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ABSTRACT

We formulate and solve a real-world shape design optimization
problem of an air intake ventilation system in a tractor cabin by
using a preference-based surrogate-assisted evolutionary multi-
objective optimization algorithm. We are motivated by practical
applicability and focus on two main challenges faced by practi-
tioners in industry: 1) meaningful formulation of the optimization
problem reflecting the needs of a decision maker and 2) finding a
desirable solution based on a decision maker’s preferences when
solving a problem with computationally expensive function evalua-
tions. For the first challenge, we describe the procedure of modelling
a component in the air intake ventilation system with commercial
simulation tools. The problem to be solved involves time consum-
ing computational fluid dynamics simulations. Therefore, for the
second challenge, we extend a recently proposed Kriging-assisted
evolutionary algorithm K-RVEA to incorporate a decision maker’s
preferences. Our numerical results indicate efficiency in using the
computing resources available and the solutions obtained reflect
the decision maker’s preferences well. Actually, two of the solutions
dominate the baseline design (the design provided by the decision
maker before the optimization process). The decision maker was
satisfied with the results and eventually selected one as the final
solution.
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1 INTRODUCTION

Industrial optimization problems often have multiple conflicting
objectives, which need to be simultaneously optimized. Such prob-
lems are known as multiobjective optimization problems (MOPs).
For these problems, there typically does not exist a single optimal
solution, but a set of optimal solutions can be identified. These solu-
tions which represent different trade-offs between the objectives are
known as Pareto optimal (PO) solutions. In MOPs, a decision maker
(DM), i.e. an expert in the application domain is usually interested
in a single solution or a small set of Pareto optimal solutions to be
implemented based on her/his preferences. Thus, it is important
to consider the DM’s preference information when solving a MOP.
Utilizing the DM’s preferences has a long history [14, 18, 24] and
more recently, evolutionary multiobjective optimization algorithms
have also been tailored to incorporate DM’s preferences. Some ex-
amples of different types of preferences employed in evolutionary
methods include reference points [4, 26], pairwise comparison [11],
desirable ranges of objective function values [13] and selecting a
preferred solution from a small set [6, 13, 23]. For more details
about utilizing the DM’s preferences in an interactive way, see e.g.
[19, 20] and references therein.

Another challenge in solving real-world problems arises from
the expensive nature of evaluating objective functions. Real-world
optimization problems may, for example, involve time-consuming
simulations like computational fluid dynamics (CFD) [7, 12]. In solv-
ing such problems, there may be a time limit and one can afford only
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a very limited number of function evaluations. Surrogate-assisted
optimization algorithms like ParEGO [17] and SMS-EGO [22] have
been used in the literature for solving MOPs with expensive func-
tion evaluations. For more details about surrogate-assisted multi-
objective optimization algorithms, see e.g. surveys [2, 9, 15, 25].

In this article, we focus on solving a computationally expensive
shape design MOP and finding a desirable solution based on the
DM’s preferences. For this, we extend a recently proposed Kriging-
assisted reference vector guided evolutionary algorithm (K-RVEA)
[8] for incorporating preferences by adapting reference vectors.

In addition to finding a desirable solution, we pay attention to
the challenges in the formulation of the optimization problem and
connecting different pieces of simulation tools. We use two different
simulation tools ANSYS ICEM [3] and ANSYS CFX [27], one for
meshing the component and another for CFD evaluations. Both
of them are then connected with the extended K-RVEA algorithm.
Integrating different simulation tools is common in solving real-
world problems, and often requires a substantial amount of time
and effort. We demonstrate that identifying objectives reflecting
the needs of the DM is far from trivial and can also take several
rounds of discussions.

To summarize, in this work, we address the following two major
challenges in solving a shape design multiobjective optimization
problem of an air intake ventilation system in a tractor cabin:

(1) formulating and modelling the problem to be solved and
(2) finding a desirable solution of this computationally expen-
sive problem based on the preferences of the DM.

As said, the problem to be solved involves time consuming CFD
simulations and we formulate three objective functions after three
rounds of discussions with the DM. The average computation time
for simulation on a computer with Intel Xeon E5-1607 v3 and 32
GB RAM is 30 minutes. The particular component considered in
the ventilation system consists of one inlet and four outlets. The
flow rates from the outlets play an important role in maintaining
a uniform temperature inside the tractor cabin and defrosting the
windscreen. Therefore, a balance in the flow rates from different
outlets is desired by the DM.

In [10], a simple version of the problem has been considered,
where the diameters of the outlets were used as decision variables.
A balance in the flow rates in [10] can only be achieved at the
expense of increasing the pressure loss. In this study, we develop a
more advanced parametric model to get an improved performance.

To alleviate the high computational cost of the three objective
functions, we apply the extended K-RVEA algorithm. The algo-
rithm adaptively manages Kriging based surrogates by selecting
samples using a criterion called angle penalized distance and uncer-
tainty information from the Kriging models. In [8], the algorithm
was found to perform better than state-of-the-art surrogate-asssited
multiobjective optimization algorithm on several benchmark MOPs.
We extend elements of K-RVEA to incorporate a DM’s preferences.
One of the main advantages of using K-RVEA over other surrogate-
assisted multiobjective optimization algorithms is that it uses ref-
erence vectors to guide the , which can be adjusted to handle the
DM'’s preferences. We select samples for updating the surrogates ac-
cording to the DM’s preferences. In this way, we want to utilize the

limited computation resources efficiently by focusing on solutions
that are relevant for the DM.

Before starting the optimization, we provide four options to the
DM to give one’s preferences to guide the search. We also use a
recently proposed hypervolume criterion [21] considering the DM’s
preferences to terminate the solution process. It is important to
point out that an appropriate termination criterion is crucial in solv-
ing expensive problems. It may happen that after a certain number
of function evaluations, there is no improvement in the quality of
solutions and running more simulations may not be useful and only
wastes computational resources. In [21], the hypervolume criterion
is used for comparing different preference based evolutionary al-
gorithms. In this article, we use the criterion for terminating the
solution process. We stop the optimization if there is no signifi-
cant change in the hypervolume after a certain number of function
evaluations. After the optimization run is completed, a set of non-
dominated solutions obtained corresponding to the preferences is
shown and a final solution is selected by the DM.

The rest of the article is organized as follows. In Section 2, we
elaborate on formulating the shape optimization problem of a com-
ponent in the air intake ventilation system by combining different
simulation tools. In Section 3, we introduce the methodology of
utilizing a DM’s preferences in K-RVEA. We present the results of
solving the optimization problem in Section 4 followed by conclu-
sions and future research directions in Section 5.

2 FORMULATION OF THE OPTIMIZATION
PROBLEM

The air intake serves for air suction and is a part of the tractor
cabin’s ventilation system. As can be seen in Figure 1, the compo-
nent considered has four outlets and each outlet leads to a different
branch of the ventilation system. In an ideal case, flow rates from
these outlets should be the same. However, when designing the
component considering manufacturing constraints, there is usually
a trade-off between flow rates and pressure loss. The pressure loss
AP in the system can be expressed as:

AP = APfrict‘ion + APjocal

where APfyjcsion is the pressure loss caused by frictional drag, e.g.
by the contact of fluid with walls of the component and AP, is
the local pressure loss caused by whirls and a local geometry shape.
Since the diameters and shapes of the outlets are not the same, flow
rates from them are inevitably different. In addition, pressure loss
increases with flow rates (for details of the relationship between
flow rate and pressure loss, see [10]). In an ideal case, the pressure
loss should be as low as possible, with all the flow rates from the four
different outlets being the same. Obviously, these are conflicting
objectives. Yet, for the proper operation of the ventilation system,
they both are important. Therefore, the DM is interested in a design
where the flow rates from different outlets are the same without
too much increase in pressure loss.

As we mentioned in the introduction, problem formulation can
be challenging and it is not always straightforward to formulate
objective functions and identify decision variables. Generally, this
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Figure 1: A CFD model of the original component in the air
intake ventilation system considered

Figure 2: The modified CFD model with added wedges (in
circles) at selected locations.

poses a challenge for any real-world engineering problem. It re-
quires identifying the most relevant objectives and their formula-
tion. And ideally, the formulation should be both compatible with
the engineering terminology (to make the communication with
the DM easier) and to display properties that are suitable for the
optimization code (convexity, smoothness, etc.).

In [10], three rounds of discussions with the DM were needed to
formulate a simple optimization problem, but the results obtained
were not reported to be fully satisfactory. In this article, we refor-
mulate the optimization problem to achieve a better balance in
flow rate values from different outlets. Considering manufacturing
constraints and the desires of the DM, we have added two wedges
in the component as shown in Figure 2. The positions of the wedges
were selected based on several CFD simulations prior to optimiza-
tion. In addition, manufacturing such wedges is easy and does not
cause problems in numerical simulations.

The first wedge prevents whirls caused by the inlet flow going
directly against a wall and helps in balancing the flow rates be-
tween the first and the other outlets. The second wedge helps in
directing the flow to the second and the fourth outlet. Both wedges
can be described by three variables: angle, height and position. By
combining these with the diameters of the outlets, we have a total
of 10 decision variables. Note that the decision variables for the
baseline design (the design provided by the DM before the optimiza-
tion process) and the case considered during the optimization are
different. There are no wedges in the baseline design and they were
introduced in the modelling phase to further improve the design.
We used the same objective functions as in [10]:

Table 1: Lower and upper bounds of the decision variables

variable | x;1 X2 X3 X4 X5 X¢ X7 X§ X9 X1
lower 05 05 05 05 0 0 10 5 0 60

bound
upper 1 1 1 1 1 1 40 20 90 150
bound

fi : Minimize variance between flow rates at outlets 1 to 3
: Minimize var(Q1,3)
f2 : Minimize static pressure loss of the air intake
: Minimize Pjinjer = Poytter
f3 : Minimize the difference between the flow rate at outlet 4

and the average of the flow rates at outlets 1 to 3
: Minimize avg(Q1,3) — Q4,

where Q; represents the flow rate from the j’ h outlet, Pinier and
P,ut1er are the static pressure values at the inlet and the outlets,
respectively, and avg(Q1,3) is the average of the flow rates from
outlets 1-3. The first and the third objectives ensure that the dif-
ference between the flow rates from different outlets is minimized,
which is vital for keeping a uniform temperature inside the cabin.
The second objective is related to the efficiency of the system, as
a high pressure loss equals to requiring a more powerful fan and
increases the energy consumption of the ventilation system. There-
fore, we minimize the difference between the pressures at the inlet
and the outlets as the second objective. The third objective pays
special attention to outlet 4. This separation from outlets 1 to 3 is
based on practical needs and reflects better the fact that outlet 4
is deemed as a less important one. As it has the smallest diameter
compared to the other outlets, maintaining a flow rate from this
outlet equivalent to the flow rates from other outlets is difficult.
Therefore, we minimize the difference of the flow rates from outlet
4 and the average of the flow rates from outlets 1 to 3 separately.
As far as decision variables are concerned, we have

x fori=1,...,4,

_ D;

x;=Pj for i=5,6 and j=1,2,
xi=Hj for i=17,8 and j=1,2,
xi =Aj for i=9,10 and j = 1,2,

where D; is the diameter of the i'" outlet and D;:"i tial jg the di-
ameter of the i*? outlet in the initial design, provided by the DM.
Furthermore, P; is the relative "left-to-right" position of the wedge
peak between two selected points. The height and the angle of the
j*" wedge are represented by H i and Aj, respectively, for j = 1, 2.
The lower and the upper bounds of all decision variables are given
in Table 1. The upper bounds of the first four variables were fixed
to the initial design values, as increasing the outlet diameters was
infeasible due to manufacturing constraints.

In solving the problem, we used two commercial software tools:
ANSYS ICEM [3] for meshing the component and ANSYS CFX [27]
for CFD simulations and evaluations of the flow rates and pres-
sure loss values. An optimization loop with different simulation
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Figure 3: An illustration of the optimization loop with dif-
ferent simulation tools and the optimization algorithm

tools involved and the optimization algorithm (extended K-RVEA)
is presented in Figure 3. As can be seen, first the meshing of the
component is performed with ICEM and then the meshed compo-
nent is exported to CFX for numerical simulations. The calculated
objective function values are passed to extended K-RVEA for get-
ting the decision variable values. This process is continued until a
termination criterion is reached. As mentioned, we used the hyper-
volume values to stop the solution process to avoid unnecessary
time-consuming simulations. The automation of the whole process
is accomplished through customized Python codes and modifying
pre-made template files.

Because of adding wedges to the parametric model, the average
computation time for one function evaluation increased from five
minutes to 30 minutes. Because the computation budget was limited,
surrogates were needed in the optimization.

3 ADAPTATION OF REFERENCE VECTORS

The K-RVEA algorithm has been designed for problems with three
or more computationally expensive objective functions. By approx-
imating expensive objective functions with Kriging models as sur-
rogates, the algorithm reduces computation times. It manages the
surrogates with a criterion called angle penalized distance and un-
certainties of the Kriging models. For more details about K-RVEA,
see [8].

We focus on handling preferences in surrogate-assisted evolu-
tionary multiobjective optimization. This has not received much
attention in the literature. It has been shown in [13], that refer-
ence vectors can be adjusted according to the DM’s preferences.
Therefore, we adopt a corresponding strategy and extend the K-
RVEA algorithm to find a desirable solution in solving a real-world
problem. (Note that in [13], no surrogates were used.) We incor-
porate the DM’s preferences before starting the solution process
(and, thus, employ preferences in an a priori fashion [14, 18]). As
said, we adapt reference vectors for guiding the search towards a
desirable set of approximated Pareto optimal solutions.

We offer four options to the DM to provide one’s preferences,
which are then used to adjust reference vectors: 1) selecting pre-
ferred solution(s) among a set shown, 2) indicating non-preferred
solution(s) among a set shown, 3) specifying preferred ranges of
objectives and 4) specifying a reference point of desirable objective

function values. Note that it is up to the DM to select an option
which best reflects the preferred style of expressing preferences. By
giving options, we do not force the DM to using some particular
style. Next, we show how the reference vectors are adjusted in the
extended K-RVEA based on the preferences.

Let us denote a set of N uniformly generated reference vectors by
V= {vi € Rkli =1,... ,N}, where k is the number of objectives.

If the DM selects a preferable solution z among a set of alternatives
shown, the reference vectors are adjusted as:

_ r~vi+(1—r)-vC
- ||r~v"+(1—r)-UC“’

~i

where v¢ = ﬁ is considered as a central vector (i.e. the vector

to which DM’s preferable solution is assigned to) and r € (0, 1) is
the radius which is prefixed and determines how far the reference
vectors are from the central vector v°. In this way, the reference
vectors are used only in a small part of the objective space (reflecting
the preferences of the DM). If the DM selects several preferred
solutions, the same procedure can be utilized for each preferred
solution to adjust the reference vectors.

Similarly, if the DM selects a non-preferred solution z, the dis-

z

tance (e.g. Euclidean distance) between the central vector v¢ = T=T

and the reference vectors V = {Ui € Rk|i =1,... ,N} is measured.

Then, the reference vectors closer to the central vector (e.g. based
on angle measurements between the reference vectors [5]) are re-
moved. This procedure is repeated for each non-preferred solution
if the DM selected more than one.

In case the DM provides preferences in terms of desirable ranges
of objective functions [fllfl”] fori = 1,...,k, a k-dimensional
hyperbox is created and a set of points is generated within the
hyperbox (e.g. with the Latin hypercube sampling). They are then
projected to the unit hypersphere to be used as reference vectors.
For generating reference vectors when the DM provides a refer-
ence point, we use the same procedure as in the case of preferred
solutions.

The steps of extended K-RVEA incorporating DM’s preferences
are listed in Algorithm 1. First, an initial population is generated,
e.g. using Latin hypercube sampling, which is then evaluated with
the expensive objective functions obtained e.g. by running CFD
simulations. The evaluated solutions are added to an archive A. We
then ask the DM to provide preferences in any of the four ways
detailed above. In case the DM wants to see solutions i.e., trade-offs
between the objectives, we show a set of nondominated solutions
before we ask the DM to provide preferences. It is important to
inform the DM that these solution may not be optimal and she/he
uses one’s domain knowledge to provide preferences.

Once the DM has provided one’s preferences, we generate a
uniform set of reference vectors with the same procedure as in [5]
and adjust them according to the preferences. We build Kriging
models for each objective function using solutions in A. We then
use RVEA [5] with Kriging models to obtain samples for updating
the surrogates in the next step. In both K-RVEA and RVEA [5], the
objective function values are normalized by using objective func-
tion values corresponding to extreme reference vectors (with one
component equal to 1 and the rest equal to 0). Therefore, extreme



Algorithm 1: Extended K-RVEA: Incorporation of preferences
in K-RVEA
Input: N = number of reference vectors
Output: A final solution selected by the DM
*Initialization™
1. Create an initial population P
2. Initialize the number of function evaluations FE = 0 and an
empty archive A = ¢
3. Evaluate the population P with the original expensive
functions and add them to A, update FE = FE + |P|
4. Ask the DM for her/his preferences in any of the four ways
5. Generate a uniform set of reference vectors and adjust them
according to the DM’s preferences
while Termination criterion is not met do
5. Train surrogates for each objective function by using
individuals in A
*Using RVEA with the surrogates™
6. Run RVEA with Kriging models to find samples for
updating the surrogates
*Updating the surrogates™
7. Select samples from the previous step using a selection
strategy and denote the set by I
8. Re-evaluate I with the original expensive functions and
update FE = FE + |I|, update A= AU
| 9.Gotostep5
10. Ask the DM for a final solution among the nondominated
solutions in A

reference vectors should be included in the algorithm. However, as
these extreme reference vectors are not generated as per the DM’s
preferences, we do not include them when updating the surrogates.

To update the surrogates, we first identify solutions generated by
RVEA with Kriging models in the objective space for each reference
vector (excluding the extreme ones). This is done by measuring the
angles between solutions and all reference vectors. For more details
about angle measurement, see [5]. Then, we use the similar criterion
as in K-RVEA for selecting samples to be used for updating. For
each reference vector, we select one sample either with a minimum
angle penalized distance (APD) [5] or a maximum uncertainty from
the Kriging models. The decision for using APD or uncertainty
information is based on the need of diversity which is measured by
the change in the number of empty reference vectors (without the
extreme reference vector). By empty reference vectors we mean
vectors to which no solution has been assigned. If the number
of empty reference has increased from the previous update, we
use the uncertainty information for updating the surrogates, and
otherwise APD is used for selecting the samples. The samples are
then evaluated with expensive objective functions and added to
the archive A. This procedure (steps 5 to 9) is repeated until a
termination criterion is met.

As mentioned in the introduction, we use a hypervolume crite-
rion proposed in [21] considering the DM’s preferences to terminate
the solution process. We stop if there is no change in the hypervol-
ume for consecutive 10 simulations. In the end, the DM is asked to
select one final solution based on her/his preferences among the
nondominated solutions in A.

4 RESULTS AND DISCUSSION

In this section, we present the results of solving the design problem
of a component in the air intake ventilation system detailed in
Section 2 with three objectives and 10 decision variables. Three
important parameters in the algorithm are: 1) number of reference
vectors N = 10, 2) number of samples (|I| in Algorithm 1) to update
the surrogates = N, and 3) initial sample size for training the surro-
gates = 100. The number of reference vectors is kept low as 10 to
find a small set of desirable solutions based on the DM’s preferences.
Due to a small number of reference vectors, we can evaluate all
samples after running an evolutionary algorithm (RVEA in this
case) with surrogates when updating the surrogates. Therefore,
the number of samples in updating the surrogates is equal to the
number of reference vectors. Note that we also remove duplicate
samples and do not evaluate them with expensive objective func-
tions. We use Latin hypercube sampling for generating the initial
population with a size 11n—1 as suggested in [16, 17], where n is the
number of decision variables. However, nine out of 109 simulations
failed and thus we had 100 samples to train the surrogates. It is
good to remember that some samples can fail for various reasons
when solving real-world problems (e.g., geometry collisions and
poor mesh quality in our case). We visualize results to support the
DM by using the parallel coordinate plot toolbox [1].

In solving this problem, the DM was not only interested in im-
proving the baseline design but also to explore and learn the trade-
offs between different objectives. Therefore, we did not put con-
straints on the objective functions as the objective function values of
the baseline design. After evaluating the 100 samples with CFD sim-
ulations, we asked the DM to provide preferences. He wanted to see
solutions first and we showed him a parallel coordinate plot of non-
dominated solutions of the initial population in the objective space.

We present normalized objective function values f; = 7 bihne
i=1...3,where fj paseline represents the objective function values
corresponding to the baseline design provided by the DM.

An illustration of nondominated solutions (normalized) in the
objective space is given in Figure 4. As mentioned, we offered four
options to the DM to provide his preferences (instead of forcing
him to use a particular preference style). Based on his knowledge
and expertise, the DM opted for specifying preferred ranges. First,
he gave an upper bound for each of the three objective functions.
As he was interested in getting as good objective function values
as possible, the lower bounds were set as (0, 0, 0). Based on this
information, we adjusted the reference vectors, as described earlier.
The upper bounds selected by the DM (in green) and the solution
corresponding to the baseline design (in red) are shown in Figure 4
besides the nondominated ones shown to the DM.

One can observe in Figure 4 that none of the solutions in the
initial sampling is better than the baseline design in the second
objective (pressure drop) values. Based on his experience, the DM
commented that it might be difficult to get a lower pressure drop
value than in the baseline design. Naturally, he was aware of the
fact that these solutions are not results of any optimization. One
should remember that our focus was to improve the performance
of the component in the air intake ventilation system by adding
wedges, which were not present in the baseline design.

for
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Figure 4: Nondominated solutions from Latin hypercube sampling (in blue) shown to the DM, solution corresponding to base-
line design (in red) and upper bounds given by the DM (in green). The figure is available in color online.
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Figure 5: Nondominated solutions from extended preferenee-based K-RVEA (in blue), solution corresponding to baseline de-

sign (in red) and upper bounds given by the DM (in green)

The computation time for running one simulation was approxi-
mately 30 minutes. Generally, due to the stochastic nature of evolu-
tionary algorithms, it is desirable to run the optimization multiple
times to increase the chances of finding as good solutions as possi-
ble. To test this, we did three independent runs (each with a different
initial population), the maximum we could afford with available
computation resources. No significant differences in the outcomes
of the three runs were observed, and, in the following, the assembly
of the results is considered. Nondominated solutions of the runs in
objective (normalized) and decision spaces are presented in Figures
5 and 6, respectively.

A total of 74 nondominated solutions were obtained from all
the three runs (with 130 simulations excluding 100 solutions of
the initial Latin hypercube sampling). As can be seen in Figure
5, in many solutions, all components lie below the upper bounds
given by the DM. In addition, two solutions dominate the baseline
design solution. As informed by the DM, getting a lower pressure
drop was difficult based on his experience and, therefore, finding
two solutions dominating the baseline design shows the value of
optimization. Moreover, some of the solutions found a significant
improvement in the third objective. These results show the potential
of the algorithm to obtain very good solutions in few expensive
function evaluations.

For some of the decision variables in Figure 6, many solutions are
very close to the bounds of the variables, e.g. diameter of outlet 4,

position of second wedge and angles of both wedges. As mentioned
in the introduction, outlet 4 has the smallest diameter (and the hy-
draulic loss is the highest) compared to the other outlets. Therefore,
to achieve an equivalent flow rate from other outlets, the diameter
of outlet 4 needs to be at the upper bound. The second wedge is
placed at the very end of the allowed range. This is most probably
due to the fact that in this position the wedge both helps directing
the flow into the second wedge and limits the flow to outlet 3, the
one with the highest flow rate in the original design. It is probably a
more efficient way than limiting it just by decreasing the diameter
of outlet 3. Furthermore, the first wedge tends to have a "sharper”
shape (small angle), respecting the inflow direction. The second
wedge, on the other hand, is lower and opens wider (bigger angle).
By narrowing the passage to outlet 3 it helps in directing the flow
into outlet 2 without increasing the hydraulic loss significantly.
Nonetheless, the results show an important aspect. In real-world
engineering problems, setting the right variable bounds can be
extremely difficult. Wide ranges make the optimization process
more time-consuming, yet narrowing down the ranges can exclude
the best design from the space. While an experienced DM can help
with this problem greatly, sometimes this still remains a challenge.
Finally, we asked the DM to select his most preferred solution
among the 74 solutions in the objective space. The DM was pos-
itively surprised because two solutions dominated the baseline
design and he concentrated on them. He then selected one solution



M Preference based K-RVEA M Initial design

T
T

Figure 7: Selection of the final solution by the DM using the parallel coordinate plot

using the parallel coordinate plot tool. A visualization of the two
solutions is shown in Figure 7. The final solution has the following
(normalized) objective function and decision variable values

fhinal = [0.29,0.97,0.77]
Xfinal = [0.85,0.93,0.66,1.0,0.10,0.97, 25.71, 8.22, 31.58, 62.49].

The streamlines from the CFD simulation of the baseline and
the final design are given in Figure 9. In the final design selected
by DM, the first wedge helps in guiding the flow between outlet 1
and the other outlets.

In Figure 10, we present for one of the three runs, a plot of the
hypervolume criterion (from [21]) with the number of function
evaluations, which was used as a stopping criterion. The upper
bounds given by the DM were used as the reference point for
calculating the hypervolume. As can be seen, after a fixed number
of evaluations, there was no improvement in the hypervolume.
Therefore, we stopped the optimization after 149 evaluations in this
particular run.

We also ran the original K-RVEA without including preferences
to show the impact of utilizing the DM’s preferences. For a fair
comparison, we ran the original K-RVEA for 230 expensive evalua-
tions, as the extended K-RVEA. We could run K-RVEA only once
due to the time limit. A parallel coordinate plot of solutions in
the objective space obtained from a single run of both algorithms
(with and without preferences) is given in Figure 8. As expected,
K-RVEA without preferences (in red) tried to cover the whole objec-
tive space and none of the solutions is as good as the final solution
found by the extended K-RVEA. The latter utilized the computation

resources more efficiently and could find very satisfactory solutions
for the DM. Thus, one can say that the limited computing resources
available were used more efficiently to meet the DM’s needs by
incorporating his preference information in the optimization.

5 CONCLUSIONS

In this article, we formulated and solved a real-world computa-
tionally expensive multiobjective optimization problem of an air
intake ventilation system by including the DM’s preferences. The
problem involved time-consuming CFD simulations and, therefore,
we extended the surrogate-assisted algorithm K-RVEA to reduce
the computational cost. Moreover, we offered the DM four possible
ways of articulating preference information. We also discussed the
importance of formulating and modelling the problem to be solved
by using different tools.

The extended K-RVEA algorithm was able to find solutions as per
the DM’s preferences. Two solutions even dominated the baseline
design, which the DM took as a positive surprise. The pressure loss
was a bit better than in the baseline design while the other two
objectives were improved significantly. Finally, the DM selected
one solution based on his preferences as the final solution.

For demonstrating the efficiency of the extended K-RVEA algo-
rithm, we also ran K-RVEA (without any preferences). The results
showed that the extended version used the limited computing re-
sources more efficiently and found solutions in that part of the
objective space that is desirable for the DM. Thus, the final solution
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Figure 8: Nondominated solutions obtained by extended (in blue) and original K-RVEA (in red)

Figure 9: A CFD result of the baseline (top) and the final
design (bottom) selected by the DM
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Figure 10: Hypervolume with the number of function eval-
uations

found was very satisfactory. On the other hand, the original K-
RVEA (without preferences) found solutions that were distributed
in the objective space but none of them was comparable to the final
solution found with preferences.

In addition to applying the extended K-RVEA in solving the
given problem, this article provides insights of solving real-world
optimization problems. For instance, dealing with failed simulations,
increasing the efficiency of optimization, interacting with a DM,
connecting different pieces of simulation tools with the optimizer
and visualization are examples of challenges faced by practitioners.
By handling these challenges this article provides a distinction in
solving benchmark and real-world optimization problems.

We incorporated the DM’s preferences before performing the
optimization, which is an a priori approach to preference artic-
ulation. Developing an interactive version of the algorithm will
be our future work. As mentioned, our objective was not to com-
pare different types of preference-handling methods. Instead, we
considered a real-world problem with a DM who had substantial
knowledge in the application domain, and wanted to offer him
freedom in expressing preferences for the optimization. This is an
advantage over forcing the DM to provide some fixed type of pref-
erences. Still, we consider different ways of handling preferences
in surrogate-assisted optimization as our future research work.

Developing a performance metric reflecting the needs of the
DM is another topic for future research. We utilized the parallel
coordinate plots to visualize nondominated solutions to the DM,
but other visualization tools could also be helpful. Therefore, in
the future, we plan to pay attention to other visualization tools to
interact with the DM.
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