JYVASKYLAN YLIOPISTO
H UNIVERSITY OF JYVASKYLA

This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s): Kiperberg, Michael; Leon, Roee; Resh, Amit; Algawi, Asaf; Zaidenberg, Nezer

Title: Hypervisor-assisted Atomic Memory Acquisition in Modern Systems

Year: 2019

Version: Accepted version (Final draft)

Copyright: © sth International Conference on Information Systems Security and Privacy by S(
Rights: |, Copyright

Rights url: http://rightsstatements.org/page/InC/1.0/?language=en

Please cite the original version:

Kiperberg, M., Leon, R., Resh, A., Algawi, A., & Zaidenberg, N. (2019). Hypervisor-assisted
Atomic Memory Acquisition in Modern Systems. In P. Mori, S. Furnell, & O. Camp (Eds.), ICISSP
2019 : Proceedings of the 5th International Conference on Information Systems Security and
Privacy, Volume 1 (pp. 155-162). SCITEPRESS Science And Technology Publications.
https://doi.org/10.5220/0007566101550162

Hypervisor-assisted Atomic Memory Acquisition in Modern Systems

Keywords:

Abstract:

Michael Kiperberg', Roee Leon?, Amit Resh?, Asaf Algawi’ and Nezer Zaidenberg*

YFaculty of Sciences, Holon Institute of Technology, Israel
2Department of Mathematical IT, University of Jyviiskyld, Finland
38chool of Computer Engineering, Shenkar College of Engineering, Design and Art, Israel

4School of Computer Sciences, The College of Management, Academic Studies, Israel
michaelkip @hit.ac.il, roee.leonn@ gmail.com, amitr44 @ gmail.com, nzaidenberg @ me.com

Live Forensics, Memory Forensics, Memory Acquisition, Virtualization, Reliability, Atomicity, Integrity of a
Memory Snapshot, Forensic Soundness.

Reliable memory acquisition is essential to forensic analysis of a cyber-crime. Various methods of memory
acquisition have been proposed, ranging from tools based on a dedicated hardware to software only solutions.
Recently, a hypervisor-based method for memory acquisition was proposed (Qi et al., 2017; Martignoni et al.,
2010). This method obtains a reliable (atomic) memory image of a running system. The method achieves
this by making all memory pages non-writable until they are copied to the memory image, thus preventing
uncontrolled modification of these pages. Unfortunately, the proposed method has two deficiencies: (1) the
method does not support multiprocessing and (2) the method does not support modern operating systems
featuring address space layout randomization (ASLR). We describe a hypervisor-based memory acquisition
method that solves the two aforementioned deficiencies. We analyze the memory usage and performance of

the proposed method.

1 INTRODUCTION

Nowadays, the sophistication level of cyber-attacks
makes it almost impossible to analyze them statically.
Many of the attacks are designed to detect debuggers
and other tools of dynamic analysis. Upon detection
of such tool, the malicious software deviates from its
normal behavior, thus rendering the analysis useless.
Therefore, usually the analysis of an attack is divided
into two steps: memory acquisition and static analy-
sis. In the first step, a software (Qi et al., 2017; Mar-
tignoni et al., 2010; Reina et al., 2012) or a hardware
tool (Zhang et al., 2010) acquires the memory con-
tents of a running system and stores it for later anal-
ysis. In the second step, a static analysis tool, e.g.,
Rekall (Cohen, 2014), is applied to the acquired im-
age of memory to analyze the malicious software.
The memory acquisition is performed while the
system is running and updating its data structures and
pointers. Consider the following example. The op-
erating system creates a new Process Environment
Block at page 1,000 and adds it to the list of running
processes at page 2,000. Assume that the process cre-
ating occurs when the first 1,500 pages were already
acquired. In the resulting memory image, we will
have a list of processes that point to an invalid Pro-

cess Environment Block because page 1,000 was ac-
quired before the creation of the Process Environment
Block. Therefore, special measures must be taken to
avoid inconsistencies in the acquired memory image.

This paper presents a software hypervisor-based
tool for consistent memory acquisition. Hypervisor’s
ability to configure access rights of memory pages can
be used to solve the problem of inconsistencies as fol-
lows:

1. When the hypervisor is requested to start memory
acquisition, it configures all memory pages to be
non-writable.

2. When an attempt is made to write to a memory
page P, the hypervisor is notified.

3. The hypervisor copies the contents of P to its
inner buffer and configures the page P to be
writable.

4. The hypervisor periodically sends the data in its
inner buffer. If more data can be sent than is avail-
able in the inner buffer, then the hypervisor sends
other pages and configures them to be writable.

This method is described in multiple previous works
(Qi et al., 2017; Martignoni et al., 2010).

Unfortunately, two problems arise with the de-
scribed method in modern systems. The first problem
is the availability of multiple processors. Each pro-
cessor has direct access to the main memory and can
freely modify any page. Therefore, when the hyper-
visor is requested to start memory acquisition, it must
configure all memory pages on all processors to be
non-writable.

Another problem is delay sensitivity of some
memory pages. Generally, interrupt service routines
react to interrupts in two steps: they register the oc-
currence of an interrupt and acknowledge the device
that the interrupt was serviced. The acknowledgement
must be received in a timely manner; therefore, the
registration of an interrupt occurrence, which involves
writing to a memory page, must not be intercepted by
a hypervisor, i.e., these pages must remain writable.

Address space layout randomization, a security
feature employed by modern operating systems, e.g.,
Windows 10, complicates the delay sensitivity prob-
lem even more. When ASLR is enabled, the oper-
ating system splits its virtual address space into re-
gions. Then, during the initialization of the operating
system, each region is assigned a random virtual ad-
dress. With ASLR, the location of the delay-sensitive
pages is not known in advance.

We propose the following solution to the problems
mentioned above. Our hypervisor invokes an operat-
ing system’s mechanism to perform an atomic access
rights configuration on all the processors. Section 4.3
describes the invocation process, which allows our
hypervisor to call an operating system’s function in
a safe and predictable manner.

We solve the delay sensitivity problem by copy-
ing the delay-sensitive pages to the hypervisor’s in-
ner buffer in advance, i.e., when the hypervisor is re-
quested to start memory acquisition. The ASLR com-
plication is addressed by inspecting the operating sys-
tem’s dynamic map of memory regions and obtaining
the dynamic locations of the delay-sensitive pages.
Section 4.2 contains a detailed description of ASLR
as it is implemented in Windows 10 and our solution
of the delay sensitivity problem.

The contribution of our work is:

1. We show how memory can be acquired on sys-
tems with multiple processors.

2. We present a solution to the delay sensitivity prob-
lem.

3. We explain how the locations of sensitive pages
can be obtained dynamically on Windows 10. We
believe that similar methods will be applicable to
future versions of Windows.

2 RELATED WORK

Previous versions of the Windows oper-
ating system contained a special device,
\\Device\PhysicalMemory, that mapped the

entire physical memory. This device could be used
to acquire the physical memory without any special
tools. Unfortunately, because this method of memory
acquisition relies on the operating system, a skilled
attacker can disable or corrupt this feature (Carrier
and Grand, 2004). Moreover, this method is not
available in Windows 2003 SP1 and later versions of
Windows (Microsoft Corporation, 2009).

Another method of memory acquisition is based
on generic or dedicated hardware. Several previous
works show how a generic FireWire card can be used
to acquire memory remotely (Zhang et al., 2010). A
dedicated PCI card, named Tribble, works in a similar
manner (Carrier and Grand, 2004). The main advan-
tage of a hardware solution is the ability of a PCI card
to communicate with the memory controller directly,
thus providing a reliable result even if the operating
system itself was compromised. However, hardware
solutions have three deficiencies:

1. They are expensive.
2. The produced memory image is not atomic.

3. These tools fail when Device Guard (Durve and
Bouridane, 2017), a security feature introduced in
Windows 10, is enabled.

Device Guard is a security feature that utilizes
IOMMU (Ben-Yehuda et al., 2007; Zaidenberg,
2018) to prevent malicious access to memory from
physical devices (Brendmo, 2017). When Device
Guard is enabled, the operating system assigns each
device a memory region that it is allowed to access.
Any attempt to access memory outside this region is
prevented by the DMA controller.

Recently, several hypervisor-based methods of
memory acquisition have been proposed. Hyper-
Sleuth (Martignoni et al., 2010) is a driver with an
embedded hypervisor. Its hypervisor is capable of
performing atomic and /azy memory acquisition. The
laziness is expressed in the ability of the hypervisor
to continue the normal execution while the memory
is acquired. ForenVisor (Qi et al., 2017) is a similar
hypervisor with additional features that allow it to log
keyboard strokes and hard-drive activity. Both hyper-
visors were tested on Windows XP SP3 with only one
processor enabled.

We show how the idea of HyperSleuth and Foren-
Visor can be adapted to multi-processor systems exe-
cuting Windows 10.

3 BACKGROUND

3.1 Hypervisors

The main component of the described system is a hy-
pervisor, which utilizes the VMX instruction set ex-
tension. This section provides a short overview of this
component. Section 4 contains a detailed description
of the hypervisor’s design There are two types of hy-
pervisors: full hypervisors and thin hypervisors. Full
hypervisors like Xen (Barham et al., 2003), VMware
Workstation (VMware, 2018), and Oracle VirtualBox
(Oracle, 2018) can execute several operating systems
concurrently. The main goal of VMX was to provide
software developers with means to construct efficient
full hypervisors.

Thin hypervisors, in contrast, can execute only
a single operating system. Their main purpose is
to enrich the functionality of an operating system.
The main benefit of a hypervisor over kernel mod-
ules (device drivers) is the hypervisor’s ability to cre-
ate an isolated environment, which is important in
some cases. Thin hypervisors are used for operating
system’s integrity validation (Seshadri et al., 2007),
remote attestation (Kiperberg et al., 2015; Kiperberg
and Zaidenberg, 2013), malicious code execution pre-
vention (Resh et al., 2017), in-memory secret protec-
tion (Resh and Zaidenberg, 2013), hard drive encryp-
tion (Shinagawa et al., 2009), and memory acquisition
(Qietal., 2017),

In general, because thin hypervisors are much
smaller than full hypervisors, they are superior in their
performance, security, and reliability. The hypervisor
described in this paper is a thin hypervisor that is ca-
pable of acquiring a memory image of an executing
system atomically. The hypervisor was written from
scratch to achieve an optimal performance.

Similarly to an operating system, a hypervisor
does not execute voluntarily but responds to events,
e.g., execution of special instructions, generation of
exceptions, access to memory locations, etc. The hy-
pervisor can configure interception of (almost) each
event. Interception of an event (a VM-exit) is similar
to handling of an interrupt, i.e., a predefined function
is executed by the processor. Another similarity with
an operating system is the hypervisor’s ability to con-
figure the access rights to each memory page through
a data structure, named EPT, which resembles the vir-
tual page table. An attempt to write to a non-writable
(according to EPT) page induces a VM-exit and al-
lows the hypervisor to act.

3.2 Lazy Hypervisor-based Memory
Acquisition

The solutions proposed by HyperSleuth and ForenVi-
sor for memory acquisition are based on a thin hyper-
visor and can be summarized as follows. The hyper-
visor remains idle (or deactivated) until it receives a
memory acquisition request. When the request is re-
ceived, the hypervisor configures the EPT to make all
memory pages non-writable. An attempt to write to a
page P will trigger a VM-exit, thus allowing the hy-
pervisor to react. The hypervisor reacts by copying P
to an inner queue, and making P writable again. Fu-
ture attempts to write to P will not trigger a VM-exit.

The queued pages are transmitted to a remote
machine via a communication channel. This chan-
nel may be secure or not, depending on the secu-
rity assumptions about the underlying environment.
The size of the queue is dictated by the communica-
tion channel bandwidth and the volume of pages that
are modified by the system. Obviously, if the com-
munication channel allows sending more data than
is available in the queue, then the hypervisor sends
other non-writable pages and configures them to be
writable. This process continues until all pages be-
come writable.

3.3 Delay-sensitive Pages and ASLR

Generally, interrupt service routines react to inter-
rupts in two steps: they register the occurrence of an
interrupt and acknowledge the device that the inter-
rupt was serviced. The acknowledgement must be re-
ceived in a timely manner; therefore, the registration
of an interrupt occurrence, which involves writing to
a memory page, must not be intercepted by a hyper-
visor, i.e., these pages must remain writable. This is-
sue was not addressed by the authors of HyperSleuth
and ForenVisor. We assume that this problem did not
occur on Windows XP SP3, which was tested in pre-
vious works.

Address space layout randomization, a security
feature employed by modern operating system, e.g.,
Windows 10, complicates the delay sensitivity prob-
lem even more. When ASLR is enabled, the oper-
ating system splits its virtual address space into re-
gions. Then, during the initialization of the operating
system, each region is assigned a random virtual ad-
dress. This behavior is useful against a wide range of
attacks (Evtyushkin et al., 2016) because the location
of potentially vulnerable modules is not known in ad-
vance. However, for the exact same reason, the loca-
tion of the delay-sensitive pages is also unpredictable.

Guest Memory Physical Memory

<

Figure 1: Mapping between the physical address space as
observed by the operating system (left) and the actual phys-
ical address space. The mapping is an identity mapping
with the exception of the hypervisor’s pages, which are not
mapped at all.

4 SYSTEM DESIGN

4.1 Initialization

Our hypervisor is implemented as a UEFI application
(Unified EFI, Inc., 2006). The UEFI application loads
before the operating system, allocates all the required
memory, and initializes the hypervisor. After initial-
ization, the UEFI application terminates, thus allow-
ing the operating system boot loader to initialize the
operating system. We note that while the application
terminates, the hypervisor remains active.

In order to protect itself from a potentially mali-
cious environment, the hypervisor configures the EPT
such that any access to the code and the data of the hy-
pervisor is prohibited. With this exception, the EPT is
configured to be an identity mapping that allows full
access to all the memory pages (Figure 1).

The hypervisor remains idle until an external
event triggers its memory imaging functionality. The
external event might be the reception of a network
packet, insertion of a USB device, invocation of a
system call, etc. In our prototype implementation,
we used a special CPUID instruction, which we call
FREEZE, as a trigger.

In response to FREEZE, the hypervisor performs
two actions:

1. Locates and copies the delay-sensitive pages.

2. Requests all processors to configure the access
rights of all memory pages to be non-writable.

When the configuration is complete, the hypervisor
reacts to page modification attempts by making the
page writable and copying it to an inner queue. The
hypervisor exports the pages stored in the inner queue
in response to another special CPUID instructions,
which we call DUMP. If the queue is not full, then

the hypervisor exports other non-writable pages and
makes the exported pages writable.

Algorithm 1: Memory Acquisition.

1: file <— Open(...)

FREEZE()

while DUMP (addr, page) do
Seek(file, addr)
Write(file, page)

Close(file)

AN AN

Algorithm 1 shows how FREEZE and DUMP can be
used to acquire an atomic image of the memory. First,
the algorithm opens a file that will contain the result-
ing memory image. Then, FREEZE is invoked, fol-
lowed by a series of DUMPs. When the DUMP request
returns false, the file is closed and the algorithm ter-
minates.

4.2 Delay-sensitive Pages

Section 3.3 explains that certain pages must not be
configured as non-writable. Moreover, due to ASLR,
the hypervisor has to discover the location of these
pages at run time based on the operating system data
structures. This section presents the data structures
of Windows 10 that can be used to locate the delay-
sensitive pages.

Windows 10 defines a global variable MiState
of type MI_SYSTEM_INFORMATION. The hypervisor
can easily locate this variable as it has a con-
stant offset from the system call service routine,
whose address is stored in the LSTAR register (Ta-
ble 1). The MI_SYSTEM_INFORMATION structure has a
field named Vs of type MI_VISIBLE_STATE. Finally,
the MI_VISIBLE_STATE structure has a field named
SystemVaRegions, which is an array of 15 pairs.
Each pair corresponds to a memory region whose ad-
dress was chosen at random during the operating sys-
tem’s initialization. The first element of the pair is the
random address and the second element is the region’s
size. A description of each memory region is given
in Table 2. A more detailed discussion of the mem-
ory regions appears in (Russinovich et al., 2012). Our
empirical study shows that that the following regions
contain delay-sensitive pages:

1. MiVaProcessSpace
MiVaPagedPool
MiVaSpecialPoolPaged
MiVaSystemCache
MiVaSystemPtes
MiVaSessionGlobalSpace

AN T

Table 1: Windows ASLR-related Data Structures.

Offset Field/Variable Name Type

X System Call Service Routine | Code

+0xFB100 | MiState MI_SYSTEM_INFORMATION
+0x1440 Vs MI_VISIBLE_STATE

+0x0B50 SystemVaRegions MI_SYSTEM_VA_ASSIGNMENT([14]
+0x0000 [0] MI_SYSTEM_VA_ASSIGNMENT
+0x0000 BaseAddress uint64_t

+0x0008 NumberOfBytes uint64_t

Table 2: Memory Regions.

Index | Name
0 MiVaUnused
1 MiVaSessionSpace
2 MiVaProcessSpace
3 MiVaBootLoaded
4 MiVaPfnDatabase
5 MiVaNonPagedPool
6 MiVaPagedPool
7 MiVaSpecialPoolPaged
8 MiVaSystemCache
9 MiVaSystemPtes
10 MiVaHal
11 MiVaSessionGlobalSpace
12 MiVaDriverImages
13 MiVaSystemPtesLarge

Therefore, the hypervisor never makes these re-
gions non-writable.

4.3 Multiprocessing

The hypervisor responds to FREEZE, a memory acqui-
sition request, by copying the delay-sensitive pages
to an inner queue and configuring all other pages to
be non-writable. However, when multiple processors
are active, the access rights configuration must be per-
formed atomically on all processors.

Operating systems usually use inter-processor in-
terrupts (IPIs) (Intel Corporation, 2018) for synchro-
nization between processors. It seems tempting to use
IPIs also in the hypervisor, i.e., the processor that re-
ceived FREEZE can send IPIs to other processors, thus
requesting them to configure the access rights appro-
priately. Unfortunately, this method requires the hy-
pervisor to replace the operating system’s interrupt-
descriptors table (IDT) with the hypervisor’s IDT.
This approach has two deficiencies:

1. Kernel Patch Protection (KPP) (Field, 2006), a
security feature introduced by Microsoft in Win-
dows 2003, performs a periodic validation of crit-
ical kernel structures in order to prevent their il-

legal modification. Therefore, replacing the IDT
requires also intercepting KPP’s validation at-
tempts, which can degrade the overall system per-
formance.

2. Intel processors assign priorities to interrupt vec-
tors. Interrupts of lower priority are blocked
while an interrupt of a higher priority is delivered.
Therefore, the hypervisor cannot guarantee that a
sent IPI will be handled within a predefined time.
Suspending the operating system for long periods
can cause the operating system’s watchdog timer
to trigger a stop error (BSoD).

We present a different method to solve the inter-
processor synchronization problem that is based on
a documented functionality of the operating sys-
tem itself. The KeIpiGenericCall function (Mi-
crosoft Corporation, 2018) receives a callback func-
tion as a parameter and executes it on all the active
processors simultaneously. We propose to use the
KeIpiGenericCall function to configure the access
rights simultaneously on all the processors.

Because it is impossible to call an operating sys-
tem function from within the context of the hyper-
visor, the hypervisor calls the KeIpiGenericCall
function from the context of the (guest) operating sys-
tem. In order to achieve this, the hypervisor performs
several preparations and then resumes the execution
of the operating system.

Algorithm 2 presents three functions that together
perform simultaneous access rights configuration on
all the active processors. The first function, HAN-
DLECPUID, is part of the hypervisor. This function is
called whenever the operating system invokes a spe-
cial CPUID instruction. Two other functions, GUES-
TENTRY and CALLBACK, are mapped by the hyper-
visor to a non-occupied region of the operating sys-
tem’s memory.

Algorithm 1 begins with a special CPUID instruc-
tion, called FREEZE. This instruction is handled by
lines 2-5 in Algorithm 2: the hypervisor maps GUES-
TENTRY and CALLBACK, saves the current regis-
ters’ values and sets the instruction pointer to the ad-

dress of GUESTENTRY. The GUESTENTRY function
calls the operating system’s KEIPIGENERICCALL,
which will execute CALLBACK on all the active pro-
cessors. The CALLBACK function performs another
special CPUID instruction, called CONFIGURE, which
causes the hypervisor to configure the access rights
of all (but the delay-sensitive) memory pages on all
the processors. This is handled by lines 67 of the
algorithm, where we omitted the configuration pro-
cedure itself. After the termination of the CALL-
BACK function, the control returns to the GUESTEN-
TRY function, which executes a special CPUID instruc-
tion, named RESUME_OS. In response, the hypervisor
restores the registers’ values, which were previously
saved in line 4. The operation continues from the in-
struction following FREEZE, which triggered this se-
quence of events.

Algorithm 2: Simultaneous access rights configuration on
all the active processors.

1: function HANDLECPUID(reason)

2 if reason=FREEZE then

3 Map GUESTENTRY and CALLBACK
4: Save registers

5: RIP < GUESTENTRY

6 else if reason=CONFIGURE then

7
8

: else if reason=RESUME_OS then
9: Restore registers

10: else if reason=DUMP then

11:

12:

13: function GUESTENTRY

14: KEIPIGENERICCALL(CALLBACK)

15 CPUID(RESUME.OS)

16: function CALLBACK
17: CPUID(CONFIGURE)

S EVALUATION

This section evaluates the performance of the HV and
its memory usage. First, we demonstrate the overall
performance impact of the HV. Next, we analyze the
memory usage of the HV. Finally, we evaluate the per-
formance of the memory acquisition process.

All the experiments were performed in the follow-
ing environment:

e CPU: Intel Core i5-6500 CPU 3.20GHz (4 physi-
cal cores)

e RAM: 16.00 GB

e OS: Windows 10 Pro x86-64 Version 1803 (OS
Build 17134.407)

= Without HV
Digital = 2:080 = WithHV

oy I 5,232
Productivity .]5402
.[| 7,543
Essential | | 7,799
[13,390
Total] 3,487

Figure 2: Scores (larger is better) reported by PCMark in
four categories: Digital Content Creation, Productivity, Es-
sential, and Total.

Disk % gg = Without HV
= With HV
[187
GPU 1 180
[248
RAM 7250
54
R —T
Total | | 1,062
| | 1,062

Figure 3: Scores (larger is better) reported by Novabench in
five categories: Disk, GPU, RAM, CPU, and Total.

e C/C++ Compiler: Microsoft C/C++ Optimizing
Compiler Version 19.00.23026 for x86

5.1 Hypervisor Performance Impact

We start by demonstrating the performance impact of
the hypervisor on the operating system. We picked
two benchmarking tools for Windows:

1. PCMark 10 — Basic Edition. Version Info: PC-
Mark 10 GUI - 1.0.1457 64 , SystemInfo -
5.4.642, PCMark 10 System 1.0.1457,

2. Novabench. Version Info: 4.0.3 — November
2017.

Each tool performs several tests and displays a score
for each test. We invoked each tool twice: with and
without the hypervisor. The results of PCMark, and
Novabench are depicted in Figures 2-3, respectively.
We can see that the performance penalty of the hyper-
visor is approximately 5% on average.

Table 3: Memory Regions’ Sizes.

Index | Name Size (MB)
0 MiVaUnused 6
1 MiVaSessionSpace 100
2 MiVaProcessSpace 0
3 MiVaBootLoaded 0
4 MiVaPfnDatabase 0
5 MiVaNonPagedPool 6
6 MiVaPagedPool 0
7 MiVaSpecialPoolPaged 5
8 MiVaSystemCache 52
9 MiVaSystemPtes 0
10 MiVaHal 0
11 MiVaSessionGlobalSpace 0
12 MiVaDriverImages 8

EPT
Code and Data Queue

Figure 4: Hypervisor’s Memory Usage [MB].

5.2 Memory Usage

The memory used by the hypervisor can be divided
into three main parts:

1. the code and the data structures of the hypervisor,

2. the EPT tables used to configure the access rights
to the memory pages, and

3. the queue used to accumulate the modified pages.

Figure 4 presents the memory usage of the hypervisor
including its division.

The size of the queue is mainly dictated by the
number of delay-sensitive pages. Table 3 presents the
typical size of each memory region. Pages belonging
to the following regions are copied by the hypervisor:

1. MiVaProcessSpace
MiVaPagedPool
MiVaSpecialPoolPaged
MiVaSystemCache
MiVaSystemPtes
MiVaSessionGlobalSpace

Their total size is ~ 60MB. The size of the queue
should be slightly larger than the total size of the

AN

§ T T TTT] T T T T T T T T T T T
.E 1 H—— PCMark ,
ED —»— Novabench

8

2 08f 1
=

(5]

5

g 0.6 :
o

O

g

s 04r .
=l

<

)

a

2 021 =
=)

<

g

g 0 |
d‘: Ll Lol Lol

10 10* 10°
Acquisition Speed [KB/s]

Figure 5: Performance degradation due to memory acquisi-
tion.

delay-sensitive pages because regular pages can be
modified by the operating system before the content
of the queue is exported. Our empirical study shows
that it is sufficient to enlarge the queue by 60MB.

5.3 Memory Acquisition Performance

In this section we study the correlation between the
speed of memory acquisition and the overall sys-
tem performance. Figure 5 shows the results. The
horizontal axis represents the memory acquisition
speed. The maximal speed we could achieve was
97920KB/s. At this speed, the system became unre-
sponsive and the benchmarking tools failed. The ver-
tical axis represents the performance degradation (in
percent) measured by PCMark and Novabench. More
precisely, denote by #;(x) the Total result of bench-
mark i = 1,2 (for PCMark and Novabench, respec-
tively) with acquisition speed of x; then, the perfor-

mance degradation d;(x) is given by d;(x) = 1 — f’ég;

6 CONCLUSIONS

The method presented in this work should be seen
as an incremental improvement over previously de-
scribed methods, which have similar purpose and de-
sign. We describe two improvements over the cur-
rently available methods:

1. Our hypervisor supports multiple processors by
utilizing an operating system’s function for pro-
cessor synchronization.

2. Our hypervisor supports modern operating sys-
tems, e.g., Windows 10, by locating and copying
the delay-sensitive pages.

Section 5 presents the memory usage of the hypervi-
sor. We believe that this memory usage can be im-
proved by reducing the number of pages that the hy-
pervisor considers to be delay-sensitive.

REFERENCES

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, 1., and Warfield, A.
(2003). Xen and the art of virtualization. In ACM
SIGOPS operating systems review, volume 37, pages
164-177. ACM.

Ben-Yehuda, M., Xenidis, J., Ostrowski, M., Rister, K.,
Bruemmer, A., and Van Doorn, L. (2007). The price
of safety: Evaluating iommu performance. In The Ot-
tawa Linux Symposium, pages 9-20.

Brendmo, H. K. (2017). Live forensics on the windows 10
secure kernel. Master’s thesis, NTNU.

Carrier, B. D. and Grand, J. (2004). A hardware-based
memory acquisition procedure for digital investiga-
tions. Digital Investigation, 1(1):50—-60.

Cohen, M. (2014). Rekall memory forensics framework.
DFIR Prague.

Durve, R. and Bouridane, A. (2017). Windows 10 secu-
rity hardening using device guard whitelisting and ap-
plocker blacklisting. In Emerging Security Technolo-
gies (EST), 2017 Seventh International Conference
on, pages 56-61. IEEE.

Evtyushkin, D., Ponomarev, D., and Abu-Ghazaleh, N.
(2016). Jump over aslr: Attacking branch predictors
to bypass aslr. In The 49th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, page 40.
IEEE Press.

Field, S. (2006). An introduction to kernel patch protec-
tion. http://blogs.msdn.com/b/windowsvistasecurity/
archive/2006/08/11/695993.aspx.

Intel Corporation (2018). Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual. Intel Corpora-
tion.

Kiperberg, M., Resh, A., and Zaidenberg, N. .
(2015). Remote attestation of software and execution-
environment in modern machines. In Cyber Security
and Cloud Computing (CSCloud), 2015 IEEE 2nd In-
ternational Conference on, pages 335-341. IEEE.

Kiperberg, M. and Zaidenberg, N. (2013). Efficient re-
mote authentication. In Proceedings of the 12th Eu-
ropean Conference on Information Warfare and Secu-
rity: ECIW 2013, page 144. Academic Conferences
Limited.

Martignoni, L., Fattori, A., Paleari, R., and Cavallaro,
L. (2010). Live and trustworthy forensic analysis
of commodity production systems. In International
Workshop on Recent Advances in Intrusion Detection,
pages 297-316. Springer.

Microsoft Corporation (2009). Device\PhysicalMemory
Object. https://docs.microsoft.com/
en-us/previous-versions/windows/it- pro/
windows-server-2003/cc787565(v=ws.10). [On-
line; accessed 02-Nov-2018].

Microsoft Corporation (2018). KelpiGenericCall function.
https://docs.microsoft.com/en-us/windows-hardware/
drivers/ddi/content/wdm/nf-wdm-keipigenericcall.

Oracle (2018). VirtualBox. https://www.virtualbox.org/.

Qi, Z., Xiang, C., Ma, R., Li, J., Guan, H., and Wei, D. S.
(2017). Forenvisor: A tool for acquiring and preserv-
ing reliable data in cloud live forensics. IEEE Trans-
actions on Cloud Computing, 5(3):443-456.

Reina, A., Fattori, A., Pagani, F., Cavallaro, L., and Br-
uschi, D. (2012). When hardware meets software: a
bulletproof solution to forensic memory acquisition.
In Proceedings of the 28th annual computer security
applications conference, pages 79-88. ACM.

Resh, A., Kiperberg, M., Leon, R., and Zaidenberg, N. J.
(2017). Preventing execution of unauthorized native-
code software. International Journal of Digital Con-
tent Technology and its Applications, 11.

Resh, A. and Zaidenberg, N. (2013). Can keys be hidden in-
side the cpu on modern windows host. In Proceedings
of the 12th European Conference on Information War-
fare and Security: ECIW 2013, page 231. Academic
Conferences Limited.

Russinovich, M. E., Solomon, D. A., and Ionescu, A.
(2012). Windows internals. Pearson Education.
Seshadri, A., Luk, M., Qu, N., and Perrig, A. (2007). Secvi-
sor: A tiny hypervisor to provide lifetime kernel code
integrity for commodity oses. In ACM SIGOPS Op-
erating Systems Review, volume 41, pages 335-350.

ACM.

Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K.,
Hasegawa, S., Horie, T., Hirano, M., Kourai, K.,
Oyama, Y., Kawai, E., Kono, K., Chiba, S., Shinjo,
Y., and Kato, K. (2009). Bitvisor: A thin hypervisor
for enforcing i/o device security. In Proceedings of
the 2009 ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE *09,
pages 121-130, New York, NY, USA. ACM.

Unified EFI, Inc. (2006). Unified Extensible Firmware In-
terface Specification, Version 2.6.

VMware (2018). VMware Workstation Pro. https://www.
vmware.com/il/products/workstation-pro.html.
Zaidenberg, N. J. (2018). Hardware rooted security in in-

dustry 4.0 systems. In Dimitrov, K., editor, Cyber de-
fence in Industry 4.0 and Related Logistic and IT In-
frastructures, chapter 10, pages 135-151. IOS Press.
Zhang, L., Wang, L., Zhang, R., Zhang, S., and Zhou, Y.
(2010). Live memory acquisition through firewire. In
International Conference on Forensics in Telecommu-
nications, Information, and Multimedia, pages 159—

167. Springer.

