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valmiiksi kerätyllä datalla. Lisäksi kerrotaan lyhyesti syväoppimiseen liittyvästä teoriasta ja

demonstroidaan, miten valituilla työkaluilla voidaan rakentaa ja kouluttaa neuroverkko sekä
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Glossary

ADL Architecture description language

CNN Convolutional neural network

CPU Central processing unit

FFNN Feedforward neural network

GAN Generative adversarial network

GPU Graphics processing unit

MLP Multilayer perceptron

ReLU Rectified linear unit

RNN Recurrent neural network

SaaS Software as a service

SOA Service-oriented architecture

UML Unified modeling language
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1 Introduction

Deep learning can provide solutions for complex problems. Previous research has shown

that it can be an effective method to solve problems that used to be very difficult for comput-

ers. Building of neural networks have become more and more user-friendly with high-level

deep learning libraries such as Keras. In addition, various machine learning platforms have

been developed to make machine learning accessible for data scientists and engineers. Deep

learning technology is now more accessible than ever before and many companies are look-

ing for opportunities on how to benefit from it. Achieving good results requires a capable set

of tools and knowledge on how to use them. However, choosing suitable deep learning tools

from a wide range of options can be a difficult and time-consuming task.

This thesis offers a brief overview on practicalities of a typical deep learning project and

shows an example implementation on how some modern deep learning tools can be uti-

lized for a typical image classification problem. Theoretical aspects of deep learning are

explained and two different neural network architectures are mentioned. As software as a

service (SaaS) has become a common way of delivering software products to customers,

advantages and disadvantages of it are examined. A pre-built CNN is trained with image

data and used to classify test images. In addition, transfer learning is examined by using a

pre-trained convolutional neural network (CNN) to predict classes for testing data. These

chapters should provide a basic understanding on what is deep learning, what are important

things to consider when working with deep learning projects and how to actually get results

with specific tools.

Literature has been searched from IEEExplore, ACM Digital Library and Google Scholar

with keywords such as "SaaS", "MLaaS", "framework", "machine learning", "deep learning"

and "software architecture". The source material has not only been gathered from scientific

publications but also websites that have been considered useful for the topic.

Chapter 2 focuses on theoretical aspects of machine learning and SaaS, with the focus be-

ing on deep learning. Chapter 3 introduces a general dataset of flower images and some

practicalities on building neural networks for image classification tasks. In chapter 4, com-
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mon technologies for scalable deep learning applications are mentioned. Chapter 5 shows an

example implementation of a deep learning image classifier model using some of the tech-

nologies mentioned in Chapter 4. In Chapter 6, some observations that were made during

the writing process are discussed. Finally, Chapter 7 summarizes the contents of this thesis.
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2 Background

This chapter introduces some basic concepts about artificial intelligence, machine learning

and neural networks. As various machine learning tools are offered as services over the

Internet, Service Oriented Architectures (SOA) and SaaS are also explained. In addition,

some aspects of collecting and storing data are introduced. The goal is to provide a basic

understanding about these topics without going too deeply into details. Utilizing neural

networks in practical applications requires knowledge on the deep learning theory but many

modern machine learning libraries have abstracted complex algorithms behind simple APIs.

This thesis aims to discuss practicalities of how to use some of these tools for a typical deep

learning problem.

2.1 Artificial intelligence & machine learning

The concept of artificial intelligence (AI) has been talked about even before the first comput-

ers were built. Problems that are difficult for humans to solve can be solved quite easily with

computers. However, some problems, such as understanding speech or recognizing faces,

can still be rather difficult to solve by a computer. The difference between these problems

is that some of them are more difficult to present in a formal way than others. Teaching a

computer to be a master in the game of Chess is actually not so complicated because the

game has rules everybody are required to follow. Recognizing a spoken language is a very

different kind of task. During the recent years, computers have began to catch up to humans

in these more intuitive tasks where humans used to have an advantage. (Goodfellow, Bengio,

and Courville 2016, Chapter I)

Dictionary definition of artificial intelligence is

"the study of how to produce machines that have some of the qualities that the

human mind has, such as the ability to understand language, recognize pictures,

solve problems, and learn"

https://dictionary.cambridge.org/dictionary/english/
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Therefore, if a machine can solve problems in a way similar to how the human mind works,

we are talking about AI. For example, mathematical models such as statistical inference, and

expert systems that operate with hard-coded knowledge are types of AI (Pilli-Sihvola 2010).

Figure 1 shows the relations between some types of AI.

Figure 1. Artificial intelligence. This diagram shows only some types of AI, machine learn-

ing and deep learning.

During the recent years, machine learning has become one of the hottest topics in the field of

data science. Advances in data processing, training algorithms and hardware have made this

possible. Machine learning happens when computer learns to do tasks based on experience.

But what does it mean when a computer learns to do something? Mitchell (1997) defines it

as follows:

"A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E."

Many problems that are difficult for humans to solve manually can be solved with machine

learning. Classification, regression, anomaly detection and machine translation are some ex-

amples of tasks where machine learning has been utilized successfully (Goodfellow, Bengio,
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and Courville 2016). Nowadays it is used in various areas ranging from offering personal-

ized video recommendations to medical diagnosis. One interesting example from the med-

ical field is the detection of early signs of Alzheimer’s disease by analyzing patients’ MRI

images (Moradi et al. 2015).

As demonstrated by Ribeiro, Grolinger, and Capretz (2015), Figure 2 shows that machine

learning can be divided into three categories: supervised learning, unsupervised learning and

reinforcement learning.

Supervised learning associates certain features in testing data to a specific label. The train-

ing data has to be labeled. For example, we want to know what type of car is in a picture.

Our machine learning model has been trained with a dataset consisting of labeled pictures

of various types of cars (label "0" for hatchback, "1" for convertible, "2" for SUV etc.) and

we want to know what kind of car is in our new image. Based on visual features of the car,

the machine learning model will determine a label for our input image. In short, applications

that utilize supervised learning extract labels from certain features.

In unsupervised learning, the data in a training set is unlabeled. One example of this kind

of dataset could include information about customers and their buying habits. A company

selling products on their web shop may have lots of data about their registered users and

transactions. A machine learning model can map similarities between different inputs using

clustering techniques. For example, it could analyze customer behavior on online stores and

find out that people aged 25-30 years old are more likely to spend more time on searching

for electronics than people who are less than 25 years old. Thus, these customers can be

classified into same segment.

In reinforcement learning, the aim is to teach a machine learning model to improve its per-

formance by dynamically giving it feedback from the environment. Reinforcement learning

is widely used in the field of robotics (“Johdatus tekoälyn taustalla olevaan matematiikkaan

- TIM” 2016). For example, if we want to teach a bipedal robot to stand up, we can control

its joints and their positions to balance it. Moving one leg in wrong direction at the wrong

time will have a negative effect, and we can use this learning experience to perform better

next time.
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Figure 2. Machine learning methods categorization (Ribeiro, Grolinger, and Capretz 2015)

Machine learning can be done with many different algorithms such as decision trees, naive

Bayes classifiers and K-nearest neighbors algorithm (“Johdatus tekoälyn taustalla olevaan

matematiikkaan - TIM” 2016). Deep learning is one type of machine learning that utilizes

more than one layer of neural networks to solve complex problems (Gersey 2018). In deep

learning, a computer is taught a hierarchy of concepts and it is made to learn from experience

(Goodfellow, Bengio, and Courville 2016, Chapter I).

2.2 Artificial neural networks

Human brains have neurons that are connected to each other with synapses. Our decision

making is based on signals that travel between the neurons. Artificial neural networks mimic

the functionality of human brains (“Johdatus tekoälyn taustalla olevaan matematiikkaan -

TIM” 2016). As seen in Figure 5, a neural network consists of an input layer, an output layer

and one or more hidden layers. The layers have neurons that process an input and produce

an output as seen in Figure 3. The neurons in hidden layers determine the output value for an
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input. Neural network is called feedforward neural network (FFNN) when the connections

between neurons always go towards the output layer. The connections are called weights and

each neuron has a bias. Bias can be thought of as a value that tells how easily the neuron

"activates". The output value of a neuron i can be written as follows:

zi =
n

∑
i=1

(wixi)+b

Figure 3. Neuron and its inputs

Output is passed on to an activation function before it gets passed on to a next neuron. Dif-

ferent layers of a neural network can use different activation functions. Their purpose is to

bring nonlinearity to a linear input. In other words, they make sure that a small change in

neuron’s weight or bias doesn’t cause too dramatic consequences to its output value. (“Joh-

datus tekoälyn taustalla olevaan matematiikkaan - TIM” 2016)

Sigmoid, hyperbolic tangent and ReLU are commonly used activation functions (“Johdatus

tekoälyn taustalla olevaan matematiikkaan - TIM” 2016). With an activation function, the

final output value of a neuron would be:

ϕ(
n

∑
i=1

(wixi)+b)

where the activation function ϕ is the sigmoid function

7



σ(x) =
1

1+ e−x

This produces nonlinearity to the result as seen in Figure 4

Figure 4. Sigmoid function (“Johdatus tekoälyn taustalla olevaan matematiikkaan - TIM”

2016)

In order to make a neural network to learn in supervised learning environment, it has to bee

trained with input data and expected output values from the training data. Each input x has

an expected output y, so they form an input-output pair (x, y). For example, an input could

be an image of a cat. To put it more precisely, it is the pixel values of an image of a cat.

An output is the class where the said animal belongs to, so in this case, ’cat’. Loss function

(sometimes called a "cost function") tells how far the actual output was from the expected

output. Therefore, minimizing the loss function is the key to training and learning. Gradient

descent and backpropagation algorithms minimize the loss function by changing weights

and biases of neurons in hidden layers. These algorithms can be computationally expensive.

(“Johdatus tekoälyn taustalla olevaan matematiikkaan - TIM” 2016; Goodfellow, Bengio,

and Courville 2016, Chapter 8.3.1)

Training a neural network with gradient descent and backpropagation algorithms can be de-

scribed as putting a ball on a bumpy surface and watching it to roll to the lowest position.

When the ball is set to its starting position, it will start rolling towards some direction. When
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it stops moving, it has found the lowest point of the surface, the local minimum. The position

of the ball can be thought of as the loss function value with weights and biases. Backpropa-

gation algorithm then changes these parameters in a way that the loss function decreases on

the next update cycle (epoch). Choosing the right initialization parameters is important but

in a typical neural network training process, the biases for each unit are initially set to heuris-

tically chosen constants, and the weights are initialized randomly (Goodfellow, Bengio, and

Courville 2016, Chapter 8.4).

Figure 5. A fully connected FFNN with a single hidden layer.

The following subsections introduce two types of neural networks: convolutional and gen-

erative adversarial networks. The former are a popular choice for image classification tasks

and the latter are interesting for their ability to generate content.
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2.2.1 Convolutional neural networks

Convolutional neural networks (CNNs) are neural networks where calculation of output val-

ues are based on mathematical convolution operations. The concept of CNNs was originally

introduced by Yann LeCunn in 1989. CNNs are proven to be effective for 2D image classi-

fication tasks and other similar tasks where data is presented in a grid like structure. (Gersey

2018)

CNNs usually use a 3x3 kernel matrix for calculating convolutional operations, and one typ-

ical use case is to detect edges of an image (Gersey 2018). The purpose of these operations

in CNNs is to find out what kind of features a kernel matrix can find when the whole image

is "scanned" with it.

In short, the idea is to find the most important features of an image by downsampling the

input (Gersey 2018). A typical layer in CNN architecture consists of three stages: a convo-

lution stage, a detector stage and a pooling stage (Goodfellow, Bengio, and Courville 2016,

Chapter 9.3). Each of these stages are layers in a network. The layer in the first stage pro-

duces a set of linear activations, the second stage uses a nonlinear activation function for the

outputs from the first layer, and lastly, the output is modified with a pooling layer (Good-

fellow, Bengio, and Courville 2016, Chapter 9.3). Pooling creates a statistic summary of

feature maps: For instance, it can calculate the average or maximum value within the area

where a kernel matrix is positioned (Gersey 2018).

2.2.2 Generative adversarial networks

Generative adversarial networks (GANs) were first introduced by Goodfellow et al. (2014).

Since then, GAN architecture has gained a lot of interest and it has been described as one

of the most interesting advances in deep learning (Gersey 2018). Recent advances in GANs

have showed promising results in various tasks such as generating images of human faces

that are indistinguishable from real life samples (Karras, Laine, and Aila 2018) or depicting

a model in different poses with images of 2D skeleton (Pumarola et al. 2018). GAN has also

been utilized successfully to detect anomalies in network intrusion datasets with non-image

data (Zenati et al. 2018).
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The basic idea of GAN is that two different neural networks are set to compete with each

other. A generator tries to create samples that are as close as possible to the samples in

training data. A discriminator takes a generator-created sample as an input and determines

its validity: does it look like a real sample?

One way to understand GAN architecture is to think of it as a race between a police and a

forger: The discriminator is a police whose job is to identify fake products. The generator

acts as a forger and tries to create products that are indistinguishable from genuine products.

When the police receives a product, it determines whether it is a real one or a fake one. The

product could be taken from a training set or it can be created by the generator. Initially, the

police isn’t very smart because it has no prior experience: It has no idea what a real product

looks like. Same goes for the forger. When the police falsely identifies a product from a

training set, it learns from its mistake and remembers this next time. The forger is happy to

have fooled the police and maybe tries to fool him again with a similar product. It doesn’t

work anymore because the police has already learned to identify this type of fake products.

The forger has to try something new next time. (“Photo Editing with Generative Adversarial

Networks (Part 1)” 2017)

In short, GAN is a competition between two actors: the generator and the discriminator.

Figure 6 shows the main components and functionality of GAN architecture. The original

GAN architecture by Goodfellow et al. (2014) has inspired many other implementations

(Dumoulin et al. 2016; Mirza and Osindero 2014; Odena, Olah, and Shlens 2016; Pumarola

et al. 2018).

2.3 Image classification with neural networks

Neural networks can be utilized to solve various problems in areas such as speech recogni-

tion, medical diagnosis, machine translation and computer vision. The focus of this research

lays on image classification with CNNs. CNNs were chosen as an example because they

are considered to be a good choice for image classification tasks (Goodfellow, Bengio, and

Courville 2016, Chapter 9).

In typical image classification tasks, a fully-connected neural network uses all the pixels of
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Figure 6. GAN framework (“Photo Editing with Generative Adversarial Networks (Part 1)”

2017)

the inputted image to predict a label for it. This means that the input layer has one neuron

for each pixel. For example, if we have a grayscale image with width of 32 pixels and height

of 32 pixels, we would have 32×32 = 1024 neurons on input layer. For colored images, the

amount of neurons would be 32× 32× 3 = 3072. Thus, the first layer alone would already

have 3072 trainable weights. With CNNs, the dimensions of the input layer can be reduced

by using convolution, thus reducing the amount of parameters in the network. Downsampling

is important because it can extract the main features of the input data efficiently (Gersey

2018).

Training complex neural networks is computationally expensive and therefore requires pow-

erful hardware (Goodfellow, Bengio, and Courville 2016, Chapter 8). However, training

neural networks for new tasks is not always necessary because pre-trained models can be

used. This process is known as transfer learning (Goodfellow, Bengio, and Courville 2016).

More details about transfer learning will be introduced in Sections 3.2 and 5.4.

2.4 Connecting users with machine learning software

Distributed systems have become a common occurrence during the recent years. Many appli-

cations utilize "the cloud" in order to provide a consistent user experience between different

12



devices. This has led to service oriented architectures (SOA) and software as a service (SaaS)

become typical terms in the field of software engineering. These two can be mixed up quite

easily. Laplante, Zhang, and Voas (2008) summarize that SOA is an architecture framework

that can be used to construct a software whereas SaaS is a model for delivering the software.

2.4.1 Why use SaaS? Advantages and disadvantages

SaaS is only one possible model for delivering software to clients. In contrast, a more tra-

ditional software delivery method is to deliver an application on a physical installation disc

which used to be a common way for customers to install new software products. Carroll,

Van Der Merwe, and Kotze (2011) list many benefits for using SaaS and have arranged them

by the number of citation occurrences in literature:

1. Cost efficiency

2. Scalability

3. Flexibility

4. Agility

5. Better IT resource management and business focus

6. Efficiency

7. High reliability / availability

8. Rapid developments, deployments and change management

9. Better performance

10. Greater mobility

11. Improved automation, support and management

12. Improved security

13. Green-IT data centre

However, there are also risks that need to be considered with SaaS. According to the literature

review by Carroll, Van Der Merwe, and Kotze (2011), the biggest concerns are:

1. Security

2. Third party vendors (service providers)

3. Management and control
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4. Laws and regulations (compliance)

5. Portability and interoperability

6. Disaster recovery

7. Virtualization risks

8. Lack of standards and auditing

9. Maturity of technology

10. Uncontrolled viable costs

It’s important to note that security is considered more as a risk than a benefit. Sending private

data to cloud servers causes security and privacy concerns: Sometimes it can be impossible

to know where the data will be located and how it will be handled (Valjakka 2012). On the

other hand, it can be seen as a security benefit. In some cases, when data is hosted by a 3rd

party service provider, it may actually be in safer hands than on a company’s own systems.

After all, there are many things that need to be considered in order to mitigate security risks

as Carroll, Van Der Merwe, and Kotze (2011) conclude in their research.

In any case, security issues are an important factor that must be taken into account when

software is provided as a service. It’s important to understand that management has the

responsibility of keeping the data safe, no matter where it is hosted (Carroll, Van Der Merwe,

and Kotze 2011). Both options should be considered when designing software services:

hosting the data locally or sending it to cloud servers.

Of course, SaaS applications have technical requirements too. According to Valjakka (2012),

the important aspects to consider from the technical point of view when designing a SaaS

application are

• The client application has to be easily accessible via web browser

• Customers don’t install the software but they must do the initial deployment by them-

selves

• Customers are usually companies or organizations that provide the application to their

end users

• The application has to serve multiple users simultaneously
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2.4.2 Machine learning as a service

Pilli-Sihvola (2010) writes about a concept of "intelligence as a service" where intelligence

is considered to be "a capability to solve problems by answering questions". His research

introduces some points that need to be considered in order to provide intelligent software

services. The most crucial issues are related to communication between the client and the

service provider: (Pilli-Sihvola 2010)

• Mutual comprehension

• Functional representation of knowledge

• Data synchronization

• Coupling of the service consumers and providers

In short, customers need to know how to use the service and what to expect in response and

service providers have to make sure that requests are received and handled in an unambigu-

ous way. These are relevant questions that should be considered when designing MLaaS

software. Pilli-Sihvola (2010) mentions web services as a one possible solution to provide

intelligence as a service. According to Laplante, Zhang, and Voas (2008), web services are

the best option for supporting SaaS.

During the recent years, a demand for machine learning as a service (MLaaS) has emerged,

and making these services affordable for everybody has become an important goal (Ribeiro,

Grolinger, and Capretz 2015). Various software products have been developed to meet this

demand: Comet, Microsoft Azure ML Studio, Valohai, Floydhub, Google Prediction API,

IBM Watson, MLflow and NSML are only some examples of machine learning platforms

that provide machine learning services. They provide tools for monitoring and analyzing

data through web UI and also access to cloud hardware resources for training and testing

ML models. Figure 7 demonstrates the steps of a typical ML workflow.

Because MLaaS is basically one form of SaaS, common SOA design models can be utilized

for MLaaS software design. Therefore, using web services technology to provide MLaaS

applications is a feasible solution.
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Figure 7. Typical workflow of a ML project (Li et al. 2017)

Since security is the number one concern in SaaS applications, it is an important requirement

to be addressed when designing MLaaS software. Training ML models with confidential

data in cloud insfrastructure has risks. Attackers can access the training data and results

by carrying out extraction attacks. Kesarwani et al. (2018) introduces a security measure

against extraction attacks that monitors the usage of the machine learning model. One way

to achieve improved security in SaaS applications is to encrypt the data before it is send to a

remote server. This can work well for MLaaS applications as well: Hesamifard et al. (2017)

concluded that training neural networks and making predictions with encrypted data is a

viable solution to increase data security.

2.4.3 Architecture description

There are many ways to visualize a software architecture. As of 2012, 135 different archi-

tecture description languages (ADLs) were identified (“Software Architecture: Architecture

Description Languages” 2012). Drawing simple boxes and lines on paper is one solution

to describe software architectures but in many cases this can be too ambiguous approach.

ADLs were developed to tackle this problem. Singhoff et al. (2019) summarize the main

purposes of ADL languages as "a way to capture architecture elements of a system and to

help designers to make various analysis about it".

Bashroush et al. (2006) investigated different ADLs and noted that the reason why ADLs are

not widely adopted in designing industrial applications is because of their limitations such

as over-constraining and restriction to only a structural view of the system. Their research

didn’t consider unified modeling language (UML) to be an ADL because of its limitations.

For example, it offers only graphical notation. Their research also states that using existing

ADLs for SOA may not be a good idea because they tend to abstract interfaces too much.

Another way to visualize a SaaS system architecture is SCA notation. According to Ribeiro,
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Grolinger, and Capretz (2015), SCA inherits all advantages of SOA because it is built on top

of it. Therefore, using SCA notation to present MLaaS architecture is a justifiable option.

Figure 8 demonstrates the notation of SCA component diagram. Wires connect components

to each other throughs ports that can be either reference ports or service ports. Ding, Chen,

and Liu (2008) define these ports in the following way:

"If the component provides a service through a port, the port is called service

port; if the component requires a service through a port, the port is called refer-

ence port."

A more detailed presentation of SCA and its notation can be found on paper published by

Ding, Chen, and Liu (2008). Figure 9 shows an example MLaaS system with SCA nota-

tion created by (Ribeiro, Grolinger, and Capretz 2015). For example, the topmost "Data

Gatherer"-component provides a service for receiving a training dataset. It also requires a

reference port for a dataset so that it can be used for training by the "Modeler"-component.

Figure 8. SCA component diagram.

2.4.4 Scalability

SaaS applications can have millions of users who are located all over the world. Providing

a responsive software for everybody can be challenging, especially when the amount of

concurrent users may change significantly in a short period of time. SaaS applications have

to be able to adapt to these fluctuations without affecting negatively to user experience by

providing enough server capacity for all users. (Valjakka 2012)
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Figure 9. An architecture description of a MLaaS system using SCA notation in Ribeiro,

Grolinger, and Capretz (2015).

Scaling is done with virtualization. Hardware resources such as CPUs, GPUs and storage de-

vices can be virtualized programmatically instead of using physical resources. Applications

can then run on these virtual machines. Setting up new virtual machines or stopping them

based on demand is fast and simple. Containers take the scalability even further by making

applications run in an easily transferrable container that includes everything the application

needs to run in a single package.

2.5 Message dispatcher

SOA based applications usually consist of various components that are accessed over the

Internet. For example, a web application for checking public transport schedules may use a

Google Maps service for showing location information and it can get the bus schedules from

a bus company’s own service. A messaging system is needed to handle messages between

senders and receivers because in many cases they are built to use different messaging proto-

cols (Koskimies and Mikkonen 2005, Chapter 6.2.2). Messaging is organized with message
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queues that ensure that the communication between senders and receivers is organized cor-

rectly (Schuchmann 2018). SOAP and REST are commonly used messaging protocols for

accessing web services across the Internet.

2.6 Data preprocessing

The amount of digital data has exploded in the 21st century. Social media, Internet of things

and digitalization of banking are some examples that generating a vast amount of data every

day. Processing huge volumes of data is one of the biggest challenges in data analytics and

it has to be approached with distributed computing (Garcia et al. 2016). In order to make use

of the data, several steps are needed before any valuable knowledge can be obtained from

it. Figure 10 shows these steps and connections between them as Garcia et al. (2016) have

demonstrated in their paper. This process is a big challenge in data mining. A lot of data

already exists but making valuable observations of it can be quite difficult.

In data analytics, the set of techniques used before the actual data mining is known as data

preprocessing (Garcia et al. 2016). This paper won’t go into details of these methods but

for more information, readers can refer to Garcia et al. (2016) who have reviewed various

methods for data preprocessing.

2.7 Data storage

The data in Big Data can be anything: photos, videos, charts, audio etc. Choosing the right

way to store data is an important step in every data science project. It determines the data

security and the process of extracting, transforming and loading of the data. This is known as

the ETL process (see figure 11). It defines what data is selected from the original source, how

to transform it to another format and determines how to load it into a data storage system.

(Saraee and Silva 2018)

Data storage system should be scalable, fast and, of course, reliable. Extraction of data

and means of storing it should be determined based on the content of the data (Saraee and

Silva 2018). For example, image data has different characteristics than video data. These
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Figure 10. The steps needed to create knowledge from data as described in Garcia et

al. (2016)

differences should be taken into account when selecting storage systems for the tasks. Sid-

diqa, Karim, and Gani (2017) have made an extensive survey on different big data storage

technologies. According to their research, various fault-tolerant systems for storing big data

exist. They conclude that decision has to be made between consistency and availability be-

cause according to Brewer’s CAP theorem (consistency, availability, partition-resilience), all

of them can’t be achieved with a single system.
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Figure 11. In the ETL process, data is selected from the sources and saved to a storage

system.
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3 Machine learning in practice

This chapter introduces some practicalities that are related to a typical deep learning appli-

cation. A dataset consisting of flower images was chosen as an example data. In this chapter,

a pre-built CNN is examined and trained with the data. Finally, the deep learning model’s

accuracy is evaluated.

3.1 Data

The "tf_flowers"-dataset1 is one of the example datasets from TensorFlow, a popular ma-

chine learning framework. It consists of 3670 images of flowers. There are five classes in

total: daisy, dandelion, roses, sunflowers and tulips. Flowers of each class are located in

separate folders. The images are colored .jpg-files and their widths and heights are not fixed.

(“Datasets | TensorFlow Datasets | TensorFlow” 2019)

The dataset was chosen for this paper because it serves the purpose of this thesis well: The

data is collected from a real world example and it can be utilized easily as it is without doing

much preprocessing or formatting for typical deep learning applications.

The features of the dataset look like the following:

FeaturesDict({

’image’: Image(shape=(None, None, 3), dtype=tf.uint8),

’label’: ClassLabel(shape=(), dtype=tf.int64, num_classes=5),

})

This means that each sample in the dataset is a 3-channel image. They also have a label, a

tf.int64 integer. Because there are five classes, the label is 0, 1, 2, 3 or 4.

An image can be presented as a three-dimensional array in two different ways: channels first

or channels last which simply means where the number of channels are stored. A 150×200

colored jpg image as a three-dimensional array would have a shape of (150, 200, 3) when

1http://download.tensorflow.org/example_images/flower_photos.tgz
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using the "channels last"-format.

3.2 Building a CNN for image classification

Designing good neural network architectures for image classification tasks can be compli-

cated. A simple neural network architecture can work relatively well for certain image clas-

sification tasks. The biggest challenge is to find out how to create an optimal design solution

for network architecture. How many layers should be used? What kind of layers and where?

How about the optimal number of neurons on these layers? How to train a neural network?

Choosing the right loss function is very important (Goodfellow, Bengio, and Courville 2016,

Chapter 6.2.1). Training a neural network can be computationally expensive: Training pro-

cess can take months even with hundreds of machines (Goodfellow, Bengio, and Courville

2016, Chapter 8). These complex training optimization algorithms are out of scope of this

research. Instead, some general functions are mentioned.

The basic idea is to divide a problem into smaller sub-problems. If we want to know whether

an input image has a cat or a dog in it, we can solve this by looking for certain features in

the image. What physical features distinct cats from dogs? This is an easy task for humans

but not so straightforward for computers to solve. We could start by examining their paws,

tails or ears and see the typical characteristics for each animal. Deep neural networks can be

trained to detect these differences.

Training deep learning models to make accurate predictions with new data is not a simple

task. However, some common design principles for building and training neural networks

exist. Szegedy et al. (2016) mention four general design principles for building CNNs:

1. Representational bottlenecks should be avoided. This is important especially in the

first layers of a network.

2. In order to make training faster, increasing the activations per tile is beneficial.

3. Faster learning can be achieved when dimension reduction is done before spatial ag-

gregation

4. The depth and the width (filters per stage) of a network should be optimized by in-

creasing their complexity equally.

23



Szegedy et al. (2016) also note that using these general design principles don’t necessarily

work for every situation. They should rather be thought more of as guidelines for general

cases where CNNs are build.

When neural networks are built for image classification, the last layer before an output layer

usually uses Sigmoid activation function (see figure 4) because it maps the outputs between

0 and 1 (Gersey 2018). This can easily be intepreted as a probability of the input image

belonging to a certain class.

Luckily, we don’t always have to start building our own neural networks from scratch. Pre-

trained models can be used for other kinds of tasks too. For example, InceptionV3 is a

complex deep neural network that has been trained with images from 1000 different classes

Szegedy et al. (2016). We can modify the network architecture by changing the output layer

and utilize the network for other image classification tasks. This is called transfer learning.

For example, Esteva et al. (2017) used a modified InceptionV3 to detect skin cancer and

achieved great results.

Designing neural networks manually is not the only option. The process of building deep

neural networks can be automated with evolutionary algorithms and it may become an effec-

tive option in the future (Miikkulainen et al. 2019).

Figure 12. Example of a dataset with 30 samples divided into batches of five samples.
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The following CNN is "mnist_cnn.py" an example network from Keras 2. It was built to

detect images of handwritten digits in the classic "mnist" dataset that was introduced by

LeCun, Cortes, and Burges (1998). Taking a closer look of its summary reveals important

details on the structure of the network:

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

conv2d_1 (Conv2D) (None, 26, 26, 32) 320

_________________________________________________________________

conv2d_2 (Conv2D) (None, 24, 24, 64) 18496

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 12, 12, 64) 0

_________________________________________________________________

dropout_1 (Dropout) (None, 12, 12, 64) 0

_________________________________________________________________

flatten_1 (Flatten) (None, 9216) 0

_________________________________________________________________

dense_1 (Dense) (None, 128) 1179776

_________________________________________________________________

dropout_2 (Dropout) (None, 128) 0

_________________________________________________________________

dense_2 (Dense) (None, 10) 1290

=================================================================

Total params: 1,199,882

Trainable params: 1,199,882

Non-trainable params: 0

_________________________________________________________________

The summary includes information about the layers, their outputs and a number of param-

eters of the network. This CNN was slightly modified for the image classification problem

of this thesis: For example, the input layer was changed to accept 100×100 images. Keras

has easy-to-use functions for adding new layers to CNNs. For instance, the first layer is a

convolutional 2D layer and it can be added as follows:

2"mnist_cnn.py" source: https://github.com/keras-team/keras/blob/

d954aef2a2e33532f8725f58183cf605f5c54656/examples/mnist_cnn.py
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model.add(Conv2D(32, kernel_size=(3, 3),

activation=’relu’,

input_shape=(100, 100, 3)))

The first parameter specifies the number of output filters in the convolution. Second, "ker-

nel_size" specifies the dimensions of the kernel matrix. Next, "activation" is the activation

function used in the layer. In this case ReLU (rectified linear unit) is used.

The output layer was also modified to be suitable for the five classes of the dataset. The

altered CNN looks like the following:

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

conv2d_1 (Conv2D) (None, 98, 98, 32) 896

_________________________________________________________________

conv2d_2 (Conv2D) (None, 96, 96, 64) 18496

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 48, 48, 64) 0

_________________________________________________________________

dropout_1 (Dropout) (None, 48, 48, 64) 0

_________________________________________________________________

flatten_1 (Flatten) (None, 147456) 0

_________________________________________________________________

dense_1 (Dense) (None, 128) 18874496

_________________________________________________________________

dropout_2 (Dropout) (None, 128) 0

_________________________________________________________________

dense_2 (Dense) (None, 5) 645

=================================================================

Total params: 18,894,533

Trainable params: 18,894,533

Non-trainable params: 0

_________________________________________________________________
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3.3 Model training and evaluation

The images were split to training and testing sets. The training dataset contains 3303 and the

testing dataset 367 images and both of them have samples from each classes. The images

were left colored so the number of channels stayed at three.

The images were put in folders that were named ’0’, ’1’, ’2’, ’3’ and ’4’ which were in-

terpreted as labels for the images. Pictures of daisies were stored in folder ’0’, dandelions

in ’1’, roses in ’2’, sunflowers in ’3’ and tulips in ’4’. The images were read with Keras’s

flow_from_directory()-function. For example, the training images were read as fol-

lows

train_generator = train_datagen.flow_from_directory(

’train’,

target_size=(100,100),

class_mode=’categorical’,

batch_size = batch_size)

The "target_size"-argument resizes the images to a fixed size. The images from the testing

folder were read in a similar way.

Keras’ fit_generator()-function was used for training the model with the training data

for 10 epochs. The model is validated with the testing data after each epoch. The data is split

into smaller batches. Batch size determines the number of training samples that are sent to

the network on each update cycle (Chollet et al. 2015). For example, when a dataset has 30

samples in total, it can be divided into 6 batches. Each of these batches have 5 samples. On

each epoch, the weights of the model are updated after every batch. Thus, one epoch uses all

30 samples in the dataset and updates the model 6 times (see Figure 12).

model.fit_generator(train_generator,

steps_per_epoch=train_imgs//batch_size,

epochs=10,

verbose=2,

validation_data=validation_generator,
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validation_steps=test_imgs//batch_size)

After each epoch, the accuracy of the model is evaluated with the testing data and the results

are presented after each epoch:

Epoch 1/10

- 95s - loss: 1.4380 - acc: 0.3941 - val_loss: 1.2785 - val_acc: 0.4347

Epoch 2/10

- 93s - loss: 1.2307 - acc: 0.4820 - val_loss: 1.1658 - val_acc: 0.5164

Epoch 3/10

- 92s - loss: 1.1300 - acc: 0.5342 - val_loss: 1.1340 - val_acc: 0.5403

Epoch 4/10

- 91s - loss: 1.0842 - acc: 0.5641 - val_loss: 1.1437 - val_acc: 0.4716

Epoch 5/10

- 91s - loss: 1.0214 - acc: 0.5995 - val_loss: 1.0888 - val_acc: 0.5403

Epoch 6/10

- 91s - loss: 0.9601 - acc: 0.6328 - val_loss: 1.0164 - val_acc: 0.5821

Epoch 7/10

- 91s - loss: 0.8967 - acc: 0.6517 - val_loss: 1.0537 - val_acc: 0.6090

Epoch 8/10

- 91s - loss: 0.8374 - acc: 0.6911 - val_loss: 1.0496 - val_acc: 0.5254

Epoch 9/10

- 91s - loss: 0.7906 - acc: 0.7132 - val_loss: 1.0218 - val_acc: 0.5881

Epoch 10/10

- 91s - loss: 0.7263 - acc: 0.7385 - val_loss: 0.9848 - val_acc: 0.6090

Now that the CNN has been trained with training data, an interesting question is how well

our model performs with the testing data? The trained model was evaluated using Keras’s

evaluate_generator()-function which returns values for loss and accuracy of the

testing data:

score = model.evaluate_generator(validation_generator, 10)

print(’Test loss:’, score[0])

print(’Test accuracy:’, score[1])

This gave the following results:

Test loss: 0.9685436024594662

Test accuracy: 0.6089552247702186

This shows that the trained model was able to classify images in the testing dataset with
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~60.9% accuracy. This was done with a network that was originally designed for a very

different task. Better results could be achieved with more complex network topology and

parameter tuning but those topics are out of scope of this thesis.
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4 Technologies for deep learning applications

Deep learning can be a very effective method to solve difficult problems. However, it is

important that deep learning technologies are easily available to those who want to use them.

Availability and ease of use are important things to consider when choosing the right tools

for solving problems. Data gathering, preprocessing, building of neural networks and results

analysis should be done efficiently without using too much time to learn how to use the

selected tools.

This chapter mentions a few different key technologies that can be used in typical deep

learning applications. Various options exist and each of the following technologies have

alternatives. This chapter is not an extensive review of concurrent technologies and only

some of the most popular options are mentioned.

4.1 Deep learning libraries

Building machine learning models can be a complicated task. Creating a new accurate model

has many steps. The data has to presented in a way that it can be fed to a model. With neural

networks this means encoding it to numerical values. The models have to be built and trained

with functions that require deep mathematical understanding. Making a model to accurately

predict which class a new sample belongs to can be a time-consuming process.

During the recent years, various tools for machine learning have been developed and many

are currently under development. This section mentions two libraries that have become

popular choices for deep learning applications. They make deep learning technology easily

approachable for non-experienced users and also provide powerful tools for solving complex

problems.

4.1.1 TensorFlow

TensorFlow (Martín Abadi et al. 2015) is an open source machine learning framework for nu-

merical computing that was originally developed in Google’s Machine Intelligence Research
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organization. TensorFlow has APIs in Python and C languages. The software is distributed

under Apache License 2.0 so it can be used for private or commercial purposes. TensorFlow

supports Windows, Ubuntu, macOS and Raspbian operating systems. (“GitHub - tensor-

flow/tensorflow: An Open Source Machine Learning Framework for Everyone” 2019)

In TensorFlow, data is presented as multidimensional arrays. These arrays are called "ten-

sors". Tensors are transformed with mathematical operations that can be computed with

multiple CPUs or GPUs. TensorFlow’s use cases are not limited only to deep learning appli-

cations. (“GitHub - tensorflow/tensorflow: An Open Source Machine Learning Framework

for Everyone” 2019)

4.1.2 Keras

Keras is an API for building neural networks with Python programming language. It is a

high-level interface that simplifies the process of building and evaluating deep neural net-

works. Keras works as an interface between machine learning libraries and defines how

deep learning models can be implemented and trained. Both CNNs and recurrent neural net-

works (RNNs) can be built with Keras and computation can be done on both CPU and GPU.

There are three different backend engine options for Keras: TensorFlow, CNTK or Theano.

Of these three, TensorFlow is the officially recommended option. (Chollet et al. 2015)

In Keras, neural networks are built by stacking layers on top of each other. The models

are then compiled and fitted with the training data. Testing a model’s accuracy with test-

ing data and making predictions with new data samples requires minimal coding. This is

achieved with Keras’s sequential model. "Keras functional API" can be used for building

more complex network architectures. (Chollet et al. 2015)

4.2 Cluster computing and stream processing

Cluster computing has become a common way to achieve scalable machine learning. In order

to solve problems with big data efficiently, more powerful tools are needed and a demand for

running application instances in a distributed way has emerged (Garcia et al. 2016).
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A need for real time analysis of data is a typical requirement in many data science projects.

For example, reading data from social media in real time is a common scenario. Many tools

exist for handling these kind of data streams. This section mentions two popular tools for

these kind of data gathering tasks.

4.2.1 Apache Storm

Apache Storm is an open source software with high scalability for online stream processing.

Example use cases include real time data analytics and machine learning. It integrates with

any queuing and database systems and it can work with any programming language. Apache

Storm is actively developed: version 2.0.0 was released in May 2019. (“Apache Storm”

2019)

4.2.2 Apache Spark

Apache Spark is a popular cluster-computing framework used in data analytics. It has been

open sourced and is being distributed under Apache License 2.0. Spark can be described as a

general purpose framework that combines big data processing with analytics tools (“Apache

Spark - Unified Analytics Engine for Big Data” 2019). It uses distributed file system (RAM)

instead of disk-based read and write operations which makes fast computation possible. This

is achieved with technology called RDD (Resilient Distributed Datasets) (Garcia et al. 2016).

Spark has four main libraries: Spark SQL, Spark Streaming, MLlib and GraphX (see Figure

13). From the machine learning perspective, "MLlib" is an interesting library. It is one of

the most popular machine learning library for big data (Garcia et al. 2016).

Apache Spark has competitors especially in streaming side such as Apache Storm and Apache

Flink (Garcia et al. 2016). Chintapalli et al. (2016) made a comparison between Spark, Storm

and Flink on their default settings and concluded that each of them have their advantages and

disadvantages. They focused on streaming computation capabilities and found out that main

difference is that Spark can handle higher throughput but it comes with the expense of higher

latencies. Qian et al. (2016) made similar observations in their research of benchmarking

Spark, Storm and Samza, which is another streaming platform for handling real-time data

32



Figure 13. Apache Spark (“Apache Spark - Unified Analytics Engine for Big Data” 2019)

streams.

4.3 Messaging systems

In order to collect and analyze data from several different sources effectively, a system to

handle messages between the data sources and the analyzer is needed. A common solution

for this is to use a message broker. Message brokers are convenient in cases where vast

amounts of data need to be sent between applications. Their main purpose is to accept

and forward messages to their recipients. Throughput and reliability are the key aspects

that need to be considered when deciding between message broker protocols (John and Liu

2017). For example, AMQP (asynchronous message queuing protocol) is one protocol used

for communication. This protocol can be implemented with multiple software, RabbitMQ

being one of them. Another popular choice in modern applications is to use Apache Kafka,

which is a software that uses its own messaging protocol.
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This section briefly introduces these two example software that can be used as a messaging

system between data sources and target applications.

4.3.1 RabbitMQ

RabbitMQ is a popular open source message broker software that supports various messag-

ing protocols, AMQP being one of them. It runs on Windows, Linux and MacOS operat-

ing systems and supports common programming languages such as Java, Python and PHP.

(“RabbitMQ” 2019)

According to a research by John and Liu (2017), testing AMQP with RabbitMQ showed that

latency is lower than Kafka’s implementation. They also note that AMQP may be the better

choice for applications where security is considered an important quality attribute.

4.3.2 Apache Kafka

Apache Kafka is a streaming platform that can process and store data streams in real time.

Kafka can also be used as a messaging system (“Apache Kafka” 2019). John and Liu (2017)

compared Kafka and AMQP protocols and found out that Kafka has higher throughput and

is well-suited for cases where performance is more important than reliability. They also

concluded that if preservation of all the data is crucial (e.g. anomaly detection), then AMQP

is the better option.

Kafka is based on publish-subscribe model but it also shares some benefits of a queuing

model: Processing of data can be scaled as in queue-based systems but it also allows message

broadcasting to multiple users simultaneously (“Apache Kafka” 2019). Figure 14 demon-

strates how Kafka clusters connect producers and consumers with each other.

Kafka has four core APIs written in Java but the APIs are also available in various other

languages (“Apache Kafka” 2019):

• Producer API: Publishes streams of data to Kafka cluster

• Consumer API: Allows consumers to read streams of data stored in topics

• Streams API: Allows an application to act as a stream processor that takes an input
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from one or multiple topics and creates an output to another topic.

• Connectors API: Enables connection between Kafka other systems.

Figure 14. Kafka clusters are based on publish-subscribe pattern. (“Apache Kafka” 2019)

4.4 Deep learning platforms

Various tools are needed in order to utilize deep learning effectively. Data has to be acquired

and cleansed, deep learning models have to be built, the results need to be visualized in

an easily understandable way etc. Numerous platforms have been created for managing

the deep learning project workflow in more efficient way. This section mentions two of

these platforms: IBM Watson Studio and Databricks Unified Analytics Platform. These

platforms were chosen because they offer good support not only for deep learning but also

for other kind of machine learning applications. Both platforms are user friendly and have

plenty of support material available so it’s easy to get started with building machine learning
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applications with them.

4.4.1 IBM Watson Studio

IBM Watson Studio is a computing platform for data science and machine learning appli-

cations. It can be deployed in a cloud environment (IBM Watson Studio Cloud) or a local

machine (IBM Watson Studio Desktop). The platform offers tools for building and training

machine learning models and data analysis and it can be integrated with open-source deep

learning frameworks such as TensorFlow and Keras. IBM Watson Studio also provides a

drag-and-drop interface for building deep learning models. Figure 15 shows a view of the

platforms UI. (“Watson Studio - Overview | IBM” 2019)

Figure 15. A screenshot of a project overview page in IBM Watson Studio Cloud.

4.4.2 Databricks Unified Analytics Platform

Databricks Unified Analytics Platform provides a platform for data analytics projects and

tools for implementing deep learning models at scale. Managing libraries of computing

clusters can be done with an easy-to-use UI. Getting started with Databrick’s platform is
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quite easy as there are plenty of training material available. The main features of the platform

can be found from the dashboard view (see Figure 16).

More about the Databricks’s platform will be discussed in Chapter 5 where it is used for a

general image classification problem.

Figure 16. Screenshot of the dashboard of the Community Edition of Databricks Unified

Analytics Platform.
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5 Example implementation

In this chapter, some of the technologies mentioned in previous chapter are used to create an

example solution for a typical image classification problem. The following example imple-

mentation largely follows the tutorials from “Deep Learning Pipelines on Databricks” (2017)

and Vázquez (2018).

Community Edition of Databricks Unified Analytics Platform was chosen as a platform be-

cause of its affordability and ease of use. The codes were run on a notebook running in a 5.3

ML cluster with Apache Spark version 2.4.0 and Scala 2.11 and having 6 GB of RAM.

5.1 Setting up a notebook

In order to run codes in a notebook, it has to be attached to a computing cluster. The Commu-

nity Edition of Databricks allows users to run only one cluster at a time but it is sufficient for

demonstrating purposes. "Runtime: 5.3 ML (Scala 2.11, Spark 2.4.0)" -cluster was created

for the notebook. An additional library, "1.5.0-spark2.4-s_2.11" -release of Deep Learning

Pipelines was installed on the cluster. The notebook was then attached to the newly created

cluster.

5.2 Loading images

This example implementation uses the flower data introduced in section 3.1. Images were

first downloaded from TensorFlow website 1 to a local machine. After that, all the image

data was uploaded to Databricks platform’s filesystem (dbfs) using its "Add data" -feature.

The file structure of the newly created directory can be viewed as follows

dbutils.fs.ls("/FileStore/tables/flower_photos/")

Out[1]:

[FileInfo(path=’dbfs:/FileStore/tables/flower_photos/daisy/’, name=’daisy/’, size=0),

FileInfo(path=’dbfs:/FileStore/tables/flower_photos/dandelion/’, name=’dandelion/’, size=0),

FileInfo(path=’dbfs:/FileStore/tables/flower_photos/roses/’, name=’roses/’, size=0),

1http://download.tensorflow.org/example_images/flower_photos.tgz
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FileInfo(path=’dbfs:/FileStore/tables/flower_photos/sample/’, name=’sample/’, size=0),

FileInfo(path=’dbfs:/FileStore/tables/flower_photos/sunflowers/’, name=’sunflowers/’, size=0),

FileInfo(path=’dbfs:/FileStore/tables/flower_photos/tulips/’, name=’tulips/’, size=0)]

In addition, a folder for new testing images were created. Three of the images in "sample"-

folder were downloaded from https://www.publicdomainpictures.net/. Two

of the sample pictures ("dandelion1.jpg" and "rose1.jpg") are original as they were taken

specifically for this thesis by the author. All of the sample images can be seen in Figure 19

After the images are loaded to dbfs, a Spark dataframe is created of the sample photos:

image_df = spark.read.format("image").load("dbfs:/FileStore/tables/flower_photos/sample/")

The images in the dataframe can be viewed with display(image_df):

Figure 17. Sample photos viewed in a Databricks notebook.

Next, dataframes are created for each class. The classes were labeled as shown in the table

below:
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Flower type Class label

daisy 0

dandelion 1

rose 2

sunflower 3

tulip 4

The images were read with "sparkdl"-package’s "imageIO"-module and labeled with Spark’s

lit-function:

from pyspark.sql.functions import lit

from sparkdl.image import imageIO

daisy_df = imageIO.readImagesWithCustomFn("dbfs:/FileStore/tables/flower_photos/daisy/",

decode_f=imageIO.PIL_decode).withColumn("label", lit(0))

tulips_df = imageIO.readImagesWithCustomFn("dbfs:/FileStore/tables/flower_photos/tulips/",

decode_f=imageIO.PIL_decode).withColumn("label", lit(1))

roses_df = imageIO.readImagesWithCustomFn("dbfs:/FileStore/tables/flower_photos/roses/",

decode_f=imageIO.PIL_decode).withColumn("label", lit(2))

sunflowers_df = imageIO.readImagesWithCustomFn("dbfs:/FileStore/tables/flower_photos/sunflowers/",

decode_f=imageIO.PIL_decode).withColumn("label", lit(3))

tulips_df = imageIO.readImagesWithCustomFn("dbfs:/FileStore/tables/flower_photos/tulips/",

decode_f=imageIO.PIL_decode).withColumn("label", lit(4))

The data is then divided into training and testing data randomly. The split was chosen to be

60% to the training and 40% to the testing dataframes. The dataframes are then combined to

form two dataframes with similar split.

daisy_train, daisy_test = daisy_df.randomSplit([0.6, 0.4])

dandelion_train, dandelion_test = dandelion_df.randomSplit([0.6, 0.4])

roses_train, roses_test = roses_df.randomSplit([0.6, 0.4])

sunflowers_train, sunflowers_test = sunflowers_df.randomSplit([0.6, 0.4])

tulips_train, tulips_test = tulips_df.randomSplit([0.6, 0.4])

train01 = daisy_train.unionAll(dandelion_train)

test01 = daisy_test.unionAll(dandelion_test)

train012 = train01.unionAll(roses_train)

40



test012 = test01.unionAll(roses_test)

train0123 = train012.unionAll(sunflowers_train)

test0123 = test012.unionAll(sunflowers_test)

train01234 = train0123.unionAll(tulips_train)

test01234 = test0123.unionAll(tulips_test)

Dataframes "train01234" and "test01234" now contain all the samples of the dataset.

5.3 Using the model to make predictions

In this section, the model that was trained in section 3.3 is used to predict classes for images

located in the sample folder.

The trained model, "flower_cnn2.h5", was uploaded to dbfs in a similar way than the images

in section 5.2. DL Pipelines’ KerasImageFileTransformer is used to create a transformer that

is used to apply the model to the images in the sample folder.

transformer = KerasImageFileTransformer(inputCol="uri",

outputCol="predictions",

modelFile=’/tmp/flower_cnn2.h5’,

imageLoader=loadAndPreprocess,

outputMode="vector")

A helper function was created for loading images:

def loadAndPreprocess(uri):

image = img_to_array(load_img(uri, target_size=(100, 100)))

image = np.expand_dims(image, axis=0)

return image

A new predictions dataframe is created from the transformer:

predictions_df = transformer.transform(uri_df)
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The dataframe can now be displayed with display(predictions_df):

Figure 18. Prediction dataframe displayed in Databricks

The predicted classes are shown in the last column of the "predictions" dataframe. The model

was able to classify four out of five testing images correctly. The image of a dandelion was

mistaken for a daisy, possibly because of the white background of the image.

Figure 19. Images in "sample"-folder used for testing

5.4 Transfer learning with Deep Learning Pipelines and InceptionV3

Sometimes building and training neural networks from scratch is not necessary. In many

cases, transfer learning can help to solve problems effectively. In this section, a pre-trained

CNN is used to recognize images from two different classes. Deep Learning Pipelines and

InceptionV3 are used as demonstrated in “Deep Learning Pipelines on Databricks” (2017)

and Vázquez (2018).

Spark ML Pipelines is a set of APIs that make using Spark dataframes for machine learning

tasks easier. An ML pipeline is a representation of a workflow that consists of several algo-

rithms used for machine learning. It has two main components: transformers and estimators.
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According to “ML Pipelines - Spark 2.4.2 Documentation” (2018), "a transformer is an al-

gorithm which can transform one DataFrame into another DataFrame" whereas an estimator

is defined as "an algorithm which can be fit on a DataFrame to produce a Transformer". A

pipeline can run several of these algorithms in a sequence. (“ML Pipelines - Spark 2.4.2

Documentation” 2018)

Databricks DL Pipelines is an open-source framework for deep learning. It enables deep

learning models built with Keras to be scaled out with Spark (“Deep Learning Pipelines for

Apache Spark” 2019).

In this example, a simple ML pipeline is created from a DL Pipelines’ DeepImageFeatur-

izer and Spark MLlib’s logistic regression algorithm. A pre-trained CNN, InceptionV3, is

used. It has been trained to detect 1000 different classes for images but it can be used for

other types of classification tasks too. The last layer of the network can be removed with

DeepImageFeaturizer, which is a class from "sparkdl" module. It pops the last layer of a

pre-trained Keras model (InceptionV3, Xception, ResNet50, VGG16 and VGG19 are cur-

rently supported) (“Deep Learning Pipelines for Apache Spark” 2019). A logistic regression

algorithm is used in the last layer of the network to calculate probabilities for each class.

from pyspark.ml.classification import LogisticRegression

from pyspark.ml import Pipeline

from sparkdl import DeepImageFeaturizer

# Combines a featurizer with a logistic regression algorithm

featurizer = DeepImageFeaturizer(inputCol="image",

outputCol="features",

modelName="InceptionV3")

lr = LogisticRegression(maxIter=10, regParam=0.05,

elasticNetParam=0.3, labelCol="label")

p = Pipeline(stages=[featurizer, lr])

# model is fitted with the training data using a Spark ML pipeline

p_model = p.fit(train_df)
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The model has now been trained with the training dataframe.

5.4.1 Model evaluation

The accuracy of the model was evaluated with Spark’s MulticlassClassificationEvaluator:

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

# model evaluation

tested_df = p_model.transform(test_df)

evaluator = MulticlassClassificationEvaluator(metricName="accuracy")

print("Test accuracy = " +

str(evaluator.evaluate(tested_df.select("prediction", "label"))))

This gave an accuracy of ~0.968 for the testing set. It shows that the images in the testing set

can be classified quite accurately with a model that was not specifically trained for detecting

differences between tulips and daisies. However, the original InceptionV3 model was trained

with images of daisies. Therefore, it can tell a difference between an image with the same

label that was used in the training process and an image it has not learned to recognize.

5.4.2 Making predictions

Predicting classes for images can be done with transformers. In this section, predicting

classes for three images in a sample folder is demonstrated (Figure 20 shows the images as

a dataframe). DL Pipelines’ DeepImagePredictor is used as a transformer in the pipeline.

from sparkdl import DeepImagePredictor

# sample images are read into a dataframe

image_df = spark.read.format("image")

.load("dbfs:/FileStore/tables/flower_photos/sample2/")

predictor = DeepImagePredictor(inputCol="image",

outputCol="predicted_labels",
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modelName="InceptionV3",

decodePredictions=True,

topK=10)

predictions_df = predictor.transform(image_df)

Figure 20. Images in predictions dataframe. These images are samples of TensorFlow’s

"tf_flowers"-dataset that was introduced in Section 3.1.

The output column was named to "predicted_labels". The results can be viewed by selecting

it from the predictions dataframe:

predictions_df.select("predicted_labels").show(truncate=False,

n=3)

|predicted_labels |

+-----------------------------------------------------------------------------------------+

|[[n11939491, daisy, 0.8600176], [n02219486, ant, 8.88716E-4],

[n07930864, cup, 6.500126E-4], [n02107908, Appenzeller, 6.187557E-4],

[n03016953, chiffonier, 5.351678E-4], [n02206856, bee, 5.322351E-4],

[n01756291, sidewinder, 5.2060944E-4], [n01795545, black_grouse, 5.1415246E-4],

[n02071294, killer_whale, 5.036278E-4], [n02190166, fly, 5.01368E-4]]|

|[[n04522168, vase, 0.5255079], [n03991062, pot, 0.07667497],

[n07930864, cup, 0.042901672], [n03476684, hair_slide, 0.037432313],

[n03443371, goblet, 0.018425234], [n03950228, pitcher, 0.015975073],

[n04476259, tray, 0.011403176], [n03482405, hamper, 0.009134999],

[n03930313, picket_fence, 0.008365866], [n02909870, bucket, 0.006912277]]|

|[[n11939491, daisy, 0.89181423], [n02219486, ant, 0.0012404543],

[n02206856, bee, 8.130483E-4], [n02190166, fly, 6.0380466E-4],

[n02165456, ladybug, 6.005448E-4], [n02281406, sulphur_butterfly, 5.320976E-4],
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[n04599235, wool, 4.665371E-4], [n02112018, Pomeranian, 4.6253452E-4],

[n07930864, cup, 4.4006197E-4], [n02177972, weevil, 4.243419E-4]]|

This shows the 10 most probable classes for each image. For example, the model is ~86.0%

sure that the first image in the sample dataframe has a daisy in it. The model identifies the

second image as a vase with ~52.6% certainty and the third image is most likely (~89.2%) a

picture of a daisy.
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6 Discussion

As previous research has shown, deep learning has a lot of potential to solve difficult prob-

lems. It has already proven to be an effective method to approach certain problems in fields

such as medical diagnosis or natural language processing. There is a high demand for deep

learning experts and it’s safe to say that people who master various machine learning meth-

ods will be in high-demand in the future. Companies and organizations have access to a vast

amount of data but making use of it is always a challenge. For example, understanding and

predicting customer behavior is something that many companies want to do better. Defining

a problem is an important first step but deciding how to solve it is also a relevant question.

This paper demonstrated how to use Databricks Unified Analytics Platform with Keras mod-

els and Spark dataframes. These tools proved to be easy-to-use options for a simple image

classification use case. Using a pre-built CNN was simple and training it with a dataset was a

straightforward process. Accuracy of the model (~60.9%) is was not high but it was achieved

with making only small changes to the network. Transfer learning with a pre-trained CNN

also gave good results but more complex examples should be examined. The amount of data

used in this example was quite small, only 3670 samples. It doesn’t really show the benefits

of distributed nature of Spark dataframes but it is still an adequate dataset for demonstration

purposes.

An extensive research of available tools for deep learning should be done. Thorough evalua-

tion of their features and performance would be useful for people who are interested in mak-

ing use of deep learning in their projects. New tools are being developed and existing ones

are being improved so keeping up with the latest developments can be challenging. It should

be noted that image classification is only one type of a problem that can be approached with

deep learning. Therefore, testing how easily the tools demonstrated in Chapter 5 are suited

for other problems, such as spoken language recognition or anomaly detection in real-time

data streams could be an interesting project.
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7 Conclusion

A typical deep learning data science project workflow has many steps. Choosing tools for the

task is one of them. The goal of this thesis was to provide some basic knowledge about the

theoretical aspects of deep learning and examine on how to apply deep learning in practical

applications with modern deep learning tools. Some technologies were introduced and a

simple example of image classification with deep learning was demonstrated. A pre-built

CNN was modified to handle the dataset that was used in this thesis. In addition, transfer

learning with a pre-trained CNN was shown. The tools used in Chapter 5 proved effective

for a simple task but they should be capable of handling much larger datasets too.

It should be noted that there are many other tools available and some of them may suit

different use cases better than others. In any case, many capable options exist for data scien-

tists and engineers to use for various deep learning applications. Many of the current tools

are open source software so getting started with deep learning is now affordable and easily

available for everybody. Deep learning has proven to be an effective method to solve difficult

problems and it will be interesting to see what kind of new developments will emerge in the

coming years.
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