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DANGERS OF DEMOSAICING: CONFUSION FROM CORRELATION

Matti A. Eskelinen, Jyri Hämäläinen

University of Jyväskylä
Faculty of Information Technology

ABSTRACT

Images from colour sensors using Bayer filter arrays re-
quire demosaicing before viewing or further analysis. Ad-
vanced demosaicing methods use empirical knowledge of
inter-channel correlations to reduce interpolation artefacts in
the resulting images. These inter-channel correlations are
however different for standard RGB cameras and hyperspec-
tral imagers using colour sensors with added narrow-band
spectral filtering.

We study the effects of conventional demosaicing meth-
ods on hyperspectral images with a dataset originally col-
lected without a colour filter array. We find that using ad-
vanced methods instead of bilinear interpolation results in an
overall increase of 9–14% in absolute error and a decrease
of 1–3% in PSNR, but also observed a decrease in MSE of
11–13%.

For the corresponding RGB images, the advanced meth-
ods improved fidelity as expected. The results also demon-
strate that the reconstruction methods that take advantage of
correlation transport noise present in a single component to
other reconstructed layers.

Index Terms— Hyperspectral imaging, Fabry-Perot, In-
struments, Bayer pattern, Colour filter array (CFA) interpola-
tion, Demosaicing, Algorithms

1. INTRODUCTION

Modern hyperspectral “snapshot” imagers based on Fabry-
Perot interferometers as their filtering technique can use ei-
ther monochromatic or Bayer-filtered sensors as their imag-
ing component. The latter case allows imaging of multiple
narrow wavebands with a single exposure, as the radiances
for each single wavelength can still be reconstructed based on
the known quantum efficiencies of the different pixel filters
for the given wavelengths [1]. However, since only a mea-
surement of a single colour filter is available at each location,
interpolation (or demosaicing) has to be used to approximate
the other filter responses at each location in order to solve for
spectral radiances.

This research is in part funded by the Jane and Aatos Erkko foundation
(grant 170015) and in part by the Finnish Funding Agency for Innovation
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Much work has been put into the development of demo-
saicing methods due to the prevalence of Bayer filters in digi-
tal consumer cameras. Reducing interpolation artefacts with-
out sacrificing too much computational efficiency is a prob-
lem that has provided us with a wealth of existing literature.
Many approaches are based on utilising the correlation of the
luminosity and chromaticity in natural images to improve the
SNR of the reconstruction [2, 3]. We give a short summary of
the methods under comparison in section 2.

The correlations are partially reliant on the fact that the
colour filters of the typical Bayer filter array are approximat-
ing human vision and thus have overlapping transmittances
across a range of wavelengths. However, for hyperspectral
imagers using the Bayer filter reconstruction technique with
narrow-band filtering, the correlation between the signals of
different colour filters is dependent on the wavelengths trans-
mitted by the narrow-band filter. While demosaicing methods
have been developed also for imagers with multispectral filter
configurations [4], there is little literature on the applicability
of existing methods in use cases related to spectral imaging.

To study the effect this discrepancy has on the resulting
data, we construct a benchmark for the radiance reconstruc-
tion using radiances from data taken using a more traditional
filter system. The procedures used are detailed in section 3.
We use the benchmark to compare the more advanced meth-
ods against bilinear filtering – which does not rely on correla-
tions – and present our findings in section 4.

2. DEMOSAICING METHODS

A CFA image is a matrix composed of three (or more) differ-
ent kinds of pixels in a given pattern. An example of a typical
Bayer “RGGB” pattern is given in figure 1, with R, G and B
referring to the red, green and blue filters respectively. Demo-
saicing entails the computation of a full-size layer of values
for each of the component types, with the missing values in
other locations filled in using interpolation.

We compared three demosaicing methods that had read-
ily available software implementations, specifically those im-
plemented by the “Colour - demosaicing” Python library [5].
What follows is a brief summary of each, for the readers dis-
inclined to wade through the references.
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Fig. 1. Example of an RGGB Bayer filter pattern.

2.1. Bilinear interpolation

Bilinear interpolation fills each missing value with the aver-
age of its nearest neighbours. Interpolation is done on each
component plane independently, without any assumptions of
correlations between the components. While it can be im-
plemented highly efficiently using a discrete convolution, it
causes highly visible artefacts in the resulting image. [6]

2.2. Malvar (2004)

The method of Malvar, He and Cutler [2] is similar to the sim-
ple bilinear interpolation, but adds to each interpolated value a
correction based on the estimated gradients of the other com-
ponents, depending on the location of the pixel with respect to
the pattern. Like bilinear interpolation, it is also implemented
as a linear convolution, making it computationally efficient. It
is familiar to many as the default demosaicing method in the
MATLAB Image Processing Toolbox [7].

The precise weights used for the convolution implemen-
tation of their algorithm are the result of an experimental fit
to find the best reconstruction of the Kodak colour image
dataset, with a constraint on the divisibility to find an efficient
binary representation.

2.3. Menon (2007)

The method of Menon, Adriani and Calvagno [3] utilizes di-
rectional filtering and a posteriori selection of the best inter-
polation of the green component. The other colour compo-
nents in the green locations are reconstructed using bilinear
interpolation.

The directional information in the green layer is then used
to help reconstruct the colour difference layers (R − B) and
(B − G), which are then used to recreate the red and blue
components at other locations, along with corrections based
on frequency filtering. The approach relies heavily on the cor-
relation between the channels, and is roughly 3-5 times more
computationally intensive then the bilinear interpolation.

3. TEST METHODOLOGY

3.1. Radiance dataset

In order to study the effect of demosaicing on hyperspectral
images we needed data with a similar structure to the output
of Fabry-Perot imagers, but which has been collected without
a Bayer filter. The data could then be converted to a mosaic
trough simple omission and the results of demosaicing could
be reliably compared to the original without having to worry
about any systematic error arising from previous reconstruc-
tion methods.

We decided to use as the base data the publicly available
radiance images of natural scenes by Foster, Nascimento and
Amano [8], which were acquired using a full-frame imager
with a tunable filter and a monochromatic (non-array) sensor.
The characteristics of the natural scenes also resemble those
of the Kodak dataset often used in demosaicing studies, with
varying edge features and spectral signatures. Each of the
thirty images had 33 radiance bands evenly distributed be-
tween wavelengths of 400 nm and 720 nm with a band width
of 10 nm.

The dataset also included an RGB image of each scene
reconstructed from the radiance using the CIE standard ob-
servers. These were used as-is to test the performance of the
methods for this dataset.

3.2. Mosaic construction

For each of the 33 band radiance cubes in the dataset, we
constructed a corresponding mosaic cube of 11 CFA images
with an RGGB pattern with each image having its R, G and B
pixels sampled from different wavelength bands of the cube.
The wavelengths used for each mosaic layer are listed in ta-
ble 1. The choice of the specific pattern was arbitrary. While
we did not verify it experimentally, the different orderings
of the colour components should produce equivalent results
since none of our fidelity measures use directional quantities
which might change under different patterns.

The wavelengths were selected by simply dividing the set
of radiance bands into three equal parts, and using the longer
wavelengths for the red, the medium for green and shorter
for blue in consecutive triplets, such that no triplet contained
bands near each other in wavelength. Since there is no sensor-
induced correlation in the different radiance values, the or-
dering of the bands should not matter; We opted to match
the wavelengths roughly to the colour components they af-
fect the most. This way any correlations between the radi-
ances present in the natural scenes due to spectral properties
of the specific scene should be roughly similar to those in
true-colour images.

This method of construction approximates the structure of
data from a spectral imager using a scanning Fabry-Perot in-
terferometer with three of the transmission peaks in the range



Table 1. Wavelength bands from of the base image used for
the different pixels in each mosaic layer of the corresponding
test dataset.

# λB λG λR

1 400 510 620
2 410 520 630
3 420 530 640
4 430 540 650
5 440 550 660
6 450 560 670
7 460 570 680
8 470 580 690
9 480 590 700

10 490 600 710
11 500 610 720

of sensor sensitivity at once. It is simplified in that the dif-
ferent transmission peaks are not mixed at all in the R, G and
B pixels unlike in a real imager, where the response of each
pixel to the peaks would be dependent on the wavelength.

We decided against the modelling of a more realistic situ-
ation for this study, since the choices needed for the construc-
tion of the more realistic mosaics would complicate interpre-
tation of any results and proper analysis would have taken
more time then was available for the preparation of this pa-
per.

3.3. Fidelity criteria

Since perceptual metrics based on human vision do not make
sense for the radiance data directly, we consider only objec-
tive fidelity measures based on the numerical difference of the
original and the reconstructed image. Following [6], we mea-
sure the fidelity of the demosaiced images with X × Y pixels
for each band b using the mean absolute error,

MAEb(I, I
′) =

1

XY

X−1∑
x=0

Y−1∑
y=0

∣∣Ix,y − I ′x,y
∣∣

mean square error,

MSEb(I, I
′) =

1

XY

X−1∑
x=0

Y−1∑
y=0

(
Ix,y − I ′x,y

)2

and peak signal-to-noise ratio

PSNRb(I, I
′) = 10 · log10

(
max(Ib)

2

MSEb(I, I ′)

)

with the original radiance images I and the reconstructions I ′.
The same metrics were also calculated for the RGB images
and their reconstructions using colour components in place of
radiance bands.

Table 2. Average fidelities of the Malvar and Menon methods
relative to bilinear filtering on the radiance and RGB images.

Radiance RGB

Malvar Menon Malvar Menon

MAE 1.09 1.14 0.97 1.15
MSE 0.79 0.77 0.54 0.66

PSNR 0.99 0.97 1.15 1.11

The three fidelity measures were averaged over the dataset
for each band and ordered to match the structure of the orig-
inal radiance data. The metrics for each method were also
divided by the corresponding metric for bilinear interpolation
to get a touch on their relative performance. Corresponding
values were also calculated for the RGB reconstructions to
verify that the methods perform as expected for the kind of
images they were designed for.

4. RESULTS

Figures 2, 3 and 4 show the MAE, MSE and PSNR for the dif-
ferent methods. The metrics were calculated for each wave-
length band and averaged over the test dataset. The abso-
lute values show a significantly worse reconstruction for the
first band in all the cases. This is due to the high noisiness
of the data in the 400nm band, which was known for the
dataset and confirmed by us with a visual inspection. This
noisiness carries over to the relative metrics for the Malvar
and Menon methods, in that the reconstruction of 510nm and
620nm bands included in the same mosaics with the noisy
waveband suffer with the methods using correlation. This
was also visually apparent in the reconstruction of the given
bands.

The relative fidelities of the Malvar and Menon methods
over all the bands are presented in table 2 for both the radiance
and RGB reconstructions. For comparison, Malvar, He and
Cutler report an increase of 5.68 dB in PSNR for their method
over the bilinear interpolation [2], while Menon, Adriani and
Calvagno claim an increase of 9.69 dB [3]. Their tests were
conducted respectively on sets of 15 and 20 RGB colour im-
ages from the Kodak dataset.

5. CONCLUSIONS AND FUTURE WORK

The relative fidelity measures demonstrate that introducing a
correlation-based correction in the interpolation also has the
side effect of carrying over any noise present in the bands to
the other interpolated layers, which is to be expected. Similar
effects are present in the reconstruction of radiance measure-
ments from actual Fabry-Perot hyperspectral imagers in the
bands where correlation is introduced by the mixing of the
different narrow-band radiances on the sensors (though dif-
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Fig. 2. (a) Average MAE over the full dataset for each wavelength band. (b) Average MAE compared to the bilinear interpola-
tion.
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Fig. 3. (a) Average MSE over the full dataset for each wavelength band. (b) Average MSE compared to the bilinear interpolation.

ferent in magnitude to the usual correlation of the R, G and
B pixels).

All the measures also show generally worse performance
for the Malvar and Menon methods in the noisy band, which
is most likely due to their use of gradients (which are gen-
erally sensitive to noise). However, the advanced methods
perform slightly better in the bands with lower noise. While
we did not comprehensively study the effect of the ordering
of the bands, some tests ran after the calculation of the main
results suggest that the ordering does not significantly change
the overall performance, although some differences arise on
the single bands. This suggests that the methods are not very
sensitive to the chromatic correlations in the natural scenes,
but that differences arise based on the exact band used for the
better sampled component (usually the green one).

The relative fidelities in table 2 show that the overall fi-

delity of the advanced reconstruction is decreased by a few
percent compared to the bilinear interpolation. The results on
reconstructed RGB images show that when the assumptions
of the algorithms are fulfilled, the fidelity of the reconstruc-
tion should increase significantly for this specific dataset.

While we did not evaluate any perceptual metrics, vi-
sual inspection of some of the reconstructions suggested that
while the advanced methods generally did not cause notice-
able degradation in the radiance images, localised artefacts
were generated for certain materials (spectral signatures) in
the scenes. More comprehensive study comparing spectral
differences using e.g. spectral angle or correlation would be
needed to quantify these effects.
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Fig. 4. (a) Average PSNR over the full dataset for each wavelength band. (b) Average PSNR compared to the bilinear interpo-
lation.
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