
Sauli Rajala

TAKING THE WEB BEYOND THE WEB: BUILDING
CROSS-PLATFORM SERVICES USING WEB CMS AS A

BACKEND

UNIVERSITY OF JYVÄSKYLÄ

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION SYSTEMS
2019

ABSTRACT

Rajala, Sauli
Taking the web beyond the web: building cross-platform services using web
CMS as a backend
Jyväskylä: University of Jyväskylä, 2019, 89 p.
Information Systems, Master’s Thesis
Supervisor: Semenov, Alexander

This paper proposed a UI-framework, which can be used to create cross-platform
service from existing web service. Special attention was paid to the user
experience in the context of whole cross-platform service. This paper also
proposed a new taxonomy for classifying native mobile applications and
approaches to cross-platform development. The study was done using design
science as research method, and the developed artifact was demonstrated with
WordPress and React Native. Existing WordPress website was analyzed, and a
part of the website was converted into mobile user interface. Then mobile
application was developed with React Native. This led to cross-platform service
with two separate platforms (website and native mobile application) using the
same data and having the same functionalities. UI-framework was noticed to be
functional but insufficient. For example, the user experience in the platform itself
should be elaborated on in more details. The new taxonomies for mobile
applications and cross-platform development approaches was noticed to be true
in the demonstration application. However, when examined in broader scale,
taxonomies were found to be insufficient. As conclusion it was noted that this
kind of configuration of cross-platform service sets some limitations for both the
backend and the mobile application itself. For example, the data should be in
structured form in the website.

Keywords: React Native, WordPress, mobile development, user experience,
cross-platform service, mobile application, design science

TIIVISTELMÄ

Rajala, Sauli
Webin vienti webin ulkopuolelle: useamman alustan palvelun rakentaminen
käyttäen web CMS:ää backendinä
Jyväskylä: Jyväskylän yliopisto, 2019, 89 p.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja: Semenov, Alexander

Tässä tutkimuksessa esiteltiin viitekehys, jota voidaan käyttää useamman
alustan palvelun luomiseen olemassa olevan verkkosivuston varaan. Erityistä
huomiota kiinnitettiin useamman alustan palvelun käyttökokemukseen. Tässä
tutkimuksessa esiteltiin myös taksonomiat, joilla voidaan luokitella erityisesti
natiivi mobiilisovelluksien teknistä luonnetta sekä lähestymistapoja useamman
alustan mobiilisovellusten kehittämiseen. Käytetty tutkimusmenetelmä oli
suunnittelutiede (englanniksi design science) ja kehitetty artefakti demonstroitiin
WordPressillä ja React Nativella. Osa olemassa olevan WordPress-sivuston
käyttöliittymästä muutettiin mobiili käyttöliittymäksi ja lopuksi sovellus
ohjelmoitiin käyttäen React Nativea. Näin saatiin aikaan useamman alustan
palvelu, jossa hyödynnettiin verkkosivuston dataa ja toiminnallisuuksia.
Kehitetty artefakti todettiin toimivaksi, mutta riittämättömäksi. Esimerkiksi
enemmän huomiota olisi tullut kiinnittää käyttökokemukseen mobiliialustassa
itsessään. Tutkimuksessa todettiin myös, että tällainen useamman alustan
palvelun rakenne asettaa tiettyjä vaatimuksia sekä backendiin että
mobiilisovellukseen itseensä. Yksi tällainen rajoitus on, että verkkosivuston data
tulee olla strukturaalisessa muodossa.

Avainsanat: React Native, WordPress, mobiilikehittäminen, käyttökokemus,
useamman alustan palvelu, mobiilisovellus, suunnittelutiede

FIGURES

FIGURE 1 Design Science Process Model (Peffers et al., 2007, p. 54). 11
FIGURE 2 The overview of framework for cross-platform service UX (Wäljas et
al., 2010, p. 226) .. 20
FIGURE 3 The planes of Web UX (Garrett, 2011, p. 33) ... 30
FIGURE 4 Initial UI-framework .. 32
FIGURE 5 Flow of mobile application .. 45
FIGURE 6 Surface of mobile ... 46
FIGURE 7 Example view of post edit view with Advanced Custom Fields
(Advanced Custom Fields, 2018). .. 48
FIGURE 8 Data flow between mobile application and WordPress. 49
FIGURE 9 Main threads in React Native applications (Konicek, 2015) 51
FIGURE 10 Communication between native and JavaScript in React Native
applications (Konicek, 2015) .. 51

TABLES

TABLE 1 The steps of UI-framework .. 33
TABLE 2 Different layouts and corresponding content types 41
TABLE 3 Content elements by layout ... 41
TABLE 4 Functional specification of web .. 42
TABLE 5 Functional specification of mobile .. 44
TABLE 6 Content elements by layout in mobile ... 44
TABLE 7 The main database tables of WordPress .. 48
TABLE 8 JSX-component mapping to platform equivalent (Facebook Inc., 2018b)
 .. 52
TABLE 9 Main JavaScript third party libraries: UI-components 53
TABLE 10 Main JavaScript third party libraries: managing the data and the state
 .. 53
TABLE 11 Simplified version of folder structure of Martat-application 54
TABLE 12 How Nunkessers taxonomy correspond with the taxonomy of mobile-
framework? ... 60

TABLE OF CONTENT

ABSTRACT .. 2

TIIVISTELMÄ ... 3

FIGURES .. 4

TABLES .. 4

TABLE OF CONTENT ... 5

INDEX OF CONCEPTS ... 8

1 INTRODUCTION ... 9
1.1 Research question .. 9
1.2 Objectives of a solutions ... 10

2 DESIGN SCIENCE .. 11
2.1 Activities ... 12
2.2 The entry points ... 13

3 CROSS-PLATFORM SERVICE .. 14
3.1 The definition ... 14
3.2 Configurations of cross-platform service ... 15
3.3 Multiple user interfaces .. 15

3.3.1 User interface .. 15
3.3.2 Multiple user interfaces ... 16

4 USER EXPERIENCE IN A CROSS-PLATFORM SERVICE 17
4.1 Usability and user experience .. 17

4.1.1 Usability ... 17
4.1.2 User experience ... 18
4.1.3 The differences between usability and UX 19

4.2 User experience of cross-platform service ... 20

5 WHAT IS MOBILE APPLICATION? ... 23
5.1 Native application ... 23
5.2 Web application ... 24
5.3 Hybrid application .. 24

6 CROSS-PLATFORM DEVELOPMENT ... 25
6.1 What is platform? ... 25
6.2 What is mobile application development? ... 26
6.3 What is cross-platform development? .. 26

6.3.1 Definition ... 26

6.3.2 Requirements and constraints .. 27
6.4 What are the approaches to cross-platform development? 27

6.4.1 Runtime environment .. 27
6.4.2 Generator-based ... 28

7 ARTIFACT: THE UI-FRAMEWORK .. 29
7.1 The five planes of UX explained .. 30
7.2 The UI-framework ... 32
7.3 Steps of the UI-framework ... 33

8 ARTIFACT: MOBILE-FRAMEWORK .. 36
8.1 Would the rigor framework please stand up? 36
8.2 Four categories of mobile applications ... 37
8.3 Approaches to cross-platform development ... 38

9 DEMONSTRATION: THE UI-FRAMEWORK ... 40
9.1 Surface of web .. 40
9.2 Skeleton of web .. 41
9.3 Structure of web ... 42
9.4 Scope of web ... 42
9.5 Strategy of web ... 43
9.6 Strategy of mobile .. 43
9.7 Scope of mobile .. 44
9.8 Structure of mobile .. 45
9.9 Skeleton of mobile ... 45
9.10 Surface of mobile ... 46

10 DEMONSTRATION: MOBILE-FRAMEWORK ... 47
10.1 WordPress as backend for the application ... 47

10.1.1 In general .. 47
10.1.2 Martat website as backend ... 49

10.2 React Native .. 50
10.2.1 Architecture and development of React Native application . 50
10.2.2 Martat application ... 52

11 EVALUATION .. 55
11.1 Evaluation of the UI-framework ... 55

11.1.1 Fit for cross-platform tasks? ... 56
11.1.2 Does interactions and content flows? 56
11.1.3 Do users perceive coherency? .. 57
11.1.4 Conclusions ... 57

11.2 Evaluation of mobile-framework .. 58
11.2.1 Classification of mobile applications .. 59
11.2.2 Classification of cross-platform development approaches 59

12 DISCUSSION ... 61
12.1 Limitations of backend .. 61

12.2 Limitations of mobile application ... 62
12.3 Conclusion and future research options .. 63

BIBLIOGRAPHY ... 65

APPENDIX 1 NAVIGATIONS OF WWW.MARTAT.FI WEBSITE 70

APPENDIX 2 WIREFRAMES OF SKELETON OF WEB ... 71

APPENDIX 3 VISUAL VOCABULARY OF STRUCTURE OF WEB 72

APPENDIX 4 CONTENT ELEMENTS OF SCOPE OF WEB 74

APPENDIX 5 CONTENT ELEMENTS OF SCOPE OF MOBILE 77

APPENDIX 6 VISUAL VOCABULARY OF STRUCTURE OF MOBILE 80

APPENDIX 7 WIREFRAMES OF SKELETON OF MOBILE 81

APPENDIX 8 API ENDPOINT FOR ALL RECIPES .. 83

APPENDIX 9 API ENDPOINT FOR SINGLE RECIPE ... 87

8

INDEX OF CONCEPTS

Ajax Asynchronous JavaScript And XML
Backend Part of computer system that is responsible for storing data
CLI Command-line interface
GraphQL Query language for APIs
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
MySQL Relational database management system
URL Uniform Resource Locator
PHP Programming language
Rest Api Representational State Transfer Application programming interface

9

1 INTRODUCTION

Nowadays more and more people have mobile devices and with increasingly
speed they expect to be able to find the same information and do the same things
with mobile devices that they previously did with desktop computers. This
demand of mobile services places the service providers like cities, news
companies, etc. into difficult situation. At the same time, it also gives huge
possibilities to provide services in a new and more effective way. One of the
biggest problems here is the money. Building native mobile applications is hard
and time-consuming work. You need people with special coding skills in
different programming languages and you need to develop different applications
to different mobile platforms. Because of this many service providers are
hesitating to step into the mobile world. At the same time, they need to develop
and to update their websites to answer the growing requirements for websites.
This makes the step into the mobile world even more frightening to take.

These practical problems lead to a few practical questions: Could it be
possible to combine mobile and web worlds together in a cost-effective and
reliable way? To update the content of the website and of the mobile application
with the same familiar content management system (CMS) that you use to update
website? Would it be possible to do this natively and with cross-platform support?
These very practical questions lead to more theoretical questions about the nature
of that kind of service. What kind of system would we actually be building? How
to maintain the consistency between website and mobile application? What is the
theory or theoretical framework behind this?

1.1 Research question

My research question is “Under which conditions can you build native mobile
applications using cross-platform technologies and Web CMS as a backend and
how to do it using React Native and WordPress?”

This research question can be divided into three sub question, that specifies
the research question. For the sake of clarity these sub questions are referred in
this thesis as sub question 1, sub question 2 and sub question 3. Sub question 1 is,
“What is the framework to use when creating mobile user interface from web
user interface in order to produce cross-platform service so that cross-platform
user experience is taken into account?” Sub question 2 is, “What is the framework
to classify different applications and cross-platform development approaches?”
Sub question 3 is, “How to do it using React Native and WordPress?”.

The research method of this study is design science and chapter 2
introduces the research method in detail.

10

1.2 Objectives of a solutions

Existing definitions for mobile applications and for cross-platform development
approaches are somewhat misty and does not take into account advanced
modern technologies such as React Native. As a result of this thesis, we will have
a rigor framework for classifying different mobile applications and approaches
to cross-platform development. Another goal of this study is to develop a
framework, which web developers around the world can use to create cross-
platform services from their existing website cost-effectively and with high
quality.

WordPress is the most popular web CMS with 60% market share of all the
websites whose content management system is known and React Native is
trending as a new technology to build cross-platform mobile application (“Usage
statistics”, 2019). Both of these technologies are open source and have a big and
committed community of developers. As a result of this study, we would get a
good knowledge of how to use these two technologies to build cross-platform
services and also one demonstration of the frameworks described above.

The rest of the thesis is structured as follow. In chapter 2 the design science
is explained in more details. The background theories for this thesis is covered in
chapters 3-6. In chapter 3, the concept of cross-platform service is explained and
after that, in chapter 4, the concepts relating to human-computer interaction are
explained and applied in the context of cross-platform service. After that the
existing classifications for mobile applications is examined and lastly common
definitions for cross-platform development is given in chapter 6. After that the
artifact is designed and developed in chapters 7-8 and in chapters 9-10 this
artifact is demonstrated with React Native and WordPress. Lastly the artifact is
evaluated in chapter 11. Short discussion about the findings of this study is done
in chapter 12, where the answers to research question is also provided.

11

2 DESIGN SCIENCE

The research method in this thesis is design science. According to Hevner, March,
Park and Ram (2004) the design science paradigm creates knowledge of a
problem and its solution by building and implementing new and innovative
artifact. It is a problem-solving paradigm, where focus is laid in creating and
evaluating artifacts, which are meant to solve different kinds of problems. The
creation of these artifacts is dependable from existing kernel theories, which the
researcher applies, test and extend in order to solve the problem. (Hevner et al.,
2004.) Markus, Majchrzak and Gasser (2002) defines the kernel theory to be
fundamental for design science and it can be either academic or practical theory.

In this thesis, I will use the design science process model (figure 1)
introduced by Peffers, Tuunanen, Rothenberger and Chatterjee (2007). This
model is created as a consensus from influential prior research on design science.
It serves as a commonly accepted framework for phasing studies with design
science research method. Process model has two key concepts: activities and
entry points. Activities is introduced in next chapter in more detail and entry
points is discussed shortly in chapter 2.2.

FIGURE 1 Design Science Process Model (Peffers et al., 2007, p. 54).

12

2.1 Activities

Peffers et al. (2007) divides the design science into six activities: problem
identification and motivation, define the objectives for a solution, design and
development, demonstration, evaluation and communication. In this chapter
each activity is defined and also specified the corresponding chapter of this thesis,
since the structure of thesis follows the activities.

First activity is to identify the research problem and to motivate why it is
important to seek solution to this problem. Hevner et al. (p. 81, 2004) call these
problems as wicked problems, which are characterized for example by unstable
requirements and complex interactions among subcomponents of the problem
and its solution. The research question should be introduced in this activity and
broken into smaller concepts. This helps to make sure that the solution is really
the solution for all the aspects of the research question. Another important phase
in this activity is to define why it is important to find solution to the problem.
This will motivate both the researcher and the audience to seek and to accept the
solution. (Peffers et al., 2007.) In this thesis, the problem is identified and
motivated in chapter 1.

Second activity is to define objectives of a solution. According to Hevner et
al. (p. 84, 2004) general objective of design science research is to enable
development and implementation of solutions to unsolved and important
business problems. In design science process model the objectives of solution can
be derived from the previous activity i.e. by identifying the problems. These
objectives can be either qualitative or quantitative. (Peffers et al., 2007.) Second
activity is implemented in chapter 1.2 in this thesis.

Third activity is to design and develop the artifact. Artifact can be for
example a construction, model, method or instantiation. They are rarely full-
grown information systems, but more likely innovations that define practices and
technical capabilities so that use of information systems can be effectively and
efficiently accomplished. (Hevner et al. 2004.) The research contribution should
be embedded in designing the artifact. In this activity researcher need to specify
functionalities and architecture of the artifact. After that, he or she can develop
the artifact. (Peffers et al., 2007.) The artifact is designed and developed in the
chapters 7 and 8 in this thesis.

Fourth activity is the demonstration part, where researcher shows how the
artifact works at least in one instance of the problem. Demonstration can be for
example experimentation, simulation or case study. (Peffers et al., 2007.) This
activity is applied in chapters 9 and 10, where the artifact will be demonstrated
in real life situation.

Fifth activity is the evaluation of the artifact. Here the objectives of solution
from activity two are compared to the results received from demonstration of the
artifact. In order to evaluate the artifact rigorously researcher needs to consider
what the relevant metrics or analysis methods are. Evaluation can be a
comparison between expected results and received results or quantitative or
qualitative performance measurements. Evaluation can also happen in terms of

13

completeness, consistency or usability of the artifact. Researcher can decide
whether to iterate back to third activity or not before moving to sixth activity.
(Hevner et al., p. 85, 2004; Peffers et al., 2007.) The evaluation of the artifact takes
place in chapter 11 in this thesis.

Sixth and last activity is to communicate the study to other researchers and
to other relevant groups. In this activity, the researcher reflects previous activities
and writes down the important points from each activity. What is the problem
and why is it relevant? What is the artifact that was developed? Is it new and
feasible? Was the design process rigor? (Peffers et al., 2007.) Research must be
presented in manners that will benefit both technology- and management-
oriented audiences. For technology-oriented audience research needs to include
adequate detail for implementing the artifact. Research needs to also offer
sufficient data for management-oriented audience to determine if the artifact is
fit for their specific organizational context. (Hevner et al., 2004.) This study is
communicated by publishing the thesis at the Jyväskylä University Digital
Repository.

2.2 The entry points

Even though the above activities are numbered and presented in sequential order,
there is no need for the researcher to always start from activity one. As is seen in
figure 1 there are four entry points for researchers to start their research. Problem
centered initiation can be triggered for example from suggested future research
ideas from prior research literature. Researcher can also start the research by
defining the objectives of a solution, if the idea for research comes from the need
of industry that can be addressed by developing an artifact. The entry point for
these kinds of researches would be objective-centered solutions. Third option is to
start with the artifact and move outward. Design and Development centered
initiation happens for example from already existing artifact that has come from
another research domain but has not yet been formally studied. Last entry point
is called client or context initiated. Here the idea for research can be a result of
observing a practical and working solution. (Peffers et al. 2007.)

The idea for this research comes from already existing solution to the
research problem offered by Gould (2015). He introduces the idea and practical
steps on creating simple mobile application with React Native and WordPress as
backend. This observation of practical solution serves as a starting point to the
research in order to find out what the artifact for the demonstration is and how
to evaluate that artifact.

14

3 CROSS-PLATFORM SERVICE

This chapter consists of discussion on cross-platform service. First it provides the
definition of cross-platform service. Second part of this chapter presents the
possible configurations of cross-platform service. Last part of this chapter
presents the somewhat similar concept than cross-platform service – multiple
user interfaces.

Even though the emphasis in this thesis is mostly in web and mobile, cross-
platform services enables you to create whole ecosystem around the web CMS.
However, in this thesis, the attention is mostly drawn to taking the web beyond
the web into native mobile application

3.1 The definition

Cross-platform service can be divided into two concepts. First concept is service,
which can mean many things depending on the context. In the field of economy
and business it is defined as a process, which consists of a series of intangible
activities so that the solutions to customer’s problems are provided. (Lusch &
Vargo, 2006; Grönroos, 2007, p. 52; Kotler & Armstrong, 2012, p. 248.)

In this thesis the service-concept is applied digitally. Williams, Chatterjee
and Rossi (2008) define digital service as a benefit that one can give to another
through a digital transaction over Internet Protocol. There are two key roles in
this process: service provider and service user. Service provider is the one
responsible for providing the service to the service user who uses the service.
(Williams et al., 2008.)

Cross-platform services are generally web-based services and the
configurations of cross-platform services will be explained in detail in chapter 3.2.
Another characteristic of cross-platform service is that users can interact with it
through multiple devices. These interactions take place through user interfaces
and in the context of cross-platform services these user interfaces can also be
called multiple user interfaces. The concept of multiple user interfaces is

15

explained in more detail in chapter 3.3. (Wäljas, Segerståhl, Väänänen-Vainio-
Mattila & Oinas-Kukkonen, 2010.)

3.2 Configurations of cross-platform service

There are two main points of view in the configurations of cross-platform service:
device composition and service delivery. In this chapter I will explain these
standpoints in more detail.

Device composition can be divided to two: device redundancy and the
synergistic specificity of a service. Device redundancy describes the roles of devices
in the cross-platform service. The roles can be redundant, complementary or
exclusive depending on how much data and functions each device share with
each other. The synergistic specificity of a service describes the dependency between
devices in a cross-platform service: the higher the synergistic specificity, the
greater the dependency. Device composition is one of the important aspects in a
user experience of cross-platform services, because it helps to limit the use cases
to only those use cases, where the service is built to support by its configuration.
(Wäljas et al., 2010.)

The service delivery can be either multichannel or crossmedia. Multichannel
means that content and functionality is equal or almost equal in multiple devices.
The role of devices here is mostly redundant or complementary, so each device
offers the same or almost the same content and functionalities. On the contrary,
in crossmedia systems the role of devices is mostly complementary or exclusive.
Unlike in multichanneled systems, the synergistic specificity is high in
crossmedia systems. They become fully functional only when each component is
used together with other components. (Wäljas et al., 2010.)

3.3 Multiple user interfaces

3.3.1 User interface

When people talk about softwares and applications they usually are talking
about user interfaces. User interface (UI) is the part of the software that is visible
to people. UI has two main components: input and output. Person communicates
with the UI through input mechanism, which can be for example keyboard,
mouse or person’s finger. Application interprets the users input and expresses
the results of its computations to output. The most common output mechanism
today is the display screen. (Galitz, 2007, p. 4; Olsen, 1998, p. 11.)

The main purpose of the UI is to view and edit information – to interact
with a set of visible objects. Through these objects user can perform operations,
in other words actions, to complete the tasks, which the user had in mind when
starting to use the UI and the application in the first place. (Galitz, 2007, p. 16.)

16

3.3.2 Multiple user interfaces

Multiple user interfaces (MUI) was first introduced by Seffah and Javahery (2004).
It is an interactive system, that provides access and views to the same information
and services through different platforms and also coordinate these services. Each
of these views should be developed with the conditions of a platform, but at the
same time maintain cross-platform consistency and usability. Information and
services can locate on a single server or in a distributed system and different
views can access them using client/server protocol or direct peer-to-peer
connection. These views can be considered as a platform specific UIs, which
could differ in interaction styles, features or even in the displayed information.
(Seffah & Javahery, 2004, pp. 11-13.)

There are four main aspects that characterize MUI-systems. First aspect is
its ability to enable user to interact with server-side system by different
interaction styles like gestures or mouse. The second aspect is, that it is possible
for user of MUI to achieve their single objective, consisting of multiple
interrelated tasks, using multiple platforms and devices. For example, user can
book an appointment with the mobile phone and email information about the
appointment with desktop computer. Third aspect is, that features, functions and
information behave the same across all the platforms, in spite of the fact that
every platform has its own unique look and feel. Last aspect of the MUI is that it
feels like a set of platform specific versions of the single interface with the same
capabilities. (Seffah & Javahery, 2004, pp. 11-13; Majrashi, Hamilton &
Uitdenbogerd, 2015.)

Majrashi et al. (2015) categorize different MUIs into three model: on-
demand, independent and hybrid. On-demand model means that the service and
the information is located in a single repository and user access this repository
by request in web browser. This model can be seen to correlate with multichannel
system in cross-platform service. Independent model refers to distributed service
model, where each view of the MUI can be seen as an independent UI for the
platform and thus the function and information can be different between the
views of the MUI. This model correlates with crossmedia systems in cross-
platform service. Hybrid model is a combination of these two models meaning,
that it includes both the services, that need to be accessed through web browser
and the services, that are installed on device. (Majrashi et al., 2015.)

17

4 USER EXPERIENCE IN A CROSS-PLATFORM
SERVICE

Most definitions of user experience (UX) only consider the user experience of one
UI and not the wider UX of the cross-platform service. In this chapter I will first
define the concept of UX and apply the definition to the context of MUI and cross-
platform services. After that I will look more closely the characteristics of UX in
a cross-platform service.

4.1 Usability and user experience

In a common language user experience and usability is in many times used as a
synonym for each other. Although there is no common and rigor understanding
of these two concepts, there is a common understanding that they mean different
things. In this chapter I will first define the concept of usability in general and in
the context of MUI and cross-platform service. After that I will define the concept
of UX and UX in MUI and cross-platform services. Lastly, I will reflect the
differences between usability and UX.

4.1.1 Usability

Usability is a difficult concept to define, because there is no common definition
for it. In its simplest form, usability can be defined as a variable that tells how
easy it is to use the UI. (Majrashi et al., 2015.) More complex definitions combine
multiple attributes such as effectiveness, efficiency and satisfaction. For example,
according to Jokela, Iivari, Matero and Karukka (2003) ISO 9241-11 standard
defines usability as “the extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use”. Nielsen (2012) divides usability into five components:
learnability, efficiency, memorability, errors and satisfaction. Learnability takes

18

the perspective of the first-time user and describes the easiness for this user to
accomplish basic tasks with the design. Efficiency, on the other hand, takes the
perspective of a more experienced user and describes how quickly this user can
perform tasks. Memorability takes the perspective of the returning user and
describes the easiness for this user to restore his/her skills relating to the design.
Errors-component defines the quality and quantity of errors made by user. Lastly
satisfaction-component describes the pleasantness of use of the design. (Nielsen,
2012).

Traditional usability definitions do not consider the usability in the context
of cross-platform service. The usability in the MUI-systems can be divided into
two dimensions: horizontal and vertical. Horizontal usability refers to the cross-
platform usability requirements and vertical usability refers to the platform
specific usability requirements. (Seffah & Javahery, 2004, p. 16.) According to
Angulo and Ferre (2014) respecting the platform conventions (vertical usability)
is more important in mobile applications than it is in desktop applications.

Wäljas et al. (2010) find three categories in usability in cross-platform
services: inter-device consistency, transparency and adaptability. Inter-device
consistency should be high enough, but not too high as in some cases there
should be heterogeneity of functionalities. Transparency means how transparent
the system is about its own structure and functionalities. The more transparent
structure the clearer it is for user to understand the limitations of the system.
Here one should especially think about how to increase knowledge about
combining web and different kind of mobile devices in useful ways. Adaptability
consists of two aspects: how well the system helps the user to learn and to use
different components of the system in different use situations and how well the
system adapts to the user’s environment and to the properties of the device.
(Wäljas et al. 2010.)

4.1.2 User experience

The concept of user experience can be divided into two term: user and experience.
There is two meaning for the term experience. The saying “learning by experience”
represent the first one. In this kind of understanding of the term, knowledge and
skill is gained by doing and/or seeing things. The second meaning refers to the
memorable activity that provided an experience, which affected in positive or
negative way to people who was involved in the activity. User is someone who
uses something and together these terms refers to memorable usage activity, that
remains in the mind of the user as a reference of usage situation and context. The
first meaning of experience – learning by experience – also annotates with user
experience. If the user experience is good, the usage event will be most likely
repeated, but if the usage event leads to negative outcome, user will avoid it in
the future. He/she had learned by experience whether or not the design was
worth the time. (Pallot & Pawar, 2012.)

Another way to think about user experience is to think the following five
elements: usability, utility, availability, aesthetics and offline issues. What the

19

user expects from these five elements and how the design response to these
elements, are the key issues to produce a good user experience. (Hiltunen,
Laukka & Luomala, 2002, p. 13). Majrashi et al. (2015) also think user experience
(UX) as a parent concept for more specific variables like usability, emotional,
aesthetic and values. The first requirement for UX is to meet the needs of the
customer so that it is joyful to use the service, but the UX goes far beyond that.
UX can be considered as something that includes all the aspects of user’s
interaction with the service. (Norman & Nielsen, 2016.) According to Law, Roto,
Hassenzahl, Vermeeren and Kort (2009) ISO standard define user experience as
“a person's perceptions and responses that result from the use or anticipated use
of a product, system or service”. Law et al. (2009) agree in general with this ISO
definition and they use the following attributes to describe user experience:
dynamic, context-dependent, subjective and individual (instead of social). User
experience can be thought to be something that take shape when user interact
with a product, system, service or an object (Law et al., 2009.)

According to Wäljas et al. (2010) the traditional aspect to UX has been
device-based, but recent studies have taken more holistic view to UX in relation
to service user experience, UX life cycles and distributed or crossmedial UX.
Hassenzahl and Tractinsky (2006) follows this more holistic view and define UX
as an combination of a user’s internal state (e.g. expectations and needs), the
context of use (e.g. organizational setting and meaningfulness of the activity) and
the characteristics of the designed system (e.g. complexity and usability). When
considered MUI-systems the last aspect can be divided into two categories:
system wide characteristics and platform specific characteristics. (Majrashi et al.,
2015.) Wäljas et al. (2010) remind that previous and expected experiences with
other components in the system remarkably affects the UX of distinct system
component.

4.1.3 The differences between usability and UX

As can be seen from the previous definitions, usability and UX sounds quite the
same. Nevertheless there are a few differences, which are explained in more
detail in this chapter.

First difference is in the wideness of the definition. UX is thought to be
broader than the usability meaning that in the UX the usability is not the only
aspect to consider. The more emotional aspect of system quality is associated
with UX although users’ internal state effects also the usability. The second
difference is the point of view. Usability concentrates more on a design of a
system, but in UX the point of view is more of the users. Third difference is the
measurement meter. Usability can be measured by both objective (for example
task execute time) and subjective meters (for example satisfaction rate), but the
meter for UX measured is based on subjective meter. (Majrashi et al., 2015; Wäljas
et al. 2010.)

It is also interesting to notice that usability and user experience does not
always correlate with each other: bad usability does not necessarily result to poor

20

user experience. For example, in the study done by Tulimäki (2015) with 24
participants the result was that even though the usability of iPhone phones was
worse than in the Nokia phones, the overall user experience in iPhone was
considered better than in the Nokia. One reason for this might be that according
to Quinn and Tran (2010) the phones attractiveness compensates for ineffective
and inefficient performance or as Tulimäki (2015) put it: users value more
hedonistic attributes than the objective usability. Another reason might be, as
Raita and Oulasvirta (2011) argue, that users bring their expectations and
previous experiences with the phone to the test situation. Raita and Oulasvirta
(2011) noticed in their study that if user had read positive product review, he was
more likely to give positive ratings after the usability test even if user had failed
in most of the tasks in usability test.

4.2 User experience of cross-platform service

Wäljas et al. (2010) introduce a framework for cross-platform service UX.
Framework presents three themes of UX and each theme is broken down into
three characteristics of cross-platform system, which influences into one element
of cross-platform service UX. These elements of cross-platform service UX are fit
for cross-platform tasks, flow of interactions and content and lastly perceived
service coherence. (Wäljas et al., 2010.) Figure 2 summaries the idea of the
framework.

FIGURE 2 The overview of framework for cross-platform service UX (Wäljas et al., 2010, p.
226)

User experience will be better both for the whole cross-platform service and its
distinct platforms, if the system is composed in line with the user’s primary
activity and expectations, e.g. the service fits for cross-platform tasks.

21

Composition-theme specifies the relationships between different platforms within
a system and component role allocation, distribution of functionality and
functional modularity are parts of composition-theme. The role that the user
gives to component is significant, because that determines what the user thinks
about the purpose and functionalities of component. Role allocation can be either
task or situation-based. Task-based means that different platforms is used to do
different task. Situation-based allocation, on the other hand, means that the same
task is done by different devices depending on the situation. Understanding
these situations helps to optimize role of devices in a cross-platform service
system. Second aspect that belongs to the composition-theme is distribution of
functionality, which can base on, for example, platforms’ individual strengths or
assumed use situation. If the functionality of cross-platform service is distributed
to the distinct devices, the complexity of an individual device may decrease. The
other side of the coin is that limitations to the functionality in certain platforms
may be in contradictions with the user’s expectations. To prevent these
contradictions certain amount of functional modularity should be taken into
account. This means that at least the core functionalities should not be situated
on only one platform, because if that platform is not available, the whole system
can become dysfunctional. (Wäljas et al., 2010.)

User experience will be better when the users are able to smoothly and
intuitively carry out the tasks and activities across various platforms. This
requires fluent flow of interaction and content. Continuity-theme determines how
seamless is the synchronization of data and content within a system and how
good is the support for users to shift to different platform in the middle of a task.
Continuity between devices comes through cross-platform transitions, task
migration and synchronization. In cross-platform transitions the focus is set on to
the explicit and intuitive connection between devices and applications. The mere
possibility to interconnect devices is not enough. Interconnection should be
natural and do-nothing experience. Task migration means, that the user is able to
continue the incomplete task on another device. If cross-platform service is
composed in a crossmedial way, the focus should be on the logical chain of tasks.
On the other hand, in multichanneled configurations more emphasis should be
put on repetition of tasks: the task should be repeatable on different device. To
make this possible, you need synchronization of actions and content. The state of
actions and content should be the same even when switching the device in the
middle of task. (Wäljas et al., 2010.)

The way the system and the distinct platforms present the same information
and the functionalities is also important to user experience. Perceived service
needs to be coherent. This is the area of the consistency-theme, which determines
how coherent the symbols, terminology, interaction logic, etc. are within the
system. The focus here is set on a perceptual, semantic and syntactic consistency.
Perceptual consistency means that the look and feel should be similar across all
platforms in cross-platform service: the same action or content should be
presented in a consistent way. Semantic consistency means that the same
terminology and symbols are used to represent the same functionalities. Lastly,

22

syntactic consistency means that the interaction logic (for example navigations) is
coherent through the devices. (Wäljas et al., 2010.)

23

5 WHAT IS MOBILE APPLICATION?

According to Zibula and Majchrzak (2013) mobile applications are
technologically just ordinary computer programs. Mobile application runs in a
mobile operating system (OS) in a mobile device such as smartphone or tablet. In
the prior research mobile applications are classified into three categories. These
categories are explained in more detail in this chapter.

5.1 Native application

First category of mobile applications is native application. Joorabchi, Mesbah and
Kruchten (2013) define native application as an application that runs on a
device’s operating system and is system specific – meaning that application for
iOS platform need to be developed separately from application for Android
platform. Charland and Leroux (2011) argue that native applications are usually
compiled, and they build user interface straight through devices’ own
functionalities and views.

Le Goaer and Waltham (2013) gives the following specifications to native
mobile applications:

• User interface is recognizable and associated to certain OS meaning that
the application “has the look and feel of the platform” (Heitkötter,
Hanschke and Majchrzak, 2013).

• Application can access to other applications already installed on the
systems (address book, photo gallery, etc.) and listen to system events like
resuming from sleep and receiving an SMS.

• Hardware access: sensors (light, acceleration, etc.) and short-range
wireless interactions (NFC, Bluetooth).

• Performance (speed and stability) is as good as it can be, because there are
no second level components between UI and mobile device.

24

The source code for native application is written in Objective-C (iOS), Java
(Android) or C# (Windows Phone).

5.2 Web application

Web applications are, with a little bit simplified, just web sites that is optimized
for mobile devices. They are written in common web technologies like HTML5,
CSS and JavaScript and runs in a browser of the device. Unlike native
applications, web applications cannot be installed to devices, but can be accessed
via URL in browser. (Zibula & Majchrzak, 2013; Heitkötter et al., 2013.)

The benefit of web applications is that they function and feels almost the
same in different platforms, so the support for multiple platforms is easy to
achieve. The disadvantage of web applications is that they cannot access to
platform-specific features such as GPS sensor. In addition, it is hard or even
impossible to achieve native look and feel in web applications. (Heitkötter et al.,
2013.)

Smutny (2012) divides web applications into two categories: Dedicated and
generic web applications. Dedicated web application is tailored to specific
platform and generic web application is meant to work properly in any mobile
devices (Smutny, 2012). In this thesis the term web application is used to have
both of these meanings, since web application is not the focus point in the thesis.

5.3 Hybrid application

Hybrid applications are considered to be combination of web and native
applications. Like web applications, they are written with the same web-
technologies, but unlike web applications hybrid applications can access to
platform-specific features. Like in web applications, there is also browser
involved, but this time it is embedded inside the applications. These browsers
without user controls i.e. Web views interprets the source code during runtime
to show the web page. (Heitkötter et al., 2013.) Charland and Leroux (2011) argue
that hybrid applications are able to call native code from JavaScript within Web
view.

Like is the case with the native applications, users need to install hybrid
applications on the device and developers can upload hybrid applications to App
Store or Google Play. To put it shortly in hybrid applications, the ability to use
platform-specific features is similar to native applications, but the look and feel
of the application is similar to web applications. (Heitkötter et al., 2013.)

25

6 CROSS-PLATFORM DEVELOPMENT

This chapter consists of discussion on cross-platform mobile application
development. The definition of platform is given in chapter 6.1. After that the
focus is shifted to mobile application development and specially to cross-
platform development. Lastly the five major approaches to cross-platform
development mentioned in prior research is introduced.

6.1 What is platform?

Software-based platform can be defined as extendible codebase of software-
based system, that offers core functionalities and interfaces to access these
functionalities. This system can be extended with modules, which connects to the
platform through interfaces. In the case of mobile platform, these modules are
mobile applications, which are defined in more details in the previous chapter.
(Tiwana, Konsynski & Bush, 2010.)

Another view to the definition of platform is that platform is a combination
of operating system (OS), language, source development kit (SDK), hardware,
user interface (UI) toolkit and device-specific features. (Seffah & Javahery, 2004;
Heitkötter et al., 2013; Bishop & Horspool, 2006.) This definition is almost the
same as given by Tiwana et al. (2010) except that it considers the hardware also
as something that belongs to platform.

In this thesis the term platform is used to refer to the software and hardware-
based system, that is specified by OS, language, SDK, UI toolkit and core
functionalities. The term mobile platform is used, when speaking of platform
applied to the mobile phones.

In this thesis only Android and iOS OS are taken into consideration, since
they had the biggest market share in year 2018 (“IDC Research”, 2019). Because
the OS can be considered as the most determining part of the platform, each
mobile platform is referred according to it OS in this thesis. For example,
Android-based platform is software- and hardware-based system, that is

26

specified by Android as OS, Java as programming language, Android SDK as
SDK, Android specific UI and Android specific core functionalities (like back-
button).

6.2 What is mobile application development?

Mobile application development is, in general, similar to software engineering of
any application. Mobile application developers need to consider of normal
software engineering issues like integration with hardware and storage
limitations of the device. There are also additional requirements in mobile
application development. For example, mobile application can access to the
sensors of mobile device or can be developed on top of another mobile
application like is the case in hybrid or web applications. Developer need to keep
in mind also the limitations of the device, such as limited access to power or
limited screen size. One major characteristic for mobile application development
is that developer must follow the UI guidelines, which are developed externally
and mostly implemented in the SDKs. (Wasserman, 2010.)

Mobile application development can be considered as a third-party
development, where the developer develops applications on behalf of the
platform owner in order to satisfy the end-users of the platform. (Ghazawneh &
Henfridsson, 2013.) According to Boudreau and Lakhani (2009) platform owners
has rules and regulations, that third-party developers need to obey in order to
get their application approved.

6.3 What is cross-platform development?

6.3.1 Definition

According to Bishop and Horspool (2006) cross-platform software means that there
is a different version of the same software for different platforms. When applied
this definition to mobile applications, it means that same application is available
in multiple mobile platforms – for example in iOS and Android-based platforms.
This means that developers need to develop application separately to different
platforms and because of the significant differences between platforms, very little
code can be reused. This increases the cost, time and the resources that are needed
to develop mobile application. (Gaouar, Benamar & Bendimerad, 2015.)

Cross-platform development has emerged to solve this problem and it tries to
help developers to avoid repetition and to increase productivity when
developing cross-platform applications. A common phrase associated to cross-
platform development is “write once, run everywhere”, which means that
developer programs the application once and that same codebase can be
executed on multiple platforms. Development approaches can be divided into

27

two groups: approaches that use runtime environment and approaches that
generate platform-specific application at compile time. (Heitkötter et al., 2013;
Gaouar et al., 2015.) These two groups and their subgroups are discussed more
closely in chapter 6.4.

6.3.2 Requirements and constraints

One constraint to cross-platform development is the balance between generality
and specificity. There has to be reasonable level of abstraction or otherwise the
application cannot be implemented to differing platforms. On the other hand,
developers need to be able to take advantage of platform specific functionalities
like back-button in Android-based platforms or mute-button in iOS-based
platforms. (Heitkötter et al., 2013.) Gaouar et al. (2015) list three constraints for
cross-platform development: use of abstractions, problem decomposition and
separation of concerns.

Dalmasso, Datta, Bonnet and Nikaein (2013) give eight requirements for
frameworks in cross-platform mobile application development: multiple mobile
platform support, rich user interface, backend communication, security, support
for app-extensions, power consumption, accessing built-in features and open
source. Next, these requirements will be explicated in more details.

Obvious requirement for cross-platform framework is that it has to support
multiple mobile platforms – at least Android and iOS. Rich user interface means
that there needs to be support for sophisticated graphics (2D, 3D), animation and
multimedia. Backend communication protocols and data formats need to be
supported, because mobile devices elevate an "always-connected" model.
Security is one of the biggest weakness in mobile applications that are developed
in a cross-platform way and this area needs more efforts both in the research and
in the practice. App-extensions can be used for example to add the in-app
purchase/billing capability to application. As stated in chapter 6.2 developers
need to take into account the power limitations and to optimize the power
consumption of application. Accessing built-in features means that application is
able to use camera, sensors and other functionalities of platform. Lastly, if
framework is open source, more applications will mostly likely be developed
with the framework and developer community will also help with bug fixes and
further development of framework. (Dalmasso et al., 2013.)

6.4 What are the approaches to cross-platform development?

6.4.1 Runtime environment

There is a browser in all modern-day smartphones and one way to accomplish
the “write once, run everywhere” goal is to build mobile applications using web

28

approach. This approach produces web applications that will be executed in the
web browser of mobile device. Examples of tools of this approach are jQuery
Mobile and Appsbuilder. (Gaouar et al., 2015.)

Hybrid approach produces hybrid applications. This approach is similar to
web approach, because the implemented technologies are same: HTML,
Javascript and CSS running in a browser. However, this time the browser is full
screen Webview. Examples of tools of this approach are PhoneGap and Vaadin
TouchKit. (Gaouar et al., 2015.)

Interpreted approach uses runtime environment that interprets the source
code across different platforms. The main advantage of this approach is that it
produces native application in the sense that all UI-components are native
components, but on the other hand, because of the runtime environment they
differentiate from the native applications that are built using cross-compiled or
model-driven approach. Runtime environment can slow down the application a
little bit and another disadvantage is the limitations to only to those features that
the framework provider set. Examples of this approach are Appcelerator
Titanium Mobile, React Native and NativeScript. (Gaouar et al., 2015.)

6.4.2 Generator-based

There are two approaches in the generator-based category of cross-platform
mobile development. First one is cross-compiled approach, where the source code
is generated into native code at the compile-phase of an application. For each
platform its own version of the application is generated. Because source code is
native, the application can access specific features of device. Weakness of this
approach is that it is difficult to identify and fix the cross-compilation phase
issues. Examples of this approach are Xamarin and QTMobile. (Gaouar et al.,
2015.)

Model driven approach is second approach in the generator-based category.
In this approach mobile applications are developed by describing models, which
are abstraction of objects and observable facts from the real world. Models
describe the functionality of an application in modeling language and there are
two core categories of languages: Domain Specific Languages (DSLs) and
General Purpose Modeling Languages (GPMLs). DSLs are specific to certain
domain or context whereas GPMLs can be used in any domain or context. Unified
Modeling Language (UML) is the most usual GPML. From these models the
source code is automatically generated into the platform dependent native code.
(Gaouar et al., 2015.)

29

7 ARTIFACT: THE UI-FRAMEWORK

In this chapter I will develop the first part of the artifact – a framework that will
specify the rules and regulations for shifting from single-UI to MUI-system with
the UX and usability requirements in mind. This framework is referred as the UI-
framework later on.

I’m going to apply the framework introduced by Garret (2011) in the context
of cross-platform service and mobile application to find answers to my research
questions, especially to the second sub question. Garrett (2011, pp. 20-21)
describes the five planes of user experience, that are meant to help in building a
good web UX. These five planes are strategy, scope, structure, skeleton and
surface planes (see figure 3). The idea of Garretts model is that you start from
strategy plane and build good UX by making decisions at each plane. Each of
these decisions’ influences on upper planes until you have a ready UI at the
surface plane. This decision making should be reiterating by nature, meaning
that one can always go back to lower planes, if the situation demands so. The key
aspect is not to finish whole plane, before you can proceed to next one, but rather
not to finish work on one plane, before work on lower planes is finished.

30

FIGURE 3 The planes of Web UX (Garrett, 2011, p. 33)

The nature of web service can be functional application, information resource or,
as normally is the case, hybrid consisting some parts of the both sides. This
influences on most of the planes and that is why Garrett (2011, p. 27) splits each
layer at the middle. On the functional side the focus is put mostly on tasks. Web
service is thought to be a tool or set of tools that user uses to do one or more tasks
– for example to order shirts from ecommerce-store. On the information side the
focus point is mostly the information that the online product offers and the
meaning of that information for users. Here the most important aspect is to make
it as easy as possible for the user to find, absorb and make sense of the
information. Garrett (2011, pp. 20-28.). Next, these planes are explained in more
detail while considering the duality nature of website at the same time.

7.1 The five planes of UX explained

Strategy plane is the most abstract level of UX, yet it is the most fundamental level.
Every other plane build on top of strategy plane. The duality nature of web
doesn’t affect to this plane, so concerns are the same regardless of whether the
online product is more functional application or information resource. There are
two main focus point in this plane: user needs and product objectives. Key aspect
of good UX is to understand what the user wants from the product. Another
aspect is what the product provider wants from the product. Does he/she want

31

to make more money or spread information or what? What are the objectives for
the product? Why are we building this product? (Garrett, 2011, pp. 21, 28, 61.)

The main questions at the scope plane are following. What are we going to
make? Do the requirements implement the strategy set on previous plane? Are
the requirements feasible to implement? The strategy determined at previous
plane (user needs and product objectives) is translated into specific requirements
for the functionalities and the content, i.e. into the scope of the product. These
requirements can be for the whole product or just to one single feature or
concerning the hardware or the platform (do we need for example the camera or
gyroscopic position sensors?). On the functional side of the plane, you create the
feature set of the product: the functional requirements and specifications for the
product. Content requirements are the scope on the information side of the plane.
Here you describe the required content elements, frequency of updates and
rough size of your content. It is also important to define the type, format and
purpose of the information. For example, the purpose for frequently asked
questions (FAQ) is to offer rapid way to commonly accessed information. One
possible format for FAQ can be answer-question list and the type of the content
could text, images and videos. (Garrett, 2011, pp. 21, 29, 61-74.)

At the structure plane one defines the conceptual structure for the webpage.
Here one is concerned about the intuitive and logical navigation through the
information and content specified at the scope plane. Interaction design is on
focus at the functional side of the plane. Interaction design defines how the
system reacts to the users’ action and how the users’ mistakes are handled. At
the informational side the focus is on information architecture, which determines
the arrangement of content elements in order to enhance human understanding.
The structure of websites is mostly visualized using architecture diagrams.
(Garrett, 2011, pp. 20, 30, 86-88, 104.)

At the skeleton plane the main concern is the placement of buttons, controls,
photos and texts. There is a common component for both the functional and the
informational side of the plane: information design. At this component the
emphasis is put on the presentation of information. Interface design is the focus at
the functional side of the plane. Here one arrange interface elements so that users
are able to interact with the functionality of the system. Navigation design, on the
other hand, is the focus at the informational side of the plane. Here one
determines the set of screen elements that enables user to move within the
information architecture. (Garrett, 2011, pp. 20, 30, 108-131.)

On the surface plane one sees a series of Web pages, that consists of for
example texts, images and links. Concern on this plane is the same on both side
of the plane: to produce a finished design that pleases the senses and fulfill the
goals of other planes. This can be called as sensory design or visual design. At
this plane one thinks about matters like contrast, grid, color palettes and
typography. (Garrett, 2011, pp. 133-151.)

32

7.2 The UI-framework

The starting hypothesis for this research is that one has a web service up and
running with web UI already implemented. The main concern is the steps to be
taken in order to transform the existing web UI to native mobile UI and to
produce a cross-platform service consisting of web UI and native mobile UI. In
this chapter these steps will be introduced and explained in more detail.

The UI-framework will loosely follow Garrets five planes of UX, but instead
of starting from strategy plane I’ll start at the surface plane of existing website.
The main idea is to find strategy of web service and then build on top of that the
strategy of cross-platform service and especially strategy of mobile application.
Then one can climb the planes of UX to produce the surface of mobile application.
In order to separate web and mobile planes from each other, I have added web
or mobile suffix to the plane. For example, scope of web means the scope plane
of web service and correspondingly scope of mobile means the scope plane of
mobile application (figure 4).

FIGURE 4 Initial UI-framework

One should notice, that the UI-framework merely concerns the user interface.
Questions like who will update the data or what kind of architectural approaches
should be taken falls mostly out of the context of the UI-framework. It is assumed,
that these questions are already answered, because all data is retrieved from
existing web service.

33

7.3 Steps of the UI-framework

The UI-framework consists of 10 steps (table 1). As is the case in Garrets five
planes of user experience, each step in UI-framework also depends on the steps
taken before it. This is especially true in between web and mobile steps. Mobile
steps (6-10) will heavily lean on the documentation created in the corresponding
web steps. However, this does not mean that everything should be ready before
moving on to the next step. Moving back between steps should be rare, but
natural move when the situation demands so.

TABLE 1 The steps of UI-framework
Step The main goal Documents
1. Surface of web To familiarize the web service Sitemaps and graphical

guidelines
2. Skeleton of web To identify content elements Wireframe
3. Structure of web To find conceptual models, vocabulary

and information architecture
Visual Vocabulary
-diagram

4. Scope of web To identify the requirements for content
and functionalities

List of functionalities
and JSON-objects
modelling content
elements

5. Strategy of web To identify the reasons for the service to
exist from the aspect of users and service
providers

Written strategy

6. Strategy of mobile To define the objectives for the cross-
platform service and for the application
in special

Written strategy

7. Scope of mobile To identify the requirements for content
and functionalities

List of functionalities
with priorities and
JSON-objects modelling
content elements

8. Structure of
mobile

To define the user flow and data
structure in mobile

Visual Vocabulary
-diagram

9. Skeleton of mobile To composite the templates from
content elements

Wireframes

10. Surface of mobile To create the visual design of layouts Layouts

Surface of web is the first step to be taken and the main goal is to get to known
with the web service. One should identify the different page layouts, colors, fonts,
etc. that are used in the web service. Questions like what kind of content there
are, how images are used, how many different colors there are, etc. are asked at
this step. First documentation after this step is two lists: list of primary navigation
up to second level and list of different templates. Second documentation is simple
and general graphical guidelines. Lists gives you basic understanding of the
extent of the site and the content. Graphical guidelines answers to questions
related to graphic and are used when one creates the surface of mobile.

34

At the skeleton of web, one distinguishes the content elements of each layouts
identified in the previous step. When one starts the process of converting web UI
to cross-platform UI, one usually has some kind of idea of what part of web
service should be transformed to mobile application. Thus, it is justified to select
only some of the layouts for more detailed scrutiny, if website is very large and
has many layouts. In the first step it was necessary to go through the whole web
service, so that one can be sure not to leave any important functionality or content
outside of the application. Primary documentation of this step is wireframes of
selected layouts, where one has identified the content elements. According to
Garrett (2011, p. 128) wireframe describes all the components of a page and their
approximate position on the page. In this thesis it is assumed that these
individual components will compose multiple autonomous logical entities.
These entities are named as content elements. In most cases content elements are
full width sections of layout, but sometimes it is also possible that content
element is part of another content element. Nevertheless, from the wireframe one
should easily identify the content elements and also the components that
compose the content element itself.

At the structure of web, the conceptual model of web service is identified and
documented. It’s important to find the conceptual model of web functionalities,
so that we can preserve the same conceptual model in mobile world. For example,
in case of online store user adds and remove products from cart, not edit catalog
order form. The same must be true in the context of mobile application, so that
the consistent UX prevails and confusions are prevented. The primary
documentation of this step is diagrams drawn using Visual Vocabular created by
Garret. Visual Vocabulary was created specifically to describe the structure plane
of a website. (Garret, 2002.)

At the scope of web, the functional specifications and content requirements
are identified. With the help of Visual Vocabulary, one should be able to identify
needed functional specifications i.e. what the system actually does. For content
requirements, the UI-framework will take a slightly difference approach than
Garret describes in his framework. Because it is meant to answer research
questions of this thesis, framework is more concerned in content elements and
what kind of data each content element holds rather than who will update the
data and how often. For content requirements one should took the content
elements identified in skeleton of web and to write a description of each content
elements in JSON-format. JSON is used because it is quite largely in use in web
development and it should be quite easy to build some automation tools, that
take JSON-object and converts it for example to React component. One content
element is one JSON object with three keys: type, props and children. Type is the
name of the content element written in camel case and is obligatory for each
content element. Props are the properties and their types that content element
uses and children are the child content elements.

At the strategy of web, one should ask the same questions than in Garrets
strategy plane: What user and product owner wants? Why this web service exists?
From these answers one starts to draft the strategy of mobile. Here one should ask
and answer to questions like these: What do the service providers and users want

35

from mobile application? Why one wants to extend the service from web into
native mobile? Is the mobile UI going to be equal with the web UI or will the
mobile UI serve as a supplementary to web UI? How the data and functionalities
differ from web service in mobile application? Especially the last two questions
will help to define the configuration of cross-platform service as described in
chapter 3.2. Documentation from this step is the written strategies of web and
mobile. If strategy of web is the same as strategy of mobile, one documentation
should be enough. However, there might be cases, where it is reasonable to write
even three strategies: one for web, one for mobile and one for cross-platform
service as a whole.

At the scope of mobile, one should start with the scope of web and while
reflecting the strategy of mobile to add and remove functional specifications and
content requirements. Each functionality is given a priority: high, medium or low.
High priority means that functionality is essential in order to achieve product
objectives and users’ needs. Functionalities with medium priority are also
important in light of strategy of mobile but are harder to implement.
Functionalities with low priority are the least important in light of strategy. One
should start with high priority functionalities and iterate one’s way to low
priority functionalities in the boundaries of available resources and budget. Same
kind of supplementing and reducing should be done to content elements
specified in scope of web. In light of strategy of mobile, should this content
element be part of mobile application? Primary documentations from this step
are list of functionalities with priorities and JSON-format representation of
content elements included in mobile application.

Supplementing and reducing continues at the structure of mobile. The visual
vocabulary created in the structure of web will serve as starting point at this step.
With the strategy and scope in mind, one should transform visual vocabulary to
describe the structure of mobile. After this step, one should have a good
understanding for example about how user can navigate in mobile application
or how content is structured in mobile application.

At the skeleton of mobile, the content elements described in scope of mobile
is used to compose the actual layouts. At this step one should take into
consideration of the physical limitations of mobile screens. In practice this might
mean that one needs to revisit the previous steps – namely scope and/or
structure of mobile. For example, it might be hard to implement all the
functionalities specified in scope of mobile to narrow screen. One way to resolve
this is to add or modify content elements. Another solution might be to give a
second though to functional specifications and maybe drop some functionality
out of the scope of mobile. In either case, the final documentation of this step is
also a wireframe as in skeleton of web.

At the surface of mobile, one creates the visual design of layouts based on the
wireframes. For consisting user experience, one should follow the general
graphical guidelines created in surface of web. One should also take into
considerations the design guidelines of each mobile platform in this step. This
way the final results will remind the UI of web, but at the same time has the look
and feel of mobile platform.

36

8 ARTIFACT: MOBILE-FRAMEWORK

In this chapter I will design and develop the second part of the artifact –
classification of mobile applications and approaches to cross-platform
development. This framework is referred as mobile-framework later on in this
thesis and it consists of two parts: classification of mobile applications and
classification of cross-platform mobile application development.

The structure of this chapter is as follows. First a few issues are raised from
current classifications as described in chapter 5 and 6. After that initial
framework for classifying mobile applications is offered. Lastly, the differences
between approaches to cross-platform development is discussed.

8.1 Would the rigor framework please stand up?

First problem seems to be that in the literature the terms approach and
applications are used interchangeably. For example, when Heitkötter et al. (2013)
write about hybrid approach, they actually are describing mostly how hybrid
applications works. Also, there is not so much emphasis in the development
process between the approaches. This raises few questions. Firstly, how does the
approach differentiate from application in these classifications? Secondly, are
there other major distinctions between approaches than the type of application
they produce? Thirdly, how the development process differentiates for example
between hybrid and interpreted approaches or between interpreted and cross-
compiled approaches? Are there some technologies involved that are specific to
some approaches?

Second problem is that there are no studies about the differences between
the native application built using the interpreted approach and the native
application built using either cross-compiled or model-driven approach. In
chapter 5, the different groups for mobile applications were described and there
were only three groups. However, in chapter 6.4. when the different approaches
to cross-platform development were introduced, it comes clear that there is a

37

need for fourth group of mobile application – namely those applications, that
involve runtime environment other than browser or Webview. Delia, Galdamez,
Thomas, Corbalan and Pesado (2015) call these applications as interpreted
applications.

8.2 Four categories of mobile applications

In the classification for mobile applications I am solely interested in the outcome
i.e. the application itself regardless of how the application is made. The essential
question here is “What distinguish the applications from each other?”. I have
developed three questions that defines the nature of mobile application (table 1).
First question is how user can access to application. Does user access the
application via URL in a browser or can user download the application from App
Store or Google Play? One should also notice here, that in order to get access to
platform specific store, application needs to fulfill certain requirements, because
of the policies of Apple and Google. Second question relates to runtime
environment. Does the application run in platform specific runtime or is there
more abstract layer involved? Third question relates to the views of application.
Are they fully native UI-components?

TABLE 1 Questions for distinguishing mobile applications
Question Answers
1. How does user get access to application? Via url or via app store
2. What is the runtime environment? Webview, Javascript Core, Platform specific
3. What is the nature of components? Native or web

Answering to these questions will help you to distinguish the nature of mobile
application (table 2). If user can access application via url or if all the components
are web components, application clearly falls into web application category. On
the other hand, if all components are native components and there is no runtime
environment involved, application clearly falls into the category of native
application. If there is runtime environment involved and it is Webview,
application falls into the category of hybrid application. This also means that
components are not native components. So far, all this sound like the old and
familiar classification described in chapter 5. However, there is a new kid in the
town, namely applications that has 100% native UI components, but still includes
some kind of runtime environment other than Webview. These applications will
fall into a new category called interpreted applications.

38

TABLE 2 Categories of mobile applications
Question Web Hybrid Interpreted Native
1. How does user get access to
application?

Url App
store

App store App
store

2. What is the runtime environment? Webview Webview Javascript
VM

Platform
specific
runtime

3. What is the nature of components? Web Web Native Native

The main difference between hybrid, interpreted and native application is the
runtime environment. In purely native applications runtime environment is
platform specific. In Android it is Android Runtime (ART) and in iOS platforms
runtime is called Objective-C Runtime. On the other hand, in hybrid and web
applications runtime environment is Webview i.e. the browser. Interpreted
applications uses something called JavaScript Virtual Machine.

What is JavaScript Virtual Machine and how differs it from Webview or
from platform specific runtimes? JavaScript Virtual Machine or JavaScript Engine
is the interpreter that interprets and executes JavaScript code. JavaScript engines
are usually associated with browsers, but JavaScript engines can also be used to
run mobile applications that has nothing to do with browsers. In fact, that is the
case with interpreted applications. For example, NativeScript uses V8 JavaScript
engine to run JavaScript code in Android devices and JavaScriptCore to run
JavaScript code in iOS devices. React Native completely rely on JavaScriptCore
to communicate with native APIs regardless the device. Technical details about
the architecture of React Native applications is described in chapter 10.2.
(“JavaScript Environment”, 2018; Looper, 2015; VanToll 2015.)

Comparing to hybrid applications, that runs on Webview, interpreted
applications are much faster and smoother. Thus, I think it’s essential to
distinguish hybrid applications and interpreted applications from each other.
However, as Eskola’s (2018) study shows, the performance of React Native
applications at least in Android is poorer than in purely native Android
application. It should be noted that React Native ships three years old version of
JavaScriptCore, which is definitely one reason for slowness of Android React
Native applications (“Upgrading JSC”, 2018). However, I think because of the
interpreting nature of React Native applications, it is natural to be slower than
fully native applications. That is why, I think interpreted applications should not
be placed in the same group as native applications.

8.3 Approaches to cross-platform development

As I write in chapter 8.1. current literature uses the concepts of approaches to
cross-platform mobile development and the nature of mobile applications
interchangeably. I think one should clearly separate them from each other. In this
chapter, I’ll introduce my initial approaches to cross-platform development.

39

Because the point of interest in this thesis is native application, web and hybrid
approaches are excluded from discussion.

The main difference between the interpreted, cross-compiled and model
driven approaches are the technologies used to create the application. It is true,
that they also might produce applications of different nature as an end product,
but I don’t think that is always necessity. I see no reason why model driven
approach could not produce interpreted application. In some cases, it even might
be more justifiable to generate for example React Native code from models
instead of native code, because of competence of the developer team. Thus, the
nature of application cannot work as distinguishing element between approaches.

Technologies that each approach embrace, is on the other hand very much
distinguishing element. In interpreted approach, applications are written with
web technologies or at least with technologies that closely reminds of web
technologies. For example, styles in React Native are written in JavaScript objects,
but the syntax and properties are almost the same as in CSS. On the other hand,
cross-compiled approach uses more mainstream programming languages. For
example, Xamarin applications are written in C#. Finally, model driven approach
relies greatly on modeling languages such as UML.

One difference especially between interpreted and cross-compiled
approaches is the development speed. Because of compiling process involved in
cross-compiled approach, development speed is naturally slower than in
interpreted approach. For example, React Native has introduced hot reloading,
which helps the developer to see almost instantly the impact of code change in
application (Bigio, 2016).

40

9 DEMONSTRATION: THE UI-FRAMEWORK

Sub question 3, introduced in chapter 1.2., was how to build native mobile
application using WordPress as backend and React Native as chosen cross-
platform technology. This sub question is answered in the next two chapters.

Firstly, in this chapter the UI-framework is demonstrated with the website
of the Martha Organization (Martat in Finnish). The URL of the website is
www.martat.fi. Primary goal of the organization is to promote well-being and
quality of life in the homes by providing education about things such as food,
nutrition, home gardening and household economics (“In English”, 2019).

9.1 Surface of web

The website of Martha Organization is large-scale website both in terms of
volume and diversity. There are total of 36 pages in main navigation in two levels
and additionally four more page in helper navigation. These pages are listed in
Appendix 1 in more detail. Since the website is mainly in Finnish, I have added
short description in English after each menu item.

There are total of eight different content types and total of 13 different
layouts visible in public. I have listed the layouts in table 2 and for each layout I
have also specified what content types the layout serves.

41

TABLE 2 Different layouts and corresponding content types
Layout Content type(s)
Frontpage Page
Landing page template Page
Single page Page
Post Archive News, blogpost
Single post News, blogpost
Event Archive Event
Single event Event
Store Product
Single product Product
Recipe Archive Recipe
Single recipe Recipe
Contact Archive Contact
Single contact Contact
- Media files

The website uses two fonts: Felt Tip Woman and Brandon Grotesque. The first is
mainly used in titles and the latter is used elsewhere. The hex code of primary
color is #006bb. Font color is either #2a2a2a, #333, #313131 or white, if there is
image in the background. Images serve important role in creating the visual look
and feel of the website. They are used as background for many content elements
and there is also sitewide background texture in use.

9.2 Skeleton of web

Out of all layouts listed in the previous step, I take a closer look to the layouts of
recipe archive and single recipe. One can access the recipe layouts via
https://www.martat.fi/reseptit. In appendix 2 you can see the wireframes as
whole. Below I have summarized my findings by each layout (table 3).

TABLE 3 Content elements by layout
Archive recipe Single recipe
Header Header
Archive hero Single hero
Filters Utilities
Search results Recipe
Recipe item Ingredients
Footer Nutrients
 Footer

I identified six content elements that composes the archive recipe layout: header,
hero, filters, search results, recipe item and footer. From these header and footer
content elements are global content elements throughout the site. Recipe item

42

seems to be also an autonomous content element even though it is part of search
results content element.

I divided the single recipe layout into seven content elements: header, hero,
utilities, recipe, ingredients, nutrients and footer. From these header and footer
are the same as in archive recipe view. Hero content elements looks different in
archive and single views, so I distinguished the two with prefix: archive-hero and
single-hero content elements.

9.3 Structure of web

Selected views clearly include only one post type mentioned in step 1 – recipe. In
this step I modeled the structure of the content and functionality of layouts by
using Visual Vocabulary. I included the whole visual vocabulary document as
appendix 3.

These diagrams illustrate how user moves from archive view to single
recipe view and what kind of taxonomies and metadata is associated with recipe
post type.

9.4 Scope of web

Looking at the diagrams from previous step, I was able to write down following
functional specifications of website. First of all, user can search recipes by
keywords and/or by categories. So there needs to be some kind of search input
and checkboxes available. Secondly user can either add or remove recipe from
his/her personal list of favorite recipes. If user is not logged in, system will
redirect user to log in page. This leads to third functional requirements i.e. log in
functionality. User can navigate between archive view and single recipe view, so
system needs to have two view. User can also view comments and leave a
comment, if commenting is made available in the admin of WordPress. I have
summarized functional specification in table 4.

TABLE 4 Functional specification of web
Functionality of system NB
Log in and log out
Search by keyword
Search by categories
Add recipe to favorites Directs to log in page, if user is not logged in.
Remove recipe to favorites
Two views: archive and single recipe
List comments of single recipe
Leave a comment about single recipe

43

For content requirements I wrote documentation in JSON-format (appendix 4).
Each content element was analyzed in order to find properties of content element
and possible child components. For each property I defined what kind of data
should it hold – string, number, function or something else.

9.5 Strategy of web

This and the next chapter serve as examples of what they could look like, because
of the limits of this thesis. In real life thigs like User research and personas should
be done in this step to find out who the users of the website are and what they
really want. Also, cautious study of business goals and brand identity should be
done together with Martha organization to find out product objectives.

For the sake of example, I answer to two questions in this step: What users
want to achieve when they use recipe section in website? What Martha
organization wants to achieve with recipe section?

Users wants to find fast and easily recipes. They want to sort recipes by
season or by popularity. Users wants to see nutrients and ingredients of single
recipe and the different phases of recipe.

The website as whole was renovated to serve people of Martha organization
and citizens. It is important that the diversity of Martha organization and its
services are visible and easy to find from website. (Heikkilä, 2017.) For Martha
organization recipe section can be seen as one way to serve the people both inside
and outside of their organization. Recipes are great ways to introduce more
people to Martha organization and the services they provide. In the end, it can
be seen as a way to achieve one aspect of their primary goal i.e. promote well-
being and quality of life in the homes.

9.6 Strategy of mobile

User needs can be seen quite similar whether the platform is mobile or desktop.
However, it should be noticed here that user expect service work similarly
regardless of the platform in hand. For example, user expect to see the same
information about each recipe in mobile as the see in desktop. Because of this
mobile UI is going to contain the same or almost the same functionalities and
content than web UI.

One point in the strategy of Martha organization for year 2019 is to make
Martha activities visible and encourage people to be part of local Marthaclubs
(Heikkilä, 2018). Expanding their single-platform service to cross-platform
service can be seen to answer this aspect of strategy. Mobile application opens
more possibilities for people to be part of local Marthaclubs and thus Martha
organization can draw attention more effectively and widely.

44

9.7 Scope of mobile

In this step I looked at the functional requirements of web and decided whether
or not they should fit in the mobile application. Additionally, I will give a priority
for each specification in light of the strategy plane. Summary of functional
specifications with their priorities can be seen in table 5.

Considering the limitations of this thesis, I decided to continue only with
the specifications of high priority: search by keyword, search by categories and
two views. These functionalities are essentials in order to achieve users’ needs
and product objectives. Functionalities with medium priority are also important,
but harder to implement, so they will form the basis of next iteration of
development.

TABLE 5 Functional specification of mobile
Functionality of system Priority
Log in and log out Medium
Search by keyword High
Search by categories High
Add recipe to favorites Medium
Remove recipe to favorites Medium
Two views: archive and single recipe High
List comments of single recipe Low
Leave a comment about single recipe Low

I excluded Header and Footer content elements from the scope of mobile
application, because I am building an application dedicated to recipe section of
website. I also needed to revisit this step, when I was creating wireframes of
mobile views. I realized that I need to divide Filters content element into Filters
row and Filters modal -content elements, because of screen size limitations. Table
6 summarize selected and added content elements. They are described in more
detail in appendix 5.

TABLE 6 Content elements by layout in mobile
Archive recipe Single recipe
Archive hero Single hero
Filters row Recipe
Filters modal Ingredients
Taxonomy column Nutrients
Search results
Recipe item

45

9.8 Structure of mobile

The metadata and taxonomies associated with recipe remains the same in
structure of mobile than in structure of web. I also reserve the same conceptual
model and vocabulary than in web, so that the user experience is possible
whether user is using web or mobile service.

Flow chart in structure of web needed some adjustment, because of the
decisions I made in the last step. Final user flow chart is simpler than equivalent
in web (figure 5). See appendix 6 for the whole visual vocabulary of mobile.

FIGURE 5 Flow of mobile application

9.9 Skeleton of mobile

In this step I took the mobile content elements decided in scope of mobile and
roughly composed archive and single recipe views from those content elements
(appendix 7). Because of physical limitations of mobile screen, I decided to revisit
scope of mobile plane and rethink content elements. I added Filter button, which
user can press to open modal with taxonomy filters.

In addition, I excluded the pagination component from search results
content element in favor of infinite scroll. This functionality was not
implemented in the final product though, because of limitations of this thesis. I
also excluded sorting column content element at this step to keep things simple
enough.

46

9.10 Surface of mobile

I added blue header with the logo of Martha Organization to archive recipe view
to keep the brand look and feel. Apple Human Interface Guidelines (Apple, 2018)
suggest that one should not display logo throughout the app, so archive recipe
view was the only place where I included the logo.

To create consistent user experience, I used the same colors that were
defined in surface of web plane. I used the same font family in layout titles as is
used in website. Background images for hero components is also the same as in
website. Final layouts from actual application is seen in figure 6.

FIGURE 6 Surface of mobile

47

10 DEMONSTRATION: MOBILE-FRAMEWORK

The technical details about the demonstration application is reported in this
chapter. First subchapter contains the information about WordPress as backend
in general and specifically relating to website of Martha organization. Second
subchapter takes closer look on the architecture of React Native application and
specifically the demonstration application.

10.1 WordPress as backend for the application

10.1.1 In general

WordPress is open source content management system, that is built on PHP and
MySQL (WordPress, 2018a). WordPress websites can be divided into three parts:
WordPress Core, plugins and themes. WordPress Core is the official WordPress
itself. Plugins can be used to modify the functionality of WordPress Core and
theme is the public UI of the website i.e. how the website looks like. The line
between a theme and a plugin can be sometimes shady since WordPress doesn’t
force to distinguish functionalities with look and feel. That is why there can be
some functionalities in the theme or plugins can alter how site looks like.

Developers can flexibly modify WordPress Core via hooks, which are ways
for programmers to hook into the execution of WordPress at a specific time in
execution process. This way programmers can either execute own custom code
or to alter the values of variables that WordPress will use later on the execution.

Content architecture of WordPress sites can be quite simple even though
plugins can make it more complex. All the content (for example pages and images)
is saved as posts. Post has always a post type, title and post content and all posts
can be found in wp_post table in the database. Posts can have metadata attached
to it, and metadata is saved to wp_postmeta table as one metadata per row. Each
metadata has post id for connecting the metadata with the post. Posts can also
have taxonomies and programmer can create his/her own custom taxonomies

48

also. Taxonomies and terms are saved in four different tables. Table 7 will
summarize the tables of WordPress database, which are important in the scope
of this thesis. (WordPress, 2018b.)

TABLE 7 The main database tables of WordPress
Table Description
wp_post All content (pages, images, etc.)
wp_postmeta Metadata of single post
wp_term All terms of categories, tags and custom

taxonomies
wp_termmeta Metadata of single term
wp_term_taxonomy Attach each term in wp_term to single

taxonomy
wp_term_relationships Attach each term in wp_term to posts in

wp_post

By default, all the content in the edit view of post is saved in single column in
wp_post -table. With plugins, like Advanced Custom Field, it is possible to easily
create rich UI for users to save the content data in wp_postmeta. For example, in
figure 7, the values of title and background color of hero is saved individually to
database as two separate metadata.

FIGURE 7 Example view of post edit view with Advanced Custom Fields (Advanced Custom
Fields, 2018).

49

Starting from version 4.7. WordPress Core has come with the built-in Rest API.
This API provides endpoints for developers to easily interact with sites even
outside of the context of WordPress. This communication happens via JSON
objects. WordPress has a few built-in endpoints for fetching for example pages
or some individual post. Developers can create own custom endpoints, if the
built-in endpoints are not enough. (WordPress, 2018c.)

10.1.2 Martat website as backend

The content of Martat website is saved to WordPress in a custom post type called
recipe. Taxonomies of this post type are named in appendix 3, which also lists
metadata of single recipe. However, appendix 3 was made by observing the
front-end of the website. In database level only ingredients, nutrients, portion
size and attached image are actually metadata of recipe. Has gluten -value is
generated from whether or not recipe has certain term in a custom taxonomy. Is
favorite -value is generated from metadata relating to current logged in user, but
that is out of the scope of this thesis.

Filtering the recipes in web UI is done with FacetWP -plugin. Filtered
recipes are fetched from WordPress database via AJAX-call. FacetWP also
includes own Rest API Endpoint that can be used to access the raw data of
FacetWP. (FacetWP, 2018.)

In my demonstration app the communication between the app and
WordPress happens via two custom Rest API endpoint (figure 8). First endpoint
is for fetching all recipes or filtered recipes. Second endpoint is for fetching the
necessary data of a single recipe.

FIGURE 8 Data flow between mobile application and WordPress.

50

The first endpoint (appendix 8a) is a sort of wrapper for API endpoint of FacetWP
-plugin, since I wanted to use the same filtering engine in mobile that is used in
the web. This way the user experience would be congruent regardless of the
platform. Unfortunately, FacetWP only returns the post ids of results and my
application needs titles and URL of recipe images besides the post ids. Because
of this I wrote own Rest API endpoint that returns the data, that the application
needed, in a format, that the application is ready to consume.

What is happening under the hood, is that at application start or when user
filters recipes, application does single HTTP GET -request to /wp-
json/app/v1/getFilterdRecipes -endpoint with filtering terms as optional query
parameters. After calling the Rest API endpoint of FacetWP, the missing data is
fetched by using functions of WordPress Core like get_the_title() or has_term().

The final response message is JSON object containing three items: results,
facets and pager. Results is an array of object each containing post id, title, url of
recipe image and gluten information. Facets is object containing every selected
filtering option and is empty, if user has not done any selection in the app. Pager
is object containing pagination information. Because of the scope of this thesis, I
didn’t built pagination to my application.

Appendix 8b demonstrates the example answer from getFilterdRecipes
endpoint in a situation where user wants to view all vegetarian cuisines that
doesn’t include milk. For simplicity sakes, I have included only a few recipe
results.

The second custom endpoint is a lot simpler. It is accessible via “/wp-
json/app/v1/getRecipe/ID” -path, where ID is the post id of recipe. This
endpoint returns the necessary data from single recipe like ingredients or portion
size. The code and the return messages of this endpoint are described in detail in
Appendix 9.

10.2 React Native

10.2.1 Architecture and development of React Native application

As I stated in chapter 8.2 React Native applications are not native in a sense that
they run inside of JavaScript Virtual Machine, namely JavaScriptCore
(“JavaScript Environment”, 2018). On the other hand, React Native applications
are native applications in a sense that all views can be purely native. How is this
accomplished under the hood?

React Native applications take benefit of at least three separate threads:
Main thread, JavaScript thread and Shadow thread (figure 9). Main thread is
responsible for rendering the UI and listening user interaction like touch events
and scrolling. JavaScript thread is the place where all the business logic of
application happens i.e. where all the JavaScript code runs. Schrock (2016) calls
shadow thread as layout thread, but regardless of the name, its responsibility is
to calculate the layout and the position of each component in the screen. Besides

51

these threads there can be multiple native module threads for custom native
modules, but these are out of the scope of this thesis. (Parashuram, 2018; Schrock,
2016; Zagallo, 2016; Facebook Inc., 2018a).

FIGURE 9 Main threads in React Native applications (Konicek, 2015)

The communication between native and JavaScript happens via something called
bridges, which are asynchronous, batched and serialized (figure 10).
Asyncronous means that neither JavaScript thread nor the main thread wait for
the answer, i.e. the thread is not never blocked. This means for example, that user
can continue scrolling the screen, after he/she has pressed a button and
JavaScript thread is still doing work. Batched and serialized bridge means that
all messages between native and JavaScript is bind together and serialized.
(Konicek, 2015; Kotliarskyi, 2015).

FIGURE 10 Communication between native and JavaScript in React Native applications
(Konicek, 2015)

React Native applications are composed of multiple components, which can be
written using syntax extension to JavaScript invited by Facebook. This syntax

52

extension is called JSX and it is transpiled to standard JavaScript during the
bundling process. (“Draft: JSX Specification”, 2014; “Introducing JSX”, 2018).
There are multiple built-in JSX-components, which will render to native
components in the end. React Native uses View Managers to map JSX-component
straight to platform specific equivalent. For example, one of the most
fundamental components in any mobile application is view-component and table
8 summarizes how it will be mapped in each platform. (Facebook Inc., 2018b).

TABLE 8 JSX-component mapping to platform equivalent (Facebook Inc., 2018b)
JSX iOS Android
<View /> UIView android.view

Most of the React Native code can be shared between platforms, but there are
ways to write platform specific components. One can even write own custom
native component in Objective-C or Java, if the built-in components are not
enough. (Facebook Inc., 2018c; Facebook Inc., 2018d).

React Native component can be styled with special JavaScript object called
StyleSheet. This is an abstraction bundled with React Native package and enables
developers to style components with CSS-like syntax. For example, font size can
be changed in CSS with font-size and in React Native with fontSize. (Facebook
Inc., 2018e).

One of the biggest advantages in React Native development compared to
native development is how fast the code change is reflected in the application.
This happens because of features like live reload and hot reload. Hot reload is
especially useful, since it keeps the application state through reloads. This means
that all the user interactions like clicking a button or changing a view are still
there even though the code has changed. (Facebook Inc., 2018f).

The developing with React Native is very similar to developing with React.
Concepts like state, component and props works the same way in both
frameworks. State is the place to store data, that is going to change. State can live
in a level of components, but in a bigger application it is recommend that state
lives in the application level. Props are properties of components that remains
the same throughout the lifecycle of a component. Props are also set in a parent
component. (Facebook Inc., 2018g). Many JavaScript libraries that can be used in
React works also in React Native.

10.2.2 Martat application

I used third party JavaScript library called Ignite CLI as starting point for my
application. Ignite offers an easy and fast way to start writing the application
code with the current best practices and solutions built-in (Infinite Red, 2018).

Ignite boilerplate includes multiple JavaScript libraries for helping and
accelerating the development process. It is not in the scope of this thesis to go

53

through all these libraries, but I will introduce the main ones, that can be divided
into two groups.

In the first group are the JavaScript libraries that helps to create the UI of
application (table 9). I used React Native Linear Gradient library to create dark
linear gradient on top of images so that text is more visible regardless of how
light the image is (see figure 6). React Native Modal library was used to create
Modal view which contains all the filtering options. React Native Vector Icons
library was used to easily include high quality icons, like heart icon. Native Base
library was used to include some ready cross-platform components like search
bar of archive view.

TABLE 9 Main JavaScript third party libraries: UI-components
Folder Description
React Native Linear Gradient Linear gradient on top of images
React Native Modal Modal for filtering options
React Native Vector Icons High quality icons
Native Base Ready to use cross-platform components

In the second group are the JavaScript libraries that helps to manage the data and
the state of application (table 10). Redux is obviously the main JavaScript library
in this group. It is designed to manage the state of complex applications. React
Navigation is also essential JavaScript library, since it is used to change the screen
i.e. moving between different views of application. All other libraries in second
group are helper libraries for these two. Since the navigation data (i.e. what
screen user is viewing) is also stored in the state of application, React Navigation
Redux Helpers is needed, because otherwise navigation will not work with
Redux. I used Redux Saga to help with asynchronous things like fetching data
from WordPress Rest API. Finally, Redux Persist library helps to persist the
current state of application between instance of use. For example, if user has
opened the details of single recipe and leaves the application, Redux Persist
makes it possible that the same view is opened when application is next time
started.

TABLE 10 Main JavaScript third party libraries: managing the data and the state
Folder Description
Redux Most of the components
Redux Saga Full screen components
React Navigation Image files
Redux Persist Components relating preserving

application current navigation and data
React Navigation Redux Helpers Integrates React Navigation with Redux

Ignite boilerplate also includes thoughtful structure of files and folders (table 11).
Each component is written in a single file and put inside of Components-folder.

54

Containers-folder includes the main views of application like view for all recipes
and view for single recipe. The files relating specially to navigating between these
two views are located in Navigations-folder. All the images used in application,
is put inside of Images-folder. Redux-folder includes all files that relates to
handling the Redux Store. Files that fetch the recipes from WordPress Rest API
is put inside of Sagas-folder.

TABLE 11 Simplified version of folder structure of Martat-application
Folder Description
Component Most of the components
Containers Full screen components
Images Image files
Navigation Components relating to navigation
Redux Configuration files for Redux
Sagas Configuration files for Sagas

55

11 EVALUATION

The sub questions 1 and 2, introduced in chapter 1.2, are answered in this chapter
in the form of the fifth activity (evaluation of artifact) of design science process
model.

Evaluation is divided into two section, which answers to different sub
questions. First the sub question 1 is answered in the chapter 11.1 by evaluating
the UI-framework. Sub question 2 is answered in chapter 11.2, where the
evaluation of the mobile application framework takes place.

11.1 Evaluation of the UI-framework

The UI-framework is evaluated in this chapter. The framework introduced by
Wäljas et al. (2010) and explained in chapter 4.2. is used as evaluation criteria.
The UI-framework is evaluated by looking the three elements of cross-platform
service UX. The point of interest here is how well the UI-framework directs to
build a system where these elements are fulfilled. The following questions are
asked:

1. Does the UI-framework lead to a service that is fit for cross-platform
tasks?

2. Does the UI-framework lead to a service where interactions and
content flows?

3. Does the UI-framework lead to a service where users perceive
coherency?

These questions are answered next.

56

11.1.1 Fit for cross-platform tasks?

The first element of good cross-platform service UX is that system is fit for cross-
platform tasks. In ideal situation individual platforms serve the functionalities
and data which user expects to get from that platform.

In the UI-framework strategy of mobile and scope of mobile -steps are
important in order to produce a service that is fit for cross-platform tasks.
Decisions that are made in these steps will affect the general structure of the
cross-platform service. Especially the strategy of mobile is essential since scope
of mobile will lean on the decisions made in this step. Functionalities will make
their way to final application based on the priorities that are given according to
strategy of mobile. That been said, I don’t think the strategy of mobile will be
enough, since the questions asked in this step will not offer clear answers to
questions related to structure of whole cross-platform service. For examples
questions like how users allocate roles between system platforms needs to be
addressed more explicitly. If user allocate roles more situation-based that means
that almost every functionality identified in scope of web needs to be included in
scope of mobile. Or at least we should be really thoughtful of excluding
functionalities from the mobile application.

For example, the demonstration application will break too much the
principle of distribution of functionality. Comments are not very wide used in
the website, so it makes now harm to leave them outside of the scope of the
application. On the other hand, the functionalities with medium priority are quite
essential. For example, if user cannot see his/her favorite recipes, he/she will
automatically think that the user experience in cross-platform service is bad. This
is why functionalities with medium priority should be included in mobile
application.

Another critical issue that should be mentioned here, is that the
functionality of mobile application is quite dependent on the availability of
website. If website is down or mobile application cannot access it for some other
reason, application is quite useless. All data is fetched from the website and very
little is saved to the own memory of the application. This is an issue that the UI-
framework doesn’t actually address at all. Libraries like Redux Persist can be
used to help in these kinds of situations, but the responsibility relies solely on the
shoulders of developers. It would be beneficial if these kinds of questions are
asked and answered in the UI-framework.

11.1.2 Does interactions and content flows?

The second element of good cross-platform service UX is that interaction with
and across UIs are considered as fluent and connected. In ideal system user can
start one task on one UI and continue it with another UI without needing
explicitly think about the UI in hand.

In the demonstration application this is not so significant since there are
only a few functionalities included in the application. With the functionalities of

57

medium priorities this will come more significant. For example, system needs to
handle the use case where user adds one recipe as favorite with web UI, goes to
kitchen to cook and wants to see the information of that favorite recipe on the
mobile UI. How the information of favorite recipes is then fetched from
WordPress? When application starts? When user clicks some button? The UI-
framework leaves us empty with these kinds of questions.

One should notice, that the UI-framework will direct developer to recognize
different tasks in structure of web and scope of web -steps. However, the UI-
framework does not explicitly address how these tasks are handled in the context
of cross-platform service.

11.1.3 Do users perceive coherency?

The third element of good cross-platform service UX is that users see consistency
and coherency in the whole cross-platform service. For example, same icons are
used to indicate the same data or functionality.

The first step in the UI-framework (surface of web) will embrace issues
relating to perceptual consistency. The design guidelines are created by
observing the website and identifying font families and main colors. This will be
crucial when one forms the surface of mobile. It is easy to pick up the colors and
font families from design guidelines and thus outcome the same look and feel
than in web UI.

The UI-framework does not take into account very explicitly the semantic
consistency. From the wireframes and content elements in skeleton of web one
can find the icons and terminology to use in mobile application. One of the main
goals in structure of web is to find vocabulary, but Visual Vocabulary -diagram
seems not to be the best way to represent this vocabulary.

Syntactic consistency is also something where the UI-framework is not so
clear. For example, in the demonstration application the navigation between
archive and single recipe views happens the same way both in web UI and mobile
UI i.e. clicking the recipe image. One can ask was this because of the explicit
decision that I made in some step or was it more because of coincidence?
Framework does not actually enforce to keep the same navigation logic that is
used in web. On the other hand, listing content elements and their attributes will
help to replicate the same navigation patterns. For example, in demonstration I
have identified RecipeItem content element that has onClick property, which will
do the navigation (appendix 4). The same RecipeItem content element is also
included in scope of mobile and has onPress property, which will do the
navigation (appendix 5).

11.1.4 Conclusions

After critical evaluation, it is clear that the UI-framework needs some refactoring
and clarifications.

58

Biggest change would be to add another step between strategy of web and
strategy of mobile, namely strategy of cross-platform service. This would
emphasize more that we are actually building a cross-platform service and not
just distinct Uis for web and mobile. Three questions should be asked in this step.
First question relates to how user allocate roles between Uis. Does users do task-
based or situation-based role allocation? Understanding this will have a huge
impact on later steps. For example, it will affect to which functionalities needs to
be included in mobile application. Second question would relate to functional
modularity. How should the cross-platform service react when website is
unreachable? Should, for example, some data be saved to mobile application?
Third question relates to fluency of content and task migration. Should system
enable moving between different platforms and how will it do it? When
answering to these questions in strategy of cross-platform service, it will be easier
to include or to add necessary functionalities in scope of mobile.

I also noted that Visual Vocabulary does not enable to write the needed
documentation for structure of web -step. One should add some kind of written
vocabulary as document for structure of web. This way one can make sure, that
the same terminology is used both in web UI and mobile UI.

Reflection part should also be added to surface of mobile -step. The
following questions should be asked: Is the design of mobile in line with strategy
of cross-platform service and strategy of mobile? Is the design of mobile coherent
with surface of web in terms of icons, style and functionality? It would help if in
surface of web -step one would have described the visual design of website in
more elaborately. For example, using some sort of design language system.

One thing that the UI-framework does not take into account is the user
experience in the platform itself. Is the application in line with the design
guidelines defined by the platform owner? Failing to follow these guidelines will
results in poor UX even though the cross-platform service UX is considered good.
For example, if in Android devices the back-button works differently in the
application than in rest of the platform, UX is perceived to be poor. In worst case
scenario application never make it to the App Store, because application fails to
follow design guidelines.

11.2 Evaluation of mobile-framework

The mobile-framework is evaluated in this chapter. First the classification of
mobile applications is evaluated. Secondly the classification of cross-platform
mobile application development is evaluated in light of Nunkessers (2018) recent
study on mobile application development.

59

11.2.1 Classification of mobile applications

Based on the demonstration application, the questions that was introduced in
chapter 8.2 for classifying mobile applications seems to work quite well. As stated
in chapter 10.2.1 the code written in React Native is interpreted in JavaScript
Virtual Machine during runtime, but every UI-element is rendered as native UI
element.

In React Native applications there are certain performance issues compared
to native applications. These issues emerge especially with long lists and
animations and are caused mainly because of asynchronous bridge. The coming
refactoring of React Native architecture might fix these issues, but it would be a
good idea to somehow recognize the differences in performance in mobile-
framework. (Parashuram, 2018).

Frameworks like Fuse will question the reliability of classifications in
mobile-framework for both applications and cross-platform development
approaches. Unlike React Native, Fuse uses JavaScript only for application logic
and UI components are rendered from a purely native code. Fuse applications
would belong to native category, if you only look at the UI components. However,
there is still JavaScript Virtual Machine and runtime interpretation involved,
which would make it to fall into interpreted category of mobile-framework. Also,
the UX markup, the language used for creating UI components when developing
with Fuse, is not web technology and does not even look like a web technology
as is the case with JSX in React Native. (Pedersen, 2016).

In Mobile-framework it is defined that Native applications have Platform
specific runtime. This classification would need adjustments especially
concerning native applications in Android. According Nunkesser (2018) strict
definition of native Android application is, that is it written in C/C++ with
Android Native Development Kit (NDK). Also, as Ohrt and Turau (2012) address,
XCode for iOS is compiled to binary code while Android SDK creates Dalvik
bytecode from Java code. This would lead to distich meaning for native
application depending on which platform is in question.

11.2.2 Classification of cross-platform development approaches

In the second part of mobile-framework there were two main concepts to concern:
technologies used in development and the speed of development.

Nunkesser (2018) follows this same line of thought that technology used in
development process is the most distinguishing factor between approaches.
However, Nunkesser offers completely different taxonomy for classification. He
divides development approaches into three main categories: endemic, pandemic
and ecdemic. These three Greek words could be translated in this context as
“within platform”, “all platforms” and “out platform”. Next these three
categories are explained in detail and reflected to the categories of mobile-
framework.

60

Endemic applications are created with platform specific SDKs. In mobile-
framework, this kind of development approach is not taken into consideration,
since this would mean two different codebases: Java for Android and Objective-
C for iOS. Pandemic applications are ones created with technologies, that are
supported by every major mobile platform. Pandemic applications can be
divided into four subcategories: web app, hybrid web app, hybrid bridged app
and system language app. Web app and hybrid web app would correspond with
web and hybrid approaches in more traditional classification are thus excluded
from mobile-framework, since they do not produce native applications.
Applications written in React Native are hybrid bridged applications since they use
a bridge from JavaScript to endemic (platform specific) language. Last
subcategory of pandemic applications is system language app, which are written
in C/C++. Ecdemic applications would be something that is written in a language
that is not natively supported by the platform. As seen in table 12, mobile-
framework does not take into account the case with System language app.
(Nunkesser, 2018.)

TABLE 12 How Nunkessers taxonomy correspond with the taxonomy of mobile-framework?
Nunkesser Mobile-framework
Hybrid Bridged App Interpreted approach
System Language App Doesn’t take into account
Foreign language app Cross-compiled and model drive

approaches

More research needs to be done concerning the approaches of cross-platform
mobile development. One interesting field would be to create more precise meter
for distinguishing approaches in terms of developer experience and technical
possibilities. For example, things like code sharing, hardware accessibility, ability
to extend with native code, debugging experience, compiling experience, code
completion and maintenance should be considered here. Partly this work has
been done by Nunkersser (2018) and Ohrt and Turau (2012), but complete meter
is yet to be done.

61

12 DISCUSSION

This chapter answers to the research question of this thesis, which was “Under
which conditions can you build native mobile applications using cross-platform
technologies and Web CMS as a backend and how to do it using React Native
and WordPress”.

12.1 Limitations of backend

The conditions and limitations that arises from WordPress are specified in this
chapter. Observations are mostly specific to WordPress but can be generalized to
similar content management systems.

First requirement is that data needs to be saved in structural format in
database. In WordPress this means metadata instead of post content. This way
data can be easily accessed via Rest API. Given the popularity of different visual
page builder plugins in WordPress ecosystem, this will be problematic in many
WordPress sites. This is because most page builder plugins compromise the
separation of data and presentation. They save the content to one post_content
column in database and thus data will be muddled with visual presentation
markup.

Second requirement concerns the structure of content in backend. Whether
or not content is structured logically has a huge impact on how easy it is to use
the content outside of the context of CMS. For example, in WordPress each logical
unit of content should be represented in corresponding post type or applicable
taxonomy or metadata. This will also help in surface of web -step, since the
extend and the structure of website will be more easily recognized when content
is served in structured form.

Third requirement is quite obvious. There must be some kind of way to use
the data outside of CMS. Mostly this means possibilities to write your own
custom endpoints to Rest API. This is also the case with WordPress. Even though
the Rest API is part of WordPress Core, the built-in endpoints are not enough for
serious and complex applications. Handling the HTTP requests and responses in

62

mobile application are much easier if you get only the data you need from the
endpoints.

12.2 Limitations of mobile application

In this chapter the conditions that arises from React Native are specified. Since
the demonstration application is small both in size and features, this chapter
mostly relies on the experiences of Airbnb and Udacity. Both companies used
React Native seriously for two years, but then decided to remove it from their
codebase. (Peal, 2018a, Ebel, 2018). Even though arisen issues are React Native
specific, they can, at least in some extend, be generalized to other cross-platform
mobile development framework like NativeScript.

First limitations might sound too obvious, but it’s worth to mention. Cross-
platform development solutions like React Native has more benefit, when
developing a real cross-platform mobile application. Meaning that application
should have only few platform specific features and desired behavior should be
somewhat the same in all platforms. (Ebel, 2018.)

Second limitations relate to how easy it is to ensure native feel in each
platform. According to Majchrzak, Biørn-Hansen and Grønli (2017) React Native
components are mostly unstyled and leaves the responsiblity to developer to
deliver consistent user experience within mobile platform. As Ebel (2018) notices
it is not hard to deliver native feel, but that is something that developer needs to
be aware. Another issue would be that even though there are thousands of NPM
packages available and meant to ease developing process, many of them are
missing the cross-platform support (Peal, 2018a).

Third limitations is more Android specific issue than actually React Native
specific issue. Ebel (2018) notices that support for wide variety of Android device
can be overwhelming. Animations that run smoothly on one Android device, can
be rough in another Android device.

React Native is still quite immature and is changing rapidly. This results to
issues like inaccuracies in documentation or breaking updates on React Native
itself. Since React Native applications uses different JavaScriptCore depending
on the platform where code is executed, recognizing and debugging issues are
sometimes harder. (Peal, 2018a, Ebel, 2018.)

Last condition relates to the organizational structure of company and
abilities of team of developers to adopt React Native. React Native suits best for
situation where the team is building a new application from scratch. The troubles
that both Airbnb and Udacity encountered originated mostly from the fact that
they already had a mobile application written in Objective-C and Java. As
VanToll (2018) states, integrating frameworks like React Native or NativeScript
to existing applications can be a laborious and complex. Already set workflows
and developer teams can raise organizational challenges when converting
platform specific teams into more cross-platform. Things like team collaboration,
testing and debugging needs to be addressed. For example, one change in Java
code for Android application, might mean that also React Native code needs to

63

be changed. This means, that iOS application needs to be tested in order to make
sure that nothing is broken. Also, if codebase is much fragmented to Java,
Objective-C and React Native code, one misses the benefit of cross-platform
development. (Peal, 2018b, Ebel, 2018).

12.3 Conclusion and future research options

One of the biggest benefit of technologies like React Native is the code share
between mobile platforms. Because of the limitations of this thesis, only the iOS-
version of application was delivered. Nevertheless, the experiences of Airbnb are
promising. They were able to achieve 95-100% code share between Android and
iOS in most features that were written in React Native. (Peal, 2018a). Because of
that, I would say that cross-platform mobile application development is best suit
for situation where you are actually going to build almost similar application in
both mobile platforms. On the other hand, if you need different functionalities or
property sets in Android than in iOS, it might be a good idea to look for Java or
Objective-C.

Since most cross-platform technologies relies so heavily on web
technologies, they are especially useful in a situation where you already have a
group of developers that are familiar for example with JavaScript. Even better, if
you could use the same team that build the website in the first place, since they
are already familiar with the content and technical details of the website.

The new query languages for APIs like GraphQL are interesting alternatives
for Rest APIs and are coming to CMS like WordPress (“GraphQL”, 2019;
“GraphQL API for WordPress”, 2019). GraphQL enables developers to fetch only
the data that is needed and nothing more and is gaining attention and popularity
especially in the community of React developers. How much this will affect the
developers in WordPress community is yet to be seen but is something that
definitely should be studied in the coming years. It would be interesting to write
the same demonstration application using WP GraphQL and compare the
differences.

Peal (2018a) raises the performance issues in React Native application with
long lists. This issue did not emerge in my demonstration application since there
are only a few recipes. It would have emerged, if there would be hundreds of
recipes to be shown in one list. That is why I would suggest that at least React
Native is best suited for applications that doesn’t contain long lists with
hundreds of items. According to VanToll (2018) the case would be better in
NativeScript. This performance issue will most likely be solved in the upcoming
rewrite of React Native architecture (Parashuram, 2018).

As conclusion I would suggest that cross-platform development solutions
are beneficial for small and middle size businesses. One should also seek
synergistic advantages by using the same kind of technology in both mobile and
web platforms. If website is created with React, it would be beneficial to use React
Native for mobile development. However more study needs to be done relating
to this kind of cross-platform development. It would be interesting to see how

64

great percent of the code could be shared between web, iOS and Android
applications, if web UI is developed with React.

65

BIBLIOGRAPHY

Advanced Custom Fields. Advanced Custom Fields for WordPress Developers.
Accessed December 2, 2018 https://www.advancedcustomfields.com/

Angulo, E. & Ferre, X. (2014). A Case Study on Cross-Platform Development
Frameworks for Mobile Applications and UX. In Proceedings of the XV
International Conference on Human Computer Interaction (pp. 27:1-27:8). New
York, NY, USA: ACM.

Apple. Branding - Visual Design - iOS - Human Interface Guidelines - Apple
Developer. Accessed September 26, 2018
https://developer.apple.com/design/human-interface-
guidelines/ios/visual-design/branding/

Bigio, M. (2016). Introducing Hot Reload. Accessed May 18, 2019
https://facebook.github.io/react-native/blog/2016/03/24/introducing-
hot-reloading

Bishop, J. & Horspool, N. (2006). Cross-Platform Development: Software that
Lasts. Computer, 39(10), 26-35.

Boudreau, K. & Lakhani, K. (2009). How to Manage Outside Innovation. MIT
Sloan Management Review, 50(4), 69-76.
http://search.proquest.com/docview/224962173?accountid=11774

Charland, A. & Leroux, B. (2011). Mobile Application Development: Web vs.
Native. Commun ACM, 54(5), 49-53.
http://doi.acm.org/10.1145/1941487.1941504

Dalmasso, I., Datta, S. K., Bonnet, C. & Nikaein, N. (2013). Survey, comparison
and evaluation of cross platform mobile application development tools. In
Wireless Communications and Mobile Computing Conference (IWCMC), 2013 9th
International (pp. 323-328).

Delia, L., Galdamez, N., Thomas, P., Corbalan, L. & Pesado, P. (2015). Multi-
platform mobile application development analysis. In Research Challenges in
Information Science (RCIS), 2015 IEEE 9th International Conference on (pp. 181-
186).

Draft: JSX Specification. (2014). Accessed November 30, 2018
https://facebook.github.io/jsx/.

Ebel, N. (July 3, 2018). React Native: A retrospective from the mobile-engineering
team at Udacity. Accessed February 22, 2019
https://engineering.udacity.com/react-native-a-retrospective-from-the-
mobile-engineering-team-at-udacity-89975d6a8102

Eskola, R. (2018). React Native Performance Evaluation. Master thesis. Aalto
University.

Facebook Inc. (2018a). Performance. Accessed November 30, 2018
https://facebook.github.io/react-native/docs/performance.html

Facebook Inc. (2018b). View. Accessed November 30, 2018
https://facebook.github.io/react-native/docs/view.

Facebook Inc. (2018c). Platform Specific Code. Accessed December 1, 2018
http://facebook.github.io/react-native/docs/platform-specific-code

66

Facebook Inc. (2018d). Native Modules. Accessed December 1, 2018
http://facebook.github.io/react-native/docs/native-modules-ios

Facebook Inc. (2018e). StyleSheet. Accessed December 1, 2018
https://facebook.github.io/react-native/docs/stylesheet

Facebook Inc. (2018f). Debugging. Accessed December 1, 2018
https://facebook.github.io/react-native/docs/debugging

Facebook Inc. (2018g). State. Accessed December 2, 2018
https://facebook.github.io/react-native/docs/state

FacetWP. Introducing the FacetWP REST API. Accessed December 2, 2018
https://facetwp.com/introducing-the-facetwp-rest-api/

Galitz, W. O. (2007). The Essential Guide to User Interface Design: An
Introduction to GUI Design Principles and Techniques. Indianapolis, IN:
Wiley.

Gaouar, L., Benamar, A. & Bendimerad, F. T. (2015). Model Driven Approaches
to Cross Platform Mobile Development. In Proceedings of the International
Conference on Intelligent Information Processing, Security and Advanced
Communication (pp. 19:1-19:5). New York, NY, USA: ACM.

Garret, J. J. (2002). A visual vocabulary for describing information architecture
and interaction design. Accessed September 26, 2018
http://www.jjg.net/ia/visvocab/

Garret, J. J. (2011). The Elements of User Experience: User-Centered Design for
the Web and Beyond, Second Edition. (2nd ed). Berkely: New Riders.

Ghazawneh, A. & Henfridsson, O. (2013). Balancing platform control and
external contribution in third-party development: the boundary resources
model. Information Systems Journal, 23(2), 173-192.

Gould, J. (2015). WP REST API Part 1: Creating a Mobile App with WP-API and
React Native. Accessed March 16, 2016
https://deliciousbrains.com/creating-mobile-app-wp-api-react-native/

GraphQL. Accessed May 20, 2019 https://graphql.org/
GraphQL API for WordPress. Accessed May 20, 2019

https://www.wpgraphql.com/
Grönroos, C. (2007). Service management and marketing: customer management

in service competition. (3rd ed). Chichester: Wiley.
Hassenzahl, M. & Tractinsky, N. (2006). User experience - a research agenda.

Behaviour & Information Technology, 25(2), 91-97.
http://dx.doi.org/10.1080/01449290500330331

Heikkilä, M. (2017). Vaikuttamisen kärkenä kestävä arki. Accessed May 18, 2019
https://www.martat.fi/wp-content/uploads/2018/04/Martat-
vuosikertomus-2017.pdf

Heikkilä, M. (2018). Marttaliiton toimintasuunnitelma 2019. Accessed May 18,
2019 https://www.martat.fi/wp-content/uploads/2018/04/Marttaliiton-
toimintasuunnitelma-2019-diat.pdf

Heitkötter, H., Hanschke, S. & Majchrzak, T. (2013). Evaluating Cross-Platform
Development Approaches for Mobile Applications. 140120-138.
http://dx.doi.org/10.1007/978-3-642-36608-6_8

67

Hevner, A. R., March, S. T., Park, J. & Ram, S. (2004). Design Science in
Information Systems Research. MIS Q., 28(1), 75-105.
http://dl.acm.org/citation.cfm?id=2017212.2017217

Hiltunen, M., Laukka, M. & Luomala, J. (2002). Mobile user experience. Helsinki:
Edita, IT Press.

IDC Research. Smartphone OS Market Share, 2015 Q2. Accessed May 19, 2019
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

In English. Accessed May 18, 2019 https://www.martat.fi/in-english/
Infinite Red. (2018). Ignite CLI is Here. Accessed December 2, 2018

https://infinite.red/ignite
Introducing JSX. Accessed November 30, 2018

https://reactjs.org/docs/introducing-jsx.html
JavaScript Environment. Accessed September 23, 2018

https://facebook.github.io/react-native/docs/javascript-environment.
Jokela, T., Iivari, N., Matero, J. & Karukka, M. (2003). The Standard of User-

centered Design and the Standard Definition of Usability: Analyzing ISO
13407 Against ISO 9241-11. In Proceedings of the Latin American Conference on
Human-computer Interaction (pp. 53-60). New York, NY, USA: ACM.

Joorabchi, M. E., Mesbah, A. & Kruchten, P. (2013). Real Challenges in Mobile
App Development. In Empirical Software Engineering and Measurement, 2013
ACM / IEEE International Symposium on (pp. 15-24).

Konicek, M. (November 25, 2015). Under The Hood of React Native | Martin Konicek
| Reactive 2015 [video]. Accessed November 30, 2018
https://www.youtube.com/watch?v=8N4f4h6SThc.

Kotler, P. & Armstrong, G. (2012). Principles of marketing. (14th ed). Boston:
Pearson Prentice Hall.

Kotliarskyi, A. (August 12, 2015). Alexander Kotliarskyi - React Native: Under the
Hood | YGLF2015 [video]. Accessed November 30, 2018
https://www.youtube.com/watch?v=hDviGU-57lU.

Law, E. L., Roto, V., Hassenzahl, M., Vermeeren, A. P. O. S. & Kort, J. (2009).
Understanding, Scoping and Defining User Experience: A Survey
Approach. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (pp. 719-728). New York, NY, USA: ACM.

Le Goaer, O. & Waltham, S. (2013). Yet Another DSL for Cross-platforms Mobile
Development. In Proceedings of the First Workshop on the Globalization of
Domain Specific Languages (pp. 28-33). New York, NY, USA: ACM.

Looper, J. (2015). A Guide to JavaScript Engines for Idiots. Accessed September
23, 2018 https://developer.telerik.com/featured/a-guide-to-javascript-
engines-for-idiots/.

Lusch, R. F. & Vargo, S. L. (2006). Service-dominant logic: reactions, reflections
and refinements. Marketing Theory, 6(3), 281-288.

Majchrzak, T. A., Biørn-Hansen A. & Grønli, T. (2017). Comprehensive Analysis
of Innovative Cross-Platform App Development Frameworks. HICSS.

Majrashi, K., Hamilton, M. & Uitdenbogerd, R. L. (2015). Multiple user interfaces
and cross-platform user experience: theoretical foundations. In CCSEA, 5(2),
43-57. http://airccse.org/V5N33.html

68

Markus, M. L., Majchrzak, A. & Gasser, L. (2002). A Design Theory for Systems
that Support Emergent Knowledge Processes. MIS Quarterly, 26(3), 179-212.
http://search.ebscohost.com/login.aspx?direct=true&db=bsh&AN=72777
32&site=ehost-live

Nielsen, J. (2012). Usability 101: Introduction to Usability. Accessed May 1, 2016
https://www.nngroup.com/articles/usability-101-introduction-to-
usability/

Norman, D. & Nielsen, J. The Definition of User Experience. Accessed March 28,
2016 https://www.nngroup.com/articles/definition-user-experience/

Nunkesser, R. (2018). Beyond Web/Native/Hybrid: A New Taxonomy for
Mobile App Development. In Mobile Software Engineering and Systems, 2018
5th International Conference on (pp. 1-15).

Ohrt, J. & Turau, V. (2012). Cross-Platform Development Tools for Smartphone
Applications. Computer, 45(9), pp. 72-79.

Olsen, D. R.,Jr (1998). Developing user interfaces. San Francisco (CA): Morgan
Kaufmann.

Pallot & Pawar. (2012). A holistic model of user experience for living lab
experiential design. In Engineering, Technology and Innovation (ICE), 2012
18th International ICE Conference on (pp. 1-15).

Parashuram, N. (October 27, 2018). React Native's New Architecture - Parashuram
N - React Conf 2018 [video]. Accessed November 30, 2018
https://youtu.be/UcqRXTriUVI.

Peal, G. (June 19, 2018a). React Native at Airbnb: The Technology. Accessed
February 22, 2019 https://medium.com/airbnb-engineering/react-native-
at-airbnb-the-technology-dafd0b43838

Peal, G. (June 19, 2018b). Building a Cross-Platform Mobile Team. Accessed
February 22, 2019 https://medium.com/airbnb-engineering/building-a-
cross-platform-mobile-team-3e1837b40a88

Pedersen, R. (March 9, 2016). How Fuse differs from React Native and
NativeScript. Accessed February 20, 2019 https://blog.fusetools.com/how-
fuse-differs-from-react-native-and-nativescript-525344f02aaf

Peffers, K., Tuunanen, T., Rothenberger, M. & Chatterjee, S. (2007). A Design
Science Research Methodology for Information Systems Research.
J.Manage.Inf.Syst., 24(3), 45-77. http://dx.doi.org/10.2753/MIS0742-
1222240302

Quinn, J. M. & Tran, T. Q. (2010). Attractive Phones Don'T Have to Work Better:
Independent Effects of Attractiveness, Effectiveness, and Efficiency on
Perceived Usability. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 353-362). New York, NY, USA: ACM.

Raita, E. & Oulasvirta, A. (2011). Too good to be bad: Favorable product
expectations boost subjective usability ratings. Interact Comput, 23(4), 363-
371.

Schrock, N. (February 24, 2016). React.js Conf 2016 - Nick Schrock – Keynote [video].
Accessed November 30, 2018
https://www.youtube.com/watch?v=MGuKhcnrqGA.

Seffah, A. & Javahery, H. (2004). Multiple user interfaces : cross-platform
applications and context-aware interfaces. Hoboken NJ: J. Wiley,.

69

Smutny, P. (2012). Mobile development tools and cross-platform solutions. In
Carpathian Control Conference (ICCC), 2012 13th International (pp. 653-656).

Tiwana, A., Konsynski, B. & Bush, A. A. (2010). Platform Evolution: Coevolution
of Platform Architecture, Governance, and Environmental Dynamics.
Information Systems Research, 21(4), 675-687.
http://search.ebscohost.com/login.aspx?direct=true&db=bsh&AN=57155
470&site=ehost-live

Tulimäki, J. (2015). Käytettävyyden ja käyttäjäkokemuksen suhde
matkapuhelimia vertailevassa käyttäjätutkimuksessa. Master thesis.
University of Jyväskylä

Upgrading JSC. Accessed September 23, 2018
https://github.com/facebook/react-native/issues/19737

Usage statistics and market share of WordPress for websites. Accessed May 19,
2019 https://w3techs.com/technologies/details/cm-wordpress/all/all

VanToll, TJ. (February 16, 2015). How NativeScript Works. Accessed September
23, 2018 https://developer.telerik.com/featured/nativescript-works/

VanToll, TJ. (June 27, 2018). Would Airbnb Have Fared Better With NativeScript
Instead of React Native?. Accessed February 22, 2019
https://www.nativescript.org/blog/would-airbnb-have-fared-better-
with-nativescript-instead-of-react-native

Wäljas, M., Segerståhl, K., Väänänen-Vainio-Mattila, K. & Oinas-Kukkonen, H.
(2010). Cross-platform Service User Experience: A Field Study and an
Initial Framework. In Proceedings of the 12th International Conference on
Human Computer Interaction with Mobile Devices and Services (pp. 219-228).
New York, NY, USA: ACM.

Wasserman, A. I. (2010). Software Engineering Issues for Mobile Application
Development. In Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research (pp. 397-400). New York, NY, USA: ACM.

Williams, K., Chatterjee, S. & Rossi, M. (2008). Design of emerging digital
services: a taxonomy. European Journal of Information Systems, 17(5), 505-517.
http://search.proquest.com.ezproxy.jyu.fi/docview/218760075?accountid
=11774

WordPress. (2018a). Democratize Publishing. Accessed December 2, 2018
https://wordpress.org/about/

WordPress. (2018b). Database Description. Accessed December 2, 2018
https://codex.wordpress.org/Database_Description

WordPress. (2018c). REST API Handbook. Accessed December 2, 2018
https://developer.wordpress.org/rest-api/

Zagallo, T. (February 25, 2016). React.js Conf 2016 - Tadeu Zagallo - Optimising React
Native: Tools and Tips [video]. Accessed November 30, 2018
https://www.youtube.com/watch?v=0MlT74erp60.

Zibula, A. & Majchrzak, T. (2013). Cross-Platform Development Using HTML5,
jQuery Mobile, and PhoneGap: Realizing a Smart Meter Application. 14016-
33. http://dx.doi.org/10.1007/978-3-642-36608-6_2

70

APPENDIX 1 NAVIGATIONS OF WWW.MARTAT.FI WEBSITE

(a) Primary navigation
Etusivu - Fronpage
Ajankohtaista - News
 Marttaliiton uutiset - News from Martha Organization
 Marttapiirien uutiset - News from Martha District Associations
 Marttayhdistysten uutiset - News from local Marthaclubs
 Martat-lehti - Martat -magazine
 Uutiskirjeet - Newsletters
 Blogit - Blogs
 Martat sosiaalisessa mediassa - Martha organization in social media
 MartatTV - MarthaTV
Kurssit & tapahtumat - Courses and events
 Marttapiirien tapahtumat - Events from Martha District Associations
 Marttayhdistysten tapahtumat - Events from local Marthaclubs
 Juhlavuosi - Campaign page dedicated for celebration of 120 years old Martha
organization
 Marttailuviikko - Campaign page dedicated for theme week
 Marttatori - Campaign page dedicated for single Martha event
 Puurokuu - Campaign page dedicated for single Martha event
 Ässäkokki-kurssit - Campaign page dedicated for single Martha event
Marttajärjestö - About the Martha Organization
 Rakenne ja organisaatio - Structure of Martha Organization
 Marttaperinne - History of Martha Organization
 Kohdennettu neuvonta - Advices for different target groups
 Marttapalvelut - Services offered by Martha Organization
 Marttapiirit - Martha District Associations
Marttailu - Being Martha
 Tule mukaan - Join us
 Yhdistyskanava - Information for local Marthaclubs
 Vapaaehtoistoiminta - Voluntary work
 Marttaopinnot - Martha studies
Marttakoulu - Martha school
 Ruoka - Food
 Ravitsemus - Nutrition
 Kodinhoito - Housekeeping
 Puutarha - Garden
 Teemat - Themes
Martanpuoti - Online store

(b) Additional navigation
In English
Yhteystiedot - Contacts
Medialle - For media
Palaute - Feedback

71

APPENDIX 2 WIREFRAMES OF SKELETON OF WEB

72

APPENDIX 3 VISUAL VOCABULARY OF STRUCTURE OF WEB

73

74

APPENDIX 4 CONTENT ELEMENTS OF SCOPE OF WEB

{
 "type": "RecipeArchive",
 "children": [
 {
 "type": "Header"
 },
 {
 "type": "ArchiveHero",
 "props": {
 "title": "String",
 "subtitle": "String",
 "backgroundImageUrl": "String",
 },
 "children": {
 "type": "SearchBar",
 "props": {
 "placeholder": "String",
 "onSubmit": "Function"
 }
 }
 },
 {
 "type": "Filters",
 "children": [
 {
 "type": "SortingColumn",
 "props": {
 "title": "String",
 "sortingOptions": "Dropdown",
 "resetButton": "Button",
 "onReset": "Function"
 }
 },
 {
 "type": "TaxonomyColumn",
 "props": {
 "title": "String",
 "options": "Checkbox",
 "onClick": "Function"
 }
 }
]
 },
 {

75

 "type": "SearchResults",
 "props": {
 "title": "String"
 },
 "children": [
 {
 "type": "RecipeItem",
 "props": {
 "title": "String",
 "backgroundImageUrl": "String",
 "isFavorite": "Boolean",
 "isGlutenFree": "Boolean",
 "onClick": "Function",
 "onAddToFavorite": "Function"
 }
 },
 {
 "type": "Pagination",
 "props": {
 "currentPage": "Number",
 "numberOfPages": "Number"
 }
 }
]
 },
 {
 "type": "Footer"
 }
]
}

{
 "type": "RecipeSingle",
 "children": [
 {
 "type": "Header"
 },
 {
 "type": "SingleHero",
 "props": {
 "title": "String",
 "backgroundImageUrl": "String",
 "portionSize": "String",
 "isGlutenFree": "Boolean",
 "addToFavorite": "Function",
 "print": "Function",
 "zoomImage": "Function"

76

 }
 },
 {
 "type": "Utilities",
 "props": {
 "onClick": "Function",
 "terms": "String"
 }
 },
 {
 "type": "Recipe",
 "props": {
 "title": "String",
 "content": "String"
 }
 },
 {
 "type": "Ingredients",
 "props": {
 "title": "String",
 "content": "List"
 }
 },
 {
 "type": "Nutrients",
 "props": {
 "title": "String",
 "energy": "Number",
 "nutrients": "List"
 }
 },
 {
 "type": "Footer"
 }
]
}

77

APPENDIX 5 CONTENT ELEMENTS OF SCOPE OF MOBILE

{
 "type": "RecipeArchive",
 "children": [
 {
 "type": "ArchiveHero",
 "props": {
 "title": "String",
 "subtitle": "String",
 "backgroundImageUrl": "String"
 },
 "children": {
 "type": "SearchBar",
 "props": {
 "placeholder": "String",
 "onSubmit": "Function",
 }
 }
 },
 {
 "type": "FiltersRow",
 "props": {
 "label": "String",
 "icon": "Icon",
 "onPress": "Function"
 }
 },
 {
 "type": "FiltersModal",
 "props": {
 "onClose": "Function"
 },
 "children": [
 {
 "type": "TaxonomyColumn",
 "props": {
 "title": "String",
 "options": "Checkbox",
 "onPress": "Function"
 }
 }
]
 },
 {
 "type": "SearchResults",

78

 "props": {
 "title": "String"
 },
 "children": [
 {
 "type": "RecipeItem",
 "props": {
 "title": "String",
 "backgroundImageUrl": "String",
 "isFavorite": "Boolean",
 "isGlutenFree": "Boolean",
 "onPress": "Function",
 "onAddToFavorite": "Function"
 }
 }
]
 }
]
}

{
 "type": "RecipeSingle",
 "children": [
 {
 "type": "SingleHero",
 "props": {
 "title": "String",
 "backgroundImageUrl": "String",
 "portionSize": "String",
 "isGlutenFree": "Boolean",
 "addToFavorite": "Function",
 "backButton": "String",
 "onPressBackButton": "Function"
 }
 },
 {
 "type": "Recipe",
 "props": {
 "title": "String",
 "content": "String"
 }
 },
 {
 "type": "Ingredients",
 "props": {
 "title": "String",
 "content": "List"

79

 }
 },
 {
 "type": "Nutrients",
 "props": {
 "title": "String",
 "energy": "Number",
 "nutrients": "List"
 }
 }
]
}

80

APPENDIX 6 VISUAL VOCABULARY OF STRUCTURE OF
MOBILE

81

APPENDIX 7 WIREFRAMES OF SKELETON OF MOBILE

82

83

APPENDIX 8 API ENDPOINT FOR ALL RECIPES

(a) Code for creating the endpoint

add_action('rest_api_init', function () {
 register_rest_route('app/v1', '/getFilteredRecipes', [
 'methods' => 'GET',
 'callback' => 'get_filtered_recipes',
]);
});

function get_filtered_recipes(WP_REST_Request $request) {
 $filters = $request->get_query_params();
 $filters = $filters['filter'];
 foreach ($filters as $key => $filter) {
 $filters[$key] = ($filter !== '') ? explode(',', $filter) : [];
 }

 $data = [
 'facets' => $filters,
 'query_args' => [
 'post_type' => 'recipe',
 'posts_per_page' => 16,
 'post_status' => 'publish',
 'orderby' => 'title',
 'order' => 'asc',
],
];

 $url = site_url() . '/wp-json/facetwp/v1/fetch';

 $response = wp_remote_post($url, [
 'body' => ['data' => json_encode($data)]
]);

 // If answer from FacetWP Rest API is not valid, throw new WP_Error.
 if (200 > $response['response']['code'] || $response['response']['code'] > 299)
{
 $error_code = $response['response']['code'];
 $message = $response['response']['message'];

 return new WP_Error($error_code, $message, ['body' =>
$response['body']]);
 }

 $decoded_respose_body = convert_results_from_ids($response['body']);

84

 return $decoded_respose_body;
}

function convert_results_from_ids($response_body = '') {

 // Decode string to json, so that we can handle it.
 $decoded_respose_body = json_decode($response_body);
 $results_array = $decoded_respose_body->results;

 // Change id to array that contains id, title, url, and isGlutenFree.
 $count = count($results_array);
 for ($i = 0; $i < $count; $i ++) {
 $recipe_id = $results_array[$i];
 $results_array[$i] = (object) [
 'postID' => $recipe_id,
 'title' => get_the_title($recipe_id),
 'url' => get_the_post_thumbnail_url($recipe_id),
 'isGlutenFree' => has_term('gluteeniton', 'diets', $recipe_id)
];
 }

 // Add new array as results
 $decoded_respose_body->results = $results_array;

 return $decoded_respose_body;
}

(b) Example response message
This is the example answer for HTTP GET -request to
/getFilteredRecipes?filter[recipe_classes]=kasvisruoat&filter[recipe_diet]=maid
oton. Some results are omitted for simplicity sake.

{
 "results": [
 {
 "postID": 132721,
 "title": "Aarnin inkiväärishotti",
 "url": "https://www.martat.fi/wp-content/uploads/2018/09/aarni2-
250x250.jpg",
 "isGlutenFree": true
 },
 {
 "postID": 1254,
 "title": "Carbanzokeitto",

85

 "url": " https://www.martat.fi /wp-
content/uploads/2016/10/carbanzokeittonetti-250x250.jpg",
 "isGlutenFree": true
 }
],
 "facets": {
 "recipe_classes": {
 "name": "recipe_classes",
 "label": "Reseptiluokat",
 "type": "checkboxes",
 "selected": [
 "kasvisruoat"
],
 "choices": [
 {
 "value": "kasvisruoat",
 "label": "Kasvisruoat",
 "depth": 0,
 "count": 50
 },
 {
 "value": "sailonta",
 "label": "Säilöntä",
 "depth": 0,
 "count": 1
 }
],
 "settings": {
 "show_expanded": "no"
 }
 },
 "recipe_diet": {
 "name": "recipe_diet",
 "label": "Recipe diets",
 "type": "checkboxes",
 "selected": [
 "maidoton"
],
 "choices": [
 {
 "value": "maidoton",
 "label": "Maidoton",
 "depth": 0,
 "count": 50
 }
],
 "settings": {

86

 "show_expanded": "no"
 }
 }
 },
 "pager": {
 "page": 1,
 "per_page": 16,
 "total_rows": 50,
 "total_pages": 4
 }
}

87

APPENDIX 9 API ENDPOINT FOR SINGLE RECIPE

(a) Code for creating the endpoint
add_action('rest_api_init', function () {

register_rest_route('app/v1', '/getRecipe/(?P<id>\d+)', [
 'methods' => 'GET',
 'callback' => 'get_recipe_by_id',

]);
});
function get_recipe_by_id(WP_REST_Request $request) {

 $post_id = $request['id'];

 // Bail early, if post type is not recipe
 if ('recipe' !== get_post_type($post_id)) {
 return (object) [];
 }

 $ret_val = (object) [
 'post_id' => $post_id,
 'title' => get_the_title($post_id),
 'content' => apply_filters('the_content', get_post_field('post_content',
$post_id)),
 'url' => get_the_post_thumbnail_url($post_id, 'page-header'),
 'is_gluten_free' => has_term('gluteeniton', 'diets', $post_id),
 'portion_size' => get_field('portion_size', $post_id),
 'right_column' => get_field('right_column', $post_id), //HTML
 'video' => get_field('video', $post_id), //url
 'keywords' => wp_get_post_terms($post_id,
get_post_taxonomies($post_id), ['fields' => 'names']),
 'ingredients' => get_field('ingredients', $post_id),
 'nutrients' => format_nutrients_to_array($post_id),
];

 return $ret_val;
}

function format_nutrients_to_array($post_id) {
 $nutrients = get_field('nutrients', $post_id);
 $ret_val = ['energy' => [], 'nutrients' => []];
 foreach ($nutrients as $key => $nutri) {

 if ('Energia' === $nutri['NutrDesc']) {
 $ret_val['energy'] = (object) ['Nutr_Val' => round($nutri['Nutr_Val']),
'Units' => $nutri['Units'], 'NutrDesc' => $nutri['NutrDesc']];
 continue;

88

 }

 $ret_val['nutrients'] [] = (object) ['Nutr_Val' => round($nutri['Nutr_Val'],
1), 'Units' => $nutri['Units'], 'NutrDesc' => $nutri['NutrDesc']];
 }

 return $ret_val;
}

(b) Example response message
This is the example answer for HTTP GET -request to /getRecipe/1254 where
1254 is the post id of this recipe. Some results are omitted for simplicity sake.

{
 "post_id": "1254",
 "title": "Carbanzokeitto",
 "content": "<p>3-4 rkl öljyä
\n1 sipuli pilkottuna
\n…</p><p>Tämä on miedohko ja mukavan mausteinen keitto kylmään
talvipäivään.</p>\n",
 "url": " https://www.martat.fi /wp-
content/uploads/2016/10/carbanzokeittonetti-1920x420.jpg",
 "is_gluten_free": true,
 "portion_size": "4",
 "right_column": "",
 "video": "",
 "keywords": [
 "Kasvisruoat",
 "Maidoton",
],
 "ingredients": [
 {
 "amount": "3",
 "name": "Kasvisliemikuutio",
 "unit": "kpl"
 },
 {
 "amount": "400",
 "name": "Tomaattimurska",
 "unit": "g"
 }
],
 "nutrients": {
 "energy": {
 "Nutr_Val": 336,
 "Units": "kcal",
 "NutrDesc": "Energia"

89

 },
 "nutrients": [
 {
 "Nutr_Val": 15.9,
 "Units": "g",
 "NutrDesc": "Rasva"
 },
 {
 "Nutr_Val": 1.8,
 "Units": "g",
 "NutrDesc": "Rasvahapot tyydyttyneet"
 }
]
 }
}

