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Abstract
Parents can influence offspring dispersal through breeding site selection, competition, or 
by directly moving their offspring during parental care. Many animals move their young, 
but the potential role of this behavior in dispersal has rarely been investigated. Neotropi-
cal poison frogs (Dendrobatidae) are well known for shuttling their tadpoles from land to 
water, but the associated movements have rarely  been quantified and the potential func-
tion of tadpole transport in dispersal has not been addressed. We used miniature radio-
transmitters to track the movements of two poison frog species during tadpole transport, 
and surveyed pool availability in the study area. We found that parental males move farther 
than expected by the distance to the nearest pool and spread their offspring across multiple 
pools. We argue that these movement patterns cannot be fully explained by pool quality 
and availability, and suggest that adaptive benefits related to offspring dispersal also shape 
the spatial behavior of parental frogs.

Keywords  Informed dispersal · Parental care · Tadpole transport · Resource use · 
Dendrobatidae

Introduction

The local physical and social environment can have a strong influence on animal dispersal 
(i.e., context-dependent dispersal, Bowler and Benton 2005; Matthysen 2012). Dispersing 
individuals may integrate the environmental factors experienced at the present and learned 
in the past (informed dispersal sensu Clobert et al. 2009), resulting in complex movement 
strategies. Adults are usually more experienced than their offspring, but dispersal is more 
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common in early life stages (Clobert et al. 2012). Parents, however, can influence subse-
quent offspring dispersal by evaluating and choosing breeding sites and by directly mov-
ing offspring during parental care (Bonte et al. 2007; Matthysen et al. 2010; Clobert et al. 
2012). For example, female wolf spiders show greater mobility while carrying spiderlings, 
thus influencing offspring natal dispersal patterns and potentially reducing kin competition 
(Bonte et  al. 2007). Animals as diverse as arachnids and mammals carry their young to 
protect them during their most vulnerable stage (e.g., Ross 2001; Wolff et al. 2015). Off-
spring transport may also promote adaptive movement strategies that favor offspring dis-
persal. While factors such as habitat selection, inbreeding avoidance, and kin-competition 
are at the core of dispersal theory, the role of parental mobility in offspring dispersal has 
received little attention so far.

The transport of eggs, tadpoles, and froglets is widespread in anuran amphibians, espe-
cially in Neotropical poison frogs (Dendrobatidae) (Wells 2007). Poison frogs are terres-
trial and lay their eggs on land, a common strategy among tropical amphibians, presumably 
shaped by aquatic predator avoidance (Magnusson and Hero 1991; Duellman and Trueb 
1994). However, most poison frog tadpoles are aquatic and thus need to be taken by one of 
their parents from land to water (Fig. 1). Depending on the species, tadpoles are carried by 
males or females, singly or in groups, and released in terrestrial or arboreal pools ranging 
from large streams to small water-filled plants (reviewed in Summers and McKeon 2004; 
Wells 2007). This diversity of parental behaviors has been primarily viewed as a result 
of trade-offs between water volume-dependent food availability and predation risk inside 
the pools (Weygoldt 1987; Summers and McKeon 2004; Brown et al. 2010; Summers and 
Tumulty 2013). Tadpole transport allows parents to make flexible decisions when choos-
ing the best microhabitat for their offspring (Summers and McKeon 2004; Brown et  al. 
2009; Ringler et al. 2018). In addition, it allows frogs to disperse their offspring over large 
areas and distribute them among multiple sites (Erich et al. 2015; Beck et al. 2017). Simi-
lar to other forms of dispersal (for a review see Bowler and Benton 2005), the benefits of 
tadpole transport may also include the colonization of new areas, reduced kin competition 

Fig. 1   Photographs of the two study species: a Ameerega trivittata and b Dendrobates tinctorius transport-
ing tadpoles while wearing a radio-transmitter. Ameerega trivittata typically transports 15–30 tadpoles 
while D. tinctorius only transport one or two tadpoles. The numbers and arrows indicate: (1) tadpoles, (2) 
radio-transmitter, and (3) a silicone waistband for attachment. (Color figure online)
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and inbreeding, and the spread of risks between multiple resources. However, the role of 
tadpole transport in dispersal has been rarely addressed. In this study, we aim to highlight 
that offspring dispersal could play an important role in shaping parental spatial behavior in 
poison frogs, and possibly in other taxa that transport their young.

We used miniature radio-transmitters to track parental frog movements during tad-
pole transport in two poison frog species with male parental care, but otherwise contrast-
ing reproductive strategies. We were particularly interested in establishing whether the 
frogs use the nearest pool available. Tadpole transport requires energy and time, and may 
increase exposure to predators and reduce mating opportunities (Beck et al. 2017; Ringler 
et al. 2013; Wells 2007; this study). Therefore, males should try to minimize the distance 
and duration of tadpole transport unless there are direct benefits of traveling farther. How-
ever, if the benefits related to active offspring dispersal have shaped the spatial behavior of 
poison frog parents, we would expect more complex movement patterns to emerge.

Methods

Study species and sites

We radio-tracked tadpole transporting males of two poison frog species, Ameerega triv-
ittata (Three-striped poison frog, abbreviated as At for methods and results) and Dend-
robates tinctorius (Dyeing poison frog, abbreviated as Dt for methods and results). Both 
species are diurnal, breed throughout the rainy season, and are locally common but allopat-
ric throughout most of their range (AmphibiaWeb 2019). In both species, males transport 
tadpoles from home territories to water and return back to them after tadpole transport (Sil-
verstone 1975, 1976; Roithmair 1994a, b; Rojas 2014, 2015; Rojas and Pašukonis 2019; 
this study). The two species differ significantly in other aspects of their reproductive behav-
ior. Ameerega trivittata males call and defend small territories where mating takes place 
(Roithmair 1994a, b). Clutches of ~ 40 eggs are laid in the leaf-litter where they develop 
for 15–22 days before the male transports tadpoles simultaneously to small terrestrial pools 
and streams (Acioli and Neckel-Oliveira 2014; Roithmair 1994a, b; this study Fig. S1a–c). 
Tadpoles are omnivorous and several hundred tadpoles can be found in a single pool (Luiz 
et al. 2015). In captivity, tadpoles metamorphose after 40–90 days and frogs reach maturity 
within 1 year (Lötters et al. 2007). Dendrobates tinctorius males show aggressive behavior 
but lack loud advertisement calls and do not always defend exclusive areas (Born et  al. 
2010; Rojas and Pašukonis 2019). In our study area, pairs lay small clutches of 2–5 eggs. 
After ~ 15 days of development, males shuttle 1 or 2 tadpoles simultaneously to small pools 
formed in palm bracts or tree-holes at variable heights (Rojas 2014, 2015; this study Fig. 
S1d–f). Tadpoles are primarily carnivorous and cannibalistic, and typically less than 10 
tadpoles are found in one pool (Rojas 2014, 2015). In the field, tadpoles metamorphose 
after approximately 2 months (B. Rojas, pers. obs.) and take up to 18 months to mature in 
captivity (Lötters et al. 2007).

Data for At were collected around the onset of the rainy season in October and Novem-
ber 2014, at the Panguana Biological Field Station inside “Área de Conservación Privada 
Panguana” on the lower Río Llullapichis, Amazonian Peru (9°35′S, 74°48′W). We moni-
tored an area of approximately 30  ha of rainforest bordering a pastureland on one side. 
We mapped all terrestrial water bodies found during our study with a GPS/GIS device 
(MobileMapper 10; Ashtech/Spectra Precision) and ArcPAD 10 (ESRI) software. Some 
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stream sections were not accessible and were mapped by extrapolating mapped parts of 
the stream. Water bodies were found opportunistically, mostly when tracking tadpole-
transporting frogs. Most water bodies consisted of series of partially separated pools in 
the stream bed that were intermittently connected by flowing water after heavy rainfalls 
(Fig. 2). Because of the proximity and connectivity of individual pools, the entire stream 
beds were considered as a tadpole deposition sites. We observed frogs using all mapped 
water bodies, except for one larger permanent pond, which was excluded from the analysis.

Data for Dt were collected during the mid-rainy season in February–March 2016 and 
2017 near the Camp Pararé field site at the CNRS Nouragues Ecological Research Station 
in the Nature Reserve Les Nouragues, French Guiana (4°02′N, 52°41′W). We monitored 
an area of approximately 4 ha of terra-firme rainforest. We mapped all visible water bodies 
and trees that were climbed by tadpole-transporting frogs. All pools visited by frogs that 
were accessible for inspection contained tadpoles of Dt and were considered as suitable 
tadpole deposition sites. In addition, we considered all trees that were climbed by tadpole-
transporting frogs as potential deposition sites. Dendrobates tinctorius plot was sampled 
more evenly than At plot because of the smaller study area, more open understory, and 
longer study period. However, because Dt primarily use small pools above the ground, the 
pools were harder to detect and most deposition sites were detected only by tracking tad-
pole-transporting frogs.

Tagging and tracking

Ameerega trivittata males (n = 9) were all captured during tadpole transport. One frog 
was recaptured on two consecutive tadpole transport events. Dendrobates tinctorius males 
were captured either during tadpole transport (n = 5) or were already tagged before tadpole 
transport (n = 6) as part of another study. From these 11 Dt males, two frogs were observed 
on two and three consecutive transport events. One individual was tracked on two different 
years. Frogs were kept inside a plastic bag or a net-cage for 15 to 105 min for the prepara-
tion and fitting of the transmitter, but handled only for a few minutes at a time. Frogs were 
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Fig. 2   Map of the study area showing the movements during the tadpole transport of a seven A. trivittata 
males and b 11 D. tinctorius males. Blue circles represent confirmed tadpole deposition sites; house sym-
bols represent approximated start location of the tadpole transport; each line corresponds to a transport 
event and each color represents a different individual. a Blue solid and dashed lines mark creek beds, which 
provided most deposition sites; dotted area corresponds to the forest edge. The shown trajectories do not 
represent complete movement patterns because some frogs were first detected already outside their home 
areas and near the deposition sites. Note the difference in map scales between the two species. (Color figure 
online)
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equipped with miniature radio transmitters (BD2X, Holohil Systems Ltd.; NTQ2, Lotek 
Wireless Inc.; PicoPip, Biotrack Ldt; V5, Telemetrie-Service Dessau) attached externally 
using a waistband or a harness made of silicone materials (Fig. 1; Supplementary video). 
The tags constituted approximately 10% of the total frog weight (Dt: frog weight 3.5–4.2 g, 
tag weight 0.35–0.4 g; At: frog weight 3.8–5.6 g, tag weight 0.36–0.5 g). After release, the 
frogs were located 2 to 12 times a day during the daylight hours using a portable radio-
tracking receiver (Sika, Biotrack Ltd.) and a flexible Yagi-antenna (Biotrack Ltd.).

We considered a tadpole transport event to be over after a frog deposited all tadpoles 
and returned back to their presumed home territory after which the frog showed no direc-
tional movement for at least 24 h. One At was predated by a snake after tadpole deposi-
tion (Fig. S2). In two cases tracking was terminated due to skin injuries from tag attach-
ment. The mapping was done using a combination of GPS and local references established 
with traditional survey methods (see Ringler et al. 2016). The estimated relative GPS error 
was approximately 5–8 m. For smaller scale movements we measured the distance and the 
direction from the previous location using a compass and a laser distance-meter. All data 
were recorded using a handheld GPS/GIS device.

Data analysis

Data analysis and visualization were done in QGIS v2.14 (https​://www.qgis.org/) and R 
statistical software (http://www.R-proje​ct.org/). For each tadpole transport event, we calcu-
lated (1) total duration, (2) cumulative path length, (3) straight-line distance from home to 
the farthest tadpole deposition site used (i.e., observed pool distance), and (4) straight-line 
distance to the nearest identified pool site (i.e., nearest pool distance). We did not quantify 
the home ranges or territories in this study, but approximated the origin of the tadpole 
transport by a single location termed “home reference” within the presumed home terri-
tory. Because most frogs were first located on the way to or at the pools, we used the last 
point of their homing trajectory as their home reference (Fig. S3). When the exact start-
ing location of the tadpole transport was known or when homing tracking was terminated 
prematurely due to predation or injury, we used the first point of the trajectory as the home 
reference. The distances to pools for each frog were calculated from their respective home 
references. To estimate the cumulative path travelled for incomplete trajectories, we added 
the straight-line distance from the last point of the trajectory (i.e., home reference) to the 
location of the first observation. Because of the incomplete tadpole transport trajectories, 
the total duration and the distances of the transport are very conservative and likely under-
estimated. We performed a Mann–Whitney–Wilcoxon Test to compare the total durations, 
observed pool distance, and cumulative distances between the two species, and a paired 
Wilcoxon Signed-Rank Test to compare the observed and nearest pool distance for each 
species.

Results

We successfully tracked eight At and 15 Dt tadpole transport events (seven and 11 different 
individuals, respectively) (Fig. 2). Ameerega trivittata males transported 15 to 32 tadpoles 
(mean ± SD = 22.1 ± 6.2) and deposited them in standing water pools in a partially dried-
up stream bed (n = 6) or flooded meadow on the edge of the forest (n = 2). Frogs visited 
and deposited tadpoles in one or two separate water bodies within a single transport event. 

https://www.qgis.org/
http://www.R-project.org/
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Dendrobates tinctorius transported 1 to 2 tadpoles and deposited them in water-filled tree 
holes at 1–10 m above ground (n = 5), presumed tree holes above 10 m and thus out of sight 
(n = 6), standing water inside fallen trunks (n = 3), and palm bracts (n = 1). Dendrobates 
tinctorius visited up to three deposition sites within one transport event. When transport-
ing two tadpoles (n = 4) frogs deposited both tadpoles in the same pool. When the same Dt 
male was observed during more than one transport event (n = 3) frogs deposited tadpoles in 
different sites during each event.

Ameerega trivittata used tadpole deposition sites farther from home areas than 
Dt (mean observed distanceAT ± SD = 215 ± 109  m, range 96–371  m; mean observed 
distanceDT ± SD = 39 ± 29  m, range 6–121  m; Wilcoxon test: W = 118, p < 0.001); trave-
led longer cumulative paths (mean pathAT ± SD = 486 ± 194  m, range 215–766  m; mean 
pathDT ± SD = 109 ± 63  m, range 17–260  m; Wilcoxon test: W = 119, p < 0.001); and 
spent longer time away from the home area (mean durationAT ± SD = 79.6 ± 41.5 h, range 
5.9–140  h; mean durationDT ± SD = 14.9  h ± 10.9  h, range 2.5–33.8  h; Wilcoxon test: 
W = 108, p = 0.001).

Males of both species traveled significantly longer distances than the distance to the 
nearest available pool (mean pool distanceAT ± SD = 52 ± 41 m, range 3–126 m; Wilcoxon 
paired test: VAT = 28, p = 0.02; mean pool distanceDT ± SD = 19 ± 14 m, range 5–64 m; Wil-
coxon paired test: VDT = 55, p = 0.006; Fig. 3).
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Fig. 3   Boxplot illustrating the difference in distance between the observed tadpole transport distances and 
the nearest known pool available for each tracked frog and species. Asterisks denote statistically significant 
differences based on Mann-Whitney-Wilcoxon and Wilcoxon Signed-Rank Tests (p < 0.05). (Color figure 
online)



619Evolutionary Ecology (2019) 33:613–623	

1 3

Discussion

Males of both species carried their offspring to several sites farther away than the closest 
pool available from their respective home areas. The frogs moved directly toward distant 
pools and sometimes ignored nearby pools that had been used by other individuals even 
when passing next to them. We thus suggest that patterns of pool availability and quality 
cannot fully explain the observed movement patterns. We propose that adaptive benefits 
related to offspring dispersal could also shape the spatial behavior of parental poison frogs.

Resource quality plays an important role in poison frog pool choice (e.g., Brown et al. 
2008; McKeon and Summers 2013; Schulte et al. 2013; Ringler et al. 2018), but the assess-
ment of pool quality alone is unlikely to fully account for the large movement extent 
observed in our study. In most cases, multiple pools were available closer to the home terri-
tory, but the frogs did not approach them before moving to more distant pools. Also, frogs 
ignored some pools that were used by other conspecifics coming from farther away, even 
when passing in their immediate vicinity. On several occasions, we observed A. trivittata 
males leaving the forest to deposit tadpoles in a flooded pasture (Fig. 2a), an unusual habi-
tat for a forest species. Dispersal is a key component for understanding the spatial behavior 
of temperate-region pond-breeding amphibians (Cayuela et al. 2018; Pittman et al. 2014; 
Sinsch 2014); we propose that parental dispersal in poison frogs might convey adaptive 
benefits that are important to consider for a better understanding of their behavior.

Dispersing offspring farther than the nearest available pool, and using multiple pools, 
may entail numerous benefits. Chief among them are reduced competition and inbreed-
ing risk between parents and offspring, and spreading the risk of tadpole predation and 
pool desiccation, both of which are high in rainforest pools (Magnusson and Hero 1991; 
Richter-Boix et al. 2011). The use of multiple pools has been reported in other poison frogs 
(Summers 1990; Brust 1993; Poelman and Dicke 2007; Brown et  al. 2008), and experi-
mental studies using artificial pools revealed that males of the poison frog Allobates femo-
ralis remember and use multiple pools over large areas (Erich et al. 2015; Beck et al. 2017; 
Ringler et  al. 2018). A tendency to use new pools whenever they are discovered could 
gradually produce a spatial pattern where the parent frogs travel farther and farther away 
from their home areas, which might additionally reduce future competition for mates and 
territories with their offspring. It is particularly surprising that the territorial males invest 
so much time in tadpole transport, because leaving the territory unattended may lead both 
to loss of mating opportunities and loss of the territory to competitors. In addition, move-
ment may increase the predation risk (Paluh et al. 2014; also see observed predation in Fig. 
S2). The fact that frogs nevertheless travel such long distances suggests that the benefits, 
which remain to be quantified, outweigh the potential costs.

The reproductive behavior of many tropical frogs has been shaped by a trade-off 
between larger pools with high predation pressure and small pools with low food availabil-
ity (Magnusson and Hero 1991; Duellman and Trueb 1994; McKeon and Summers 2013). 
In response to these trade-offs, some poison frog species became specialists of very small 
pools and evolved extended parental care, such as egg-feeding (for a review see Summers 
and McKeon 2004; Brown et al. 2010; Summers and Tumulty 2013). These species appear 
to have restricted space-use and often hold territories that include tadpole deposition sites 
(Donnelly 1989; Pröhl and Hödl 1999; Poelman and Dicke 2007; Brown et al. 2009). Many 
other poison frogs use pools of variable size and do not provide extended parental care, but 
the factors shaping their behavior are poorly understood. Ancestral poison frogs probably 
lived close to streams and did not need to travel far for tadpole deposition (Weygoldt 1987; 
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Summers and McKeon 2004). Therefore, we speculate that long-distance tadpole transport 
between multiple terrestrial pools is another derived form of parental care that has been in 
part shaped by the adaptive benefits of parent-assisted offspring dispersal.

Our results also support the idea that poison frogs have a good spatial knowledge of 
the surrounding area and probably remember the exact locations of the pools themselves, 
as demonstrated in previous studies (Pašukonis et al. 2014, 2016, 2018; Beck et al. 2017). 
The movement trajectories of tadpole carriers were directed to small pools sometimes 
several hundred meters away from home. Given the well-developed spatial memory and 
the observed movements patterns, it seems unlikely that frogs were not able to detect the 
nearby pools and accidentally encountered the distant ones. How frogs discover the small 
distant pools in the first place remains unknown, but exploration during non-reproductive 
phases and olfactory cues might play a role (Pašukonis et al. 2016; Beck et al. 2017). We 
further hypothesize that the highly developed navigational abilities and spatial memory 
have coevolved with the long-distance shuttling of tadpoles.

Parental mobility may have a strong influence on offspring dispersal in a variety of ani-
mals outside poison frogs. Natural history observations suggest that in at least two rainfor-
est frogs from Papua New Guinea (Bickford 2002) and one cave breeding Jamaican frog 
(Diesel et  al. 1995), the transport of fully developed froglets serves a specific dispersal 
function. Transport of young is also common in arachnids and mammals, while many birds 
move together with their offspring. It has been long acknowledged that parents influence 
offspring dispersal decisions through conflict and competition (Motro 1983; Starrfelt and 
Kokko 2010), but more studies on individual movement patterns might reveal that parental 
spatial behavior also plays a significant role in offspring dispersal.
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