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ARTICLE INFO ABSTRACT

Keywords:
Independent component analysis (ICA)

Background: Stability of spatial components is frequently used as a post-hoc selection criteria for choosing the
dimensionality of an independent component analysis (ICA) of functional magnetic resonance imaging (fMRI)
fMRI ) data. Although the stability of the ICA temporal courses differs from that of spatial components, temporal sta-
Tensor clustering bility has not been considered during dimensionality decisions.
Isvizzle}lnz,r der New method: The current study aims to (1) develop an algorithm to incorporate temporal course stability into
dimensionality selection and (2) test the impact of temporal course on the stability of the ICA decomposition of
fMRI data via tensor clustering. Resting state fMRI data were analyzed with two popular ICA algorithms,
InfomaxICA and FastICA, using our new method and results were compared with model order selection based on
spatial or temporal criteria alone.
Results: Hierarchical clustering indicated that the stability of the ICA decomposition incorporating spatio-
temporal tensor information performed similarly when compared to current best practice. However, we found
that component spatiotemporal stability and convergence of the model varied significantly with model order.
Considering both may lead to methodological improvements for determining ICA model order. Selected com-
ponents were also significantly associated with relevant behavioral variables.

Comparison with Existing Method: The Kullback-Leibler information criterion algorithm suggests the optimal
model order for group ICA is 40, compared to the proposed method with an optimal model order of 20.
Conclusion: The current study sheds new light on the importance of temporal course variability in ICA of fMRI
data.

1. Introduction spatiotemporal patterns that reflect both signals of interest and arti-

facts. This approach has been widely used to analyze multiple mod-

Data-driven approaches for neuroimaging data analysis are useful
for researchers because they do not require an a-priori hypothesis.
Independent Component Analysis (ICA), the most commonly used ap-
proach, separates a multivariate signal into independent non-Gaussian
sub-components (Bell and Sejnowski, 1995), and identifies

* Corresponding author.

alities of neuroimaging with either multiple timepoints in a temporal
series or multi-subject data in a subject-series, including structural
Magnetic Resonance Imaging (sMRI) (Chen et al., 2014), functional
MRI (fMRI) (Constantinescu et al., 2017; Freeman et al., 2014; Glasser
et al., 2017; Hermans et al., 2011; Richiardi et al., 2016; Rose et al.,
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2017; Seifritz et al., 2002; Tavor et al., 2016), Diffusion Tensor Imaging
(DTI) (Wu et al., 2015) and multi-modal MRI data fusion (Calhoun
et al., 2006; Sui et al., 2012). Despite its widespread use in neuroima-
ging, there is limited standardization for ICA methodology in the field
that limits the replicability of previous studies and comparisons be-
tween research protocols.

For ICA decompositions, the model order (number of extracted
components) is an important factor that effects the reliability of the
results (Abou-Elseoud et al., 2010; Allen et al., 2012; Li et al., 2007).
Because brain function is complex, it is impossible to know the “true”
number of components within the brain and previous work has shown
that different brain networks are split at higher dimensionalities,
whereas others do not appear at lower dimensionalities at all. Further
investigation of the methods used to determine model order in the ICA
decomposition are needed to improve replicability and standardization
between studies.

Currently, there are no standardized methods for determining the
optimal dimensionality. For any one ICA algorithm, information theo-
retic criteria are typically used to determine model order, and the sta-
bility of components may be assessed post-hoc as additional validation
of the model order. Different ICA algorithms produce different optimal
model orders from the same data. The stability of the ICA algorithm
itself is partially based on the convergence of the decomposition. Self-
adaptive ICA algorithms converge to a local minima (Himberg et al.,
2004), and algorithms which fail to converge over many iterations are
considered unstable. The convergence performance can vary as the
number of iterations required to converge increase, which can lead to
unreliable spatial maps or time courses across analyses of the same data
that limit the interpretability and reproducibility of findings.

For ICA of multi-subject, or group, fMRI studies, data from all
participants can be temporally concatenated, spatially concatenated, or
concatenated by spatiotemporal tensor (Shi et al., 2017) prior to ap-
plying ICA. Post-hoc assessment of the stability of the ICA decomposi-
tion is traditionally evaluated on the basis of resulting IC spatial pat-
terns, as opposed to their corresponding temporal courses. There is
limited research addressing the effect of temporal courses on ICA sta-
bility. BrainVoyager (Formisano et al., 2004), FMRIB Software Library
(FSL; Beckmann and Smith, 2004; Beckmann et al., 2005), and Group
ICA of FMRI Toolbox (GIFT; Calhoun et al., 2001) are three widely used
software packages used for ICA of fMRI data. BrainVoyager and FSL do
not include functionality for post-hoc evaluation of the stability of the
algorithm, whereas GIFT (Calhoun et al., 2001) includes assessment of
the stability of the ICA via resulting spatial patterns using ICASSO
(Himberg et al., 2004). However, ICASSO does not assess the stability of
the inverse of the coefficient matrices (i.e., temporal courses for fMRI
data analysis). Although some studies have proposed additional
methods to evaluate the stability of ICA algorithsm (Wisner et al., 2013;
Meindl et al., 2010), none address the stability of temporal data.

Both the resulting spatial maps and their temporal courses provide
important information in the context of fMRI research (Tian et al.,
2013). Spatial maps provide information about brain network con-
nectivity, and allows for in vivo mapping of neural circuitry in the
human brain (Zuo et al., 2010). The temporal courses of the in-
dependent component spatial maps are crucial for interpreting each IC
spatial map(Song et al., 2015, 2014) e.g., as reflecting a brain network,
a motion artifact, or other noise-related signals. E.g., the temporal
courses that are highly correlated with stimulus presentation during
tasks reflect task networks, while those highly correlated with motion
time courses reflect subject motion. Alternatively, IC temporal courses
may be comprised of low-frequency oscillatory signals associated with
resting state networks (Jafri et al., 2008). Furthermore, time course
variability has also been associated with pathological processes, such as
chronic pain (Malinen et al., 2010). Although the importance of tem-
poral courses is known, it remains unclear whether instability in tem-
poral courses may also be useful for assessing the performance of the
ICA decomposition and replicability of findings.
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In order to address this gap in the literature, we propose a new
method, Tensor Clustering, which will allow us to assess both temporal
and spatial stability in the ICA decomposition. We create a “tensor” by
fusing information from both temporal courses and spatial patterns
mathematically. Then, we apply hierarchical cluster analysis within the
tensor space to evaluate the stability of ICA decomposition. The aims of
the present study are to (1) determine if the use of spatiotemporal in-
formation affects the stability and/or convergence of a given ICA al-
gorithm and (2) to evaluate the incremental utility of incorporating
spatiotemporal tensors into ICA decomposition. The performance of
ICA of spatiotemporal fMRI data was assessed for two popular ICA al-
gorithms, InfomaxICA and FastICA, using both simulated and in vivo
human fMRI data.

2. Method
2.1. ICA model

When ICA is used to decompose 4-D fMRI data (a timeseries of 3D
brain images), it is usually assumed that the measured fMRI signals are
produced by multiple source signals. This can be expressed by the fol-
lowing noise-free ICA model:

Z = AS (€9)

Where, Z € RMM are the fMRI data, N is the number of image time-
points and M is the number of voxels in each fMRI image. A € RN*R
denotes the mixing matrix, with each column representing the temporal
course of each source. R is the number of extracted components (i.e.,
model order) for the ICA algorithm. S € R®*M represents the source
matrix, where each row of the matrix is a spatial map of each source.
ICA is an algorithm that estimates matrices A and S in a purely data-
driven fashion. Group ICA (GICA) is usually adopted for multi-subject
fMRI data analysis. For large data, such as fMRI data, the data are ty-
pically reduced prior to ICA using principal component analysis (PCA).
Reduction in this manner greatly reduces the size of the data and the
number of parameters that must be estimated during ICA. There are
differences among BrainVoyager, FSL, and GIFT in this data reduction
step prior to GICA of multi-subject fMRI data; with BrainVoyager and
GIFT implementing data reduction steps at the single-subject level and
again at the group-level (on concatenated reduced data) and FSL im-
plementing only group-level PCA data reduction steps. Considering
both subject- and group-level PCA-based data reduction, after data re-
duction at the individual level, the reduced data from individual sub-
jects are concatenated temporally, then the aggregate data matrix is
decomposed by ICA (details see Appendix. A).

The ICA model in Eq. (1) can also be expressed by the sum of a rank-
1 matrix:

Z = a;08, + @08, + ---+a,os, + ---+agosg 2

Where, a, € RN is the r column of A, e.g., the temporal course of the
r' component. s, € RM*! is the r* row of S, e.g., the spatial pattern or
distribution of r* component. Previous research (Cong et al., 2011) has
shown that the estimation of a, or s, can be biased by magnitude and
polarity indeterminacy. However, the rank-1 matrix E" in Eq. (3) can
be estimated accurately (See Appendix. B).

E" = a,os, 3

The rank-1 matrix E" € RVM is the outer product of a temporal
course and its corresponding spatial distribution. For GICA, the rank-1
matrices of different subjects are unique. For r* component and m*
subject, the rank-1 matrix is calculated as follows:

E;; = [VmeW_l]r A 4)

Where the calculation of [V;,G,, W '], is from Eq. (A.6). V,, is the data
reduction matrix of the m™" subject. G is the data reduction matrix for
the aggregate data matrix in temporal concatenated GICA. W € RR®*R g
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the unmixing matrix estimated by the ICA algorithm. y, is the r'* spatial
component estimated by the ICA algorithm. In this study, the stability
of E,, was evaluated. The information from both temporal courses and
spatial distributions was used to assess the stability of ICA algorithm.

2.2. Convergence of ICA algorithm

InfomaxICA algorithm. For InfomaxICA (Bell and Sejnowski,
1995), the formula used for iterations is as follows:

AW o« [WT1 + (1 — 2y)xT %)

Where x is an input vector, y is an output vector from monotonic
transformation by a nonlinear function, 1 is a vector of ones. W is the
unmixing matrix for the ICA decomposition. In each Infomax ICA de-
composition, the W is initialized randomly, and updated based on Eq.
(5). Stochastic gradient ascent is used to find the unmixing matrix W,
while the sigmoidal nonlinearity provides necessary higher-order sta-
tistical information (Esposito et al., 2002; Makeig et al., 1997). AW is
the change in W between iterations. The algorithm converges when the
norm of AW is less than some number, for example 107° is the default of
InfomaxICA algorithm implemented in MATLAB (Mathworks, Natick,
MA). The W at this time is the unmixing matrix of ICA algorithm for
given data. The number of iterations updated in this process determines
the number of steps required for algorithm convergence. For In-
fomaxICA implemented in MATLAB, the default iteration limit is 512,
after which the process terminates if convergence is not reached.

FastICA algorithm. For FastICA (Hyvarinen, 1999), the formula
used for iterations is as follows:

W; = E[zg(WTz)] — E[g (WTz)|W (6)
W; = (WTWZ)_U °W; 7
AW =W; — W, ®)

where g(+) is a nonlinear function related to the probability density
function of the source signals. g'(~) is the first derivative of g(+). E[]
denotes the expectation of the variable. In this study, we used a sym-
metric approach, with the nonlinearity being tanh (Correa et al., 2007).

To study the convergence of each ICA algorithm, the ICA algorithm
was run 50 times after choosing appropriate parameters. The total
number of runs that converged was recorded as an index of perfor-
mance of the ICA algorithm.

2.3. Hierarchical cluster analysis of tensors

The stability of spatial and temporal information from ICA is dif-
ferent in practice. To calculate temporal courses of ICA components, a
matrix inversion is used, which magnifies the instability of their esti-
mation. We show this as follows. First, a matrix W € R?*% was gen-
erated to represent the unmixing matrix from ICA decomposition with a
dimensionality of 20, and then noise was added to W (16®-20" com-
ponents) to represent the effect of ICA decomposition instability on the
unmixing matrix, which together is W _noisy. The coefficient matrices
A and A _noisy are calculated via the inverses of W and W _noisy,
respectively. The correlation between A and A _noisy represents an
index of stability of the temporal courses. As shown in Fig. 1, the cor-
relation coefficients of W and W _noisy are equal to 1 for the first 15
components and less than 1 for the last 5 components. However, the
correlation coefficients between A and A _noisy are less than 1 for all
components, which represents instability. The example shows that the
stability of the matrix inversion is sensitive to noise, which directly
impacts the temporal courses.

Tensor Clustering was applied to assess the stability of E", the outer
product of a temporal course and its corresponding spatial distribution.
Fig. 2 shows an illustration of the tensor for assessing fMRI ICA results.
Multiple decompositions are ran using each ICA algorithm (InfomaxICA
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or FastICA). Each independent component for each decomposition has a
temporal course and a corresponding spatial map. The outer-product of
them is a rank-1 matrix. The number of rank-1 matrices is R X K when
the model order is R and the same algorithm is run K times. The set of
rank-1 matrices is stacked into a tensor. The stability of the rank-1
matrices can then be assessed with Hierarchical Clustering Analyses in
tensor space, which identifies clusters based on the similarity of the
rank-1 matrices. Ideally, R classes (or clusters) comprised of the same
component from the K different runs will be identified. This process is
similar to ICASSO, but incorporates temporal information via the rank-
1 matrix.

The calculation of the similarity matrix of E" used in Tensor
Clustering can be computed from the following formula:

S (E'-EYOE!-E)
VI E -EY (EI-E)y ©

Sim; =

Where Simj represents the value of i row and j™ column element in
the similarity matrix, with Sim € RR¥XRK being the similarity matrix.
E' and E’ are the rank-1 matrix reconstructed from temporal course
and corresponding spatial distribution. () represents Hadamard pro-
duct. Because of the standardization and orthogonalization of the ICA,
the formula can be simplified as follows:

Sim; = ) (E'QE’) = )] [(a; o)+ (@ o5)] = Y, (@(Oa) ) (:Os)
(10)

Where E' = a;os;, E/ = ajos;, are reconstructed rank-1 matrices. The
formula shows that the similarity matrix used for Tensor Clustering can
be expressed as the Hadamard product of the similarity matrix for the
temporal courses and the spatial distribution (details can be found in
Appendix. C). Using Eq. 10 to estimate the similarity matrix reduces the
size of computer memory necessary for clustering and improves the
speed of the algorithm.

Tensor clustering will result in R classes, ideally equal to the
number of components estimated. For each class, there should be K
components (e.g., each class should cluster together all 50 runs of the
same component for a given class, with one class per independent
component). The degree of intra-class similarity should be very high if
each class consists of all 50 runs for a single component, whereas the
inter-class similarity inter-class should be very low if each class re-
presents a single stable distinct independent component. The cluster
quality index, or I, calculated as the difference between average intra-
class similarities and average inter-class similarities, can be used as an
index to evaluate the stability of the results (Himburg et al., 2004) :

Iq(r) = S(”)im - S(r)ext an

S(r)in: represents the mean intra-class similarity, S(r)ex represents the
mean inter-class similarity. r = 1,2, ---,R, represents r* component of
ICA decomposition. While I, can be calculated from tensor clustering or
clustering based on the component or coefficient matrices, e.g., in-
dependent component spatial maps or temporal courses respectively,
there are no constraints on the independence of the temporal courses
for spatial ICA. Thus, we use intra-class similarity to compare tensor,
spatial, and temporal clustering with each other as a function of model
order.

There is a slight difference in the stability analysis for subject-level
versus group ICA. For subject-level ICA, the reconstructed rank-1 matrix
is calculated with coefficient and component matrices. For GICA, it is
necessary to reconstruct the rank-1 matrix using Eq. 4, which allows the
stability of each subject’s rank-1 matrix to be calculated. After the
stability index of each component is calculated, the average of all
components can be used as a stability index for the ICA algorithm at a
given dimensionality.
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subject-level ICA; for GICA, the temporal dimension is number of timepoints x
number of subjects long (e.g., data are temporally concatenated).

2.4. Stability of components across model orders

Hierarchical cluster analysis was applied to all components, for each
model order, to determine how independent component stability varied
with ICA dimensionality. The clustering analysis was repeated with
different dimensionalities to obtain the stable components with the
specific rank-1 matrix component E (i.e., spatiotemporal tensor) used
as the template. The similarity with the template for temporal and
spatial information alone was also calculated. Finally, components were
compared to 10 replicable brain networks (Damoiseaux et al., 2006), to
determine the validity of results.

2.5. Simulated data

Simulated data constructed to compare tensor clustering with
standard methods. Data were generated through the linear mixing of
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Fig. 3. The spatial distribution and temporal courses of the source signals used
to construct simulated data.

source signals and noise (SNR: 20 dB)., with source signals as shown in
Fig. 3 (http://mlsp.umbc.edu/simulated_fmri_data.html). The simu-
lated data were decomposed with InfomaxICA and FastICA 50 times,
with multiple model orders (2 < dimensionality < 10).

2.6. In vivo clinical data

in vivo clinical data was collected from Type 2 Diabetes Mellitus
patients (DM; N = 30) and age and sex matched healthy controls (HC;
N = 30). For each participant, a T1-weighted structural image was
collected with the following parameters: TE: 2.49 ms, TR: 1900 ms,
FOV: 250 X 250, matrix: 256 X 256, FA : 9°, slice thickness: 1 mm, #
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slices: 176. Blood oxygenation level dependent (BOLD) fMRI data were
collected during rest with the following scan parameters: TE: 30 ms, TR:
2000 ms, FOV: 240 x 240, matrix: 64 X 64, FA: 90°, 4 mm, slice: 35. A
total of 240 scans (time points) were collected. Data preprocessing was
completed with the DPABI (Yan et al., 2016) plug-in DPARSF. The first
10 time points were removed, and slice timing correction, realignment
for motion correction, spatial normalization to MNI standard space
were completed, and smoothed with 4.5 mm isotropic Gaussian Kernel.
Temporal band pass filtering 10-150 mHz was applied to the data. After
preprocessing, data were temporally concatenated across subjects, and
two different ICA algorithms (InfomaxICA and FastICA) were used to
identify spatiotemporal components. Amplitude of low-frequency fluc-
tuation (ALFF) (Zang et al., 2007) was extracted as a measure of the
spontaneous fluctuations in BOLD signal intensity across time that re-
flects the strength of within-network connectivity. ALFF values were
correlated with a clinically relevant measure of cognitive functioning,
the Montreal Cognitive Assessment (MoCA), to support the ecological
utility of the proposed method. With a total possible score of 30, the
MoCA assesses a range of cognitive abilities including memory, ex-
ecutive functioning, and attention. The MoCA is a brief screening tool
for mild cognitive impairment, where scores lower than 26 indicate
probable cognitive impairment. In addition, between-network func-
tional connectivity was assessed via computing the Pearson correlations
between the timecourses for each component pair for each subject and
then assessing group differences using an unpaired t-test. Bonferonni
correction was applied to correct for multiple tests (across network
pairs) to achieve p < 0.05, corrected.

3. Results
3.1. Simulated data

The simulated data contains 6 signal sources. The performance of
FastICA with the simulated data is shown in Fig. 4. When the model
order exceeds 6, the stability and convergence of the algorithm starts to
decline, which suggests FastICA has identified 6 stable signal sources.
For the InformaxICA algorithm, similar results are shown in Fig. 6, with
similar degradation when the model order is larger than the number of
sources. The average of intra-cluster similarities for the cluster results
based on the component matrix, coefficient matrix and spatiotemporal
tensors are shown in Fig. 5 for FastICA and Fig. 7 for InfomaxICA.
Spatiotemporal tensor clustering was more sensitive to model order
when decomposed with FastICA, and less sensitive to model order with
the InfomaxICA algorithm.
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3.2. In vivo clinical data - InfomaxICA performance

The InfomaxICA algorithm was run 50 times with multiple di-
mensionalities (2 < dimensionalities < 50). Then, the convergence
and stability of the algorithm were evaluated, as shown in Fig. 8. When
the model order is greater than 20-30, the convergence and stability of
the algorithm begins to decline. For the in vivo data, considering the
mean and SD of I, and the convergence, we selected results for model
order 20 from the InfomaxICA algorithm for further investigation.
Fig. 10 shows the spatiotemporal tensor I; values of the different
components for model order 20. The figure shows that both the tem-
poral courses and spatial maps of all subjects were stable under this
model order. For the group ICA, the Kullback-Leibler information cri-
terion (KIC) algorithm (Cavanaugh, 1999) suggests the optimal model
order is 40, therefore the stability results using the component matrices,
coefficient matrices, and spatiotemporal tensors for model order 40 and
20 were compared as shown in Fig. 11 (for six subjects). Neither the
stability analysis based on the component matrix nor the stability
analysis based on the coefficient matrix can evaluate the stability ob-
jectively by visual comparison. Tensor clustering represents a more
concise and reasonable index of the stability of the ICA algorithm as it
considers information from both the coefficient matrix and the com-
ponent matrix. Via visual inspection, clustering based on the coefficient
matrix, the component matrix and the spatiotemporal tensor for the two
different model orders shows that the algorithm is more stable when the
model order is 20.

As shown in Fig. 9, assessment of the the stability of InfomaxICA
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Fig. 4. Simulated data. The stability (left) and convergence (right) of the FastICA algorithm under model orders from 2 to 10.
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applied to in vivo data shows that clustering based on spatiotemporal
tensors are more sensitive to model order than clustering based on the
component matrix (spatial information) or coefficient matrix (temporal
information) alone. When the model order is between 2 and 7, both
spatial maps and temporal courses are stable. The average of the intra-
cluster similarities for coefficient, component, and spatiotemporal
tensor results are almost equal to 1. However, when the model exceeds
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Fig. 9. In vivo results. The average intra-cluster similarities across model or-
ders.

40, there is increased instability in the coefficient matrix when com-
pared to component matrix. Spatiotemporal tensor results are more
sensitive to this variation, as information from both component and
coefficient matrices are used to determine optimal model order.

For model order 20, the amplitude of low-frequency fluctuation
(ALFF) for each component was extracted as a measure of local brain
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Fig. 8. In vivo results. The stability (Iq) of tensor-based clustering results and number of runs that converged for the InfomaxICA algorithm under different model

orders.
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Fig. 10. In vivo results. The stability analysis results for different subjects for
model order 20 using the InfomaxICA algorithm. All components are stably
decomposed, with the Iq values of all subjects higher than 0.9 for every com-
ponent.

function and correlated with MoCA scores. The ALFF of the DMN and
salience networks showed a significant association with MoCA scores
(Fig. 12). The functional connectivity of different networks was also
evaluated. The connectivity between a frontoparietal network and a
visual network was significantly lower (p = 0.04) in patients relative to
HC; however these results did not remain significant upon correcting
for all network pairs tested and are thus not discussed further. The
results were consistent across 50 runs of the ICA decomposition.

3.3. In vivo clinical data - FastICA performance
The FastICA algorithm was run 50 times for each model order (2 <

Model

Cluster of components
Order#

Cluster of coefficient
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dimensionalities < 50). The convergence and stability of the algo-
rithm are shown in Fig. 13, and optimal dimensionality was selected as
14. The average intra-cluster similarity index from cluster results based
on the component matrix, coefficient matrix, and spatiotemporal ten-
sors, are shown in Fig. 14. Similar to findings from InfomaxICA results,
spatiotemporal tensor-based clustering was more sensitive to stability
across model orders, which is consistent with the InfomaxICA results
shown in Fig. 9. As shown in Fig. 15, nearly all rank-1 matrices were
also stable under this model order. The stability results based on the
component matrix, coefficient matrix, and spatiotemporal tensors with
dimensionality 40 and 14 are shown in Fig. 16.

With a dimensionality of 14, ALFF of a posterior parietal component
extracted by FastICA was significantly associated with MoCA scores, as
shown in Fig. 17. Functional connectivity between the same two net-
works, frontoparietal and visual, was significantly lower (p = 0.02) in
patients compared to HC, which is consistent with the results of In-
fomaxICA, with results being consistent across 50 runs of the ICA de-
composition. However, these results do not survive the correction for
multiple network pairs and are thus not discussed further.

4. Discussion

While stability of spatial maps from ICA of fMRI data is used to
inform model order selection post hoc, from a theoretical perspective,
stability of the temporal courses from ICA may also provide important
information regarding model order selection. The present study sought
to investigate any insights into model order selection that may be
gained by also considering temporal stability. Our study has revealed
several insights: (1) hierarchical cluster analysis is a useful method for
assessing ICA component stability generally (e.g., using any of the
component, coefficient, or tensor matrices), (2) assessment of stability
of component temporal courses provides important information as to
the stability of ICA results, (3) the convergence of FastICA and
InfomaxICA algorithms was related to model order, and (4) spatio-
temporal tensor clustering was sensitive to model order effects.
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Fig. 11. In vivo results. The cluster results of component matrix, coefficient matrix and spatiotemporal tensors with model orders 40 and 20, using InfomaxICA. In
each clustering result, clusters are indicated by black convex hulls and grey/black lines connect similar clusters. More compact clusters (with higher intra-class

similarity) are more stable.
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Furthermore, (5) components from model orders selected by con-
sidering both convergence and component stability are consistent with
previous literature and associated with clinically relevant markers of
pathology. The results of this study are impactful for a number of
reasons.

Hierarchical cluster analysis provided important information about
ICA decomposition performance in the current study. By evaluating the
stability of and convergence of spatiotemporal results under different
dimensionalities, we were able to accurately identify an optimal model
order. Additionally, hierarchical clustering allowed us to compare the
performance between different ICA algorithms, which can provide
important information to investigators when making methodological
decisions regarding ICA decomposition. For example, the FastICA
converged faster than InfomaxICA, which was consistent across 50 runs
in multiple dimensionalities. However, the InfomaxICA produced more
stable decompositions compared to the FastICA algorithm, under the
same model order with a trade-off of convergence at higher model or-
ders. Assessment of stability when making methodological decisions
would improve transparency of algorithm selection and replicability of
findings.

The results of resting-state fMRI analysis support the conclusion that
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stably decomposed. For Component#11, because the stability of one subject is
less than 0.9, the component will not be further analyzed.

the stability of the spatial and temporal data differ across model orders,
with the temporal courses being much less stable than spatial maps.
Clustering based on spatiotemporal tensors better captures the interplay
between spatial and temporal stability and may prove to be superior for
evaluating the stability and performance of the algorithm and de-
termine optimal dimensionality in further investigations. The current
study explored the stability and convergence under different model
orders and ICA algorithms, a process that required significant time and
computing resources. However, given the variability in convergence
and component stability across model orders, testing multiple di-
mensionalities may be an important step in fMRI data analysis to im-
prove methodological rigor.

For each ICA decomposition, stability and convergence varied

Model

Cluster of components
Order#

Cluster of coefficient
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across model order. When the model order exceeded a certain range,
temporal component instability increased. It is possible that this in-
stability results from the splitting of larger networks into sub-
components, which may still be of interest to some researchers despite
their instability. Studies which utilize large dimensionalities may want
to carefully consider the effect of time course instability on results and
utilize the proposed methodology to objectively assess the performance
of their algorithms. While the current study used convergence and
stability to assess ICA decomposition performance, we recognize there
are other aspects of performance that have not been considered. Further
research is needed to fully address the topic, and expand upon the
current findings.

The findings in the in vivo clinical data analysis suggest that when
spatiotemporal stability is considered in model order selection, clini-
cally meaningful network components can be extracted. While in-
corporating both spatial and temporal stability into algorithm evalua-
tion is sensible from a theoretical perspective, it was necessary to
establish that selected components were still ecologically valid. While
the decisions about dimensionality did not differ between spatial,
temporal, and spatiotemporal decompositions, the inclusion of spatio-
temporal stability may be more important for other clinical populations
where time course variability is a marker of pathology (Malinen et al.,
2010). Further research is needed to expand upon our findings and
evaluate consistency across clinical populations.

In conclusion, for blind source separation (matrix decomposition
and tensor decomposition) of fMRI data, the stability of the algorithm is
a problem that deserves careful consideration. Both spatial and tem-
poral aspects of resulting independent components provides meaningful
information, so assessment of spatiotemporal stability, via a multi-
dimensional rank-1 matrix, will provide more complete information
regarding the balance between spatial and temporal stability than as-
sessment of either alone. Hierarchical cluster analysis of spatiotemporal
tensors is a useful technique for assessing the stability across model
orders and assessing the performance of specific ICA decompositions.
This is useful for investigators both when selecting model order post-
hoc and when making methodological decisions about which ICA al-
gorithm is best suited for their data and research questions. Our

Tensor clustering

40

14

Fig. 16. The cluster results of component matrix, coefficient matrix and spatiotemporal tensors under the model order is 40 and 14 of FastICA.
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Fig. 17. The 4th (Parietal) components was extracted by FastICA and ALFF of this component significantly correlates with MoCA.
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Appendix A. Temporal concatenated GroupICA

For multi-subject fMRI data analysis, we used GICA (Calhoun et al., 2001). First, data reduction was performed for each subject using PCA:
D, =V,;'Zy, (A1)
Z,, represents the m™ subject’s fMRI data after preprocessing. V,, is the data reduction matrix, which is obtained from principal component analysis
(PCA). D,, is the reduced data for each subject. For GICA, the reduced data for each subject was concatenated temporally to form an aggregate
reduced data matrix. The aggregate data matrix is then reduced again via group PCA:

vi'z,
X=¢G"!
Vil Zy (A.2)

G is the data reduction matrix of group PCA.

X was fed into ICA estimation for noise-free ICA:

Y =WX (A.3)

Where W € RNVXN represents the unmixing matrix. Y € R¥*M is a component matrix used to estimate the source matrix.
By Eq. (A.2) and Eq. (A.3):

10
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Vl_lzl
Y = WG!
Vil Zy A4
vilz, G,
S GWTlY = : =|: |wly
Vil Zy Gu (A.5)
Reconstructing temporal courses:
Z,=V,G,W7Y (A.6)

The [V,,G,W '], (m = 1,2, ---M) contains temporal course information of each m™ subject. Y represents the estimation of the source signals S,
e.g., the spatial distribution of each component. In the case of temporal concatenated GICA, spatial distributions are assumed to be the same across
subjects whereas temporal courses are different.

Appendix B. Rank-1 matrix ultimately decomposed by ICA

Consider a linear signal mixing model:

X = AS (B.1)
Where X € R¥*M jg the measured signal, A € RV*R is the mixing matrix and S € R®*M are the source signals. R represents the number of source
signals.

Next, consider the ICA decomposition model:
Y = WX (B.2)

Where W € R®*V is unmixing matrix. The inverse matrix B = W~! € RV*R is used to estimate A. Y € RR*M is the estimate of the source matrix S.
However, it is well known that ICA has magnitude and polarity indeterminacy (Hyvarinen, 1999). Let the k™ component of the decomposition from
B.2 correspond to the i source signal (B.1). Yi. # Sii» b # a,;. It can be shown that b. <y, . = a.;+s;. = Ey is true under the condition of global
optimal solution (Cong et al., 2011). E.g, the rank-1 matrix E; from ICA is estimated without ambiguity. The proof is as follows:

With the global matrix defined as:

C= WA (B.3)
Then:

Y =CS (B.4)

BC=A (B.5)

Under the condition of global optimal solution, each row and each column of C has only one nonzero element (Cong et al., 2011). If the k™
component of the decomposition corresponds to the i source signal, then ¢ ; is nonzero.

S Yk, = Chi®Si (B.6)

becri=a,; (B.7)
Multiplying the Eq. (B.6) with the Eq. (B.7) on both sides:

b.pecrioy. = aocrisi; (B.8)
The ¢ ; is a real number that can be omitted on both sides of the equation:

b.ioy. = a;iesi; (B.9)

So, the rank-1 matrix Ex = b,y y;. (k = 1,2, ---R, R is the model order) can be decomposed by ICA without ambiguities.
Appendix C. Simplification of similarity matrix in Tensor Clustering

The i*" row and j* column element of the similarity matrix for Tensor Clustering was defined as follows:

Y (E' - ENQE/ - E)
\/Z (Ei_ETi)z,E(Ej_ETj)Z (C.1)
E' and E/ are rank-1 matrices constructed from the temporal courses and the corresponding spatial distributions. With variance ambiguity of ICA
algorithms (Hyvérinen and Oja, 2000), both temporal courses and spatial maps can be standardized. After standardization, the mean of temporal

courses (a,) and spatial maps (s,) is zero and the variance of each is one. In order to accelerate the clustering speed and reduce the required computer
memory, simplification of similarity matrix was used and shown as follow:

Sim;; =

B 1 N M 1 N 1 M
BN L R L 28

LY E-ETY =Y @

(C.2)
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S E-E»XE -E)y

N M
Z a/'al E s{"s]" = SimA;;+SimS;;
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(C.3)

(C4

SimA represents similarity matrix of temporal courses and SimS represents similarity matrix of spatial maps. By this way, it is proved that the
similarity matrix of Tensor Clustering can be expressed as the Hadamard product of the similarity matrix of the temporal courses and that of spatial

distribution.
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