T1 + S1 ∧ T2,

• (S1 ∧ T1) ∧ U = S1 ∧ (T1 ∧ U) and

• S1 ∧ T1 = (−1)klT1 ∧ S1.

2.3 Vector bundles

A vector bundle is a smooth manifold with a vector space structure on it.

Definition 2.17. A vector bundle is a triplet (E,M, π) where E and M are smooth
manifolds and π : E → M is a smooth mapping and the following properties hold:
For every point p ∈ M the fiber Ep = π−1(p) has a real vector space structure of
dimension k. Furthermore there exists an atlas {Ui}∞i=1 of M and diffeomorphisms
Ψi : Ui × Rk → π−1(Ui) such that for every p ∈M , the function’s Ψi(p, ·) image is Ep
and it is a linear isomorphism.

Let a map φU be a chart on U ⊂M then we can form a chart ΦU of E as follows. Let
us define an auxiliary map prφ : (p, v) 7→ (φ(p), v). Then the chart ΦU is given by

ΦU = prφ ◦Ψ−1
U . (18)

With these maps we can form an atlas of E. The inverse map Φ−1
U is given by

Φ−1
U : Rn × Rk → E, (x, v) 7→ ΨU(φ−1(x), v).

The map Φ−1
i is linear with respect to v.

Vector bundles can also be characterized by transition mappings and cocycles. Let
ΨU : U × Rk → E, ΨV : V × Rk → E be bundle charts and p ∈ M . Then there is a
function gV U : U ∩ V → GL(k,R) such that

Ψ−1
V ◦ΨU(p, v) = (p, gV U(p)v) ∀ (p, v) ∈ U ∩ V × Rk. (19)

The mapping gUV is called a transition map. Transition maps have the following three
properties.

• The functions gV U : U → GL(k,R) are smooth.

• For every p ∈ U we have gUU(p) = id.

12



• For every p ∈ U ∩ V ∩W we have

gUW (p)gWV (p)gV U(p) = id . (20)

Knowing transition functions and charts on a manifold is equivalent to knowing the
vector bundle structure [3, p. 71]. Let φU : U → Ũ and φV : V → Ṽ be charts on M .
Then we have a formula

ΦV ◦ Φ−1
U (x, v) = ΦV (ΨU(φ−1

U (x), v)) = prφV (Ψ−1
V (ΨU(φ−1

U (x), v)))

= prφV (φ−1
U (x), gV U(φ−1

U (x))v) = (φV U(x), gV U(φ−1
U (x))v)

(21)

where φV U = φV ◦ φ−1
U is the transition map between charts on M . Let us define

g̃V U = gV U ◦ φ−1
U , then we have the change of variables formula

ΦV ◦ Φ−1
U (x, v) = (φṼ Ũ(x), g̃V U(x)v). (22)

We denote the transformation from Ũ to Ṽ by ΦV U . In this thesis, we use only locally
trivialisable vector bundles and omit the prefix locally trivialisable. To perform local
calculations and change of variables, we need only to know g̃V U(x). To make the
terminology exact, we give following definition of change of variables.

Definition 2.18 (Change of variables). Let U and V be open sets on Rn. A change
of variables formula for an operator P is its pullback under a diffeomorphic mapping
φ from U to V which means that the following diagram commutes:

A(U) B(U)

A(V ) B(V )

φ∗(P )

αV U βV U

P

where A(X),B(X) represent function spaces over X and αV U , βV U are isomorphisms
associated with the function spaces and φ. If points of U and V are denoted by x and y
respectively, then there is a standard abuse of the notation to denote the diffeomorphism
also with y(x) so for example ∂φj

∂xi
would be written ∂yj

∂xi
[4, p. 51]. In the case of

confusion, it is advisable to write mappings explicitly.

Vector bundles are convenient objects for generalizing vector-valued quantities such as
vector fields. They can be thought of as a generalization of the concept of a tangent
bundle and a section is a generalization of the notion of vector fields to vector bundles.

Definition 2.19 (Section). A smooth map s : M → E is called a smooth section if it
satisfies the property

π ◦ s = id : M →M. (23)
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We denote the set of smooth sections by Γ(E). We can represent a section s locally
by using a chart (U, φ) and an associated bundle chart Φ in the following way: Let us
have a point x = (x1, x2, . . . , xn) ∈ φ(U), then we can write a section locally as

ΦU ◦ s ◦ φ−1(x1, x2, . . . , xn) = (x1, x2, . . . , xn, a1(x), a2(x), . . . , ak(x)). (24)

where functions ai are smooth functions on M . Thus, when we define basis sections si
on a chart (U, φ) as

si(x) = Φ−1(x, ei) = Φ−1
U (x1, x2, . . . , xn, 0, 0, . . . , 1, 0, . . . , 0) (25)

where ei is the canonical ith unit basis vector on Rk, then every section can be
represented as a sum

s(x) =
k∑
i=1

ai(x)si(x) ∀x ∈ Ui. (26)

We gather the above discussion to a theorem that we will use in the following sections.

Theorem 2.20. Every smooth section s of a vector bundle E can be represented
locally as a sum

s(x) =
k∑
i=1

ai(x)si(x) ∀x ∈ Ui. (27)

Given two overlapping charts, we want to discuss a change of variables formula for
sections. It is a mapping DΦV U : Γ(U × Rk) to Γ(V × Rk) and is defined so that
following diagram commutes.

V U

V × Rk U × Rk

φUV

DΦV U (s) s

ΦUV

We can read from the diagram that DΦV U(s) = Φ−1
UV ◦ s ◦ φUV or more explicitly

DΦV Us(y) = (y, g̃V U(φUV (y))s(φUV (y))). (28)

There are at least four common ways to produce vector bundles from two vector
bundles E and E ′: the dual bundle E∗, the Whitney sum E ⊕ E ′, the tensor product
bundle E ⊗E ′ and the exterior space Λk(E). Let gV U and g′V U be transition functions
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on E and E ′ respectively. Then fibers and transition functions hV U of these spaces
are given by following identities

(E∗)p =E∗p , hV U = g−>V U

(E ⊕ E ′)p =Ep ⊕ E ′p, hV U =

(
gV U 0

0 g′V U

)
(E ⊗ E ′)p =Ep ⊗ E ′p, hV U(v ⊗ v′) = gV U(v)⊗ g′V U(v′)

Λk(E)p =Λk(Ep)

where the tensor product of matrices A,B are define via A⊗B(v⊗w) = A(v)⊗B(w).
We have omitted the transition mapping in case of Λk(E) since Λk(E) is a subspace
of ⊗k(E).

Example 2.21. A common example of a vector bundle is the tangent bundle (M,E, ρ)
mentioned earlier. If φV U(x) is a change of coordinates, then the transition function
is the Jacobian g̃V U (x) = DφV U . The dual bundle construction gives us the cotangent
bundle (M,E, π) and its transition function is (DφV U )−>. From tangent and cotangent
bundle, we can construct (k, l)-tensor bundle T k,l(M). Its transition function is given
by tensor product rule. However, tensors are often handled as a linear combinations
of basis vectors in local coordinates and the change of variables is easier to do by
substitution and using properties of the tensor product. For example in the case of
(1, 1)-tensors: Let us have bases {vi}ki=1 and {ṽi}ki=1 on TU , dual bases {fi}ki=1, {f̃i}ki=1

and let us write bases as following linear combinations ṽi = asi ṽs, fk = bkt f̃
t then

vi ⊗ f j = (asi ṽs)⊗ (bjt f̃
t) = asi b

j
t ṽs ⊗ f̃ t. (29)

The coefficients asi and bkt can be read from DφV U with methods represented in end of
Definition 2.7. The bundle of k−forms, Λk(T ∗M), is a subbundle of T 0,k(M). Since
the wedge product is sum of tensor products, we can replace the tensor product with
the wedge product in above calculations. The space of sections of this vector bundle
is denoted by Λk(M) = Γ(Λk(T ∗M)) and its elements are called differential k-forms.

We will use differential forms later as they provides us a notion of integration on
oriented manifolds and they are useful in examples of partial differential operators on
manifolds. Thus we will introduce the exterior derivative and integration of differential
forms.

Definition 2.22 (exterior derivative). The exterior derivative is a collection of unique
operators dk : Λk(M)→ Λk+1(M) such that following properties holds for any function
f ∈ Γ(M), X ∈ Γ(TM), ω1, ω

′
1 ∈ Λk(M) and ω2 ∈ Λj(M)

• dk(ω1 + ω2) = dkω1 + dkω
′
1

• dk+j(ω1 ∧ ω2) = dkω1 ∧ ω2 + (−1)kω1 ∧ djω2

• d0(f)(X) = X(f)
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• dk+1dkω1 = 0 for all k ∈ {1, 2, . . . , dim(M)}

It is usual to drop the subscript from the operator and denote dk as d. In the local
coordinates, the exterior derivative is determined by the formula

d(fdxi1 ∧ dxi2 ∧ · · · ∧ dxik) =
n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik . (30)

Vector-valued (0, k)-tensors are linear functions f : TpM × TpM × · · · × TpM → Ep
at every point p ∈M . By Theorem 2.12 we can represent multilinear maps to Ep as
tensors of ⊗kT ∗M ⊗ E up to a canonical isomorphism. Therefore, we can think of a
vector valued tensor as a section of Γ(⊗kT ∗M ⊗ E). This can be done similarly with
(k, l)-tensors or differential forms Λk(M).

2.4 Lp-theory and differential operators on vector bundles

A metric tensor on a vector bundle E gives a geometric structure to the bundle. To
our needs, it is enough to define a metric tensor as a smooth mapping g : E ⊕ E → R
which is fiber-wise a symmetric, positive definite bilinear form. Locally, with given
basis si the metric tensor is determined by values of basis sections gij = g(si, sj). We
use also the notation 〈·, ·〉 for the metric tensor.

If we have two or more bundles over M with metrics, then we can induce a metric
on a vector bundle that is constructed from them. The constructions can be done
inductively so we show only the case of two vector bundles.

Theorem 2.23. Let us have vector bundles E1, E2 and with metrics 〈·, ·〉1, 〈·, ·〉2
respectively, then we have induced metrices on the associated bundles:

1. The dual bundle E∗1 has the metric given by Riesz’s isomorphism mapping: Every
metric defines locally an unique symmetric invertible matrix G by 〈x, y〉 = x>Gy
where x, y ∈ Rn×1 are local coordinate vectors. This matrix determines a local
isomorphism G> : Ep → E∗p such that 〈x, y〉 = G>x(y). We can carry the inner
product over to dual vector space via the inverse map G−> via the formula
〈v∗, w∗〉E∗ = 〈G−>v∗, G−>w∗〉E. We obtain that the asssociated matrix of the
dual metric is G−> and locally it is given by (G−>)ijei ⊗ ej where vectors ei are
basis sections of E|U .

2. The Whitney sum E1 ⊕ E2 has the metric given by

〈(v1, w1), (v2, w2)〉 = 〈v1, v2〉1 + 〈w1, w2〉2. (31)

Locally the metric is given by
∑

1≤i,j≤k1
gij1 f

i ⊗ f j +
∑

1≤i,j≤k2
gij2 f

k1+i ⊗ fk1+j where

k1, k2 are dimensions of fibers of E1, E2, respectively, and {fi}k1i=1, {fk1+i}k2i=1 are
basis sections of E∗1 and E∗2 , respectively.
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3. The metric on a tensor product E1 ⊗ E2 is based on the formula

〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, v2〉〈w1, w2〉 (32)

and is extended linearly: Let {ei}k1i=1 and {fi}k2i=1 be bases of E1, E2 respectively.
Then using Einstein’s summation convention we define the metric as

〈aijei ⊗ fj, bklek ⊗ fl〉 = aijbkl〈ei, ek〉〈fj, fl〉 = gikgjla
ijbkl. (33)

This is well-defined, that is, independent of choice of a basis.

4. We get a metric to differential forms Λk(E) by observing that differential forms
form a subspace of the tensor product E ⊗ E ⊗ · · · ⊗ E︸ ︷︷ ︸

k

.

Proof. 1) We need to show bilinearity, symmetry, nondegenerativity and smoothness.
In case of the dual bundle, the bilinearity and symmetry are seen from 〈x, y〉 = x>G−1y.
The nondegenerativity follows from the fact that kerG−> = {0}. The inverse matrix
G−> can be written with Cramer’s rule and from that form we see smoothness.

2) Bilinearity and symmetry are also clearly read from the definition in the Whit-
ney sum. The nondegeneracy follows from choosing w1, w2 such that 〈v1, w1〉 and
〈v2, w2〉 are positive. This is possible since the metrics 〈·, ·〉1, 〈·, ·〉2 are nondegenerate.
Smoothness can be seen from the local representation.

3) Let us show that the metric given in the tensor bundle case is well-defined: Let
{ẽi}k1i=1, {ei}

k1
i=1 be bases for E1 and {f̃i}k2i=1, {fi}

k2
i=1 be bases for E2. Then we have

ei = spi ẽp and fj = trj f̃r so

〈aijei ⊗ fj, bklek ⊗ fl〉 = aijbkl〈ei, ek〉1〈fj, fl〉2
= aijbkl〈sp1i ẽp1 , s

p2
k ẽp2〉1〈t

r1
j f̃r1 , t

r2
l f̃r2〉2

= (aijsp1i t
r1
j )(bklsp2k t

r2
l )〈ẽp1 , ẽp2〉1〈f̃r1 , f̃r2〉2

= 〈(aijsp1i t
r1
j )ẽp1 ⊗ f̃r1 , (bkls

p2
k t

r2
l )ẽp2 ⊗ f̃r2〉.

(34)

The coefficients (aijsp1i t
r1
j ) and (bklsp2k t

r2
l ) are coefficients of tensors aijei ⊗ fj and

bklek ⊗ fl in the new basis so the definition does not depend on the chosen basis.
Bilinearity, symmetry and smoothness can be easily noticed from the definition. Every
tensor is a sum of elements of form v⊗w. To show nondegeneracy, let us use ortonormal
bases {ei}k1i=1 and {fi}k1i=1 for E1, E2. Each element of E1 ⊗ E2 can be written as sum
aijei ⊗ fj. If we have a nonzero element v of E1 ⊗ E2 then its reprsentation has some
nonzero coefficient ai1j1 . Let us evaluate, without Einstein’s summation convention,
an inner product 〈v, ai1j1ei1 ⊗ fj1〉. Since the bases are ortonormal, the only nonzero
term will be (aij)2. This proves the nondegenerativity.

We need a notion of the support of a section s ∈ Γ(E).
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Definition 2.24. Let s be a section on a vector bundle E. The support of s is denoted
by supp(s) and is defined as

supp(s) = cl({x ∈M |s(x) 6= 0}).

Smooth sections with compact support form a vector space which is denoted by Γ0(E).

Orientability of the manifold is a necessary condition for integration of compactly
supported n-forms on n-dimensional manifold. A manifold is orientable if there exists
a nowhere vanishing n-form on the manifold. We will assume that manifolds are
orientable. We will denote the integral of ω ∈ Λn

0 (M) with∫
M

ω. (35)

For orientable manifolds the Riemannian metric provides a notion of volume form
voln ∈ Λn(M) which allows us to integrate functions with compact support on a
manifold. This is done by the formula∫

M

f voln (36)

where f ∈ Γ0(M). With these tools, we can define the p-norm of s ∈ Γ0(E) as

‖s‖p = (

∫
M

〈s, s〉
p
2
Evoln)

1
p . (37)

The space Lp(E) is defined as the completion of Γ0(E) with respect to the p-norm.

Also with the volume form, we can introduce the Hodge star operator. It is needed in
the formulation of Hodge Laplacian which is a generalization of Laplace operator.

Definition 2.25 (Hodge star). The Hodge star operator ∗ : Λk(M)→ Λn−k(M) is a
bijection and is determined by the equation

∗ω ∧ η = 〈ω, η〉 voln . (38)

With vector fields, we can introduce the notion of a connection which is a generalization
of differentiation of vector fields. An operator ∇ : Γ(TM)× Γ(E)→ Γ(E) is called
connection if for every v, w ∈ Γ(TM), s1, s2 ∈ Γ(E) and f ∈ C∞(M) operator has the
following propeties:

∇v+ws = ∇vs+∇ws (39)
∇fvs = f∇vs (40)
∇v(s1 + s2) = ∇vs1 +∇vs2 (41)
∇v(fs1) = f∇vs1 + v(f)s1. (42)
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By observing that a connection is C∞-linear with respect to Γ(TM) variable and
recalling Theorem 2.12, we notice that we can think of connection as an operator
from sections to E-valued (0, 1)- tensors, that is, ∇ : Γ(E) → Γ(T ∗M ⊗ E) up an
isomorphism. The evaluation by X ∈ Γ(TM) is given by

(∇s)(X) = ∇Xs

where s ∈ Γ(E).

There exists a canonical connection associated to a metric g on the tangent bundle
TM called Levi-Civita connection which we denote by ∇g or ∇M . It can be extended
to act on vectors defined on curves. There exists an unique operator D

dt
associated to

every smooth curve γ(t) such that D
dt

coincides with the Levi-civita connection: Let
V (t) be a section on the curve and Ṽ be a section of the tangent bundle such that
V (t) = Ṽ (γ(t)), then we have the equation

DV (t)

dt
= ∇W (γ(t))Ṽ (γ̇(t)) (43)

where W is a smooth vector field such that W (γ(t)) = γ̇(t). We will abuse notation
and denote D

dt
by ∇γ̇(t). The geodesic of manifolds are defined to be curves γ(t) such

that the equation

∇γ̇(t)γ̇(t) = 0 (44)

holds. Every point x ∈M has εx > 0 depending on x such that for every (x, v) ∈ TxM
with ‖v‖ < εx there exist an unique geodesic γ(t) with unit length and initial values
γ(0) = x and γ̇(0) = v. Thus, geodesics produce an operator exp : U ⊂ TM → M
which maps the point (x, v) ∈ U to the point γ(1) given by the unique geodesic γ(t)
with γ(0) = x and γ̇(0) = v where the set U is a neighbourhood of the zero section
given by the union

⋃
x∈M

Ux,ε where Ux,ε = {(x, v) ∈ TxM | ‖v‖ < εx}.

We can also define covariant derivatives along curves for arbitrary connection on a
vector bundle. This provides us the notion of parallel transport of a vector v. We say
that the vector V ∈ Ex is parallel transported along curve γ(t) : [0, 1]→M if for V (t)
we have V (0) = V and

∇γ̇(t)V (t) = 0 (45)

for every t ∈ [0, 1]. We say that a connection is metric compatible or a metric
connection with respect to gE if V (gE(s1, s2)) = gE(∇V s1, s2) + gE(s1,∇V s2) for
every V ∈ Γ(TM) and s1, s2 ∈ Γ(E). Parallel transport associated to a metric
connection will preserve the norm of vector. We will assume that connections are
metric compatible whenever there is given a metric on a vector bundle.

We would want to extend connections to tensor bundles and tensor products. If we
have two vector bundles E1, E2 and connections ∇1,∇2 on them, we can create a
connection for the vector bundle E1 ⊗ E2. This is done by the formula

∇X(s1 ⊗ s2) = ∇1
Xs1 ⊗ s2 + s1 ⊗∇2

Xs2 (46)
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and extended by linearity to the whole bundle. We can also introduce a connection
for the dual bundle E ′1. This is done by imposing that the connection will commute
with contraction, which means that

∇ ◦ Cµ,λ = Cµ,λ ◦ ∇,

and imposing that the connection acts on smooth functions by the formula

∇X(f) = X(f). (47)

These conditions give the following equation for the dual connection ∇∗:

X〈s∗, s〉 = 〈∇∗Xs∗, s〉+ 〈s,∇Xs〉. (48)

The above condition is equivalent with the requirement that the connection commutes
with contraction. This is seen from the following calculation. Let us assume that the
connection commutes with the contraction. Then we have

X〈s∗, s〉 = ∇X〈s∗, s〉 = ∇XC1,1(s∗⊗s) = C11∇X(s∗⊗s) = 〈∇∗Xs∗, s〉+〈s∗,∇Xs〉 (49)

where s ∈ E, s∗ ∈ E∗ and brackets 〈·, ·〉 denote the dual pairing instead of inner
product. Now let us assume that formula (48) holds, then following holds

∇XC1,1(s∗⊗s) = ∇X〈s∗, s〉 = X〈s∗, s〉 = 〈∇∗Xs∗, s〉+〈s∗,∇Xs〉 = C11∇X(s∗⊗s) (50)

and proves the claim.

We can derive an evaluation formula for ∇ : Γ(⊗kT ∗M ⊗ E)→ Γ(⊗(k+1)T ∗M ⊗ E).

Theorem 2.26. Let us have vector fields X0, X1, . . . , Xk ∈ Γ(TM) and a section
T ∈ Γ(⊗kT ∗M ⊗ E), then we have

∇T (X0, X1, X2, . . . , Xk) = ∇E
X0

(T (X1, X2, . . . , Xk))

−
k∑
i=1

T (X1, X2, . . . ,∇M
X0
Xi, . . . , Xk).

Proof. Let us start by proving ιv∇X0T = ∇E
X0

(ιvT )− ι(∇MX0
(v))T where ιvT was defined

as C1,1(v ⊗ T ).

ιv∇X0T = C1,1(v ⊗∇X0T )

= C1,1(∇X0(v ⊗ T )−∇M
X0
v ⊗ T )

= ∇E
X0
C1,1(v ⊗ T )− C1,1(∇M

X0
(v)⊗ T )

= ∇E
X0

(ιvT )− ι(∇MX0
(v))T.

(51)

We obtain the result when we apply the result above and notice that

∇T (X0, X1, X2, . . . , Xk) = ιXkιXk−1
. . . ιX1∇X0T.
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By the above definition, the composition of connections is well defined and we can
define the k-th covariant derivative of a section ∇k : Γ(E)→ Γ(T ∗M⊗k ⊗ E) as

∇k(s) = ∇ ◦∇ ◦ · · · ◦ ∇︸ ︷︷ ︸
k

s. (52)

This will be used in the coordinate-free definition of Sobolev spaces. We can write a
recursive formula for evaluating the k-th covariant derivative:

(∇ks)(X0, X1, X2, . . . , Xk) = ∇E
X0
∇k−1s(X1, X2, . . . , Xk)

−
k∑
i=1

∇k−1s(X1, X2, . . . ,∇M
X0
Xi, . . . , Xk).

3 Distributions

Distribution theory is an important part of modern analysis. Distributions are used
extensively in the literature. The main advantage of distributions is that they make it
possible to extend operators to wider function spaces. Our objective in this section is to
introduce a general framework for distributions and then give examples of distribution
spaces.

3.1 General framework

Let us have function spaces V , V0 ⊂ V and V1 over a space M and a bilinear form
BV : V × V1 → W where W is a vector space, often the field R or C. We will call the
space V1 as the test function space. The space of W -valued distributions D′(M,V1,W )
is defined to be the space L(V1;W ). However, we will omit the test function space
and vector space W from the notation D′(M,V1,W ) when they are clear from the
context. When W = R, then the space of distributions is the dual space V ∗1 .

We have a natural embedding V to D′(M). The embedding is given by

ιV : V → D′(M) v 7→ BV (v, ·). (53)

It is common to omit the embedding mapping and identify elements of V as elements
of D′(M,V1). We do the same whenever it is convenient. However, we insert a tilde
on elements of V when we mean corresponding element of ιV (V ).

From the algebraic perspective, the triplet (V, V1, BV ) captures the necessary structure
used in the distribution theory. However from a topological perspective, one has to
construct topologies for the space V1 which is not a trivial task. We assume that
V1 has the structure of a locally convex vector space and that the bilinear form is
continuous. The space D′(M) is often equipped with the weak*-topology. We will
review two basic concepts of functional analysis.
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Definition 3.1 (Transpose). Let us have a linear operator A : V → W . Then we can
form a linear operator A′ : W ′ → V ′ given by W ′ 3 w 7→ w ◦ A.

Definition 3.2 (Adjoint). Let (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) be inner product spaces and
A : V → W be a linear operator. Then we say that an operator A∗ is an adjoint
operator if the following identity holds

〈Av,w〉W = 〈v, A∗w〉V (54)

for all v ∈ V,w ∈ W . This notion can be extended to bilinear forms by replacing inner
products by bilinear forms.

Almost every construction in the distribution theory involves either the adjoint or
transpose of an operator. However, the terminology is not standard as some references
call a transpose operator as an adjoint operator and vica versa. We use the same
terminology as in Tréves’ book [6, p. 240, 252].

Let us have a distribution spaces (V, V1, BV ) and (W,W1, BW ) and a linear operator
A : V0 → W0 where V0 ⊂ V and W0 ⊂ W . We wish to extend the domain of A to
V . This can be achieved in multiple ways but when we have an adjoint operator
A∗ : W0 → V0 such that

BW (Av,w) = BV (v, A∗w) (55)

holds whenever v ∈ V0 and w ∈ W0, then we can use the adjoint to produce an
extension operator Ã : D′(V )→ D′(W ) via the formula

Ã(v) = v ◦ A∗. (56)

Operators A and Ã are connected to each other in the following sense: Operators and
embeddings commute whenever the element is in the original domain which means
that operators satisfy the equation

ιW ◦ A = Ã ◦ ιV . (57)

In other words, the diagram

V0 W0

D′(M,V ) D′(M,W )

A

ιv ιW

Ã

commutes. Let us prove this: Given elements v ∈ V0 and φ ∈ W0, we have a chain of
equalities

ιW (A(v))(φ) = BW (A(v), φ)

= BV (v, A∗(φ))

= Ã(ιV (v))(φ).

(58)
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If the operators A,A∗ are continuous, then the extension is continuous as well. Any
operator Ã with property ιW ◦ A = Ã ◦ ιV is a sensible extension operator of A. For
example, extension by Cauchy sequences could be also possible since spaces are locally
convex vector spaces. However in this work, extension by adjoint operators is the
main focus.

With distributions one can speak about weak solutions of an equation. Given an
element w ∈ W , we say that v ∈ V is a weak solution for A(v) = w if Ã(ṽ) = w̃
holds. If there exists a strong solution A(v) = w, then it is also a weak solution by
the identity (57).

There are many possible choices in this framework. One can, for example, choose
freely bilinear forms and space of test functions. So the structure is flexible and can be
adjusted to different situations. The bilinear form is usually derived from the operator
A using integration identities and the space of test functions is chosen accordingly.
The following subsections give examples of distribution spaces.

3.2 Distribution spaces on Euclidean space

The theory of distributions is usually first developed in the space Rn. We choose
compactly supported smooth functions C∞0 (Ω) to be our space of test functions V1.
We will construct a topology for C∞0 (Ω) and its dual. This will be done via Fréchet
topology and inductive limit topology.

A locally convex topological vector space X is called Fréchet if it is metrizable with
a translation-invariant metric and it is complete. Every Fréchet topology can be
constructed from a countable set of separating seminorms {pj}j∈N for which the
induced metric

d(x, y) =
∞∑
j=1

2−j
pj(x− y)

1 + pj(x− y)
(59)

is complete. A set of seminorms is called separating if for every nonzero v ∈ X there
exists a seminorm pj such that pj(v) 6= 0. Thus, giving a locally convex vector space
a countably family of separating seminorms determines a Fréchet topology. [7, p.
417,418]

An inductive limit topology is a construction based on a family of Fréchet spaces. Let
us have a family of Fréchet spaces {Xj}j∈J such that for every Xj1 ⊂ Xj2 there exist
a space Xj3 so that Xj1 ∪ Xj2 ⊂ Xj3 and if Xj1 ⊂ Xj2 then the topology on Xj1 is
finer than the subspace topology induced by Xj2 . Then it is possible to construct an
inductive limit topology for the union

⋃
j∈J

Xj . However we will not give the construction

here. [7, p. 417,418]
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We will equip the space C∞K (Ω) = {u ∈ C∞0 (Ω)| suppu ⊂ K} with the Fréchet topology
given by following seminorms

pk(u) = sup
x∈K,|α|≤k

|∂αu(x)|. (60)

Let us have an increasing sequence of compact sets Kj such that
⋃∞
k=1Kj = Ω. Then

the space C∞0 (Ω) is given the inductive limit topology induced by the sets {C∞Kj (Ω)}∞j=1.

Definition 3.3. The space of distributions D′(Ω) is defined as the space of continuous
linear functionals on C∞0 (Ω) with a weak*-topology induced by the seminorms

pφ(u) = |u(φ)|, (61)

where φ ∈ C∞0 (Ω). [8, p. 27]

The concept of convergence is important when studying topological vector spaces. We
give the convergence criteria for the space of test functions and for distributions but
omit the proof.

Theorem 3.4 (Convergence criteria). A sequence φk ∈ C∞0 (Ω) convergences to an
element φ if and only if there exists a compact set K ⊂ Ω such that suppφk, φ ⊂ K
and we have

lim
k→∞

sup
x∈K
|∂α(φk − φ)(x)| = 0 (62)

for all α ∈ Nn
0 . [7, p. 11]

A linear functional u on the space of test functions is continuous if and only if for all
compact sets K ⊂ Ω there exist k ∈ N0 and C > 0 such that

|〈u, φ〉| ≤ C sup
x∈K,|α|≤k

{|∂αφ(x)|} (63)

for all φ ∈ C∞0 (Ω) with supp(φ) ⊂ K. [7, p. 18]

A sequence of distributions uk converges to a distribution u if and only if the equation

lim
k→∞
〈uk − u, φ〉 = 0 (64)

holds for all φ ∈ C∞0 (Ω). [7, p. 26]

The distribution spaces have nice embedding properties with respect to the embeddings.
Let us demonstrate this by an example. Consider sets Ω′ ⊂ Ω. We have a canonical
embedding ι : C∞0 (Ω′) → C∞0 (Ω), namely the extension by zero. So we can define
an embedding ι∗ : D′(Ω) → D′(Ω′) via ι∗(f) = f ◦ ι. This is also an example of a
construction by transpose operator.

We want study partial differential operators, which are naturally defined on smooth
functions C∞(Ω), and extend them to act on Lp-functions. So in the general framework,
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we have V0 = C∞(Ω) and V = Lp(Ω). The embedding of Lp(Ω) to D′(Ω) is given by
the bilinear form

u 7→ ιu(φ) = 〈u, φ〉 =

∫
Ω

uφ dx. (65)

Test functions have many useful properties with respect to this bilinear form which are
straightforward to prove by using basic results of integration theory. To state these
properties, let us denote

∫
Ω
fg dx by 〈f, g〉 and let φ, ψ, χ ∈ C∞0 (Ω) and f ∈ C∞(Ω).

The properties are:

1. 〈ψ + φ, χ〉 = 〈ψ, χ〉+ 〈φ, χ〉.

2. Let us denote multiplication by f asMf , then 〈ψ,Mf φ〉 = 〈Mf ψ, φ〉.

3. The integration by parts yields 〈∂αψ, φ〉 = 〈ψ, (−1)|α|∂α(ψ)〉.

We can read the adjoint operators for these basic operators from above identities and
extend these operations for distributions.

Definition 3.5 (Operators). Let f ∈ C∞(Ω) and φ ∈ C∞0 (Ω), then we define multipli-
cation operatorMf : D′(Ω)→ D′(Ω) as (Mf u)(φ) = u(Mf φ) and we extend ∂α for
distributions as the operator ∂α : D′(Ω)→ D′(Ω) given by (∂αu)(φ) = (−1)|α|u(∂αφ)
where α ∈ N0.

The Euclidean structure makes possible to introduce the notion of convolution. It is
an useful tool in the analysis of partial differential equations. With it and distribution
theory, we can study rigorously fundamental solutions of a partial differential equation.
Convolution of two f, g ∈ L1(Rn) functions are defined as

f ∗ g(x) =

∫
Rn
f(x− y)g(y) dy. (66)

Convolution of two C∞0 (Rn) functions is again a smooth function. So we can search for
an adjoint identity. Let us define an operator Cφ as convolution by φ so Cφ(f) = φ ∗ f .
We have following identity for Cφ:

〈Cφψ, χ〉 = 〈ψ, Cφ̌χ〉 (67)

where φ̌(x) = φ(−x) [8, p. 40]. This operation is used in smoothing and approximation
procedures.

To extend the notion of convolution for distributions, we need to impose additional
conditions for distributions. For example, we can study distributions that have smooth
functions C∞(Ω) as their test functions. The distribution space induced by smooth
functions is denoted by E ′(Ω). We do not discuss the topology of the space of E ′(Ω).
To gain more information, the reader can consult the reference [7] or a standard text
on distribution theory such as [9]. Notice that the space E ′(Ω) is called distributions
with compact support in the literature.
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We can generalize convolution to a map ∗ : E ′(Ω) × D′(Rn) → D′(Ω). We need the
following theorem to make things well-defined. We denote the dual pairing with 〈·, ·〉
in the following discussion.

Theorem 3.6. [6, p. 284] Let us have a function ψ(x) : Ω → E where E is a
topological vector space. If ψ is a Ck-function with respect to x, then for every linear
functional T ∈ E∗, the function 〈T, ψ(x)〉 is a Ck-function with respect to x and we
have for any |α| ≤ k the following identity

∂αx 〈T, ψ(x)〉 = 〈T, ∂αxψ(x)〉. (68)

In our case, we take E to be C∞0 (Rn) and ψ can be thought as a function ψ : Ω×Rn → R
such that ψ(x, ·) ∈ C∞0 (Rn) for every x ∈ Ω. Let us have a function φ ∈ C∞0 (Ω). We
can extend φ by zero to a function φ̃ ∈ C∞0 (Rn). Let S ∈ E ′(Ω) and T ∈ D′(Rn), then
by Theorem 3.6, the following distribution is well-defined

S ∗ T (φ) = 〈S(x), 〈T (y), φ̃(x+ y)〉〉 (69)

where T (y) denotes the distribution evaluated with respect to function of variable y
and similarly for S(x). By the definition of distributional derivative we have

∂α(S ∗ T )(φ) = 〈S(x), (−1)|α|〈T (y), ∂αφ̃(x+ y)〉〉
= 〈S(x), 〈∂αT (y), φ̃(x+ y)〉〉.

(70)

We have proven that ∂α(S ∗ T ) = S ∗ ∂αT . With this knowledge, we can prove the
following theorem.

Theorem 3.7. Let us assume that we have a constant coefficient partial differential
operator P defined on the space Rn and let E ∈ D′(Rn) be a fundamental solution of
P , that is, PE = δ0 where δ0 is the distribution defined by δ0(φ) = φ(0). Let f belong
to E ′(Ω), then u = f ∗ E is distributional solution to Pu = f .

Proof. By direct calculation, we have

Pu(φ) = P (f ∗ E)(φ)

= f ∗ (PE)(φ)

= f ∗ δ0(φ)

= 〈f(x), 〈δ0(y), φ̃(x+ y)〉〉
= 〈f(x), φ(x)〉
= 〈f, φ〉

(71)

which concludes the proof.

Distributions, convolutions and Fourier theory form together a toolbox that is used to
study partial differential equations via fundamental solutions. It is possible to build
the fundamental solutions by taking Fourier transform of the equation PE = δ0 and
searching for a suitable fundamental solution. The Fourier transform will be studied
in the next section.
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3.3 Distributions on vector bundles

This section is based on the reference [10]. We start by discussing seminorms for
compactly supported smooth sections Γ0(M,E) and convergence with respect to
seminorm topology.

Definition 3.8. Let K be a compact subset of M and let s be a section in Γ0(M,E).
The Ck(K)-seminorm ‖s‖Ck(K) is defined as

‖s‖Ck(K) = max
0≤j≤k

max
x∈K
‖∇js(x)‖. (72)

We say that a sequence un ∈ Γ0(M,E) is convergent to u ∈ Γ0(M,E) if there exists a
compact subset K such that supp(un), supp(u) ⊂ K and for all k ∈ N we have

lim
n→∞

‖un − u‖Ck(K) = 0. (73)

These seminorms define a topology on Γ0(M,E). A characteristic property of the
topology is that a linear operator T : Γ0(M,E) → R is continuous if and only if
lim
n→∞

un = 0 implies lim
n→∞

T (un) = 0. This topology is independent of metric and
connection on E. We denote the space of Γ0(M,E) with above topology as D(M,E).

There are two suitable choices for the space of test functions, D(M,E) and D(M,E∗).
If we have an metric tensor on E, then we have a natural bilinear form L2(M,E)×
D(M,E)→ R given by

〈u, φ〉 =

∫
M

〈u, φ〉E voln . (74)

However, the space D(M,E∗) has a natural bilinear form with respect to L2(M,E)
which does not need any other structures than integration of scalar functions: Let
u ∈ L2(M,E) and φ ∈ D(M,E∗), then the bilinear form is

〈u, φ〉 =

∫
M

φ(u) voln . (75)

Both spaces D(M,E) and D(M,E∗) have suitable scalar-valued bilinear forms for
distribution theory. We choose to follow the references [10],[11] and choose the test
function space to be D(M,E∗).

Definition 3.9. We define the space of distributions to consist of continuous linear
functionals T : D(M,E∗)→ R. We denote this space as D′(M,E). We equip it with
the weak*-topology: A sequence Tn converges to an element T if for all φ ∈ D(M,E∗)
we have lim

n→∞
Tn(φ)→ T (φ).

Example 3.10. Differential forms are common objects in the theory of PDEs. Many
physical laws can be written using them. For example, Maxwell’s law can be written
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with differential forms. We will introduce three distribution spaces that can be used
with differential forms. Using the definition gives that the test functions are sections
of Γ0((Λk(TM))∗) and the bilinear form is

〈u, φ〉 =

∫
M

u(φ) voln (76)

where u ∈ Ωk(M) and φ ∈ Γ0((Λk(TM))∗). However, the discussion in the previous
section provided the notion of Hodge star which can also be used to produce a bilinear
form for differential forms. Let us use elements of Λk

0(M) as our test functions. In
this case, the bilinear form is given with help of Hodge star as

〈u, φ〉 =

∫
M

u(x) ∧ ∗φ(x). (77)

Finally, we can also use Λn−k
0 (M) as our test function space and following bilinear

form

〈u, φ〉 =

∫
M

u ∧ φ. (78)

This way to form distributions leads to the theory of currents1 which were introduced
by de Rham [12, p. 31, 33].

4 Sobolev spaces

Functions in the space L2(Ω) can be regular or irregular with respect to differentiability.
For example, functions in C∞0 (Ω) are highly regular but on the other hand, there exist
continuous integrable nowhere differentiable functions as well. We want to study the
regularity of L2-functions. Sobolev spaces are a way to introduce regularity classes for
L2-functions.

Sobolev spaces are formed by requiring additional properties from Lp-functions or
distributions. The following three conditions are characteristic properties for Sobolev
spaces W k,p(Ω):

• They are complete normed spaces, that is, Banach spaces.

• Sobolev spaces are nested:

W 0,p(Ω) ⊃ W 1,p(Ω) ⊃ W 2,p(Ω) ⊃ . . . . (79)

• The function space of compactly supported classically differentiable sections
Cm

0 (X) is a subspace of the Sobolev space Wm,p(Ω), that is,

Cm
0 (Ω) ⊂ Wm,p(Ω), (80)

1Not related to the electrical currents
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The first condition assures that the space is topologically well-behaved. The second
statement says that the parameter m measures level of regularity. The latter property
demands that classically differentiable functions with compact support belongs to the
corresponding Sobolev space. Any sensible theory of Sobolev functions on manifolds
would need fulfill these three properties.

There are many different constructions of Sobolev spaces on Ω ⊂ Rn. Each definition
gives us a different way to study problems. Sobolev spaces can be divided into classical
and fractional Sobolev spaces. Classical Sobolev spaces are defined by introducing a
norm for smooth functions and taking a completion of the vector subspace of C∞(Ω)
whose elements have finite Sobolev norms.

Fractional order Sobolev spaces are generalizations of classical Sobolev spaces. These
generalizations introduce spaces W s,p(Ω) where the order s can be a real number. A
desirable property for generalization is that when s = k, we obtain classical Sobolev
spaces W k,p(Ω). There are many different ways to form these spaces and they utilize
additional structures of the set Ω. We gather different constructions to a list and give
references for them.

• Hajlasz-Slobodeckij spaces uses the metric and measure space structure to
generalize Sobolev spaces [13].

• Interpolation theory uses Banach space structure to introduce Hs(Ω) spaces for
k < s < k + 1 as interpolation of spaces Hk(Ω) and Hk+1(Ω) [14].

• Fourier theoretic generalization uses Fourier transform or Fourier series to
introduce Hs(Rn) for s ∈ R and these spaces are sometimes called Bessel
potential spaces. This construction can be extended to suitably regular open
sets Ω via an extension map [8, 15].

Each construction can be used in different setting. In fact, Sobolev spaces are just
one possible type of function spaces that one can study. One could study Hölder,
Lipschitz, B.V., Hardy or some other space as well. But Sobolev spaces are well suited
for the analysis of partial differential and pseudo-differential operators.

In this thesis, we discuss only classical Sobolev spaces and Fourier theoretic construction
of fractional Sobolev spaces. These constructions can be generalized to compact
manifolds. We start by studying Sobolev spaces on Rn which has additional structures
and properties that allow us to define Sobolev spaces using simpler definitions than in
the case of general manifold.

4.1 Classical Sobolev spaces on Rn and on open sets Ω ⊂ Rn

In the theory of partial differential equations, methods of topology and functional
analysis are widely used. Topological arguments often rely on the completeness of
metric spaces. To utilize these methods for smooth functions we need to introduce
a norm to the space C∞(Ω). The natural way is to derive a suitable norm utilizing
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Lp-norms. The resulting norm will be

‖u‖k,p =
( ∑

0≤|α|≤k

‖∂αu‖pp
) 1
p (81)

and is called Sobolev norm. The subspace of C∞(Ω) functions, whose Sobolev norm
is bounded, is transformed into a normed space. However, the resulting space is not
complete. For this reason, we need to take completion. This leads to the following
definition.

Definition 4.1. Let Ω ⊂ Rn be an open set and k ∈ N, p ∈ [1,∞). The classical
Sobolev space W k,p(Ω) is defined as the completion of the following normed space
({u ∈ C∞(Ω) | ‖u‖k,p <∞}, ‖ · ‖k,p).

This is not the most used definition. The usual definition uses weak derivatives to
define Sobolev spaces: A function f ∈ Lp(Ω) belongs to W k,p(Ω) if it has partial
derivatives ∂αf up to |α| ≤ k where derivatives are understood as distributional
derivatives. To show the equivalence of these definitions, it is enough to show that the
space is complete and the compactly supported smooth functions are dense in that
space. The proof will use bump functions and convolution. We gather the result into
the following theorem.

Theorem 4.2. We will use notation from (65) to represent a Lp-function as a
distribution. The space W k,p(Ω) is equivalent to a norm space

{u ∈ Lp(Ω) | ∀|α| ≤ k ∃gα ∈ Lp(Ω) s.t. ∂αιu = ιgα} (82)

equipped with the same norm. Especially smooth functions are dense in the space given
above.

Let us show that the above space is indeed a Banach space.

Theorem 4.3. The space

{u ∈ Lp(Ω) | ∀|α| ≤ k ∃gα ∈ Lp(Ω) s.t. ∂αιu = ιgα}. (83)

with the Sobolev norm is a Banach space.

Proof. Let (un)∞n=1 be a Cauchy sequence. Let us study the distributional derivative
∂αun for fixed α. By estimating other terms below by zero, we obtain following
inequality

‖∂αun‖p ≤ ‖u‖k,p =
( ∑

0≤|α|≤k

‖∂αun‖pp
) 1
p (84)

thus ∂αun is also a Cauchy sequence. Since Lp(Ω) is complete, there are limiting
functions un → u, ∂αun → gα. Moreover, we have for any φ ∈ C∞0 (Ω)

〈∂αu, φ〉 = lim
n→∞
〈∂α(u− un), φ〉+ 〈∂αun, φ〉

= lim
n→∞
〈∂α(u− un), φ〉+ 〈∂αun − gα, φ〉+ 〈gα, φ〉

= 〈gα, φ〉.

(85)
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Thus the weak derivative ∂αu of u exists and is gα. So there exists a limit function
u ∈ W k,p(Ω) and thus W k,p(Ω) is complete.

The above definitions give quite abstract characterizations of Sobolev spaces. There are
more concrete ways to characterize Sobolev spaces. Three possible characterizations
are maximal function, difference quotient and ACL characterizations. We do not
discuss them but we want to point out that those are useful while studying some
problems.

Studying the regularity of Sobolev functions is important for applications. As Sobolev
regularity of k increases, it would be useful to know if classical differentiability increase
as well. The following theorems give tools for showing regularity in Lp and Ck-sense.
The theorems that give results about the regularity of Sobolev functions are often
called embedding theorems. There are two basic results: Sobolev-Gagliardo-Nirenberg
inequality and Morrey’s inequality. To state these result let us assume that Ω is a
bounded set with smooth boundary. The Sobolev-Gagliardo-Nirenberg inequality
states that

‖u‖p∗ ≤ C‖∇u‖p (86)

where 1
p∗

= 1
p
− 1

n
. This inequality and an interpolation argument gives the inequality

‖u‖q ≤ C‖u‖1,p (87)

where q ∈ [p, p∗]. Morrey’s inequality can be stated in the following manner: When
p > N , we have an inequality

|u(x)− u(y)| ≤ C‖u‖1,p|x− y|α a.e. x, y ∈ Ω (88)

where α = 1 − n
p
. These results are usually proven first in the space Rn and then

they are extended to subsets Ω ⊂ Rn. This is done by proving that there exists an
extension map E : W 1,p(Ω)→ W 1,p(Rn) for which ‖Eu‖1,p ≤ C‖u‖1,p and (Eu)|Ω = u
for almost everywhere.

The Sobolev-Gagliardo-Nirenberg inequality gives us tools to trade derivatives for
higher integrability and Morrey’s theorem says that when a Sobolev function is
sufficiently integrable, then it is Hölder continuous. This gives a strategy to show
regularity of a function: To show the regularity of a function f it is enough to show
that ∂αf belongs to W 1,q(Ω) with q > n. This can be shown by trading Sobolev
derivatives for higher integrability and applying Morrey’s inequality to ∂αf to show
its continuity. With these tools, we can formulate the Sobolev embedding theorem.

Theorem 4.4 (Embedding theorems). [16, p. 182] Let Ω be an open set of Rn and
let 1 ≤ j < k and 1 ≤ p, q <∞.

1. if k − n
p
≥ j − n

q
. Then we have a continuous inclusion

W k,p(Ω)→ W j,q(Ω). (89)

Furthermore, if inequality is strict and the domain is compact set with a smooth
boundary, then the inclusion map is compact.
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2. if k − n
p
> j, then we have a continuous inclusion

W k,p(Ω)→ Cj(Ω) (90)

which is a compact map when the domain is a compact set with a smooth
boundary.

4.2 Fractional order Sobolev spaces on Rn

In the definition of classical Sobolev spaces W k,p(Rn) the number p can be any number
greater or equal to 1. When we study the case p = 2, we can utilize Fourier analytical
methods and Fourier transform. This leads to a different characterization of Sobolev
spaces, different proofs and a generalization of classical Sobolev spaces. We start
by reviewing basic definitions and results about Schwartz spaces and the Fourier
transform. We have used the books [8, 7] and lecture notes [17] as our references on
Fourier analysis and Schwartz spaces.

Definition 4.5 (Schwartz class). Schwartz class S(Rn) is a vector subspace of the
space of smooth functions C∞(Rn) and is given by

S(Rn) = {φ ∈ C∞(Rn) | sup
x∈Rn
|xβ∂αφ(x)| <∞,∀α, β ∈ Nn

0} (91)

where we use the standard multi-index notation. The condition (91) is equivalent to

∀m ∈ N0, ∀α ∈ Nn
0 ∃Cm,α > 0 s.t. |∂αφ(x)| < Cm,α(1 + |x|)−m. (92)

Every function of Schwartz class is also in Lp(Rn) for all p ∈ [1,∞]. Furthermore, it
is the most convenient space to perform Fourier analysis on the Euclidean space Rn.
This can extended to vector valued functions by requiring that components belong to
Schwartz class. We denote vector-valued Schwartz class as S(Rn; Rk). Schwartz class
is closed under many useful operators.

Theorem 4.6. If u, v ∈ S(Rn) and p(ξ) is a polynomial on Rn, then uv, u ∗ v, ∂αu
and p(ξ)u all belongs to Schwartz class and the mappings are continuous. [7, p. 94]

Now, the Fourier transform can be defined in the Schwartz class and can be shown to
be a bijection.

Definition 4.7. The Fourier transform of u ∈ S(Rn) is defined as

û(ξ) = F(u)(ξ) =

∫
Rn
e−i〈x,ξ〉u(x) dx. (93)

For vector-valued functions the Fourier transform is defined component-wise.
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Theorem 4.8. Let us assume that u, v ∈ S(Rn), α ∈ Nn
0 . Then Fourier transform

has the following properties:

• the Fourier transform F(u) belongs also in S(Rn).

• Fourier transform is a bijection F : S(Rn)→ S(Rn) and the inverse is given by

F−1(u)(x) = (2π)−n
∫

Rn
ei〈x,ξ〉u(ξ) dξ. (94)

• Fourier transform is almost an isometry on S(Rn), that is, the following identity
holds ∫

Rn
u(x)v(x) dx = (2π)−n

∫
Rn
F(u)F(v)(x) dx. (95)

The Fourier transform can be extended to L2(Rn) and these properties hold still [8, p.
97,100].

In Schwartz class, the Fourier transform has good properties with respect to derivatives
and multiplying by polynomials. We gather the most important properties of the
Fourier transform in the following theorem.

Theorem 4.9. Let u, v ∈ S(Rn), then following algebraic-differential identities hold

• F(∂αu)(ξ) = (iξ)αF(u)(ξ)

• ∂α(F(u)(ξ)) = F((−ix)αu)(ξ).

Furthermore, the convolution operator has following properties:

• F(u ∗ v) = F(u)F(v)

• F(uv) = (2π)−nF(u) ∗ F(v).

One possible way to motivate the definition of Schwartz space is to find a space where
this theorem is true.

We can define distributions with Schwartz space as the space of test functions. The
distribution space will be called the space of tempered distributions and is denoted by
S ′(Rn). The space Lp(Rn) can be embedded into S ′(Rn) by the standard inclusion map
f 7→ 〈f, φ〉 =

∫
Rn
f(x)φ(x) dx. Observe that we do not include complex conjugate in

the integral. The usual operations can be extended for tempered distributions as long
as we check that required adjoint identities hold true. Especially we are interested in
the adjoint of Fourier transform.

Theorem 4.10. [7, p. 119] Let u ∈ L2(Rn) and v ∈ S(Rn), then we have the following
identity for the Fourier transform

〈F u, v〉 = 〈u,F v〉. (96)
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With this identity, we can readily define the Fourier transform of tempered distributions
and it will be used in the definition of fractional Sobolev spaces.

Definition 4.11. Let S ∈ S ′(Rn), then we define the Fourier transform of S as

F(S)(φ) = S(F(φ)). (97)

The isometry property of the Fourier transform, 〈u, v〉 = (2π)−n〈F u,F v〉, is often
called the Parseval-Plancherel theorem. It provides an important connection between
classical Sobolev spaces and Fourier analysis as following propositions will show.

Proposition 4.12. Let us have a function u ∈ Hk(Rn), then for every |α| ≤ k

F(∂αu)(ξ) = (−iξ)αF(u)(ξ). (98)

Proof. Since by the definition u ∈ Hk(Rn) belongs to L2(Rn) and C∞0 (Rn) is dense in
S(Rn), we can extend u to the space S ′(Rn). Let |α| ≤ k and ∂αu = gα, then by the
definition of the weak derivative we have

〈gα, φ〉2 = 〈u, (−1)|α|∂αφ〉2
⇐⇒ 〈F(gα),F(φ)〉2 = 〈F(u), (−1)|α|F(∂αφ)〉2
⇐⇒ 〈F(gα),F(φ)〉2 = 〈F(u), (−1)|α|(iξ)αF(φ)〉2

⇐⇒ 〈F(gα)− (iξ)αF(u),F(φ)〉2 = 0.

(99)

This holds for every φ ∈ S(Rn). Since the Fourier transform maps S(Rn) bijectively
to S(Rn), F(φ) attains all elements of C∞0 (Rn). Therefore, we can apply the Du
Bois-Reymond lemma and it shows that F(gα)− (iξ)αF(u) = 0 which concludes the
proof.

When the weak derivative exists, then we know that (iξ)αF(u) belongs to L2(Rn),
that is, ξ2α| F(u)|2 is integrable. Now the weak derivative could be defined via (98).
This raises a question: When this can be done and what is the necessary and sufficient
condition for ξ2α| F(u)|2 to be integrable for all |α| ≤ k? To answer this question, we
will need the following lemma.

Lemma 4.13. Let us define an auxiliary function

〈ξ〉 = (1 + ‖ξ‖2)
1
2 . (100)

Then we will have inequalities for any |α| ≤ k:

ξ2α ≤
∑
|β|≤k

ξ2β ≤ 〈ξ〉2k ≤ C
∑
|β|≤k

ξ2β. (101)

Proof. Using multinomial identity, we can write 〈ξ〉2k as

〈ξ〉2k = (1 + |ξ|2)k =
∑
|β|≤k

Cβξ
2β (102)
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where Cβ is the multinomial coefficient k!
β!(k−|β|)! . The inequalities will follow when we

use estimates 1 ≤ Cβ ≤ C = max
|β|≤k

Cβ.

Using this lemma, the answer to the above question can be read from the following
theorem.

Theorem 4.14. The following equivalence is true:

u ∈ Hk(Rn) if and only if
∫

Rn
〈ξ〉2k| F(u)(ξ)|2 dξ <∞. (103)

Proof. Let us assume that weak derivatives exists for |α| ≤ k, then by (98) we have that
(iξ)αF(u) is the Fourier transform of the weak derivative and thus

∫
Rn ξ

2α| F(u)|2(ξ)dξ
is finite so by (101) we have∫

Rn
ξ2α| F(u)|2 dξ ≤

∫
Rn
〈ξ〉2k| F(u)(ξ)|2 dξ ≤ C

∑
|α|≤k

∫
Rn
ξ2α| F(u)|2dξ <∞. (104)

Now, let us assume that
∫

Rn〈ξ〉
2k| F(u)|2 dξ exists. The above inequality proves that

(iξ)αF(u)(ξ) ∈ L2(Rn) so we can define the weak derivative by taking the inverse
Fourier transform in (98).

This theorem motivates following definition of space Hs(Rn).

Definition 4.15. Let s ∈ R, then the Sobolev space Hs(Rn) is defined to be the set

Hs(Rn) = {u ∈ S ′(Rn) | 〈ξ〉sû ∈ L2(Rn)}. (105)

This space can be equipped with the inner product

〈u, v〉s = (2π)−n
∫

Rn
〈ξ〉2sF(u)(ξ)F(v)(ξ) dξ. (106)

We want to extend fractional Sobolev spaces to subsets Ω ⊂ Rn. There are at least
two ways to construct fractional Sobolev spaces for open sets: We can define Hs(Ω)
as a suitable restriction of Hs(Rn) given by

Hs(Ω) = {u ∈ L2(Ω) | ∃v ∈ Hs(Rn) : v|Ω = u}. (107)

We can also define fractional local Sobolev spaces by using cut-off functions. We define
Hs

loc(Ω) as

Hs
loc(Ω) = {u ∈ L2(Ω) | ∀φ ∈ C∞0 (Ω) : φu ∈ Hs(Rn)}. (108)

We can extend the regularity theorem for Hs(Rn).
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Theorem 4.16. [18, p. 215] Let us assume that s > n
2

+ k, then Hs(Rn) can be
continuously embedded to Ck(Rn) which is equipped with Ck-norm. Furthermore, when
Ω has a k-extension propety, that is, Hk(Ω) can be embedded to Hk(Rn), then if
k > n

2
+ j we have Hk(Ω) ⊂ Cj(Ω).

The theory that extends Fourier analytical methods to Lp(Rn) spaces is called Lp-
multiplier and Littlewood-Paley theory. The main idea in those theories is to study the
question: For what multipliers m(ξ) the function F−1(m(ξ)F(u)(ξ)) is Lp-continuous
when u ∈ S(Rn) and S(Rn) is equipped with Lq-norm?

We will end this subsection with two examples of how Fourier analysis and distribution
theory can be applied to PDEs.

Example 4.17. Let us study the heat equation on Rn × (0,∞) with initial values in
the set {(x, 0) ∈ Rn+1 | x ∈ Rn}. The equation is{

∂tf(x, t) = ∆xf(x, t)

f(x, 0) = h(x).
(109)

When we take Fourier transform of the equation with respect to x variable and denote
Fx(f) = f̂x, we obtain following ordinary differential equation for fx{

∂tf̂x(ξ, t) = −‖ξ‖2f̂x(ξ, t)

f̂x(ξ, 0) = ĥ(ξ).
(110)

The solution of this equation is given by f̂x(ξ, t) = ĥ(ξ)e−t‖ξ‖
2 . Taking the inverse

Fourier transform we notice that the solution f(x, t) is obtained as a convolution
f(x, t) = h(x) ∗ F−1

x (e−t‖ξ‖
2
). Now the inverse Fourier transform can be calculated

from knowing that F(e
−‖x‖2

2 ) = (2π)
n
2 e
−‖ξ‖2

2 . Now

F−1
x (e−t‖ξ‖

2

) =
1

(2π)n

∫
Rn
ei〈x,ξ〉e−t‖ξ‖

2

dξ

=
1

(2t)
n
2

1

(2π)n

∫
Rn
e
−i〈 −x√

2t
,z〉
e
−‖z‖2

2 dz

=
1

(4πt)
n
2

e
−‖x‖2

4t .

(111)

We get that f(x, t) = 1

(4πt)
n
2

∫
Rn h(y)e

−‖x−y‖2
4t dy is a solution for the heat equation.

Example 4.18. This example is based on the reference [7, p.218]. Fourier analytical
methods are an effective way to calculate fundamental solutions of partial differential
equations. We demonstrate this via calculating the fundamental solution E for the
Laplace operator when the dimension of the Euclidean space is n ≥ 3. The distribution
E fulfills the equation ∆E = δ. Taking the Fourier transform of both sides of equation,
we obtain the equation −‖ξ‖2Ê = 1. So Ê = 1

‖ξ‖2 . Finding the inverse transform
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requires more tools: If a function f(x) is homogeneous of degree d, then the Fourier
transform f̂ is homogeneous of degree −n − d. This can be seen from following
calculations

F(f)(λξ) =

∫
Rn
e−i〈x,λξ〉f(x) dx

=

∫
Rn
e−i〈z,ξ〉f(

z

λ
)λ−n dz

= λ−n−d
∫

Rn
e−i〈z,ξ〉f(z) dz

= λ−n−dF(f)(ξ).

(112)

The second tool that we need is rotational invariance. If the function is rotation
invariant, then the Fourier transform is also rotation invariant. This is shown with a
similar calculation:

F(f)(Rξ) =

∫
Rn
e−i〈x,Rξ〉f(x) dx

=

∫
Rn
e−i〈z,ξ〉f((R∗)−1z)| det((R∗)−1)| dz

=

∫
Rn
e−i〈z,ξ〉f(z) dz

= F(f)(ξ).

(113)

Let us calculate the Fourier transform of f(x) = ‖x‖−d for d ∈ (0, n).

F(f)(ξ) = F(f)

(
‖ξ‖ξ
‖ξ‖

)
= ‖ξ‖d−nF(f)

(
ξ

‖ξ‖

)
= ‖ξ‖d−nF(f)(R(0, 0, . . . , 1)) for some rotation matrix R
= ‖ξ‖d−nF(f)(0, 0, . . . , 1)

= cd‖ξ‖d−n

(114)

where cd = F(f)((0, 0, . . . , 1)). When we impose that d − n = −2 we obtain that
d = n− 2 so the inverse Fourier transform is form of

F−1(‖ξ‖−2)(x) =
1

cn−2

‖x‖2−n (115)

so the fundamental solution is E(x) = 1
cn−2
‖x‖2−n. We will omit calculation of cn−2.

To justify the use of the Fourier transforms, we need to show that ‖x‖−2 is in S ′(Rn)
for n ≥ 3. When φ ∈ S(Rn), then we have∫

Rn
‖x‖−2φ(x) dx =

∫
B(0,1)

‖x‖−2φ(x) dx+

∫
Rn\B(0,1)

‖x‖−2φ(x) dx. (116)
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The second term is observed to be finite when we notice that 1
‖x‖2 ≤ 1 and that

any Schwartz function is integrable. The first integral can be estimated using polar
coordinates which leads to an estimator C( max

x∈B(0,1)
|φ(x)|)

∫ 1

0
ρ(n−1)−2 dρ which is finite

for n ≥ 3. The case n = 2 needs different methods and we refer the reader to look it
up for example from [7, p. 218].

Fourier analytical methods can be used similarly to calculate fundamental solutions of
other partial differential equations. Moreover, one can prove more general statements
about fundamental solutions of PDEs, namely the Malgrange-Ehrenpreis theorem and
its following extension.

Theorem 4.19. [7, p. 198] Every nonzero constant coefficient partial differential
operator P on Rn has a fundamental solution E ∈ S ′(Rn) such that P (E) = δ in
S ′(Rn).

4.3 Sobolev spaces Hk(M,E) on vector bundles

There are at least two ways to define Sobolev space on vector bundles: The coordinate-
free way to define Sobolev spaces is to define them as the completion of Γ(E) with
respect to Sobolev norm. The second definition is a local definition which is based on
coordinate invariance of Sobolev spaces on open sets Ω ⊂ R. We give both definitions
in this subsection.

Definition 4.20. Let u be a section of Γ0(E). Then we define W k,p-Sobolev norm as

‖u‖k,p = (
∑
j≤k

‖∇ju‖p)
1
p . (117)

With this norm, we can introduce the Sobolev space W k,p(M,E). Furthermore, we
can introduce the space of sections with continuous k-th derivative Ck(M,E).

Definition 4.21. The Sobolev space W k,p(M,E) is defined as the completion of the
set {u ∈ Γ0(E) | ‖u‖k,p <∞} with respect of the Sobolev norm ‖ · ‖k,p.

The space Ck(M,E) is defined as the set of continuous sections u such that for every
j ≤ k, function’s j-th covariant derivative ∇ju exists, is continuous and its L∞-norm
‖∇ku‖∞ is finite where the L∞-norm is ‖u‖∞ = sup

x∈M
‖u(x)‖E. This space is equipped

with norm

‖u‖j,∞ = max
k≤j
‖∇ku‖∞. (118)

This definition has the benefit that it is similar to the definition of Lp spaces and
it uses only the method of completing a normed space. Furthermore, the definition
uses only coordinate-free operations of manifolds and, thus, gives a coordinate-free
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way to define Sobolev norm. One can prove that this definition is equivalent with the
following local definition.

Definition 4.22 (Local Sobolev spaces). LetM be a compact manifold and π : E →M

a vector bundle of dimension n. Let us have a cover M =
N⋃
i=1

Uk such that there exist

charts Φk : π−1(Uk) → Vk × Rn on the bundle E. As every section s ∈ Γ(E) can
represented locally as linear combination of basis sections, we can study push-forward
section (DΦk)s : Γ(π−1(Uk))→ Γ(Vk×Rn) which are defined by the local representation
x 7→ ((DΦis)1(x), (DΦis)2(x), . . . , (DΦis)n(x)). We can define a Sobolev W k,p-norm
as

‖s‖Wk,p(M,E) =
N∑
i=1

n∑
j=1

‖(DΦis)j‖Wk,p(Vi). (119)

A section s belongs to W k,p(M,E) if its above norm ‖s‖Wk,p(M,E) is finite.

Theorem 4.23. [16, p.181] Different atlases of M produce topologically equivalent
local Sobolev norms. Furthermore, these norms are also equivalent to the coordinate-
free norm. So the coordinate-free definition and local definition produce the same
Sobolev space. Especially a section of E belongs to a Sobolev space if and only if for
every chart, the components belong to the corresponding Sobolev space.

This theorem implies that we can prove results for Sobolev spaces of vector bundles
by proving them for scalar functions and then extend results to sections by using
partition of unity. The Sobolev embedding theorem is an example of this.

Theorem 4.24. [16, p. 182] Let E be a vector bundle over a compact manifold M .
Let j < k and 1 ≤ p, q <∞.

1. if k − n
p
≥ j − n

q
, then we have a continuous inclusion

W k,p(M,E)→ W j,q(M,E). (120)

Furthermore, if the inequality is strict, then the inclusion map is compact.

2. if k − n
p
> j, then we have a continuous inclusion

W k,p(M,E)→ Cj(M,E) (121)

which is a compact map.

These embeddings are often used to prove regularity results for solutions of equation
Pu = f . To show the regularity, a common strategy is to prove that the operator has
the property

Pu ∈ W k,p(M ;E) =⇒ u ∈ W k+l,p(M ;E). (122)

Then the smoothness of solution on a compact base manifold M follows immediately
when we notice that Γ(E) =

⋂
k∈N

W k,p(M ;E) which is consequence of the Sobolev

embedding theorem. Thus if f ∈ Γ(E) then u ∈ Γ(E).
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4.4 Fourier analysis and Hs
loc(M,E) spaces on vector bundles

In the manifold case, we lack the vector space structure that we used to define the
Fourier transform on L2-spaces over the space Rn. However, we get an inner product
space structure to our use when we consider sections over the tangent bundle and
the cotangent bundle. To use this, we need to lift functions from the manifold to the
tangent bundle. We start by defining a micro-local lift and then the Fourier transform
between the tangent bundle and the cotangent bundle. This section is based on the
article [19].

Throughout this subsection, let assume that (M, g) be a Riemannian manifold, E and
F are vector bundles over M with metric tensors 〈·, ·〉E and 〈·, ·〉F and s is a section
of Γ(E). We need following technical lemma.

Lemma 4.25. Let us denote the tangent bundle as ρ : TM → M . There is a
neighbourhood W of the zero section of TM such that the function (ρ, expM) maps
W diffeomorphically into neighbourhood of diagonal of M ×M . Then there exists a
smooth function ψ : TM → [0, 1] such that supp(ψ) ⊂ W , supp(ψ(x, ·)) is compact
for every x ∈M and ψ|W̃ = 1 for some open set W̃ including the zero section of TM .
The function ψ is called a cut-off function.

With a cut-off function and the parallel transport τγ(1),γ(0) : Eγ(0) → Eγ(1) we can
define a microlocal lift as follows.

Definition 4.26. The micro-local lift of f is given by

f 7→ fψ(v) = ψ(v)τ−1
exp(v)f(exp(v)), for any v ∈ W (123)

and extended by zero for TM \W .

We get the original function back when we evaluate the microlocal lift at the zero
section of the tangent bundle. So we do not lose information when we lift a function
to a tangent bundle. To study function’s local properties it is enough to consider
properties of the micro-local lift at each fiber. We can now introduce the Fourier
transform on vector bundles. We need the following functions space in the theory of
Fourier transforms.

Definition 4.27. The space of smoothing symbols S-∞(TM,E) over the tangent bundle
is defined as a set of smooth functions a : TM → E such that for every open set
U ⊂ M and every open set V ⊂ φ(U), such that trivializations exist, the following
property holds: For every trivialization Ψ : E|V → V × RN , compact set K ⊂ V ,
α, β ∈ Nd and µ ∈ R there exists a constant C = Cα,β,K,µ > 0 such that the following
inequality holds in K:

‖ ∂
α

∂xα
∂β

∂ζβ
Ψ(a(ξ))‖ < C(1 + ‖ξ‖)µ (124)
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where ξ ∈ ρ−1(φ−1(K)).

A smoothing symbol restricted to every fiber TxM belongs to the Schwartz class.
So it is useful to define smoothly varying tempered distributions on the tangent
bundle S-∞(TM,E)∗ as functions which relate to every point x ∈ M a distribution
u ∈ S ′(TxM) such that u(f) ∈ C∞(M) for every f ∈ S-∞(TM,E).

Notice that we could have replaced the tangent bundle with the cotangent bundle in
definitions and the result above. Thus, all definitions can be given also in the case of
the cotangent bundle. We need a notion of L2-space on a fiber. We say that a section
u : TM → E belongs to L2

x(TM,E) if the integral∫
TxM

〈u(x, ξ), u(x, ξ)〉E dξ (125)

is finite for all x ∈M where the measure will be given by the volume form associated
to the metric’s matrix representation at point x. We have the following useful lemma
about L2-spaces.

Lemma 4.28. Let f ∈ L2(E) then fψ(v) ∈ L2
x(TM,E).

Proof. Let v ∈ TxM and let us denote ψ(x, v) by φ(v), thus fψ(v) = φ(v)τ−1
exp(v)f(exp(v)).

Since parallel transport preserves the inner product, we have

〈φ(v)τ−1
exp(v)f(exp(v)), φ(v)τ−1

exp(v)f(exp(v))〉 = φ2(v)〈f(exp(v)), f(exp(v))〉 (126)

and it is enough to consider
∫
TxM

φ2(v)〈f(exp(v)), f(exp(v))〉E dv. Since supp(φ) is
compact, the local presentation of volume form in normal coordinates, g, obtains a
minimum C > 0 on the set V = exp(supp(φ)) where g is determined by vol(M) =
gdz1dz2 . . . dzn. Let us denote the image of the set V under normal coordinates by V ′.
Now the estimate∫

V

〈f(x), f(x)〉 volM(x) ≥ C

∫
V ′
〈f(z), f(z)〉 dz1 dz2 . . . dzn (127)

holds and thus
∫
V ′
〈f(z), f(z)〉 dz1 dz2 . . . dzn is finite. The claim follows when we ex-

pand
∫
TxM

φ2(v)〈f(exp(v)), f(exp(v))〉E dv in normal coordinates and use the estimate
|φ(v)| < M for some M :∫

TxM

φ2(v)〈f(exp(v)), f(exp(v))〉E dv ≤M2

∫
V ′
〈f(z), f(z)〉 dz1 dz2 . . . dzn. (128)

Definition 4.29. The Fourier transform over the tangent bundle is a mapping
F : S-∞(TM,E)→ S-∞(T ∗M,E) given by

u 7→ û(ξ) =
1

(2π)
n
2

∫
Tπ(ξ)M

e−i〈ξ,v〉u(v)dv. (129)

41



This operator has an inverse F−1 : S-∞(TM,E)→ S-∞(T ∗M,E) given by

û 7→ u(v) =
1

(2π)
n
2

∫
T ∗
π(v)

M

ei〈ξ,v〉û(ξ)dξ. (130)

The Fourier transform depends only on the fiber. Therefore, we can extend the Fourier
transform to an operator F : L2

x(TM,E) → L2
x(T

∗M,E) and this is well-defined by
properties of the Fourier transform on the space Rn.

We define the Fourier transform F : S-∞(TM,E)∗ → S-∞(T ∗M,E)∗ on smoothly
varying distribution as F(u)(f) = u(F−1(f)) where f ∈ S-∞(T ∗M,E). Since we study
the Fourier transform fiber-wisely, this definition makes sense and the adjoint property
follows from the adjoint property on the fiber over the point x. We can define a
fiber-wise lift of D′(M,E) to the space S-∞(TM,E)∗. Let us fix a point x ∈M , then
we push locally a function f ∈ S-∞(TM,E) to the base manifold via

fψ,x(y) = ψ(exp−1
x (y))f(y, 0) (131)

where ψ is a cut-off function. The function fψ,x belongs to the space Γ0(M,E) so we
can use it as a test function. We can define the local lift as uψ(f)(x) = u(fψ,x). This
makes possible for us to use the Fourier transform on distributions D′(M,E).

With the Fourier transform on a vector bundle, we can define fractional Sobolev spaces
on a vector bundle using the Fourier transform.

Definition 4.30. Sobolev spaces

(i) Let s ≥ 0, we define Hs
loc(M,E) to be the set

Hs
loc(M,E) ={u ∈ L2(M,E) | 〈ξ〉sF(uψ)(ξ) ∈ L2

ξ(T
∗M,E)

for all cut-off functions ψ}
(132)

(ii) And more generally we can set s ∈ R and define Hs
loc(M,E) as

Hs
loc(M,E) ={u ∈ D′(M,E) | 〈ξ〉sF(uψ)(ξ) ∈ L2

ξ(T
∗M,E)

for all cut-off functions ψ}
(133)

(iii) When the base manifold M is compact, then the Sobolev space can be defined
as follows. Let {B(xj, rj)}Nj=1 be a finite cover of M such that ψ(exp−1

xj
(y)) is

positive for every y ∈ B(xj, rj), then let us define Hs(M,E) as

Hs(M,E) = {u ∈ L2(M,E) | 〈ξ〉sF(uψ)(xj, ·) ∈ L2(T ∗xjM)} (134)

and define a norm ‖u‖ =
N∑
j=1

‖〈ξ〉sF(uψ)(xj, ·)‖L2
ξ
and the associated inner

product 〈u, v〉 =
N∑
j=1

〈ξ〉sF(uψ)(xj, ·), 〈ξ〉sF(vψ)(xj, ·)〉L2
ξ
.
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5 Partial differential operators

A linear partial differential operator of degree k on the space Rn is defined as a linear
operator which can be written in the form of

P =
∑
|α|≤k

aα(x)
∂|α|

∂xα
. (135)

A natural way to extend partial differential operators to vector bundles is to require
operators to look like ordinary partial differential operators on every chart. There are
also two other ways to define partial differential operators: Definition based on Peetre’s
theorem and an algebraic definition. In this section, we give all three definitions.

Let E,F be vector bundles with dim(E) = k and dim(F ) = m. Let s be a section

of E and
n∑
j=1

aj(x)sj(x) be its local representation. For an arbitrary linear operator

P : Γ(E)→ Γ(F ), we obtain

P (
n∑
j=1

aj(x)sj(x)) =
k∑
j=1

P (aj(x)sj(x)). (136)

We need to take account that E and F have different bases so the most general linear
transformation rule available is

P (al(x)sl(x)) =
m∑
i=1

Pli(a
l(x))s̃i(x) (137)

where Pli is linear operator on Ω ⊂ Rn and s̃j is another local basis. We get the
following definition.

Definition 5.1 (Partial differential operators in local coordinates). We say that P is
a partial differential operator Γ(E)→ Γ(F ) if for all local bases sj(x) and s̃j(x) we
have

P (
k∑
i=1

ai(x)si(x)) =
k∑
i=1

m∑
j=1

Pij(a
i(x))s̃j(x). (138)

where Pij are ordinary partial differential operators. If we represent coefficients of
local basis as column vectors, then the definition can be written as

P
( k∑
i=1

ai(x)si(x)
)

=

P11 . . . P1k
... . . . ...

Pm1 . . . Pmk


a

1(x)
...

ak(x)

 . (139)

This definition is convenient for local calculations and looks similar to the Euclidean
case. To check that this definition is coordinate invariant, we need to introduce the
change of variable formula. We show how to derive it.

43



Let U and V be charts on M and let P : Γ(Ũ,Rk)→ Γ(Ũ,Rm) be a partial differential
operator. Then the natural constrain for P̃ : Γ(Ṽ,Rk)→ Γ(Ṽ,Rm) is that the diagram

Γ(Ṽ,Rk) Γ(Ũ,Rk)

Γ(Ṽ,Rm) Γ(Ũ,Rm)

DΦŨ Ṽ

P̃ P

DΦŨ Ṽ

commutes. Thus, the operator is given by P̃ = DΦ−1

Ũ Ṽ
◦P ◦DΦŨ Ṽ. From this, we can

read that the pull-back operator is also a partial differential operator.

Definition 5.2. The degree of a partial differential operator is the largest degree
among degrees of Pij of all local representations.

We see from the change of variables formula that the degree of the partial differential
operator is independent of choice of charts. Furthermore, the degree has the following
property.

Proposition 5.3. Let f ∈ C∞(M), P be a partial differential operator of degree k
and s be section, then the operator

[P, f ](s) = P (fs)− fP (s) (140)

is a partial differential operator and degree k − 1.

Proof. By the linearity of operators, it is enough to show this for an operator consisting
only of aα(x)∂α:

aα(x)∂α(fs)− aα(x)f(x)∂αs = aα(x)

( ∑
0≤β≤α

(
α

β

)
∂βf∂α−βs− f∂αs

)

= aα(x)

( ∑
1≤β≤α

(
α

β

)
∂βf∂α−βs

) (141)

since the inequality |α− β| ≤ k − 1 holds in the sum, we have shown the claim.

This gives motivation for the algebraic definition. We define a sequence of operator
spaces PDOk(E,F ). We do this inductively. Let

PDO0(E,F ) = {P ∈ Hom(E,F )|[P, u] = 0 ∀u ∈ C∞(M)} (142)

and then we define a space PDOk(E,F ) as

PDOk(E,F ) = {P ∈ Hom(E,F )|[P, u] ∈ PDOk−1(E,F ) ∀u ∈ C∞(M)}. (143)

With these spaces the definition of a partial differential operator is shortly as follows:
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Definition 5.4 (Algebraic definition). We say that P is PDO operator of the degree
k if P ∈ PDOk(E,F ).

This is a way to define partial differential operators in a coordinate-free manner.
The degree of a partial differential operator can be calculated by using algebra. Let
us demonstrate this by confirming that the exterior derivative and co-differential,
δ : Ωk(M)→ Ωk−1(M) which is defined as δ = (−1)k ∗−1 d∗, are operators with degree
one.

Example 5.5. Let us study degree of the exterior derivative:

[d, f ](ω) = d(fω)− fd(ω) = fdω + df ∧ ω − fdω = df ∧ ω. (144)

where f ∈ Γ(M). Since wedge product is C∞(M) linear, df ∧ ω is in PDO0. For the
co-differential we have equalities

[δ, f ](ω) = (−1)k ∗−1 d ∗ (fω)− f(−1)k ∗−1 d ∗ ω
= (−1)k ∗−1 df ∧ ∗ω + f(−1)k ∗−1 d ∗ ω − f(−1)k ∗−1 d ∗ ω
= (−1)k ∗−1 df ∧ ∗ω.

(145)

Now by C∞(M)-linearity of wedge product and Hodge star, we obtain that the operator
[δ, f ] belongs to PDO0.

When we equip k-forms Λk
0(M) with a Hodge inner product

∫
M
ω ∧ ∗η. Then the

co-differential δ will be an adjoint of the exterior derivative d, that is, 〈dω, η〉 = 〈ω, δη〉.
This can seen from following calculation: Let ω ∈ Λk−1, η ∈ Λk

0(M), then Stokes’
theorem implies that

0 =

∫
∂M

(ω ∧ ∗η) =

∫
M

d(ω ∧ ∗η) =

∫
M

dω ∧ ∗η + (−1)k−1

∫
M

ω ∧ d ∗ η (146)

and thus∫
M

dω ∧ ∗η =

∫
M

ω ∧ (−1)kd ∗ η =

∫
M

ω ∧ ∗(−1)k ∗−1 d ∗ η. (147)

This shows that δ is an adjoint of d. With these operators, we can define the Hodge
Laplacian ∆ = dδ+ δd which can be seen to be formally self-adjoint by straighforward
calculation. The degree of the Hodge Laplacian is two as can be concluded from the
following theorem.

Theorem 5.6. Let us have operators P ∈ PDOk(M,E, F ) and Q ∈ PDOl(M,F,G),
then the composition QP belongs to PDOk+l(M,E,G).

Proof. Let P ∈ PDOk(M,E, F ) and Q ∈ PDOl(M,F,G) be partial differential opera-
tor, then we have the identity

[QP, f ]u = QP (fu)− fQP (u)

= Q(fP (u) + [P, f ]u)− fQP (u)

= fQP (u) + [Q, f ](Pu) +Q([P, f ]u)− fQP (u)

= [Q, f ](Pu) +Q([P, f ])u.

(148)

45



We see that the [QP, f ] is a sum of composition of partial differential operators with
lower degrees. When one of the operator is degree 0, then one of the terms vanishes
in the sum. The theorem follows when we apply this identity k + l times.

Partial differential operators have the property that they are local operators which
means that supp(Ps) ⊂ supp(s). This is easily seen from the local definition. Let us
prove that this holds also for the operators in PDOm(E,F ).

Proposition 5.7. Let P be a partial differential operator of degree m and s be a
section Γ(E) then

supp(Ps) ⊂ supp(s) (149)

holds.

Proof. We follow the idea of the reference [20, p. 423]. Let us prove the claim by
induction. In the case m = 0, the operator P ∈ PDOm(E,F ) has property

P (fu) = fP (u) ∀u ∈ Γ(E), f ∈ C∞(M). (150)

For any open set O ⊃ supp(u), we can find a smooth bump function φ such that
supp(φ) ⊂ O and φ|supp(u) = 1. Using the equation (150) with f = φ we see that

supp(P (u)) = supp(P (φu)) ⊂ supp(φ). (151)

We can take suppφ as close to suppu as we want which is enough to conclude the
claim in the case m = 0.

Now assume that the claim holds m = k. Then for any m = k+1, P ∈ PDOk+1(E,F )
and f ∈ C∞(M) we have

P (fu) = [P, f ]u+ fP (u) (152)

by the induction step we have that supp([P, f ]u) ⊂ supp(u) because [P, f ] is an
operator of degree k. Using same bump functions φ and the same argument again, we
conclude that

supp(Pu) = supp(P (φu)) ⊂ supp(u) ∪ supp(φ) (153)

which finishes the proof.

This result shows that the value of a partial differential operator is determined by its
values on a neighbourhood of a point: Let u and v agree on a small neighbourhood
of x then the x belongs to the complement of the support of u− v. The proposition
will imply that supp(P (u − v)){ ⊃ supp(u − v){ so Pu(x) = Pv(x). Thus, Pu is
determined by local information of u.

In fact, the property in Proposition 5.7 is enough for a linear operator to be a partial
differential operator locally. When the manifold is compact, then the operator is a
partial differential operator globally. This is known as Peetre’s theorem. So we can
use the condition in Proposition 5.7 as a definition for partial differential operators.
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Theorem 5.8 (Peetre’s theorem). [21, p. 196] Let M be a smooth manifold and
E1, E2 be vector bundles over M with dimensions k and m, respectively. Let us suppose
that P is a linear operator such that, for all sections s, we have suppP (s) ⊂ supp s.

Then for any point a ∈ M there exists a neighbourhood (U, φ) such that the vector
bundles have trivializations and the pull back operator, P̃ : Γ0(Ũ,Rk)→ Γ0(Ũ,Rm), can
be represent as a partial differential operator in the analytical sense: For all sections
(a1(x), a2(x), . . . , an(x)) ∈ Γ0(Ũ,Rk) we have

P̃
(a

1(x)
...

an(x)

) =

P11 . . . P1n
... . . . ...

Pm1 . . . Pmn


a

1(x)
...

an(x)

 (154)

where Pij are partial differential operators in Ũ ∈ Rn.

We have shown that the analytical definition implies the algebraic property and
that algebraic property implies the support property. Therefore, Peetre’s theorem
shows that all three definitions will be equivalent on compact manifolds. If we
study noncompact manifolds, then we can find operators that have the property
suppP (s) ⊂ supp s but the degrees of local partial differential operator representations
do not have a global upper bound.

6 Pseudo-differential operators

Main objects in the theory of pseudo-differential operators are the graded operator
algebra Ψ∞(M ;E,F ) together with the graded symbol space S∞(M,Hom(E,F )). The
theory can be divided into two parts: Establishment of a pseudo-differential calculus
and applications of the calculus. The most important properties of pseudo-differential
calculus are L2 and Sobolev continuity, the composition theorem, the existence of
adjoint operator and the asymptotic summation property. Our object is to establish
pseudo-differential calculus and to state rigorously above properties. Applications of
pseudo-differential operators are given in Section 8.

There are three different definitions of pseudo-differential operators in the literature:
local, axiomatic and coordinate-free. Each way provides a different point of view to
pseudo-differential operators. We will include a local and coordinate-free definitions
in this thesis. The axiomatic definition takes properties of pseudo-differential calculus
and uses them as a definition. By including local and coordinate-free definitions,
we have tried to give a coherent picture of the theory. All three definitions will
lead to the same calculus of pseudo-differential operators. Since the local definition
uses pseudo-differential operators on Rn, we start by introducing pseudo-differential
operators in the space Rn which is an important case by it own.
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6.1 Pseudo-differential operators in Rn

The theory of pseudo-differential operators arose from harmonic and Fourier analysis.
In the space Rn, pseudo-differential operators can be viewed as a generalization of
partial differential operators in the Fourier analytical framework. Therefore, we will
introduce pseudo-differential operators through the Fourier analysis of Schwartz spaces
where we have the following theorem about partial differential operators.

Proposition 6.1. Let P (x,D) =
∑
|α|≤m

aα(x)∂α be a partial differential operator with

coefficients in the S(Rn). The symbol of P is defined as p(x, ξ) =
∑
|α|≤m

aα(x)(iξ)α. Let

u ∈ S(Rn), then we have a formula that connects the symbol and the operator:

P (x,D)u(x) = (2π)−n
∫

Rn
ei<x,ξ>p(x, ξ)û(ξ) dξ. (155)

Proof. By the properties of the Schwartz class we have that (iξ)αû is in the Schwartz
class and therefore it is also absolutely integrable. Thus, we can take partial derivatives
to under of the integral sign in the following calculation [22, p. 154].

P (x,D)u(x) =
∑
|α|≤m

aα(x)∂αu(x)

=
∑
|α|≤m

(2π)−naα(x)∂αx

∫
Rn
ei<x,ξ>û(ξ) dξ

= (2π)−n
∑
|α|≤m

∫
Rn
aα(x)∂αx e

i<x,ξ>û(ξ) dξ

= (2π)−n
∫

Rn
ei<x,ξ>p(x, ξ)û(ξ) dξ.

(156)

This shows the proposition.

Pseudo-differential operators are generalization of this representation. In the case
of partial differential operator with constant coefficients, the symbol p(x, ξ) is a
polynomial with respect to ξ variable. However for pseudo-differential operators, we
allow more general symbols to be used in the identity (155). The function spaces that
we will use, are called symbol spaces. We follow the notation used in the reference [8]
with minor changes.

Definition 6.2 (Symbol spaces). Let d ∈ R, 0 ≤ δ ≤ 1, 0 ≤ ρ ≤ 1 and Σ be an open
subset of the Rl for some l ∈ N. The space Sdρ,δ(Σ; Rm×k) is called matrix valued symbol
space of degree d and type ρ, δ and is defined as subspace of matrix valued smooth
function C∞(Σ × Rn; Rm×k) such that for any p(X, ξ) ∈ Sdρ,δ(Σ; Rm×k) and for any
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compact K ⊂ Σ and for any α ∈ Nn
0 , β ∈ Nl

0 following inequality holds for some cα,β,K

‖∂βX∂
α
ξ p(X, ξ)‖ ≤ cα,β,K(1 + ‖ξ‖)d−ρ|α|+δβ. (157)

There are many suitable choices for Σ for developing the theory but in this thesis
we use Σ = Rn or Σ = Ω ⊂ Rn. Furthermore, we will restrict ourselves to the case
(ρ, δ) = (1, 0) and omit the subscripts. However, large part of the results will apply
also for ρ, δ such that 0 ≤ 1− ρ ≤ δ ≤ ρ ≤ 1. When we study scalar valued symbol
spaces, then we denote simply symbol space as Sd(Σ). One can also use sets Rn × Rn

or Ω1 × Ω2 as a choice for Σ in the definition of symbol spaces. We will not discuss
these symbol spaces in the main text but introduce them shortly in Appendix. We
define the following spaces as well:

S∞1,0(Σ; Rm×k) =
⋃
d∈R

Sd1,0(Σ; Rm×k)

S−∞1,0 (Σ; Rm×k) =
⋂
d∈R

Sd1,0(Σ; Rm×k).
(158)

The symbol space S−∞1,0 (Σ; Rm×k) is called the space of smoothing symbols. Symbol
spaces have the following elementary properties.

Theorem 6.3 (Properties of symbol spaces). Let d, d′ ∈ R and p, q ∈ Sd(Σ; Rm×k)
and r ∈ Sd′(Σ; Rk×l) then we have:

1. p+ q ∈ Sd(Σ; Rm×k)

2. pr ∈ Sd+d′(Σ; Rm×l).

We will need symbol series in the theory and the concept of asymptotic sum is the
correct notion to use. The definition of asymptotic sum is based on the following
theorem.

Theorem 6.4. [8, p. 166] Let {dj}∞j=0 be a decreasing sequence of real numbers such
that dj tends to −∞. Then for any sequence of symbols pdj ∈ Sdj (Σ; Rm×k) there exist
a symbol p(X, ξ) ∈ Sd0(Σ; Rm×k) such that for any k ∈ N

p(X, ξ)−
k∑
j=0

pmj(X, ξ) ∈ Sdk+1(Σ; Rm×k). (159)

We define the symbol p provided by the above theorem as an asymptotic sum of pdj
and denote this by p ∼

∑
pdj . Asymptotic sums are used in stating results about

pseudo-differential operators and in the construction of a parametrix. With symbol
spaces, we can now define pseudo-differential operators on the Schwartz space.
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Definition 6.5 (Pseudo-differential operators). Let u ∈ S(Rn; Rk) and let us have a
symbol p ∈ Sd(Rn; Rm×k). Then an operator Op(p) is defined as

Op(p)u(x) = (2π)−n
∫

Rn
ei〈x,ξ〉p(x, ξ)û(ξ) dξ. (160)

We say that an operator is a pseudo-differential operator if it can be represented
as (160). The operator space induced by Sd(Rn; Rm×k) is denoted by Ψd(Rn; Rm×k)
and is called space of pseudo-differential operators of degree d. Let us check that a
pseudo-differential operator is well defined on the Schwartz space.

Proposition 6.6. Let u and p be as in definition above, then Op(p)u ∈ S(Rn; Rm).

Proof. [23, p. 40] We need to show that

sup
x∈Rn
|xα∂β Op(p)u| <∞ (161)

for all α, β ∈ Nn
0 . By using integration by parts and calculating we have

|xα∂βx Op(p)u| = |xα∂βx
∫

Rn
ei〈x,ξ〉p(x, ξ)û(ξ) dξ|

= |
∫

Rn
xα∂βx (ei〈x,ξ〉p(x, ξ)û(ξ)) dξ|

= |
∫

Rn
xα
∑
γ≤β

(
|β|
γ

)
∂γx(ei〈x,ξ〉)∂β−γx p(x, ξ)û(ξ)) dξ|

= |
∫

Rn

1

i|α|
∂αξ e

i〈x,ξ〉
∑
γ≤β

(
|β|
γ

)
∂β−γx (p(x, ξ))(iξ)γû(ξ)) dξ|

= |
∫

Rn
ei〈x,ξ〉

∑
γ≤β

(
|β|
γ

)
∂αξ (∂β−γx (p(x, ξ))(iξ)γû(ξ))) dξ|

= |
∫

Rn
ei〈x,ξ〉

∑
γ≤β

∑
δ≤α

(
|α|
δ

)(
|β|
γ

)
(∂δξ∂

β−γ
x (p(x, ξ))∂α−δξ (iξ)γû(ξ))) dξ|.

(162)

Now the symbol condition (157) gives us that |∂δξ∂β−γx (p(x, ξ))| ≤ C(1 + |ξ|)m−|δ| and
we obtain that

≤
∫

Rn
ei〈x,ξ〉

∑
γ≤β

∑
δ≤α

(
|α|
δ

)(
|β|
γ

)
|(∂δξ∂β−γx (p(x, ξ))∂α−δξ (iξ)γû(ξ)))| dξ

≤
∫

Rn
|ei〈x,ξ〉

∑
γ≤β

∑
δ≤α

(
|α|
δ

)(
|β|
γ

)
C(1 + |ξ|)m−|δ|∂α−δξ (iξ)γû(ξ)))| dξ.

(163)

By the properties of Schwartz class (1 + |ξ|)m−|δ|∂α−δξ ((iξ)γû(ξ)) is bounded by the
estimate C0(1 + |ξ|)−M for some M that is large enough so the integral is finite. This
concludes the proof.
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Symbols that are polynomials in ξ and bounded in x with fixed ξ are easily seen to
satisfy the symbol condition (157). Especially this is the case when the symnol is given
by p(x, ξ) =

∑
|α|≤m

aα(x)(iξ)α with aα(x) ∈ S(Rn). Thus, we have following theorem.

Theorem 6.7. A linear partial differential operators on the space Rn with coefficients
in the Schwartz class are pseudo-differential operators.

There does not exist the notion of the Schwartz class on open sets so we can not use
it to define pseudo-differential operators. However there are compactly supported
smooth functions C∞0 (Ω; Rk) that we can use. Furthermore, we can take the zero
extension of compactly supported function and calculate the Fourier transform of
the extension. This provides a suitable object for the definition of pseudo-differential
operator on open sets.

Definition 6.8. Let p(x, ξ) ∈ Sd(Ω; Rm×k), u ∈ C∞0 (Ω; Rk) and û be the Fourier
transform of the zero extension of u. We define Op(p) to be an operator given by

Op(p)u(x) =

∫
Rn
e−i〈x,ξ〉p(x, ξ)û(ξ)dξ. (164)

There are also alternative definitions of pseudo-differential operators. If the open set
is a smooth domain, one can use the Fourier analytical methods on manifolds. This
approach is treated in the next section. One can also write the Fourier transform
explicitly and obtain a formal integral

Pu(x) =

∫
Rn

∫
Ω

ei(x−y)·ξp(x, ξ)u(y) dy dξ. (165)

In this formal integral, we can replace Sd(Ω; Rm×k) with Sd(Ω × Ω; Rm×k) and use
symbols of form p(x, y, ξ). However, this leads to oscillatory integrals and we discuss
briefly this approach in Appendix.

6.2 Symbol map and its properties

An arbitrary pseudo-differential operator does not have as good properties as we
would hope for. Therefore, we need to consider two classes of pseudo-differential
operators: properly supported pseudo-differential operators and smoothing operators.
Properly supported operators have good properties with respect to the symbol map.
Moreover, they have an adjoint on the space C∞0 (Ω) and they form an algebra under
the composition of pseudo-differential operators.

Definition 6.9. A support suppP ⊂ Ω × Ω is the complement of the largest open
set of form ω1 × ω2 such that ω1, ω2 ⊂ Ω and Pu = 0 in D′(ω1) for every function
u ∈ C∞0 (ω2). We say that P is properly supported if the projections pr1 : suppP → Ω
and pr2 : suppP → Ω are proper maps, that is, an inverse image of a compact set is a
compact set. [15, p. 180]
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A smoothing operator is an operator determined by an element of smoothing symbols
S−∞1,0 (Ω). The space of smoothing operators is denoted by Ψ−∞(Rn). These operators
have good regularity properties since they map Sobolev spaces to the space of compactly
supported smooth functions and their Schwartz kernel is smooth which means that
there exists a function K ∈ C∞(Ω× Ω) such that

Pu(x) =

∫
Ω

K(x, y)u(y) dy (166)

where u ∈ C∞0 (Ω) [15, p.179]. More about Schwartz kernels can be found in Appendix.

We have the following theorems about properly supported operators.

Theorem 6.10. [15, p. 181] An operator P is properly supported if and only if there
exists a decomposition

Pu =
∑
j

ϕjP (φju) (167)

for some ϕj, φj ∈ C∞0 (Ω).

Theorem 6.11. A properly supported pseudo-differential operator can be extended to
be a mapping P : C∞(Ω)→ C∞(Ω). [15, p. 181]

It can be shown that every pseudo-differential operator has a decomposition into a
properly supported and a smoothing pseudo-differential operator.

Theorem 6.12. Every pseudo-differential operator P ∈ Ψd(Σ; Rm×k) can be repre-
sented as a sum of a properly supported pseudo-differential operator and a smoothing
operator.

Smoothing operators form a vector subspace of Ψd(Ω; Rm×k). So we can study equiva-
lence classes of symbol space Sd1,0(Ω; Rm×k)/S−∞1,0 (Ω; Rm×k) and corresponding operator
classes Ψd

1,0(Ω; Rm×k)/Ψ−∞1,0 (Ω; Rm×k). The symbol mapping, which we define next,
has nice properties with respect to these equivalence classes.

The symbol of a pseudo-differential operator can not be defined in the same way as
the symbol of partial differential operators since the function ei〈x,ξ〉 does not have
a compact support with respect of x. However, with any function φ ∈ C∞0 (Ω) the
function φ(x)ei〈x,ξ〉 is compactly supported. Evaluating P with functions of the form
φ(x)u(x) is process known as localization. In fact, it can be shown that a localization
of any continuous linear mapping P : C∞0 (Ω)→ C∞(Ω) can be represent as pseudo-
differential operator [15, p. 167]. We choose to use the term symbol instead of
localization. The symbol mapping is defined as follows.

Definition 6.13. Let P be a scalar pseudo-differential operator of degree d and φ be
a cut-off function near x, then a symbol of operator P is σP,φ and is defined via

(x, ξ) 7→ P (φ(y)ei〈ξ,y−x〉)|y=x = e−i〈ξ,x〉P (φ(y)ei〈ξ,y〉)|y=x. (168)

The mapping σP,φ belongs to Sd1,0(Rn).
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We have an approximation theorem for symbol map.

Theorem 6.14. [15, p.171,173,182] Let us have P ∈ Ψd(Ω), φ ∈ C∞0 (Ω) and
σP,φ(x, ξ), then we have the following regularity result

σOp(p),φ −
∑
|α|<N

i−|α|

α!
∂αξ p(x, ξ)∂

α
xφ(x) ∈ Sm−N(Ω). (169)

This gives us an asymptotic sum

σOp(p),φ ∼
∑
α

i−|α|

α!
∂αξ p(x, ξ)∂

α
xφ(x). (170)

If the operator is properly supported then φ can be chosen to be identically 1 on the
whole space, and the symbol is given by

p(x, ξ) = e−i〈ξ,x〉P (ei〈ξ,y〉)(x). (171)

The theorem above and theorem 6.12 imply that the symbol map and the quantization
map p(x, ξ) → P (x,D) are inverses to each other when they considered mappings
between Sm(Ω)/S−∞(Ω) and Ψm(Ω)/Ψ−∞(Ω).

We have introduced the total symbol and discussed its properties. However, there
is a notion of a principal symbol that is useful in applications. Instead of studying
equivalent classes Sm(Ω)/S−∞(Ω) we will study equivalence classes Sm(Ω)/Sm−1(Ω).

Definition 6.15. Let us have an operator P ∈ Ψm(Ω) and an element q ∈ Sm(Ω)
such that

σP,φ − q ∈ Sm−1(Ω). (172)

The principal symbol σm(P ) is defined as the equivalence class of q in Sm(Ω)/Sm−1(Ω).

The following examples are based on the Proposition 1.5 in the reference [19, p. 5].

Example 6.16. If we have two symbols p1, p2 which are polynomial in the second
variable ξ and belong in the same equivalence class Sd1,0(Ω)/S−∞1,0 (Ω). Then the symbol
condition implies that

|p1(x, ξ)− p2(x, ξ)| < C

1 + ‖ξ‖
(173)

and thus p1 − p2 is bounded in ξ variable. However, only bounded polynomials are
the constant functions. So when we let ξ to tend infinity in the estimate (173), we
obtain that p1 − p2 = 0, that is, p1 = p2.
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Example 6.17. We say that a function f : Rn → R is homogenous of degree s if
f(λξ) = λsf(ξ). Let us study symbols that are homogenous of degree s with respect
to variable ξ. We have following inequality for homogenous symbols

|f(x, ξ)| = ‖ξ‖sf(x,
ξ

‖ξ‖
) ≤ C(x)(1 + ‖ξ‖)s (174)

where C(x) is the maximum of |f(x, ξ)| on {x} × Sn−1. By observing that ∂αf(x, ξ)
is homogenous of degree s− |α|, we see that symbols p(x, ξ) whose C(x) estimate is
bounded, belongs to Ss(Ω).

If we have two homogenous symbols that differ only by smoothing symbols, we can
show that they are equal by similar argument as the previous example: Let us have
ξ ∈ Sn−1. Then the assumption p1 − p2 ∈ S−∞(Ω) leads to an estimate

|p1(x, ξ)− p2(x, ξ)| = |λ−s||p1(x, λξ)− p2(x, λξ)| ≤ |λ|−s(1 + ‖λξ‖)d (175)

for all d ∈ R. Choosing small enough d, we get that |λ|−s(1+‖λξ‖)d → 0 when λ→∞,
so p1(x, ξ) = p2(x, ξ) when ξ ∈ Sn−1. Since a homogenous function is determined by
values on the sphere Sn−1, we obtain that p1 = p2 everywhere.

The space of classical symbol of degree d is defined as symbols p ∈ Sd(Ω) such that
there exists sequence of symbols pd−l for l ∈ N0 such that pd−l is homogenous of degree
d− l and p ∼

∑
l∈N0

pd−l. We denote that space with Sdcl(Ω). Now if we use inductively

our uniqueness result on principal symbols σd−l(p −
∑

0≤k<l
σd−k(p)), we obtain that

classes in Sdcl(Ω)
/
S−∞(Ω) consists only of one element.

6.3 Pseudo-differential calculus

Pseudo-differential operators have a similar operator calculus as partial differential
operators have. They have adjoint operators, the composition of operators and an
invariance under change of variables. These results rely on finding a suitable asymptotic
sum for the desired object and they are proved often with symbols of form p(x, y, ξ).
We start by stating adjoint operator theorems.

Theorem 6.18. [24, p. 43] Let us have an operator P ∈ Ψd(Rn). Then there is an
adjoint operator P ∗ such that

〈Pu, v〉 = 〈u, P ∗v〉 (176)

holds for all u, v ∈ S(Rn). Furthermore, we can extend this for vector-valued operators.

This gives us a way to extend a pseudo-differential operator to act on tempered
distribution. In the case of open sets, we need to limit ourselves to properly supported
pseudo-differential operators.
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Theorem 6.19. [15, p. 184,193] a properly supported pseudo-differential operator P
has an adjoint P ∗ such that P ∗ is a pseudo-differential operator with symbol p∗ such
that

p∗ ∼
∑
α

i−|α|

α!
∂αξ ∂

α
x p(x, ξ). (177)

Since P is properly supported, it maps C∞0 (Ω) functions to C∞0 (Ω) functions and the
adjoint will also be properly supported. Therefore, we can extend the operator P to
act on distributions D′(Ω). Furthermore, the principal symbol of P ∗ is the adjoint of
principal symbol of P :

σm(P ∗) = σm(P )∗. (178)

With help of the adjoint, we can calculate the Fourier transform of φPu where
φ ∈ C∞0 (Ω).

F(φPu)(ξ) =

∫
Rn
e−i〈x,ξ〉φPu(x) dx

=

∫
Rn
P ∗(φe−i〈x,ξ〉)u(x) dx

=

∫
Rn
e−i〈x,ξ〉e−i〈x,−ξ〉P ∗(φei〈x,−ξ〉)u(x) dx

Def 6.13
=

∫
Rn
e−i〈x,ξ〉p∗φ(x,−ξ)u(x)dx

(179)

so the Fourier transform of φPu is a weighted Fourier transform of u.

A composition of partial differential operators is again a partial differential operator.
A similar theorem holds for pseudo-differential operator with a minor change: One
of the operators has to be properly supported. This is not a major obstacle as the
decomposition Theorem 6.12 says that every pseudo-differential operator is a sum of a
properly supported and a smoothing operator.

Theorem 6.20. [15, p. 196,208] Let Ω be an open set, p1(x, ξ) ∈ Sd1(Ω) and
p2(x, ξ) ∈ Sd2(Ω) such that one of the operators P1 = Op(p1) and Op(p2) is properly
supported. Then we have

Op(p2(x, ξ)) Op(p1(x, ξ)) = Op(p3(x, ξ)) (180)

with p3 ∈ Sd1+d2(Ω) such that

p3(x, ξ) ∼
∑
α

i−|α|

α!
∂αξ p2(x, ξ)∂αx p1(x, ξ) (181)

Especially, we have

σd1+d2(P3) = σd2(P2)σd1(P1). (182)
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If neither of the operators is properly supported, then P2(φP1) is still well-defined for
every φ ∈ C∞0 (Ω) and it has a symbol∑

α

i−|α|

α!
∂αξ p2(x, ξ)∂αx (φ(x)p1(x, ξ)). (183)

This theorem transforms the operator space Ψ∞(Ω)
/

Ψ−∞(Ω) to an algebra which has
good properties with respect to the algebra S∞(Ω)

/
S−∞(Ω).

Pseudo-differential operators are also invariant under diffeomorphisms so pseudo-
differential operators are coordinate invariant objects in sense of Theorem 6.21. More-
over, the principal symbol has especially good properties under the change of variables
as it is a coordinate invariant function of the cotangent bundle.

Theorem 6.21. [15, p. 207,208].

Let φ : U → V be a diffeomorphism and P = Op(p) be a pseudo-differential operator
on V , then the pullback operator φ∗(P ) obtained by the following commutative diagram

C∞0 (U ; Rk) C∞(U ; Rl)

C∞0 (V ; Rk) C∞(V ; Rl)

φ∗(P )

DΦV U DΦV U

P

is a pseudo-differential operator on U and the symbol p̃ of the operator φ∗(P ) has a
representation

p̃(x, ξ) ∼ p(φ(x), J(x)−>ξ) +
∑

2|β|≤|α|
2≤|α|

wαβ(x)∂αξ p(x, J(φ)−>ξ) (184)

up to a smoothing symbol where coefficients wαβ(x) depend only on φ and J(φ) denotes
the Jacobian of φ. We obtain an identity

σm(φ∗(P ))(x, ξ) = σm(P )(x, J(x)−>ξ) (185)

for principal symbols.

Earlier we stated in Theorem 6.6 that said that pseudo-differential operators are
continuous mappings from Schwartz class to Schwartz class with respect to seminorm
topology. With the pseudo-differential calculus, the result can be extended for L2

and Sobolev norms. The theorem can be stated purely with Sobolev norms but we
formulate also the L2-continuity since it can be used to prove the general statement.

Theorem 6.22 (L2 continuity theorem). Let P ∈ Ψ0(Rn) be a zeroth order pseudo-
differential operator and u ∈ S(Rn), then we have the following inequality for some
C > 0

‖Pu‖2 < C‖u‖2. (186)

56



Thus, since C∞0 (Rn) is a subset of S(Rn) and dense in L2(Rn) we can extend P to be
an operator P : L2(Rn)→ L2(Rn).

Theorem 6.23 (Sobolev continuity theorem). Let P ∈ Ψd
1,0(Rn) be a pseudo-differential

operator in Rn. Then we have an estimate

‖Pu‖s−d ≤ C‖u‖s (187)

where s ∈ Rn and u ∈ S(Rn). So the operator P can be extended to be an operator
P : Hs(Rn) → Hs−d(Rn). When Ω ⊂ Rn is an open set, we can extend an operator
P ∈ Ψd

1,0(Ω) to be an operator P : Hs
comp(Ω) → Hs−d

loc (Ω). The space Hs
comp(Ω) is

defined as the space
⋃
l∈N

Hs
Kl

(Ω) with the inductive limit topology where the spaces Hs
Kl

(Ω)

are given by Hs
Kl

(Ω) = {u ∈ Hs(Ω) | suppu ⊂ Kl} and {Kl}l∈N is an increasing
sequence of compact sets such that Ω =

⋃
l∈N

Kl. [8, p. 169]

Remark 6.24. When the operator P is a smoothing operator, then by the definition
P ∈ Ψd(Ω) for all d ∈ R. By using theorems 3.12. and 6.19 from the book [8], we obtain
that E ′(Ω) = ∪s∈RH

s
comp(Ω) and we can conclude that for every u ∈ E ′(Ω) we have

Pu ∈ Hs
loc(Ω) for all s ∈ R. This observation and the fact that

⋂
s∈R

Hs
loc(Ω) ⊂ C∞(Ω)

implies that smoothing operators map compactly supported distributions to smooth
functions. When P is properly supported, the result can be extended to state that
P : D′(Ω)→ C∞(Ω) [15, p. 184].

7 Pseudo-differential operators on manifolds

In this section, we are going to give a definition of pseudo-differential operators on
manifolds using coordinate invariance and using a geometric construction. For this,
we need to define symbols spaces on manifolds. The change of variable theorem
shows that the principal symbol transforms like an object on the cotangent bundle. It
suggests that symbol spaces should be defined on the cotangent bundle.

Definition 7.1. [19, p. 3] Let d ∈ R and 0 ≤ δ ≤ 1, 0 ≤ ρ ≤ 1. Furthermore, let
E → M be a vector bundle with metric and π : T ∗M → M be the cotangent bundle.
Then the space Sdρ,δ(M,E) is called E-valued symbol space of degree d and type ρ, δ
and is defined as subspace of smooth functions Γ(π∗(E)) such that a function a(ξ)
belongs to Sd(M,E) if for every open set U ⊂M , for every trivilization (x, ζ) of T ∗M
and for every trivilization Ψ : E|V → V × Rn with V ⊂ U following holds: For any
compact set K ⊂ V and for any α ∈ Nn

0 , β ∈ Nn
0 the inequality

‖ ∂
|α|

∂xα
∂|β|

∂ζβ
Ψ(a(ξ(x, ζ)))‖E ≤ Cα,β,K(1 + ‖ξ(x, ζ)‖T ∗M)d+δ|α|−ρ|β| (188)

holds for some Cα,β,K > 0 and every (x, ζ) ∈ π−1(V ).
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The change of variable formula showed us that the pullback of a pseudo-differential
operator on the space Rn is coordinate invariant under diffeomorphisms. This suggests
that pseudo-differential operators can be defined with the help of local trivializations
of E and F . Informally this means that operator P is a pseudo-differential operator if
it is a pseudo-differential operator locally.

Definition 7.2. Let E,F be vector bundles over M and φ be a chart on U and ΦU,E

and ΦU,F be associated trivializations of E and F , respectively. Let P : Γ0(E)→ Γ(F )
be a continuous operator and s̃ ∈ Γ(φ(U); Rk). Then we say that P is a pseudo-
differential operator of order µ if

P̃ (s̃)(x) = DΦU,F ◦ P (DΦ−1
U,E(s̃)) ◦ φ−1(x) (189)

is a pseudo-differential operator on Φµ(φ(U); Rk,Rl) for every chart (U, φ). This
definition is based on the reference [25, p. 85] with adaption to the case of vector
bundles.

We can construct a pseudo-differential operator from a symbol defined on charts with
the following procedure: Let φj : Uj ⊂ M → Vj ⊂ Rn be a cover of the manifold
M and denote by ΦU,j,E and ΦU,j,F the associated charts on E and F and ψj be a
partition of unity subordinate to the cover {(Uj, φj)}j such that

∑
j ψ

2
j = 1, then we

can define pseudo-differential operator associated to the symbol a as

Op(a)u(x) =
∑
j

ψj(x)(DΦU,j,F )−1(Op(aj)(DΦU,j,E(ψju))). (190)

where aj is the representation of the symbol a on chart Vj and Op(aj) is the operator
defined in Ω ⊂ Rn. [25, p. 86]

We can give a similar definition of pseudo-differential operators as we gave in the case
of Schwartz’s space. This will be based on the Fourier transform on vector bundles
which was represented in section 4.4. We will use the paper [19] as our reference. We
will use symbol spaces over the vector bundle Hom(E,F ).

Definition 7.3. [19, p. 6] Let M be a Riemannian manifold, E,F be vector bundles
with metrics and ψ be any smooth cut-off function associated with the connection as
in lemma (4.25). Let a ∈ Sd(M,Hom(E,F )), then a pseudo-differential operator Aψ
is defined as

Aψf(x) =
1

(2π)n

∫
T ∗xM

a(ξ)f̂ψ(ξ) dξ (191)

where x ∈M , f ∈ Γ(M,E) and fψ is the lift of f to the tangent bundle.

Theorem 7.4. [19, p. 7] The geometric definition of a pseudo-differential operator
produces also a pseudo-differential operator in local sense. That is, Aψ is locally a
pseudo-differential operator.

58



We can also define a symbol map coordinate-free manner. We will follow the reference
[19] with minor changes. We need following space

TM � T ∗M = {(v, ξ) ∈ TM × T ∗M | ρ(v) = π(ξ)} (192)

and an auxiliary function ϕψ : TM � T ∗M → C given by

ϕψ(v, ξ) = ψ(v)ei〈ξ,v〉 (193)

where ψ is a cut-off function. The expression ϕψ(exp−1
π(ξ)(x), ξ) can be extended for

every x ∈M by requiring that ϕψ(exp−1
π(ξ)(x), ξ) = 0 whenever exp−1

π(ξ)(x) is not defined.
Thus, the function ϕψ(exp−1

π(ξ)(x), ξ) will be a smooth function on M .

Definition 7.5. [19, p. 9] We define the symbol map σψP : T ∗M → π∗(Hom(E,F ))
to be the element determined by

σψP (ξ)V = A(ϕψ(exp−1
π(ξ)(·), ξ)τ(·),π(ξ)V )(π(ξ)) (194)

where ψ : T ∗M → R is a cut-off function, and V ∈ Eπ(ξ).

The principal symbol of P is defined as in the case of Rn: A principal symbol is
the equivalence class σm(P ) ∈ Sm(M,Hom(E,F ))/Sm−1(M,Hom(E,F )) given by a
representative q ∈ Sm(Ω) such that

σP,φ − q ∈ Sm−1(M,Hom(E,F )). (195)

The symbol map and the quantization map are compatible in the following sense: The
composition of the symbol map and quantization map produces the same element up
to a smoothing element. The exact statement is in the following theorem.

Theorem 7.6. [19, p. 13] Let P ∈ Ψµ
1,0(M ;E,F ) be a pseudo-differential operator on

a Riemannian manifold M and p = σP,ψ ∈ Sµ1,0(M,Hom(E,F )) be its symbol. Then P
and Op(p) coincide modulo smoothing operators. Furthermore, the symbol map and
quantization map are inverse of each other when they are considered be maps between
Ψ∞(M ;E,F )

/
Ψ−∞(M ;E,F ) and S∞(M ; Hom(E,F ))

/
S−∞(M ; Hom(E,F )).

This theorem does also imply that every locally defined pseudo-differential operator is
given by a geometric quantization of some symbol up to a smoothing symbol. Thus,
giving a converse of theorem 7.4 and providing a geometric characterization of locally
pseudo-differential operators.

Many other results mentioned for pseudo-differential operators on the Euclidean space
Rn hold also for pseudo-differential operators on vector bundles over compact manifolds.
We gather those results as a list in the following theorem to avoid unnecessary
repetition.

Theorem 7.7. Let M be a compact manifold and E,F be vector bundles with metrics
over M . The following properties for pseudo-differential operators P ∈ Ψd(E1, E2)
and Q ∈ Ψd′(E2, E3) are true.
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1. Given a decreasing sequence dj and Pj ∈ Ψdj(M,E) there exist P0 ∈ Ψd0(M,E)

such that P0 −
N∑
j=0

Pj ∈ ΨdN+1(M,E) so the asymptotic sum property holds. [19,

p. 4]

2. The operator P has an adjoint P ∗ ∈ Ψd(E2, E1) such that

〈Pu, v〉E2 = 〈u, P ∗v〉E1 (196)

where u ∈ Γ(M,E1) and v ∈ Γ(M,E2). [19, p. 19]

3. The composition Q ◦ P is well-defined and we have Q ◦ P ∈ Ψd+d′(E1, E3) and
for principal symbols we have σd′+d(QP ) = σd′(Q)σd(P ). [19, p. 23]

4. A pseudo-differential operator P ∈ Ψd(M ;E1, E2) is a continuous operator from
Hs

loc(M,E1) to Hs−d
loc (M,E2) [8, p. 206].

8 Applications to elliptic operators

In this section, we give applications of the theory to elliptic operators. Elliptic
operators appear in the theory of partial differential equations and physics. Two of
the best known examples are the Laplace equation ∆u = 0 and the Poisson’s equation
∆u = f on Ω ⊂ R3. Examples of elliptic partial differential equations in physics
include equations for electrostatic and thermal equilibrium. These examples are scalar
equations. An example of a vector-valued elliptic partial differential equation is the
Navier-Cauchy equation in linear elasticity.

Another area of mathematics where elliptic operators are used is geometry where
elliptic operators can be used to study the geometric and topological properties of
manifolds. Important concepts of this subject are elliptic complexes, Hodge theory and
index theory. Famous theorems in this area are Atiyah-Singer theorem, its corollaries
and the Hodge decomposition theorem. These results need more background on
topology and vector bundles so we do not discuss these in this thesis but an interested
reader can explore these topics further.

Our objective is to present applications of the parametrix to an elliptic operator on
compact manifolds without boundary and discuss what they provide for the Poisson
equations. We start by giving a short review of Fredholm operators.

8.1 Fredholm operators

We follow the content of Grubb’s book [8]. Let V and W be Hilbert spaces and T be
an operator from V to W .
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Definition 8.1. An operator T : V → W is called Fredholm operator if its kernel

ker(T ) = {v ∈ V |T (v) = 0} (197)

and its cokernel

coker(T ) = W
/
R(T ), (198)

where R(T ) is range of T , are finite dimensional. The index of the operator T is
defined as

index(T ) = dim ker(T )− dim coker(T ). (199)

From the definition of a Fredholm operator it will follow that range of a bounded
Fredholm operator is closed [8, p. 209]. Fredholm operators have following convenient
characterization.

Theorem 8.2. [8, p. 210] An operator T : V → W is a Fredholm operator if and
only if there exist bounded operators S1 : W → V and S2 : W → V such that operators

S1T − IV , TS2 − IW (200)

are compact.

Furthermore, Fredholm operators behave well with respect to compositions and
compact operators.

Theorem 8.3. [8, p. 211] If the operators T1 : H1 → H2 and T2 : H2 → H3 are
Fredholm and K : H1 → H2 is a compact operator then following statements hold.

1. The operator T2 ◦ T1 is a Fredholm operator and

index(T2 ◦ T2) = index(T1) + index(T2). (201)

2. The operator T1 +K is Fredholm and

index(T1 +K) = index(T1). (202)

8.2 Elliptic operators and parametrix

We start to study elliptic equations on manifolds without a boundary of the form

Pu = f. (203)

We will study the kernel and the cokernel of the operator as they give information
about solutions. The main result for elliptic operators is that they are Fredholm. This
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tells us that the Poisson equation has solutions for most functions f and the Laplace
operator has a finite dimensional kernel. As a byproduct of the theory, we get a way
to transform the elliptic equation to an integral equation of the form

u+Ru = Qf (204)

which can be studied as an integral equation. There are many different ways to define
elliptic operators depending on the symbol space but we limit ourselves to classical
symbols as they are the most common symbol class and the ellipticity condition gives
a concrete way to check that an operator is elliptic.

Definition 8.4 (Elliptic operator). Let P ∈ Ψd(M,E,E) be an operator with classical
symbol, then it is called elliptic if its principal symbol σd(P )(x, ξ) is invertible for any
x ∈M, ξ 6= 0.

Definition 8.5 (Parametrix). Let P be a pseudo-differential operator of order d then
we say that P has a parametrix Q if Q satisfies following conditions

PQ = I +R1

QP = I +R2.
(205)

where R1 and R2 are smoothing operators.

Theorem 8.6. Let an operator P be elliptic. Then it has a parametrix.

Proof. Let us study an elliptic operator P . By the decomposition theorem it can be
represented as a sum of a smoothing operator P ′ and a properly supported operator
P̃ . Moreover, let us have a cut-off function χ(x, ξ) the near zero section of TM such
that χ(ξ) = 1 for ‖ξ‖ ≤ 1. We can define a symbol q(x, ξ) = p(x, ξ)−1(1 − χ(x, ξ))
such that the operator Q(x, ξ) = Op(q) is properly supported. Then by the operator
calculus we have

σ0(QP ) = σ0(Q(P̃ + P ′)) mod S−∞

= (1− χ(x, ξ))p(x, ξ)−1p(x, ξ) + σ0(QP ′) mod S−∞

= (1− χ(x, ξ))I − r′ mod S−∞

= I − r mod S−∞

(206)

where r ∈ S−1(M,E,E). We used the fact that χ(x, ξ)I ∈ Ψ−∞(M,E,E) and that
QP ′ ∈ Ψ−∞(M,E,E) holds for every smoothing operator P ′. Again, we will choose r
so that R = Op(r) is properly supported. Thus, powers of R are well defined. Let us

consider an operator
( N∑
k=1

Rk
)
Q which has following property:

( N∑
k=1

Rk
)
QP =

( N∑
k=1

Rk
)
(1−R) = I −RN+1 mod Ψ−∞(M,E,E). (207)
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So there exists an operator QL =
∑
k

RkQ such that QLP − I ∈ Ψ−∞(M,E,E) which

proves the existence of the left inverse. Similarly, we obtain a right inverse QR. When
we apply following trick

QL −QR ∼ QL ◦ (P ◦QR)− (QL ◦ P ) ◦QR ∼ 0 mod Ψ−∞(M,E,E) (208)

we will see that QL ∼ QR mod Ψ−∞(M,E,E) and we can choose Q = QL as our
parametrix.

Existence of a parametrix implies that elliptic operators are Fredholm on compact
manifolds. This fact has many useful applications. We will prove this in the following
theorem.

Theorem 8.7. Let P : Hs(M,E) → Hs−d(M,E) be an elliptic pseudo-differential
operator of order d on a compact manifold. Then following statements hold: The
kernel ker(P ) is a finite dimensional subspace V ⊂ Γ(M,E) and does not depend on
s. Furthermore, there exists a finite dimensional subspace W ⊂ Γ(M,E) such that
Hs−d(M,E) = R(P )⊕W and the space W is orthogonal complement to the range in
sense of inner product of Hs−d(M,E).

Proof. Since P is elliptic, there exists a parametrix Q such that QP = I +R where
R is a smoothing operator. Observe that R maps Hs(M,E) to Hs+1(M,E). Thus
by Rellich’s theorem the inclusion map Hs+1(M,E) → Hs(M,E) is compact so
R : Hs(M,E) → Hs(M,E) is also compact. Therefore, I + R is Fredholm and
(I +R)u has a finite dimensional kernel. The kernel of P is included in the kernel of
QP = I +R so this proves that the kernel of P is finite dimensional. Let u ∈ ker(P ),
then Pu = 0 implies that

0 = QPu = (I +R)u (209)

which leads to u = −Ru so u ∈ Γ(M,E) since smoothing operators map distributions
to smooth sections. The space of smooth sections belongs to every Hs(M,E) so the
kernel ker(P ) and its dimension do not depend on s. This concludes the proof about
kernel of P . The range of operator PQ = I +R′ belongs to the range of P . Since the
operator I +R′ has a finite codimension, the operator P has also a finite codimension.
We have proven that P has finite codimension and has a finite dimensional kernel so
P is Fredholm and thus the range R(P ) is a closed subspace.

In a Hilbert space Hs−d(M,E) a closed subspace R(P) induces an orthogonal decom-
position Hs−d(M,E) = R(P ) ⊕W . Let us take a point v from W so 〈Pu, v〉 = 0
for all u ∈ Hs(M,E). This implies that 〈u, P ∗v〉 = 0 holds for every u ∈ Hs(M,E)
and thus P ∗v = 0 and so W ⊂ ker(P ∗). Now we show that ker(P ∗) ⊂ W . Let us
take v ∈ ker(P ∗), by direct calculation we obtain 0 = 〈u, P ∗v〉 = 〈Pu, v〉 for every
u ∈ Hs(M,E), so v ∈ W and W = ker(P ∗). By operator calculus we have that
σm(P ∗) = σm(P )∗. Therefore the adjoint P ∗ is also elliptic. The earlier reasoning
about ker(P ) gives us that ker(P ∗) is finite dimensional as well. This proves that W
is finite dimensional subset of Γ(M,E).
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Remark 8.8. Observe that the proof of the above theorem relies on Rellich’s theorem
that assumes that the space M is compact. Therefore, the theorem does not extend
to the space Rn. The second part shows that the equation Pu = f has a solution for
all f ∈ Hs(M,E) expect for elements orthogonal to a finite dimensional subspace.

Theorem 8.9 (Elliptic regularity). Let P be a properly supported elliptic operator of
degree d. If f ∈ Hs(M,E) and u is a solution for the equation

Pu = f (210)

then u ∈ Hs+d(M,E).

Proof. Let us apply the parametrix Q to the equation, we obtain that Qf = u+Ru so
u = Qf −Ru. Now observe that Ru ∈ Γ(M,E) and Qf ∈ Hs+d(M,E) and therefore
u ∈ Hs+d(M,E).

This theory can be extended to the case when the manifold has a boundary and the
boundary conditions fulfill certain conditions and the operator will be a Fredholm
operator.

9 Conclusions and further topics

We have given an overview of certain parts of modern analysis with the language
of differential geometry. Our presentation is limited and we comment shortly about
further topics about the area. This helps the reader to solidify her or his knowledge
and give motivation for reading more about the topics.

Our representation of differential geometry is very terse, abstract and we did not
give many examples. We reviewed only definitions of differential geometry such as
metric tensor, connections and covariant derivative. To gain more intuition about
these objects, we recommend that the reader studies Riemannian geometry as it
contains more constructions involving these concepts. Furthermore, we omitted many
applications of differential forms that connect analysis to geometry, for example, the
Hodge theory. Furthermore, the theory of Fourier analysis has been extended to Lie
groups so the pseudo-differential operators can be studied in that framework as in the
reference [26].

The theory of pseudo-differential operators relies heavily on harmonic analysis. Another
approach to the thesis could have been to study more closely the Fourier analysis.
The possible topics include singular integrals, oscillatory integrals and Lp-multipliers.
Proving properties of pseudo-differential operators requires more tools from harmonic
analysis, especially notions of amplitudes and oscillatory integrals. A careful study of
these topics and proofs would give the reader a better grasp on techniques of Fourier
analysis.
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The tools that we represented can be used in the theory of partial differential equations.
We demonstrated that fundamental solutions can be calculated using Fourier analysis
but we gave only two examples of how to calculate fundamental solutions. One
can develop the theory further and calculate fundamental solutions for other partial
differential equations as well. Pseudo-differential operators can also be applied to
partial differential equations. For example, the Calderón projection can be used to
solve boundary value problems and micro-local analysis yields useful energy estimates
in many cases.

As we mentioned in the previous section, there are applications of the theory to
differential geometry. One of the proofs of Atiyah-Singer theorem uses pseudo-
differential operators as a tool. This theorem gives a way to study geometric objects
with tools of analysis. For example, one can give a proof of Gauss-Bonnet theorem
using the Atiyah Singer theorem. Another avenue that one can take is to study partial
differential equations arising from differential geometry such as the Yamabe equation
or the minimal surface equation.

10 Appendix

In the theory of pseudo-differential operators, more general symbol spaces, oscillatory
integrals and the Schwartz kernel theorem are used extensively in the research literature.
The simplest definition of pseudo-differential operators does not need these concepts
so we omitted them in the main text. However, in this appendix, we discuss briefly
these concepts and how they relate to the subject.

Elements p(x, y, ξ) of the symbol space of Sm(X × Y,Rn) are called often amplitudes
to distinguish them from symbols of form p(x, ξ) ∈ Sm(X × Rn). We can define the
following quantization map to assign an amplitude to an operator

P (u)(x) =

∫
Rn

∫
Rn

eiφ(x,ξ)p(x, y, ξ)u(y) dy dξ (211)

where φ(x, ξ) ∈ C∞(X × Rn) is called the phase function. However, this integral does
not convergence as a normal integral but is well-defined as an oscillatory integral. The
following theorem provides a necessary result for a definition an oscillatory integral.

Theorem 10.1. [27, p.90] Let X ⊂ Rn be an open set, a ∈ Sm(X,Rn) be a symbol,
u ∈ C∞0 (X) and χ ∈ C∞0 (Rn) with χ(0) = 1. Let us suppose that a smooth function
φ(x, ξ) ∈ C∞(X × (Rn \ {0})) is a real valued function which is homogeneous of order
1 with respect of ξ. If φ(x, ξ) does not have critical points when ξ = 0 as function of
(x, ξ). Then the distribution

Iφ(a)u(x) = lim
ε→0

∫
Rn

∫
X

eiφ(x,ξ)a(x, ξ)χ(εξ)u(x) dx dξ (212)
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is well-defined and is a continuous function of a ∈ Sm(X,Rn). Furthermore the linear
functional u 7→ Iφ(au) defines a distribution.

When the expression∫
Rn

∫
X

eiφ(x,ξ)p(x, ξ)u(x) dx dξ (213)

is said to be understood as an oscillatory integral, then it should be interpreted as in
equation (212).

The above theorem gives us the knowledge that the oscillatory integral (212) defines a
distribution and the operator (211) is well-defined. The natural follow up question is:
What are the regularity properties of the operator (211)? It can be proven that the
obtained function is C∞(X) when φ has certain regularity properties.

Theorem 10.2. Let us assume that u(y) ∈ C∞0 (Y ) and the real valued function
φ(x, y, ξ) ∈ C∞(X ×X × (Rn \ {0})) is homogeneous of order 1 with respect of ξ and
for fixed x it does not have critical points as function of (y, ξ). Then the function f
that is defined as oscillatory integral

f(x) =

∫
Rn

∫
Y

eiφ(x,y,ξ)p(x, y, ξ)u(y) dy dξ (214)

is well defined and it is a smooth function with respect to x which belongs to C∞(X).
[27, p.99]

In the reference, the theorem above is represented in a stronger form discussing the
case when u ∈ Ck(Y ). Especially, the theorem means that we can take derivatives
under the integral signs in (214).

These more general operators are needed while proving composition property of
pseudo-differential operators [8, p. 168,178]. The assumption holds especially for
the function φ(x, y, ξ) = (x − y) · ξ which is the function φ used in the definition
of pseudo-differential operators. This theorem shows also that pseudo-differential
operators map compactly supported smooth functions to smooth functions. Moreover,
oscillatory integrals have other familiar results such as Fubini’s theorem for exchanging
the order of integration [24, p. 31].

Pseudo-differential operators are sometimes defined via the Schwartz kernel of the
operator. This refers to Schwartz’s kernel theorem which gives a connection between
distributions and linear operators.

Theorem 10.3 (Schwartz’s kernel theorem). Let P : C∞0 (X) → D′(Y ) be a linear
operator. Then there exists a distribution D′(X × Y ) such that

< Pu, φ >=< K, u⊗ v > (215)

and vica versa.
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The proof of the theorem relies on showing that every function C∞0 (X × Y ) can be
approximated by functions of the form un(x)vn(y) where un ∈ C∞0 (X), vn ∈ C∞0 (Y ).
A pseudo-differential operator can then be defined as a linear operator whose Schwartz
kernel is form of

u(x, y) 7→
∫
Rn

∫
X×Y

ei(x−y)·ξp(x, y, ξ)u(x, y) dx dy dξ (216)

where this formal integral is understood as an oscillatory integral. However in literature,
it is common to use shorthand notation∫

Rn
ei(x−y)·ξp(x, y, ξ) dξ (217)

for the Schwartz’s kernel. This may cause confusions as the integral (217) may not
exist even as an oscillatory integral and requires distributional interpretation. One
way to keep track of distributions and formal integrals, is first to fill the formal integral
with a test function with variables that are not integration variables and then adding
an integration over those variables. For example, in case of (217) the integral is not
taken with respect to x and y so we need fill in a test function of form u(x, y) and
then we add an integration over x and y and then this integral is understood as
oscillatory integral as in (216). One has to be careful when referring something as
distribution in the context of oscillatory integrals. So it is highly advisable to check
which distribution is meant while reading literature.
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