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ABSTRACT

Pandey, Gaurav
Utilization of Efficient Features, Vectors and Machine Learning for Ranking Tech-
niques
Jyväskylä: University of Jyväskylä, 2019, 63 p.(+included articles)
(JYU Dissertations
ISSN 2489-9003; 100)
ISBN 978-951-39-7806-8 (PDF)
Finnish summary
Diss.

Document ranking systems and recommender systems are two of the most 
used applications on the internet. Document ranking systems search for docu-
ments in response to a query given by the user. On the other hand, recommender 
systems suggest items to the users on the basis of their previously expressed pref-
erences. Both document ranking systems and recommender systems make use 
of ranking techniques, since they typically present their results in the form of a 
ranked list. The order of the results is important because the users expect the 
most useful results at the top of these ranked lists.

Improvements in algorithms used by document ranking systems and rec-
ommender systems, including the utilization of advanced machine learning tech-
niques, lead to the generation of improved rankings. Moreover, advanced docu-
ment ranking systems often use features collected from the documents to gener-
ate rankings. Similarly, vectors generated for the users as well as items are uti-
lized by the recommender systems. Therefore, generation of features and vectors 
of good quality is instrumental for ranking techniques.

This dissertation makes the following contributions to explore the improve-
ments in ranking techniques using efficient features, vectors and machine learn-
ing: a) Creation of a feature extraction algorithm for learning to rank tasks in doc-
ument ranking, b) Creation of pairwise preference vectors of ratings on items by 
using neural embeddings that can be utilized in machine learning tasks includ-
ing recommender systems, c) Utilization of deep neural networks and transfer 
learning for serendipitous recommendations, d) Recommendations using rank-
ing probabilities and non-negative matrix factorization and e) Application of neu-
ral embeddings to search for cities and tours, taking user’s travel interests into 
account.

Keywords: Ranking, Information Retrieval, Recommender Systems, Deep Learn-
ing, Neural Embedding, Serendipitous Recommendations
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GLOSSARY

Ranking Arrangement of a set of entities in a decreasing order of
expected usefulness (e.g. relevance).

Document Textual representation of a tangible or non-tangible entity.

Item A piece of information referring to tangible or intangible
entities on which users have given their ratings.

Document Ranking
System

A software system that arranges a set of documents in de-
creasing order of usefulness in response to a query.

Recommender
System

A software system that presents a ranking of items to a user,
based on her and other users’ past preferences.

Features Information, typically real number values attached to doc-
ument or query-document pairs, based on their properties.

Vectors Ordered set of real numbers created for entities (words,
items, users, etc.) using neural networks.

Neural Embedding Use of neural networks to create vectors for words, so that
semantically similar words have similar vectors. Also used
to create user and item vectors.

Serendipitous
Recommendations

Recommendations given to users that consist of serendipi-
tous (i.e. relevant, novel and unexpected) items.

Vertical Search A search functionality that specializes in a particular do-
main.
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1 INTRODUCTION

With the ongoing increase in internet usage as well as the growth in the content
available online, various technologies are being continuously developed to assist
the users in accessing this large quantity of content. Document ranking systems
and recommender systems are such technologies and two of the most widely
used web applications nowadays. A user could present a query to a search en-
gine, and the document ranking system would get the user a list of webpages that
satisfy her needs. Moreover, users get automatic recommendations on various
websites using recommender systems, based on their previous preferences and ac-
tions. For example, on an e-commerce website the automatic recommender sys-
tem would suggest the user with products that she might be interested in. Both
document ranking systems and recommender systems typically present their re-
sults in the form of a ranking. The order of the results is important for both of
them, because the user expects that the most useful results would occur at the top
of the ranking.

While the field of information retrieval consists of various domains such
as text clustering, summarization, topic detection, etc., document ranking is its
prime task (Büttcher et al., 2016). Document ranking (or document search) aims
to present a ranked list of documents from an available document collection, in
response to a query posed by the user. In a web search system, the webpages
available on the internet typically form the document collection. Google 1, Bing 2

and Yahoo! Search 3 are some of the widely used search engines that focus on
webpage rankings. Apart from web search, document ranking is often used in
various other domains such as product search on an e-commerce website or book
search in a digital library. The search on e-commerce websites is performed on
documents that could be representative of both tangible (physically existing) as
well as non-tangible (e.g. multimedia, services, etc.) products. In general, doc-
ument ranking system could be used on any given type of document collection.
Some of the popular e-commerce sites where a ranking of the products is gener-

1 https://www.google.com/
2 https://www.bing.com/
3 https://search.yahoo.com/
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ated in response to a query from the user are: Amazon 4, eBay 5, Alibaba 6 and
Zalando 7.

In the context of this dissertation, we define a document ranking system as a
software system that generates a ranking of the documents in response to a query
given by the user. Here, the document refers to a textual representation of an
entity, where the entity can either be a tangible good or digital object. The tex-
tual representations of various entities are created or formatted so that they can
be utilized by software such as document ranking systems. For example, tangi-
ble goods could be various products such as electronics, clothes, etc., that have
a textual counterpart on e-commerce websites. The information such as product
description, name, price, producer, etc., in the form of text would form the doc-
ument for a document ranking system in product search domain. Similarly, for
digital objects like general webpages, news articles, domain specific texts, etc., the
text present in them would form the documents for the document ranking sys-
tem in web search domain. The textual descriptions for non-tangible goods such
as courses, e-books, services, movies, etc., can also be considered as documents.
Indeed, non-textual information like videos, images, audio, etc., could also be
utilized by document ranking systems; but in our work we restrict the scope only
to textual content in documents. In addition, features can also be collected for
the document, that can be used by the document ranking system. For example,
in web search some of the commonly used features are: document length, title
length, PageRank, etc. Moreover, features could be for a document as well as for
a query-document pair.

Recommender systems on the other hand, present the user with a personal-
ized list of items as recommendations, based on the past user behavior, as far as it
is known to the recommender system through the interactions with the user (Ek-
strand et al., 2011). Unlike document ranking systems, there is no explicit query
needed from the user. To provide recommendations to a particular user, the rec-
ommender system utilizes the past behavior of the user along with the behaviors
of other users. The recommendations are provided automatically to the users,
for example as an additional functionality on the webpage or as an email sent
to them. The past behavior that is utilized, is some indicator of users’ liking for
the items; e.g. ratings, views, clicks, likes, etc. The recommendations typically
consist of a ranking of items that the user has not accessed before. For instance,
a movie recommender system would use the users’ ratings of the movies along
with the ratings of the other users, to recommend her a list of movies out of the
movies that she has not rated before, and thus, has probably not seen before.
Recommender systems can also use information about the user (e.g. age, occu-
pation, expressed genre preferences, etc.) as well as the movies (e.g. genres, year
of release, language, etc.) to make the recommendation. Most of the popular
e-commerce websites such as Amazon, eBay, Alibaba etc., provide personalized

4 https://www.amazon.com/
5 https://www.ebay.com/
6 https://www.alibaba.com/
7 https://www.zalando.com/
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recommendations for the users, based on the purchase or rating history of the
user and other users. Some of the popular websites sites that provide movie rec-
ommendations are: Netflix 8, MovieLens 9, IMDb 10, etc.

Specifically in context of this dissertation, we define a recommender system
as a software system that generates a ranking of items to be recommended to the
user, by utilizing the past ratings given by the users on items. Here, item means
a piece of information referring to tangible or intangible entities on which the
users have provided their ratings. Depending on the context, the term item is
also used in our discussions to refer to the entity itself. The available ratings are
the main information about the item, that is considered by us for the purpose of
giving recommendations to the users. For example, in a movie recommendation
system, the movies are the items on which the users provide their ratings (e.g. a
highest rating of 5 for a liked movie and the lowest rating of 1 for a movie that
is disliked). Similarly, in case of product recommendation, the items could be
tangible products such as furniture, clothes, etc., or non-tangible products such as
e-books, healthcare service, online course, etc. Apart from ratings, recommender
systems can also utilize user preferences in other forms, e.g. clicks on item links,
likes, comments etc., as well as textual descriptions and meta-data related to the
users and the items. However, this dissertation focuses mainly on the utilization
of the explicit ratings given by the users in the past for recommendations. The
other information about the users and items (e.g. textual descriptions, metadata,
etc.) is also not considered for recommendations in this work.

It should be noted that we use the term document in relation to document
ranking systems, while the term item is used in the context of recommender sys-
tems; where documents and items could refer to any entity that is been searched
or recommended, respectively. In fact, they could also refer to the same entity. For
example, on an e-commerce website like Amazon, the products can be searched
(i.e. treated as documents by document ranking system) and are also recom-
mended (i.e. treated as items by recommender system). However, in the context
of this dissertation, the key difference between document and item is the infor-
mation regarding the entity that is utilized along with the system that is using
the information. Specifically, the textual information from the documents is uti-
lized by the document ranking system. And, the past user ratings on the items
are utilized by the recommender systems. Of course, it is possible for document
ranking systems to utilize user behavior on documents (e.g. ratings, clicks, etc.)
and recommender systems to utilize the textual descriptions related to items; but
these topics are not addressed in the dissertation.

As mentioned, recommender systems as well as document ranking systems
present the user with a ranking of items or documents. To create a ranking of
the results that satisfy the user needs, is the main aim of ranking techniques used
in recommender systems (Adomavicius and Tuzhilin, 2005) and information re-
trieval systems (Liu, 2011; Joachims et al., 2007). The order of the items or docu-

8 https://www.netflix.com/
9 https://movielens.org/
10 https://www.imdb.com/
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ments in the ranking is important because the user’s attention goes more to the
items at the top of the ranking. Therefore, it is desirable that the item or docu-
ment that fulfills the user’s needs the most is shown first, followed by the others
in a decreasing order of user satisfaction.

The ranking of documents returned by a document ranking system should
show the most useful document at the top followed by the second most use-
ful document and so on. For example, if a user searches for the query “Finnish
cities”, then she would expect the top results to be highly relevant to her search
needs. She would expect to see some documents that are related to the topic of
cities in Finland and are able to impart information about them. If the top results
are useless for her, then one could expect that she would not be satisfied with the
document ranking system. The widely used search engine Google, provides the
search results in the form of a ranking.

Similarly, a recommendation system should rank the most useful item to
the user at the top, followed by other items in decreasing order of usefulness. For
instance, in a movie recommendation system, the movies in the beginning of the
list of the recommended movies should be the most useful to the user, and hence
have a good chance to be watched. Similarly, in a recommender system on an e-
commerce website, the list of recommended items should be created aiming that
the user would find the items in the beginning of the list the most useful, and
hence would like to buy them.

Since in a ranked list of documents / items, it is expected that the ranking
is in decreasing order of usefulness to the user, where the first one is the most
useful; it is typically one of the main requirements of document ranking systems
and recommender systems to have as good ranking performance as possible. The
aforementioned usefulness of the ranked items or documents to the users can vary
according to the functionality aimed by the recommender system or document
ranking system. Often the usefulness is considered to be the relevance of the pre-
sented documents with respect to user query in document ranking systems and
the relevance of the presented items to the user in recommender systems. How-
ever, the user needs could be specific to a particular domain. Also, the ranking
systems may aim to provide serendipitous results to the users (André et al., 2009;
Kotkov et al., 2016).

Moreover, advances in machine learning have led to a widespread use of
neural embedding techniques to create vectors. These vectors can be considered to
be an ordered set of real numbers, which represent an entity. Vectors for words in
documents (Mikolov et al., 2013b,a) can be created by neural embedding by using
the textual content of documents, and then used for document ranking. Also,
vectors for users and items can be created by using the ratings and then these
vectors can be utilized by recommender systems (Barkan and Koenigstein, 2016;
Grbovic et al., 2015). While the features that are collected from the documents can
also be an ordered set of real numbers like in the case of vectors, we specifically
use the term vector when such representation for an entity is created using neural
embedding.



17

1.1 Motivation

This section presents the motivation for the research work presented in this dis-
sertation.

Various learning to rank techniques (Cao et al., 2007; Freund et al., 2003;
Joachims et al., 2009; Niu et al., 2012; Xu and Li, 2007), that utilize machine learn-
ing, are used for document ranking. They typically use machine learning to train
a ranking model on an available training dataset, that contains a set of queries
and a list of documents for each query, where relevance levels are available for
each query-document pair. For example, a training set with binary relevance lev-
els would have levels 0 and 1 assigned to query-document pairs, corresponding
to relevant and non-relevant instances, respectively. The relevance levels can also
be in higher order of granularity. Moreover, features are defined and created,
that are typically a set of real number values corresponding to each document
or query-document pair. They are generally created in order to be utilized by
machine learning algorithms and hence are available to the learning to rank algo-
rithms. Now ranking models can be trained using these features, and the trained
model can thereafter be used to predict the relevance of unseen documents and
therefore rank them (Joachims et al., 2007).

These learning to rank algorithms aim to utilize more and more useful fea-
tures of the documents in order to improve the ranking (Liu, 2011). In the pres-
ence of high number of features, dimensionality reduction of the available docu-
ment features becomes a crucial task, where original features are used to form a
lesser number of new features. This is because, when a smaller set of more dis-
criminative and less redundant features are selected or generated for learning, the
effect of overfitting is reduced leading to higher accuracy (Ng, 2004). Moreover,
since dimension reduction leads to a lesser number of features, this makes train-
ing and prediction process more computationally efficient (Liu, 2011). Dimension
reduction can be achieved by feature selection and feature extraction. Feature se-
lection selects a subset of the original features for learning, whereas feature ex-
traction uses the original features to generate a smaller set of new features. There
are various efforts to investigate feature selection for ranking (Geng et al., 2007;
Gupta and Rosso, 2012; Lai et al., 2013; Laporte et al., 2014; Naini and Altingövde,
2014; Pan et al., 2009; Yu et al., 2009). However, to the best of our knowledge, there
are no investigations in feature extraction for learning to rank. Therefore, we aim
to present an algorithm to carry out feature extraction for learning to rank.

Secondly, neural embedding has evolved as an advanced machine learning
technique that creates vectors of words from document collections and is being
utilized in many applications (Socher et al., 2011; Turney, 2013; Collobert et al.,
2011; Turian et al., 2010; Kusner et al., 2015). The creation of vectors by neu-
ral embedding is based on the presumption that the words that occur close to
each other in the documents are more closely related than the words that occur
far away. word2vec vectorization algorithm (Mikolov et al., 2013a,b) has recently
gained immense attention because of its efficiency. It has also been utilized in
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the area for document ranking (Nalisnick et al., 2016; Ye et al., 2016; Ganguly et
al., 2015). There is scope to explore niche document ranking domains of vertical
search, i.e. focusing on specific type of document collection. One such domain
that can be explored is vertical search for travel interests. In such vertical search,
travel destination documents representing one city per document are searched
for queries regarding travel interests, by utilizing vector representations of the
words present in the documents. Therefore, the main purpose is to create a rank-
ing of cities or tours (group of cities) in response to travel interest queries.

Moreover, word2vec has also also been successfully applied to recommen-
dation scenarios like: prod2vec (Grbovic et al., 2015) and item2vec (Barkan and
Koenigstein, 2016). In these algorithms, in order to create vectors of the items,
each user is considered as a document, and each item on which the user has per-
formed a particular action (e.g. rating, purchase, click, like, etc.) is considered
as a word contained in the document. This enables these algorithms to create
vectors of items in a way similar to the creation of vectors of words by word2vec.
However, in the input each item can only have two possible states for a user: 1 or
0, representing action taken by the user or missing action, respectively. Though
these representations are expected to create good quality item vectors for some
tasks involving binary actions by the users (e.g. views, likes, etc.), they lack the
functionality to capture higher levels of granularities of users’ feedback, e.g. rat-
ings on a scale of 1 to 5. This is because, such binary representations would treat
a low rated item in the same way as a highly rated item. Hence, it is expected
to severely limit the vectorization quality. Therefore, there is the need to investi-
gate the neural item embedding problem, to create good quality vectorization for
items using users’ historical rating information while utilizing the higher granu-
larities of user feedback.

Thirdly, rating-oriented approaches are followed by conventional recom-
mendation algorithms. In order to learn a recommendation model, they typically
consider users’ observed historical ratings, to predict their ratings for items with
unknown ratings. Many studies state that the prediction of accurate ranking is
of higher importance than the prediction of accurate rating scores (Gunawardana
and Shani, 2009; Adomavicius and Tuzhilin, 2005). In addition, accurate rating
prediction does not necessarily lead to accurate ranking results in recommender
systems. It is possible that a recommender system achieving high accuracy in
predicting the ratings does not predict correct rankings. Matrix factorization (Ko-
ren et al., 2009) is one of the most fundamental and widely used technique used
in recommender systems. Although, there are various ranking-oriented recom-
mendation algorithms, most of the pioneering efforts on ranking-oriented matrix
factorization predict users’ item ranking based on rating scores. Therefore, there
is need to explicitly present users’ preference ranking on items for matrix factor-
ization.

Fourthly, serendipitous recommendations are gaining much attention these
days. The need for serendipity arises because relevance oriented recommender
algorithms suggest items that the user already knows about or could find easily
herself (Kotkov et al., 2016). This may lead to low user satisfaction and formation
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of a filter bubble (Nguyen et al., 2014). Hence, recommendation of serendipitous
i.e. a combination of relevant, novel and unexpected items, can be expected to
broaden the user’s preferences (Kotkov et al., 2018). While deep learning and
advanced machine learning algorithms have been used in various algorithms
for relevance oriented recommendations (He et al., 2017; Grbovic et al., 2015;
Barkan and Koenigstein, 2016), the efforts are very limited for serendipitous rec-
ommendations. Therefore, there is need to explore utilization of deep learning
algorithms for serendipitous recommendations. Moreover, there are no publicly
available large serendipity oriented datasets, to the best of our knowledge. There-
fore, there is also the need to explore transfer learning, so that a deep neural
network can be pre-trained on a different large dataset (e.g. relevance oriented
dataset) and then can be tuned for a smaller serendipity oriented dataset.

1.2 Research Questions

Based on the presented motivations, this dissertation primarily tries to address
the following research questions. Along with the research questions, we also
briefly introduce the way they have been addressed by the research presented in
this dissertation.

RQ1: In document ranking, how can good quality features be extracted for learn-
ing to rank?

This research question has been addressed in Article PI where we focus on
the feature extraction problem for learning to rank for document ranking.
For this, we propose LifeRank, a linear feature extraction algorithm that uti-
lizes original features to generate new features for documents, while aim-
ing to match the learning to rank problem. Our experiments on benchmark
datasets show improvements over the state-of-the-art techniques.

RQ2: How can neural embedding be used to create good quality item vectors,
while utilizing different levels of granularities of user ratings?

This research question has been addressed in Article PII, where we propose
a vectorization algorithm called Pref2Vec that is capable of utilizing different
levels of granularities in given user ratings. For this, the algorithm creates
the vectors for pairwise item preferences, that can be utilized to create good
quality item vectors as well as user vectors. Experiments on benchmark
datasets confirm the quality of the created vectors.

RQ3: How can deep learning and transfer learning be utilized for serendipitous
recommendation?

This research question has been addressed in Article PIII, where we present
our novel transfer learning algorithm SerRec to recommend serendipitous
items to the users. The algorithm first trains a deep neural network using
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a large dataset with relevance scores and then tunes the trained network
using a smaller dataset with serendipity scores. The algorithm shows im-
provements over the state-of-the-art serendipity oriented algorithms.

RQ4: How can users’ preferences be formulated in listwise fashion and utilized
for ranking oriented recommendations?

This research question has been addressed in Article PIV. The article formu-
lates a problem that aims to predict the probabilities of item rankings for the
users, by utilizing a user-ranking probability matrix. The recommendations
generated using this algorithm on benchmark datasets, demonstrate the ef-
fectiveness of the algorithm.

RQ5: How can we utilize neural embeddings of words for innovative ranking
applications in vertical search?

This research question has been addressed in Articles PV and PVI. Although
there could be various ways in which neural embeddings of words could be
used, we explored the relatively unexplored vertical search domain of find-
ing cities and tours for travel interests of a user. In Article PV, we present
the algorithm that utilizes word2vec to rank cities for a travel interest. More-
over, it uses a technique to reduce the effect of mismatched semantic results
in the rankings, by generating features for the documents using a novel
clustering algorithm. The algorithm shows improvements over standard
techniques. Furthermore, Article PVI utilizes this algorithm of generating
rankings of cities for interests, in order to generate a ranking of tours (i.e.
groups of nearby cities) for a set of travel interests. This is demonstrated as
a web application.

1.3 Research Methods and Process

For addressing the research questions and to finally create the corresponding re-
search articles, in each case the research methods were followed in similar fash-
ion. For a particular article, literature review was carried out in order to know the
state-of-the-art and to identify the research gap. Thereafter, constructive method
was followed to create new algorithms, along with their software implementa-
tions. Then by running the algorithms on benchmark databases, offline evalu-
ation was carried out, that included comparisons with the state-of-the-art algo-
rithms.

The research presented in this dissertation has followed the Design Science
approach (Peffers et al., 2007), that consists of the following six stages: (1) prob-
lem identification and motivation, (2) definition of the objectives for a solution,
(3) design and development, (4) demonstration, (5) evaluation and (6) commu-
nication. We now present the way research was carried out in our six articles in
accordance to these stages. While research, corresponding to multiple articles,
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was sometimes carried out in parallel, for each article the six stages occurred se-
quentially.

Article PI “Linear feature extraction for ranking”

Problem identification and motivation: There are no known efforts in extracting
document features from known features, for learning to rank. Such feature
extraction can improve the accuracy as well as efficiency of learning to rank
algorithms.

Definition of the objectives for a solution: The objective is to create a feature ex-
traction algorithm that is suitable for learning to rank tasks.

Design and development: The LifeRank algorithm was designed and developed.

Demonstration: LifeRank algorithm was used on benchmark datasets for feature
extraction and the extracted features were then used by standard learning
to rank algorithms.

Evaluation: The improvements in performance over standard feature selection
algorithms were shown using offline evaluations.

Communication: Publication in Article PI is the primary communication.

Article PII “Vectors of pairwise item preferences”

Problem identification and motivation: Existing neural embedding techniques for
creating item vectors do not consider the different levels of granularities in
the ratings given by the users on items. Incorporation of the different gran-
ularities is expected to create higher quality item vectors.

Definition of the objectives for a solution: The objective is to create a neural em-
bedding algorithm that enables utilization of granularities of ratings on
items, in order to create good quality item vectors.

Design and development: The Pref2Vec algorithm was designed and developed.

Demonstration: Using standard benchmark datasets, the Pref2Vec algorithm was
used to create vectors of pairwise item preferences, that in turn were used
to create user vectors and item vectors. The algorithm to generate recom-
mendations to users using these vectors was also demonstrated.

Evaluation: The improvements in quality over standard vectorization techniques
were shown using offline evaluations.

Communication: Publication in Article PII is the primary communication.
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Article PIII “Recommending serendipitous items using transfer learning”

Problem identification and motivation: There are no existing techniques that use
deep learning and transfer learning to generate serendipitous recommen-
dations using serendipity oriented datasets. Such a technique is expected to
improve the performance in generating serendipitous results.

Definition of the objectives for a solution: The objective is to fill the identified re-
search gap by creating an algorithm that uses deep learning and transfer
learning to generate serendipitous recommendations.

Design and development: The SerRec algorithm was designed and developed.

Demonstration: Using two benchmark datasets with relevance scores and serendip-
ity scores, SerRec was demonstrated to generate serendipitous recommen-
dations using transfer learning.

Evaluation: Improvements were shown over standard serendipity oriented rec-
ommendation techniques using offline evaluations.

Communication: Publication in Article PIII is the primary communication.

Article PIV “Listwise recommendation approach with non-negative matrix fac-

torization”

Problem identification and motivation: Recommender systems aimed at high ac-
curacy in predicting the ratings do not necessarily predict correct rankings.
Most ranking-oriented recommendation algorithms that use matrix factor-
ization predict users’ item ranking based on rating scores. Therefore, it is
needed to formulate users’ preference ranking on items and utilize it for
matrix factorization.

Definition of the objectives for a solution: The objective is to create an algorithm
that utilizes and predicts ranking probabilities of items in matrix factoriza-
tion and then use them to make recommendations.

Design and development: The LwRec algorithm was designed and developed.

Demonstration: Using standard benchmark datasets, the LwRec algorithm was
used to generate recommendations for users.

Evaluation: Improvements were shown over standard recommendation techniques
using offline evaluations.

Communication: Publication in Article PIV is the primary communication.
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Article PV “CitySearcher: A city search engine for interests”

Problem identification and motivation: While using word2vec to find ranking of
cities for travel interests, we have the problem of mismatched semantic re-
lationships, i.e. travel interests get matched to certain words in the docu-
ments incorrectly.

Definition of the objectives for a solution: The objective is to utilize word2vec for
finding ranking of cities for a travel interest while reducing the effect of
mismatched semantic relationships.

Design and development: The CitySearcher algorithm was designed and devel-
oped.

Demonstration: The CitySearcher algorithm was used on a publicly available travel
dataset containing documents regarding cities.

Evaluation: Improvements were shown over standard document ranking tech-
niques using offline evaluations.

Communication: Publication in Article PV is the primary communication.

Article PVI “Finding tours for a set of interests”

Problem identification and motivation: There are no exiting algorithms for cre-
ating a ranking of tours for a set of interests by using available ranking of
cities for interest (from Article PV) while aiming that each interest from the
set of interests is satisfied. Here each tour is defined as a set of cities.

Definition of the objectives for a solution: The objective is to create an algorithm,
to use ranking of cities for an interest, in order to form ranking of tours for
a set of interests.

Design and development: The tour generation algorithm was designed and de-
veloped.

Demonstration: The developed algorithm was used on a travel dataset.

Evaluation: Comparison was done on the variants of the proposed algorithm us-
ing offline evaluations.

Communication: Publication in Article PVI is the primary communication. More-
over the web-application is presented on Travición website 11.

Table 1 summarises our research questions, along with the research methods used
to address them.

11 https://www.travicion.com/
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Research Question Problem Solution
Objective

Develop-
ment

Demonstration Evaluation Commu-
nication

RQ1: In document ranking,
how can good quality fea-
tures be extracted for learn-
ing to rank?

No known efforts to ex-
tract document features for
learning to rank

Algorithm
required

LifeRank Used on benchmark
dataset to extract low
dimension features that
were used by standard
learning to rank methods

Offline Evalua-
tion: Comparison
with standard
feature selection
techniques

Article
PI

RQ2: How can neural em-
bedding be used to cre-
ate good quality item vec-
tors, while utilizing differ-
ent levels of granularities of
user ratings?

Existing neural embedding
techniques do not consider
levels of granularities in
ratings

Algorithm
required

Pref2Vec Used on benchmark
dataset to create prefer-
ence vectors, that were
used to create user vectors
and item vectors

Offline Evalua-
tion: Comparison
with standard
vectorization
techniques

Article
PII

RQ3: How can deep learn-
ing and transfer learning
be utilized for serendipi-
tous recommendation?

No existing techniques
to use deep learning for
serendipitous recommen-
dations

Algorithm
required

SerRec Used on benchmark
dataset, to train deep
neural network using
relevance scores and then
tune for serendipity scores

Offline Evalua-
tion: Comparison
with standard
serendipity ori-
ented algorithms

Article
PIII

RQ4: How can users’ pref-
erences be formulated in
listwise fashion and uti-
lized for ranking oriented
recommendations?

No existing technique to
formulate users’ prefer-
ence ranking on items
and utilize it for matrix
factorization

Algorithm
required

LwRec Used on benchmark
datasets to generate
recommendations

Offline Evalua-
tion: Comparison
with standard
recommendation
algorithms

Article
PIV

RQ5: How can we utilize
neural embeddings of
words for innovative
ranking applications in
vertical search?

Using word2vec to find city
rankings for travel inter-
ests leads to mismatched
semantic relationships

Algorithm
required

City-
Searcher

Used on travel dataset to
search for cities

Offline Evalua-
tion: Comparison
with standard re-
trieval techniques

Article
PV

Need to create ranking of
tours for a set of interests
by using available ranking
of cities for interest

Algorithm
required

Tour
Cre-
ation

Used on travel dataset to
search for tours

Offline Evalua-
tion: Comparison
among variants
of proposed algo-
rithm

Article
PVI
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1.4 Thesis Structure

The dissertation is structured as follows. Chapter 2 discusses the related work
and then the results are described in Chapter 3. Chapter 4 summarises the orig-
inal articles that are included in this dissertation. Then Chapter 5 concludes the
dissertation, and is followed by the original articles.

This dissertation includes six original articles. All of them are published, at
the time of writing the final dissertation.



2 RELATED WORK

In this chapter, we present the literature review regarding the research carried out
for this dissertation.

2.1 Learning to Rank for Document Ranking

This section describes the related work in the area of learning to rank and feature
selection.

2.1.1 Learning to Rank Methods

Learning to rank methods use machine learning algorithms and find applica-
tion in document ranking. Due to this, machine learning as well as information
retrieval communities are becoming increasingly interested in learning to rank.
Most of the efforts in the area of learning to rank have focused on offline learning
to rank. Here, explicit feedback given by the users in the past for query-document
pairs, mostly labels in the form of relevance scores, is used for training a learn-
ing to rank model. Because of the effectiveness of such models, a number of
algorithms have been developed. The offline learning to rank algorithms can be
divided into three main classes (Liu, 2009; Chapelle et al., 2011): pointwise, pair-
wise, and listwise.

Pointwise approaches consider each labeled document as a training instance,
for a particular query. Here each training instance is considered as independent
from other training instances. For the query, the approach learns a model by us-
ing a machine learning technique like classification or regression. The model can
then be utilized to predict the relevance scores of unlabeled documents. Now, us-
ing these predicted scores, the unlabeled documents can be ranked for the query.
Pointwise approaches are used by various algorithms such as Pranking (Cram-
mer and Singer, 2001), McRank (Li et al., 2007) and Subset Ranking (Cossock and
Zhang, 2008).
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Pairwise approaches consider each pair of documents as a training instance.
Using this, the approach learns a binary classifier, that can then be used to predict
preference for a pair of unlabeled documents, signifying which document out of
the two would have higher relevance score. These predicted preferences can then
be aggregated to form a ranking of the unlabeled documents. Some of the well-
known pairwise ranking algorithms are: Ranking SVM (Joachims et al., 2009; Cao
et al., 2006), RankBoost (Freund et al., 2003), RankNet (Burges et al., 2005), FRank
(Tsai et al., 2007), LambdaRank (Burges et al., 2007), and BoltzRank (Volkovs and
Zemel, 2009).

Listwise approaches consider the ranked list of labeled documents as a train-
ing instance. Using this, they try to learn a model that can then be used to predict
the ranking of all the documents for the query. Some of algorithms that use the
listwise approach are: ListNet (Cao et al., 2007), SVM-MAP (Yue et al., 2007),
NDCGBoost (Valizadegan et al., 2009), etc.

Apart from offline learning to rank, online learning to rank (Schuth et al.,
2016; Hofmann et al., 2013; Grotov and de Rijke, 2016; Zoghi et al., 2017) and
counterfactual learning to rank from online data (Joachims et al., 2018) have been
gaining attention recently. These topics however are not considered in this dis-
sertation.

2.1.2 Feature Selection Methods for Learning to Rank

The learning to rank methods for document ranking utilize the features provided
for the documents along with their relevance scores with respect to a query, in
order to learn a model. These features are typically real number values that cor-
respond to the properties of the document or query-document pair. The aim to
improve the ranking performance of such models, leads to the inclusion of more
and more useful features. Because of potentially very large number of features,
dimension reduction, i.e. reducing the number of features of the documents, has
emerged as an important issue in the ranking problem (Geng et al., 2007). There
are various benefits that could be achieved because of dimensionality reduction.
Firstly, because of fewer features the learning to rank algorithms would run faster,
leading to higher efficiency. Secondly, the accuracy of the learning to rank algo-
rithms could also be increased because an effective dimensionality reduction al-
gorithm would lead to discriminative features with less redundancy and noise.
Moreover, using such features in learning would reduce the chances of overfitting
in the learnt model (Ng, 2004).

Feature selection and feature extraction are the two ways in which the di-
mensionality of the document features can be reduced. In feature selection, for
the given original features, a subset of features is chosen. But in feature extrac-
tion, using the original features, a smaller number of entirely new features are
created. For example, a new feature could be a linear combination of some of
the original features. Various efforts have been carried out recently for feature
selection for learning to rank. GAS (Geng et al., 2007) is one of the initial algo-
rithms for this, that aims to incorporate the importance and similarity of features
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in order to achieve feature selection for ranking. Other prominent efforts for fea-
ture selection have been carried out by Metzler (2007), Pan et al. (2009), Yu et al.
(2009), Gupta and Rosso (2012), Lai et al. (2013), Naini and Altingövde (2014) and
Laporte et al. (2014).

We see that all these algorithms aim at feature selection for ranking. This
leads to our RQ1, since to the best of our knowledge, there are no efforts aim at
feature extraction for ranking. We have addressed this research question in Article
PI (Pandey et al., 2018b).

2.2 Recommender Systems

Various recommender systems have been introduced that aim to present the users
with a ranking of items that the user has not consumed previously. The recom-
mender systems fall typically into one of the three categories: collaborative filter-
ing, content-based filtering and hybrid.

Collaborative filtering utilizes the ratings given by the users in the past on
items to make recommendations. They do not need other information related to
the items or the users. Content-based filtering algorithms utilize the descriptions
for the items in order to select items to be recommended to the user (Pazzani
and Billsus, 2007). They aim to match up the attributes from the existing user
profile having the user’s preferences, with the attributes of an item, to gener-
ate recommendations (Lops et al., 2011). Hybrid recommendations combine the
collaborative filtering and content-based filtering approaches (De Campos et al.,
2010).

The research presented in this dissertation focuses only on collaborative fil-
tering. Based on whether the collaborative filtering recommender system algo-
rithms aim to predict the ratings or the rankings, they can be divided into two
main categories: rating oriented and ranking oriented, respectively.

2.2.1 Rating Oriented Algorithms

Rating oriented collaborative filtering algorithms aim to predict accurate ratings
of the unrated items for the user, that can later be used to generate a ranking of
recommended items. Moreover we further classify these algorithms into memory-
based and model-based. Memory-based approaches make predictions on the di-
rect utilization of ratings. Whereas, model-based approaches use an algorithm
to learn a model in the training process by utilizing available ratings. Then this
learnt model is used to make predictions for unrated items.

Memory-based rating oriented algorithms are either user-based collabora-
tive filtering or item-based collaborative filtering. User-based approaches (Her-
locker et al., 2002) use the similarities between users on the bases of ratings given
by them. Whereas, item-based approaches (Linden et al., 2003), utilize similari-
ties between items on the bases of ratings given to them. Examples of advanced
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implementations of item-based rating oriented approaches are: SLIM (Ning and
Karypis, 2011) and FISM (Kabbur et al., 2013).

The traditional form of model-based rating oriented algorithm is matrix fac-
torization (Koren et al., 2009). The user ratings for items are typically available
in the form of a rating matrix, where each rows represents a user and a col-
umn represents an item. The rating matrix generally has various values missing.
Matrix factorization uses two lower dimensional matrices whose product forms
the predicted rating matrix; and the algorithm aims to decrease the distance be-
tween predicted and observed rating matrices. Probabilistic MF (Salakhutdinov
and Mnih, 2007), Non-negative MF (Lee and Seung, 2000), Factorization Ma-
chines (Rendle, 2010, 2012), Hierarchical Poisson MF (Gopalan et al., 2015) and
LLORMA (Lee et al., 2013) are some of the recommendation techniques based on
matrix factorization.

2.2.2 Ranking Oriented Algorithms

Ranking oriented collaborative filtering algorithms aim to predict the accurate
ranking of items for the user, and do not go through the intermediate step of
predicting the ratings of the items. These can be further classified as pairwise
and listwise.

The pairwise approaches predict the pairwise preferences of items for the
user and then aggregate these preferences to form a ranking. Two algorithms
that are based on this approach are: EigenRank (Liu and Yang, 2008) and VSRank
(Wang et al., 2014). Although pairwise approaches show better recommendation
performances than the rating oriented approaches, they are less efficient because
generally the number of preference pairs is much larger than the number of rat-
ings for a user. Moreover, listwise approaches aim to optimize a ranking oriented
objective function to train a model, that can then be used to predict a ranking of
unrated items as recommendations. Some of the algorithms that use a similar ap-
proach are: CLiMF (Shi et al., 2012), CoFiRank (Weimer et al., 2007), BPR (Rendle
et al., 2009) and GBPR (Pan and Chen, 2013).

Most ranking-oriented recommendation algorithms based on matrix factor-
ization use rating scores in order to predict the ranking of items. We identify the
research gap, that there is a need to formulate users’ preference ranking on items
and utilize it for matrix factorization. This leads to the formation of RQ4 that is
addressed in Article PIV (Pandey and Wang, 2018).

2.3 Neural Embedding

In this section, we describe the existing work related to neural embeddings of
words along with their adaptations in the area of recommender systems.
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2.3.1 word2vec

Most of the machine learning tasks require good quality vectors related to the
data they are working on, in order to achieve high performance. That is why
vectorization techniques are of importance to them, since they generate vectors
having discriminative and independent components. Neural embedding tech-
niques are the vectorization techniques that are based on neural networks. In the
area of natural language processing, they are used to create vector representation
of words present in a document collection, and have found various applications
(Socher et al., 2011; Turney, 2013; Bengio et al., 2003; Collobert et al., 2011; Turian
et al., 2010; Zou et al., 2013; Schwenk, 2007). The neural embedding techniques
create the vector representations of words by assuming that the words that oc-
cur in close proximity to each other in the documents are more closely related, in
comparison to the words that do not occur in close proximity. The main problem
was that the traditional neural embedding lacked the efficiency in training the
model.

However, the widely used word2vec technique that was introduced a few
years ago, has made the neural embedding process very efficient (Mikolov et al.,
2013b,a). This is because it employs a skip-gram language model, that does not
need dense matrix multiplications like the previously existing methods (Mikolov
et al., 2013b). Apart from being fast to train, the skip-gram language model is
highly scalable and preserves the semantic relationships of the words in their
vector representations. For example, for the created word vectors it was shown
that vec(“Madrid”) - vec(“Spain”) + vec(“France”) has vec(“Paris”) as its closest vec-
tor (Mikolov et al., 2013b), where vec(x) represents the vector corresponding to
the word x. Similarly, it was found that closest vector to vec(“King”) - vec(“Man”)
+ vec(“Woman”) was vec(“Queen”) (Mikolov et al., 2013a).

This technique has been utilized in various applications like name entity res-
olution (Lample et al., 2016), word sense detection (Bhingardive et al., 2015), vec-
tor representation of biological sequences (Asgari and Mofrad, 2015; Ng, 2017),
etc. Moreover, the word2vec approach has been extended in paragraph2vec, to cre-
ate hierarchical neural embedding frameworks, by using vectorization of para-
graphs along with vectorization of words contained in each paragraph (Djuric et
al., 2015).

Vector representations of variable length texts like sentences and documents
have been created by Le and Mikolov (2014). Moreover, efforts have been made
to embed entities and relationships of multi-relational data in low-dimensional
vector spaces (Bordes et al., 2013; Socher et al., 2013). These embeddings can
then be utilized for tasks like text classification and sentiment analysis. There
are also recent efforts to create neural embeddings corresponding to nodes in
graphs (Perozzi et al., 2014; Grover and Leskovec, 2016).

The word2vec technique has been utilized in the area for document ranking
(Nalisnick et al., 2016; Ye et al., 2016; Ganguly et al., 2015), where it has shown
improvements in ranking performances. There is scope to utilize the technique
in various types of document ranking applications. Inspired by this, we formed
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RQ5, where we aim to show the utilization of word2vec for vertical search for
cities and tours in response to user’s travel interests. This research question is
addressed in Article PV (Abdel Maksoud et al., 2017) and PVI (Abdel Maksoud
et al., 2018).

2.3.2 Neural Embedding for Recommender Systems

The success of word2vec in creating vector representations of words has also in-
spired its applications in the area of recommender systems. For example, Gr-
bovic et al. (2015) presented prod2vec and user2vec. Here, prod2vec model utilizes
neural embedding on sequences of purchased products (same as items) by the
users, considering each product as the counterpart of word in the natural lan-
guage processing domain, to create vectors of products. The user2vec model is
inspired by Le and Mikolov (2014) and considers a user as a global context and
hence learns the vector representations of user and products (Grbovic et al., 2015).
item2vec (Barkan and Koenigstein, 2016) is another similar approach that consid-
ers sets of items on which the user has taken action (e.g. products purchased) and
ignores the sequence of the considered items. Then it employs neural embedding
of these sets of items, in order to create the item vectors. These techniques lead
to creation of good quality vectors that can be used in various machine learning
tasks, including recommender systems.

However, we see that all these existing techniques use item information in
the binary format of 0 and 1 (e.g. clicked and not clicked song, purchased and not
purchased items, etc.). They do not have a straightforward way to include higher
granularities of user feedback, such as ratings on a scale of 1 to 5. The absence
of such a technique leads to the formation of our RQ2 that is then addressed in
Article PII (Pandey et al., 2019).

2.4 Deep Learning for Recommender Systems

In this section, we briefly describe the efforts in deep learning for recommender
systems and explain serendipitous recommender systems.

2.4.1 Deep Learning

Deep learning is receiving massive attention for quite a few years now. It is a
type of machine learning method, that learns representations of data at multi-
ple layers that correspond to different levels of abstraction. Because of its effec-
tiveness, deep learning finds application in a wide range of domains. For ex-
ample, there are many efforts in the areas of computer vision (He et al., 2016;
Donahue et al., 2014; Ranjan et al., 2019), natural language processing (Young et
al., 2018; Hirschberg and Manning, 2015) and speech recognition (Amodei et al.,
2016; Zhang et al., 2017; Deng et al., 2013).
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Moreover, there have also been various efforts in the field of recommender
systems that utilize the available deep learning techniques. Zhang et al. (2019)
provide a recent survey of such deep learning based recommender systems. Some
of the recent efforts that have carried out recommendation tasks using deep net-
works are: He et al. (2017); Cheng et al. (2016); Covington et al. (2016); Wu et al.
(2016); Ying et al. (2018).

2.4.2 Serendipitous Recommender Systems

Traditionally, the focus of recommender systems has been focused around the
relevance of items that are presented to the user as recommendations. This focus
however has been shifting since relevance shall not be considered the sole criteria
of the usefulness of the items. For example, if the user is already familiar with the
recommended items, then in spite of the items being relevant, they do not offer
any new information to the user and hence are not useful. Serendipitous rec-
ommender systems have recently come up as a possible solution to this problem
(Kotkov et al., 2016). Serendipitous recommendations are often described as the
ones that are a combination of relevance, novelty and unexpectedness (Kotkov et
al., 2018; McNee et al., 2006). Various efforts support the idea that recommender
algorithms should suggest serendipitous items to broaden user preferences and
improve their satisfaction (Kotkov et al., 2018; Zhang et al., 2012). There have also
been some efforts to create serendipity oriented algorithms (Lu et al., 2012; Zheng
et al., 2015; Yamaba et al., 2013; Kotkov et al., 2019).

However, to the best of our knowledge there are no efforts that use deep
learning or transfer learning to recommend serendipitous items. This leads to the
formation of RQ3 that is addressed in Article PIII (Pandey et al., 2018a)

2.5 Metrics

Lastly, we describe the metrics used for the comparisons carried out in the pre-
sented research.

2.5.1 Rank Accuracy Metrics

In the presented work, the accuracy of rankings created by the document rank-
ing systems or the reccommender systems, is considered as the prime indicator
of the performance of the underlying algorithm. For this, we have used two stan-
dard ranking accuracy metrics: mean average precision (MAP) (Baeza-Yates and
Ribeiro-Neto, 1999) and normalized discount cumulative gain (NDCG@n) (Järvelin
and Kekäläinen, 2002).

The metric MAP has been used for calculating ranking accuracy of docu-
ment ranking systems only, in this dissertation. Therefore, we explain it from the
perspective of document ranking. Let us consider a set of queries Q, where the
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document ranking system returns a ranking of documents for each query. Then,
for a particular query q from this query set, precision for its top n results, i.e. P@n,
can be calculated as:

P@n =
# relevant documents in top n

n
. (1)

Consider rel(k) to be a function that maps the document at position k to a binary
status of relevant (1) or irrelevant (0). Now, APq or Average Precision for the
query q, for its top N results, can be calculated by taking the average of the P@n
values for all relevant documents:

APq =
∑N

k=1
(

P@k × rel(k)
)

# relevant docs for q
, (2)

Then MAP takes the mean of the average precision values over all queries:

MAP =
∑q∈Q APq

# queries in Q
. (3)

It should be noted MAP can only consider binary relevance (relevant or irrele-
vant). It is not able to directly handle relevance in multiple levels, for example
if the relevance had been defined as: 0 (irrelevant), 1 (somewhat relevant) and 2
(relevant).

The second metric measure NDCG@n, that has been used quite frequently
in the presented research, is capable to handle multiple levels of relevance. We
have used it for calculating accuracies for document ranking systems as well as
for recommender systems. To calculate it lets firstly define DCG@n (discounted
cumulative gain) as:

DCG@n =
n

∑
j=1

2rel(j) − 1
log(j + 1)

, (4)

where rel(j) can have non-binary values. For instance, in document ranking sys-
tem, it can be a relevance level of 0, 1 or 2, for a document with respect to the
query. Moreover, for ranking of items in recommender systems, these could be
the ratings given by the user on a scale (e.g. 1 to 5 star ratings for movies or
products). Now, NDCG@n can simply be calculated as:

NDCG@n =
DCG@n
IDCG@n

, (5)

where IDCG@n is the ideal discounted cumulative gain that is possible. For mul-
tiple users in recommender system or multiple queries in document ranking sys-
tem, the NDCG is averaged to form the final metric.

2.5.2 Feature Quality Metrics

To measure the quality of the features extracted for document ranking, in this
research, we consider two metrics: importance and redundancy.
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The value of each feature would typically be different for different docu-
ments. Now, the importance of a particular feature can be estimated by calculating
the ranking performance achieved, when only that feature is used as a ranking
model to order documents. For this, we can use a ranking accuracy measure, e.g.
NDCG@n for a particular value of n. While calculating these measures, larger
values for some features might correspond to higher rank of the document, but
for other features higher values might correspond to lower rank. Therefore, we
utilize the strategy used by GAS (Geng et al., 2007) for evaluation. In this strat-
egy, the documents are ordered two times: in ascending order and in descend-
ing ordered. Then, we take the bigger score as the importance score of the fea-
ture. Once we have the importance scores for all the features from the feature set
F = { f1, f2, . . . , fk}, the average importance is calculated as:

Imp(F) =
1
k

k

∑
i=1

max
{

eva(X , fi), eva(X ,− fi)
}

, (6)

where the function eva(X , fi) returns the value of ranking evaluation, when fi is
used as a ranking model on the dataset X . A higher value of Imp(F) indicates,
better quality of the features.

The redundancy of features can be calculated using the similarities between
each pair of features and then taking their average. For this, we can consider
feature as a ranking model, and use it to order the documents. Now, the similarity
between a pair of features can be calculated as the average of their document
ranking similarities for different queries. Let us consider Q to be a given set of
queries and F = { f1, f2, . . . , fk} to be the features of the documents. Also, for
a particular query q from Q, let σ

(q)
i be the ranking of the documents when the

feature fi alone is used as the ranking model to rank the documents. Now, the
redundancy of the features F is calculated as:

Rdd(F) =
2

k(k − 1) ∑
fi, f j∈F,i>j

1
|Q| ∑

q∈Q
sim

(
σ
(q)
i , σ

(q)
j

)
, (7)

where sim
(

σ
(q)
i , σ

(q)
j

)
is the similarity between the rankings σ

(q)
i and σ

(q)
j . To

calculate this similarity, we use the absolute value of Kendall’s τ correlation co-
efficient (Kendall, 1948). Considering Nc and Nd as the numbers of the concor-
dant pairs and discordant pairs respectively between the rankings σi and σj, the
Kendall’s τ correlation coefficient is calculated as:

τ
(
σi, σj

)
=

Nc − Nd
Nc + Nd

, (8)

The value of τ
(
σi, σj

)
lies between -1 and 1. The negative and positive values of

this coefficient indicate negative correlation and positive correlation, respectively.
The magnitude of the value indicates how strong the correlation is and a value
of 0 indicates no correlation. Since the strength of correlations is important and it
is not desired that the negative and positive values cancel each other’s effect on
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averaging, we consider the absolute value of Kendall’s τ as the similarity metric.
In other words, we calculate sim

(
σ
(q)
i , σ

(q)
j

)
=

∣∣τ(σ
(q)
i , σ

(q)
j

)∣∣. A lower value of
Rdd(F) indicates lesser redundancy and hence better quality of the features.

2.5.3 Vector Quality Metrics

RMSE (root mean squared error) and MAE (mean absolute error) are the metrics
used by us to calculate the quality of vectors. We use them specifically in the
context of recommender systems to measure the quality of item vectors. Given n
items, with item vector for an item i denoted as Ii and the corresponding ground
truth denoted as Gi, the error for a pair of items i and j is calculated as:

ei,j = vecSim(Ii, I j)− gtSim(Gi, Gj), (9)

where the functions vecSim() and gtSim() calculate the similarities between a
pair of vectors and ground truths, respectively. Moreover, the items in our re-
search are movies from the Movielens datasets 1 and the genres to which each
movie belongs to are also available to us. This allows us to use this as the ground
truth. In a different setup, different ground truth could be used.

Also, a movie can belong to one or more genres, and its state corresponding
to each genre can be considered as a binary value. This means that a value of
1 for a particular genre signifies that the movie belongs that genre and a value
0 signifies the opposite. This leads to the formation of genre vectors containing
binary values for each movie. Therefore we could consider the ground truth Gi
as the genre vector corresponding to the movie i (i.e. item in our case). Now the
similarity between the item vectors vecSim(Ii, I j) can be calculated using cosine
similarity. Unlike the item vectors, the genre vectors are composed of only binary
values. Therefore, similarity between the genre vectors gtSim(Gi, Gj) is calcu-
lated using Jaccard similarity (Choi et al., 2010), a popular and efficient binary
similarity measure. The main idea behind using the differences of these similar-
ities as the error is that two movie vectors with similar genres should also have
similar vector representations.

This enables us to calculate our quality metrics RMSE and MAE as:

RMSE =

√
∑n

i=1 ∑n
j=i+1 e2

i,j

n(n − 1)/2
, (10)

MAE =
∑n

i=1 ∑n
j=i+1 |ei,j|

n(n − 1)/2
, (11)

where the function | · | gives the corresponding absolute value. The lower values
of RMSE and MAE metrics would indicate better quality of item vectors.

1 https://grouplens.org/datasets/movielens/



3 KEY CONTRIBUTIONS

In this chapter we describe the main contributions and explain how they answer
our research questions.

3.1 Linear Feature Extraction for Ranking

Our first main contribution is to answer RQ1 by the creation of LifeRank algorithm
from Article PI (Pandey et al., 2018b), a feature extraction algorithm for learning
to rank.

LifeRank generates a low dimensional dataset X ′ for a given high dimen-
sional dataset X . In the first phase, the training dataset X is preprocessed to
create an original matrix X and other information IX. Here X consists of m rows
corresponding to the documents in the training set and n columns represent fea-
tures for the documents. Moreover, IX consists of relevance labels, ids of the
documents and queries, etc. Now let us consider D = {d1, d2, . . . , dm} to be the
document vectors in the matrix X�

m×n. We utilize each each pair of document
vectors (di, dj) ∈ D × D to create the pairwise labels for the training dataset, i.e.
yi,j ∈ {+1,−1}. The value of yi,j is +1 when the relevance of the i-th document is
higher than the j-th document for a query. The value is −1 in the opposite case.
Moreover, we initialize a transformation matrix Tn×k with {t1, t2, . . . , tk} as its
column vectors. T needs to be optimized, so that it can be used to transform X
with n features to X ′ with k features, where k < n, as shown in Figure 1.

× =

X T X’

m n m

n k
k

FIGURE 1 Transformation of X to lower dimension
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LifeRank aims to minimize the loss function in Equation 12 from Pandey et
al. (2018b) in order to optimize T . For this, we also initialize A, a matrix with k
columns and k rows, and elements αi,j; as well as w, a k-dimensional vector of
weights and a constant b:

L(T , w, b, A) = ∑
∀(di,dj),i �=j

log
(

1 + e−yi,j(w�T�(di−dj)+b)
)
+

λ

2
‖w‖2 + ∑

i,j=1,...,k∧i �=j
αi,jt�i t j +

k

∑
i=1

αi,i

(
1 − t�i ti

)
. (12)

Here the first part of the loss function calculates the log loss of the ranking accu-
racy. Second part is introduced to avoid overfitting, where ‖ · ‖2 represents the
L2 norm and λ is the coefficient of the regularization. The last two parts in the
loss function are there to impose orthonormality constraints on T . The detailed
motivation for the loss function is explained in Article PI (Pandey et al., 2018b).

To optimize the loss function, the gradients with respect to the variables w,
tl, b and αi,j are calculated and then used to run gradient descent. In the second
phase, LifeRank proceeds to generate low-dimensional training, validation and
test matrices using the optimized transformation matrix T . Then LifeRank forms
new datasets based on these low-dimensional data matrices by combining them
with the previously removed extra information. The algorithm that is published
in the article Pandey et al. (2018b), is shown verbatim in Algorithm 1.

The number of documents is expected to be highly influential for the com-
plexity of the algorithm. As we can see that the loss function and also the gradi-
ents consider the pairs of documents, even a small increase in number of docu-
ments would increase the running time considerably.

The LifeRank algorithm was used for dimensionality reduction on the LETOR1

datasets that are the common benchmarks for learning to rank. We used MQ2007
and MQ2008 datasets from LETOR 4.0 (Qin and Liu, 2013) and OHSUMED from
LETOR 3.0 (Qin et al., 2010). The datasets created after feature extraction were
evaluated for learning to rank algorithms: RankSVM (Joachims et al., 2009) and
Linear Regression (Lawson and Hanson, 1995). The evaluations, presented in
detail in Article PI (Pandey et al., 2018b), showed improvements over standard
feature selection techniques: GAS (Geng et al., 2007) and FSMSVM (Lai et al.,
2013).

3.2 Vectors of Pairwise Item Preferences

Our second contribution is to answer RQ2 by the creation of Pref2Vec algorithm
from Article PII (Pandey et al., 2019), a method to generate vectors of pairwise
item preferences. The preference vectors are then used to create user vectors and
item vectors.
1 http://research.microsoft.com/en-us/um/beijing/projects/letor/
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Algorithm 1: LifeRank: A Linear Feature Extraction Algorithm for Rank-
ing ( verbatim from Pandey et al. (2018b))

Input: A training dataset X , a validation dataset V , a test dataset E , the
learning rate η, and the number of features k in the set of
generated document.

Output: A generated training dataset X ′, validation dataset V′, and test
dataset E ′, each with k features.

// Phase I
1 (X, IX) ← Preprocess(X ) ;
2 T , w, {αi,j}i,j=1,...,k ← Initialize(X, k) ;
3 repeat

4 w ← w − η∇wL ;
5 tl ← tl − η∇tlL, for l = 1, . . . , k;
6 b ← b − η ∂L

∂b ;
7 αi,j ← αi,j + η ∂L

∂αi,j
, for i, j = 1, . . . , k ;

8 until Reach convergence or the max iteration;

// Phase II
9 (V , IV), (E, IE) ← Preprocess(V , E);

10 X ′ ← XT , V ′ ← V T , E′ ← V T ;
11 X ′,V′, E ′ ← GenerateDatasets(X ′, V ′, E′, IX, IV , IE);

Let us consider a set of m users: {u1, u2, . . . , um} as well as a set of n items:
{I1, I2, . . . , In}. Also, consider their rating matrix Rm×n, where each row of R
consists of ratings Ru = {r1, r2, . . . , rn} given by a user u, while it is expected that
various ratings could be missing. Now the Pref2Vec framework builds a set of
pairwise preference for each user. For this, it uses a preference function: p(i, j) ∈
{+1,−1}, where i, j = 1 . . . n, i �= j and both the ratings ri and rj are known. The
preference value p(i, j) is equal to +1 if ri > rj. Otherwise the value is −1. Using
this, Pref2Vec creates the sets of positive preferences Pu for each user u. For each
user, the preferences in its set would be a subset of P = {p1, p2, . . . , pN} where
N = n(n − 1).

Example 1 Let us consider that for the items I = {I1, I2, I3, I4}. A user has given
the ratings 1, 5, 4 and 2 respectively. Here the set of preferences for the user would
be Pu = {I2 � I1, I2 � I3, I2 � I4, I3 � I1, I3 � I4, I4 � I1}. To clarify, the preferences
I2 � I1 and I2 � I3 exist in this set because the values of the preference functions
p(2, 1) and p(2, 3) both are +1, i.e. the ratings indicate that the user prefers I2
over I1 as well as I2 over I3.

Now, Pref2Vec proceeds with learning the vector representations of the prefer-
ences on the collection of preference sets P = {P1, P2, . . . , Pm} for all of the users.
We utilize the word2vec framework (Mikolov et al., 2013a,b) that considers a text
corpus and generates vector representations of words. In our approach we simi-
larly consider P as the corpus, the preference sets P1, P2, . . . , Pm by the users as the
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sentences and the preferences p1, p2, . . . , pN as the words. The main difference in
our approach is that we ignore the sequential information in the preference sets.
This is because, we consider a non-temporal setup where we do not consider the
time when the users had given their ratings. The sequence of preferences created
by our approach is arbitrary and hence inconsequential. For example, it should
not make a difference if the same three preferences are mentioned in the sequence:
I2 � I1, I2 � I3, I1 � I4 or in the sequence: I2 � I3, I1 � I4, I2 � I1. Our approach
is inspired by item2vec (Barkan and Koenigstein, 2016) that creates the vectors of
items. We however create the vectors of preferences, i.e. corresponding to the
preferences p1, p2, . . . , pN, we get the preference vectors p1, p2, . . . , pN.

Once the preference vectors are created, the next step in our approach is to
create user vectors using them. Let us consider for a particular user: p1, p2, . . . , pr ∈
{+1,−1} to be the preference values and p1, p2, . . . , pr to be the corresponding
preference vectors of length k. To create the corresponding user vector u also of
length k, the approach tries to find such a vector so that cumulatively each prefer-
ence pi matches with the corresponding product of the user and preference vector
u�pi. In order to find optimal vector u, we train a linear classification model that
uses Logistic regression (Hosmer Jr et al., 2013) to optimize the following loss
function where the second part is regularization term with L2 norm:

arg min
u,b

r

∑
i=1

log(1 + exp(−pi(u�pi + b))) +
λ

2
‖u‖2, (13)

where b is a number and λ is a tuning parameter. It should be noted that the
optimization of this loss function is expected to create user vector u, such that
u�pi has a high value for pi = +1 and a low value for pi = −1.

For the loss function we calculate the gradients with respect to the variables
u and b, and use them to run gradient descent method for optimization. The
user vector generation is shown in Algorithm 2. The generated user vectors u
corresponding to each of the m users and each of length k can also be assembled
to form a user matrix Um×k.

Algorithm 2: User Vector Generation
Input: For a user: preference vectors p1, p2, . . . , pr, with respective

ground truth values p1, . . . pr ∈ (+1,−1), and learning rate α

Output: Optimized values of u and b

1 Initialize u and b;
2 repeat

3

u ← u − α

( r

∑
i=1

−pi

1 + exp(pi(u�pi + b))
pi + λu

)

b ← b − α

( r

∑
i=1

−pi

1 + exp(pi(u�pi + b))

)
4 until reach convergence or the max iteration;
5 return u, b
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The final step of Pref2Vec is to create item vectors. For this it utilizes the
previously created user matrix Um×k along with the given rating matrix Rm×n.
The approach tries to create an item matrix In×k with each row corresponding
to an item vector. This is done by minimizing the difference between observed
ratings in R and the product of user and item vectors i.e. UI� ≈ R. For this, we
minimize the loss function:

arg min
I

‖R − UI�‖2 +
λ

2
‖I‖2, (14)

where λ is the parameter for the L2 norm. The gradient of the loss function with
respect to the variable I is calculated and then it is optimized using gradient de-
scent, as shown in Algorithm 3.

Algorithm 3: Item vectors derivation
Input: User matrix U of dimension m × k, rating matrix R of dimension

m × n and learning rate η

Output: Optimized item matrix I of dimension n × k

1 Initialize I;
2 repeat

3 I ← I − η(−2(R − UI�)�U + λI)
4 until Reach convergence or the max iteration;
5 return I

It should be noted that the preference vector creation in Pref2Vec works sim-
ilar to item2vec, and hence similar complexity is expected. However, the main
difference is that the number of positive preference pairs for a user, can typically
be larger than the items. Moreover, in certain cases where the user has given the
same ratings to all the items, no preference pairs would be formed.

The Pref2Vec algorithm was used on benchmark movie recommendation
datasets from MovieLens 2: MovieLens-100K, MovieLens-1M and MovieLens-
10M. The offline evaluations showed that the generated item vectors were better
in quality than the standard techniques including item2vec (Barkan and Koenig-
stein, 2016). Moreover, the user vectors as well as item vectors were shown to
be independent of initializations. Also, the utility of the algorithm was shown
by using the created vectors for predicting recommendation rankings, where our
technique outperformed the standard recommendation techniques. The detailed
results are presented in Article PII (Pandey et al., 2019).

3.3 Recommending Serendipitous Items using Transfer Learning

Our third contribution is to answer RQ3 by the creation of SerRec algorithm from
Article PIII (Pandey et al., 2018a), a transfer learning technique to recommend
2 http://grouplens.org/datasets/movielens/
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FIGURE 2 SerRec Architecture for Transfer Learning for Serendipity. Architecture uses
NCF framework (He et al., 2017) and the figure is from Pandey et al. (2018a)

serendipitous items. Since, there are no large datasets available with serendipity
scores, it firstly trains a deep neural network on a large dataset with relevance
scores and then tunes it using a smaller dataset with serendipity scores.

For this we utilized the Neural Collaborative Filtering (NCF) framework3

introduced by He et al. (2017). Our transfer learning technique that utilizes this
is shown in Figure 2. As it can be seen in the figure, the NCF framework is com-
posed of two parts: Generalised Matrix Factorization (GMF) and a group of four
Multi Layer Perceptron (MLP) dense layers. While this framework is originally
used for predicting the relevance scores, we employ transfer learning for predict-
ing serendipity scores.

For this, we first train the GMF and MLP layers separately, using a large
dataset with relevance scores. Thereafter, we fix the weights in these trained lay-
ers and then tune the NeuMF layer using a smaller serendipity oriented dataset.
For our offline evaluations, we employed Serendipity-2018 dataset (Kotkov et al.,
2018), that to the best of our knowledge is the only publicly available dataset
with serendipity scores provided by the users. This dataset contains a large
dataset with relevance scores along with a smaller dataset with serendipity as
well as relevance scores. The bigger dataset was used to train on relevance, and
then the smaller data was utilized for tuning and testing on serendipity. Our
approach to recommend rankings of serendipitous items outperformed the com-
parison algorithms that included Singular Value Decomposition (Koren and Bell,
2015), Serendipitous Personalized Ranking (Lu et al., 2012) and Unexpectedness-
3 https://github.com/hexiangnan/neural_collaborative_filtering
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Augmented Utility Model (Zheng et al., 2015). The detailed results can be seen in
Article PIII (Pandey et al., 2018a).

3.4 Listwise Recommendation Approach with Non-negative Ma-
trix Factorization

Our fourth contribution is to answer RQ4 by the creation of LwRec algorithm from
Article PIV (Pandey and Wang, 2018). LwRec is a novel listwise ranking-oriented
matrix factorization algorithm, that instead of using a rating matrix utilizes a
user-ranking probability matrix to predict users’ rankings of items.

Let us consider m users and n items. This leads to n! possible rankings of
items for each user, which is a very large number even for not so big values of n.
LwRec uses the approach by Huang et al. (2015) to calculate the probabilities of
the rankings of items with known ratings. The approach uses an efficient method
by Cao et al. (2007), in which the focus is only on the top-k items in the rankings.
This leads to the reduction number of rankings to n!

(n−k)! . Using this approach, the
probability of the rankings ρS having S = {i1, i2 . . . ik} as the exact top-k items, is
calculated as:

Prob(ρS) =
k

∏
j=1

γ(rij)

∑n
l=j γ(ril)

, (15)

where rij is the given rating for the item ij and γ(r) = er.

Example 2 Consider a simple example where a user has given ratings of 2, 3 and
5 to items i1, i2 and i3 respectively. If k = 2, we will have 3!

(3−2)! = 6 different
rankings i.e. {i1, i2}, {i1, i3}, {i2, i1}, {i2, i3}, {i3, i1} and {i2, i2}. Now, using the
formula (15) for the probability,

Prob({i1, i2}) = e2

e2 + e3 + e5 · e3

e3 + e5 = 0.005.

Similarly,
Prob({i1, i3}) = 0.037, Prob({i2, i1}) = 0.005,
Prob({i2, i3}) = 0.109, Prob({i3, i1}) = 0.227,
Prob({i3, i2}) = 0.617.

It can be seen that the best possible ranking i.e. {i3, i2} (having the highest rated
item on first position and second highest rated on the second position) gets the
highest probability.

Since there are m users and p = n!
(n−k)! possible ranking sets for each user; we

create Θm×p, the user-ranking probability matrix. In Θ, each row contains the
probabilities of the p rankings for a particular user. It should be noted that the
probability of a ranking for a user would be present in Θ only if all the ratings for
the items in that ranking are known for the user. The value otherwise would be
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unknown. The sum of probabilities in each row is 1 and the unknown values are
denoted by ⊥.

Moreover, LwRec deals with the case of k = 1, i.e. it considers only the top
items in the rankings. Since p = n!

(n−1)! = n now, the size of Θ would have same
dimension as the rating matrix i.e. m × n.

In order to predict the unknown probabilities in Θ, LwRec employs two ma-
trices Uz×m and Gz×p to form the predicted probability matrix U�G, where z can
be chosen as a parameter. To get optimum matrices U and G, the LwRec approach
aims to minimize the following listwise loss function (Pandey and Wang, 2018):

L(U, G, α, β) = −
m

∑
i=1

p

∑
j=1,Θij �=⊥

Θij log
(U�G)ij

∑
p
l=1,Θil �=⊥(U�G)il

+
m

∑
i=1

(αi − βi)

( p

∑
j=1

(U�G)ij − 1
)
+

λ1

2
‖U‖2 +

λ2

2
‖G‖2. (16)

Here, ‖ · ‖2 is the L2 norm and λ1 and λ2 are the coefficients. The second part of
the loss function also considers that since the rows of U�G contain probabilities
of the rankings, the sum of the values in each row should be 1. Here, α and β are
vectors, so that αi − βi acts as the coefficient for the ith penalty term. Moreover,
since the values of probabilities cannot be negative, the approach follows non-
negative matrix factorization (Lee and Seung, 2000) to derive the update rules to
minimize the loss function. This requires non-negative initialization of all the pa-
rameters i.e. U, G, α and β. Since the values contained in any of these will never
be negative during optimization because of non-negative matrix factorization, the
values in U�G will also be non-negative. The reason behind using two vectors α

and β is that although neither of them can have negative values, the effective co-
efficient αi − βi can be negative as well as non-negative. The detailed motivation
as well as technique to minimize the loss function is presented in Pandey and
Wang (2018).

Upon optimization of the loss function, the finally created U�G matrix con-
tains the predictions of ranking probabilities. Since we have considered k = 1,
each row of U�G would contain probabilities for n one-item rankings. Therefore,
items can be ordered by their decreasing predicted probabilities in order to form
a ranking.

Also, as mentioned we use k = 1, so the size of Θ is m× n. However, increas-
ing the value of k is expected to lead to a considerable increase in the number of
columns in Θ, and hence increasing the complexity of the algorithm. The LwRec
algorithm used benchmark movie recommendation datasets from MovieLens:
MovieLens-100K and MovieLens-1M. The offline evaluations showed that the
LwRec algorithm outperformed the state-of-the-art recommendation techniques.
The detailed results are presented in Article PIV (Pandey and Wang, 2018).
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3.5 Utilization of Neural Embeddings for finding Cities and Tours

Our fifth contribution is to answer RQ5 by the creation of CitySearcher algorithm
from Article PV (Abdel Maksoud et al., 2017) and tour generation algorithm from
Article PVI (Abdel Maksoud et al., 2018).

3.5.1 CitySearcher

CitySearcher algorithm is designed to return a ranking of cities when queried for
travel interests (e.g. music, nightlife, beach, etc.). The algorithm uses word2vec
(Mikolov et al., 2013b,a) on a corpus in order to calculate the vectors correspond-
ing to all the words present in the corpus vocabulary. The documents contained
in the corpus are predominantly about cities, where each document represents
one particular city and each city is represented by only one document.

For ranking the cities in response to an interest itr i.e. a word given by
the user expressing her travel interest, the algorithm finds the ranking score for
the city documents for it. To find this score for a city c, the similarity scores
are calculated between the vector for itr and the vectors of words present in the
city document. Now considering the highest k such scores: s1, s2...sk, the ranking
score, initialScore(c, itr) can be formulated as:

initialScore(c, itr) =
1
k

k

∑
i=1

si. (17)

For example, if the top 5 similarity scores between an interest and words in a city
document are: 0.9, 0.8, 0.7, 0.5 and 0.4, then for k = 3 the resultant score would
be calculated as: 0.9+0.8+0.7

3 = 0.8. On calculating such score for each city, the
ranking of the cities can be achieved by sorting them in a decreasing order of the
scores.

This approach produces decent rankings, but in certain cases, it suffers from
the problem of incorrect semantic mismatching. For example, for the travel in-
terest romance, it awards high ranking to cities with frequent mention of Roman
artifacts. Moreover, the city name is semantically interpreted. Due to this, it leads
to incorrect interpretation by the algorithm, when a city called Sale is ranked first
for the interest Shopping.

To improve the algorithm and remove such issues, the algorithm attempts to
create novel features for the documents and train models using machine learning
algorithms such as Kernel ridge regression (Murphy, 2012) and Logistic regres-
sion (Hosmer Jr et al., 2013). The training is done using relevance assessments
obtained from the users.

CitySearcher used the English version of Wikivoyage dataset 4 for our exper-
iments. The documents contained in the dataset predominantly represent differ-
ent cities. A list of words representing common interests was considered for the

4 https://en.wikivoyage.org/wiki/Main_Page
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FIGURE 3 Architecture of Travición. The diagram is from Abdel Maksoud et al. (2018).

experiments. Ratings for city-interest pairs, that were collected using the crowd-
sourcing platform clickworker 5, were used to create training and test sets. In
our results, CitySearcher algorithm shows improvements over standard document
ranking techniques. The detailed results are presented in Article PV (Abdel Mak-
soud et al., 2017).

3.5.2 Tour Generation

Moreover, our tour generation technique to find ranking of tours (or groups of
cities) in response to a set of travel interests. Given a set of interests {itr1 . . . itrn},
the objective is to create a ranking of tours 〈t1, . . . tm〉, where each ti contains one
or more cities. The technique aims that each interest in the interest set is satisfied
by at least one city in the tour. Moreover, it is aimed that the cities in the tour are
not too far apart, that would make the tour impractical for the users. For this, we
utilize the already available rankings of city documents for individual interests
from CitySearcher. For forming the tour scores, we explored novel tour scoring
techniques. These scoring techniques and their comparisons are presented in de-
tail in Article PVI (Abdel Maksoud et al., 2018). The main outcome is the creation
and demonstration of the Travición website 6. Figure 3 describes the architecture
of Travición.

5 https://clickworker.com
6 https://www.travicion.com/



4 SUMMARY OF ARTICLES

This chapter summarizes the original articles that are included in this disserta-
tion. For each article, the aim is explained along with the achieved results and
the author’s specific contribution.

4.1 Article PI: “Linear feature extraction for ranking”

Gaurav Pandey, Zhaochun Ren, Shuaiqiang Wang, Jari Veijalainen and Maarten
de Rijke. Linear feature extraction for ranking. Information Retrieval Journal
21(6): 481-506, 2018.

Aim The article addresses the problem of linear feature extraction for learning
to rank. For this, we propose a novel and efficient algorithm that uses the existing
original features of documents in a dataset and extracts features in lower dimen-
sion. These extracted features are a linear combination of original features and
are aimed to be used as an input to learning to rank algorithms (for document
ranking). This is novel because, although there are various feature selection al-
gorithms for learning to rank, to the best of our knowledge there are no feature
extraction algorithms for this.

Results We proposed our algorithm LifeRank (Linear Feature Extraction for Rank-
ing) that considers each dataset (training, validation or test) as original matrix,
where each row of the matrix represents a document and consists of its original
features. For a original training matrix X, the algorithm aims to find a transfor-
mation matrix T, so that by multiplying these two, X is projected into a lower
dimensional matrix X’, i.e. X’ = XT. To optimize the transformation matrix T,
LifeRank minimizes a pairwise loss function, since such a loss function is funda-
mental, straightforward and intuitive to ranking. Once we get the optimized T,
it can simply be used to transform the training, validation and test sets. The ex-
tensive experiments on benchmark datasets and standard learning to rank algo-
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rithms show performance gains of LifeRank over state-of-the-art feature selection
algorithms.

Author’s Contribution The author took active part in problem formulation, de-
velopment of the algorithm and writing the initial daft of paper. The author also
implemented the software for the proposed algorithm and conducted the evalu-
ations presented in the article. The final version of the paper was created by the
collaboration and inputs of all the authors.

4.2 Article PII: “Vectors of pairwise item preferences”

Gaurav Pandey, Shuaiqiang Wang, Zhaochun Ren and Yi Chang. Vectors of pair-
wise item preferences. In European Conference on Information Retrieval, pp.
323-336. Springer, 2019.

Aim The article addresses the problem of using neural embedding to utilize
users’ explicit feedback (e.g. ratings) on items, to generate good quality user vec-
tors and item vectors. The existing neural embedding algorithms only consider
whether the user has accessed the items, but do not consider whether the user
has given a high or low rating to the item.

Results We proposed our algorithm Pref2Vec that creates vectors of pairwise
item preferences. For this, it uses neural embedding and considers users’ pair-
wise preferences on items as elementary units. These pairwise preference vectors
are then used to generate user and item vectors, that are representative of the user
and item respectively. The experimental results show that the quality of the item
vectors is superior to the standard vectorization techniques. Also, we show the
initialization independence of the user and item vectors. Moreover, for demon-
strating utility in a recommendation task, we generate the ranking of items us-
ing the user vectors and show the improvements over standard recommendation
techniques.

Author’s Contribution The author took active part in problem formulation, de-
velopment of the algorithm and writing the initial daft of paper. The author also
implemented the software for the proposed algorithm and conducted the evalu-
ations presented in the article. The final version of the paper was created by the
collaboration and inputs of all the authors.
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4.3 Article PIII: “Recommending serendipitous items using trans-
fer learning”

Gaurav Pandey, Denis Kotkov and Alexander Semenov. Recommending serendip-
itous items using transfer learning. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pp. 1771-1774. ACM,
2018.

Aim The article aims to use deep neural networks for recommending serendip-
itous items, since they have not been explored much for serendipitous item rec-
ommendations. Moreover, recommendation of serendipitous items suffers from
the lack of large datasets containing serendipity scores. Therefore, we also aim to
use transfer learning to overcome this.

Results In this article we introduce SerRec, a transfer learning algorithm to rec-
ommend serendipitous items. While relevance scores are available to us in abun-
dance, the availability of serendipity scores is very limited. Therefore, the algo-
rithm uses transfer learning and trains a deep neural network using the relevance
score. Later, it tunes the network using the serendipity dataset. The experimental
results show improvements over the state-of-the-art serendipity oriented baseline
algorithms.

Author’s Contribution The author took active part in problem formulation, de-
velopment and software implementation of the algorithm, conducting the exper-
iments and writing the initial daft of paper. The final version of the paper was
created by the collaboration and inputs of all the authors.

4.4 Article PIV: “Listwise recommendation approach with non-negative
matrix factorization”

Gaurav Pandey and Shuaiqiang Wang. Listwise recommendation approach with
non-negative matrix factorization. In Intelligent Decision Technologies 2018, pp.
22-32. Springer, Cham, 2018.

Aim Most of the known ranking oriented matrix factorization algorithms gen-
erate recommendations on the basis of the rating matrix. In order to utilize the
users’ preferred ranking on items, the article aims to propose an algorithm that
creates and utilizes a user-ranking probability matrix, i.e. a matrix where each
row contains probabilities of item rankings for a particular user.
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Results The article proposes LwRec, a listwise ranking oriented matrix factor-
ization algorithm, that predicts the missing values in the original user-ranking
probability matrix. For this, it considers that the rows of the predicted matrix
should have probability distributions similar to the initial matrix. The recom-
mendations generated by LwRec show improved performances over baselines.

Author’s Contribution The author took active part in problem formulation, de-
velopment of the algorithm and writing the initial daft of paper. The author also
implemented the software for the proposed algorithm and conducted the evalu-
ations presented in the article. The final version of the paper was created by the
collaboration and inputs of all the authors.

4.5 Article PV: “CitySearcher: A city search engine for interests”

Mohamed Abdel Maksoud, Gaurav Pandey (first co-author) and Shuaiqiang Wang.
CitySearcher: A city search engine for interests. In Proceedings of the 40th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 1141-1144. ACM, 2017.

Aim The article aims to propose a vertical search engine for finding cities for a
travel interest, while solving the issue of mismatched semantic relationships.

Results The article introduces CitySearcher, a vertical search engine that searches
cities for an interest, from a dataset consisting of documents that represent one
city each. CitySearcher uses word2vec to generate the embeddings of the words to
generate the initial ranking of cities in response to interests. Moreover, to solve
the issue of mismatched semantic relationships, we generate novel features that
are used by learning to rank algorithms to re-rank the cities. Our algorithm shows
improvements over the standard retrieval techniques.

Author’s Contribution The author wrote the initial draft of paper. The author
also actively contributed in the algorithm proposal and the evaluations presented
in the article. The final version of the article was created by the collaboration and
inputs of all the authors.

4.6 Article PVI: “Finding tours for a set of interests”

Mohamed Abdel Maksoud, Gaurav Pandey (first co-author) and Shuaiqiang Wang.
Finding tours for a set of interests. In Companion of The Web Conference 2018,
pp. 215-218. International World Wide Web Conferences Steering Committee,
2018.
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TABLE 2 Article Summarization

Article Title Field Channel Status
PI Linear feature extraction

for ranking
Document
Ranking

Information Retrieval
Journal 2018

published

PII Vectors of pairwise item
preferences

Recommender
Systems

European Confer-
ence on Information
Retrieval 2019

published

PIII Recommending
serendipitous items
using transfer learning

Recommender
Systems

Proceedings of the
27th ACM Interna-
tional Conference
on Information and
Knowledge Manage-
ment 2018

published

PIV Listwise recommen-
dation approach with
non-negative matrix
factorization

Recommender
Systems

International Confer-
ence on Intelligent
Decision Technologies
2018

published

PV CitySearcher: A city
search engine for inter-
ests

Document
Ranking

Proceedings of the
40th International
ACM SIGIR Con-
ference on Research
and Development in
Information Retrieval
2017

published

PVI Finding tours for a set of
interests

Document
Ranking

Companion of The
Web Conference 2018

published

Aim The article addresses the problem of generating tours (or groups of cities)
for a set of interests, by utilizing the given rankings of cities for interests.

Results We demonstrate the web-application Travición, that presents the user
with the ranking of tours for a set of interests. It aims that each interest is satisfied
by at least one city in a tour and the distance between the cities in the tour is not
too large. It utilizes the CitySearcher algorithm from Article PV and utilizes the
available ranking of cities for each interest. We present our novel techniques to
calculate the ranking scores of tours and compare the results.

Author’s Contribution The author wrote the initial draft of paper. The author
also actively contributed in the algorithm proposal and the evaluations presented
in the article. The final version of the paper was created by the collaboration and
inputs of all the authors.

The presented articles are summarized in Table 2.



5 CONCLUSION

In this final chapter, we summarize the dissertation and present our limitations
with future directions.

5.1 Summary

This dissertation answers five research questions and makes contributions in re-
sponse to each research question, resulting in six published articles. The research
work primarily focuses on the improvements in the ranking performances of two
of the most widely used web applications: document ranking systems and rec-
ommender systems. The key aim while creating a ranking of results, is to order
the results in such a way that the most useful result should come first, followed
by other results in decreasing order of usefulness.

In our research, we found research gaps in the areas of document ranking
and recommender systems. Thereafter, based on these gaps, we proposed algo-
rithms to improve the ranking performances by creating new types of features
and vectors as well as new algorithmic techniques.

We found that while there were efforts for feature selection for learning to
rank, there were no efforts in the area of feature extraction. We presented LifeR-
ank, that is a linear feature extraction algorithm to be used by learning to rank
algorithms for document ranking. For this LifeRank creates a transformation ma-
trix, that can be used to extract features from documents in lower dimension.
Moreover, for recommender systems, we created an algorithm Pref2Vec, that cre-
ates vectors of pairwise item preferences. This enables the neural embedding
process to use multiple levels of user ratings, that the existing algorithms were
unable to utilize. The created vectors can then be used to create user vectors and
item vectors, that can be used by recommender systems.

Also, we realized that the efforts in the field of serendipitous recommen-
dations were limited, especially there are no existing efforts to use deep neural
networks using serendipity scores. For this we proposed the SerRec algorithm
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that utilizes the NCF framework by He et al. (2017) and uses transfer learning for
recommending serendipitous items. Moreover, we proposed LwRec that presents
a listwise approach to use ranking probabilities instead of ratings to improve rec-
ommendation performance.

Lastly, we demonstrated the utilization of word2vec, a famous neural em-
bedding technique for the specific purpose of creating rankings of cities for user
interests. For this we presented our algorithm CitySearcher. Moreover, this was
also utilized to demonstrate the creation of ranking of tours (i.e. group of cities)
for a set of interests.

5.2 Limitations and Future Directions

While our feature extraction algorithm LifeRank is a linear approach, it would
be interesting to explore non-linear feature extraction approaches that could lead
to further improvements in performance. Moreover, deep learning techniques
could be applied for feature extraction. Secondly, Pref2Vec approach utilizes the
preferences on items by the user, but it still ignores the magnitude of the pref-
erence. For example, it would consider a preference of a rating of 2 stars over 1
star, as the same as the preference of preference of 5 stars over 1 star. Therefore,
in future we can develop algorithms that can include such magnitudes. Also, in
the LwRec algorithm we used the ranking probability matrix for only top 1 item
rankings, and it would be interesting to explore if creation of rankings with more
items would lead to further improvements.

Moreover, we explore only the NCF framework for recommending serendip-
itous items, but for the same purpose we can design other deep neural networks
and utilize using other available deep learning frameworks for this. Moreover,
our recommendation algorithms do not consider the temporal aspect, i.e. the user
preferences shown long time ago would be considered as important as the ones
shown very recently. Therefore, it would be interesting to develop advanced rec-
ommendation algorithms in the future that would consider the time of the rating
in order to improve recommendation performances. Moreover, all our recom-
mendation techniques use only the ratings used by the users in order to make
recommendations. We could also extend the algorithms so that they can include
the metadata about the users and items for further improvements.

Also, we presented our CitySearcher and tour creation algorithms for the
purpose of vertical search to satisfy a user’s travel interests. However, the under-
lying methods are generic and can be used to other domains of document rank-
ing. For example, CitySearcher algorithm can be used for any dataset to solve the
problem of mismatched semantic relationships while searching for documents.
Moreover, the tour search methods can be used to create a ranking of group of
documents to satisfy multiple user queries. It would therefore be interesting to
explore other applications of these algorithms.

Lastly, while we explore recommending serendipitous items, the most of
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the work focuses on using relevance as the sole indicator for accessing the use-
fulness of items or documents. However, in future work it is important to also
see how relevance and serendipity along with criteria like the novelty, fairness,
transparency, etc., of the generated results can contribute to the usefulness of the
results and their rankings. It would be interesting to create datasets specific to
these criteria as well as to create advanced methods to bring improvements in
rankings with respect to them.
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YHTEENVETO (FINNISH SUMMARY)

Tehokkaiden ominaisuuksien, vektorien ja koneoppimisen hyödyntäminen si-

joitustekniikoille

Dokumentteja hakevat järjestelmät ja suosittelujärjestelmät ovat kaksi käytetyim-
mistä nettisovelluksista. Edelliset hakevat dokumentteja, kun käyttäjä antaa ha-
kutermin, jälkimmäiset ehdottavat tuotteita tai nimikkeitä käyttäjille sen mukaan,
mitkä heidän mieltymyksensä olivat menneisyydessä. Tyypillisesti molemmat
käyttävät järjestämistekniikoita ja niiden tuottamat tulokset esitetään luetteloi-
den muodossa. Päätavoite tulosten järjestämisessä on, että hyödyllisin tulos esiin-
tyy luettelossa ensin ja muut tulokset seuraavat sitä laskevassa hyödyllisyysjär-
jestyksessä. Tässä väitöskirjassa esittelemme tutkimustyötä, jossa keskitytään pa-
rantamaan dokumentteja hakevien järjestelmien ja suosittelujärjestelmien tulos-
luetteloiden järjestämistekniikoita. Löysimme aukkoja tutkimuksessa näillä alueil-
la ja ehdotimme keinoja parantaa järjestämistoimintoja. Tämä tehtiin luomalla
uudentyyppisiä dokumenttien ominaispiirteitä ja piirrevektoreita sekä uusia al-
goritmitekniikoita.

Ominaispiirrevalinnasta oppimista on tutkittu paljon, mutta ominaispiir-
teiden kokoamista ei ole tutkittu. Työssä esitellään LifeRank, joka on lineaari-
nen ominaispiirteiden kokoamista suorittava algoritmi. Järjestämään oppivat al-
goritmit voivat käyttää sitä dokumenttien sijoittamiseen tulosluetteloon. Lisäksi
esitellään Pref2Vec- algoritmi, joka luo tuoteparipreferenssivektoreita neuraalis-
ta upotusta käyttäen. Tämä mahdollistaa useiden käyttäjäluokitustasojen käytön
neuraalisessa upotuksessa, mitä nykyiset algoritmit eivät tue. Generoitujen vek-
toreiden avulla voidaan luoda käyttäjävektoreitä ja tuotevektoreita, joita suosit-
telujärjestelmät puolestaan voivat käyttää.

Havaitsimme myös, että onnekkailla suosituksilla on tehty vain vähän ko-
keiluja, varsinkaan sellaisia, joissa käytetään syväoppimista onnekassuosituksis-
ta. Tähän tarkoitukseen kehitimme SerRec- algoritmin, joka käyttää syväoppi-
mista ja siirto-oppimista antaessaan onnekassuosituksia käyttäjille. Lisäksi työs-
sä esitellään LwRec-algoritmi, joka käyttää suositusten parantamiseksi sijoitusto-
dennäköisyyksiä tuloslistassa käyttäjäarviointien sijasta.

Työssä tutkitaan myös matkakohteiden suosittelua käyttäjän kohdeintres-
seihin perustuen. Tässä käytimme word2vec-teniikkaa, joka on neuraalinen upo-
tustekniikka, sijoittamaan kaupunkeja matkakohdeintressien mukaan. Algorit-
mimme CitySearcher nojaa siihen. Lopuksi esittelemme myös edellistä algoritmia
käyttävän retkenluomisalgoritmin, joka luo käyttäjän kohdeintressejä vastaavien
kaupunkien kautta kulkevia retkisuosituksia.

Avainsanat: järjestäminen, tiedonhaku, suosittelujärjestelmä, syväoppiminen, neu-
raalinen upotus, onnekas suositus
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1 Introduction

Document ranking is an essential component of information retrieval systems and
web search engines. Recently, machine learning-based ranking techniques, referred
to as “learning to rank,” have given rise to an active and growing research area, both
in the information retrieval and machine learning communities [10, 15, 21, 39, 59]. A
large number of learning to rank algorithms have been proposed, which incorporate
more and more useful features, aiming to improve the performance of the ranking
algorithms [33]. In a supervised setting, they first collect a set of training data, which
includes a set of queries, each associated with a list of documents labeled by relevance
degrees; with the training dataset, they train a ranking model that can order unseen
documents according to their degree of relevance [20]. In this situation, dimension
reduction inevitably becomes an important issue [16].

Firstly, dimension reduction can enhance the accuracy for many machine learn-
ing problems, including learning to rank. With dimension reduction techniques, a
small set of more discriminative and less redundant features can be selected or gener-
ated for learning. Thus, better results could be achieved, as overfitting becomes less
likely [38]. Also, the generalization ability of machine learning models could depend
on the radius of training data points, which may decrease when the number of features
decreases [5, 16, 56, 57].

Secondly, large number of features leads to high complexity in most learning to
rank algorithms. Therefore, dimension reduction often leads to significant improve-
ments in training and prediction efficiency, while maintaining, or having a limited
negative impact on, accuracy. With accuracy being the primary metric, efficiency has
also emerged as a crucial issue for evaluating learning to rank algorithms [10, 11, 55].
Training datasets and ranking features continue to expand, so as to obtain more ac-
curate models. Furthermore, as a consequence of the dynamic character of the Web,
ranking models need to be re-learned repeatedly, and the interval between re-learning
procedures decreases sharply [33]. With dimension reduction techniques, fewer fea-
tures are used, resulting in more efficient training and prediction.

Generally, there are two types of dimension reduction algorithms: feature selec-
tion and feature extraction. The former aims to select a subset of the original features
for learning, while the latter attempts to generate a small set of new features from
the original features [5, 35, 58]. Recently, feature selection for ranking has been in-
vestigated intensively [16, 17, 26, 29, 37, 40, 60]. To the best of our knowledge, the
advantages of feature extraction have not yet been explored in learning to rank.

In this study, we address the feature extraction problem for learning to rank. In
comparison with feature selection, the feature extraction problem has a much larger
search space. For example, given n original features, feature selection selects a subset
of features of size k (where k < n) for learning. Here, for a particular value of k, the
search space of the problem contains

(
n
k

)
possible solutions. The full search space that

can include any number of features (i.e., all values of k in range 1 to n), would lead to
2n − 1 solutions. In comparison, for linear feature extraction, each extracted feature
is a linear combination of original n features. Since the coefficient associated with
each original feature can be any real number, the search space becomes infinite. The
search space of non-linear feature extraction would be even larger, as it also includes
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solutions involving non-linear combinations of features (e.g. polynomial combina-
tions). Hence, with a larger search space, feature extraction has a greater possibility
to achieve better performance than feature selection.

To address the problem of linear feature extraction for learning to rank, we pro-
pose LifeRank, a Linear feature extraction algorithm for Ranking. LifeRank regards
each dataset for training, validation or test as a matrix, referred to as an original
matrix, where each row vector represents a document with a set of features. With a
given original matrix for training X, LifeRank attempts to discover a transformation
matrix T, so that a new matrix (dataset) X′ can be generated as the product of the
original matrix and a transformation matrix, i.e., X′ = XT. Thus T projects high-
dimensional document vectors in X into lower-dimensional ones in X′. Theoretically,
there could be a very large number of possible transformation matrices, each leading
to a new generated matrix. LifeRank attempts to discover a transformation matrix to
transform the original matrix (dataset) into a low-rank one for dimension reduction,
on which learning to rank algorithms can achieve optimum results in comparison with
other dimension-reduced matrices.

Our problem formulation is similar to principal component analysis (PCA) [23],
and thus our algorithm LifeRank can be understood from the perspective of PCA.
PCA is one of the most popular dimension reduction techniques in machine learn-
ing. When PCA is performed using singular valued decomposition (SVD) [28], the
given matrix X can be approximately decomposed into three low-rank matrices X ≈
PΣQ>. Here, Σ is composed of the singular values of X, P and Q are composed
of the left and right singular vectors of X respectively, and P>P = Q>Q = I is
equal to the identity matrix. Thus a new matrix X′ = PΣ ≈ XQ. However, it should
be noted that while PCA calculates X′ as an approximation of X, in LifeRank X is
transformed to X′ using a transformation matrix.

In LifeRank, we formulate the learning to rank task by using a classical pairwise
loss function. A pairwise loss function is used because such functions are funda-
mental, straightforward and intuitive for ranking. Besides, pairwise loss functions are
consistent with the assumption that the labels of documents to rank lie in a rank-
differentiable probability space [27], and they are upper bounds of measure-based
ranking errors [12]. In the generated matrix, the column vectors represent the features.
Since optimization over orthogonal features is beneficial to many machine learning
problems [48, 49], we utilize the Lagrange multipliers method [1, 4] to impose or-
thonormality constraints on the column (feature) vectors of the transformed matrix,
and then use gradient descent for optimization. With the transformation matrix T, the
training, validation and test datasets can be directly generated with matrix product.

Note that (1) LifeRank generalizes feature selection algorithms for the learning
to rank task. Feature selection can be regarded as optimizing a transformation matrix
T so that the column vectors of T meet the orthonormality constraints and each ele-
ment in T can only be either 0 or 1. (2) Although some deep learning-based ranking
algorithms [47] also aim to generate a set of features for ranking, our problem is com-
pletely different: we try to construct our features based on some predesigned ranking
features like term frequency (TF) and inverse document frequency (IDF), which have
been comprehensively used in conventional learning to rank algorithms like Ranking
SVM [9, 21] and RankBoost [15]. Deep learning-based algorithms, however, try to
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build features based on word-level features in a corpus that differ substantially from
conventional ranking features.

Our main contributions are as follows: (1) We address the feature extraction prob-
lem for learning to rank. Feature extraction is a category of comprehensively used
dimension reduction techniques in many machine learning problems for performance
gains in accuracy and efficiency, but to the best of our knowledge, feature extraction
and its advantages have not been explored in learning to rank yet. (2) We propose
LifeRank, a linear feature extraction algorithm that generates datasets to be utilized
by the learning to rank task. (3) We perform extensive experiments on benchmark
datasets and present the performance gains of LifeRank in comparison with the state-
of-the-art feature selection algorithms.

The remainder of the paper is organized as follows. Section 2 reviews related
work; Section 3 defines the feature extraction problem for ranking; Section 4 pro-
poses LifeRank, a gradient descent-based algorithm. Section 5 introduces our experi-
mental setup. Section 6 reports the experimental results, and Section 7 concludes the
paper.

2 Related work

We discuss three types of related work: learning to rank, feature selection for ranking,
and feature extraction for ranking.

2.1 Learning to rank for information retrieval

Learning to rank has received increased attention from both the machine learning and
information retrieval community. While there is growing interest in online learning
to rank [46] and in counterfactual learning to rank from online data [22], the bulk of
the work on learning to rank concerns offline learning to rank, where explicit human
annotations are used to label query, document pairs. Offline learning to rank is the
focus of this paper. Given its effectiveness, many algorithms have been proposed,
which mainly fall into three categories [11, 32]: pointwise, pairwise, and listwise.

Pointwise approaches, such as Pranking [14], McRank [31] and Subset Rank-
ing [13], view each document in the training dataset as a learning instance, and utilize
a classification or regression technique to predict the relevance categories or numer-
ical/ordinal relevance scores for unlabeled data. Pairwise approaches, such as Rank-
ing SVM [9, 21], RankBoost [15], RankNet [6], FRank [52], LambdaRank [7], and
BoltzRank [54], regard a pair of documents as a learning instance, and try to learn a
binary classifier that can predict the more relevant document to the given query from
each pair of documents. Then the ranked lists of documents can be aggregated based
on the pairwise preferences of the documents. Listwise approaches, such as List-
Net [10], SVM-MAP [61], NDCGBoost [53], take the entire ranked list of documents
as a learning instance, and attempt to construct a ranking model that can directly pre-
dict the full rankings of the documents. Recently, some hybrid algorithms have been
proposed, such as FocusedRank [39], MixRank [8], targeting improvements in learn-
ing accuracy, efficiency, or both. More algorithms are surveyed in [11, 32, 33].
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With the incorporation of more and more useful features for performance gains,
dimension reduction inevitably becomes an important issue in the ranking prob-
lem [16]. With effective dimension reduction techniques, not only the efficiency of
the algorithms could be improved, but also accuracy could be enhanced as a result of
using more discriminative features with less redundancy and noise. Furthermore, the
generalization of the ranking model can also be increased as a result of using fewer
features [16].

2.2 Feature selection for ranking

Recently, considerable efforts have been made on feature selection for ranking. Geng
et al [16] present GAS, one of the first attempts to incorporate the importance and
similarity of features for ranking. In particular, it evaluates the importance of features
with ranking metrics like MAP [3] and NDCG [19], and estimates the similarity be-
tween features using agreement between rankings, e.g., with Kendall τ correlation
coefficient [24]. Then it greedily selects a subset of features with maximum total im-
portance scores and minimum total similarity scores. Metzler [34] proposes a greedy
feature selection algorithm to be used within the Markov random field model for in-
formation retrieval. The model automatically generates models that are more effective
than, or as effective as, models created by carefully selecting the features manually.
Pan et al [40] investigate a boosted regression trees-based feature selection algorithm.
It evaluates the importance of the features based on boosted trees. Then it selects fea-
tures by maximizing the discounted importance of the features, where the importance
of each feature is discounted by feature similarity. Yu et al [60] propose RankWrap-
per and RankSelect, two feature weighting and selection algorithms for learning to
rank. They utilize ranking distances of nearest data points in order to identify the key
features for ranking, demonstrating significant efficiency gains in comparison with
GAS.

Gupta and Rosso [17] present a Kullback-Leibler (KL) divergence-based diver-
gence metric, and select a subset of features for ranking based on features’ expected
divergence over the relevance classes and the importance of features. Lai et al [26]
propose a joint convex optimization formulation for minimizing ranking errors while
simultaneously conducting feature selection. This optimization formulation provides
a flexible framework in which various importance measures and similarity measures
of the features can easily be incorporated. Naini and Altingövde [37] adopt three
greedy diversification strategies, maximal marginal relevance, MaxSum dispersion
and modern portfolio theory, to the problem of feature selection for ranking. Laporte
et al [29] propose a general framework for feature selection in learning to rank based
on support vector machine (SVM); they investigate both classical convex regulariza-
tions (such as L1 and weighted L1) and non-convex regularization terms (such as
log penalty, Minimax Concave Penalty (MCP) and Lp pseudo norm with p < 1).
Furthermore, they provided an accelerated proximal approach for solving the convex
problems and a re-weighted L1 scheme to address the non-convex regularizations.

All of these algorithms are meant to address feature selection for ranking. To the
best of our knowledge, there is no work targeting feature extraction for ranking.
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2.3 Feature extraction techniques

Feature extraction has been used extensively used in various machine learning sce-
narios for performance gains in terms of accuracy and efficiency. Given its effec-
tiveness, many approaches have been proposed, which are either linear or non-linear
algorithms.

The main linear technique for feature extraction is principal component analysis
(PCA) [23], which performs a linear mapping of high-dimensional data into a lower-
dimensional space in such a way that the variance of the data in the low-dimensional
representation is maximized. Canonical-correlation analysis (CCA) [18] is another
popular linear feature extraction algorithm, which attempts to discover linear com-
binations of the original features that have maximal correlation with each other. In
addition, several probabilistic algorithms, including probabilistic PCA [51], proba-
bilistic CCA [2] and probabilistic partial CCA [36], have been proposed, where a set
of latent variables are introduced for probabilistically interpreting these models.

Non-linear feature extraction algorithms can combine the original features to gen-
erate a set of features in a non-linear way. For example, the locally linear embed-
ding (LLE) method [44] learns the global structure of non-linear manifolds to yield
low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs.
Isomap [50] is capable of discovering the non-linear degrees of freedom that underly
complex natural observations. It can efficiently compute a globally optimal solution
and can be guaranteed to converge asymptotically to the true structure. Besides, some
kernel techniques have been proposed to transform linear feature extraction algo-
rithms into nonlinear ones. For example, kernel PCA [45] is a non-linear form of
principal component analysis (PCA), which can efficiently compute principal com-
ponents in high-dimensional feature spaces through the use of integral operator kernel
functions.

Although feature extraction techniques have been extensively investigated and
shown to demonstrate promising performance gains, to the best of our knowledge,
they have not been explored yet in the context of the ranking problem.

3 Problem statement

3.1 Learning to rank for information retrieval

Let X be a collection of documents, each represented by a vector of feature values. In
information retrieval systems, given a query q, a list of documents from X is returned
as search results, where the documents are ranked according to their estimated rele-
vance to q. Given a query q, the ground truth, i.e., relevance judgments of documents
with respect to q (produced by human experts) is defined as a function rel : X → N0,
where N0 is the set of natural numbers (including 0).

Let f : X → R be a ranking function assigning real valued relevance scores
to documents. The goodness of ranking functions can be evaluated by a measure s,
such as precision at n (P@n), mean average precision (MAP ) [3], or normalized
discounted cumulative gain (NDCG@n) [19].
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Definition 1 (Learning to rank) Given a training datasetX and an evaluation mea-
sure s, the problem of learning to rank is to learn a ranking function f from X such
that s(f) is maximized.

3.2 Dimension reduction for ranking

In learning to rank, each dataset X can be regarded as a document matrix Xm×n
with m rows (documents) and n columns (features). In particular, xi is the i-th row
of X, and xi

> is a n-dimensional (column) vector that represents a document with
n features. Let g : Rn → Rk (k ≤ n) be a mapping that projects an n-dimensional
vector space into a k-dimensional space. Let L(·) be the loss function for the learning
to rank task. Our problem is to discover a mapping function g such that the obtained
dataset X′ = g(X) minimizes the loss function.

Definition 2 (Dimension reduction for ranking) Let Xm×n be a document matrix
with m columns and n rows, where each column xi

> is a n-dimensional vector,
representing a document with n features. Let G be the set of all possible mapping
functions, where each element g : Rn → Rk (k ≤ n) is used to project an n-
dimensional vector space into a k-dimensional space. The dimension reduction for
the learning to rank task tries to discover an optimum mapping function g∗ ∈ G such
that:

argmin
g∈G

L(g(X)), (1)

where L(·) is the loss function for the learning to rank task. Then the new dataset can
be generated with g∗(X).

In this paper, we consider linear feature extraction for learning to rank as it is the
simplest and most straightforward feature extraction technique in machine learning.
Here, each generated feature is a linear combination of the original features. It uti-
lizes a transformation matrix T to achieve the effectiveness of the mapping function,
aiming to discover an optimal matrix T such that the obtained dataset X′ = XT
results in a minimal value of the loss function.

The problem can be understood from the perspective of PCA [23]. Using PCA,
the given matrix X can be approximately decomposed into three lower-rank matrices:

X ≈ PΣQ>, (2)

where Σ is composed of the singular values of X, P and Q are composed of the left
and right singular vectors of X respectively, and P>P = Q>Q = I (the identity
matrix). Thus, a new matrix X′ can be generated as follows:

X′ = PΣ ≈ XQ. (3)

The role of the transformation matrix T in LifeRank is very similar to the right singu-
lar matrix Q in PCA, where Q maps the document vectors to another space spanned
by the columns of Q before transforming them through Σ and going back through
P. Hence, in LifeRank we consider the orthonormality constraints of T in our opti-
mization process, i.e., T>T = I.
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Definition 3 (Constrained linear feature extraction for ranking) Let Xm×n be a
document matrix, where the transpose of each row, i.e., xi

> = di is a n-dimensional
vector, representing a document with n features. Linear feature extraction for ranking
aims to optimize a transformation matrix Tn×k by solving the following optimization
problem, so that a new document matrix X′m×k = Xm×nTn×k can be generated,
where each document vector di can be projected into k-dimensional vector d′i =
T>di:

argmin
T

L(XT) such that T>T = I, (4)

where L(·) is the loss function for the learning to rank task.
Based on the optimized mapping function g, the new dataset can be generated by

taking the product of the original matrix and the transformation matrix, i.e., X′ =
XT.

We have used the example of PCA to help us explain the mechanism of LifeRank.
However, it should be noted that in PCA X′ is calculated as an approximation of X,
whereas in LifeRank we generate a transformed representation of the initial matrix, in
order to achieve a better ranking performance. Hence, unlike PCA, X′ as computed
in Definition 3 is not an approximation of X, but a transformation.

4 The LifeRank algorithm

Given a high-dimensional dataset X , LifeRank generates a new low-dimensional
dataset X ′ in two phases. In the first phase, LifeRank first preprocesses the training
datasetX into an original matrix X. Then LifeRank optimizes the transformation ma-
trix T for X according to the loss function in Equation 4. In the second phase, Life-
Rank generates low-dimensional training, validation and test matrices with the pro-
jection of T. Then LifeRank constructs new datasets based on the low-dimensional
data matrices.

4.1 Phase I: Generation of the transformation matrix

In this study, we utilize a classic pairwise learning to rank loss function to implement
the function L(·) in Definition 3. Pairwise loss functions are chosen because apart
from being relatively simple and straightforward, they are also intuitive choices for
ranking. Besides, with the assumption that the labels of documents to rank lie in
a rank-differentiable probability space, pairwise loss functions are consistent [27]
and provide upper bounds for measure-based ranking errors like NDCG [12]. Thus,
minimizing a pairwise loss function will maximize the ranking measures [27].

First of all, the training dataset X is preprocessed into an original matrix X and
other information IX consisting of identities of the documents and queries, relevance
labels, etc. Let D = {d1,d2, . . . ,dm} be the set of columns (document vectors) in
the matrix X>m×n. We regard each pair of vectors (di,dj) ∈ D ×D as an instance,
and the label yi,j ∈ {+1,−1} indicates whether the relevance of the i-th document
is higher or lower than the j-th document, corresponding to the given query. Let
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{t1, t2, . . . , tk} be the column vectors of T. We try to discover a k-dimensional
vector of weights w such that:

argminT,w,b

∑
∀(di,dj),i6=j

log
(
1 + e−yi,j(w>T>(di−dj)+b)

)
+
λ

2
||w||2

such that t>i tj =

{
1, i = j

0, i 6= j
,∀i, j = 1, 2, . . . , k,

(5)

where the first part calculates the log loss of the ranking accuracy, the second part
is the l2 norm of the parameters for regularization, and λ is the coefficient of the
regularization term for trade-off.

We optimize the constrained loss function based on the Lagrange multipliers
method [1, 4] in Equation 5. Let

L(T,w, b,A) =
∑

∀(di,dj),i6=j

log
(
1 + e−yi,j(w>T>(di−dj)+b)

)
+

λ

2
||w||2 +

∑
i,j=1,...,k∧i 6=j

αi,jt
>
i tj +

k∑
i=1

αi,i

(
1− t>i ti

)
,

(6)

where A is a matrix with k columns and k rows, and elements αi,j . Then, the opti-
mum T, w and b for minimizing L are the exact results of Equation 5.

In Phase I, we utilize gradient descent to generate the training dataset and the
transformation matrix. Initially, we assign all 1s to the vector wk×1 so that all of the
generated features in the ranking model have the same initial weight. We initialize
the transformation matrix T in a random manner, following work on matrix gener-
alization problems like matrix factorization-based collaborative filtering [25]. After
initialization, the weight vector w and the factorized matrix can be updated itera-
tively with gradient descent until reaching convergence or the maximum number of
iterations with the given learning rate. The gradients of the function L with respect to
the variables are calculated as follows:

∇wL =
∑

∀(di,dj),i6=j

−yi,jT> (di − dj)

1 + eyi,j(w>T>(di−dj)+b)
+ λw

∇tlL =
∑

∀(di,dj),i6=j

−yi,jwl (di − dj)

1 + eyi,j(w>T>(di−dj)+b)
+

∑
i6=l

(αl,i + αi,l)ti − 2αl,ltl, l = 1, . . . , k

∂L
∂b

=
∑

∀(di,dj),i6=j

−yi,j
1 + eyi,j(w>T>(di−dj)+b)

∂L
∂αi,j

=

{
t>i tj , i 6= j

1− t>i tj , i = j
∀i, j = 1, . . . , k,

(7)
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where t1, t2, . . . tn are the column vectors of T. Since gradient descent generally
does not work with Lagrange multipliers, we use the basic differential multiplier
method (BDMM) [41] for optimization, where the sign inversion for α in Equation 8
makes the optimization stable. Given a learning rate η, the update formulas of the
gradient descent method are:

w← w − η∇wL
tl ← tl − η∇tlL, for l = 1, . . . , k

b← b− η ∂L
∂b

αi,j ← αi,j + η
∂L
∂αi,j

, for i, j = 1, . . . , k.

(8)

4.2 Phase II: Generation of low-rank datasets

In LifeRank, Phase II generates all of the datasets for learning to rank, including
the training, validation and test datasets. According to Definition 3, for each origi-
nal matrix X, the generated matrix X′ can be obtained as a product of the original
dataset X and the transformation matrix T, formally X′ = XT. Then, the new
low-dimensional dataset X ′ can be generated by integrating matrix X′ with other
information IX that was filtered in the preprocessing step in Phase I.

4.3 Pseudocode

The pseudocode of LifeRank as a dimension reduction algorithm for ranking is sum-
marized in Algorithm 1. Given the number of generated features k and a set of stan-
dard learning to rank datasets, including a training dataset X , a validation dataset V
and a test dataset E , LifeRank tries to output new low-dimensional datasetsX ′, V ′ and
E ′ for training, validation and test, respectively, for the learning to rank procedure.

Algorithm 1 implements the two phases of LifeRank: (I) Lines 1–8 generate
the transformation matrix T based on the original training dataset X ; (II) Using T,
lines 9–10 generate the low-dimensional matrices for training X′, validation V′ and
test E′. Then, line 11 constructs the low-dimensional training, validation and test
datasets by directly integrating the low-rank matrices and their corresponding infor-
mation filtered in the preprocessing steps in lines 1 and 9.

4.4 Discussion

In this section, we reveal a connection between the feature selection for ranking prob-
lem and the linear feature extraction for ranking problem. In particular, from the
perspective of linear transformations of matrices, the feature selection for ranking
problem can be defined as in Definition 4.



Linear Feature Extraction for Ranking 11

Algorithm 1: LifeRank: A Linear Feature Extraction Algorithm for Ranking
Input: A training dataset X , a validation dataset V , a test dataset E , the learning rate η, and the

number of features k in the set of generated document.
Output: A generated training dataset X ′, validation dataset V ′, and test dataset E ′, each with k

features.

// Phase I
1 (X, IX)← Preprocess(X ) ;
2 T,w, {αi,j}i,j=1,...,k ← Initialize(X, k) ;
3 repeat
4 w← w − η∇wL ;
5 tl ← tl − η∇tlL, for l = 1, . . . , k;
6 b← b− η ∂L

∂b
;

7 αi,j ← αi,j + η ∂L
∂αi,j

, for i, j = 1, . . . , k ;

8 until Reach convergence or the max iteration;

// Phase II
9 (V, IV ), (E, IE)← Preprocess(V, E);

10 X′ ← XT, V′ ← VT, E′ ← VT ;
11 X ′,V ′, E ′ ← GenerateDatasets(X′,V′,E′, IX , IV , IE);

Definition 4 (Feature selection for ranking) Let Xm×n be a document matrix, where
the transpose of each row xi

> = di is an n-dimensional vector, representing a docu-
ment with n features. Feature selection for ranking aims to optimize a transformation
matrix Tn×k by solving the following optimization problem, so that a new document
matrix X′m×k = Xm×nTn×k can be generated, where each n-dimensional docu-
ment vector di can be projected into a k-dimensional vector d′i = T>di:

argmin
T

L(g(XT)) such that

{
∀ti,j ∈ T : ti,j = {0, 1}
T>T = I.

(9)

Based on the optimized mapping function g, the new low-rank matrix can be gener-
ated as a product of the original matrix and the transformation matrix, i.e., X′ =
XT.

The k columns of the transformation T mentioned in Defintion 4 present the k itera-
tions of the feature selection processes. The constraints in Equation 9 guarantee that
there is only one “1” in each column of the transformation matrix T and the others
are all “0,” indicating that each feature selection process only selects one feature. The
second constraint T>T = I guarantees that the position of the unique “1” in each
column is different from other columns, which is the index of the selected feature in
that step.

Since the elements in the transformation matrix T can be any real numbers in
Definition 3 while they are only either 0 or 1 in Definition 4, Definition 3 generalizes
Definition 4, i.e., the problem of linear feature extraction for ranking generalizes the
problem of feature selection for ranking. Because of this, linear feature extraction
is expected to outperform or be at least as good as any feature selection technique.
The linear feature extraction is expected to use more computational resources than
feature selection, since former deals with the search space in real numbers and the
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latter with binary case. However, this computational overhead is the tradeoff for the
higher performance expected to be achieved by the extracted features, when utilized
for learning to rank.

5 Experimental setup

5.1 Research questions

We list the research questions that guide the remainder of the paper.

RQ1 What is the performance of LifeRank in generating low-dimensional datasets?
Does LifeRank outperform state-of-the-art feature selection algorithms? (See §6.1)

RQ2 Can the importance and redundancy of the features generated by LifeRank
outperform those selected by feature selection algorithms? (See §6.2)

RQ3 What is the effect of the orthonormality constraints of the transformation ma-
trix in Equation 4? Does it help enhance the performance of ranking predictions?
(See §6.3.)

5.2 Datasets

In this study, we use the MQ2007 and MQ2008 datasets from LETOR 4.0 [42] and
OHSUMED from LETOR 3.0 [43] to evaluate our algorithm. The LETOR1 datasets
are commonly used benchmarks in learning to rank. LETOR 4.0 is the latest version,
which was released in July 2009. It uses the Gov2 web page collection (∼25M pages)
and two query sets from the Million Query track of TREC 2007 and TREC 2008,
which are referred to as MQ2007 and MQ2008. We use both MQ2007 and MQ2008
in our experiments. In MQ2007, there are about 1700 queries and about 70,000 query-
document pairs, while MQ2008 has 800 queries and about 15,000 query-document
pairs for training, validation and testing. In both datasets, each query-document pair
has 46 features. We also use the OHSUMED dataset from LETOR 3.0, which was re-
leased in December 2008. OHSUMED is extracted from the online medical informa-
tion database MEDLINE. It contains 106 queries and about 16,000 query-document
pairs, where each query-document pair has 45 features.

In all the datasets that we use, relevance of documents with respect to queries is
judged at three levels: 2 (definitely relevant), 1 (partially relevant), and 0 (not rele-
vant). In our experiments, we use 5-fold cross validation. In each fold, 60% queries
are used for training, 20% for validation and and the remaining 20% for testing. The
performance numbers reported are averaged over the five folds.

5.3 Baselines

LifeRank aims to generate low-dimensional datasets for ranking. In this paper, we
utilize three baselines to evaluate the datasets generated by our algorithm:

1 http://research.microsoft.com/en-us/um/beijing/projects/letor/

http://research.microsoft.com/en-us/um/beijing/projects/letor/
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Original datasets: We firstly use the original LETOR datasets as our first baseline,
on which no selection or generation has been performed.

Datasets generated by GAS: GAS [16] incorporates importance and similarity in-
formation of the features into ranking. It greedily selects a subset of features by
maximizing the total importance scores meanwhile minimizing the total similar-
ity scores.

Datasets generated by FSMRank: FSMRank [26] trains a feature selection model
with machine learning, which can select a subset of features meanwhile minimiz-
ing the ranking errors.

We then run Linear Regression [30]-based learning to rank and RankSVM2 [21]
to determine how well these datasets can address the ranking problem. The former
makes pointwise predictions on the relevance of the documents by linear regression,
which is implemented in the RankLib learning to rank toolkit.3 The latter predicts
pairwise ranking relation between each pair of documents directly by support vector
machine (SVM). These are classical pointwise and pairwise learning to rank algo-
rithms, respectively, with which we can clearly demonstrate the effects of dimension
reduction.

Since LifeRank uses a linear approach for feature extraction, it is expected to
show effectiveness mainly for linear learning-to-rank methods. This is the reason
why we have chosen SVMRank and Linear Regression for experimentation.

5.4 Evaluation measures

5.4.1 Measures for ranking

We use two standard ranking accuracy metrics to evaluate the rankings generated
by learning to rank algorithms: mean average precision (MAP) [3] and normalized
discount cumulative gain (NDCG@n) [19].

Statistical significance of observed differences between the performance of two
runs is tested using a two-tailed paired t-test and is denoted using N (or H) for strong
significance for α = 0.01; or M (or O) for weak significance for α = 0.05.

5.4.2 Measures for features

We consider two metrics to evaluate the quality of the features: importance and re-
dundancy.

The importance of each feature can be evaluated by the ranking performance
when the feature is used as a ranking model to order the documents. In particular, we
use NDCG@5 for evaluation. Since for calculating these measures, for some features
larger values correspond to higher ranks while for others smaller values lead to higher
ranks, we utilize the strategy in GAS [16] for evaluation: We order the documents
twice in ascending and descending manners respectively, and take the larger score as

2 https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
3 https://sourceforge.net/p/lemur/wiki/RankLib/

https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
https://sourceforge.net/p/lemur/wiki/RankLib/
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the importance score of the features. Then we calculate the average importance of the
features as the importance of the set of features F = {f1, f2, . . . , fk}:

Imp(F ) =
1

k

k∑
i=1

max
{
eva(X , fi), eva(X ,−fi)

}
,

where the function eva(X , fi) returns the evaluation results of the ranking model fi
on the dataset X .

The redundancy of features can be defined as the average similarity between each
pair of features. In practice, we regard each feature as a ranking model to order the
documents, and then calculate the similarity between each pair of features as the
average similarity of their document rankings associated to different queries. Let Q
be the set of queries in the given dataset, each associated with a set of documents
for ranking. The redundancy of the features F = {f1, f2, . . . , fk} is calculated as
follows:

Rdd(F ) =
2

k(k − 1)

∑
fi,fj∈F,i>j

1

|Q|
∑
q∈Q

sim
(
σ
(q)
i , σ

(q)
j

)
,

where σ(q)
i is the ranking of the document associated to the query q when the feature

fi is used as the ranking model to order the documents. In this paper, we take the
absolute value of Kendall’s τ correlation coefficient [24] as the similarity metric for
rankings:

τ (σi, σj) =
Nc −Nd

Nc +Nd
, (10)

where Nc and Nd are the numbers of the concordant pairs and discordant pairs re-
spectively between rankings σi and σj .

The range of τ (σi, σj) is [−1, 1], where the sign indicates that the correlation
between σi and σj is either positive or negative, and the absolute value indicates the
strength of the correlation. Since positive and negative values should not neutralize
and we only consider the strength of the correlations, we take the absolute value of
Kendall’s τ as the similarity metric in the definition of redundancy.

6 Experimental results

6.1 Performance on generated datasets

Tables 1, 2 and 3 list the results obtained in our experiments on the MQ2007, MQ2008
and OHSUMED datasets, respectively. They show the NDCG@1–10 and MAP scores
for the RankSVM and Linear Regression learning to rank algorithms on 4 categories
of datasets: the original datasets and 3 datasets generated by dimension reduction al-
gorithms including GAS, FSMRank and our LifeRank. For each dimension reduction
algorithm, we consider k generated features, with k = 5, 10, 15, 20. The results for
the original dataset in the tables are independent of the value of k, but are repeated
nevertheless for ease of comparison. The values in bold represent the best perfor-
mance among GAS, FSMSVM and LifeRank.
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Table 1: Ranking performance on MQ2007 and selected/generated datasets.
Statistical significance shown for LifeRank against Original, GAS and FSMSVM

Performance for Original is independent of value of k (corresponds to original dataset)
Performance for RankSVM

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP

k = 5

Original 0.4079 0.4007 0.4009 0.4030 0.4077 0.4129 0.4201 0.4275 0.4336O 0.4391O 0.4615H

GAS 0.3751 0.3807 0.3869M 0.3946 0.3980 0.4068 0.4113 0.4177 0.4242 0.4290 0.4563
FSMSVM 0.3598N 0.3703N 0.3773N 0.3811N 0.3871N 0.3941N 0.3997N 0.4061N 0.4129N 0.4193N 0.4512
LifeRank 0.3925 0.3925 0.3975 0.4009 0.4062 0.4118 0.4162 0.4209 0.4256 0.4312 0.4539

k = 10

Original 0.4079 0.4007 0.4009 0.4030M 0.4077M 0.4129N 0.4201M 0.4275 0.4336 0.4391 0.4615
GAS 0.3897 0.3893N 0.3914N 0.3965N 0.4029N 0.4098N 0.4153N 0.4209N 0.4272N 0.4343N 0.4558M

FSMSVM 0.3919 0.3917 0.3982M 0.4027M 0.4079M 0.4134N 0.4187N 0.4239N 0.4290N 0.4349N 0.4593
LifeRank 0.4037 0.4023 0.4089 0.4117 0.4161 0.4215 0.4264 0.4312 0.4370 0.4423 0.4634

k = 15

Original 0.4079 0.4007 0.4009 0.4030 0.4077 0.4129 0.4201 0.4275 0.4336 0.4391 0.4615
GAS 0.3942 0.3954 0.3998 0.4023 0.4063N 0.4126M 0.4195 0.4256M 0.4316N 0.4372N 0.4593N

FSMSVM 0.3905 0.3937M 0.4005 0.4060 0.4106 0.4144 0.4201 0.4250M 0.4309N 0.4365N 0.4589M

LifeRank 0.3972 0.4032 0.4061 0.4082 0.4141 0.4194 0.4242 0.4308 0.4376 0.4436 0.4635

k = 20

Original 0.4079 0.4007 0.4009 0.4030M 0.4077M 0.4129N 0.4201M 0.4275 0.4336 0.4391 0.4615
GAS 0.4014 0.3967N 0.4007 0.4027N 0.4088N 0.4137N 0.4189N 0.4257N 0.4326M 0.4394M 0.4601N

FSMSVM 0.3882N 0.3929N 0.4004 0.4060 0.4096 0.4138M 0.4203M 0.4259 0.4310M 0.4368N 0.4595M

LifeRank 0.4097 0.4077 0.4058 0.4106 0.4153 0.4213 0.4265 0.4311 0.4374 0.4438 0.4640

Performance for Linear Regression

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP

k = 5

Original 0.3750 0.3854 0.3882 0.3926 0.3979 0.4034 0.4088 0.4154 0.4208 0.4277 0.4497
GAS 0.3712 0.3751 0.3797M 0.3851M 0.3894 0.3952 0.4011M 0.4071M 0.4136M 0.4196M 0.4462
FSMSVM 0.3554N 0.3634N 0.3673N 0.3741N 0.3780N 0.3872N 0.3929N 0.4002N 0.4076N 0.4145N 0.4489
LifeRank 0.3852 0.3874 0.3908 0.3955 0.3962 0.4026 0.4089 0.4149 0.4213 0.4279 0.4507

k = 10

Original 0.3750 0.3854 0.3882 0.3926 0.3979 0.4034 0.4088 0.4154 0.4208 0.4277 0.4497
GAS 0.3886 0.3879 0.3881 0.3929 0.3980 0.4031 0.4090 0.4146 0.4198 0.4261 0.4491
FSMSVM 0.3903 0.3951 0.3936 0.3950 0.3991 0.4049 0.4111 0.4166 0.4223 0.4285 0.4494
LifeRank 0.3852 0.3920 0.3926 0.3976 0.4026 0.4073 0.4146 0.4206 0.4270 0.4312 0.4507

k = 15

Original 0.3750 0.3854 0.3882 0.3926 0.3979 0.4034 0.4088M 0.4154 0.4208M 0.4277M 0.4497
GAS 0.3767 0.3849 0.3913 0.3954 0.4000 0.4070 0.4133 0.4191 0.4250 0.4315 0.4528
FSMSVM 0.3800 0.3825 0.3855 0.3882N 0.3922N 0.3976N 0.4035N 0.4091N 0.4147N 0.4215N 0.4441N

LifeRank 0.3842 0.3888 0.3943 0.3984 0.4019 0.4091 0.4161 0.4207 0.4274 0.4336 0.4513

k = 20

Original 0.3750 0.3854 0.3882 0.3926 0.3979 0.4034 0.4088 0.4154 0.4208 0.4277 0.4497
GAS 0.3783 0.3897 0.3956 0.3990 0.4021 0.4079 0.4120 0.4178 0.4255 0.4313 0.4521
FSMSVM 0.3742 0.3867 0.3916 0.3937 0.3970 0.4011 0.4062M 0.4132 0.4184 0.4244M 0.4483
LifeRank 0.3828 0.3894 0.3912 0.3948 0.4014 0.4068 0.4121 0.4184 0.4243 0.4306 0.4514
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Table 2: Ranking performance on MQ2008 and selected/generated datasets.
Statistical significance shown for LifeRank against Original, GAS and FSMSVM

Performance for Original is independent of value of k (corresponds to original dataset)
Performance for RankSVM

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP

k = 5

Original 0.3712 0.3933N 0.4238M 0.4485M 0.4672N 0.4814M 0.4875M 0.4531M 0.2234 0.2284 0.4714
GAS 0.3678 0.3983M 0.4213N 0.4492M 0.4665N 0.4800N 0.4862N 0.4522N 0.2207N 0.2246N 0.4714
FSMSVM 0.3780 0.4126 0.4384 0.4599 0.4761 0.4909 0.4968 0.4616 0.2284 0.2326 0.4776
LifeRank 0.3767 0.4168 0.4389 0.4606 0.4806 0.4921 0.4976 0.4627 0.2280 0.2329 0.4788

k = 10

Original 0.3712 0.3933N 0.4238M 0.4485M 0.4672N 0.4814 0.4875M 0.4531N 0.2234 0.2284M 0.4714
GAS 0.3698 0.4015M 0.4292 0.4565 0.4732 0.4862 0.4929 0.4551M 0.2217M 0.2266N 0.4776
FSMSVM 0.3759 0.4157 0.4371 0.4589 0.4781 0.4925 0.4962 0.4617 0.2276 0.2322 0.4793
LifeRank 0.3763 0.4181 0.4384 0.4612 0.4796 0.4900 0.4972 0.4625 0.2281 0.2345 0.4792

k = 15

Original 0.3712 0.3933N 0.4238N 0.4485N 0.4672N 0.4814N 0.4875N 0.4531N 0.2234N 0.2284N 0.4714M

GAS 0.3720 0.3984M 0.4320 0.4533M 0.4711M 0.4851 0.4902M 0.4543N 0.2223N 0.2279N 0.4742
FSMSVM 0.3788 0.4165 0.4351 0.4557 0.4761 0.4905 0.4967 0.4613 0.2265 0.2311 0.4788
LifeRank 0.3771 0.4140 0.4379 0.4622 0.4804 0.4920 0.4972 0.4633 0.2310 0.2349 0.4792

k = 20

Original 0.3712 0.3933 0.4238M 0.4485N 0.4672M 0.4814M 0.4875N 0.4531N 0.2234M 0.2284M 0.4714
GAS 0.3656 0.4027 0.4313 0.4527M 0.4720 0.4850 0.4921 0.4566 0.2254 0.2298 0.4719
FSMSVM 0.3737 0.4144 0.4343 0.4588 0.4757 0.4902 0.4946 0.4590 0.2249 0.2302 0.4754
LifeRank 0.3712 0.4045 0.4363 0.4619 0.4763 0.4903 0.4971 0.4617 0.2293 0.2338 0.4751

Performance for Linear Regression

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP

k = 5

Original 0.3465 0.3617N 0.3961 0.4225 0.4407 0.4558M 0.4684M 0.4746N 0.4806N 0.4871N 0.4550N

GAS 0.3537 0.3691M 0.3947 0.4184 0.4390 0.4584 0.4692 0.4776 0.4838 0.4892 0.4630
FSMSVM 0.3541 0.3755M 0.4002 0.4191 0.4396M 0.4563N 0.4681M 0.4791M 0.4842M 0.4903M 0.4593M

LifeRank 0.3691 0.3907 0.4089 0.3955 0.4491 0.4664 0.4772 0.4864 0.4924 0.4979 0.4685

k = 10

Original 0.3465M 0.3617N 0.3961M 0.4225 0.4407M 0.4558M 0.4684N 0.4746N 0.4806N 0.4871N 0.4550N

GAS 0.3605 0.3804 0.3990 0.4282 0.4490 0.4628 0.4742 0.4840 0.4895 0.4942 0.4669
FSMSVM 0.3512 0.3779 0.4017 0.4213 0.4442 0.4601 0.4702M 0.4789M 0.4847 0.4910 0.4622
LifeRank 0.3698 0.3857 0.4085 0.3976 0.4501 0.4659 0.4791 0.4859 0.4908 0.4970 0.4686

k = 15

Original 0.3465 0.3617N 0.3961 0.4225 0.4407 0.4558M 0.4684 0.4746N 0.4806M 0.4871M 0.4550M

GAS 0.3652 0.3795 0.4114 0.4302 0.4497 0.4641 0.4757 0.4845 0.4914 0.4964 0.4686
FSMSVM 0.3631 0.3822 0.4053 0.4285 0.4527 0.4669 0.4774 0.4850 0.4901 0.4956 0.4647
LifeRank 0.3618 0.3842 0.4032 0.4296 0.4482 0.4657 0.4766 0.4852 0.4904 0.4955 0.4662

k = 20

Original 0.3465N 0.3617N 0.3961 0.4225 0.4407M 0.4558 0.4684 0.4746M 0.4806N 0.4871N 0.4550N

GAS 0.3588 0.3801 0.4100 0.4300 0.4486 0.4650 0.4744 0.4843 0.4906 0.4961 0.4660
FSMSVM 0.3601M 0.3803 0.4075 0.4266 0.4525 0.4668 0.4772 0.4833 0.4889 0.4945 0.4661
LifeRank 0.3712 0.3820 0.4018 0.3948 0.4495 0.4628 0.4748 0.4833 0.4897 0.4956 0.4662
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Table 3: Ranking performance on OHSUMED and selected/generated datasets.
Statistical significance shown for LifeRank against Original, GAS and FSMSVM

Performance for Original is independent of value of k (corresponds to original dataset)
Performance for RankSVM

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP

k = 5

Original 0.5416 0.5076 0.4775 0.4565M 0.4439N 0.4452 0.4433 0.4405 0.4338N 0.4300N 0.4345N

GAS 0.5332 0.4901 0.4739 0.4630M 0.4578N 0.4503M 0.4432N 0.4398M 0.4374N 0.4340N 0.4642H

FSMSVM 0.5771O 0.4889 0.4772 0.4749 0.4694M 0.4609 0.4622 0.4559 0.4529 0.4518 0.4728
LifeRank 0.5170 0.5000 0.5015 0.4950 0.4905 0.4749 0.4701 0.4628 0.4684 0.4668 0.4523

k = 10

Original 0.5416 0.5076 0.4775 0.4565N 0.4439N 0.4452N 0.4433N 0.4405N 0.4338N 0.4300N 0.4345N

GAS 0.5677 0.5390 0.5088 0.4944 0.4873 0.4673 0.4652 0.4605 0.4549 0.4507M 0.4466
FSMSVM 0.5296 0.4866N 0.4794N 0.4745N 0.4636N 0.4602M 0.4558N 0.4531M 0.4484N 0.4463N 0.4459
LifeRank 0.5518 0.5373 0.5185 0.5053 0.4910 0.4811 0.4774 0.4699 0.4692 0.4663 0.4505

k = 15

Original 0.5416 0.5076 0.4775 0.4565M 0.4439N 0.4452M 0.4433 0.4405M 0.4338N 0.4300N 0.4345N

GAS 0.5771 0.5068 0.4850 0.4713 0.4656 0.4552 0.4524 0.4494 0.4439M 0.4419N 0.4402N

FSMSVM 0.5834 0.5317 0.5021 0.4856 0.4723 0.4660 0.4606 0.4557 0.4525 0.4500M 0.4452N

LifeRank 0.5769 0.5344 0.5065 0.4942 0.4835 0.4713 0.4672 0.4630 0.4632 0.4628 0.4536

k = 20

Original 0.5416 0.5076 0.4775M 0.4565N 0.4439N 0.4452N 0.4433N 0.4405N 0.4338N 0.4300N 0.4345N

GAS 0.5519 0.5051 0.4838M 0.4761M 0.4710N 0.4520N 0.4473N 0.4463N 0.4401N 0.4405N 0.4387N

FSMSVM 0.5173M 0.4848M 0.4816M 0.4766 0.4642N 0.4522N 0.4452N 0.4411N 0.4388N 0.4387N 0.4441N

LifeRank 0.5805 0.5416 0.5204 0.5029 0.4976 0.4834 0.4765 0.4725 0.4669 0.4656 0.4519

Performance for Linear Regression

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP

k = 5

Original 0.4830 0.4800 0.4749 0.4548 0.4483 0.4368 0.4389 0.4343 0.4311 0.4302 0.4333
GAS 0.4762 0.4491 0.4489 0.4466 0.4378 0.4286 0.4275 0.4209 0.4201 0.4202 0.4549
FSMSVM 0.5271 0.4852 0.4686 0.4589 0.4513 0.4403 0.4342 0.4335 0.4306 0.4292 0.4655
LifeRank 0.4941 0.4736 0.4554 0.4586 0.4485 0.4459 0.4425 0.4402 0.4347 0.4341 0.4599

k = 10

Original 0.4830 0.4800 0.4749 0.4548 0.4483 0.4368 0.4389 0.4343 0.4311 0.4302 0.4333
GAS 0.5202 0.4883 0.4680 0.4597 0.4543 0.4460 0.4415 0.4354 0.4312 0.4275 0.4339
FSMSVM 0.5082 0.4556 0.4502 0.4395 0.4333 0.4245 0.4259 0.4223 0.4216 0.4180 0.4344
LifeRank 0.5330 0.4866 0.4680 0.4681 0.4601 0.4494 0.4436 0.4423 0.4370 0.4366 0.4358

k = 15

Original 0.4830 0.4800 0.4749 0.4548 0.4483 0.4368 0.4389 0.4343 0.4311 0.4302 0.4333
GAS 0.5105 0.4941 0.4791 0.4654 0.4510 0.4412 0.4351 0.4331 0.4303 0.4301 0.4298M

FSMSVM 0.4984 0.4611 0.4639 0.4567 0.4485 0.4400 0.4325 0.4321 0.4302 0.4282 0.4405
LifeRank 0.5342 0.4839 0.5001 0.4781 0.4678 0.4529 0.4437 0.4412 0.4370 0.4353 0.4399

k = 20

Original 0.4830 0.4800 0.4749 0.4548 0.4483 0.4368 0.4389 0.4343 0.4311 0.4302 0.4333
GAS 0.5050 0.4943M 0.4813N 0.4706H 0.4546N 0.4497O 0.4389N 0.4367N 0.4324N 0.4299N 0.4308N

FSMSVM 0.4984 0.4706 0.4574 0.4510 0.4489 0.4416 0.4370 0.4365 0.4341 0.4315 0.4369
LifeRank 0.5264 0.5021 0.4882 0.4686 0.4571 0.4467 0.4439 0.4406 0.4359 0.4341 0.4369
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Overall, from the tables we can see that: (1) The performance of ranking algo-
rithms can be maintained or slightly improved on the datasets generated by dimension
reduction techniques. (2) The performance of the ranking algorithms on the datasets
generated by LifeRank is higher than those generated by GAS and FSMRank in most
cases. Let us now take a closer look.

6.1.1 Performance of RankSVM

For RankSVM, we can see that LifeRank clearly shows improvements over the orig-
inal datasets for all the three benchmarks (MQ2007, MQ2008 and OHSUMED) in
terms of NDCG@1–10 as well as MAP. The only exception is MQ2007 for k = 5,
where the performance of LifeRank as well as the other generated datasets does not
beat the original dataset. We can also see from the tables that LifeRank clearly out-
performs other generated datasets (GAS and FSMSVM) on NDCG@1–10 for all the
benchmarks and all values of k.

In terms of MAP, LifeRank outperforms the other generated datasets in most
cases. The few exceptions include the case for MQ2007, when GAS has a higher
MAP for k = 5. For MQ2008, FSMSVM attains slightly higher MAP score than
LifeRank for k = 10 and k = 20, but these differences are not significant. Also,
for OHSUMED when k = 5, the MAP score attained by LifeRank is lower than
FSMSVM and GAS, but it is still an improvement over the original dataset.

6.1.2 Performance of Linear Regression

Also in the case of Linear Regression, for all three benchmarks (MQ2007, MQ2008
and OHSUMED) LifeRank clearly shows improvements over the original datasets in
terms of NDCG@1–10 as well as MAP. The only exception is MQ2007 for k = 5,
where the original dataset performs better than LifeRank as well as the other gener-
ated datasets.

On NDCG@1–10, for MQ2007 LifeRank gives the best performance for all val-
ues of k, except for k = 20, where GAS gives the best performance. For MQ2008,
LifeRank gives the best performances for k = 5 and k = 10 on NDCG@1–10. How-
ever, for k = 15 and k = 20, there is mixed performance where all GAS, FSMSVM
and LifeRank give best performances in certain cases. For, OHSUMED, LifeRank
gives the best performance on NDCG@1–10 in most cases.

In terms of MAP, LifeRank gives the best performance for MQ2007 for k =
5 and k = 10, whereas for k = 15 and k = 20 the best performance is given
by GAS. For MQ2008, LifeRank outperforms others for all values of k, except for
k = 15 where the best performance is given by GAS. Moreover, for OHSUMED,
FSMSVM outperforms the others for k = 5 and k = 15, while LifeRank gives the
best performance for k = 10. In case of k = 20, there is a tie between LifeRank and
FSMSVM.
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6.1.3 Statistical Significance Overview

In Tables 1, 2 and 3, markups are provided to denote the statistical significance be-
tween LifeRank and the following baselines: original dataset, GAS and FSMSVM.
It should be noted that the original dataset is independent of the values of k, but is
repeated in the table to indicate statistical significance between it and datasets gener-
ated by LifeRank for different values of k.

It can be observed from Table 1 that for MQ2007 in the case of RankSVM, there
is strong to weak significance between LifeRank and the baselines in most cases
across the metrics, while there is no significance shown against original for k = 15.
Moreover, for k = 5, significance is shown against original and GAS in few cases. For
Linear Regression, there is strong significance shown against FSMSVM for k = 5
and k = 15, though there is not much significance shown for k = 10 and k = 20.
Also, weak significance is shown against GAS in few cases for k = 5 and against
original for k = 15.

Table 2 for MQ2008 shows no statistically significant differences between Life-
Rank and FSMSVM for RankSVM. There is weak to strong statistical significance
for LifeRank against original dataset for most cases and against GAS mainly for
k = 5, 10 and 15. For Linear Regression, LifeRank shows weak to strong statisti-
cal significance against original in most cases, GAS in no cases and FSMSVM in few
cases. Moreover, Table 3 for OHSUMED shows statistical significance for RankSVM
in many cases against the baselines, whereas there is statistical significance observed
for Liner Regression for few cases. The comparative lack of statistical significance
seen for MQ2008 and OHSUMED can most probably be attributed to the relatively
small size of these datasets.

6.2 Quality of the generated features

Table 4 lists the quality scores of the features from four datasets: the original datasets
and the three datasets generated by GAS, FSMRank and LifeRank, respectively, for
k = 10.

Table 4: Performance of the generated features.

Datasets MQ2007 MQ2008 OHSUMED

Imp Rdd Imp Rdd Imp Rdd

Original 0.2671 0.4833 0.3297 0.5318 0.3763 0.5592
GAS 0.2643 0.3242 0.3235 0.3308 0.3603 0.3904
FSMRank 0.3005 0.4706 0.3723 0.5276 0.4170 0.5412
LifeRank 0.3214 0.4606 0.4095 0.5758 0.4422 0.8881

From the table we see that: (1) GAS can significantly reduce the redundancy of the
features. The redundancy of the features selected by GAS is the lowest among the
four datasets. However, the importance of the features selected by GAS is also lowest
and even slightly lower than that of the original datasets. (2) FSMRank can improve
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the importance of the features while reducing their redundancy, but the differences
in terms redundancy are subtle. (3) LifeRank can sharply improve the importance of
the features. The importance of the features generated by LifeRank is highest among
the four datasets. Besides, the redundancy of the features can also be slightly reduced
by LifeRank for MQ2007 but deteriorated for MQ2008 and OHSUMED. Worse re-
dundancy for LifeRank in comparison with GAS and FSMSVM could be because
of the reason that, while these baselines are feature selection methods, for LifeRank
each extracted feature is a linear combination of the original features. Moreover, it
can be observed that for the larger dataset MQ2007, redundancy for LifeRank is
comparable to the baselines, and even better than FSMSVM. However, for smaller
dataset MQ2008, the redundancy is worse than the baselines. For the smallest dataset
OHSUMED, it is worse than the baselines by a greater difference.

6.3 Effect of the Orthonormality Constraints

To confirm that the orthonormality constraints used in LifeRank do indeed contribute
to performance gains, we re-generated the datasets for the benchmarks MQ2007,
MQ2008 and OHSUMED using LifeRank for k = 10, but this time without the in-
corporation of the constraints in its algorithm in Phase I (see Algorithm 1, line 1–8).
Table 5 shows the comparison of performances of ranking algorithms, for datasets
generated by LifeRank and LifeRank without orthonormality constraints (represented
by LifeRankNO). Moreover, markups are presented in the table to denote to the statis-
tical significance between LifeRank and LifeRankNO.

From the results in Table 5 we see that the datasets generated by LifeRank show
significant improvements in performance over the datasets generated by LifeRankNO

for both learning to rank algorithms, RankSVM and Linear Regression. Performance
gains can be observed on all three benchmarks and across all performance measures
(NDCG@1–10 and MAP). Hence, these results show that the usage of orthonormal-
ity constraints is beneficial in the LifeRank algorithm. Also, strong statistical signif-
icance between LifeRank and LifeRankNO can be observed for all three benchmarks
for RankSVM as well as Linear Regression, across all performance measures, except
for a small number of cases where weak or no statistical significance is seen.

7 Conclusion

In this paper, we have addressed the feature extraction problem for learning to rank,
and have proposed LifeRank, a linear feature extraction algorithm for ranking. Life-
Rank regards each dataset for ranking as a matrix, referred to as the original matrix.
We then optimize a transformation matrix by minimizing a classic pairwise learning
to rank loss function, so that we can discover the optimal one that matches the ranking
task. Then a new matrix (dataset) can be generated by the product of original matrix
and transformation matrix. Extensive experiments on benchmark datasets show the
performance gains of LifeRank in comparison with the state-of-the-art algorithms.

The performance of LifeRank has been evaluated for RankSVM and Linear Re-
gression. In future work, its benefits for other learning to rank algorithms could be
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Table 5: Effect of orthonormality constraints on datasets for k = 10.
Statistical significance shown for LifeRank against LifeRankNO

Performance for RankSVM

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP

MQ2007

LifeRank 0.4037N 0.4023N 0.4089N 0.4117N 0.4161N 0.4215N 0.4264N 0.4312N 0.4370N 0.4423N 0.4634N

LifeRankNO 0.3808 0.3881 0.3923 0.3939 0.3996 0.4044 0.4081 0.4148 0.4198 0.4269 0.4528

MQ2008

LifeRank 0.3763 0.4181N 0.4384M 0.4612N 0.4796N 0.4900M 0.4972M 0.4625M 0.2281N 0.2345N 0.4792M

LifeRankNO 0.3618 0.3987 0.4264 0.4429 0.4657 0.4807 0.4887 0.4552 0.2199 0.2236 0.4704

OHSUMED

LifeRank 0.5518 0.5373M 0.5185N 0.5053N 0.4910N 0.4811M 0.4774N 0.4699N 0.4692N 0.4663N 0.4505N

LifeRankNO 0.5703 0.4900 0.4707 0.4673 0.4595 0.4522 0.4450 0.4399 0.4360 0.4312 0.4404

Performance for Linear Regression

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10 MAP

MQ2007

LifeRank 0.3852N 0.3920N 0.3926N 0.3976N 0.4026N 0.4073N 0.4146N 0.4206N 0.4270N 0.4312N 0.4507N

LifeRankNO 0.3584 0.3691 0.3729 0.3764 0.3816 0.3862 0.3918 0.3980 0.4034 0.4084 0.4338

MQ2008

LifeRank 0.3698N 0.3857N 0.4085N 0.3976N 0.4501N 0.4659N 0.4791N 0.4859N 0.4908N 0.4970N 0.4686N

LifeRankNO 0.3295 0.3519 0.3689 0.3934 0.4144 0.4337 0.4446 0.4550 0.4615 0.4682 0.4346

OHSUMED

LifeRank 0.5330 0.4866 0.4680M 0.4681N 0.4601N 0.4494N 0.4436N 0.4423N 0.4370N 0.4366N 0.4358N

LifeRankNO 0.4571 0.4383 0.4111 0.4014 0.3915 0.3844 0.3784 0.3710 0.3689 0.3632 0.3963

analysed. Moreover, nonlinear feature extraction techniques like some kernel tricks
could be incorporated in LifeRank to further improve its performance. Besides, we
plan to try more learning to rank loss functions like some state-of-the-art listwise loss
functions for performance gains of our algorithm. In addition, we believe it would be
interesting to establish theoretical results on dimension reduction for ranking, includ-
ing feature extraction and feature selection-based algorithms, especially concerning
retrieval performance.
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Abstract. Neural embedding has been widely applied as an effective
category of vectorization methods in real-world recommender systems.
However, its exploration of users’ explicit feedback on items, to create
good quality user and item vectors is still limited. Existing neural em-
bedding methods only consider the items that are accessed by the users,
but neglect the scenario when a user gives high or low rating to a par-
ticular item. In this paper, we propose Pref2Vec, a method to gener-
ate vector representations of pairwise item preferences, users and items,
which can be directly utilized for machine learning tasks. Specifically,
Pref2Vec considers users’ pairwise item preferences as elementary units.
It vectorizes users’ pairwise preferences by maximizing the likelihood es-
timation of the conditional probability of each pairwise item preference
given another one. With the pairwise preference matrix and the gener-
ated preference vectors, the vectors of users are yielded by minimizing
the difference between users’ observed preferences and the product of
the user and preference vectors. Similarly, the vectorization of items can
be achieved with the user-item rating matrix and the users vectors. We
conducted extensive experiments on three benchmark datasets to assess
the quality of item vectors and the initialization independence of the user
and item vectors. The utility of our vectorization results is shown by the
recommendation performance achieved using them. Our experimental
results show significant improvement over state-of-the-art baselines.

Keywords: Vectorization, Neural Embedding, Recommender systems

1 Introduction

Based on neural networks, neural embedding has emerged as a successful cat-
egory of vectorization techniques in recommender systems [8, 2], among which
word2vec [22, 23] is a fundamental and effective algorithm. It was initially pro-
posed for natural language processing problems and considers two states 1 or
0 for each word, representing either appearance or absence of the word in doc-
uments. It assumes that the words appearing closer to each other would have
higher statistical dependence. Given its effectiveness, many variants have been
proposed for machine learning problems, such as name speech recognition [25],
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entity resolution [19], machine translation [30], social embedding [12, 24] and rec-
ommender systems [11, 1]. Several pioneering efforts have been applied to real-
world recommendation scenarios with neural embedding like prod2vec [11] and
item2vec [1], that have been proposed by straightforwardly employing word2vec,
where each user is considered as a document, and each item is simply regarded
as a word. Consequently each item can only have two possible states 1 or 0,
representing whether the user has performed a particular action (e.g. purchase,
click, etc.) on the item or not. Using sets and sequences of items for each user,
they learn the vector representations of the items.

Though such representations create good quality item vectors for some tasks,
they lack the functionality to capture higher levels of granularities of users’ feed-
back for vectorization. This could lead to incorrect interpretations, as the top-
ranked item and low-ranked items would be treated equally. Thus it is expected
to severely limit the vectorization quality for many tasks like calculating item
similarities for single item recommendations, clustering user or items, etc. Cur-
rently, the efforts are limited for neural embedding-based methods, especially for
datasets involving ratings. Therefore, we investigate the neural item embedding
problem, to create quality vectorization for items using users’ historical rating
information with higher granularities (e.g. ratings in range 1 to 5).

To solve this problem, we propose Pref2Vec which involves three components:
(1) The first step transforms the given user-item rating matrix into a users’
pairwise preference matrix. On doing this, each pairwise preference of items
has one of the two statuses i.e. occurrence or absence, which is similar to the
situation of words in word2vec. (2) Then we employ neural embedding to create
vector representations for pairwise item preferences by maximizing the likelihood
estimation of the conditional probability of each pairwise item preference given
another one. Using these preference vectors, the vectors of users can be generated
by minimizing the difference between users’ observed preferences and the product
of the user and preference vectors in the second step of Pref2Vec. (3) In the
last step, using the user vectors, the item vectors are generated similarly by
minimizing the difference between items’ observed ratings and the product of
user and item vectors.

We evaluate the effectiveness of our Pref2Vec method in three experimental
tasks on movie recommendation datasets to demonstrate its promising perfor-
mance, where items are the movies for which user ratings are provided. (1) In
the first task, we assess the quality of item vectors, by considering the movie
genres as ground-truths. We find the similarities between each pair of items,
using the generated item vectors and then using the ground truth (genres). The
difference between these two similarities for item pairs are considered as the er-
rors, using which we are able to compute RMSE (root mean squared error) and
MAE (mean absolute error), as a quality measures for comparison. We contrast
the quality of our item vectors with the quality of item vectors of other standard
techniques, like: a) item vectors generated using matrix factorization and b) neu-
ral embedding item vectorization by using the sets of items that are rated by
users as words. (2) In the second task, we run the vectorizations of the user and
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item vectors multiple times. We calculate the average variance of the generated
values and the mean average covariance of the generated vectors, to establish
that our vectorization process is highly independent of initialization. We contrast
this with the vectorizations generated by matrix factorization. (3) Moreover, we
compare the recommendation ranking generated using Pref2Vec with the stan-
dard collaborative filtering algorithms using the NDCG measure. Our results for
these experimental tasks show performance gains over the comparison partners.

2 Related Work

Vectorization techniques are of great importance in machine learning. Specially
in the area of natural language processing, neural embedding techniques for vec-
torization of words have been used in many applications [27, 29, 2, 8, 28, 30, 25].
Neural embedding techniques assume that the words that occur close to each
other in the text are more dependent than the words that are far off. However,
vectorization techniques using neural networks were inefficient to train, espe-
cially when the size and vocabulary of the dataset increased. But, the widely
used word embedding technique word2vec that was introduced a few years ago,
made creation of vector representations of words very efficient. It employs highly
scalable skip-gram language model, that is fast to train and preserves the seman-
tic relationships of the words in their vector representations. This technique for
word embedding has recently shown considerable improvement in applications
like name entity resolution [19] and word sense detection [3].

The success of word2vec has probably lead to the adoption of the neural em-
bedding techniques in domains other than word representations. Djuric et al. [9]
used vectorization of paragraphs as well as vectorization of words contained in
each paragraph to create a hierarchical neural embedding framework. Also, Le et
al. [20] created an algorithm that learns vector representations of sentences and
text documents. They represent each document as dense vector that is utilized
to predict words in the document. Moreover, Bordes et al. [4] have introduced
the approach that embeds entities and relationships of multi-relational data in
low-dimensional vector spaces, to be used for text classification and sentiment
analysis tasks. Socher et al. [26] attempted to improve this approach by repre-
senting entities as an average of their constituting word vectors. Also, there have
been recent efforts to learn the vector representations of nodes in graphs [24, 12].

Moreover, several recent recommendation applications have employed neural
word embedding. of prod2vec and user2vec by Grbovic et al. [11]. The prod2vec
model creates vector representations of products by employing neural embedding
on sequences of product purchases, where each product purchase is considered as
a word. Whereas, the user2vec model considers a user as a global context in order
to learn the vector representations of user and products. Similarly, item2vec [1]
employs neural embedding on sets of items on which the user has taken action
(e.g. songs played or products purchased), while ignoring the sequential infor-
mation. The experimental results for these techniques show their effectiveness.

Although there have been many applications of neural embeddings in various
areas including collaborative filtering, to the best of our knowledge, among the
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available neural embedding techniques on the rating information, there is no
straightforward way to incorporate different levels of item ratings. He et al. [13]
have utilized deep neural network frameworks for recommendation, but they
also consider items in 1 and 0 state. Besides, there has not been an attempt
to generate and utilize preference vectors. Hence, in this paper we attempt to
generate preference vectors as an intermediate step, which can be utilized to
generate good quality user and item vectors for various data mining tasks.

3 Problem Formulation

In this section, we formulate the neural rating vectorization problem, aiming to
create vector representations for users and items by considering users’ historical
rating preference on items. Since matrix factorization can be actually regarded as
traditional preference vectorization technique, let’s firstly review its definition.

Consider a set of users U with m users, a set of items I with n items and
a rating matrix R of dimension m × n containing ratings on n items given by
m users. Each element ru,i of the uth row and ith column of R is the rating
given by a particular user u ∈ U for the item i ∈ I, where most of the elements
in R are unknown as users generally can provide ratings only for a very small
number of items. The objective of the rating vectorization problem is to generate
a vector u for each user u ∈ U and a vector i for each item i ∈ I, where the dot
product of each user u and item i is close to the corresponding rating ru,i of i
by u. Formally, the problem can be defined as follows:

Definition 1 (Matrix Factorization). Given a set of users U with m users,
a set of items I with n items, a rating matrix R of dimension m× n containing
ratings on n items given by m users, the matrix factorization problem aims
to create two low-rank dimensional matrices U of dimension k × m and V of
dimension k × n for users and items respectively by minimizing the following
objective function:

argmin
U ,V

∑
u∈U,i∈I

φu,i

(
ru,i − u�i

)
,

where φu,i = 1, if u has rated i; otherwise 0, We define a novel neural rating
vectorization problem. It treats the possible ratings on each item i as an intrinsic
property of the item, which indicates the quality of i and thus are independent
from users. The neural rating vectorization problem aims to generate rating
vectors on items by maximizing the likelihood estimation of the conditional
probability of each score on item given another one. Formally, the neural item
embedding problem can be defined as:

Definition 2 (Neural Item Embedding). Let U , I and R be a set of users
U with m users, a set of items I with n items, and a rating matrix R of dimen-
sion m × n containing ratings on n items given by m users, respectively. The
neural item embedding problem aims to create low rank vector representations of
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dimension k ×m for items I by minimizing the following objective function:

argmin
I

−
∑
u∈U

∑
i,j∈I,i�=j

φu,iφu,j logProb(ri = ru,i | rj = ru,j), (1)

where Prob(ri = ru,i | rj = ru,j) is the probability that user u provides a score of
ru,i to item i given that the same user u assigns a score of ru,j to another item j.
Once we obtain the item vectors by solving the above problem, user vectors can
be generated directly by minimizing the difference between items’ observed rat-
ings and the product of user and item vectors: argmin

U

∑
u∈U,i∈I φu,i

(
ru,i − u�i

)
Note that the probability Prob(ri = ru,i | rj = ru,j) in Equation (1) actually

involves two aspects of information: (1) the co-occurrence of ratings on each pair
of items by same users, and (2) the rating scores or relative preferences of users
holds on items. Thus it is extremely hard to be formulated by straightforwardly
adapting that in word2vec [22, 23] with hierarchical softmax of the vectors.

4 The Pref2Vec Algorithm

Pref2Vec solves the neural item embedding problem in Definition 2 in three steps.
Firstly, we generate vectors of pairwise item preference. We use these preference
vectors in the second step to generate user vectors, that are in turn used to
create item vectors in the third step.

4.1 Pairwise Preference Vectorization

To create vectors of pairwise item preferences, we create the pairwise preference
matrix and use it to create the sets of positive pairwise preferences for each
user. Then, we utilize neural language models to learn representations of positive
preferences in lower dimensional space using available positive preference pairs.

Consider a set of users U = {u1, u2, . . . , um}, a set of items I = {I1, I2, . . . , In}
and their corresponding rating matrix R of dimension m×n. Each row of R con-
tains ratings Ru = {r1, r2, . . . , rn} given by a user u for the n items, where most
of the elements in Ru are unknown as users generally can provide ratings only
for a very small number of items. This allows us to build a set of pairwise pref-
erence for each user by using a preference function: p(i, j) ∈ {+1,−1}, where
i = 1 . . . n, j = 1 . . . n, i �= j and both ri and rj are known. The preference
function p(i, j) has a value of +1 if ri > rj and −1 otherwise.

Now, we create the sets of positive preferences Pu for each user u. Without
losing generality, here we only consider the conditions of positive preference
pairs, as all of the negative preferences can be straightforwardly transformed
into positive ones by reversing the positions of the two items. With n items, we
should consider a total of N = n(n−1) unique preference pairs, denoted as P =
{p1, p2, . . . , pN}. Each users’ preferences Pu is a subset of P , formally Pu ⊆ P
for any user u. Now, Pref2Vec proceeds with learning the vector representations
of the preferences on the collection of preference sets P = {P1, P2, . . . , Pm} for
all of the users.
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We consider the word2vec framework [22, 23] that generates vector represen-
tations of words. They presented the continuous skip-gram model, which assumed
that for each target word the sequence of its surrounding words are trivial and
can be ignored. This is achieved by maximizing the cumulative logarithm of the
conditional probability for the surrounding words given each target word in the
corpus with neural networks. Our approach is very similar, since we consider our
collection of preference sets: P as the corpus, the preference sets P1, P2, . . . , Pm

by the users as the sentences and the preferences p1, p2, . . . , pN as the words.
However, the key difference in our approach is that we completely ignore the

spatial information within the preference sets. This is because unlike words in
sentences, the order of the preferences for a user (in a non-temporal setup) is
inconsequential. This is the reason why we have a set representation of prefer-
ences for a user, as opposed to a sequence representation. Actually this property
makes our scenario even better fit the skip-gram model than natural language
processing, where the preferences have no sequence information and thus the
sequence of the “surrounding preferences” can be ignored without any accuracy
loss. Therefore, in the Pref2Vec framework, we learn the vector representations
of the products by minimizing the following objective function over the entire
collection P of preference sets:

argmin
i1,i2,...,in

−
∑
Pk∈P

∑
(pi,pj)∈Pk,i �=j

logProb(pj | pi), (2)

where Prob(pj | pi) is the hierarchical softmax of the respective vectors of the

preference pj and pi. In particular, Prob(pj | pi) = exp(i�o jt)∑
pl∈Pk

exp(i�o lt)
,where io and

jt are the initial and target vector representations respectively of preferences pi
and pj . lt is the target vector representations of any preference pl in Pk. From
Equation (2), we see that Pref2Vec model ignores the sequence of preferences
within a user preferences set. The context is set to the level of preference sets,
where the preference vectors that fall in the same preference sets will have similar
vector representations.
Remarks: Our approach is also inspired by item2vec [1], that uses a straightfor-
ward application of word2vec by considering a set of items (accessed by a user)
as a sentence and the individual items as words. Similar to Pref2Vec, item2vec
also ignores the sequential information of items in a set. item2vec has been effi-
ciently used in scenarios where we have a simple sequence of items, e.g. products
purchased, videos watched, etc. In such cases, for each user the items are in 0
or 1 state. However, if the user feedback is provided in higher granularities (e.g.
user ratings), then simply considering the sequence of items rated by the user
and treating them equally, is expected to severely limit the quality of vectors.
On the other hand, Pref2Vec enables the utilization of rating information by
incorporating pairwise item preferences in the vectorization process.

4.2 User Vector Generation

However, the preference vectors generated in the previous section cannot be uti-
lized directly for recommendation tasks, that often require good quality user and
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item vectors as an input. In this section we describe the second step of Pref2Vec
and aim to find vectors corresponding to them users, given the preference vectors
for each pair of items and known ground truths for the preferences.

For a particular user let p1,p2 . . .pr be the preference vectors, each of length
k, for which the respective values of preference function are p1, p2, . . . , pr ∈
{+1,−1}. The corresponding user vector can be achieved by minimizing the
cumulative difference between users’ each observed preference pi and the product
of the user and preference vectors u�pi. Thus we can formulate this problem as
linear classification, where p1,p2 . . .pr are training instances, the values of the
preference functions p1, p2, . . . , pr are ground truth. With consideration of a bias
b, we aim to predict the coefficients of a linear classification model, which is the
user vector u. In this study, we use Logistic regression [16] to solve the problem.
The loss function with L2 norm is : argmin

u,b

∑r
i=1 log(1+ exp(−pi(u

Tpi + b)))+

λ
2 ||u||2, where u is a vector of length k, b is a number and λ is the tuning
parameter for L2 norm. We use the gradient descent method for optimization.
Given a learning rate α, the update formulas are derived as follows:

u ← u− α

( r∑
i=1

−pi
1 + exp(pi(uTpi + b))

pi + λu

)

b ← b− α

( r∑
i=1

−pi
1 + exp(pi(uTpi + b))

) (3)

The generated user vectors u corresponding to each of the m users, form a
user matrix U of dimension m× k.

4.3 Item Vectors Generation

The last step of Pref2Vec is to find item vectors given the rating matrix Rm×n

and the user matrix Um×k generated in the previous section. For this we optimize
matrix In×k, by minimizing the difference between items’ observed ratings and
the product of user and item vectors, i.e. UI� ≈ R. The n rows of I would be
the item vectors. We minimize the loss function: argmin

I
||R − UI�||2 + λ

2 ||I||2,
where λ is the tuning parameter for L2 normalization. We use the gradient
descent method for optimization. Given a learning rate η, the update formula is:

I ← I − η(−2(R− UIT )�U + λI) (4)

5 Experiments

The following three research questions guide the remainder of the paper.
RQ1 Is the quality of item vectors generated using the Pref2Vec approach better
than state-of-the-art vectorization algorithms? (See Section 5.1)
RQ2 Are the outputs of the proposed Pref2Vec algorithms independent from
their initialization? (See Section 5.2)
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RQ3 Can the vectorization results be utilized to improve the performance of
recommender systems? (See Section 5.3)

Datasets. We use three MovieLens4 data sets in our experiments: MovieLens-
100K, MovieLens-1M and MovieLens-10M. MovieLens-100K dataset contains
100,000 ratings given by 943 users on 1682 movies. MovieLens-1M dataset is
larger with 1,000,000 ratings given by 6040 users on 3952 movies. Movielens-
10M is the largest dataset used, with 10 million ratings given by 69878 users
on 10681 movies. In MovieLens-100K as well as MovieLens-1M the ratings are
given as integers from 1 to 5. In MovieLens-10M, the ratings are given in the
range 0.5 to 5 with an increment of 0.5. In these datatsets there are 18 movie
genres, a movie can belong to one or more of them. For all the three datasets
we randomly assign 10 ratings for each user for testing and the rest for training.
We have used the vector length of 10 for all the vectorization methods.

5.1 Evaluation of Item Quality

Ground-truth. Since the datasets provide genre information for all of the items
(movies), we use the genre similarity as the ground truth. In particular, the
genres of each movie are provided (or can be transformed) in the form of binary
values. A value of 1 signifies that the movie belongs to a particular genre and
0 signifies the contrary. A movie can belong to more than one genre. So, let us
consider that genre vectors derived from the meta-data are: (Gi . . .Gj) , which
correspond to our item vectors Ii . . . Ij . Since, the genre vectors are binary
vectors, to find similarity between them we use: Jaccard similarity [6], an efficient
and popular measure for binary similarity. Jaccard similarity between two binary
vectors va and vb is simply calculated as: jacSim(va,vb) =

F11

F01+F10+F11
,where

F11 is the number of features for which both va and vb have value 1. F01 is
the number of features for which va has value 0 and vb has 1. And, F10 is the
number of features where va had the value 1 and vb has 0.

For the item vectors I1, I2, . . . , In (calculated in Section 4.3), the similarity
can be calculated for each pair of item vectors (Ii, Ij) as: cosSim(Ii, Ij) =

I�
i Ij

|Ii|×|Ij | , where |Ii| and |Ii| are the length of the vectors Ii and Ij .

Evaluation Metrics. In order to evaluate the quality of item vectors we use the
RMSE (root mean squared error) and MAE (mean absolute error) measures. To
calculate these, we calculate the similarities between each pair of item vectors
and the similarities between their corresponding pairs of ground truths. Since
the item in our experiments are movies, the genre information about the movies
(available from metadata) is considered as ground truth. The differences between
the two similarities for each item are considered as errors, that are in turn used
to calculate RMSE and MAE. We use these measures because for good quality
item vectors, the vectors that are similar should also have similarity based on
their relevant meta data information. Therefore, the lower the values of RMSE
and MAE, the better is the quality of vectors.

4 http://grouplens.org/datasets/movielens/
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Table 1. Quality of Generated Item Vectors against Baselines

Algorithm
ML-100K ML-1M ML-10M

Ref.
RMSE MAE RMSE MAE RMSE MAE

RM-Vectors 0.8674 0.8163 0.8790 0.8292 0.8563 0.8151 -
IS-Vectors 0.8238 0.7508 0.7018 0.5886 0.5864 0.4758 [1]
MF-Vectors 0.6844 0.6431 0.6904 0.6478 0.6478 0.6071 [18]
P2V-Vectors 0.4770 0.3846 0.5165 0.4305 0.4456 0.3695 This paper

To calculate the errors we need: the difference between the similarities of
two item vectors and the similarities between the corresponding two genre vec-
tors. The errors are calculated for all pairs of items: ei,j = cosSim(Ii, Ij) −
jacSim(Gi,Gj). Though cosine similarity and Jaccard similarity are differ-
ent measurements, their difference used here is expected to be highly indica-
tive of the error. There would be n(n − 1)/2 such errors. Now, RMSE =√

∑n
i=1

∑n
j=i+1 e2i,j

n(n−1)/2 and MAE =
∑n

i=1

∑n
j=i+1 |ei,j |

n(n−1)/2 , where the function | · | gives
the absolute value of the parameter.

Baselines. We choose the following methods to evaluate the quality of the item
vectors that are generated by the Pref2Vec framework, i.e. P2V-Vectors.

• RM-Vectors: Rating matrix Rm×n contains ratings by m users for n items,
and its columns are the simplest (and readily available) form of item vectors.

• IS-Vectors: Neural embeddings of items are created by considering the set
of items rated by users as sentences and items as words (similar to item2vec [1]
approach). Comparison with this method would validate the importance of using
preference information for vectorization in Pref2Vec.

• MF-Vectors: In matrix factorization [18] user and item vectors are created
by randomly initializing matrices Um×k and In×k and then minimizing the dif-
ference between their product and the rating matrix (i.e. R− UI�).

Results. In Table 1, we compare the item vector qualities using RMSE and
MAE. For MovieLens-100K dataset, for both RMSE and MAE, P2V-Vectors
perform the best, followed by MF-Vectors. IS-Vectors are the third and the
RM-Vectors are the worst performing ones. The trend is same for the dataset
MovieLens-1M for RMSE. For MovieLens-1M in terms of MAE as well as for
MovieLens-10M (both RMSE and MAE), though P2V-Vectors are still the best
performing ones, the second best are IS-Vectors, followed by MF-Vectors and
then RM-Vectors. The improvement shown by P2V-Vectors is significant.

Pref2Vec firstly generates preference vectors, and then creates user vectors
with the generated preference vectors, and finally produces item vectors with the
generated user vectors. Since each step is an approximation process with certain
accuracy loss, the preference and user vectors should be more accurate than the
item vectors. Thus although we cannot assess the quality of user and preference
vectors resulting from lack of corresponding ground-truth information, we can
still claim that the quality of the preference, user and item vectors generated by
our Pref2Vec method can significantly outperform our baselines.
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5.2 Evaluation of Initialization Independence of Generated Vectors

Firstly, we describe the measurements to evaluate the independence of generated
vectors from their initialization. Let us consider that x different runs (resulting
from different initializations) of a vector generation method generate: user ma-
trices U (1) . . . U (x) and the corresponding item matrices I(1) . . . I(x). Each user
matrix is of dimension m × k with the rows corresponding to m user vectors,
each of length k. Similarly each item matrix is of dimension n× k with the rows
corresponding to n item vectors, each of length k. Since the features of the vec-
torization results might be in a different order by different runs of algorithms,
we sort the generated features according to their cumulative values among all
of the users. The independence of these vectors from the initialization can be
measured using (a) variance of the elements of the U and I matrices and (b)
correlations between the user and item vectors generated in different runs. These
measures are explained in detail as follows.

Variance Calculation. Let U
(1)
i,j , U

(2)
i,j . . . U

(x)
i,j be the x values in the user ma-

trices at ith row and jth column from x different runs of a vectorization algo-

rithm. Their variances can be calculated as: varU (i, j) =
1
x

∑x
l=1

(
U

(l)
i,j − U i,j

)2

,

where U i,j is the average of U
(1)
i,j , U

(2)
i,j . . . U

(x)
i,j . With m × k dimensions of the

user matrix U , we can get m × k variance, and the mean variance would be:
MV U = 1

m×k

∑m
i=1

∑k
j=1 varU (i, j).

Similarly, the variance of the item matrices at the ith row and jth col-

umn I
(1)
i,j , I

(2)
i,j . . . I

(x)
i,j from x different runs of a vectorization algorithm can be

calculated as: varI(i, j) = 1
x

∑x
l=1

(
I
(l)
i,j − Ii,j

)2

, where Ii,j is the average of

I
(1)
i,j , I

(2)
i,j , . . . , I

(x)
i,j . The mean variance of the generated item vectors can be cal-

culated as: MV I = 1
n×k

∑n
i=1

∑k
j=1 varI(i, j)

A lower value of the mean variance is indicative that the generated values that
comprise the user or item vectors do not vary much with different initializations.

Correlation of Vectors. The independence of the vectors from the initializa-
tion of the generation technique can also be estimated by the correlation between
the vectors generated in different runs. We use Pearson correlation coefficient [15]
to calculate correlation ρ(x, y) between variables x and y.

A user matrix U (j) generated in the jth run, contains m user vectors :

u
(j)
1 . . .u

(j)
m . For a particular user, the average of pairwise correlations between

the vectors generated in the x runs would be: AC(i) =
∑x

j=1

∑x
l=j+1 ρ(u

(j)
i ,u

(l)
i )

x(x−1)/2

And, the mean of these average correlation for all the m user vectors can simply

be calculated as: MAC =
∑m

i=1

∑x
j=1

∑x
l=j+1 ρ(u

(j)
i ,u

(l)
i )

m×x(x−1)/2

Similarly, the mean average correlation for the item vectors, i
(j)
1 . . . i(j)n gener-

ated in x runs (j = 1 . . . x), can be calculated as:MAC =
∑n

i=1

∑x
j=1

∑x
l=j+1 ρ(i

(j)
i ,i

(l)
i )

n×x(x−1)/2

A high value if MAC mean that the vectors generated during different runs are
close to each other and hence have high level of independence to initialization.
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Table 2. Initialization Independence of Generated Vectors

Algorithm
User Vectors Item Vectors
MVU MAC MVI MAC

MF 0.0730 0.0015 0.0773 0.0315
P2V 0.0015 0.8592 0 0.7881

Results. In Table 2, we show the results evaluating the initialization indepen-
dence of user and item vectors generated using Pref2Vec (shown as P2V) and
comparing them with the vectors generated by matrix factorization (shown as
MF). On the dataset MovieLens-100K we run both the methods 5 times, result-
ing in creation of 5 different pairs of user and item vectors for both of them. We
calculate MV U , MV I and MAC (for user and item vectors) for the vectoriza-
tion results generated by P2V and matrix factorization (MF).

The values of MV U and MV I of our algorithm are merely 0.0015 and 0 for
user and item vectors, which are sharply lower than that of the matrix factoriza-
tion method. Note that although the values of matrix factorization are smaller
than 0.1, they are still large because the values in the user and item matrices
are very small, and most of them are less than 1. Also, the values of MAC are
very high for P2V for both item and user vectors, especially in comparison with
the respective values for MF. This again shows that the user and item vectors
generated by P2V in different runs are highly correlated to each other.

5.3 Ranking Prediction based on Generated Vectors

Ranking Model using User Vectors. Here we describe the method to gener-
ate rankings for items with unknown ratings for user using the available Pref2Vec
preference and user vectors. This is done by firstly predicting the preference val-
ues p̂ ∈ {+1,−1} for the preference vectors corresponding to the items with
unknown ratings. Then we employ a greedy order algorithm to derive approxi-
mately optimal ranking of the unrated items.

In Section 4.2 we showed the process that generates the user vector u and the
value b after optimization. Since the optimization process directly employs the
Logistic regression loss function, this allows us to also directly use Logistic re-
gression classification to predict pairwise preferences for a user. More specifically,
for a user with user vector u and accompanying value b, the user’s preference p̂u
can be predicted as: p̂u = +1, if u�p+ b > 0;−1 otherwise.

Hence, for a particular user, if there are q items with unknown rankings
I1, I2 . . . Iq, the values for the preference function p̂(Ii, Ij) ∈ {+1,−1}, can be
predicted. Since the values for pairwise preference function are not a direct for-
mat to get the rankings, we use the greedy order algorithm proposed by Cohen et
al. [7, 21], that efficiently finds an approximately optimal ranking for the target
user u. It is showed that based on reduction of cyclic ordering problem [10], the
determination of optimal ranking is a NP-complete problem and the algorithm
can be proved to have an approximation ratio of 2 [10].

Remarks. Alternatively, we could have directly used the user matrix U (Section
4.2) and the item matrix I (Section 4.3) to generate the ratings matrix (R =
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Fig. 1. Ranking Performance of Pref2Vec against baselines
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UIT ), that could be used to generate ranking of unrated items. However, since
we follow sequential steps by first generating U from preference vectors, then
using U to create I and thereafter using U and I to create R; there is accuracy
loss at each step. On the other hand, our ranking model avoids such additional
inaccuracies by directly using preference vectors and U to generate rankings.

Baselines. We use the following baselines to access the performance of our
simple recommendation method P2VRank:
• CF: CF [5] is a memory-based collaborative filtering algorithm that uses the
Pearson correlation coefficient to calculate the similarity between users.
• MF: Given a raking matrix R, in matrix factorization [18] the user matrix U
and the item matrix I are optimized in order to minimize the difference: R−UI�.
• EigenRank: EigenRank [21] uses greedy aggregation method to aggregate the
predicted pairwise preferences of items into total ranking.
• eALS: Element-wise Alternating Least Squares (eALS) [14] efficiently opti-
mizes a MF model with variably-weighted missing data. As eALS is an implicit
feedback algorithm, we consider only higher ratings (≥ 4) as positive feedback.

Results. The performance is evaluated using the standard ranking accuracy
metric NDCG [17] @3 and @5. In Fig 1, we see that P2VRank outperforms
all comparison partners. Also, we also observed strong statistical significance
(α = 0.05) on comparing P2VRank against MF for all the three datasets.

6 Conclusion

We proposed Pref2Vec to generate vector representations of pairwise item pref-
erences. We also presented the method to generate user and item vectors using
preference vectors. Also, our experimental results demonstrated that the qual-
ity of item vectors generated by Pref2Vec is better than that of the standard
techniques. We also verified that the generated user and item vectors are highly
independent of the initializations. In addition, we presented the technique to
generate rankings of items, using the generated user vectors, and showed that it
outperforms the standard recommendation techniques. Currently we only con-
sider the preference of one item over another for the creation of Pref2Vec and in
future we would like to consider the magnitudes of these preferences.
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ABSTRACT

Most recommender algorithms are designed to suggest relevant

items, but suggesting these items does not always result in user sat-

isfaction. Therefore, the efforts in recommender systems recently

shifted towards serendipity, but generating serendipitous recom-

mendations is difficult due to the lack of training data. To the best of

our knowledge, there are many large datasets containing relevance

scores (relevance oriented) and only one publicly available dataset

containing a relatively small number of serendipity scores (serendip-

ity oriented). This limits the learning capabilities of serendipity

oriented algorithms. Therefore, in the absence of any known deep

learning algorithms for recommending serendipitous items and

the lack of large serendipity oriented datasets, we introduce SerRec

our novel transfer learning method to recommend serendipitous

items. SerRec uses transfer learning to firstly train a deep neural

network for relevance scores using a large dataset and then tunes

it for serendipity scores using a smaller dataset. Our method shows

benefits of transfer learning for recommending serendipitous items

as well as performance gains over the state-of-the-art serendipity

oriented algorithms.
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ing
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1 INTRODUCTION

Relevance oriented recommender algorithms often suggest items

that users are either already familiar with or would easily find them-

selves leading to low satisfaction [8]. To overcome this problem,

recommender algorithms should suggest serendipitous (i.e. rele-

vant, novel and unexpected) items, as these items are more likely to

broaden user preferences than relevant non-serendipitous ones [7].

While there has been a lot of work in the area of relevance oriented

recommendations including deep learning [1–3, 10], the efforts for

serendipitous recommendations are still very limited. To the best
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of our knowledge, deep learning or transfer learning methods have

not yet been explored for recommending serendipitous items.

Although there is abundant availability of big training datasets

with relevance scores, that can be used for relevance oriented algo-

rithms, there are not many training datasets available with serendip-

ity scores. To the best of our knowledge, Serepdipity-20181 is the

only such publicly available dataset, having comparatively a rather

small set of serendipity scores. One of the reasons for the lack of

large serendipity related datasets is the high level of difficulty to

collect user feedback regarding serendipity. This requires a lot of

effort from users as they need to answer many questions, and not

just provide scores for the items [7]. The unavailability of large

datasets with serendipity scores poses limitations on the training

of serendipity oriented recommender models.

Therefore, in the absence of large datasets and deep learning

algorithms focused on serendipity, we introduce SerRec: a transfer

learning method that trains a deep neural network for relevance

scores using a large dataset and then tunes it for serendipity scores

using a smaller dataset. This allows us to use the available training

data with relevance scores to benefit in the process of recommend-

ing serendipitous items.

Our method utilizes the neural collaborative filtering (NCF)

framework proposed by He et al [3]. They introduced an ensemble

of deep neural networks, originally proposed to learn a relevance

oriented recommender model. To benefit from transfer learning,

we firstly train the deep neural network ensemble layers using an

available large training dataset with relevance scores. Thereafter,

we tune the last layer of the network using a small dataset with

serendipity scores.

For our experiments, we have used Serendipity-2018, the only

publicly available dataset that has user feedback on serendipitous

items [7], that to the best of our knowledge has not been used so

far in studies. This dataset consists of a large collection of relevance

scores along with a smaller collection of serendipity scores. Ex-

perimenting with Serendipity-2018 is also novel in itself, because

serendipity oriented algorithms till now have been evaluated on

datasets where serendipity was measured using artificial serendip-

ity metrics based on assumptions regarding serendipity that might

not correspond to reality [7]. Our experimental results show the

benefits of transfer learning to train a serendipity oriented recom-

mender model and shows improvements over the state-of-the-art

serendipity oriented recommender models.

To summarize, this paper has the following key contributions:

• We propose the novel deep transfer learning method SerRec

for serendipitous recommendations.

• Our method utilizes the neural collaborative filtering frame-

work to utilize a large relevance score dataset along with a

1https://grouplens.org/datasets/serendipity-2018/
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Figure 1: SerRec Architecture for Transfer Learning for

Serendipity using NCF framework [3]

smaller serendipity score dataset to enable high performance

serendipitous items recommendations.

• We evaluate SerRec and compare it with the-state-of-the-art

serendipity oriented algorithms on the first publicly available

serendipity oriented dataset Serendipity-2018.

2 OBJECTIVES

In this study, we aim to address mainly the following questions:

• How can we do transfer learning for serendipitous recom-

mendations using the relevance score training data?

• Does transfer learning help the serendipity oriented recom-

mender model?

• Howdoes ourmodel compare to the state-of-the-art serendip-

ity oriented models?

3 SERREC FRAMEWORK

In this section, we describe the SerRec methodology, its setup, uti-

lized datasets, baselines and the metric employed for comparisons.

3.1 Methodology

Consider a set of users as U = {u0,u1, ...,uN }, and a set of items

as I = {i0, i1, ..., iM }. We denote user-item interaction matrix as

R = {r jk }, where r jk = 1 if user uj rated item ik , j ∈ {0, ...,N },k ∈

{0, ...,M}, r jk ∈ {0, 1}. We denote user-item serendipity matrix

as S = {sjk }, where sjk = 1 if user uj considers item ik , where
j ∈ {0, ...,N },k ∈ {0, ...,M}, sjk ∈ {0, 1} as serendipitous.

Our goal is to learn a function ŝjk = f (j,k | Θ), where ŝjk is

predicted serendipity score, andΘ is the vector of model parameters.

Here, j and k are the indexes of user and item matrices U and I ,
respectively. In order to find optimal parameters Θ for function

f (j,k | Θ) we need to minimize loss function L(S, f (j,k | Θ))
between actual and predicted serendipity scores.

As per He et al. [3], we represent function f (j,k | Θ)) as neural
network, depicted in Figure 1. Input data for the neural network is

one-hot encoded user and item vectors: u and i , |u | = N + 1, |i | =
M + 1. At first, we create vector embeddings p and q from vectors

u and i respectively. These embeddings are created by learning

weights of two matrices:WU andWI ; multiplication of u or i to
WU orWI respectively would return p and q [3]. The sizes of these

embeddings p and q are n andm respectively, where n << N + 1
andm << M + 1.

Left-hand side of the neural network at Figure 1 is the layer

performing Generalized Matrix Factorization (GMF), i.e.:

OGMF = (p � q) (1)

Moreover on the right hand side, Multi Layer Perceptron (MLP)

layers 1, 2, 3 and 4 contain dense layers:

OMLPk = RelU (Wk ·OMLPk−1 + Bk ),k ∈ {1, 2, 3, 4}, (2)

where OMLP0 = [p,q], i.e. vector built by concatenation of user

and item embeddings. Final layer of the network Neural Matrix Fac-

torization (NeuMF in Figure 1) implements the sigmoid activation

function:

ONeuMF = σ (WO · [OGMF ,OMLP4 ] + BO ), (3)

whereWO and BO are weights and biases of the output layer.

We adopt cross entropy as the loss function:

L(S, Ŝ) = −
∑

(j,k )∈S̃

(sjk log ŝjk − (1 − sjk ) log(1 − ŝjk )), (4)

where S̃ denotes observed part of serendipity matrix S , and Ŝ =
f (j,k | Θ) is the predicted serendipity.

Since serendipity scores dataset is small, we try to utilize transfer

learning by training a deep neural network using relevance scores.

First, we train the entire neural network framework on relevance

data R, and optimize the loss L(R, R̂). After training the entire

neural network on relevance, we fix all weights except final one

(WO , and BO ), and train it on serendipity matrix S .

3.2 SerRec Setup

For our experiments we have used the Neural Collaborative Fil-

tering [3] implementation2 as discussed in section 3.1. As shown

in Figure 1, we used the training dataset with relevance scores to

train the GMF the MLP layers, where we used four layers in MLP.

Thereafter, the NeuMF layer is tuned using the serendipity tuning

dataset and final network is tested on the serendipity test dataset.

These datasets are explained in detail in Section 3.3.

For initial training on GMF and MLP, we used the user and

item vectors embeddings p and q, created using relevance training

dataset R̃ ⊂ R. We used a learning rate of 0.001 for GMF and 0.01 for

MLP, and trained both of them for 20 epochs while keeping a batch

size of 254. Also for both GMF andMLP, we used Adam optimization

algorithm [5]. Moreover, the available implementations for MLP

and GMF convert the available ratings into implicit feedback (rated

2https://github.com/hexiangnan/neural_collaborative_filtering
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or unrated) and for this chooses randomly four negative samples

(unrated) for each positive (rated) item for a user. We have used

these default settings.

Then using these trained GMF and MLP layers and keeping

the weights fixed in them, we tuned the NeuMF layer using the

serendipity tuning dataset. For this we used S̃ ⊂ S , that contains
negative and positive samples on serendipity. We tuned it till con-

vergence using a learning rate of 0.001. We used this trained and

tuned network to predict the serendipity scores of the test dataset.

3.3 Datasets

To evaluate our algorithm and baselines, we employed Serendipity-

2018 dataset [7]. To the best of our knowledge, this is the only

publicly available dataset, which contains user feedback regarding

serendipity. This dataset contains 5-star scores (relevance scores)

users gave to movies in MovieLens3 and binary scores (serendipity

scores) indicating whether particular movies are serendipitous to

particular users. The dataset contains ten million relevance scores

and 2,150 serendipity scores.

The dataset contains different kinds of serendipity. In this study,

we target six kinds of serendipity that are missing the unexpect-

edness variation, which hurts user satisfaction: strict serendipity

(find), strict serendipity (implicit), strict serendipity (recommend),

motivational serendipity (find), motivational serendipity (implicit)

and motivational serendipity (recommend) [7]. We pre-process this

dataset and regard a movie serendipitous (positive sample) if it

is serendipitous according to at least one of these variations of

serendipity, and otherwise regard it as non-serendipitous (negative

example). The dataset contains 277 serendipitous user movie pairs

out of total 2,150.

For the Serendipity-2018 dataset, serendipity scores were ob-

tained in a survey taken by 481 users. In the survey, the authors

selected movies that were likely to be serendipitous to users, such

as unpopular movies that were given high scores [7]. To extend

serendipity scores for our study, we randomly selected five rele-

vance scores per user and assigned negative (non-serendipitous)

serendipity scores to them.We regarded thesemovies non- serendip-

itous, as they were unlikely to be serendipitous to users. In the best

case scenario, the chance of a movie to be serendipitous is 13%

( 2772150 = 0.129). In our case, the chance of a movie to be serendip-

itous is much lower, since we did not control for popularity or

score. After attaching serendipity scores to randomly selected rele-

vance scores, the number of serendipity scores exceeded 4,555 with

277 scores indicating serendipitous movies and 4,278 indicating

non-serendipitous ones.

We split the dataset into three datasets: training, tuning and test.

Tuning and test datasets contain both relevance and serendipity

scores, while the training dataset only contains relevance scores.

The tuning datasets contains 75% of serendipity scores, while the

test dataset contains the remaining 25% of serendipity scores.

3.4 Baselines

We implemented the following baselines for comparison with our

transfer learning method SerRec:

3https://movielens.org/

• POP: We implemented popularity baseline that arranges

items according to the number of relevance scores received

by them in the training dataset, in the descending order.

• UNPOP: Unpopularity or inverse popularity baseline orders

items according to the number of relevance scores in the

ascending order.

• Random: This baseline orders the items randomly.

• SVD: Singular value decomposition [6] orders items accord-

ing to the predicted scores. SVD decomposes the user-item

matrix into two matrices using gradient decent. The gradient

decent algorithm minimizes the objective function, which is

the error between actual and predicted scores. Based on tun-

ing, we picked the parameters: feature number=200, learning

rate=10−5 and regularization term=0.1.

• SPR: Serendipitous Personalized Ranking is a serendipity-

oriented variation of SVD with the modified objective func-

tion [9]. SPR is a learning to rank algorithm, which maxi-

mizes the difference between scores of relevant and irrele-

vant items for each user and weights this distance based on

popularity of the irrelevant item. Based on tuning, we picked

the parameters: Bayesian loss function, α = 0.4, feature num-

ber=200, learning rate=10−5 and regularization term=0.1.

• UAUM: Unexpectedness-Augmented Utility Model is also

a serendipity-oriented variation of SVD [12]. UAUM mini-

mizes the objective function, which is the error weighted

with the unexpectedness term. In our implementation, we

excluded unobserved scores due to the size of our dataset.

Based on tuning, we picked the parameters: feature num-

ber=200, learning rate=10−5 and regularization term=0.1.

• SerRecNoT L : To see if transfer learning indeed helps in rec-

ommending serendipitous items, we trained the non transfer

learning version of our method, where we trained all the

layers in Figure 1 using only serendipity scores from tuning

dataset.

We used the following procedure to evaluate our baseline al-

gorithms: (1) we trained the baselines on relevance scores of the

training dataset, (2) we tuned the parameters of the baselines on

serendipity scores of the tuning dataset, (3) we trained the baselines

with the tuned parameters on relevance scores of training and tun-

ing datasets combined and (4) we evaluated the trained baselines on

serendipity scores of the test dataset. We did not train the baselines

directly on the serendipity scores, as Serendipity-2018 does not

contain enough serendipity scores for training the algorithms.

3.5 Metric

To compare the serendipitous item recommendation performance of

SerRec against the baselines on the serendipity test set, we employed

the standard retrieval metric NDCG@1-10 (normalized discounted

cumulative gain) [4]. While NDCG computation typically utilizes

the relevance scores of items in a ranking, we used the available

serendipity scores.

4 RESULTS

Table 1 compares the serendipitous recommendation performance

of SerRec against the baselines using NDCG@1-10. The following

observations can be made from the results:

Short Paper CIKM’18, October 22-26, 2018, Torino, Italy

1773



Table 1: Serendipity Ranking Performance Comparison of SerRec

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10

POP 0.0303 0.0606 0.0606 0.0909 0.1146 0.1948 0.2518 0.2994 0.3550 0.4078

Random 0.0909 0.1969 0.3262 0.3895 0.4248 0.4529 0.5036 0.5339 0.5639 0.5674

SVD 0.2121 0.3484 0.4035 0.4499 0.4981 0.5298 0.5643 0.6086 0.6218 0.6281

UAUM 0.3333 0.4696 0.4765 0.5117 0.5511 0.5900 0.5900 0.6336 0.6623 0.6749

UNPOP 0.3636 0.4393 0.5017 0.5651 0.6478 0.6633 0.6849 0.6849 0.7040 0.7040

SPR 0.3636 0.5000 0.5678 0.6230 0.6731 0.6944 0.7268 0.7369 0.7369 0.7369

SerRecNoT L 0.2727 0.4091 0.5420 0.6490 0.6960 0.7135 0.7135 0.7236 0.7236 0.7236

SerRec 0.4848 0.5455 0.6269 0.6505 0.6907 0.7186 0.7363 0.7452 0.7614 0.7614

(1) We see that SerRec outperforms all the baselines algorithms

at all the NDCG metrics, only except at NDCG@5 where

SerRecNoT L is the best performing algorithm.

(2) For some metrics SerRecNoT L is the second best algorithm

and SPR the third best, while for other metrics it is the other

way round. They are followed by UNPOP, UAUM, SVD, Ran-

dom and POP in this particular order.

(3) We also see the benefits of transfer learning since SerRec

outperforms SerRecNoT L for most of the metrics.

(4) We observe that popularity of the items is working against

the serendipity because UNPOP shows decent performance

whereas POP is the worst (even worse than Random).

(5) As expected, serendipity oriented algorithms SPR and UAUM

outperform the relevance oriented SVD.

5 DISCUSSION

Our results mostly corresponded to our expectations and the lit-

erature on serendipity in recommender systems, i.e.: a) transfer

learning improves serendipity (observation 3), b) serendipity ori-

ented recommendation algorithms outperform relevance oriented

ones (observation 5) [9, 12] and c) popularity baseline has the

lowest serendipity [8]. Our unexpected finding was that the non-

personalized algorithm UNPOP outperforms some personalized

algorithms (observation 2), which emphasizes the importance of

popularity factor for suggesting serendipitous items. This might

suggest that popularity is the most important factor for suggesting

serendipitous items and that the traditional artificial serendipity

metrics [11] reflect the real world scenario. However, answering

these questions is beyond research conducted in this paper.

The limitations are mostly caused by the lack of publicly avail-

able datasets containing the necessary data. The dataset contains

a relatively small number of serendipitous scores. To increase the

number of these scores, wemarked some items as non-serendipitous

for some users. Although, as we explained in Section 3.3, the chance

of the mistake is rather small, some items could have been serendip-

itous to users, while being marked as non-serendipitous ones.

The performance of our approach can be improved with a differ-

ent configuration of parameters. We used arbitrary learning rate

for training GMF and MLP layers, just considering that the loss

function should converge (see Section 3.2). We trained them for a

limited number of epochs, used the default number of four negative

samples per positive sample and also used the default number of

four layers in MLP. It is highly probable that further tuning of such

parameters would result in further performance gains for SerRec.

6 CONCLUSION

This paper presents SerRec, a novel approach to use deep neural

networks and transfer learning to generate serendipitous recom-

mendations. We employed the Neural Collaborative filtering [3]

framework, that we train using a large dataset with relevance scores

and then tune using a smaller serendipity oriented dataset. Our

approach shows the benefit of transfer learning and improvements

over the state-of-the-art serendipity oriented baselines.

In future work, we would like to explore further tuning of the

hyper-parameters (number of layers, epochs, etc) of the utilized

deep neural networks, to achieve additional performance gains.
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Abstract. Matrix factorization (MF) is one of the most effective cate-
gories of recommendation algorithms, which makes predictions based on
the user-item rating matrix. Nowadays many studies reveal that the ulti-
mate goal of recommendations is to predict correct rankings of these un-
rated items. However, most of the pioneering efforts on ranking-oriented
MF predict users’ item ranking based on the original rating matrix,
which fails to explicitly present users’ preference ranking on items and
thus might result in some accuracy loss. In this paper, we formulate a
novel listwise user-ranking probability prediction problem for recommen-
dations, that aims to utilize a user-ranking probability matrix to predict
users’ possible rankings on all items. For this, we present LwRec, a novel
listwise ranking-oriented matrix factorization algorithm. It aims to pre-
dict the missing values in the user-ranking probability matrix, aiming
that each row of the final predicted matrix should have a probability
distribution similar to the original one. Extensive offline experiments on
two benchmark datasets against several state-of-the-art baselines demon-
strate the effectiveness of our proposal.

Keywords: Recommender systems, Collaborative Filtering, Ranking

1 Introduction

Conventional recommendation algorithms like collaborative filtering follow a
rating-oriented paradigm. They generally learn a recommendation model with
users’ observed historical ratings, using which they predict users’ ratings on their
unrated items. Nowadays, ranking-oriented recommender systems are receiving
increasing attention from both academic communities and industry. Many stud-
ies reveal that the ultimate goal of recommendations is to predict correct rank-
ings of these unrated items, and prediction of accurate ranking is more important
than predicting accurate rating scores [1, 2]. Accurate prediction of ratings does
not necessarily imply improvement in the ranking results.

To elaborate, let us consider items: {a, b, c} with their correct ratings R :
{5, 4, 3} and two rating predictions P1 : {3, 4, 5} and P2 : {3, 2, 1}. A rating ori-
ented approach would prefer P1 over P2, since predicted ratings in P1 are more
accurate, being closer to the ratings in R. However, the order in P1 (a < b < c)
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is completely opposite to the desired order (a > b > c). In contrast, a rank-
ing oriented approach would prefer P2, as it predicts the correct ranking, i.e.
(a > b > c). This would generate desirable results (correct order of items), in
spite of having lower accuracy in predicted ratings.

Given the above argument, some pioneering efforts on ranking-oriented rec-
ommendation algorithms have been proposed. Due to the effectiveness of matrix
factorization (MF) algorithms in rating-oriented recommender systems, a few
ranking-oriented MF algorithms have been presented, reporting state-of-the-art
results. However, most of the pioneering efforts on ranking-oriented MF predict
users’ item ranking based on rating scores, failing to explicitly present users’
preference ranking on items and thus possibly resulting in some accuracy loss.

Therefore, we define a novel listwise user-ranking probability prediction prob-
lem for recommendations. We utilize the listwise user-ranking probability matrix
[3] to explicitly characterize users’ preference on items. Given a set of rating
scores on items, each ranking on items might be possible, where “correct” rank-
ings (higher scores are ranked at top positions) receive greater probabilities. Thus
for each user, the probabilities on users’ all possible rankings could formulate as a
user-ranking probability matrix, where each element presents a probability that
certain user holds certain ranking on items. Thus each row of the user-ranking
probability matrix consists of users’ probabilities on different item rankings,
forming a distribution. With the initial probabilities of users’ possible rankings
on their rated items, the listwise user-ranking probability prediction problem
aims to predict probabilities of users’ possible rankings on all items. Meanwhile,
the predictions should satisfy the requirements of probability distributions: each
element in the probability matrix should be between 0 and 1, and sum of each
row should be 1.

Given a collection of items, there might be a very large number of possible
rankings (i.e. n! rankings for n items), resulting in a extremely huge ranking
probability matrix and calculations in training. In this study, we only consider
the top-k ranked items in rankings, and the size of the matrix could be shrinked
significantly, especially the size of the ranking probability matrix is equal to
that of the user-item rating matrix when k = 1. Based on this matrix, we then
present LwRec, a novel listwise ranking-oriented MF algorithm, which minimizes
the difference between the initial distribution on the known rankings and the
final distribution on all items with predictions for each user. Considering the
non-negative property for each element, we adapt non-negative MF to implement
LwRec. Our experimental results on benchmark datasets demonstrate significant
performance gains over state-of-art recommender algorithms.

To summarize, our contributions are as follows. (1) We define a novel list-
wise user-ranking probability prediction problem for recommendations. (2) We
present an effective algorithm to solve the problem based on non-negative MF.
(3) We achieve significant performance gains against state-of-the-art recommen-
dation algorithms on benchmark datasets.

The rest of the paper is organized as follows. Section 2 briefly presents the
related work and Section 3 describes the problem formulation. Then, we explain
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the LwRec approach in Section 4 followed by experimental setup in Section 5.
Finally, Section 6 presents the results and Section 7 concludes the paper.

2 Related Work

This section presents related work for collaborative filtering (CF) recommenda-
tion algorithms, which use only the ratings given by the users for the items, and
do not need the domain knowledge. They are mainly of two types: rating ori-
ented and ranking oriented. While rating oriented algorithms predict unknown
item ratings for each user, ranking oriented algorithms predict item rankings.
Both of them can be further categorized as memory-based or model based.

Rating Oriented Algorithms: Memory-based rating oriented algorithms are
either user-based CF [4], that utilize similarities between users on the basis of
available ratings; or item-based CF [5], that utilize similarities between items.
Various advanced versions of this approach have been introduced. For example,
SLIM [6] directly learns from the data, a sparse matrix of aggregation coefficients
that are analogous to the traditional item-item similarities. FISM [7] learns the
item-item similarity matrix as a product of two low-dimensional latent factor ma-
trices. Model-based rating oriented algorithms aim to predict ratings by learning
a model from observed ratings. Traditional model of this type is matrix factor-
ization (MF) [8], that uses dimensionality reduction to decrease the distance
between predicted and observed rating matrices. Some of the models that are
based on matrix factorization are: Probabilistic MF [9], Non-negative MF [10],
Factorization Machines [11], Hierarchical Poisson MF [12] and LLORMA [13].

Ranking Oriented Algorithms: EigenRank [14] is a well known ranking ori-
ented memory based CF algorithm that follows the pairwise approach. It employs
a greedy aggregation method to aggregate predicted pairwise preferences of items
into total ranking. VSRank [15] represents users’ pairwise preferences for items
by using vector space model and utilizes the relative importances of each pair-
wise preference. Moreover, various model-based ranking oriented CF algorithms
have been introduced that try to optimize a ranking oriented objective function.
Some of the notable algorithms of this type are: CLiMF [16], CoFiRank [17],
ListCF [3] and GBPR [18].

3 Problem Formulation

3.1 User-Ranking Probability Matrix

Considering m users and n items, for each user there are obviously n! possible
rankings of items. Given a set of rating scores on items, each ranking on items
might be possible, where “correct” rankings (higher scores are ranked at top
positions) receive greater probabilities. The probability of item rankings could
be derived with the Plackett-Luce model [19], which is a widely used permutation
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(each permutation is actually a ranking) probability model in various domains.
Each ranking ρ can be represented as an ordered list (ρ1, ρ2 . . . ρn), where ρi
represents the item at the ith position, and positions of the items are unique.
Hence, the probability of the ranking ρ can be calculated as:

Prob(ρ) =

n∏
i=1

γ(rρi)∑n
j=i γ(rρj )

, (1)

where rρi is the rating for the item ρi and γ(r) = er.
Since, there are n! rankings of items, which is a large number of rankings

even for a small value of n, it makes the computation impractical. Hence, we
employ the same approach as Huang et al. [3], that uses an alternative efficient
method introduced by Cao et al. [20]. The approach focuses only on top k items
in the rankings, leading to n!

(n−k)! different top k sets. So, the probability of the

rankings ρS whose top-k items are exact S = {i1, i2 . . . ik} can be calculated as:

Prob(ρS) =

k∏
j=1

γ(rij )∑n
l=j γ(ril)

(2)

We have m users and for each user we have p = n!
(n−k)! ranking sets for top

k items. Now, we construct the user-ranking probability matrix Θm×p. In Θ,
each row corresponds to a particular user and contains the probabilities for the
p rankings. To clarify, if Probui

(Sj) represents the probability of ranking Sj

calculated for the user ui (where 1 ≤ j ≤ p and 1 ≤ i ≤ m), then:

Θi,j =Probui(Sj), if ratings of all items in Sj are known,

⊥, otherwise
(3)

Especially when k = 1, i.e. when we consider only the top-1 items in all
rankings, the size of Θ is equal to that of the user-item rating matrix. This is
because, in this case, p = n!

(n−1)! = n.

3.2 Objective and Constraints

Given the matrix of known top k probabilities of items: Θm×p, where p = n!
(n−k)! ,

we aim to predict the unknown probabilities, that in turn can be used to gen-
erate recommendations. This can be achieved by using a listwise loss function
and optimizing it using matrix factorization. For this, we define the following
objective and the two related constraints:
Objective: Using two matrices Uz×m and Gz×p that construct the predicted
probability matrix U�G, utilize a listwise loss function and matrix factorization
to minimize the distance between Θ and U�G.
C1: Values in U�G should be in the range 0 to 1 (as they are probabilities). i.e.
0 ≤ Uij ≤ 1, ∀i = 1 . . . z and ∀j = 1 . . .m.
C2: Sum of each row of U�G should be 1 (as a row contains probabilities of
rankings for a particular user, that should sum up to 1). i.e.

∑p
j=1(U

�G)ij =
1, ∀i = 1 . . .m.
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Definition 1 (Listwise User-Ranking Probability Prediction). Given a
user-ranking probability matrix Θ, where each observed element of Θi,p indicates
certain user’s probability for her certain (top-k) preference ranking on her rated
items, and each row of Θ forms a probability distribution. The listwise user-
ranking probability prediction problem aims to predict each user’s probability of
her top-k preference ranking on all items, where each row of U�G forms a prob-
ability distribution as well after prediction, and each user’s two distributions,
observed and predicted, should be as similar as possible. Formally,

argmin
U,G

m∑
i=1

diff (Θi, (U
�G)i),

s. t. 0 ≤ (U�G)ij ≤ 1, i = 1, 2, . . . ,m, and j = 1, 2, . . . , p (C1)
p∑

j=1

(U�G)ij = 1, i = 1, 2, . . . ,m (C2)

(4)

Here diff (Θi, (U
�G)i) is the difference between two distributionsΘi and (U�G)i,

i.e. the ith row of the user-ranking probability matrix before and after prediction.

4 Prediction Method

In this section, we present LwRec to solve our listwise user-ranking probability
prediction problem. We use Kullback-Leibler divergence [21], a commonly used
measure for calculating difference between probability distributions, to compute
diff (Θi, (U

�G)i). In LwRec, we utilize non-negative matrix factorization (MF)
[10] to implement our proposed algorithm, which can generate non-negative el-
ements for U and G. Thus the elements of the user-ranking probability matrix
U�G are all non-negative. In order to satisfy the constraint C2, we introduce a
collection of Lagrange penalty terms in the objective function

∑p
j=1(U

�G)ij = 1
where i = 1 . . .m. In standard Lagrange methods, the coefficients of Lagrange
penalty terms could be either positive or negative, but in non-negative MF, all
of the parameters have to be non-negative. Thus we introduce two non-negative
vectors α and β, and regard (αi − βi) that can be either positive or negative, as
the coefficient of the ith Lagrange penalty term to formulate our loss function.
Moreover, addressing constraint C2 together with ensuring that the values in
U�G are non-negative, also satisfies constraint C1 (i.e. values in U�G should be
in range 0 to 1). The formulation of our loss function can be presented formally
as follows:

L(U,G, α, β) =−
m∑
i=1

p∑
j=1,Θij �=⊥

Θij log
(U�G)ij∑p

l=1,Θil �=⊥(U
�G)il

+

m∑
i=1

(αi − βi)

( p∑
j=1

(U�G)ij − 1

)
+

λ1

2
||U ||2 + λ2

2
||G||2,

(5)

In Equation 5, the first term represents the main optimization objective from
Equation 4, which defines the divergence between U�G and observed probability
matrix Θ. The second term is the weighted cumulative Lagrange penalty term
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for constraint C2. The last two terms are l2-norms of U and G to avoid over-
fitting, where λ1 and λ2 are the respective coefficients. By expanding the log in
L(U,G, α, β) and considering that the sum of each row in Θ is 1, the function
can be reformulated as:

L(U,G, α, β) =

m∑
i=1

log

( p∑
l=1,Θil �=⊥

(U�G)il

)
−

m∑
i=1

p∑
j=1,Θij �=⊥

Θij log
(
(U�G)ij

)

+
m∑
i=1

(αi − βi)

( p∑
j=1

(U�G)ij − 1

)
+

λ1

2
||U ||2 + λ2

2
||G||2

(6)

To minimize the loss function using gradient descent, we compute its gradients
with respect to the variables U , G, α and β and derive the following updates:

Uia ← Uia − ηu

( ∑p
l=1,Θil �=⊥ Gal∑p

l=1,Θil �=⊥(U
�G)il

−
p∑

j=1,Θij �=⊥

ΘijGaj

(U�G)ij

+ (αi − βi)

p∑
j=1

Gaj + λ1Uia

)
,

Gaj ← Gaj − ηg

( m∑
i=1

Uia∑p
l=1,Θil �=⊥(U

�G)il
−

m∑
i=1,Θij �=⊥

ΘijUia

(U�G)ij

+

m∑
i=1

(αi − βi)Uia + λ2Gaj

)
,

αi ← αi − ηα

( p∑
j=1

(U�G)ij − 1

)
and βi ← βi − ηβ

(
1−

p∑
j=1

(U�G)ij

)

(7)

where, ηu, ηg, ηα and ηβ are the step sizes. Now, using non-negative matrix
factorization [10], we choose the step sizes such that:

ηu =
Uia

∑p
l=1,Θil �=⊥ Gal

∑p
l=1,Θil �=⊥(U�G)il

+ αi

∑p
j=1 Gaj + λ1Uia

,

ηg =
Gaj∑m

i=1
Uia∑p

l=1,Θil �=⊥(U�G)il
+

∑m
i=1 αiUia + λ2Gaj

,

ηα =
αi∑p

j=1(U
�G)ij

and ηβ = βi

(8)

Substituting these values of the steps in updation formulas in Equations 7, we
derive the following multiplicative updates:

Uia ← Uia

∑p
j=1,Θij �=⊥

ΘijGaj

(U�G)ij
+ βi

∑p
j=1 Gaj

∑p
l=1,Θil �=⊥ Gal

∑p
l=1,Θil �=⊥(U�G)il

+ αi

∑p
j=1 Gaj + λ1Uia

,

Gaj ← Gaj

∑m
i=1,Θij �=⊥

ΘijUia

(U�G)ij
+

∑m
i=1 βiUia∑m

i=1
Uia∑p

l=1,Θil �=⊥(U�G)il
+

∑m
i=1 αiUia ++λ2Gaj

,

αi ← αi∑p
j=1(U

�G)ij
and βi ← βi

p∑
j=1

(U�G)ij

(9)
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Algorithm 1: LwRec Algorithm

Input: Ratings for n items by m users, values k and z
1 Initialize Θm×p, where p = n!

(n−k)!
(See Equation 3)

2 Randomly initialize Uz×m, Gz×p, αm and βm with non-negative values
3 repeat
4 Update U , G, α and β according to Equation 9
5 until Reach convergence or the max iteration;

6 return U�G

On optimizing U and G, The rows of U�G would contain predicted probabil-
ity distributions of top k rankings for users, that can be utilized to generate
recommendations. Algorithm 1 summarizes our method.

5 Experimental Setup

5.1 Datasets

For our experiments, we use two MovieLens3 data sets: MovieLens-100K and
MovieLens-1M. MovieLens-100K dataset contains 100,000 ratings given by 943
users on 1682 movies. MovieLens-1M dataset is larger with 1,000,000 ratings
given by 6040 users on 3952 movies. In MovieLens-100K as well as MovieLens-
1M the ratings are given on an integer scale from 1 to 5. For both the datasets
we assign 10 ratings for each user for testing and the rest for training.

5.2 LwRec Setup

For both datasets, we consider top 1 item rankings (i.e. k = 1), since the topmost
position in a ranking is the most important one. Moreover, it also makes our
experiments computationally inexpensive since when k = 1, p = n!

(n−1)! = n

(number of items). A higher value of k, would make the value of p huge. For
example, for MovieLens-1M (n = 3952), when k = 2, p ≈ 1.56×107 and for k = 3,
p ≈ 6.17 × 1010. Probably higher values of k could result in some performance
gains, but in this study we restrict the scope to experiment with k = 1. Moreover,
for the matrices U and G, we have used the column length of 10 (i.e. z = 10).

We generate the probability distributions of known item rankings i.e. Θ using
the training set and then generate the matrix of predicted probabilities i.e. U�G
(Algorithm 1). Since we use k = 1, each row of U�G would contain probabilities
for n items (as each item ranking has only one item in this case). Therefore, items
in the test set can be simply ordered by their decreasing predicted probabilities.

5.3 Baselines

We used the following state-of-the-art algorithms as our comparison partners:

3 http://grouplens.org/datasets/movielens/
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1. CF: CF [22] calculates the similarity between users, and ranks the items
according to the predicted ratings for each user.
2. Matrix Factorization (MF): User matrix U and item matrix I are op-
timized in MF [8], to minimize the difference between their product UIT and
rating matrix R. UIT regenerates the rating matrix to predict unknown ratings.
3. EigenRank: EigenRank [14] is a pair-wise ranking-oriented algorithm that
employs a greedy aggregation method to aggregate the predicted pairwise pref-
erences of items into total ranking.
4. ListRankMF: ListRankMF [23] minimizes a loss function representing un-
certainty between training and output lists produced by a MF ranking model.
5. FISM: Factored Item Similarity Models (FISM) [7] learn the item-item sim-
ilarity matrix as a product of two low-dimensional latent factor matrices. While
FISMrmse computes loss using sqaured error loss function, FISMauc consid-
ers a ranking error based loss function.
6. LLORMA: Local Low-Rank Matrix Approximation (LLORMA) [13] ap-
proximates the observed matrix as a weighted sum.
7. ListCF: ListCF [3], a ranking oriented CF algorithm, predicts item order for
a user, based on similar users probability distributions over item permutations.

5.4 Evaluation Metrics.

We use the standard ranking accuracy metric called normalized discounted cu-
mulative gain (NDCG@1-10) [24] that is able to handle multiple levels of rele-
vance, to evaluate item rankings generated by LwRec and the baselines.

Statistical significance of observed differences between the performance of
two runs is tested using a two-tailed paired t-test and is denoted using � (or �)
for strong significance for α = 0.01; or � (or �) for weak significance for α = 0.05.

6 Results

In Table 1, we can see that LwRec outperforms the comparison partners for
all the metrics (NDCG@1 to 10) for MovieLens-100K as well as MovieLens-
1M. ListCF is the second best followed by LLORMA and FISMrmse, for both
datasets. For MovieLens-100K, EigenRank and ListRankMF have comparable
performances followed by MF and FISMauc. For MovieLens-1M, ListRankMF
performs better than FISMauc followed by MF.

We also calculate statistical significance of LwRec against ListCF which is
our best performing comparison algorithm. The results for MovieLens-100K show
weak to strong statistical significance for most metrics and for MovieLens-1M
the results have strong statistical significance in almost all cases.

7 Conclusion

In this paper, we defined a novel listwise user-ranking probability prediction
problem. Then we described LwRec, a listwise recommendation algorithm, that
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Table 1. Ranking Performance of LwRec against baselines

Statistical significance shown for LwRec against LLORMA

Performance for MovieLens-100K

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10

CF 0.5990 0.6394 0.6707 0.6938 0.7182 0.7442 0.7705 0.7970 0.8245 0.8546

MF 0.6629 0.6711 0.6918 0.7158 0.7373 0.7651 0.7895 0.8154 0.8418 0.8683

EigenRank 0.6734 0.6799 0.6972 0.7192 0.7408 0.7634 0.7889 0.8146 0.8407 0.8701

ListRankMF0.6769 0.6792 0.6989 0.7140 0.7316 0.7532 0.7772 0.8057 0.8368 0.8684

FISMauc 0.6480 0.6681 0.6912 0.7132 0.7363 0.7598 0.7826 0.8086 0.8360 0.8661

FISMrmse 0.6735 0.6868 0.7060 0.7246 0.7475 0.7684 0.7914 0.8164 0.8431 0.8726

LLORMA 0.6794 0.6898 0.7092 0.7264 0.7488 0.7705 0.7950 0.8219 0.8462 0.8738

ListCF 0.6846 0.6897 0.7100 0.7274 0.7500 0.7732 0.7982 0.8243 0.8499 0.8752

LwRec 0.69300.69910.7200� 0.7422� 0.7643� 0.7844� 0.8059� 0.8287 0.8527 0.8801�

Performance for MovieLens-1M

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10

CF 0.6214 0.6498 0.6710 0.6954 0.7189 0.7437 0.7708 0.7981 0.8272 0.8589

MF 0.6619 0.6649 0.6802 0.7008 0.7238 0.7483 0.7741 0.8026 0.8322 0.8642

EigenRank 0.6486 0.6571 0.6746 0.6958 0.7190 0.7428 0.7688 0.7966 0.8268 0.8608

ListRankMF0.7084 0.7078 0.7203 0.7342 0.7532 0.7736 0.7972 0.8225 0.8498 0.8803

FISMauc 0.6784 0.6951 0.7109 0.7315 0.7526 0.7750 0.7983 0.8235 0.8493 0.8770

FISMrmse 0.7157 0.7178 0.7279 0.7440 0.7634 0.7849 0.8071 0.8315 0.8569 0.8847

LLORMA 0.7116 0.7174 0.7303 0.7479 0.7672 0.7878 0.8100 0.8340 0.8587 0.8854

ListCF 0.7204 0.7243 0.7359 0.7504 0.7685 0.7895 0.8136 0.8384 0.8627 0.8876

LwRec 0.72040.72810.7428� 0.7600� 0.7777� 0.7988� 0.8207� 0.8436� 0.8667� 0.8906�

solves the problem by minimizing a listwise loss function using non-negative ma-
trix factorization. Our experimental results on benchmark datasets show signifi-
cant performance gains of LwRec over state-of-the-art recommender algorithms.

In this study, we have experimented for top k item rankings, for k = 1. In
the future, we would like to explore the effect on results on using higher value of
k. Moreover, we have used column length 10 for the matrices U and G. It would
be interesting to see the changes in results on varying this column length.
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ABSTRACT

We introduce CitySearcher, a vertical search engine that searches

for cities when queried for an interest. Generally in search engines,

utilization of semantics between words is favorable for performance

improvement. Even though ambiguous query words have multiple

semantic meanings, search engines can return diversified results

to satisfy different users’ information needs. But for CitySearcher,

mismatched semantic relationships can lead to extremely unsatis-

factory results. For example, the city Sale would incorrectly rank

high for the interest shopping because of semantic interpretations

of the words. Thus in our system, the main challenge is to eliminate

the mismatched semantic relationships resulting from the side ef-

fect of the semantic models. In the previous case, we aim to ignore

the semantics of a city’s name which is not indicative of the city’s

characteristics. In CitySearcher, we use word2vec, a very popular

word embedding technique to estimate the semantics of the words

and create the initial ranks of the cities. To reduce the effect of the

mismatched semantic relationships, we generate a set of features

for learning based on a novel clustering-based method. With the

generated features, we then utilize learning to rank algorithms to

rerank the cities for return. We use the English version of Wikivoy-

age dataset for evaluation of our system, where we sample a very

small dataset for training. Experimental results demonstrate the

performance gain of our system over various standard retrieval

techniques.
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1 INTRODUCTION

In this paper, we present CitySearcher, a vertical search engine that

generates a ranking of cities in response to an interest given by the

user. The interest acts as a query on a travel document corpus, which

mostly contains documents that represent and contain information

about a particular city. For example, for the interest ‘History’ the

top 3 cities presented are ‘Rome’, ‘Lviv’ and ‘Oslo’.

Generally in search engines, utilization of semantics between

words is beneficial for an information retrieval system for perfor-

mance improvement. To illustrate, the presence of sentences like

‘The city has bright sea shores’ in a document should contribute in

giving it a high ranking score for the query ‘sunny beach’. Even

though the sentence and the query have no common words, but

there is semantic similarity between the words ‘bright’ and ‘sunny’

as well as ‘shores’ and ‘beach’. Even though ambiguous query words

have multiple semantic meanings, search engines can return diver-

sified results to satisfy different users’ information needs.

However in CitySearcher, mismatched semantic relationships can

lead to extremely unsatisfactory results. This happens particularly

when the city names gets incorrectly semantically interpreted. As an

example, the city ‘Sale’ would incorrectly rank high for an interest

like ‘shopping’, because of semantic relationships between the two

words as well as repetition of the city’s name in its document. Thus

for CitySearcher, the main challenge is to eliminate the mismatched

semantic relationships resulting from the side effect of the semantic

models. In the previous case, it is rather desired that the semantics of

city name are ignored completely for matching it with the interest.

This is because, the meaning of a city name if any, can be completely

unrelated to its characteristics.

In CitySearcher, we we use word2vec [7, 8] to estimate the se-

mantics of the words.Word2vec is a widely used word embedding

technique, and it is shown that the vectors generated by word2vec

preserve the semantic relations between the words, e.g. vec(‘Paris’)

- vec(‘France’) + vec(‘Italy’) is very close to vec(‘Rome’) [7].

With the semantic vectorizations of the words, the CitySearcher

algorithm firstly represents each city as the words in the corre-

sponding document describing the target city, and then calculates

the initial ranking scores for each city-interest pair with the sim-

ilarities between the vectors of the words in the city document

and the interest. While word2vec provides semantic interpretations

in retrieval for CitySearcher, it also introduces the issue of certain

mismatched semantic similarities, especially between interest and

city names. Thus besides the initial ranking scores between cities

and interest queries, we also propose a set of new features for rank-

ing of the cities with the given interest queries. In particular, we

create a set of topics by clustering all of the vectors of words in

the vocabulary. For each interest, we choose a subset of closest

topics and calculate the similarity from the city to the topics as new
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features. We finally create a training set by collecting users’ rele-

vance assessments (ratings) for city-interest pairs, and use machine

learning (e.g. different regression algorithms) to rerank the results

of the cities for return.

While CitySearcher could preserve semantic relationships in gen-

eral and improve retrieval performance, it is also expected to show

capability of reducing the effect of undesired semantic relationships.

With our proposed features, the semantics of the interest query

words are interpreted with a set of closest topics (clusters of words),

allowing us calculating the similarity between cities and interest

queries with multiple enriched dimensions.

We use the English version of Wikivoyage dataset 1 for evalua-

tion of our system. With a very small sampled dataset for training,

experimental results demonstrate the performance gain of our sys-

tem over various standard retrieval techniques.

2 PROBLEM STATEMENT

Let D be a corpus containing travel documents docc1 , docc2 . . .
doccz having information about the cities c1,c2 . . . cz , respectively.
There is one-to-one mapping between documents and cities, i.e.

each document represents only one city and each city has only one

document for it. For a word representing an interest itr , retrieve a
ranking of cities in decreasing order of relevance.

The main challenges or targets for the retrieval task along with

their proposed solutions are:

(a) The semantic relationships between words are beneficial for

retrieval, and hence should be utilized.

Solution:Create vector representations of thewords in corpus

using word2vec (that preserves semantic relationships) and

then use them for retrieval.

(b) However, consideration of semantic similarity between cer-

tain words, especially city and interest, lead to irrelevant

results. Such effect mismatched of semantic relationships

needs to be reduced.

Solution: To reduce the effect of the undesired semantic re-

lationships, train a ranking model using machine learning.

For the training process, collection of ratings from the users

for city-document pairs is a prerequisite.

(c) There are few features for city-document pairs as well as

limited number of ratings from the users. This limits the

efficiency of training.

Solution: Generate new features for city-document pairs us-

ing vector representations of words in the vocabulary.

3 METHOD

Mokolov et al [7, 8] introduced word2vec, a prominent procedure

to generate vector representations of words. They introduced the

continuous skip-gram, which is a neural network model consisting

of input, projection and output layers that predict the surrounding

words. This is achieved by maximizing the average log probability

for the words (w1,w2...wN ) present in the corpus:

1

N

N∑

i=1

∑

j ∈Sur (i,z )
loд p (w j |wi ) (1)

1https://en.wikivoyage.org/wiki/Main_Page

Here, Sur (i,z) represents a context window for training con-

sisting of z words that surround the word i . Also, p (w j |wi ) is the
hierarchical softmax of the respectiveword vectorsv (w j ) andv (wi ).
One of the key benefits of generating word vectors is that the train-

ing is completely unsupervised. Moreover, the generated vectors

enable the calculation of similarities between words, by simply

calculating the similarity of vectors.

CitySearcher utilizes word2vec on a corpus comprised mainly

of travel destination documents (each document has information

about a particular city), so that vector representations of each word

present in the vocabulary is computed. That is to say, for all the

words present in the corpus:w1,w2...wN , the corresponding vector

representations: v (w1),v (w2)...v (wN ) are generated. The sections
that follow, describe how these vector representations are used to

generate ranking of cities for an interest.

3.1 Basic Algorithm: Using Vector Similarity

The similarity between two wordsw1 andw2 from the corpus can

be calculated on the basis of cosine distance between their vectors:

sim(w1,w2) = 1 − cosineDistance (v (w1),v (w2)) (2)

To rank cities against an interest itr (a word representing an in-

terest, e.g. music, history etc.), we need to find the ranking score for

itr and the cities. This can be done by calculating the average simi-

larity score for itr and the words closest to it in the city document.

If docc is the document representing the city c and contains words

w1,w2...wn , the similarity scores are calculated between itr and the
words of the document: sim(itr ,w1), sim(itr ,w2) ... sim(itr ,wn ).
Let s1,s2...sk be the top k scores from these similarity scores. Then,

the ranking score for the city-interest pair is calculated as the av-

erage of top-k similarities. This ranking score, initialScore (c,itr )
can be formulated as:

initialScore (c,itr ) =
1

k

k∑

i=1

si (3)

The calculation of such scores for an interest corresponding to

different cities, and then sorting the cities in a deacreasing order of

the scores, enable ranking the cities for the interest.

3.2 Improvement using Machine Learning

The algorithm described in the previous section utilizes the seman-

tic relationship between words, captured by their vector represen-

tations. Though this is expected to perform well in most cases,

utilization of vector similarities can lead to fundamental problems

in particular situations. Since the city’s name is semantically inter-

preted and it is usually mentioned several times in the document, it

has a significant influence on the ranking. As a result, a city called

Sale ranks first for the interest Shopping. Similarly, a small village

named Chicken appears in the top documents for the interest Food

and a city called Mobile ranks highly for the interest Technology.

To circumvent these defects and improve the performance, the

city rankings could be generated by training using regression algo-

rithms like Kernel ridge regression [9] and Logistic regression [9],

on the relevant assessments obtained from the users. A relevance

assessment can be represented as a tuple: (c (city), itr (interest), r
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(rating) ) where r ∈ {1,−1}. The user gives a value 1 to r if she

thinks that city c is relevant for the interest itr , and −1 if it is ir-
relevant. However, there is only one feature derived from vector

representations that can be used in training i.e. the city-interest

initial ranking score as calculated in Equation 3. The lack of fea-

tures would limit the effectiveness of the training. Hence, enriching

our training dataset would improve training effectiveness. To this

end, in the next section we describe a novel approach employed by

us, to generate a set of new features per relevance assessment, by

utilizing vector representations of the words in the vocabulary.

3.3 CitySearcher Feature Generation

Our novel technique generates features corresponding to each rele-

vance assessment (c,itr ,r ). We create a set of topics by clustering

all of the vectors of words in the vocabulary. For the interest itr ,
we choose a subset of closest topics and calculate the similarity

from the city c to these topics as new features. The intuition behind

using this technique is that the relevance of a c to itr , should be

related to the similarity of c to the topics closest to itr .
Firstly we use k-means [12] clustering algorithm to divide the

entire vocabulary intoM clusters. The clustering algorithm utilizes

the precomputed vector representations of the words in the corpus

and calculates the similarity between the words using Equation

2. The centroid of word vectors in each cluster is considered as

a topic (also a vector), resulting in creating M topics. Also, each

topic is representative of the words in its cluster. Thereafter, for

the relevance assessment (c,itr ,r ) we find titr , the topic to whose

cluster the interest word itr belongs. Then, we find the p topics

closest to titr : t1,t2...tp , which are arranged in increasing order of

their cosine-distance from titr . It should be noted that the p closest

topics to titr also includes titr itself, making t1 = titr .
Since in our case, each city c is represented by only one document

docc and also docc is representative only for c , the calculation of

city to topic similarity becomes quite straightforward. It can be

calculated as topicSimilarity (c,t ), which is the ratio of the number

of words in docc that belong to the cluster for topic t :

topicSimilarity (c,t ) =
|(words in docc ) ∩ (words in cluster o f t ) |

|words in docc |
(4)

For the relevance assessment (c,itr ,r ), the similarities of c to the
p closest topics to titr (t1,t2...tp ) can be considered as the p newly

generated features (f1, f2... fp ):

fi = topicSimilarity (c,ti ),i = 1,2, . . .p (5)

It should be noted that other features can also be included for

training along with the generated features. In our method we in-

clude two more features: (a) initial ranking score for city document

pair, initialScore (c,itr ), using the basic approach (Section 3.1) (b)

document length, as it is a strong indicator of importance for travel

destination documents. This makes a total of p + 2 features. These
features are used to form the training data, that in turn is used by

regression algorithms, that generates improved ranking models.

3.4 Remarks

We have used a rather sophisticated method to construct the train-

ing set. The method was dictated by the relatively small number

of ratings available. Potentially better results can be constructed

if we build a dataset for each interest. In such setting, the ratios

for each topic would have the same order throughout the dataset,

which makes learning a model out of them more straightforward.

4 EXPERIMENTAL SETUP

4.1 Dataset

We have used the English version of Wikivoyage dataset for our

experiments, which contains 6691 documents that predominantly

represent different travel destinations (cities). It has a corpus size of

1832499 words and a vocabulary of 106634 words. Also, we created

a list of 50 common travel interests, by taking inspiration from sev-

eral famous travel webpages. Moreover, for relevance assessment,

we collected 800 ratings for randomly selected city-interest pairs.

These ratings were received from 40 people (Europeans, both gen-

ders, age 18-60) using the crowdsourcing platform clickworker 2.

Furthermore to enable training and testing, the ratings were divided

into a training set (80%) and a test set (20%).

4.2 Evaluation Metric

We use the standard ranking accuracy metric: normalized dis-

counted cumulative gain (NDCG@1-5) [6], to evaluate the rankings

generated by our algorithms and the baselines.

4.3 CitySearcher Setup

Vector representations for the words in WikiVoyage dataset are

created using word2vec, for a window size of 10. Firstly, the rank-

ings of cities are generated for the interests by using the basic

CitySearcher algorithm described in Section 3.1. For calculating

the ranking scores, we used top 10 similarity scores between the

interest and the words in the document, i.e. k = 10.

Then, to implement the feature generation technique described in

Section 3.3 to enrich the training set, we clustered the word vectors

and created 100 topics for the Wikivoyage dataset (i.e. M = 100).

Thereafter, for each relevant assessment (c,itr ,r ), we generated

features corresponding to all the 100 closest topics to the interest

itr , i.e. value of p is also 100. It means that the similarities of c
are calculated to all the topics (ordered from closest to farthest

to the topic of interest itr ), and considered as features. Two more

features were included: the document length fordocc (the document

representing c) and the initial ranking score for city-interest pair

using Equation 3. Thus, for each relevance assessment we have a

total of 102 features. Admittedly, these values of k ,M and p have

been chosen intuitively.

The following two regression algorithms were applied on the

training set with generated features to create the ranking models:

• Kernel Ridge Regression: Kernel ridge regression (KRR)

[9] combines Ridge Regression (linear least squares with

l2-norm regularization) with the kernel trick. It thus learns a

linear function in the space induced by the respective kernel

and the data. We used RBF kernels. The optimal parameters

were found using 3-fold cross validation.

2https://clickworker.com
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Table 1: Performance comparison for NDCG@1-5

NDCG @1 @2 @3 @4 @5

TF-IDF 0.8000 0.7500 0.8055 0.8017 0.8234

Okapi-BM25 0.8000 0.8500 0.8380 0.8479 0.8542

LSI 0.8000 0.7500 0.8055 0.8017 0.8234

LDA 0.8000 0.7500 0.7620 0.7521 0.7821

LGD 0.9000 0.8000 0.8480 0.8403 0.8475

CS-Basic 0.8000 0.7500 0.7740 0.7861 0.8154

CS-KRR 0.9000 0.9000 0.8161 0.8465 0.8620

CS-LR 0.8000 0.8500 0.8576 0.8614 0.8638

• Logistic Regression: Logistic regression [5] is a classifica-

tion algorithm, that nevertheless computes estimates of the

class probabilities, that can be used for ranking.

For these regression algorithms, we have used the implemen-

tation provided by the Python package scikit-learn 3. The models

generated by these models are evaluated on the test set.

4.4 Baselines

To compare the rankings produced by our algorithms, we use the

five widely used retrieval techniques as baselines:

• TF-IDF: Term frequency- Inverse Document Frequency [10]

is a very famous ranking model and employs bag-of-words

representation. Theweight of a term increases proportionally

to the number of its occurrences in the document, but also

decreases in proportion to its frequency in the corpus.

• Okapi-BM25: Okapi BM25 [11], a well known ranking scheme,

is based on probabilistic retrieval framework.

• LSI: Latent Semantic Indexing [4] uses singular value decom-

position to identify patterns in the relationships between the

terms to generate a semantic feature space.

• LDA: Latent Dirichlet Allocation [1] models each document

using the underlying set of word topics.

• LGD: LGD [2, 3] weighting model is a high performing ver-

sion of the log-logistic model.

5 RESULTS

The results are shown in Table 1 for the metric NDCG@1-5. The re-

sults are presented for the baselines: TF-IDF, Okapi BM25, LSI, LDA

and LGD. Also, the basic CitySearcher algorithm from Section 3.1

is denoted as CS-Basic. Moreover, the evaluations for the learning-

to-rank models trained on generated features (Section 3.3) using

Kernel Ridge Regression and Logistic Regression are presented as

CS-KRR and CS-LR respectively.

We can see that the results for CS-Basic are better than the

baseline LDA for all metrics, however they are worse than TF-IDF,

Okapi-BM25, LSA and LGD in most cases. Also, LGD is the best

performing method among the baselines. We observe the benefits of

using machine learning on generated features, as the performances

of both such methods, CS-KRR and CS-LR, are better than that

of CS-Basic. CS-LR gives the best results for NDCG@3-5, while

CS-KRR gives the best performance for NDCG@1-2. However, LGD

ties with CS-KRR on NDCG@1. Overall, we can conclude that CS-

LR is the best performing method because apart from giving best

3http://scikit-learn.org/

performances for NDCG@3-5, its performance is better than most

baselines even for NDCG@1-2. CS-KRR on the other hand hand

falls behind LGD as well as Okapi-BM25 for NDCG@3-5.

6 CONCLUSION

We introduced CitySearcher, a search engine that ranks cities for

interests. It uses vector representations of words to estimate their

semantics. The basic algorithm computes ranking scores for each

city-interest pair using similarities between the vectors, but suffers

because of mismatched semantic similarities. To solve this issue,

we propose a set of new features to rerank cities for the interest. A

set of topics is created by clustering all vectors of words in the vo-

cabulary. Then, we choose a subset of closest topics to the interest

and calculate the similarity from the city to the topics as new fea-

tures. Even for a small training set, the results show the benefits of

reranking using regression algorithms on generated features over

the basic algorithm as well as the standard retrieval techniques.

In future work, we want to create an algorithm that can incorpo-

rate more than one interest in the query. Additionally, we would like

to return a ranking of tours (group of cities), in response to multiple

interests. Since we have a small training set in our experiments, we

would like to experiment with larger training data. Moreover, the

parameters in our experiments can be further explored and tuned

to achieve further improvements.
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ABSTRACT

This paper addresses a novel tour discovery problem in the domain

of travel search. We create a ranking of tours for a set of travel

interests, where a tour is a group of city documents and a travel

interest is a query. While generating and ranking tours, it is aimed

that each interest (from the interest set) is satisfied by at least one

city in a tour and the distance traveled to cover the tour is not too

large. Firstly, we generate tours for the interest set, by utilizing

the available ranking of cities for the individual interests and the

distances between the cities. Then, in absence of existing methods

directly related to our problem, we devise our novel techniques to

calculate ranking scores for the tours and present a comparison of

these techniques in our results.We demonstrate our web application

Travición, that utilizes the best tour scoring technique.
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1 INTRODUCTION

In this paper, we present our novel method to address the problem

of finding tours (or groups of cities) in response to a set of travel

interests. When planning a trip, it is likely that a user desires her

multiple travel interests to be catered. While it can be difficult

to find many individual cities that satisfy a set of interests, the

creation of relevant and practical tours is expected to enrich the

offering to the user. We create ranking of tours in response to a set

of interests, where each tour is a set of city documents and the set

of interests is a combination of travel related queries (interests). To

elaborate, for a set of interests {itr1 . . . itrn } we create a ranking
of tours 〈t1, . . . tm〉, where each ti contains one or more cities. For

this, we utilize the already available rankings of city documents for
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individual interests to form tours, while aiming that each interest

in the interest set is satisfied by at least one city in the tour.

We see that extensive research has been carried out to cluster

searched documents, in order to increase the coverage of results

presented to the user [3, 4]. Also, there are many efforts for geo-

spatial routing between locations [9, 14], rank aggregation [5] and

group recommendation [12]. Moreover, there are recent efforts

aimed to provide tours to users [2, 6, 7, 10]. To the best of our

knowledge, there are no existing methods that address the tour

creation problem in our way: i.e. a) by utilizing document rankings

for individual queries, to generate document groups and rank them

in response to a particular set of queries, b) while aiming that a top

ranked document group satisfies all the queries in the set.

Our method initially generates the candidate tours and then uses

novel scoring techniques to rank them. We utilize city rankings

using our CitySearcher algorithm [1], that ranks cities (i.e. docu-

ments with information about one city each), in response to a travel

interest (query). In response to a set of interests, we prune the city

rankings for individual interests, to keep only the highly relevant

cities. Then, we form the collection of candidate tours, so that each

tour includes 0 or 1 city from each pruned city ranking for interests.

Hence, for n interests, the candidate tours would be sets of cities

of size 1 to n. We further filter out the candidate tours in which

the cities are too far apart, since such tours are not practical. Since

our method is unique and does not have related existing baselines,

we rank the candidate tours using our novel and relatively simple

scoring techniques, that use different combinations of a) available

city-interest relevance scores and b) distance required to cover cities

in a tour. On experimentation, the best scoring technique is identi-

fied and used in the Travición web-application: www.travicion.com,

that we demonstrate.

Our presented web-application is intuitive and has an easy-to-

use interface, that enables the user to select her set of travel interests

and finds relevant tours for her.

2 METHOD

Here we describe objectives of Travición web-application, followed

by tour generation, tour scoring techniques and implementation.

2.1 Objectives

Given: We have the following information available:

• A set ofm documents representing different cities {c1 . . . cm },
having one to one mapping between cities and documents.

• A set of n travel interests {itr1 . . . itrn } (provided by user),

where each itri acts as query on city documents.

• A scoring function score (c,itr ) that gives a relevance score
to a city c for an interest itr . This allows us to rank them
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Figure 1: Architecture of Travición
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cities for each interest, i.e. for the interests {itr1 . . . itrn } we
have the corresponding city rankings: {cr1 . . . crn }.
• A function dist (C ) that calculates the shortest geographical
distance to travel cities C ⊂ {c1 . . . cm }, while starting and

ending at any city in C .
Aim: For the set of interests {itr1 . . . itrn }, generate a single ranked
list of tours i.e. 〈t1, . . . tm〉, where each tour tj is a set of cities and
1 ≤ |tj | ≤ n.
Requirements: The ranking of tours should satisfy the following:

• Higher rankings should be assigned to those tours which

address each interest, i.e. the tour contains cities, such that

each interest is addressed by at least one city.

• Higher rankings should be assigned to those tours which

contain cities that are not too distant from each other.

Remarks: It should be noted that we limit our scope and do not

let the number of cities in a tour to be more than the number of

interests, since one city is sufficient to address an interest. We admit

that this would exclude some desirable tours containing two ormore

cities in close proximity and relevant to a particular interest.

2.2 Tour Generation

Givenm cities and an an interest set with n interests, in order to

create tours with 1 to n cities, there would be
(
m
n

)
+
(
m
n−1
)
. . .
(
m
1

)

candidates, which could be a very large number. Therefore, for the

n interests we generate the city rankings i.e. {cr1 . . . crn } (m cities

each) [1], and prune them to keep only top k cities (k << m), as the

cities occurring low in the city rankings of all the interests are quite

unlikely to make good tours. Therefore, forming tours of size 1 to n,
by taking 0 or 1 city from each of the n pruned city rankings with k
cities each, there would be maximum (k + 1)n − 1 candidates. The
set of candidate tours to be ranked can be denoted asT = {t1 . . . tp },
where p ≤ (k + 1)n − 1 is the number of tours and each tour ti is
also a set of cities such that 0 < |ti | ≤ n.

Moreover, as it can be expected that many of such tours would

contain cities that are too far apart, we also put a threshold of D km

on the pair-wise distance between cities in the same tour. Therefore,

we filter out all such tours ti from T where the distance between

any pair of cities is greater than D. Note that we use pair-wise

distance rather than the whole distance covered by the tour for

performance reasons: organizing cities in a k-d tree [11] allows for

efficient proximity search given a certain radius. This geospatial

filtering further reduces the number of tours in T considerably.

2.3 Tour Scoring Techniques

We propose the following techniques to score a candidate tour t
(t ∈ T ) for the combined set of interests I = {itr1 . . . itrn }:

2.3.1 Distance-wise Scoring. A naïve approach could be to score

a tour t as inverse of the distance covered in it i.e. dist (t ):

distScore (t , I ) =
1

dist (t )
(1)

The above scoring function would completely favor tours contain-

ing less cities, and is expected to rank single city tours at the top.

Although the candidate tours consist of cities ranking high for

interests, the function itself is independent of any relevance for

interests.

2.3.2 Average Relevance Scoring. Since an interest is satisfied by

even one city in a tour, we define the tour-interest relevance as the

maximum of city-interest relevances for the cities in the tour, i.e.:

rel (t ,itr ) =max (score (ct1,itr ), . . . score (ctx ,itr )), (2)

where ct1, . . . ctx are the x cities contained in tour t . Using this, we
calculate the score of a tour for an interest set I = {itr1 . . . itrn }, by
calculating the average of relevances for individual interests as:

relScoreavд (t , I ) =

∑n
i=1 rel (t ,itri )

n
(3)

2.3.3 MaxMin Relevance Scoring. This technique is based on

our intuition that it is important for a tour to have high relevance

for each interest in the interest set I . If a tour is highly relevant for

all interests in I except one, it would not satisfy the set I in entirety.

To emphasize the impact of the interest to which the relevance of

tour is the least, we define the following score:

relScoremm (t , I ) =max (rel (t ,itr1), . . . rel (t ,itrn ))

×min(rel (t ,itr1), . . . rel (t ,itrn ))
(4)
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2.3.4 Hybrid Scoring. We see that Distance-wise scoring con-

siders only the tour distance and ignores the relevance. On the

other hand, Average Relevance and MaxMin Relevance scoring

techniques, do not take into account the tour distances. Therefore,

we combine them to derive two hybrid techniques, expecting that

a combination would lead to improvement in tour ranking.

The first hybrid scoring combines Distance-wise Scoring and

Average Relevance Scoring by combining the scores calculated in

Equations 1 and 3:

hybScore1 (t , I ) = λ1 distScore (t , I )+ (1−λ1) relScoreavд (t , I ) (5)

Similarly, second hybrid scoring combines Distance-wise Scoring

and MaxMin Relevance Scoring by combining the scores calculated

in Equations 1 and 4:

hybScore2 (t , I ) = λ2 distScore (t , I )+ (1−λ2) relScoremm (t , I ), (6)

where λ1 and λ2 are the weighting parameters used in combining

the scores.

2.4 Implementation

Travición is implemented as a web-application and takes a set of

interests as input from the user. It utilizes the English version of

Wikivoyage1 dataset containing 6691 documents, where predom-

inantly each document is representative of a particular city. For

deriving ranking of cities for individual interests along with the

ranking scores, it uses CitySearcher approach [1].

In the pruning step as described in Section 2.2, we limit the

city ranking lists to their top 1000 results (i.e k = 1000). Distance

between two cities is calculated by determining their respective

latitude and longitude using the GeoLite dataset2 and then using

the Haversine formula [13]. Moreover, the threshold of pair-wise

distances in one tour is set to 200 km (i.e. D = 200 in Section 2.2),

so that the tours with one or more pair-wise distances more than D
are not considered as candidates. Moreover, since in our evaluation

(Section 4) relScoremm is the best performing technique, Travición

employs it to score the tours. Additionally, the implementation

also includes the functionality to exclude tours that are outside a

specific region, i.e. the tours that lie outside a particular radius from

a central location (this location and radius are optional inputs from

the user). Figure 1 shows the architecture of Travición with the help

of an example.

3 DEMONSTRATION SCENARIO

We plan to demonstrate our web application to the attendees, in

which they can enter their travel interests to find a ranking of tours.

Figure 2 shows the user interface of the Travición web application,

which is quite intuitive. The user can choose up to 5 travel inter-

ests and press the ‘Go’ button. Thereafter, a ranked list of tours is

presented to the user.

The search interface also allows the user to specify a specific

region where they seek to do the tour. This region is specified

by a center point (labeled ‘around’) and a radius in kilometers

(labeled ‘within’). Specifying a region effectively restricts the cities

examined to those which are located in that region. A typical use

1https://en.wikivoyage.org/wiki/Main_Page
2https://dev.maxmind.com/geoip/geoip2/geolite2/

Figure 2: Travición User Interface

Tour Search

Search Results

case is when a user has a general idea where they want to travel (e.g.

West Europe, East Asia), but they don’t have specific destinations in

mind. Therefore, she could choose a city in the mid of that region

and specify the radius. Alternatively, if she wants to find tours

around her current location, she shall choose it as the center point.

Choosing ‘everywhere’ as radius would effectively consider all

the world cities for tour formation. Hence, we demonstrate the

scenario where a user specifies travel interests (and optionally a

specific region) to discover a ranking of tours. The user shall expect

that a high ranked tour would satisfy all her expressed interests

(i.e. each interest should be addressed by at least one city in tour).

The ranking of tours contains single-city as well as multi-city

tours as results. It should be noted that if the user selects only one

interest, she would be presented with only single city tours. More-

over, if the user uses the ‘everywhere!’ option for the maximum

distance from initial location, there are typically less multi-city

tours in the top positions. This is because, with no restriction on

Track: Demonstration  WWW 2018, April 23-27, 2018, Lyon, France

217



WWW ’18 Companion, April 23–27, 2018, Lyon, France Mohamed Abdel Maksoud, Gaurav Pandey, and Shuaiqiang Wang

distance from initial location, many big cities around the world that

can cater to multiple interests would rank high as tours.

On clicking a particular tour, the user is shown the tour on a map

and then is also enabled to search for flights from an airport she

specifies to one of the cities in the tour (not shown in the image).

Flight and accommodation planning is not closely related to our

demonstration or the problem we are presenting in this paper.

The web-application can be used on the web-page:

www.travicion.com

Also, an explanatory video / advertisement is available on:

www.youtube.com/watch?v=HlzmxSA2bjw

The hardware requirements for our demonstration are minimal,

as the web-application only needs internet connection, and can be

used on any modern web browser (on a computer or mobile device).

4 EXPERIMENTAL EVALUATION

For evaluation, we created a list of 50 travel interest sets, by choos-

ing the most frequent travel interest sets requested on Travición

website. Each interest set contains 3 or more interests and the aver-

age number of interests per interest set is 3.62. The experimental

setup is same as in Section 2.4, except that we evaluate all the 5 scor-

ing techniques (distScore , relScoreavд , relScoremm ,hybScore1 and
hybScore2) described in Section 2.3. For this, we collect relevance

assessments for top tours for these methods. We collected around

2500 ratings from 20 people using the crowdsourcing platform

clickworker3. The ratings are taken on a scale of 1 to 20.

The standard ranking accuracy metric: normalized discounted

cumulative gain (NDCG@1-5) [8] is used to compare our scor-

ing techniques. Table 1 presents the experimental results for the

scoring techniques: distScore , relScoreavд , relScoremm , hybScore1
and hybScore2, formulated in Equations 1, 3, 4, 5 and 6 respectively.

Weighting parameters λ1 and λ2 used in the scoring techniques

hybScore1 and hybScore2 respectively, are assigned the value 0.5.

As expected,distScore shows theworst results across themetrics,

since it ranks the tours only on the basis of distance traveled within

a tour.We see that relScoremm is the best performing technique and

is significantly better than relScoreavд , confirming our intuition

that the relevance of a tour to each interest in the interest set is

more important than the average relevance for the interests.

Moreover, we see that the hybScore1 (hybrid of distScore and

relScoreavд ) shows slight improvement over relScoreavд . Also,
hybScore2 (hybrid of distScore and relScoremm ) does not show any

improvement over relScoremm . Overall, the results of relScoreavд
and relScoremm do not differ a lot from their respective hybrids.

Probably, this happens because the distances between the cities are

already considered while filtering the candidate tours, the inclusion

of tour distances in scoring is not very effective.

5 CONCLUSION AND FUTUREWORK

This paper demonstrates the Traviciónweb-application that displays

a ranking of tours in response to a set of travel interests. For this, we

addressed the unique problem of creating and ranking document

groups for a set of queries, so that each query is satisfied by at least

one document in each group. We presented our novel techniques

for ranking tours (groups of cities) for a set of travel interests, so

3https://clickworker.com

Table 1: Comparison of Ranking Methods

NDCG @1 @2 @3 @4 @5

distScore 0.6862 0.7012 0.6901 0.6964 0.6911

relScoreavд 0.7994 0.7958 0.7939 0.7951 0.7980

relScoremm 0.8662 0.8562 0.8526 0.8507 0.8472

hybScore1 0.7994 0.7958 0.7942 0.7954 0.7996

hybScore2 0.8632 0.8532 0.8507 0.8494 0.8446

that a tour satisfies all interests as well as cities in the tour are in

geographical proximity. On comparison, we observe that the best

results are achieved when a tour is scored using the product of its

best and worst relevances for interests in the interest set.

In future, we plan to consider practical distances between cities

within a tour, as we have used a rather naïve approach to calculate

distances using Haversine formula. This is important especially

when there are no direct roads between the cities, or there is a lake

or mountain between them. Also, we aim to explore consideration

of multiple cities per interest for tour formation.
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