
Aleksi Pekkala

Migrating a web application to serverless architecture

Master’s Thesis in Information Technology

June 20, 2019

University of Jyväskylä

Faculty of Information Technology

Author: Aleksi Pekkala

Contact information: alvianpe@student.jyu.fi

Supervisor: Oleksiy Khriyenko

Title: Migrating a web application to serverless architecture

Työn nimi: Web-sovelluksen siirtäminen serverless-arkkitehtuuriin

Project: Master’s Thesis

Study line: Master’s Thesis in Information Technology

Page count: 112+0

Abstract: Serverless computing is a novel cloud computing model based on auto-scaling,

ephemeral resources billed at a millisecond granularity. Serverless has gained interest in

the industry but literature on how the model’s characteristics drive application design is still

scarce. This thesis aims to fill the gap by first defining the paradigm along with its origins

and surveying for applicable design patterns. The patterns are then applied in an experimen-

tal migration process through which 5 new patterns are introduced. Finally the migration

outcome is evaluated in terms of development ease, performance and costs. The serverless

model is found to deliver on its promises of elasticity and reduced operational overhead; cost

benefit however depends largely on expected traffic shape.

Keywords: serverless, FaaS, design patterns, cloud computing, web applications

Suomenkielinen tiivistelmä: Serverless on uudenlainen pilvilaskentamalli joka perustuu

automaattisesti skaalautuviin ja millisekuntien tarkkuudella laskutettaviin laskentaresurssei-

hin. Serverless on herättänyt kiinnostusta ammattipiireissä mutta tieteellinen kirjallisuus siitä

miten mallin erityispiirteet vaikuttavat ohjelmistosuunnitteluun on vielä vajavaista. Tämä

tutkielma pyrkii ensin määrittelemään mallin alkuperineen ja kartoittamaan sovellettavia

suunnittelumalleja. Suunnittelumalleja sovelletaan kokeellisessa migraatioprosessissa minkä

kautta johdetaan 5 uutta suunnittelumallia. Lopuksi migraation lopputulosta arvioidaan ke-

hityksen helppouden, suorituskyvyn sekä kustannusten näkökulmasta. Serverless-mallin

i

todetaan täyttävän lupauksensa joustavuudesta sekä matalammasta operationaalisen työn

tarpeesta; kustannusetu kuitenkin riippuu laajalti käyttöliikenteen muodosta.

Avainsanat: serverless, FaaS, suunittelumallit, pilvilaskenta, web-sovellukset

ii

Glossary

AWS Amazon Web Services

BaaS Backend-as-a-Service

CaaS Containers-as-a-Service

CAPTCHA Completely Automated Public Turing test to tell Computers

and Humans Apart

CSRF Cross-site Request Forgery

DoS Denial-of-Service

EIP Enterprise Integration Patterns

FaaS Function-as-a-Service

GCP Google Cloud Platform

IaaS Infrastructure-as-a-Service

JSON JavaScript Object Notation

LQIP Low Quality Image Placeholder

MBaaS Mobile Backend-as-a-Service

OOP Object-Oriented Programming

OS Operating System

PaaS Platform-as-a-Service

QoS Quality of Service

REST Representational State Transfer

SLA Service Level Agreement

SOA Service-Oriented Architecture

VM Virtual Machine

XSS Cross-Site Scripting

iii

List of Figures
Figure 1. Comparison of a) virtual machine- and b) container-based deployments

(Bernstein 2014) . 7
Figure 2. A history of computer science concepts leading to serverless computing

(Eyk, Toader, et al. 2018) . 12
Figure 3. Serverless and FaaS vs. PaaS and SaaS (Eyk et al. 2017) . 16
Figure 4. Degree of automation when using serverless (Wolf 2016). 17
Figure 5. Serverless processing model (CNCF 2018) . 18
Figure 6. Evolution of sharing – gray layers are shared (Hendrickson et al. 2016) 19
Figure 7. IBM OpenWhisk architecture (Baldini, Castro, et al. 2017). 24
Figure 8. Pattern language . 37
Figure 9. Routing Function . 38
Figure 10. Function Chain . 39
Figure 11. Fan-out/Fan-in . 41
Figure 12. Externalized State . 42
Figure 13. State Machine. 43
Figure 14. Thick Client . 44
Figure 15. Event Processor. 46
Figure 16. Periodic Invoker . 48
Figure 17. Polling Event Processor . 49
Figure 18. Event Broadcast . 50
Figure 19. Aggregator . 52
Figure 20. Proxy . 53
Figure 21. Strangler . 54
Figure 22. Valet Key. 55
Figure 23. Function Warmer . 57
Figure 24. Singleton . 59
Figure 25. Bulkhead . 60
Figure 26. Throttler. 62
Figure 27. Circuit Breaker . 64
Figure 28. Image Manager components . 68
Figure 29. Image Manager upload sequence . 69
Figure 30. Serverless Image Manager components . 73
Figure 31. Serverless Image Manager upload sequence (steps 2.1–2.3 run in parallel). 74
Figure 32. Async Response . 75
Figure 33. Task Controller . 77
Figure 34. Local Threader . 77
Figure 35. Prefetcher . 79
Figure 36. Throttled Recursion . 80
Figure 37. Serverful Image Manager stress test results . 86
Figure 38. Serverless Image Manager stress test results . 88

iv

List of Tables
Table 1. Eight issues to be addressed in setting up an environment for cloud users.

(Jonas et al. 2019) . 9

List of Listings
Listing 2.1. Example FaaS handler in Python. 20
Listing 5.1. Image labeler function handler . 83

v

Contents
1 INTRODUCTION . 1

1.1 Research problem . 2
1.2 Outline . 3

2 SERVERLESS COMPUTING . 4
2.1 Background . 5
2.2 Defining serverless . 10
2.3 Backend-as-a-Service and Function-as-a-Service . 13
2.4 Comparison to other cloud computing models. 15
2.5 FaaS processing model . 18
2.6 Use cases. 21
2.7 Service providers . 23
2.8 Security . 25
2.9 Economics of serverless . 27
2.10 Drawbacks and limitations . 30

3 SERVERLESS DESIGN PATTERNS . 37
3.1 Composition patterns. 38

3.1.1 Routing Function . 38
3.1.2 Function Chain . 39
3.1.3 Fan-out/Fan-in . 40
3.1.4 Externalized State. 42
3.1.5 State Machine . 43
3.1.6 Thick Client . 44

3.2 Event patterns . 46
3.2.1 Event Processor . 46
3.2.2 Periodic Invoker . 48
3.2.3 Polling Event Processor . 48
3.2.4 Event Broadcast . 50

3.3 Integration patterns . 51
3.3.1 Aggregator . 51
3.3.2 Proxy . 53
3.3.3 Strangler . 54
3.3.4 Valet Key . 55

3.4 Availability patterns . 57
3.4.1 Function Warmer . 57
3.4.2 Singleton . 59
3.4.3 Bulkhead . 60
3.4.4 Throttler . 62
3.4.5 Circuit Breaker . 64

4 MIGRATION PROCESS . 67
4.1 Image Manager . 67

vi

4.2 Serverless Image Manager . 71
4.2.1 Pattern selection . 72

4.3 New patterns . 74
4.3.1 Async Response . 75
4.3.2 Task Controller. 76
4.3.3 Local Threader . 77
4.3.4 Prefetcher . 78
4.3.5 Throttled Recursion. 80

5 EVALUATION . 82
5.1 Developer perspective . 82
5.2 Performance perspective . 84
5.3 Economic perspective . 89

6 CONCLUSION . 91

BIBLIOGRAPHY . 93

vii

1 Introduction

Cloud computing has in the past decade emerged as a veritable backbone of modern econ-

omy, driving innovation both in industry and academia as well as enabling scalable global

enterprise applications. Just as adoption of cloud computing continues to increase, the tech-

nologies in which the paradigm is based on have continued to progress. Recently the devel-

opment of novel virtualization techniques has lead to the introduction of serverless comput-

ing, a novel form of cloud computing based on ephemeral resources that scale up and down

automatically and are billed for actual usage at a millisecond granularity. The main drivers

behind serverless computing are reduced operational costs through more efficient cloud re-

source utilization as well as improved developer productivity achieved by shifting provi-

sioning, load balancing and other infrastructure concerns to the service provider. (Buyya

et al. 2019)

As an appealing economic proposition, serverless computing has attracted significant inter-

est in the industry. This is illustrated for example by its appearance in the 2017 Gartner Hype

Technologies Report (Walker 2017). By now most of the prominent cloud service providers

have introduced their own serverless platforms, promising capabilities that make writing

scalable web services easier and cheaper (AWS 2018a; Google 2018; IBM 2018; Microsoft

2018b). A number of high-profile use cases have been presented in the literature (CNCF

2018), and some researchers have gone as far as to predict that “serverless computing will

become the default computing paradigm of the Cloud Era, largely replacing serverful com-

puting and thereby bringing closure to the Client-Server Era” (Jonas et al. 2019). Baldini,

Castro, et al. (2017) however note a lack of corresponding degree of interest in academia

despite a wide variety of technologically challenging and intellectually deep problems in the

space.

One of the open problems identified in literature concerns the discovery of serverless design

patterns: how do we compose the granular building blocks of serverless into larger sys-

tems? (Baldini, Castro, et al. 2017) Varghese and Buyya (2018) contend that one challenge

hindering the widespread adoption of serverless will be the radical shift in the properties

that a programmer will need to focus on, from latency, scalability and elasticity to those

1

relating to the modularity of an application. Considering this it is unclear to what extent

our current patterns apply and what kind of new patterns are best suited to optimize for the

paradigm’s unique characteristics and limitations. The object of this thesis is to fill the gap

by re-evaluating existing design patterns in the serverless context and proposing new ones

through an exploratory migration process.

1.1 Research problem

The research problem addressed by this thesis distills down to the following four questions:

1. Why should a web application be migrated to serverless?

2. What kind of patterns are there for building serverless web applications?

3. Do the existing patterns have gaps or missing parts, and if so, can we come up with

improvements or alternative solutions?

4. How does migrating a web application to serverless affect its quality?

The first two questions are addressed in the theoretical part of the thesis. Question 1 con-

cerns the motivation behind the thesis and introduces serverless migration as an important

and relevant business problem. Question 2 is answered by surveying existing literature for

serverless patterns as well as other, more general patterns thought suitable for the target class

of applications.

The latter questions form the constructive part of the thesis. Question 3 concerns the ap-

plication and evaluation of surveyed patterns. The surveyed design patterns are used to im-

plement a subset of an existing conventional web application in a serverless architecture. In

case the patterns prove unsuitable for any given problem, alternative solutions or extensions

are proposed. The last question consists of comparing the migrated portions of the app to the

original version and evaluating whether the posited benefits of serverless architecture are in

fact realized.

2

1.2 Outline

The thesis is structured as follows: the second chapter serves as an introduction to the concept

of serverless computing. The chapter describes the main benefits and drawbacks of the

platform, as well as touching upon its internal mechanisms and briefly comparing the main

service providers. Extra emphasis is placed on how the platform’s limitations should be

taken into account when designing web applications.

The third chapter consists of a survey into existing serverless design patterns and recom-

mendations. Applicability of other cloud computing, distributed computing and enterprise

integration patterns is also evaluated.

The fourth chapter describes the process of migrating an existing web application to server-

less architecture. The patterns discovered in the previous chapter are utilized to implement

various typical web application features on a serverless platform. In cases where existing

patterns prove insufficient or unsuitable as per the target application’s characteristics, modi-

fications or new patterns are proposed.

The outcome of the migration process is evaluated in the fifth chapter. The potential bene-

fits and drawbacks of the serverless platform outlined in chapter 2 are used to reflect on the

final artifact. The chapter includes approximations on measurable attributes such as hosting

costs and performance as well as discussion on the more subjective attributes like maintain-

ability and testability. The overall ease of development – or developer experience – is also

assessed since it is one of the commonly reported pain points of serverless computing (Eyk

et al. 2017).

The final chapter of the thesis aims to draw conclusions on the migration process and the

resulting artifacts. The chapter contains a summary of the research outcomes and ends with

recommendations for further research topics.

3

2 Serverless computing

This chapter serves as an introduction to serverless computing. Defining serverless comput-

ing succinctly can be difficult because of its relative immaturity. For example, the industry-

standard NIST definitions of cloud computing (Mell and Grance 2011) have yet to catch up

with the technology. Likewise the most recent ISO cloud computing vocabulary (ISO 2014)

bears no mention of serverless computing. As a result boundaries between serverless and

other cloud computing areas are still somewhat blurred, and the terms seem to carry differ-

ent meanings depending on the author and context. To complicate matters further, serverless

computing has come to appear in two different but overlapping forms. A multilayered ap-

proach is therefore in order.

We approach the formidable task of defining serverless by first taking a brief look at the his-

tory and motivations behind utility computing. After that we’ll introduce the basic tenets of

serverless computing, distinguish between its two main approaches and see how it positions

itself relative to other cloud service models. This is followed by a more technical look at the

most recent serverless model, as well as its major providers, use cases, security issues and

economic implications. The chapter closes with notes on the drawbacks and limitations of

serverless, particularly from the point of view of web application backends.

This thesis’ definition leans heavily on the industry-headed CNCF Serverless Working Group’s

effort to formalize and standardize serverless computing (CNCF 2018), as well as Roberts’s

(2016) seminal introduction to the topic and a number of recent survey articles (Baldini,

Castro, et al. 2017; Eyk et al. 2017; Fox et al. 2017). As a sidenote, although earliest uses

of the term ’serverless’ can be traced back to peer-to-peer and client-only solutions (Fox et

al. 2017), we’re dismissing these references since the name has evolved into a completely

different meaning in the current cloud computing context. As per Roberts (2016), first usages

of the term referring to elastic cloud computing seem to have appeared at around 2012.

4

2.1 Background

Utility computing refers to a business model where computing resources, such as computa-

tion and storage, are commoditized and delivered as metered services similarly to physical

public utilities such as water, electricity and telephony. Utilities are readily available to con-

sumers at any time whenever required and billed per actual usage. In computing, this has

come to mean on-demand access to highly scalable subscription-based IT resources. The

availability of computing as a utility enables organizations to avoid investing heavily on

building and maintaining complex IT infrastructure. (Buyya et al. 2009)

The original vision of utility computing can be traced back to 1961 when the computing

pioneer John McCarthy predicted that “computation may someday be organized as a public

utility” (Foster et al. 2009). Likewise in 1969 Leonard Kleinrock, one of the ARPANET

chief scientists, is quoted as saying, “as of now, computer networks are still in their infancy,

but as they grow up and become sophisticated, we will probably see the spread of ‘computer

utilities’ which, like present electric and telephone utilities, will service individual homes

and offices across the country” (Kleinrock 2003). Creation of the Internet first facilitated

weaving computer resources together into large-scale distributed systems. Onset by this

discovery, multiple computing paradigms have been proposed and adopted over the years to

take on the role of a ubiquitous computing utility, including cluster, grid, peer-to-peer and

services computing (Buyya et al. 2009). The latest paradigm, cloud computing, has in the

past decade revolutionized the computer science horizon and got us closer to computing as a

utility than ever (Buyya et al. 2019).

Cloud computing refers to “forms of information system usage in which data and software

are placed on servers on a network and are accessed through the network from clients” (Tsu-

ruoka 2016). Foster et al. (2009) present a more thorough definition of cloud computing as

“a large-scale distributed computing paradigm that is driven by economies of scale, in which

a pool of abstracted, virtualized, dynamically-scalable, managed computing power, storage,

platforms, and services are delivered on demand to external customers over the Internet”.

Cloud computing builds on the earlier paradigm of grid computing, and relies on grid com-

puting as its backbone and infrastructure. Compared to infrastructure-based grid computing,

cloud computing focuses on more abstract resources and services. Buyya et al. (2019) also

5

note that cloud computing differs from grid computing in that it promises virtually unlimited

computational resources on demand.

The first cloud providers were born out of huge corporations offering their surplus computing

resources as a service in order to offset expenses and improve utilization rates. Having set

up global infrastructure to handle peak demand, a large part of the resources were left under-

utilized at times of average demand. The providers are able to offer these surplus resources at

attractive prices due to the large scale of their operations, benefiting from economies of scale.

To address consumers’ concerns about outages and other risks, cloud providers guarantee a

certain level of service delivery through Service Level Agreements (SLA) that are negotiated

between providers and consumers. (Youseff, Butrico, and Silva 2008)

The key technology that enables cloud providers to transparently handle consumers’ requests

without impairing their own processing needs is virtualization. Virtualization is one of the

main components behind cloud computing and one of the factors setting it apart from grid

computing. Tsuruoka (2016) defines virtualization as “realization of virtual machines (VM)

on top of a bare-metal (physical) machine”. This enables the abstraction of the underlying

physical resources as a set of multiple logical VMs. Virtualization has three characteristics

that make it ideal for cloud computing: 1) partitioning supports running many applications

and operating systems in a single physical system; 2) isolation ensures boundaries between

the host physical system and virtual containers; 3) encapsulation enables packaging virtual

machines as complete entities to prevent applications from interfering with each other.

Virtual machines manage to provide strong security guarantees by isolation, i.e., by allo-

cating each VM its own set of resources with minimal sharing between the host system.

Minimal sharing however translates into high memory and storage requirements as each

virtual machine requires a full OS image in addition to the actual application files. A vir-

tual machine also has to go through the standard OS boot process on startup, resulting in

launch times measured in minutes. Rapid innovation in the cloud market and virtualization

technologies has recently led to an alternative, more lightweight container-based solution.

Container applications share a kernel with the host, resulting in significantly smaller de-

ployments and fast launch times ranging from less than a second to a few seconds. Due to

resource sharing a single host is capable of hosting hundreds of containers simultaneously.

6

Differences in resource sharing between VM- and container-based deployment is illustrated

in Figure 1. As a downside containers lack VM’s strong isolation guarantee and the ability

to run a different OS per deployment. On the other hand, containers provide isolation via

namespaces, so processes inside containers are still isolated from each other as well as the

host. Containerization has emerged as a common practice of packaging applications and

related dependencies into standardized container images to ease development efficiency and

interoperability. (Pahl 2015)

Figure 1: Comparison of a) virtual machine- and b) container-based deployments (Bernstein

2014)

Cloud computing is by now a well-established paradigm that enables organizations to flexi-

bly deploy a wide variety of software systems over a pool of externally managed computing

resources. Both major IT companies and startups see migrating on-premise legacy systems

to the cloud as an opportunistic business strategy for gaining competitive advantage. Cost

savings, scalability, reliability and efficient utilization of resources as well as flexibility are

identified as key drivers for migrating applications to the cloud (Jamshidi, Ahmad, and Pahl

2013). However, although the state-of-the-art in cloud computing has advanced significantly

7

over the past decade, several challenges remain.

One of the open issues in cloud computing concerns pricing models. In current cloud service

models pricing typically follows the “per instance per hour” model; that is, the consumer

is charged for the duration that an application is hosted on a VM or a container (Varghese

and Buyya 2018). The flaw here is that idle time is not taken into account. Whether the

application was used or not bears no effect: the consumer ends up paying for the whole hour

even if actual computation took mere seconds. This makes sense from the provider’s point

of view, since for the duration billed, the instance is provisioned and dedicated solely to

hosting the consumer’s application. However, paying for idle time is of course undesirable

for the consumer, and the problem is made worse in case of applications with fluctuating and

unpredictable workloads.

Continuously hosting non-executing applications is problematic on the provider side as well

as it leads to under-utilization. Just as consumers end up paying for essentially nothing,

providers end up provisioning and tying up resources to do essentially nothing. Fundamen-

tally the problem of under-utilization boils down to elasticity and resource management.

The current cloud computing models are incapable of automatically scaling up and down to

meet current demand while at the same time maintaining their stringent Quality-of-Service

(QoS) expectations (Buyya et al. 2019). Lacking automatic scaling mechanisms, cloud con-

sumers are left to make capacity decisions on their own accord, and as Roberts (2016) notes,

consumers typically err on the side of caution and over-provision. This in turn leads to

inefficiencies and under-utilization as described above.

The problem of low utilization rates in data centers is particularly relevant in the current

energy-constrained environment. ICT in general consumes close to 10% of all electricity

world-wide, with the CO2 impact comparable to air travel (Buyya et al. 2019). It is estimated

that in 2010 data centers accounted for 1–2% of global energy usage, with data center carbon

emissions growing faster than the annual global footprint as well as the footprint of other ICT

subcategories. While data centers are improving in energy efficiency, so is the demand for

computing services with both the magnitude of data produced and complexity of software

increasing. Operational factors such as excessive redundancy also affect data center energy

efficiency heavily. A survey of Google data centers – considered to represent the higher end

8

of utilization – revealed utilization of 60% or less 95% of the time and 30% or less half of

the time. Another analysis found that data centers spend on average only 6% to 12% of the

electricity powering servers that do computation, with the rest used to keep servers idling for

redundancy. (Horner and Azevedo 2016)

Another cloud computing shortfall concerns operational overhead. In an influential paper on

the prospects of cloud computing, Armbrust et al. (2009) foresaw simplified operations as

one of the model’s potential advantages, hypothesizing reduced operation costs and seamless

elasticity. However in a recent follow-up paper Jonas et al. (2019) observe a failure in real-

izing this advantage, with cloud users continuing to “bear a burden of complex operations”

(the other observed shortfall concerns utilization rates as described above). Leading to this

outcome was the marketplace’s eventual embrace of low-level cloud resources such as virtual

machines in favour of cloud-native ones like Google’s PaaS offering, which in turn resulted

from the early cloud adopters’ practical need of porting on-premise applications to a familiar

computing environment. In consequence, “cloud computing relieved users of physical in-

frastructure management but left them with a proliferation of virtual resources to manage”.

To illustrate this problem the authors list a number of operational tasks required to spin up

an elastic cloud environment in Table 1. In case of a simple web service, the development

work required to accomplish these tasks can be manifold compared to the actual application

logic.

1. Redundancy for availability, so that a single machine failure doesn’t take down the service.

2. Geographic distribution of redundant copies to preserve the service in case of disaster.

3. Load balancing and request routing to efficiently utilize resources.

4. Autoscaling in response to changes in load to scale up or down the system.

5. Monitoring to make sure the service is still running well.

6. Logging to record messages needed for debugging or performance tuning.

7. System upgrades, including security patching.

8. Migration to new instances as they become available.

Table 1: Eight issues to be addressed in setting up an environment for cloud users. (Jonas

et al. 2019)

9

Cloud computing, having “revolutionized the computer science horizon and enabled the

emergence of computing as the fifth utility” (Buyya et al. 2019), will face considerable new

requirements in the coming decade. It is predicted that by 2020 over 20 billion sensor-rich

devices like phones and wearables will be connected to the Internet generating trillions of

gigabytes of data. Varghese and Buyya (2018) argue that increasing volumes of data pose

significant networking and computing challenges that cannot be met by existing cloud infras-

tructure, and that adding more centralized cloud data centers will not be enough to address

the problem. The authors instead call for new computing models beyond conventional cloud

computing, one of which is serverless computing.

2.2 Defining serverless

Eyk et al. (2017) define serverless computing as “a form of cloud computing that allows

users to run event-driven and granularly billed applications, without having to address the

operational logic”. The definition breaks down into three key characteristics:

1. Event-driven: interactions with serverless applications are designed to be short-lived,

allowing the infrastructure to deploy serverless applications to respond to events, so

only when needed.

2. Granular billing: the user of a serverless model is charged only when the application

is actually executing.

3. (Almost) no operational logic: operational logic, such as resource management and

autoscaling, is delegated to the infrastructure, making those concerns of the infrastruc-

ture operator.

In a partially overlapping definition, Jonas et al. (2019) describe serverless computing by

specifying three crucial distinctions between it and conventional serverful cloud computing:

1. Decoupled computation and storage: the storage and computation scale separately

and are provisioned and priced independently. In general, the storage is provided by a

separate cloud service and the computation is stateless.

2. Executing code without managing resource allocation: instead of requesting resources,

the user provides a piece of code and the cloud automatically provisions resources to

10

execute that code.

3. Paying in proportion to resources used instead of for resources allocated: billing is by

some dimension associated with the execution, such as execution time, rather than by

a dimension of the base cloud platform, such as size and number of VMs allocated.

Fundamentally serverless computing is about building and running back-end code that does

not require server management or long-lived server applications (Roberts 2016). Sbarski

and Kroonenburg (2017) summarize “the ultimate goal behind serverless” as “moving away

from servers and infrastructure concerns, as well as allowing the developer to primarily fo-

cus on code”. Jonas et al. (2019) in turn draw parallels between higher-level programming

languages and serverless computing: just like a high-level programming language frees de-

velopers from manually selecting registers and loading values in and out of them, the server-

less paradigm frees developers from manually reserving and managing computing resources

in the cloud. The term serverless itself can seem disingenuous, since the model evidently

still involves servers. The industry-coined name instead carries the meaning that operational

concerns are fully managed by the cloud service provider. As tasks such as provisioning,

maintenance and capacity planning (listed in Table 1) are outsourced to the serverless plat-

form, developers are left to focus on application logic and more high-level properties such

as control, cost and flexibility. For the cloud customer this provides an abstraction where

computation is disconnected from the infrastructure it runs on.

Serverless platforms position themselves as the next step in the evolution of cloud comput-

ing architectures (Baldini, Castro, et al. 2017). Eyk, Toader, et al. (2018) trace the tech-

nologies that lead to the emergence of serverless computing in Figure 2. First of all rapid

progress in infrastructure technologies, specifically virtualization and containerization as de-

scribed in Section 2.1, made serverless platforms technically feasible. Secondly, software

architecture trends transitioning from “relatively large, monolithic applications, to smaller

or more structured applications with smaller executions units” (Eyk et al. 2017) paved the

way for the serverless concept of functions as services. Eyk, Toader, et al. (2018) see server-

less computing continuing this trend of service specialization and abstraction, preceded by

service-oriented architecture (SOA) and later by microservices. Finally the transition from

synchronous systems to concurrent, event-driven distributed systems laid the groundwork for

11

Figure 2: A history of computer science concepts leading to serverless computing (Eyk,

Toader, et al. 2018)

the serverless execution model: as per McGrath and Brenner (2017), serverless computing

“is a partial realization of an event-driven ideal, in which applications are defined by actions

and the events that trigger them”.

Sbarski and Kroonenburg (2017) similarly view serverless architecture, along with microser-

vices, as “spiritual descendants of service-oriented architecture”. SOA is an architectural

style where systems are composed out of many independent and loosely coupled services

that communicate via message passing. Serverless architecture retains the SOA principles of

service reusability, autonomy and composability while “attempting to address the complex-

12

ity of old-fashioned service-oriented architectures” – a reference to specifications like SOAP,

WSDL and WS-I that SOA is often associated with although being nominally technology-

independent. One area where serverless architecture diverges from SOA is service size: in

SOA context, fine service granularity is considered problematic due to the management and

performance overhead incurred. Rotem-Gal-Oz (2012) distills the problem into the Nanoser-

vice antipattern: “a service whose overhead (communications, maintenance and so on) out-

weighs its utility”. Serverless platforms on the other hand aim to reduce this overhead and

thus tip the scale towards smaller services. Adzic and Chatley (2017) make a similar observa-

tion on how the novel technical qualities of serverless platforms drive architectural decisions:

“without strong economic and operational incentives for bundling, serverless platforms open

up an opportunity for application developers to create smaller, better isolated modules, that

can more easily be maintained and replaced”.

2.3 Backend-as-a-Service and Function-as-a-Service

Serverless computing has in effect come to encompass two distinct cloud computing models:

Backend-as-a-Service (BaaS) as well as Function-as-a-Service (FaaS). The two serverless

models, while different in operation as explained below, are grouped under the same server-

less umbrella since they deliver the same main benefits: zero server maintenance overhead

and elimination of idle costs. (CNCF 2018)

Backend-as-a-Service refers to an architecture where an application’s server-side logic is

replaced with external, fully managed cloud services that carry out various tasks like authen-

tication or database access (Buyya et al. 2019). The model is typically utilized in the mobile

space to avoid having to manually set up and maintain server resources for the more narrow

back-end requirements of a mobile application. In the mobile context this form of serverless

computing is also referred to as Mobile-Backend-as-a-Service or MBaaS (Baldini, Castro,

et al. 2017). An application’s core business logic is implemented client-side and integrated

tightly with third-party remote application services. Since these API-based BaaS services

are managed transparently by the cloud service provider, the model appears to the developer

as serverless.

13

Function-as-a-Service is defined in a nutshell as “a style of cloud computing where you write

code and define the events that should cause the code to execute and leave it to the cloud to

take care of the rest” (Gannon, Barga, and Sundaresan 2017). In the FaaS architecture an ap-

plication’s business logic is still located server-side. The crucial difference is that instead of

self-managed server resources, developers upload small units of code to a FaaS platform that

executes the code in short-lived, stateless compute containers in response to events (Roberts

2016). The model appears serverless in the sense that the developer has no control over the

resources on which the back-end code runs. Albuquerque et al. (2017) note that the BaaS

model of locating business logic on the client side carries with it some complications, namely

difficulties in updating and deploying new features as well as reverse engineering risks. FaaS

circumvents these problems by retaining business logic server-side.

Out of the two serverless models FaaS is a more recent development: the first commercial

FaaS platform, AWS Lambda, was introduced in November 2014 (AWS 2018a). FaaS is also

the model with significant differences to traditional web application architecture (Roberts

2016). These differences and their implications are further illustrated in Section 2.5. As the

more novel architecture, FaaS is especially relevant to the research questions in hand and is

thus paid more attention to in the remainder of this thesis.

Another perspective on the two serverless models is to view BaaS as a more tailored, vendor-

specific approach to FaaS (Eyk et al. 2017). Whereas BaaS-type services function as built-in

components for many common use cases such as user management and data storage, a FaaS

platform allows developers to implement more customized functionality. BaaS plays an

important role in serverless architectures as it will often be the supporting infrastructure (for

example in form of data storage) to the stateless FaaS functions (CNCF 2018). Conversely,

in case of otherwise BaaS-based applications there’s likely still a need for custom server-side

functionality, which is where FaaS functions step in (Roberts 2016). Serverless applications

can utilize both models simultaneously, with BaaS platforms generating events that trigger

FaaS functions, and FaaS functions acting as ’glue components’ between various third-party

BaaS components. Roberts (2016) also notes convergence in the space, giving the example

of the user management provider Auth0 starting initially with a BaaS-style offering but later

entering the FaaS space with the Auth0 Webtask service.

14

It is worth noting that not all authors follow this taxonomy of FaaS and BaaS as the two

subcategories of a more abstract serverless model. Baldini, Castro, et al. (2017) explicitly

raise the question on whether serverless is limited to FaaS or broader in scope, identifying

the boundaries of serverless as an open question. Some sources (Hendrickson et al. 2016;

McGrath and Brenner 2017; Varghese and Buyya 2018, among others) seem to strictly equate

serverless with FaaS, using the terms synonymously. Considering however that the term

’serverless’ predates the first FaaS platforms by a couple of years (Roberts 2016), it seems

sensible to at least make a distinction between serverless and FaaS. In this thesis we’ll stick

to the CNCF (2018) definition as outlined above.

2.4 Comparison to other cloud computing models

Another approach to defining serverless is to compare it with other cloud service mod-

els. The commonly used NIST definition divides cloud offerings into three categories:

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service

(SaaS), in increasing order of infrastructure abstraction (Mell and Grance 2011). As per

Buyya et al. (2019), SaaS allows users to access complete applications hosted in the cloud,

PaaS offers a framework for creation and development of more tailored cloud applications,

and finally IaaS offers access to computing resources in form of leased VMs and storage

space. On this spectrum serverless computing positions itself in the space between PaaS and

SaaS, as illustrated in Figure 3 (Eyk et al. 2017). Figure 4 illustrates how the two serverless

models relate, with the cloud provider taking over a larger share of operational logic in BaaS.

Eyk et al. (2017) note that there’s some overlap and give examples of non-serverless products

in both the PaaS and SaaS worlds that nonetheless exhibit the main serverless characteristics

defined in Section 2.2.

Since the gap between PaaS and FaaS can be quite subtle it warrants further consideration.

Indeed some sources (including Adzic and Chatley 2017) refer to FaaS as a new generation of

PaaS offerings. Both models provide a high-level and elastic computing platform on which

to implement custom business logic. There are however substantial differences between the

two models, which boil down to PaaS being an instance-based model with multiple server

processes running on always-on server instances, as opposed to the on-demand resource

15

Figure 3: Serverless and FaaS vs. PaaS and SaaS (Eyk et al. 2017)

allocation of FaaS. Put another way, “most PaaS applications are not geared towards bringing

entire applications up and down for every request, whereas FaaS platforms do exactly this”

(Roberts 2016).

Albuquerque et al. (2017) derive a number of specific differences between PaaS and FaaS in

their comparative analysis. First of all the units of deployment vary: PaaS applications are

deployed as services, compared to the more granular function-based deployment of FaaS.

Second, PaaS instances are always running whereas serverless workloads are executed on-

demand. Third, PaaS platforms, although supporting auto-scaling to some extent, require

the developer to explicitly manage the scaling workflow and number of minimum instances.

FaaS on the other hand scales transparently and on-demand without any need for resource

pre-allocation. Perhaps the most important distinction lies in billing: PaaS is billed by in-

stantiated resources whether they’re used or not, whereas FaaS is billed per-event only for

the execution duration. The analysis concludes that PaaS is well suited for predictable or

constant workloads with long or variable per-request execution times; FaaS in turn provides

better cost benefit for unpredictable or seasonal workloads with short per-request execution

times. It is also to be noted that PaaS does not suffer from limits on execution duration and

some of the other limitations of FaaS described in Section 2.10.

Another recent cloud computing technology gaining rapid adoption is container orchestra-

tion, also referred to as Containers-as-a-Service or CaaS (CNCF 2018). Using a container

orchestration tool like Docker Swarm, Mesos or Kubernetes, the developer sets up a cluster

of infrastructure resources which can then be used as a deployment target for container-

16

Figure 4: Degree of automation when using serverless (Wolf 2016)

ized applications, with additional facilities for scaling and monitoring. The model enables

maximum control over what’s being deployed and on which resources, as well as enabling

portability between different cloud vendors and on-premise infrastructure. Of course, greater

control of underlying resources comes with the downside of management responsibility. As

to how container orchestration relates to serverless, Jonas et al. (2019) sums up the for-

mer as “a technology that simplifies management of serverful computing” whereas the lat-

ter “introduces a paradigm shift that allows fully offloading operational responsibilities to

the provider”. In a similar vein Roberts (2016) contends that what’s true with PaaS still

holds with CaaS: tools like Kubernetes lack the automatically managed, transparent, and fine

grained resource provisioning and allocation of FaaS. The author however observes conver-

gence in this space, and indeed a number of serverless platforms have been implemented on

top of container orchestration platforms.

17

2.5 FaaS processing model

The CNCF (2018) whitepaper divides a generalized FaaS platform into four constituents

illustrated in Figure 5:

• Event sources - trigger or stream events into one or more function instances.

• Function instances - a single function/microservice, that can be scaled with demand.

• FaaS Controller- deploy, control and monitor function instances and their sources.

• Platform services - general cluster or cloud services (BaaS) used by the FaaS solution.

Figure 5: Serverless processing model (CNCF 2018)

Interrelation of the various parts is further demonstrated with an example of a typical server-

less development workflow: first, the developer selects a runtime environment (for example

Python 3.6), writes a piece of code and uploads it on a FaaS platform where the code is

published as a serverless function. The developer then maps one or more event sources to

trigger the function, with event sources ranging from HTTP calls to database changes and

messaging services. Now when any of the specified events occurs, the FaaS controller spins

up a container, loads up the function along with its dependencies and executes the code. The

function code typically contains API calls to external BaaS resources to handle data storage

and other integrations. When there are multiple events to respond to simultaneously, more

copies of the same function are run in parallel. Serverless functions thus scale precisely with

the size of the workload, down to the individual request. After execution the container is torn

down. Later the developer is billed according to the measured execution time, typically in

100 millisecond increments. (AWS 2018a)

18

At the heart of serverless architecture is the concept of a function (also lambda function

or cloud function). A function represents a piece of business logic executed in response

to specified events. Functions are the fundamental building block from which to compose

serverless applications. A function is defined as a small, stateless, short-lived, on-demand

service with a single functional responsibility (Eyk et al. 2017). As discussed in Section 2.1,

the technology underlying cloud computing has evolved from individual servers to virtual

machines and containers. Hendrickson et al. (2016) see the serverless function model as the

logical conclusion of this evolution towards more sharing between applications (Figure 6).

Figure 6: Evolution of sharing – gray layers are shared (Hendrickson et al. 2016)

Being stateless and short-lived, serverless functions have fundamentally limited expressive-

ness compared to a conventional server application. This is a direct result of being built to

maximise scalability. A FaaS platform will need to execute the arbitrary function code in

response to any number of events, without explicitly specifying resources required for the

operation (Buyya et al. 2019). To make this possible, FaaS platforms pose restrictions on

what functions can do and how long they can operate. Statelessness here means that a func-

tion loses all local state after termination: none of the local state created during invocation

will necessarily be available during subsequent or parallel invocations of the same function.

This is where BaaS services come in, with external stateful services such as key-value stores,

databases and file storages providing a persistence layer. In addition to statelessness, FaaS

platforms limit a function’s execution duration and resource usage: AWS Lambda for exam-

ple has a maximum execution duration of 15 minutes and a maximum memory allocation of

3008 MB (AWS 2018a).

FaaS event sources can be divided into two categories of synchronous and asynchronous.

19

The first category follows a typical request-response flow: a client issues a request and blocks

while waiting for response. Synchronous event sources include HTTP and RPC calls which

can be used to implement a REST API, a command line client or any other service requiring

immediate feedback. Asynchronous event sources on the other hand result in non-blocking

execution and are typically used to implement background workers, scheduled event handlers

and queue workers. Asynchronous event sources include message queues, publish-subscribe

systems, database or file storage change feeds and schedulers among others. The details and

metadata of the triggering event are passed to the function as input parameters, with exact

implementation varying per event type and provider. In case of an HTTP call, for example,

the event object includes request path, headers, body and query parameters. A function in-

stance is also supplied a context object which in turn contains runtime information and other

general properties that span multiple function invocations: function name, version, memory

limit and remaining execution time are examples of typical context variables. FaaS platforms

also support user-defined environment variables which function instances can access through

the context object – useful for handling configuration parameters and secret keys. As for out-

put, functions can directly return a value (in case of synchronous invocation) or either trigger

the next execution phase in a workflow or simply log the result (in case of asynchronous

invocation). An example function handler is presented in Listing 2.1. In addition to publish-

ing and executing serverless functions, FaaS platforms provide auxiliary capabilities such as

monitoring, versioning and logging. (CNCF 2018)

def main(event, context):

return {"payload": "Hello, " + event.name}

Listing 2.1: Example FaaS handler in Python

As mentioned in Section 2.2, serverless is almost but not completely devoid of operational

management. In case of FaaS functions, this qualification means that parameters such as

memory reservation size, maximum parallelism and execution time are still left for the user

to configure. Whereas the latter parameters are mainly used as safeguards to control costs,

memory reservation size has important implications regarding execution efficiency (Lloyd et

20

al., 2018a). There are however tools available to determine the optimal memory reservation

size per given workload. Also some platforms automatically reserve the required amount of

memory without pre-allocation (Microsoft 2018b).

Even with the restrictions on a serverless function’s capabilities, implementing a FaaS plat-

form is a difficult problem. From the customer’s point of view the platform has to be as fast

as possible in both spin-up and execution time, as well as scale indefinitely and transpar-

ently. The provider on the other hand seeks maximum resource utilization at minimal costs

while avoiding violating the consumer’s QoS expectations. Given that these goals are in con-

flict with each other, the task of resource allocation and scheduling bears crucial importance

(Farahabady et al. 2017). A FaaS platform must also safely and efficiently isolate functions

from each other, and make low-latency decisions at the load balancer-level while considering

session, code, and data locality (Hendrickson et al. 2016).

2.6 Use cases

Serverless computing has been utilized to support a wide range of applications. Baldini,

Castro, et al. (2017) note that from a cost perspective, the model is particularly fitting for

bursty, CPU-intensive and granular workloads, as well as applications with sudden surges of

popularity such as ticket sales. Serverless is less suitable for I/O-bound applications where a

large period of time is spent waiting for user input or networking, since the paid-for compute

resources go unused. In the industry, serverless is gaining traction primarily in three ar-

eas: Internet-of-Things (IoT) applications with sporadic processing needs, web applications

with light-weight backend tasks, and as glue code between other cloud computing services

(Spillner, Mateos, and Monge 2017).

A number of real-world and experimental use cases exists in literature. Adzic and Chat-

ley (2017) present two industrial case studies implementing mind-mapping and social net-

working web applications in serverless architectures, resulting in decreased hosting costs.

McGrath et al. (2016) describe a serverless media management system that easily and per-

formantly solves a large-scale image resizing task. Fouladi et al. (2017) present a serverless

video-processing framework. Yan et al. (2016) and Lehvä, Mäkitalo, and Mikkonen (2017)

21

both implement serverless chatbots, reaching gains in cost and management efficiency. Ast

and Gaedke (2017) describe an approach to building truly self-contained serverless web

components. Finally, an AWS whitepaper on serverless economics includes industry use-

cases ranging from financial institutions Fannie Mae and FINRA to Autodesk and Thomson

Reuters (AWS 2017).

In the domain of high-performance and scientific computing, Jonas et al. (2017) suggest that

“a serverless execution model with stateless functions can enable radically-simpler, funda-

mentally elastic, and more user-friendly distributed data processing systems”. Malawski,

Gajek, et al. (2017) experiment with running scientific workflows on a FaaS platform and

find the approach easy to use and highly promising, noting however that not all workloads

are suitable due to execution time limits. Spillner, Mateos, and Monge (2017) similarly

find that “in many domains of scientific and high-performance computing, solutions can be

engineered based on simple functions which are executed on commercially offered or self-

hosted FaaS platforms”. Ishakian, Muthusamy, and Slominski (2018) evaluate the suitability

of a serverless computing environment for the inferencing of large neural network models.

Petrenko et al. (2017) present a NASA data exploration tool running on a FaaS platform.

The novel paradigms of edge and fog computing are identified as particularly strong drivers

for serverless computing (Fox et al. 2017). These models seek to include the edge of the

network in the cloud computing ecosystem to bring processing closer to the data source and

thus reduce latencies between users and servers (Buyya et al. 2019). The need for more

localized data processing stems from the growth of mobile and IoT devices as well as the

demand for more data-intensive tasks such as mobile video streaming. Bringing computation

to the edge of the network addresses this increasing demand by avoiding the bottlenecks of

centralized servers and latencies introduced by sending and retrieving heavy payloads from

and to the cloud (Baresi, Mendonça, and Garriga 2017). Nastic et al. (2017) explain how

the increasing growth of IoT devices has lead to “an abundance of geographically dispersed

computing infrastructure and edge resources that remain largely underused for data analyt-

ics applications” and how “at the same time, the value of data becomes effectively lost at

the edge by remaining inaccessible to the more powerful data analytics in the cloud due to

networking costs, latency issues, and limited interoperability between edge devices”.

22

Despite the potential efficiencies gained, hosting and scaling applications at the edge of the

network remains problematic with edge/fog computing environments suffering from high

complexity, labor-intensive lifecycle management and ultimately high cost (Glikson, Nastic,

and Dustdar 2017). Simply adopting the conventional cloud technologies of virtual machines

and containers at the edge is not possible since the underlying resource pool at the edge is by

nature highly distributed, heterogeneous and resource-constrained (Baresi, Mendonça, and

Garriga 2017). Serverless computing, with its inherent scalability and abstraction of infras-

tructure, is recognized by multiple authors as a promising approach to address these issues.

Nastic et al. (2017) present a high-level architecture for a serverless edge data analytics plat-

form. Baresi, Mendonça, and Garriga (2017) propose a serverless edge architecture and use

it to implement a low-latency high-throughput mobile augmented reality application. Glik-

son, Nastic, and Dustdar (2017) likewise propose a novel approach that extends the serverless

platform to the edge of the network, enabling IoT and Edge devices to be seamlessly inte-

grated as application execution infrastructure. In addition, Eyk et al. (2017) lay out a vision

of a vendor-agnostic FaaS layer that would allow an application to be deployed in hybrid

clouds, with some functions deployed in an on-premise cluster, some in the public cloud and

some running in the sensors at the edge of the cloud.

2.7 Service providers

Lynn et al. (2017) provide an overview and multi-level feature analysis of the various en-

terprise serverless computing platforms. The authors identified seven different commer-

cial platforms: AWS Lambda, Google Cloud Functions, Microsoft Azure Functions, IBM

Bluemix OpenWhisk, Iron.io Ironworker, Auth0 Webtask, and Galactic Fog Gestal Laser.

All the platforms provide roughly the same basic functionality, with differences in the avail-

able integrations, event sources and resource limits. The most commonly supported runtime

languages are Javascript followed by Python, with secondary support for Java, C#, Go, Ruby,

Swift and others. AWS Lambda was the first platform to roll out support for custom runtimes

in late 2018, which enables writing serverless functions with virtually any language (AWS

2018a). The serverless platforms of the big cloud service providers, Amazon, Google, Mi-

crosoft and IBM, benefit from tight integration with their respective cloud ecosystems. The

23

study finds that AWS Lambda, the oldest commercial serverless platform, has emerged as a

de facto base platform for research on enterprise serverless cloud computing. AWS Lambda

has also the most cited high profile use cases ranging from video transcoding at Netflix to

data analysis at Major League Baseball Advanced Media. Google Cloud Functions remains

in beta stage at the time of writing, and has limited functionality but is expected to grow in

future versions (Google 2018). The architecture of OpenWhisk is shown in Figure 7 as an

example of a real-world FaaS platform. Besides the commercial offerings, a number of self-

hosted open-source FaaS platforms have emerged: the CNCF (2018) whitepaper mentions

fission.io, Fn Project, kubeless, microcule, Nuclio, OpenFaaS and riff among others. The

core of the commercial IBM OpenWhisk is also available as an Apache open-source project

(IBM 2018). In addition, research-oriented FaaS platforms have been presented in literature,

including OpenLambda (Hendrickson et al. 2016) and Snafu (Spillner 2017).

Figure 7: IBM OpenWhisk architecture (Baldini, Castro, et al. 2017)

The big four FaaS platforms are compared in a benchmark by Malawski, Figiela, et al. (2017).

Each platform requires the user to configure a function’s memory size allocation – apart from

Azure Functions which allocate memory automatically. Available memory sizes range from

24

128 to 2048MB, with the per-invocation cost increasing in proportion to memory size. Mea-

suring the execution time of CPU-intensive workloads with varying function sizes, the au-

thors observe interesting differences in resource allocation between the different providers.

AWS Lambda performs fairly consistently with CPU allocation increasing together with

memory size as per the documentation. Google Cloud Functions instead behave less pre-

dictably with the smallest 128MB functions occasionally reaching the performance of the

largest 2048MB functions. The authors suggest this results from an optimization in con-

tainer reuse, since reusing already spawned faster instances is cheaper than spinning up new

smaller instances. Azure Functions show on average slower execution times, which the

authors attribute to the underlying Windows OS and virtualization layer. On both Azure

Functions and IBM Bluemix performance does not depend on function size.

A consequence of the high abstraction level of serverless computing is that the commercial

FaaS platforms are essentially black boxes with little guarantee about underlying resources.

There are however efforts to gain insight into the platforms via reverse engineering. Wang

et al. (2018) present the “largest measurement study to date, launching more than 50,000

function instances across these three services, in order to characterize their architectures,

performance, and resource management efficiency”. One of the findings is that all service

providers exhibit a variety of VMs as hosts, which may cause inconsistent function perfor-

mance. The study also reveals differences on how serverless platforms allocate functions to

host VMs. Both AWS Lambda and Azure Functions scale function instances on the same

VM, which results in resource contention as each function gets a smaller share of the net-

work and I/O resources. Among the compared platforms, AWS Lambda achieved the best

scalability and lowest start-up latency for new function instances.

2.8 Security

Similarly to PaaS, serverless architecture addresses most of the OS-level security concerns

by pushing infrastructure management to the provider. Instead of users maintaining their own

servers, security-related tasks like vulnerability patching, firewall configuration and intrusion

detection are centralized with the benefit of a reduced attack surface. On the provider side

the key issue becomes guaranteeing isolation between functions, as arbitrary code from many

25

users is running on the same shared resources (McGrath and Brenner 2017). Since strong

isolation has the downside of longer container startup times, the problem becomes finding

an ideal trade-off between security and performance. (Eyk et al. 2017)

In case of the BaaS model, the main security implication is greater dependency to third-

party services (Segal, Zin, and Shulman 2018). Each BaaS component represents a potential

point of compromise, so it becomes important to secure communications, validate inputs and

outputs and minimize and anonymize the data sent to the service. Roberts (2016) also notes

that since BaaS components are used directly by the client, there’s no protective server-side

application in the middle which requires significant care in designing the client application.

The FaaS model has a number of advantages when it comes to security. First, FaaS applica-

tions are more resilient towards Denial of Service (DoS) attacks due to the platform’s near

limitless scalability – although such an attack can still inflate the monthly bill and inflict un-

wanted costs. Second, compromised servers are less of an issue in FaaS since functions run

in short-lived containers that are repeatedly destroyed and reset. Overall, as put by Wagner

and Sood (2016), “there is a much smaller attack surface when executing on a platform that

does not allow you to open ports, run multiple applications, and that is not online all of the

time”. On the other hand application-level vulnerabilities remain as much of an issue in FaaS

as in conventional cloud platforms. The architecture has no inherent protection against SQL

injection or XSS and CSRF attacks, so existing mitigation techniques are still necessary.

Vulnerabilities in application dependencies are another potential threat, since open-source

libraries often make up the majority of the code in actual deployed functions. Also, the

ease and low cost of deploying a high number of functions, while good for productivity,

requires new approaches to security monitoring. With each function expanding the applica-

tion’s attack surface it is important to keep track of ownership and allocate a function only

the minimum privileges needed to perform the intended logic. Managing secure configura-

tion per each function can become cumbersome with fine-grained applications consisting of

dozens or hundreds of functions. (Podjarny 2017)

A study by the security company PureSec lists a number of prominent security risks specific

to serverless architectures (Segal, Zin, and Shulman 2018). One potential risk concerns event

data injection, i.e., functions inadvertently executing malicious input injected among the

26

event payload. Since serverless functions accept a rich set of event sources and payloads in

various message formats, there are many opportunities for this kind of injection. Another risk

listed in the study is execution flow manipulation. Serverless architectures are particularly

vulnerable to flow manipulation as applications typically consist of many discrete functions

chained together in a specific order. Application design might assume a function is only

invoked under specific conditions and only by authorized invokers. A function might for

example forego a sanity check on the assumption that a check has already been passed in

some previous step. By manipulating execution order an attacker might be able to sidestep

access control and gain unwanted entry to some resource. Overall the study stresses that

since serverless is a new architecture its security implications are not yet well understood.

Likewise security tooling and practices still lack in maturity.

The Open Web Application Security Project has also published a preliminary report re-

evaluating the top 10 web application security risks from a serverless standpoint (OWASP

2018). The report notes that the more standardized authentication & authorization models

and fine-grained architecture inherent to serverless applications are an improvement over tra-

ditional applications security-wise. Individual functions are typically limited in scope and

can thus be assigned a carefully crafted set of permissions, following the “least privilege”

principle. On the other hand configuring access control for a large serverless application

can be onerous and lead to backdoors in form of over-privileged functions. The report also

deems serverless applications more susceptible to vulnerabilities in external components and

third-party libraries due to each function bringing in its own set of dependencies. Similarly

to Segal, Zin, and Shulman (2018), potential risks also include increased injection attack

surface due to multitude of event sources and business logic & flow manipulation attacks. In

summary, the authors conclude with the notion that “the risks were not eliminated, they just

changed, for better and for worse”.

2.9 Economics of serverless

The basic serverless pricing models follow a pay-per-use paradigm. As reported by Lane

(2013) in a survey on the BaaS space, the most common pricing models offered by BaaS

providers are billing on either the number of API calls or the amount of cloud storage con-

27

sumed. The popularity of these pricing models reflects on the other hand the central role

of API resources in BaaS as well as the fact that storage forms the biggest cost for BaaS

providers. Beyond API call and storage pricing there are also numerous other pricing mod-

els to account for the multitude of BaaS types. Among the surveyed BaaS providers some

charge per active user or consumed bandwidth, whereas others charge for extra features like

analytics and tech support.

Pricing among FaaS providers is more homogeneous. FaaS providers typically charge users

by the combination of number of invocations and their execution duration. Execution du-

ration is counted in 100ms increments and rounded upwards, with the 100ms unit price

depending on the selected memory capacity. Each parallel function execution is billed sepa-

rately. For example at the time of writing in AWS Lambda the price per invocation is µ$0.2

and computation is priced at µ$16.67 per GB-second (AWS 2018a). The unit of GB-second

refers to 1 second of execution time with 1GB of memory provisioned. Given this price per

GB-second, the price for 100ms of execution ranges from µ$0.208 for 128MB functions to

µ$4.897 for 3008MB functions. At this price point, running a 300ms execution on a 128MB

function 10 million times would add up to about $8.25. The other major providers operate

roughly at the same price point (Microsoft 2018b; IBM 2018; Google 2018). Most providers

also offer a free tier of a certain amount of free computation each month. The AWS Lambda

free tier for example includes 1 million invocations and 400,000 GB-seconds (which adds up

to, e.g., 800,000 seconds on the 512MB function) of computation per month. Interestingly,

as with most FaaS providers CPU allocation increases together with selected memory size,

the smallest memory size might not always be the cheapest option: a higher memory size

might lead to faster execution and thus offset the higher resource expenses.

Villamizar et al. (2017) present an experiment comparing the cost of developing and de-

ploying the same web application using three different architecture and deployment models:

monolithic architecture, microservices operated by the cloud customer, and serverless func-

tions or FaaS. The results come out in favour of FaaS, with more than a 50% cost reduction

compared to self-operated microservices and up to a 77% reduction in operation costs com-

pared to the monolithic implementation. The authors note however that for applications with

small numbers of users, the monolithic approach can be a more practical and faster way

28

to start since the adoption of more granular architectures demands new guidelines and prac-

tices both in development work and in an organizational level. Looking only at infrastructure

costs, FaaS emerges as the most competitive approach.

To demonstrate how FaaS pricing works out in the customer’s advantage in the case of inter-

mittent computation, Adzic and Chatley (2017) compare the cost of running a 200ms service

task every 5 minutes on various hosting platforms. Running a 512MB VM with an additional

failover costs $0.0059 per hour, whereas a similarly sized Lambda function executing the de-

scribed service task costs µ$20.016 for one hour – a cost reduction of more than 99.8%. The

authors also present two real-world cases of FaaS migration. The first case, a mind-mapping

web application, was migrated from PaaS to FaaS and resulted in hosting cost savings of

about 66%. In the second case a social networking company migrated parts of their back-

end services from self-operated VMs to FaaS, and estimated a 95% reduction in operational

costs.

Wagner and Sood (2016) describe how a large part of the expenses incurred in developing

today’s computer systems derive from the need for resiliency. Resiliency means the ability

to withstand a major disruption caused by unknown events. A resilient system is expected

to be up and functioning at all times, while simultaneously providing good performance

and certain security guarantees. Meeting these requirements forces organizations to over-

provision and isolate their cloud resources which leads to increased costs. The serverless

model can significantly reduce the cost of resiliency by offloading resource management to

the provider. The authors conclude that “managed code execution services such as AWS

Lambda and GCP’s Google Cloud Functions can significantly reduce the cost of operating

a resilient system”. This was exemplified in the above case studies, where majority of cost

savings arose from not having to pay for excess or idling resources.

One apparent flaw in FaaS pricing concerns network delays. A function that spends most

of its execution time waiting for a network call is billed just the same as a function that

spends an equivalent time doing actual processing. Fox et al. (2017) call into question the

serverless promise of never paying for idle, noting that “serverless computing is a large step

forward but we’re not there yet [...] as time spent waiting on network (function executions

or otherwise) is wasted by both provider and customer”. The authors also observe that a part

29

of a serverless provider’s income comes from offering auxiliary services such as traditional

storage. Eivy (2017) similarly heeds caution with the potentially confusing FaaS pricing

model of GB-seconds, reminding that on top of the per-hit fee and GB-seconds you end up

paying for data transfer, S3 for storing static assets, API Gateway for routing and any other

incidental services. It is also notable that as FaaS GB-second pricing comes in rounded-up

increments of 100ms, any optimization under 100ms is wasted in a financial sense. However,

when comparing serverless to conventional cloud computing expenses, it is worth bearing in

mind the savings in operational overhead: “even though serverless might be 3x the cost of

on-demand compute, it might save DevOps cost in setting up autoscale, managing security

patches and debugging issues with load balancers at scale” (Eivy 2017). Finally, in a cloud

developer survey by Leitner et al. (2019), majority of participants perceived the total costs

of FaaS to be cheaper than alternative cloud platforms.

2.10 Drawbacks and limitations

Roberts (2016) observes two categories of drawbacks in serverless computing: trade-offs

inherent to the serverless concept itself, and the ones tied to current implementations. Inher-

ent trade-offs are something developers are going to have to adapt to, with no foreseeable

solution in sight. Statelessness, for example, is one of the core properties of serverless: we

cannot assume any function state will be available during later or parallel invocations of the

same function. This property enables scalability, but at the same time poses a novel software

engineering challenge as articulated by Roberts (2016): “where does your state go with FaaS

if you can’t keep it in memory?” One might push state to an external database, in-memory

cache or object storage, but all of these equate to extra dependencies and network latency.

A common stateful pattern in web applications is to use cookie-based sessions for user au-

thentication; in the serverless paradigm this would either call for an external state store or an

alternative stateless authentication pattern (Hendrickson et al. 2016).

Another inherent trade-off relates to function composition, i.e., combining individual func-

tions into full-fledged applications. Composing serverless functions is not like composing

regular source code functions, in that all the difficulties of distributed computing – e.g., mes-

sage loss, timeouts, consistency problems – apply and have to be dealt with. In complex

30

cases this might result in more operational surface area for the same amount of logic when

compared to a traditional web application (CNCF 2018). Baldini, Cheng, et al. (2017) ex-

plore the problem of serverless composition and identify a number of challenges. First of all

when a function sequentially invokes and waits for the return of another function, the parent

function must stay active during the child function’s execution. This results in the customer

paying twice: once for the parent function and again for the invoked function. This phe-

nomenon of double billing extends to any number of nested invocations and is thus highly

undesirable. As well as billing, limits on execution duration constraint nested function com-

position. The authors describe another form of function composition where a function upon

return fires a completion trigger that in turn asynchronously invokes another function, akin

to continuation-passing style. This form avoids the problem of double billing, but in effect

makes the resulting composition event-driven and thus not synchronously composable. One

indicator of the complexity of composing serverless functions is that in a recent industry sur-

vey (Leitner et al. 2019) current FaaS applications were found to be small in size, generally

consisting of 10 or fewer functions. The same study observes that adopting FaaS requires a

mental model fundamentally different from traditional web-based applications, one that em-

phasizes “plugging together” self-contained microservices and external components. While

novel, the serverless mental model was found to be easy to grasp. Finally, familiarity with

concepts like functional programming and immutable infrastructures was considered helpful

when starting with FaaS.

Vendor lock-in is another inherent serverless trade-off pointed out by several authors (includ-

ing Baldini, Castro, et al. 2017; CNCF 2018; Roberts 2016). While programming models

among the major FaaS providers have evolved into fairly similar forms, FaaS applications

tend to integrate tightly with various other platform services which means a lack of inter-

operability and difficulty in migration between cloud providers. Vendor lock-in is a general

concern in cloud computing, but especially relevant here as serverless architectures incen-

tivize tighter coupling between clients and cloud services (Adzic and Chatley 2017). One

solution to tackle the vendor lock-in problem is to utilize a serverless framework. Kritikos

and Skrzypek (2018) review a number of frameworks that either “abstract away from server-

less platform specificities” or “enable the production of a mini serverless platform on top of

existing clouds” and thus aim for provider-independence. Vendor control is another concern,

31

as serverless computing intrinsically means passing control over to a third-party provider

(Roberts 2016). This is partly addressed by FaaS platforms maturing and offering stronger

Service Level Agreements: both AWS (2018a) and Microsoft (2018b) by now guarantee

99.95% availability.

Another category of serverless drawbacks are the ones related to current implementations.

Unlike the inherent trade-offs described above, we can expect to see these problems solved or

alleviated with time (Roberts 2016). The most apparent implementation drawbacks in FaaS

are limits on function life-span and resource usage, as outlined in Section 2.5. A function

that exceeds either its duration or memory limit is simply terminated mid-execution, which

means that larger tasks need to be divided and coordinated into multiple invocations. The

lifespan limit is likewise problematic for Websockets and other protocols that rely on long-

lived TCP connections, since FaaS platforms do not provide connection handling between

invocations (Hendrickson et al. 2016).

Startup latency is one of the major performance concerns in current FaaS implementations

(CNCF 2018). As per the on-demand structure, FaaS platforms tie up container resources

upon function invocation and release them shortly after execution finishes. This leads to

higher server utilization but incurs container initialization overhead. In case of frequent

execution the overhead can be avoided as FaaS platforms reuse the function instance and

host container from previous execution in a so called “warm start”. A “cold start” in turn

occurs when some time has elapsed since previous execution and the host container instance

has been deprovisioned, in which case the platform has to launch a new container, set up

the runtime environment and start a fresh function host process. Application traffic patterns

and idle duration play a defining role in startup latency: a function invoked once per hour

will probably see a cold start on each invocation, whereas a function processing 10 events

per second can largely depend on warm starts. For background processing and other tasks

where latency is not of great importance, cold starts are typically manageable. Latency-

critical but infrequently executed functions might instead work around the problem with

scheduled pings that prevent the instance from being deprovisioned and keep the function

warm. (Roberts 2016)

Hendrickson et al. (2016) compare the warm and cold start behaviours in AWS Lambda,

32

observing a 1ms latency in unpausing a container as opposed to hundreds of milliseconds

of latency in restarting or fresh starting a container. Keeping containers in paused state un-

til the next function invocation is not feasible though due to high memory cost. Improving

FaaS startup latency then becomes a problem of either reducing container restart overhead

or reducing the memory overhead of paused containers. Lloyd et al. (2018a) further sub-

divide function initialization into 4 possible states (in decreasing order of startup latency):

provider cold, VM cold, container cold and warm. The first state occurs when a new function

is invoked for the first time, requiring a new container image build. VM cold state requires

starting a new VM instance and transferring the container image to the host. A container

cold initialization involves spinning up a new container instance on an already running VM

using the pre-built container image, and a warm run refers to reusing the same container

instance as outlined above. Experimenting with AWS Lambda invocations interspersed with

various idle periods, the authors observed that warm containers were retained for 10 minutes

and VMs for 40 minutes. After 40 minutes of inactivity all original infrastructure was depro-

visioned, leading to a 15x startup latency on the next invocation when compared to a warm

start. Finally, the authors observed correlation between function memory size and cold start

performance, with an approximately 4x performance boost when increasing memory size

from 128MB to 1536MB.

Wang et al. (2018) provide empiric observations on startup latencies among various server-

less platforms. Measuring the difference between invocation request time and execution start

time using the NodeJS runtime, the authors discovered a median warm start latency of 25ms,

79ms and 320ms on AWS, Google and Azure, respectively. Median cold start latency on

AWS ranged from 265ms on a 128MB function to 250ms on a 1536MB function. Memory

allocation had more impact on Google Functions with median cold start latency ranging from

493ms on a 128MB function to 110ms on a 2048MB function. Azure, with no memory size

pre-allocation, revealed a considerably higher cold start latency at 3640ms. Runtime environ-

ment also had an observable effect, as Python 2.7 achieved median latencies of 167–171ms

while Java functions took closer to a second. In another study, Jackson and Clynch (2018)

discover significant differences on performance between the different language runtimes on

AWS Lambda and Azure Functions. The top performers in terms of “optimum performance

and cost-management” were found to be Python on AWS Lambda and C# .NET on Azure

33

Functions.

Apart from memory allocation and runtime environment, function size (consisting of source

code, static assets and any third-party libraries) affects startup latency (Hendrickson et al. 2016).

FaaS runtimes typically come preconfigured with certain common libraries and binaries, but

any additional dependencies have to be bundled together with source code. On top of in-

creasing download time from function repository to a fresh container, library code often has

to be decompressed and compiled with further implications on startup latency. Hendrickson

et al. (2016) propose adding package repository support to the FaaS platform itself. Oakes

et al. (2017) in turn design a package caching layer on top of the open-source FaaS platform

OpenLambda.

Eyk, Iosup, Abad, et al. (2018) see tackling the novel performance challenges crucial for

more general adoption of FaaS, particularly in the latency-critical use cases of web and IoT

applications. The first challenge concerns the performance overhead incurred by splitting

an application into fine-grained FaaS functions. Overhead in FaaS originates primarily from

resource provisioning as described above, but request-level tasks like routing as well as func-

tion lifecycle management and scheduling also play a part. Performance isolation is another

challenge noted by the authors: FaaS platforms typically deploy multiple functions on the

same physical machine, which improves server utilization but has the drawback of reducing

function performance due to resource contention. Function scheduling, i.e., deciding where

an invoked function should be executed is another complicated problem with multiple con-

straints: schedulers have to balance between available resources, operational cost, function

performance, data locality and server utilization among other concerns. Finally, the authors

note the lack of performance prediction and cost-performance analysis tools as well as a need

for comprehensive and systematic platform benchmarks.

Leitner et al. (2019) surveyed cloud developers on FaaS challenges with interesting results:

the most prominent obstacles were not performance-related, but rather pointed to a lack of

tooling and difficulties in testing. Integration testing in particular remains a thorny subject,

since serverless applications are by nature highly distributed and consist of multiple small

points of integration. Reliance on external BaaS components also often necessitates writing

stubs and mocks, which further complicates testing. On the other hand this is an area of

34

rapid progress, with the advent of popular open-source frameworks as well as tools for local

execution and debugging (Roberts 2016).

In general serverless is still an emerging computing model lacking in standardization, ecosys-

tem maturity, stable documentation, samples and best practices (CNCF 2018). Current FaaS

implementations in many ways fall short of the abstract notion of utility computing. Put

another way, “a full-fledged general-purpose serverless computing model is still a vision that

needs to be achieved” (Buyya et al. 2019). In addition to incurring a performance overhead,

current FaaS platforms fail to completely abstract away all operational logic from the user,

as users still have to allocate memory and set limits on execution duration and parallelism

(Eyk et al. 2017). Also despite improving utilization from previous cloud service models,

FaaS platforms still operate in relatively coarse-grained increments: Eivy (2017) gives the

pointed example that “the cost to use one bit for a nanosecond is no different than the cost to

use 128MB for 100 milliseconds”.

Hellerstein et al. (2019) present a pointed critique of serverless computing, concluding that

current first-generation serverless architectures fall short of the vision of utility computing.

“One step forward, two steps back” in terms of cloud innovation, serverless computing fails

to enable developers to seamlessly harness the practically unlimited storage and processing

power of the cloud. First of all the authors observe that FaaS functions, running on iso-

lated VMs separate from data, are an architectural anti-pattern: FaaS “ships data to code”

instead of “shipping code to data”, a bad design decision in terms of latency and bandwidth.

Second, FaaS functions are limited in terms of distributed computing since they offer no net-

work addressability: a function cannot directly communicate with another function instance,

which rules out any design based on concurrent message-passing and distributed state. The

approach FaaS takes is to rely on external shared state storage for exchanging data between

functions, which means that all communication passes through cloud storage. The authors

note that “communicating via cloud storage is not a reasonable replacement for directly-

addressed networking” since it is “at least one order of magnitude too slow.” Finally the

authors see FaaS discouraging innovation in both hardware and open source, as serverless

platforms run on fairly uniform virtual machines and lock users into proprietary services.

Having said that, the authors concede that some constraints inherent to FaaS can in fact ben-

35

efit cloud innovation. For example the lack of guarantee over sequential execution or phys-

ical hardware locality across functions can lead to more general-purpose program design.

The critique finishes with a set of challenges to be addressed by next-generation serverless

platforms: data and code colocation, heterogeneous hardware support, long-running address-

able software agents, new asynchronous and granular programming language metaphors and

improvements in service-level guarantees and security.

Future directions involve addressing these limitations, with a few interesting efforts already

springing up: Boucher et al. (2018) for example propose a reimagining of the serverless

model, eschewing the typical container-based infrastructure in favour of language-based iso-

lation. The proposed model leverages language-based memory safety guarantees and system

call blocking for isolation and resource limits, delivering invocation latencies measured in

microseconds and a smaller memory footprint. The authors hypothesize that combining low

network latencies available in modern data centers together with minuscule FaaS startup la-

tency will enable “new classes and scales for cloud applications” as “fast building blocks can

be used more widely”. In fact one commercial FaaS platform, Cloudflare Workers, already

offers a Javascript runtime which, instead of spawning a full NodeJS process per invoca-

tion, utilizes language-based isolation in shape of V8 isolates – the same technology used to

sandbox Javascript running in browser tabs (Cloudflare 2018). Al-Ali et al. (2018) explore

altogether different boundaries with ServerlessOS, an architecture where not functions, but

user-supplied processes are fluidly scaled across a data center. Compared to the FaaS model

of functions and events, a process-based abstraction “enables processing to not only be more

general purpose, but also allows a process to break out of the limitations of a single server”.

The authors also argue that the familiar process abstraction makes it easier to deploy existing

code and migrate legacy applications on to a serverless platform.

36

3 Serverless design patterns

In this chapter we take a look at serverless design patterns. Design patterns describe com-

monly accepted, reusable solutions to recurring problems (Hohpe and Woolf 2004). A design

pattern is not a one-size-fits-all solution directly translatable into software code, but rather

a formalized best practice that presents a common problem in its context along a general

arrangement of elements that solves it (Gamma et al. 1994). The patterns in this chapter

are sourced from scientific literature on serverless computing as well as cloud provider doc-

umentation (AWS 2018b; Microsoft 2018a). Literature on object-oriented patterns (OOP)

(Gamma et al. 1994), SOA patterns (Rotem-Gal-Oz 2012), cloud design patterns (Microsoft

2018a) as well as enterprise integration patterns (EIP) (Hohpe and Woolf 2004) was also

reviewed for applicable practices.

The patterns are grouped into four categories for better readability. How the patterns fit

together is sketched out in Figure 8. These interrelations form a pattern language, i.e., a

structural organization of pattern relations (Rotem-Gal-Oz 2012).

Figure 8: Pattern language

37

3.1 Composition patterns

How to compose and orchestrate serverless functions together into more expansive sequences

or workflows?

3.1.1 Routing Function

Problem: How to branch out execution flow based on request payload?

Figure 9: Routing Function

Solution: Use a central routing function to receive requests and invoke appropriate functions

based on request payload.

This pattern involves instantiating a routing function that contains all the necessary informa-

tion to route requests to other functions. All function invocations are directed to the routing

function, which in turn invokes target functions according to request payload. The routing

function finally passes target function return value over to the client.

It is notable that FaaS platforms commonly provide API gateways and other tools for routing,

for example the Amazon API Gateway (AWS 2018a). These tools however are mostly lim-

ited to path-based routing, whereas a routing function can be implemented to support more

dynamic use cases. Also notably, according to an industry survey (Leitner et al. 2019), some

practitioners opted for the Routing Function pattern over platform API gateway services as

they found the latter cumbersome to manage. Sbarski and Kroonenburg (2017) similarly

postulate that the pattern “can simplify the API Gateway implementation, because you may

not want or need to create a RESTful URI for every type of request”. One advantage of the

38

pattern is that the routing function can be used to supplement request payload with additional

context or metadata. A centralized routing function also means that all routing configuration

is found in one place, and that public-facing API routes only need to be configured for one

function, not all of them (Leitner et al. 2019). From a client’s point of view, the Routing

Function has the benefit of abstracting backend services so that calls can be rerouted to dif-

ferent services without changing client implementation; this can be put to use for example in

A/B testing by partially rolling out new updates to selected clients (Microsoft 2018a).

The pattern’s major disadvantage is double billing, as the routing function essentially has

to block and wait until the target function finishes execution. Additionally, as routing is

implemented at function code level, information about function control flow gets hidden in

implementation rather than being accessible from configuration (Leitner et al. 2019). Also,

like any centralized service, the Routing Function can potentially introduce a single point of

failure or a performance bottleneck (Microsoft 2018a).

The Routing Function resembles the OOP Command pattern which is used to decouple caller

of the operation from the entity that carries out the processing via an intermediary command

object (Gamma et al. 1994). A related EIP pattern is the Content-Based Router, which

“examines the message content and routes the message onto a different channel based on data

contained in the message” (Hohpe and Woolf 2004). Also pertinent to the serverless Routing

Function, Hohpe and Woolf (2004) caution that the Content-Based Router should be made

easy to maintain as it can become a point of frequent configuration. Finally, Microsoft’s

cloud design patterns includes the Gateway Routing pattern that is similarly employed to

“route requests to multiple services using a single endpoint” (Microsoft 2018a).

3.1.2 Function Chain

Problem: Task exceeds maximum function execution duration, resulting in a timeout.

Figure 10: Function Chain

39

Solution: Split the task into separate function invocations that are chained together sequen-

tially.

The Function Chain comprises of an initial function invocation and any number of subse-

quent invocations. The initial function begins computation while keeping track of remaining

execution time. For example in AWS Lambda the execution context contains information on

how many milliseconds are left before termination (AWS 2018a). Upon reaching its duration

limit, the initial function invokes another function asynchronously, passing along as param-

eters any state necessary to continue task computation. Since the intermediary invocation

is asynchronous (“fire-and-forget”), the initial function can terminate without affecting the

next function in the chain.

The Function Chain pattern is in effect a workaround over the duration limit that FaaS plat-

forms place on function execution (Leitner et al. 2019). The pattern was reported to be

used at least occasionally in an industry study by Leitner et al. (2019). Its disadvantages

include strong coupling between chained functions, increase in the number of deployment

units and the overhead of transferring intermediate execution state and parameters between

each chained function. Leitner et al. (2019) also note that splitting some types of tasks into

multiple functions can be difficult. Finally, as the pattern relies on asynchronous invocation,

the last function in the chain has to persist computation result into an external storage for the

client to access it which brings in further dependencies.

3.1.3 Fan-out/Fan-in

Problem: Resource limits on a single function lead to reduced throughput.

Solution: Split task into multiple parallel invocations.

As discussed above, serverless functions are limited both in execution duration as well as

CPU and memory capacity. The Function Chain pattern (Section 3.1.2) works around the for-

mer limitation but is still constrained by a single function’s computing resources, which can

result in prohibitively slow throughput for computation-intensive tasks. The Fan-out/Fan-in

pattern is an alternative approach that takes advantage of serverless platforms’ inherent par-

allelism. The pattern consists of a master function that splits the task into segments and then

40

2) Workers process
segments in parallel

1) Master splits task
into segments

(fan-out)

3) Aggregator combines
segment results

(fan-in)

Figure 11: Fan-out/Fan-in

asynchronously invokes a worker function for each segment. Having finished processing,

each worker function stores its result on a persistence layer, and finally an aggregator func-

tion combines the worker results into a single output value – although the aggregation step

can be omitted in cases where intermediary results suffice. As each worker function invoca-

tion runs in parallel with its own set of resources, the pattern leads to faster completion of

the overall task. (Zambrano 2018)

The Fan-out/Fan-in pattern lends itself well to tasks that are easily divisible into indepen-

dent parts: the efficiency gained depends on the granularity of each subdivision. Conversely,

an apparent limitation to the pattern is that not all tasks can be easily distributed into sepa-

rate worker functions. McGrath et al. (2016) utilize the pattern in “easily and performantly

solving a large-scale image resizing task”. The authors point out how the pattern reduces

development and infrastructure costs compared to a traditional multi-threaded application

which “typically demands the implementation of a queueing mechanism or some form of

worker pool”. Lavoie, Garant, and Petrillo (2019) similarly study “the efficiency of a server-

less architecture for running highly parallelizable tasks” in comparison to a conventional

MapReduce solution running on Apache Spark, concluding that “the serverless technique

achieves comparable performance in terms of compute time and cost”.

Hohpe and Woolf (2004) present a similar approach to messaging with the EIP pattern of

41

Composed Message Processor, which “splits the message up, routes the sub-messages to the

appropriate destinations and re-aggregates the responses back into a single message.”

3.1.4 Externalized State

Problem: How to share state between sequential or parallel serverless function instances?

1) Function persists
state before terminating

2) Another function
reads previous state

Figure 12: Externalized State

Solution: Store function state in external storage.

Serverless functions are, as discussed, stateless by design. Function instances are spawned

and terminated ephemerally in a way that an instance has no access to any preceding or

parallel instance state. Not all serverless use cases are purely stateless however, so being

able to store and share state between function instances comes up as a common requirement.

This is evidenced by a survey on serverless adoption in which two thirds of respondents

reported at least sometimes applying the Externalized State pattern, making it by far the

most common among the surveyed patterns (Leitner et al. 2019).

The Externalized State pattern is a fundamental pattern that consists of storing a function’s

internal state in external storage such as a database or a key-value store. The pattern is used to

reliably persist state between sequential function invocations, and on the other hand to share

state between parallel invocations. Imposing state on a stateless paradigm does not come

free though, as relying on external storage induces latency and extra programming effort as

well as the operational overhead of managing a storage component. (Leitner et al. 2019)

42

3.1.5 State Machine

Problem: How to coordinate complex, stateful procedures with branching steps?

Figure 13: State Machine

Solution: Split a task into a number of discrete functions and coordinate their execution with

an orchestration tool.

Hong et al. (2018) describe the State Machine pattern as “building a complex, stateful pro-

cedure by coordinating a collection of discrete Lambda functions using a tool such as AWS

Step Functions”. These orchestration tools consist of a collection of workflow states and

transitions between them, with each state having its associated function and event sources –

essentially a serverless a state machine (CNCF 2018). Figure 13 could for example represent

a workflow where the first function attempts a database insert, the second function checks

whether the operation succeeded, and depending on the result either the operation is retried

or execution is finished. The advantage of using provider tooling for workflow execution is

that there is no need for external storage as the orchestrator keeps track of workflow state.

Downsides on the other hand include extra cost arising from orchestration tooling as well as

the overhead of managing workflow descriptions.

López et al. (2018) compare three major FaaS orchestration systems: AWS Step Functions,

IBM Composer and Azure Durable Functions. The compared systems typically support

function chaining, conditional branching, retries and parallel execution, with workflows de-

fined either in a Domain-Specific Language or directly in code. One restriction in Amazon’s

orchestrator is that a composition cannot be synchronously invoked and is thus not compos-

able in itself: a state machine cannot contain another state machine. AWS Step Functions

was also the least programmable among the compared systems, but on the other hand the

43

most mature and performant. Finally, the authors observe that none of the provider-managed

orchestration systems is prepared for parallel programming, with considerable overheads in

concurrent invocation.

A SOA pattern analogous to the State Machine is the Orchestrator, in which “an external

workflow engine activates a sequence (simple or compound) of services to provide a com-

plete business service”. The Orchestrator aims to keep business processes agile and adaptable

by externalizing them from service implementations: instead of hard-coding service inter-

actions they are defined, edited and executed within a workflow engine. Used properly, the

Orchestrator can add a lot of flexibility to the system. Difficulty however lies in implement-

ing services as composable and reusable workflow steps while still keeping them useful as

autonomous services. (Rotem-Gal-Oz 2012).

3.1.6 Thick Client

Problem: Routing client-service requests through an intermediary server layer causes extra

costs and latency.

Figure 14: Thick Client

Solution: Create thicker, more powerful clients that directly access services and orchestrate

workflows.

Serverless applications, as described in Chapter 2, typically rely heavily on third-party cloud

services (BaaS) interspersed with custom logic in form of FaaS functions. In a traditional

three-tier web application architecture interaction with these external services would be han-

dled by a server application that sits between client and service layers (Roberts 2016). Fol-

44

lowing this model, the client can be limited in functionality whereas the server application

plays a larger role. Sbarski and Kroonenburg (2017) point out that the model of the backend

as a gatekeeper between client and services is in conflict with the serverless paradigm. First

of all, using FaaS as a middle layer in front of cloud resources directly translates into extra

costs: on top of paying for the cloud service call, one has to pay for function invocation and

execution for the duration of the network call as well as data transfer between the service

and the FaaS provider. Secondly, a middle layer of FaaS results in extra network hops which

increases latency and reduces user experience. The authors thus advise against routing ev-

erything through a FaaS layer, and advocate building thick clients that communicate directly

with cloud services and orchestrate workflows between them.

In addition to improving cost and network efficiency, the Thick Client has the advantage of

improved changeability and separation of concerns, as the single monolithic backend appli-

cation is replaced by more isolated and self-contained components. Doing away with the

central arbiter of a server application does come with its trade-offs, including a need for dis-

tributed monitoring and further reliance on the security of third-party services. Importantly

not all functionality can or should be moved to the client: security, performance or con-

sistency requirements among others can necessitate a server-side implementation. (Roberts

2016).

The Thick Client pattern depends on fine-grained, distributed, request-level authentication in

lieu of a gatekeeper server application. This follows naturally from the way serverless func-

tions operate: being stateless and continuously scaling up and down, maintaining a session

between the backend and the cloud services is infeasible. Instead of automatically trusting

all requests originating from the backend, each cloud service request has to be individually

authorized. From a cloud service’s point of view, requests originating from a serverless

function or directly from the client are both equally untrusted. Hence in serverless architec-

tures, skipping the backend layer is preferable whenever a direct connection between client

and services is possible. The Valet Key pattern in Section 3.3.4 describes one example of a

request-level authentication mechanism. (Adzic and Chatley 2017)

45

3.2 Event patterns

How to handle asynchronous workflows triggered by external events?

3.2.1 Event Processor

Problem: How to execute a task on-demand upon event occurrence?

1) Handler function subscribes
to event source

2) Event source invokes
handler

Text

Figure 15: Event Processor

Solution: Subscribe a serverless function to a cloud event such as file upload or database

change.

The Event Processor pattern consists of subscribing a serverless function to a cloud event

source so that when the event occurs, the subscribed function gets invoked with access to

the event context (Hong et al. 2018). Serverless platforms typically offer a number of inte-

gration points to events that originate from platform services. An AWS Lambda function,

for example, can be triggered by file uploads, database change events, message queue and

notification services and IoT events (AWS 2018a).

Baldini, Castro, et al. (2017) mention thumbnail generation triggered by image upload as

an exemplary use case of serverless event processing: a bursty, computation-intensive task

triggered on-demand by a cloud event. A traditional approach would be to implement a

poller system that regularly checks for new images and generates thumbnails as images are

detected. Such a system would require constant operation, and depending on polling interval

the design leads to either extra network traffic or potentially long delay between event oc-

currence and processing. The design is especially wasteful in cases where new images come

46

in infrequently. The Event Processor pattern, in turn, can bring considerable cost benefit in

case of infrequent or irregular workflows as computation is only ran when necessary (Hong

et al. 2018). Another advantage is scalability, as functions are automatically invoked as per

the number of events: a large number of events occurring at once leads to a similarly large

number of functions executing in parallel (Hong et al. 2018).

The Event Processor has two counterparts among SOA patterns. In terms of scalability,

a serverless Event Processor essentially implements the Service Instance pattern which in-

volves “deploying multiple instances of service business logic” to address increased service

load. Aptly, the Service Instance pattern is “best suited for stateless service implementa-

tions”. Another related SOA pattern is the Inversion of Communications in which services

eschew point-to-point communication in favour of event-driven architecture to reduce cou-

pling between event sources and consumers. The pattern’s downsides include the added

complexity of designing a system as events and the difficulty of debugging complex event

chains. (Rotem-Gal-Oz 2012)

The Event Processor can also be seen as a serverless form of the Event-Driven Consumer

EIP pattern: a message consumer that sits dormant with no active threads until invoked by

the messaging system. In essence, the pattern bridges the gap between external events and

application-specific callbacks. A notable feature of an Event-Driven Consumer is that it

automatically consumes messages as soon as they become available, which in effect means

that the consumer has no control on its consumption rate: see the Polling Event Processor in

Section 3.2.3 for an alternative solution. (Hohpe and Woolf 2004)

Another point to keep in mind when implementing the Event Processor pattern is that some

cloud event sources operate in at-least-once message delivery semantics: due to the highly

distributed and eventually consistent nature of cloud platforms, events are guaranteed to

be triggered at least once, not exactly once (AWS 2018a). This means that the triggered

serverless function should in effect act idempotently, i.e., multiple executions with the same

context should result in identical side effects. Hohpe and Woolf (2004) introduce a similar

concept with the Idempotent Receiver pattern, a listener that can “safely receive the same

message multiple times”. The authors introduce two primary means for achieving idempo-

tency: either explicit deduplication at the receiving end, or defining message semantics to

47

support idempotency. The first approach calls for keeping track of the messages received

thus far and ignoring any duplicates among incoming messages, leaving us with the problem

of where and for how long to store the message history. The alternative approach is to design

messages themselves in a way that “resending the message does not impact the system”: for

example set account balance to $10 instead of increase account balance by $1.

3.2.2 Periodic Invoker

Problem: How to execute a task periodically in predefined intervals?

Figure 16: Periodic Invoker

Solution: Subscribe a serverless function to a scheduler.

The Periodic Invoker represents an arrangement where a serverless function is invoked pe-

riodically by a scheduler, similarly to a Unix cron task. First, the scheduler invokes the

subscribed function according to its configuration. Second, the function carries out its task.

Finally, after execution the function can report execution result out to a notification chan-

nel, store it in database or shut down if we’re not interested in the outcome. The pattern is

both conceptually simple and easy to implement, as all the major serverless providers of-

fer integration to a cloud-based scheduler such as AWS CloudWatch Events (AWS 2018a),

Google Cloud Scheduler (Google 2018) or Azure Scheduler (Microsoft 2018b). Potential

use cases include periodical backups, compliance checks, service health checks, database

cleanup tasks and other background jobs that are not latency-critical. (Hong et al. 2018)

3.2.3 Polling Event Processor

Problem: How to react to state change in an external service that does not publish events?

Solution: Use the Periodic Invoker to actively poll for state changes and trigger events

accordingly.

48

2) Poller checks
service state

3) Poller invokes event
handler if state changed

1) Scheduler
invokes poller

Figure 17: Polling Event Processor

The Event Processor pattern (Section 3.2.1) is used to perform a task in reaction to some

state change in another system. The pattern depends on the external system to actively

invoke the subscribed function when said state change occurs. Not all systems however are

capable of performing such callbacks on state changes, which renders the pattern unusable

in some cases. The Polling Event Processor works around this limitation by combining the

Event Processor (Section 3.2.1) and Periodic Invoker (Section 3.2.2) patterns to essentially

implement an event-driven integration point in front of a service where no such event source

originally exists. The pattern consists of a Periodic Invoker that repeatedly checks the state

of another service and performs a task when found state matches some condition. The task

performed can be either implemented in the polling function itself or separated to another

function that the poller invokes.

The Polling Event Processor is equivalent to the EIP pattern of Polling Consumer, where

a receiver synchronously polls for a message, processes it and then polls for another. As

well as offering eventful integration to non-eventful services, the pattern has the advantage

of controlling its consumption rate. Whereas the Event Processor executes tasks as soon as

events occur, the Polling Event Processor explicitly polls for new events when it is ready for

them. The polling interval can also be configured to implement batching. As a downside,

a sparse polling interval leads to increased latency between event occurrence and task exe-

cution. On the other hand a more fine-grained polling interval results in wasted resources

when there are no events to consume. In short, “polling enables the client to control the rate

of consumption, but wastes resources when there’s nothing to consume.” (Hohpe and Woolf

49

2004)

3.2.4 Event Broadcast

Problem: How to invoke multiple parallel functions as a result of a single event occurrence?

Event source
publishes message

Publish-subscribe
channel invokes

subscribers

Event handler
functions subscribe to

publish-subscribe
channel

Figure 18: Event Broadcast

Solution: Subscribe multiple functions to a notification service, publish notification on event

occurrence.

The Event Processor pattern (Section 3.2.1) is applicable within cases of 1–to–1 relation-

ship between events and tasks, as exemplified above with image upload triggering thumbnail

generation. However in other cases a single event can result in multiple independent tasks.

For example the image upload event could as well trigger a database update and a notifi-

cation email, adding up to three self-contained and parallel tasks. Most event sources only

support invoking one function per event which leaves us with a couple of options. First,

we could set up a new function that subscribes to the image upload event and in turn asyn-

chronously invokes any number of processor functions, as a sort of an eventful Routing

Function 3.1.1. This approach comes with the operational overhead of setting up and main-

taining an additional function per each event broadcast. An alternative solution is to utilize a

publish-subscribe channel such as AWS Simple Notification Service (AWS 2018a), Google

Cloud Pub/Sub (Google 2018) or Azure Service Bus (Microsoft 2018b). The key feature of

50

a publish-subscribe channel is that any number of listeners can subscribe to a single channel,

which can be used to overcome the 1–to–1 relationship between event sources and functions.

Now instead of subscribing a function directly to an event source, functions subscribe to a

message channel that the event source publishes a message to upon event occurrence. In

addition to achieving parallel fan-out to multiple functions, the pattern has the added benefit

of loosed coupling between event sources and handler functions. (Sbarski and Kroonenburg

2017)

The Event Broadcast’s object-oriented counterpart is the Observer: “define a one-to-many

dependency between objects so that when one object changes state, all its dependants are

notified and updated automatically” (Gamma et al. 1994). Just like above, the pattern de-

couples observers from the subject; that is, the object that we’re interested in publishes its

state regardless of the number of interested observers. The EIP pattern of Publish-Subscribe

Channel expands the same decoupling to messaging: one input channel is split into multiple

output channels, with each subscriber having its own channel and thus receiving its own copy

of the original message (Hohpe and Woolf 2004).

3.3 Integration patterns

How to integrate to external – including legacy – systems?

3.3.1 Aggregator

Problem: An operation consists of multiple API requests, resulting in extra network hops

between client and service.

Solution: Aggregate multiple API requests under a single serverless function.

Service clients often need to deal with operations that involve performing several API calls,

either in parallel or sequentially, and then filtering or combining the results. The operation

might utilize multiple different services or just different endpoints of a single service. Bal-

dini, Castro, et al. (2017) use the example of combining geolocation, weather and language

translation APIs to render a localized weather forecast. Another example concerns a se-

51

External APIs

Client Aggregator function

Figure 19: Aggregator

quential multi-step API call of first fetching an API key, then resource location, and finally

performing the actual operation. Composing operations out of multiple cross-service calls is

a natural outcome of service oriented architectures, but incurs the penalty of extra resource

usage and network latency in clients. The problem is further magnified in microservice and

serverless architectures due to the fine service granularity. (Microsoft 2018a)

The Aggregator pattern consists of wrapping the required API calls into a single serverless

function which is then exposed as a singular endpoint to clients. The Aggregator calls each

target API and combines the results so that the client is left with a single network call,

reducing the risk of network failure. Client resource usage is also reduced since any filtering

or aggregation logic is offloaded to the Aggregator. Also ideally the Aggregator function is

located near backend services to minimize network latency, and individual API responses

are cached whenever possible. (Baldini, Castro, et al. 2017)

The Aggregator is largely equivalent to the Gateway Aggregation cloud design pattern (Mi-

crosoft 2018a). Baldini, Castro, et al. (2017) in turn split the pattern into API composition

and API aggregation, for combined and sequential request flows respectively. It is worth

noting that the Aggregator does not address the problems of network failure and incomplete

requests, as the aggregating function might still encounter failed requests from downstream

services. The pattern rather outsources the risk from service consumer to a backend service,

working thus opposite to the Thick Client pattern’s consumer-driven service orchestration

(Section 3.1.6). To ensure reliable operation when one of the API requests fails the Ag-

52

gregator might internally implement the Compensating Transactions cloud design pattern

by pairing each request with a compensating action performed in case of failure (Microsoft

2018a). The SOA patterns of Transactional Service and the more heavyweight Saga could

also be used to enforce transactional guarantees inside the Aggregator (Rotem-Gal-Oz 2012).

3.3.2 Proxy

Problem: How to make a legacy service easier to consume for modern clients?

Legacy service

Figure 20: Proxy

Solution: Implement a serverless function as a proxy layer that translates requests between

clients and the legacy service.

Applications often need to integrate to a legacy system for some resource or functionality.

This requirement might present itself when an outdated but crucial system is in the process

of being migrated, or cannot be migrated at all due to reasons of complexity or cost. Legacy

systems might suffer from quality issues and use older protocols or data formats, which

makes interoperation with modern clients problematic. A client would have to implement

support for legacy technologies and semantics, which might adversely affect its own design

goals. (Microsoft 2018a)

The serverless Proxy pattern essentially “makes legacy services easier to consume for mod-

ern clients that may not support older protocols and data formats” (Sbarski and Kroonenburg

2017). The pattern consists of a serverless function that acts as a proxy in front of the

legacy service, handling any necessary protocol or data format translation and sanity checks.

Conversely for client applications, the Proxy offers a clean and modern API for easier con-

sumption. Sbarski and Kroonenburg (2017) use the example of offering a JSON API in front

of a SOAP service. The pattern is also referred to as the Anti-Corruption Layer, alluding to

how it works to contain a system’s quality issues: “this layer translates communications be-

53

tween the two systems, allowing one system to remain unchanged while the other can avoid

compromising its design and technological approach” (Microsoft 2018a).

3.3.3 Strangler

Problem: How to migrate an existing service to serverless architecture in a controlled fash-

ion?

1) Client requests
service

2) Strangler directs
request either into legacy or

migrated service

Legacy services

Migrated services

Figure 21: Strangler

Solution: Create a façade in front of the legacy API and incrementally replace individual

routes with serverless functions.

Migrating an extensive application to serverless in one go could be a lengthy endeavour and

lead to service downtime. Instead, it is often safer to perform a gradual migration where

parts of an API are replaced one by one with the old system still running in the background

and serving the yet to be migrated features. The problem with running two versions of the

same API, however, is that clients need to update their routing every time a single feature is

migrated. (Microsoft 2018a)

The Strangler solves the problem of gradual migration by first wrapping the whole legacy

API behind a simple façade that initially just proxies requests to the legacy API as before.

Then, as individual features are migrated to serverless, the façade’s internal routing is up-

dated to point to the serverless function instead of the legacy API. Thus “existing features

can be migrated to the new system gradually, and consumers can continue using the same

54

interface, unaware that any migration has taken place” (Microsoft 2018a). Eventually when

all features have completed migration, the old system can be phased out. Zambrano (2018)

proposes implementing the façade with an API gateway that matches and proxies all routes,

but the Routing Function pattern (3.1.1) is equally applicable here. The author also points out

how the Strangler makes it easy to roll back a new implementation in case of any problems,

and thus helps to reduce the risk in migration.

3.3.4 Valet Key

Problem: How to authorize resource access without routing all traffic through a gatekeeper

server process?

2) Authorizer function
checks access rights
and generates token

1) Client requests
access

2) Client requests
resource using token

Figure 22: Valet Key

Solution: Let the client request an access token from an authorizer function, use the token

to directly access a specific resource.

As put forth in Section 3.1.6, serverless function instances do not form long-lived sessions

with backend services which means that each service request must be individually autho-

rized. With this in mind, routing client-service requests through a serverless function brings

us no apparent security advantage, as both the client and the serverless function are equally

untrusted from a service’s point of view; on the contrary, having an extra server layer in the

middle would only introduce additional latency and cost in data transfer (Adzic and Chatley

2017). The problem then becomes one of authorizing client-service communication without

storing service credentials in the client and thus losing control of service access, and on the

other hand without routing each request through the backend and thus in effect paying twice

55

for data transfer.

One authorization pattern that fits the above requirements is the Valet Key. In this pattern

the client, when looking to access a resource, first requests access from a special authorizer

serverless function. The authorizer function checks the client’s access rights and then signs

and returns an access token that is both short-lived and tightly restricted to this specific

resource and operation. Now for any subsequent calls until token expiration, the client can

call the resource directly by using the token as authentication. This removes the need for

an intermediate server layer and thus reduces the number of network round-trips and frees

up resources. At the same time the pattern avoids leaking credentials outside the authorizer

function since the token’s cryptographic signature is enough for the resource to validate

request authenticity. (Microsoft 2018a)

The Valet Key relies heavily on cloud services’ fine-grained authorization models, as the

access token needs to be tightly restricted to a specific set of access permissions; for example

read access to a single file in file storage or write access to a single key in a key/value

store. Specifying the allowed resources and operations accurately is critical since granting

excessive permissions could result in loss of control. Also, extra care should be taken to

validate and sanitize all client-uploaded data before use since a client might have either

inadvertently or maliciously uploaded invalid content. (Microsoft 2018a)

Adzic and Chatley (2017) raise a point about how the Valet Key model of direct client-

resource communication can enable significant cost optimization in serverless architectures.

For example in case of sending a file to a storage service like AWS S3, having a serverless

function in the middle would require a high memory reservation to account for large files as

well as paying for function execution time throughout file transfer. As the storage service it-

self only charges for data transfer, cutting out the middle man and sending files directly from

the client reduces costs significantly. The authors emphasize that as FaaS costs “increase in

proportion to maximum reserved memory and processing time [. . .] any service that does

not charge for processing time is a good candidate for such cost shifting”.

56

3.4 Availability patterns

How to guarantee availability in serverless systems and deal with the platform’s performance

constraints?

3.4.1 Function Warmer

Problem: The cold start phenomenon leads to high latency in infrequently invoked func-

tions.

2) Warmer function
pings targets

1) Scheduler invokes
warmer function

Pool of warm
function instances

Figure 23: Function Warmer

Solution: Ping a function periodically to retain infrastructure and keep the function “warm”.

Section 2.10 introduced cold starts as a major FaaS pain point. To reiterate, a cold start refers

to an infrequently invoked function’s start-up latency which results from its infrastructure

allocation being deprovisioned after a period of inactivity. Lloyd et al. (2018a) for example

observed a 15x increase in startup delay for cold starts as opposed to warm starts where

existing infrastructure gets reused. While this problem is tied to limitations in current FaaS

implementations and can be expected to be mitigated by advances in container technology,

cold starts can hamper the adoption of FaaS technology in latency-critical applications.

The Function Warmer tackles the cold start problem by “pinging” (invoking) a function pe-

riodically with an artificial payload to prevent the FaaS platform from deprovisioning its

infrastructure (Leitner et al. 2019). In detail, the pattern is implemented with a scheduled

57

function (using the Periodic Invoker 3.2.2 or the State Machine 3.1.5) that invokes the target

function in predefined intervals. Additionally, the target function’s handler is instrumented

with logic to handle warming invocations: the handler identifies the artificial payload and

replies accordingly without running the whole function. If the aim is to keep several concur-

rent function instances warm, the Function Warmer should invoke the same function multiple

times with delayed executions. Now with the function warmed up and its infrastructure re-

tained, any subsequent invocations can be served with minimal latency.

Leitner et al. (2019) note two drawbacks inherent to the pattern: the extra code needed in

functions to manage warming invocations, and the invocation cost induced by pinging. The

first point is largely a matter of tooling, and indeed many of the FaaS frameworks reviewed by

Kritikos and Skrzypek (2018) are already equipped to handle pinging logic. As for the latter

point, the cost depends on how long the platform retains idling containers for. Investigating

infrastructure retention in AWS Lambda, Lloyd et al. (2018a) find that host containers are

reused when invoked again within 5 minutes; a pinging request in 5 minute intervals then

comes down to 8640 invocations per month which is well below the free tier offered by

most platforms. Bardsley, Ryan, and Howard (2018) likewise note that “this approach will

not significantly raise the cost of the deployment since calls to ping the relevant Lambdas

would only have to be made infrequently”. It is also notable that even with the extra pinging

costs a FaaS solution can be more economical than a VM-based one: Lloyd et al. (2018b),

while leveraging the Function Warmer to retain 100 concurrent function instances, observe

a 400% improvement over cold function performance and a 17.6x reduction in hosting costs

compared to VM instances.

A more fundamental issue with the Function Warmer pattern is its necessity in the first place,

as ideally the problem of start-up latency would be done away with by the platform. Leitner

et al. (2019) note that patterns such as the Function Warmer “can be seen as developers strug-

gling with the inherent limitations of FaaS and working around them”. Lloyd et al. (2018a)

also point fingers to the platform side, urging cloud providers to “consider opportunisti-

cally retaining infrastructure for longer periods when there is idle capacity to help offset the

performance costs of container initialization”. The pattern represents, however, a practical

solution to a real limitation that all FaaS platforms suffer from at least for the time being.

58

Bardsley, Ryan, and Howard (2018) similarly conclude that “whilst this approach somewhat

defeats the purpose of a system which should dynamically scale in response to demand it is

nevertheless a viable strategy in mitigating the effect of cold Lambdas on overall latency”.

3.4.2 Singleton

Problem: External dependencies like database connections are re-initialized upon each func-

tion invocation, leading to degraded performance.

Global scope

Function scope Function scope

Connection object

Figure 24: Singleton

Solution: Leverage global scope within your serverless function code to take advantage of

container reuse.

Web applications often perform some sort of initialization as a part of their start-up process.

Typical examples include connecting to a database and reading configuration or other static

objects into runtime memory. In a conventional web application the cost of this initialization

phase is negligible as it happens only once in the beginning of a long-running server process.

Serverless function instances on the other hand are continuously torn down and recreated, so

any delay in initialization has a significant impact on overall performance.

The way containers are reused by FaaS platforms enables us to mitigate the problem. As

established earlier in Section 2.10, after a function instance terminates the platform retains

its container for a while in case of another invocation. The next function instance, when

59

reusing this “warm” container, has access to the runtime variables already initialized during

the previous execution. In detail, a reused container retains all of the global or static vari-

ables defined outside the function handler (an example of which is presented in Listing 2.1).

The serverless Singleton pattern consists of reusing these pre-established variables and thus

saving us the cost of re-initialization. For example, instead of reconnecting to a database in

the beginning of each invocation, a single database connection can be shared by a number

of subsequent instances. To implement the Singleton involves declaring such connections

and other reusable objects in the global scope and having logic in place to check if a con-

nection already exists before creating a new one. Like its object-oriented namesake (Gamma

et al. 1994), the pattern ensures a single global instance per given resource as well as its “lazy

initialization”, i.e., creation on first use. (AWS 2018b)

3.4.3 Bulkhead

Problem: Multiple workflows in a single function leads to a high-latency execution path

degrading the others’ performance.

Service

Workflow 1 Workflow 2

Figure 25: Bulkhead

Solution: Isolate high-latency code into separate functions to avoid resource contention.

A bulkhead refers to a sectioned partition in a ship’s hull designed to prevent the whole ship

from filling with water and sinking in case of an accident. Similarly in cloud computing

context the Bulkhead pattern refers to isolating “elements of an application into pools so that

if one fails, the others will continue to function” (Microsoft 2018a). The idea is to prevent

a situation where a single service, when facing resource exhaustion due to a load peak or

60

application error, brings down all of its consumers with it causing a cascading failure and

large-scale service interruption. The way this is achieved is by partitioning resources into

self-contained blocks divided along lines of expected load and availability requirements: a

separate service instance for each consumer, for example, or conversely a separate set of

consumer resources (such as threads) for each consumed service (Nygard 2007). Now even

with one service unavailable the system as a whole can deliver some level of functionality.

What are the serverless implications of this inter-service resource contention problem? It

seems that FaaS platforms already ensure resource isolation as each function instance runs

in its own container. Declaring the problem solved might be premature, however, namely for

two reasons: first of all as shown by Wang et al. (2018), function instances, albeit isolated

on a container-level, do suffer from resource contention on a VM level – a byproduct of

some platforms’ scheduling strategy of scaling a single function in the same VM. Secondly,

a single function can contain multiple execution paths with varying latencies, which can

lead to intra-service resource contention. Bardsley, Ryan, and Howard (2018) for example

demonstrate customer data function with endpoints for both refreshing a token and simply

requesting it: a case where the “asymmetrical nature of the performance profile between

the refresh and request calls, with the refresh operation suffering significantly higher latency

than the request call, could cause refresh calls to unnecessarily divert requests to cold Lamb-

das”. Put another way, resource contention can occur inside a single FaaS function when an

infrequently invoked high-latency workload degrades the performance of a more frequently

invoked low-latency one.

While the VM-level resource contention is only addressable by platform providers, the

function-level one is mitigated with finer function granularity. A serverless Bulkhead pattern

then comes to mean splitting high-latency workflows from a single function into their own

functions. In the customer data example above, for example, this required “separating the

request and refresh functionality into separate Lambdas to prevent high latency in one part of

the system adversely affecting another” (Bardsley, Ryan, and Howard 2018). As per Adzic

and Chatley (2017), the serverless paradigm already does away with economic incentives for

bundling applications together in larger deployment units; likewise AWS best practices guide

towards “smaller functions that perform scoped activities” (AWS 2018b). As well as helping

61

to avoid resource contention, the Bulkhead enables workflows to scale independently. Main-

taining a larger number of functions does still incur an operations overhead, however, and

partitioning workflows might not be trivial.

3.4.4 Throttler

Problem: A rapidly scaling FaaS function overwhelms a non-scaling downstream service,

resulting in function timeout.

1) Throttler function
pushes incoming requests

into a queue

2) Consumer function
processes queued requests

Figure 26: Throttler

Solution: Add a message queue in front of downstream service to throttle bursts of concur-

rent requests originating from FaaS.

Serverless platforms scale out horizontally in response to increased demand – up to 1000

concurrent function instances in case of AWS Lambda (AWS 2018a) and Google Cloud

Functions (Google 2018). This configuration-free elasticity is a major FaaS selling point

and plays well together with similarly autoscaling BaaS services. Scalability can turn into

a pitfall, however, when interacting with conventional non-scaling resources, since a rapidly

scaling FaaS function has the potential to overwhelm components that lack similar scal-

ing properties or are otherwise not designed to accept high-volume traffic (CNCF 2018).

This can have the effect of rendering the whole system unavailable by what is essentially a

self-inflicted Denial of Service-attack. How would for example an on-premise database with

strict connection limits fare with said 1000 concurrent instances? Avoiding non-scaling com-

ponents in serverless architectures is not feasible either as few systems have the luxury of

not depending on any pre-existing components. Migrating these components into the cloud

or deploying enough on-premise hardware to meet peak demand can also be prohibitively

62

costly and organizationally difficult.

Addressing the problem then calls for some mechanism to protect downstream services from

intermittent load spikes caused by FaaS scaling. The simplest solution is to apply a limit

on the number of concurrent function instances – a configuration option most FaaS plat-

forms provide. AWS documentation for example states that “concurrency controls are some-

times necessary to protect specific workloads against service failure as they may not scale

as rapidly as Lambda”, particularly in case of “sensitive backend or integrated systems that

may have scaling limitations” and “database connection pool restrictions such as a relational

database, which may impose concurrent limits” (AWS 2018b). While managing to ease the

pressure on downstream services, this solution causes non-responsivity in consuming appli-

cations and arguably fails to take full advantage of the FaaS platform.

The Throttler represents a more sophisticated approach, based on buffering the bursts of

concurrent requests originating from FaaS and resolving them asynchronously in a more

controlled pace. A serverless adaptation of the Queue-Based Load Leveling cloud design

pattern (Microsoft 2018a), the Throttler adds a message queue between the function and the

downstream service so that upon a new request, instead of immediately invoking the service

and waiting for a reply, the function pushes the request into the queue and responds to the

consumer with an acknowledgement of receipt. It is then the job of another function to con-

sume the queue and resolve service requests. By adjusting queue consumption rate request

spikes can be resolved in a smoother fashion, thus avoiding service resource exhaustion and

function timeouts. A persistent queue also provides a further level of robustness as requests

are not lost even in case of service outage.

Baldini, Castro, et al. (2017) utilize the Throttler to “control the flow of data between two ser-

vices” in a hypothetical issue tracking system, further improving on the queue consumer’s

network efficiency by implementing batching. Rotem-Gal-Oz (2012) in turn presents an

equivalent SOA pattern, the Decoupled Invocation: “acknowledge receipt at the service edge,

put the request on a reliable queue, and then load-balance and prioritize the handler compo-

nents that read from the queue”. The pattern helps with the coupling and performance bot-

tleneck problems of request-reply communication but comes with the downside of latency.

Also since message queues are a one-way communication mechanism, it may be necessary

63

to utilize a pattern like the Event Processor (Section 3.2.1) for the consumer to access the

actual service response. Finally, the Throttler can be seen analogous to the Service Activator

EIP pattern which consists of adding a messaging layer (the queue and its consumer function

in our case) in front of a synchronous service to turn it into an asynchronous one (Hohpe and

Woolf 2004).

3.4.5 Circuit Breaker

Problem: A non-responsive third-party service causes accumulating FaaS charges as a func-

tion needlessly performs and waits for requests that time out.

2) Circuit breaker
checks state

1) Client requests
service

3a) Pass through
if open

3b) Fail immediately
if closed

Circuit is
open?

Figure 27: Circuit Breaker

Solution: Restrict service access in times of degraded operation to reduce service load and

prevent performing operations that are likely to fail.

Transient network errors and temporary service unavailability are common and unavoidable

occurrences in distributed systems. A simple request retry mechanism is usually enough for

the system to recover from such temporary interruptions, but unexpected events – human

error, hardware failure etc. – can occasionally lead to much longer downtime (Microsoft

2018a). In these cases request retry becomes less valid of a strategy, leading instead to wasted

consumer resources and latency in error handling. Furthermore, a large number of consumers

bombarding an unresponsive service with repeated requests can end up exhausting service

resources and thus inadvertently prevent recovery. These points are particularly relevant for

64

serverless consumers where the pay-as-you-go pricing model means that waiting for timeouts

directly translates into extra costs. A serverless consumer’s scaling properties also make it

more prone to service exhaustion: as a consumer takes longer to execute while waiting for

timeout, the platform ends up spawning more concurrent consumer instances which in turn

tie up more service resources in a spiraling effect. As observed by Bardsley, Ryan, and

Howard (2018), “it is in situations like this that retry is not beneficial and may well have

harmful effects if it ends up spinning up many cold Lambdas”.

Instead of re-execution we’re then looking to prevent calling an unresponsive service in the

first place. The Circuit Breaker pattern, as popularized by Nygard (2007), does just that “by

wrapping dangerous operations with a component that can circumvent calls when the system

is not healthy”. Akin to an electrical circuit, the pattern keeps track of requests passing

through it and in case an error threshold is reached it momentarily blocks all requests. In

closer detail, the Circuit Breaker operates either in closed, open or half-open mode. In

times of normal operation the circuit is closed, i.e., requests get proxied to the service as

usual. When the service becomes unresponsive and the number of error requests exceeds

a threshold the circuit breaker trips and opens the circuit, after which service requests fail

immediately without attempts to actually perform the operation. After a while when the

service has had a chance to recover, the circuit goes into half-open mode, passing through

the next few requests. If these requests fail, the circuit trips open and again waits for a

while before the next try; if they succeed, the circuit is closed and regains normal operation.

Via this mechanism the Circuit Breaker benefits both the consumer and the service, as the

consumer avoids waiting on timeouts and the service avoids being swamped by requests in

times of degraded operation.

As a stateful pattern the Circuit Breaker needs to keep track of circuit mode, number of errors

and elapsed timeout period. A serverless implementation can utilize either the Externalized

State (Section 3.1.4) or State Machine (Section 3.1.5) pattern for managing this information.

Additionally, the pattern can be implemented either alongside an existing consumer or as its

own function between a consumer and a service similarly to the Proxy pattern (Section 3.3.2).

As to further implementation details, Nygard (2007) notes it is important to choose the right

error criteria for tripping the circuit and that “changes in a circuit breaker’s state should

65

always be logged, and the current state should be exposed for querying and monitoring”.

Instead of returning a plain error message the open circuit can also implement a fallback

strategy of returning some cached value or directing the request to another service. An

open circuit could even record requests and replay them when the service regains operation

(Microsoft 2018a).

The Circuit Breaker is similar to the SOA pattern of Service Watchdog (Rotem-Gal-Oz 2012)

in the sense that both implement self-healing by means of restricted service access. What

differentiates the two is who is responsible: the Service Watchdog depends on an integrated

component inside the service to monitor its state whereas the Circuit Breaker only acts exter-

nal to the service, on the basis of failed requests. This distinction makes the Circuit Breaker

easier to deploy against black-box components.

66

4 Migration process

This chapter describes the process of migrating a web application to serverless architecture.

The goal of the process is to explore the catalogued patterns’ feasibility by applying them on

common problems in the domain of web application development. As well as exploring the

patterns we’re seeing how the distinct serverless features drive application design and try-

ing to gain deeper understanding of the advantages and shortcomings of the paradigm. The

chapter begins with the description of the migrated application along with its functional and

non-functional requirements. We then identify the ways in which the current implementa-

tion fails to meet these requirements and thus set a target for the serverless implementation.

Lastly a new serverless design is proposed using the pattern catalogue of Chapter 3 and in

cases where the patterns prove insufficient or unsuitable, modifications or new patterns are

proposed.

4.1 Image Manager

The migrated application, Image Manager, is a tool for managing image assets. Image Man-

ager is adapted from a real-world application, although modified in places for the sake of

illustration. Similarly to a SaaS offering such as Cloudinary, the application takes user-

uploaded images, performs various forms of processing and then hosts and serves the pro-

cessed images to be consumed by other applications. In case of Image Manager the process-

ing needs are threefold: rendering a thumbnail, rendering a low quality image placeholder

(LQIP), and automatic label detection. In short Image Manager can be split into three basic

functional requirements: image upload, image processing and image hosting.

The pre-migration (or serverful) Image Manager consists of a single server application that

connects to a number of BaaS-type cloud services. These components are depicted in Fig-

ure 28. The server application publishes an HTTP API endpoint for image uploads which

is consumed by a browser client. In place of access control this public-facing API uses a

CAPTCHA: before image upload the client requests a challenge from Google reCAPTCHA

API, solves it and sends the obtained token along with the image upload request. The server

67

application then also connects to reCAPTCHA API to verify token validity before proceed-

ing with the upload request. A CAPTCHA is used instead of full-blown authentication to

allow for anonymous users while still providing some degree of protection against bots and

other illicit usage. After CAPTCHA verification the application proceeds with image pro-

cessing. The thumbnail and LQIP rendering tasks are performed locally whereas labeling

is handled by a network call to an external image analysis service, Google Cloud Vision

API. The three processing tasks are independent and performed concurrently. Finally both

the original and processed images are uploaded to Google Cloud Storage where they can be

fetched via publicly accessible URLs. This image upload sequence is illustrated in further

detail in Figure 29.

Figure 28: Image Manager components

68

Figure 29: Image Manager upload sequence

Overall the image upload task is both CPU-intensive due to rendering and I/O-heavy due

to service requests and also since processing results are temporarily written on disk before

cloud storage upload. As for technical details, Image Manager is written in TypeScript,

compiled into JavaScript and running on NodeJS v10. The server application is containerized

into a Docker image and deployed on a single VM on Google Cloud Platform’s us-east1

region. The VM exposes an IP address through which the application is accessed from

69

public internet.

Image Manager can even in its pre-migration state be considered cloud-ready in the sense

that it was originally designed and developed to run specifically in a cloud environment. This

is reflected in the usage of container technology and the reliance on cloud platform services

in favour of self-managed code. The degree of cloud-readiness should be kept in mind when

considering the migration process as the practices and observations might not apply when

starting off with a more conventional on-premise application architecture.

The motivation to migrate Image Manager to serverless architecture stems from a number

of shortcomings in the current implementation, specifically relating to the non-functional re-

quirements of availability, scalability, cost-efficiency and isolation. First, the obvious draw-

back of the server application’s single-VM deployment is poor availability as there is no

failover instance to take over in case of VM failure. Likewise the application’s capacity to

serve traffic is limited by a single VM’s computing resources as there is no scaling mecha-

nism in play. Achieving this double goal of availability and scalability, i.e., ensuring a correct

number of VMs to meet current demand at all times would require a considerable amount

of infrastructure configuration involving load balancing, clusterization and scaling policies

(Jonas et al. 2019). This inelasticity also results in cost-inefficiency as the VM instance is

constantly running and accumulating charges whether there is any traffic or not. Lack of

isolation is also a concern since all application logic is bundled together into a single mono-

lithic application which causes resource contention as for example high CPU usage in one

of the rendering tasks can divert resources from the API and result in connection timeouts.

This combined with processing tasks’ highly asymmetrical performance profiles also fur-

ther complicates scaling as we can only scale the whole application, not just the bottlenecks.

Lack of isolation also presents itself in how all traffic is routed through the server application,

which in case of image uploads means an extra network trip before reaching Cloud Storage.

Finally, the server application’s monolithic design has negative maintainability implications

since modifications cannot be developed or deployed independently.

70

4.2 Serverless Image Manager

Rewriting an application in serverless architecture is clearly not a trivial task nor does it have

a single correct solution. Comparable to building a system out of microservices or plotting

class hierarchy in object-oriented software design, the same outcome can be achieved with

a variety of different but equally valid compositions of FaaS and BaaS components. As a

baseline the serverless Image Manager should fulfill the same functional requirements as

its predecessor. Building on that the migration should improve the application’s quality

attributes, particularly concerning the deficiencies listed above.

Looking at Image Manager’s components in Figure 28, it is notable that the system’s non-

functional deficiencies stem from the server application and not from the integrated cloud

services. The services are fully provider-managed, scale to demand and follow a pay-per-

use pricing model: they do not constitute an operational overhead nor limit the applica-

tion’s elasticity scaling- or pricing-wise. A serverless Image Manager can therefore retain

these integrations while reimplementing the server application in FaaS. While the services

themselves remain the same, what changes is the way they’re interfaced with since a FaaS

consumer can necessitate different communication patterns than a conventional one: publish-

subscribe instead of request-response for example. As for the server application, it has two

main responsibilities: first, it acts as a glue component that binds together BaaS components.

Second, it provides the kind of custom server-side functionality that we cannot or choose not

to offload to external services, namely thumbnail and LQIP rendering. Seeing how these

responsibilities match identically with the role of FaaS in serverless systems as discussed

in Section 2.3, we can expect FaaS to provide a fitting serverless alternative and migration

target for the server application. The specific FaaS platform used here is Cloud Functions

(Google 2018) due to all the integrated services and the previous VM deployment residing

on Google Cloud as well.

The simplest FaaS implementation of Image Manager involves wrapping the whole server

application into a single function that is then invoked synchronously via HTTP. This ar-

rangement is from the client’s point of view identical to the container deployment since the

function’s exposed HTTP trigger acts just like the server application’s HTTP API. It also

already manages to shift a majority of operational concerns on to the cloud provider. How-

71

ever in many cases this approach is limited by the platform’s restrictions on function size

and computing resources. A single monolithic function also does little to improve isolation

and maintainability. If allowed by platform limits the approach can nonetheless be a good

starting point for migration: akin to the Strangler pattern (3.3.3) first migrate the application

into a single function and then incrementally split it off into smaller units.

4.2.1 Pattern selection

Taking full advantage of the FaaS platform’s capabilities requires a more thorough redesign

than simply packaging an application as-is into a single function. The design process used

here is based on the pattern catalogue of Chapter 3. First each pattern is evaluated against the

migrated application’s functional and non-functional requirements. The patterns that most

closely work towards meeting these requirements are then selected, and the selected patterns

are finally composed together to form the proposed serverless design. Applying the process

to Image Manager resulted in the following set of patterns: Event Processor, Fan-out/Fan-in,

Thick Client, Valet Key and Bulkhead.

First of all the requirement for cost-efficiency leads towards the Event Processor pattern

(3.2.1). The image processing tasks should be event-driven: executed on-demand when-

ever there are images to process and not consume any resources or amass charges otherwise.

Technically this is implemented by splitting image processing into a new function that sub-

scribes to Cloud Storage upload events so that each image upload triggers a function invo-

cation. The pattern also improves scalability since a large number of uploads results in a

similarly large number of function invocations.

The requirement for scalability leads towards the Fan-out/Fan-in pattern (3.1.3). In our case

the pattern consists of splitting the three image processing tasks into their own functions: a

simple decision to make with the tasks already being essentially independent. As each upload

now triggers not one but three parallel functions, CPU-intensive rendering tasks can scale

independently from the less intensive labeling task. Moreover, we can expect a performance

benefit as the overall task is completed faster.

The Thick Client pattern (3.1.6) is selected with cost-efficiency in mind. Since the Event

72

Processor breaks coupling between the API and image processing, it is now possible to omit

the API layer and have the client orchestrate uploads instead. Retaining the API would mean

paying for function execution for the duration of image upload; by uploading images from

the client directly to Cloud Storage this expense as well as an extra network trip can be

avoided.

The Valet Key pattern (3.3.4) is chosen to authorize requests between the client and Cloud

Storage and thus facilitate the client-driven workflow. This involves extending the CAPTCHA

validation behaviour so that a temporary access token to Cloud Storage is returned in case

of a valid CAPTCHA. Applying the Bulkhead pattern (3.4.3), the Valet Key implementation

is split off into a separate authorizer function to ensure its availability when the rest of the

system is under high load. The Function Warmer pattern (3.4.1) could optionally be used

to further improve the authorizer’s availability by keeping a warm function instance ready

to serve requests at all times. In case of Image Manager there are no strict response time

requirements so this pattern is omitted.

The design process results in the proposed design of the serverless Image Manager. This

outcome is presented in Figure 30 where rectangular blocks with a λ prefix signify a FaaS

function. In the serverless Image Manager the server application is replaced by four different

functions: one for each image processing task plus an authorizer function. Out of these

functions only the authorizer exposes an HTTP API whereas the others are event-driven.

The new image upload sequence, as illustrated in Figure 31, is also more event-driven as

opposed to being orchestrated by the server application.

Figure 30: Serverless Image Manager components

73

Figure 31: Serverless Image Manager upload sequence (steps 2.1–2.3 run in parallel)

4.3 New patterns

This section lists five new patterns extracted from the migration process. The patterns present

solutions to problems in Image Manager’s serverless design, for example in places where the

serverless implementation performs worse than the original one or fails to provide the same

74

behaviour. In addition we’re introducing patterns that could be used to extend the serverless

design to further improve its quality or add functionality beyond the original requirements.

4.3.1 Async Response

Problem: Client does not get any feedback from the asynchronous tasks it triggers.

3) Function publishes message
 before termination

1) Client invokes function

2) Client subscribes to
message channel

4) Client receives
 return message

Figure 32: Async Response

Solution: Use a pub/sub channel to notify the client before function termination.

In the pre-migration Image Manager all processing happens in the span of the single upload

request. The request blocks and the client will not receive a response before all processing

and storage uploads are finished. The serverless Image Manager client on the other hand

only receives an acknowledgment of receipt of the original image since image processing is

continued asynchronously after the initial Cloud Storage upload. This means the serverless

client has no way of notifying the user of a finished processing task. Solving this problem

requires a way for the image processing functions to notify the client after they finished with

execution.

In more general terms the problem is one of an asynchronously invoked function instance re-

establishing communication with the original task initiator, i.e., turning fire-and-forget into

something more resembling of request-and-response semantics. As additional complexity,

the initiator might not be the actual function invoker but further down the call stack, as in

the case of Image Manager where the client first activates Cloud Storage which then invokes

75

processing functions.

The Async Response pattern tackles the problem using publish-subscribe messaging. The

client, after initiating the task, subscribes to a message channel and waits for notification of

the task completion. Conversely the last function responsible for task execution publishes a

message to the same channel before terminating. After receiving acknowledgment of task

completion the client can dismantle the message channel and proceed to update the user

interface. Instead of a single completion message we could also send status messages during

execution for the client to keep track of task progress.

The Async Response can be implemented with any technology that enables publish-subscribe

messaging between the client and function: Firebase Realtime Database on Google Cloud or

API Gateway Websockets on AWS, for example. One implementation challenge concerns

identifying the completion message: how should the message be sent so that it ends up at the

right client? One approach is to wrap task initialization in another function that first creates

a message channel with a unique identifier and then passes the identifier to both the client

and the processing function. This however incurs the overhead of having to pass the channel

identifier along each processing step. Another approach is to compute the channel identifier

from task payload: in case of Image Manager the channel could be named for example after

the uploaded file’s name.

4.3.2 Task Controller

Problem: Client has no way of controlling or cancelling an asynchronous task after trigger-

ing it.

Solution: Make each function instance open a messaging channel to the client in the begin-

ning of its execution in order to listen to client commands.

Possible future use cases for Image Manager would be to track processing task progress and

cancel processing tasks midway. We could for example want to terminate a long-running

and expensive batch job if it is made redundant before completion, or tweak task parameters

after initiating it.

76

4) Function receives
 commands

2) Function
 subscribes to
 message channel

1) Client invokes function

3) Client publishes
commands

Figure 33: Task Controller

The Task Controller provides a general way for clients to issue commands to function in-

stances mid-execution. The pattern extends the Async Response pattern by turning one-way

function-to-client messaging into a two-way channel: instead of just publishing messages at

the end of their lifespan, functions also start listening for messages right after initialization.

4.3.3 Local Threader

Problem: Scaling an I/O bound operation out to parallel function instances is inefficient

since the instances compete of the same I/O resources.

Function scope

Thread 1

Thread 2

Thread 3

Figure 34: Local Threader

Solution: Use local OS threads inside a single function instance to efficiently scale out

operations like network requests.

Serverless Image Manager’s labeling function is heavily I/O bound since the majority of

77

its execution duration is spent waiting for network requests: first for the labeling request

to Cloud Vision API and then for the metadata update request to Cloud Storage (see the

sequence diagram in Figure 31). Scaling this function is therefore inefficient since a larger

amount of reserved computing resources does not make network requests finish any faster. In

addition as shown in Section 2.7, on some FaaS platforms parallel function instances could

end up being allocated on the same physical machine where they share and contest for the

same network resources. In fact scaling out instances just to wait for network requests can

lead to runaway costs since a waiting function is billed just the same as a processing one;

this was discussed in Section 2.9 on the economics of serverless.

The Local Threader pattern circumvents the problem by performing I/O-bound operations

concurrently inside a single function instance instead of allocating a new instance for each

operation. For example in Image Manager’s labeling task, Local Threading can be applied to

batch image upload events and then send multiple Cloud Vision API requests concurrently

inside a single function instance. The pattern takes advantage of the fact that serverless

functions, while limited in computing resources and lifespan, are still essentially full-fledged

container instances with access to OS threads and processes. For example an AWS Lambda

instance can use up to 1024 threads (AWS 2018a).

The potential cost savings depend largely on the nature of the I/O-bound operation, number

of concurrent operations and the way the FaaS platform handles I/O. While an interesting

area for future work, optimizing and benchmarking this is outside the scope of the thesis.

4.3.4 Prefetcher

Problem: Each event handler triggered in response to a single event starts execution by

fetching the identical event metadata, resulting in redundant network traffic.

Solution: Trigger a single event handling function that fetches event metadata once and then

triggers the other event handlers, passing metadata as function payload.

Image Manager’s two rendering functions follow largely the same behaviour: triggered by

an image upload event emitted from Cloud Storage, they receive the image file URL as input,

make a network request to Cloud Storage to fetch the file, render a thumbnail or an LQIP

78

1) Event source
triggers function

3) Function invokes
event handlers

2) Function fetches
event metadata

Figure 35: Prefetcher

respectively, and finally upload the result to Cloud Storage (see the sequence diagram in

Figure 31). The first step is the same for both functions: the Cloud Storage upload event

payload does not include the actual file but just the URL, so all processing functions have

to start by downloading the file. In Image Manager’s case this is not especially problematic

since the FaaS platform and storage service share an internal network. In other cases fetching

additional event information could however incur considerable latency or cost overhead in

form of network and service charges.

The Prefetcher is an optimization pattern for avoiding expensive duplicate event metadata

requests. Its implementation involves adding a new function between the event and its han-

dler functions. Upon event occurrence, the prefetcher function first fetches the metadata and

then invokes the actual event handlers, passing the fetched metadata as invocation payload.

As a result the event handlers now do not need to separately fetch the extended event meta-

data. The Event Broadcast pattern (3.2.4) can be utilized to avoid coupling the original event

handlers with the prefetcher function.

As before with the Local Threading pattern, Prefetcher’s efficiency gains are highly depen-

dent on the nature of the metadata request, the number of event handlers as well as on how

the FaaS platform handles networking. The pattern is also limited by the maximum function

payload size which in AWS Lambda is 6MB for synchronous and 256KB for asynchronous

invocations (AWS 2018a), and in Google Cloud Functions 10MB for both invocation types

79

(Google 2018).

4.3.5 Throttled Recursion

Problem: A spike of recursive function invocations can exceed the platform’s maximum

concurrency limit.

Parallel instances

2) Consume
queued invocations

in parallel

1) Pass recursive
invocations to

queue

Figure 36: Throttled Recursion

Solution: Pass recursive invocations through a message queue in order to throttle their exe-

cution.

Another potential future use case for Image Manager is to transform extremely large images

or even video material recursively. Using a divide-and-conquer algorithm, a function can

split its payload into two or more subtasks and invoke itself recursively until the subtasks

become simple enough to solve. The problem with recursion in FaaS however is that the

number of concurrent instances can quickly grow out of hand and exceed the platform limit,

placing a constraint on recursion depth. We might additionally want to control the rate of

recursive branching in order not to overwhelm any potential external services used in subtask

solving. A throttled rate of execution can also be desirable to serve as a safety mechanism

against infinite loops.

The Throttled Recursion pattern consists of supplementing the recursive function with a

message queue through which each subtask invocation is passed. Instead of directly invoking

itself, the recursive function sends its subtasks into the queue and at the same time subscribes

to incoming message events. The pattern is similar to the Throttler pattern (3.4.4) with the

exception that here the single function acts both as a producer and as a consumer on the same

queue. By adjusting the queue’s consumption rate we can control the recursive execution

80

speed. Also now recursion depth is not limited anymore by FaaS concurrency limit but

instead by maximum queued messages count which is typically far greater.

81

5 Evaluation

This chapter evaluates the outcome of the migration process. The pre-migration Image Man-

ager is compared to the new serverless version from three different perspectives: a develop-

mental perspective on the ease of local development, testing and deployment, a performance

perspective on application performance, elasticity and robustness, and finally an economic

perspective on the differences in hosting and operational cost. The latter two are approx-

imated through a simple stress test and cloud provider pricing information, whereas the

former is by nature less measurable and thus approached through a more qualitative and

subjective assessment.

Serverless Image Manager’s source code and stress test data can be found at https://

github.com/epiphone/image-manager.

5.1 Developer perspective

From a development point of view the process of rewriting server application code into FaaS

function handlers was found relatively simple. The same runtime environment (NodeJS v10)

was used in both versions of the application and the deployment artifacts for both were built

from the same codebase. The server application’s code benefited from being modularized

so that for example the server-specific request handling implementation was separated from

image processing logic. These factors together enabled a high degree of code reuse when

implementing FaaS functions. The source code of the image labeling function is presented

in Listing 5.1 to exemplify how a comparatively small amount of boilerplate code is required

to instantiate a new function: in this function the actual labeling logic is imported from a

label module which is shared with the server application.

82

https://github.com/epiphone/image-manager
https://github.com/epiphone/image-manager

import { Storage } from ’@google-cloud/storage’

import { getBucketFileLabels } from ’../label’

const gcs = new Storage()

export async function labeler(data) {

const labels = await getBucketFileLabels(data)

return gcs

.bucket(data.bucket)

.file(data.name)

.setMetadata({ metadata: { Labels: labels } })

}

Listing 5.1: Image labeler function handler

Developing and testing the functions locally was found more challenging, depending on

function type. In case of the authorizer function local development was simple since the

function exposes a synchronous HTTP API, behaving the same as a conventional server

application. In that case a local development server could be used to mimic a deployed

function without any mocking or test harnesses required. Developing the other functions

locally was more difficult due to their event-driven invocation style which meant that the

triggering cloud events would have to be replicated locally. Without any tooling in place to

mock cloud events, it was found easier to deploy these functions to the cloud and develop

against the actual deployed functions. While the deployment process is relatively fast, this

did incur a degree of overhead in the development cycle: in larger projects it can be worth

the investment to set up tooling for mocking parts of the cloud environment in order to avoid

this overhead in local development. In short, local development of conventional serverful

web applications can be more straightforward than corresponding serverless ones, but the

problem is not one of invoking FaaS functions but of replicating cloud service dependencies.

Image Manager’s function deployment process consists of four steps: building a deployment

artifact from the shared codebase, compressing it into a zip file, uploading the zip to Cloud

83

Storage and finally updating the function to use the new deployment artifact. All together the

process takes about one minute. This is significantly faster than pre-migration deployment

which consisted of building a Docker image, uploading the image to an image repository

and restarting the VM with the new image. The serverless Image Manager also has the

advantage in easily deploying multiple co-existing versions of a single function, which is

useful for testing or rolling out new features.

Compared to the pre-migration application, the serverless Image Manager has a clear ad-

vantage in isolation and modularization. Having split the monolithic server application into

four distinct functions means that individual deployment units are smaller and have fewer

dependencies and are thus more comprehensible and maintainable. The functions are decou-

pled from each other which makes extending the application painless: adding a new image

processing task for example amounts to creating a new function and attaching it to the Cloud

Storage image upload event – no changes in other functions are required. This level of iso-

lation also grants the ability to deploy features independently.

From a service monitoring point of view, the two versions of Image Manager act similarly.

Application logs are persisted in Google Cloud’s logging service which can be used for

searching and setting up monitoring alarms. Both versions offer insight into similar perfor-

mance metrics through the cloud provider dashboard, with the serverless version benefiting

from more granular per-function metrics. The serverful application has the advantage in that

the image upload sequence is contained inside a single HTTP request, which makes trac-

ing application behaviour easier. As the serverless application is by nature more distributed

and event-driven the end-to-end flow of a particular task can be more difficult to follow.

Distributed logging, i.e., adding a unifying correlation identifier to logs that originate from

different services but belong to the same logical task, can be of use here and is provided as a

service in some platforms, e.g., AWS X-Ray (AWS 2018a).

5.2 Performance perspective

The two Image Manager implementations’ performance characteristics were evaluated through

a simple stress test. The goal of the test was to understand how the applications behave under

84

heavy load and to identify the upper limits of both application’s performance capacity. The

test was carried out by sending a gradually increasing number of image processing requests

to the target application in a simulation of a steadily increasing influx of user activity, using

the Python-based load testing tool Locust. The authentication step was omitted from the test

in order to focus on the resource-intensive parts of the application, i.e., image processing.

For comparability’s sake both the serverful application’s VM and each serverless function

was allocated the same resources of a single CPU and 1024MB of memory. In order to min-

imize network delays and traffic costs the tests were ran on a separate VM deployed on the

same Google Cloud region as both applications.

The serverful application’s stress test results are plotted in Figure 37. The Figure presents

the number of all requests, number of error responses and the average response time during

the 11–minute test period. Analyzing the results shows how response times initially stay

below four seconds until at around 300 cumulative requests, after which they start climbing

up to 14 seconds or more. Moreover the initial curve on the number of total requests evens

out into linear growth which indicates that the server is unable to cope with the increasing

request rate, maxing out at around 3 requests per second. Eventually after 600 cumulative

requests we observe a sharp spike in error responses due to server resource exhaustion. At

this point the server application becomes non-responsive as most requests resolve either in

server error or connection timeout.

Running the same stress test against the serverless application yields differing results. Fig-

ure 38 plots platform metrics captured during the test run, including the total function invo-

cation rate per second, number of active instances per function and mean execution duration

per function. First of all we observe the function invocation rate growing in tandem with

the stress test’s gradually increasing request rate. This is an expected outcome of the Event

Processor pattern: as more images are uploaded to Cloud Storage, more processing tasks get

triggered. The second chart illustrates the FaaS platform adapting to the growing invocation

rate: an increasing number of function instances are spun up to handle invocations in parallel.

While the sum of all of active instances peaks at around 100 we observe variance in scaling

behaviour between the three functions, as the CPU-intensive LQIP rendering function scales

up faster than the other two. Due to this scaling behaviour function execution durations stay

85

Figure 37: Serverful Image Manager stress test results

constant while invocation rate grows from 0 to 60 per second, as plotted in the third chart.

Interestingly the chart indicates slightly higher execution durations in the beginning of the

test, which could be an indication of either function cold starts or the FaaS platform’s un-

derlying scaling strategy. With no sign of any performance degradation the test was aborted

after 10 minutes.

Overall the two Image Manager implementations perform quite differently performance-

wise, as expected. The serverful application’s response times stay in the range of a few

seconds until service resources are exhausted and rise sharply after that along with the error

rate. The serverless application on the other hand adapts to increasing load with constant

execution durations, presumably until the platform’s concurrency limit is reached. While

86

server response times and function execution durations are not directly comparable (the latter

lacks image upload and event propagation latencies) they do manage to convey the drastic

difference in elasticity.

The serverless Image Manager’s elasticity, while mostly beneficial, points towards the ne-

cessity of protecting any less elastic downstream services with something like the Throttler

pattern in order not to overwhelm them. The results also demonstrate the efficiency of the

Bulkhead pattern’s granular deployment units as the LQIP rendering operation can scale

independently without allocating redundant resources elsewhere to the system.

As for the problem of cold starts, an initial delay in image processing was deemed acceptable

and did not thus necessitate the Function Warmer pattern. The pattern can be useful in case of

synchronously invoked functions such as the authorizer function where any delay leaks to the

consumer and potentially blocks the user interface. Drawing from that, another workaround

over the cold start problem is to design “optimistic” clients that immediately update the user

interface after function invocation instead of waiting for a response.

87

(a) Invocations per second, sum of all functions

(b) Active instances per function (LQIP, resizer, labeller)

(c) Mean execution times per function (LQIP, labeller, resizer)

Figure 38: Serverless Image Manager stress test results

88

5.3 Economic perspective

Evaluating the two implementations from an economic perspective, the simplest metric to

start with are the respective hosting costs. First of all any Cloud Storage and Cloud Vision

API costs can be ignored as they are identical in both implementations and thus do not tip

the scale either way. The reCaptcha API is a free service so it is similarly ignored. As for

networking, no charges are incurred since incoming traffic (image upload requests) is free

and outgoing traffic to provider services passes through internal networks free of charge.

In case of the serverful Image Manager hosting expenses consist solely of the VM, which is

priced at $18.3 per month for 1 CPU and 1GB of memory. Using the maximum capacity of 3

requests per second (or 7,776,000 requests per month) established in the stress test, we arrive

at a per-image transformation cost of µ$2.3534. This number represents a hypothetical best-

case scenario of a constant 100% utilization rate. In actuality lower utilization in form of any

idle periods translates into a higher cost per image: 50% utilization doubles the per-image

cost, 10% utilization means 10x the per-image cost and so on. Conversely any load above

maximum capacity renders the service unusable. This single-VM configuration also does

not have any form of redundancy in the sense that VM malfunction or restart immediately

results in service downtime. A more realistic setup that achieves minimal robustness could

consist of an additional failover instance and a load balancer sharing traffic between the two

instances. This increases hosting costs to $72.4 per month: 2 instances at $18.3 each, load

balancer forwarding rule at $18 and incoming traffic cost of $17.8 per month assuming an

average image size of 300KB. (Google 2018)

As for the serverless Image Manager, a single image processing operation consists of 3

function invocations and on average a total of 1600 milliseconds of execution time (see Fig-

ure 38). With Cloud Functions pricing of µ$0.4 per invocation and µ$1.65 per 100ms of

execution on a 1024MB memory allocation, price per image adds up to µ$27.6. Hence op-

erating at the serverful Image Manager’s maximum capacity of 3 requests per second for a

month costs $214.6 which is almost 12 times the cost of the serverful implementation. There-

fore in case of Image Manager, a VM-based implementation operating at a constant 100%

utilization rate is by an order of magnitude cheaper to host than a serverless implementa-

tion. This is consistent with the level of service abstraction: renting a VM presumably incurs

89

fewer costs to the cloud service provider than operating a fully-managed FaaS platform, so

the price per CPU cycle should be higher for FaaS consumers. (Google 2018)

One way to optimize the serverless Image Manager’s hosting costs would be by adjusting

function memory allocation. For example the labeling function only uses on average 90MB

of its 1024MB memory allocation. Reducing this down to the minimum 128MB allocation

would reduce the above monthly cost to $170.5 – although since CPU allocation decreases

alongside memory allocation this could in turn lead to longer execution duration. It is there-

fore necessary to experiment with real workloads to find out the optimal function size.

Determining which implementation is more economical depends ultimately on traffic scale

and shape. Unlike the serverful implementation, the serverless price per image stays constant

regardless of request rate. This extends down to the point of being free in case of no traffic.

Thus while the serverful implementation is markedly cheaper in case of steady traffic that

consistently utilizes the whole VM, the serverless one does better with bursty workloads

scattered between idle periods. This is in accordance with the earlier notion that “from

a cost perspective, the benefits of a serverless architecture are most apparent for bursty,

compute intensive workloads” (Baldini, Castro, et al. 2017). Aside from infrastructure costs

it’s worthwhile to consider the potential savings in operations, as FaaS requires less time

expenditure on load estimation, scaling configuration and other system administration work

than a VM-based solution. Also as discussed above, the more granular serverless Image

Manager was found easier to extend, package and deploy than the monolithic serverful one

which makes iteration and experimentation cheaper and can thus help to reduce time to

market.

90

6 Conclusion

In this thesis we examined the novel cloud computing paradigm of serverless computing

particularly from the point of view of web application development. Going back to the four

original research questions, we were first inquiring into the motivations behind serverless

migration. This question was answered in form of a literature review in Chapter 2. We first

traced the origins of the serverless paradigm from utility computing on to containers and

microservices. We then attempted to define the paradigm along with its two distinct mani-

festations of BaaS and FaaS, paying special attention to how they differ from earlier cloud

computing models. The literature review also delved into serverless use cases, providers, se-

curity issues and economics, finishing with an in-depth look into the paradigm’s drawbacks

and limitations. In summary the paradigm’s main advantages are reduced operational over-

head, configuration-free elasticity and a pricing model based on actual utilization instead of

reservation.

The next two research questions concerned serverless design patterns. In Chapter 3 we

first surveyed existing serverless patterns as well as adapted patterns from other relevant

computing areas. Then in Chapter 4 we applied the patterns in migrating a web application

to serverless architecture, attempting to identify gaps in the patterns. The outcome of this

process – and also the main design artifact of this thesis – are the five new serverless design

patterns introduced in Section 4.3.

The final research question dealt with how serverless migration affects applications quality-

wise. This question was addressed in Chapter 5 from developmental, performance and

economic perspectives. First in a qualitative assessment serverless architecture was found

to benefit from easier modularization and rapid deployment. Conversely pain points were

identified in local development and testing as well as in monitoring due to the high level

of distribution. Second, the two implementations’ performance and scaling characteristics

were compared through a stress test: here the serverless architecture was found to live up

to its purported elasticity with response times staying constant regardless of traffic rate. Fi-

nally evaluating the migration’s economic implications we arrived at the same conclusion

as previous surveyors (including Baldini, Castro, et al. 2017): the serverless cost benefit is

91

most noticeable in case of bursty and inconsistent workloads whereas steady and constant

utilization can be cheaper to host in other paradigms.

The main limitation of this work is the shortage of practical experience working with the

introduced design patterns. The migrated application represents a singular, rather narrow

use case and cannot thus account for all possible corner cases one might encounter while

designing a serverless application. An interesting opportunity for future research would

be to crowdsource further patterns by surveying experienced developers on their serverless

usage; this is also the avenue taken in the yet unpublished work on serverless anti-patterns by

Taibi (2019). Another potential area of future research involves thoroughly benchmarking

the cost-optimizing patterns such as Local Threader (4.3.3) and Prefetcher (4.3.4) to identify

the cases where the reduction in hosting costs outweighs the implementation cost. The next

step from that would be to implement software to automatically identify such cost-optimizing

opportunities in existing serverless systems.

92

Bibliography

Adzic, Gojko, and Robert Chatley. 2017. “Serverless computing: economic and architec-

tural impact”. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, edited by Eric

Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman, 884–889. ACM. doi:10.

1145/3106237.3117767.

Al-Ali, Zaid, Sepideh Goodarzy, Ethan Hunter, Sangtae Ha, Richard Han, Eric Keller, and

Eric Rozner. 2018. “Making Serverless Computing More Serverless”. In 11th IEEE Interna-

tional Conference on Cloud Computing, CLOUD 2018, San Francisco, CA, USA, July 2-7,

2018, 456–459. IEEE Computer Society. doi:10.1109/CLOUD.2018.00064.

Albuquerque, Lucas Francisco Jr., Felipe Silva Ferraz, Sergio Mario Lins Galdino, and

Rodrigo F.A.P. Oliveira. 2017. “Function-as-a-Service X Platform-as-a-Service: Towards a

Comparative Study on FaaS and PaaS”. ICSEA 2017, The Twelfth International Conference

on Software Engineering Advances: 206–212. ISSN: 2308-4235.

Armbrust, Michael, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, An-

drew Konwinski, Gunho Lee, et al. 2009. Above the Clouds: A Berkeley View of Cloud Com-

puting. Technical report UCB/EECS-2009-28. EECS Department, University of California,

Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-

2009-28.html.

Ast, Markus, and Martin Gaedke. 2017. “Self-contained web components through serverless

computing”. In Proceedings of the 2nd International Workshop on Serverless Computing,

WOSC@Middleware 2017, Las Vegas, NV, USA, December 12, 2017, 28–33. ACM. doi:10.

1145/3154847.3154849.

AWS. 2017. Optimizing Enterprise Economics with Serverless Architectures. Technical re-

port. Visited on January 16, 2019. https://d1.awsstatic.com/whitepapers/

optimizing-enterprise-economics-serverless-architectures.pdf.

93

http://dx.doi.org/10.1145/3106237.3117767
http://dx.doi.org/10.1145/3106237.3117767
http://dx.doi.org/10.1109/CLOUD.2018.00064
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://dx.doi.org/10.1145/3154847.3154849
http://dx.doi.org/10.1145/3154847.3154849
https://d1.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-architectures.pdf
https://d1.awsstatic.com/whitepapers/optimizing-enterprise-economics-serverless-architectures.pdf

AWS. 2018a. “AWS Lambda”. Visited on February 1, 2018. https://aws.amazon.

com/lambda/.

. 2018b. Serverless Application Lens: AWS Well-Architected Framework. Technical

report. Visited on January 16, 2019. https://d1.awsstatic.com/whitepapers/

architecture/AWS-Serverless-Applications-Lens.pdf.

Baldini, Ioana, Paul Castro, Kerry Shih-Ping Chang, Perry Cheng, Stephen Fink, Vatche

Ishakian, Nick Mitchell, et al. 2017. “Serverless Computing: Current Trends and Open Prob-

lems”. In Research Advances in Cloud Computing, edited by Sanjay Chaudhary, Gaurav So-

mani, and Rajkumar Buyya, 1–20. Springer. doi:10.1007/978-981-10-5026-8_1.

Baldini, Ioana, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod Muthusamy, Rodric

Rabbah, Philippe Suter, and Olivier Tardieu. 2017. “The serverless trilemma: function com-

position for serverless computing”. In Proceedings of the 2017 ACM SIGPLAN International

Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software,

Onward! 2017, Vancouver, BC, Canada, October 23 - 27, 2017, edited by Emina Torlak, Tijs

van der Storm, and Robert Biddle, 89–103. ACM. doi:10.1145/3133850.3133855.

Bardsley, Daniel, Larry Ryan, and John Howard. 2018. “Serverless Performance and Opti-

mization Strategies”. In 2018 IEEE International Conference on Smart Cloud (SmartCloud),

19–26. IEEE. doi:10.1109/SmartCloud.2018.00012.

Baresi, Luciano, Danilo Filgueira Mendonça, and Martin Garriga. 2017. “Empowering Low-

Latency Applications Through a Serverless Edge Computing Architecture”. In Service-Oriented

and Cloud Computing - 6th IFIP WG 2.14 European Conference, ESOCC 2017, Oslo, Nor-

way, September 27-29, 2017, Proceedings, edited by Flavio De Paoli, Stefan Schulte, and

Einar Broch Johnsen, 10465:196–210. Lecture Notes in Computer Science. Springer. doi:1

0.1007/978-3-319-67262-5_15.

Bernstein, David. 2014. “Containers and Cloud: From LXC to Docker to Kubernetes”. IEEE

Cloud Computing 1 (3): 81–84. doi:10.1109/MCC.2014.51.

94

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-Lens.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-Lens.pdf
http://dx.doi.org/10.1007/978-981-10-5026-8_1
http://dx.doi.org/10.1145/3133850.3133855
http://dx.doi.org/10.1109/SmartCloud.2018.00012
http://dx.doi.org/10.1007/978-3-319-67262-5_15
http://dx.doi.org/10.1007/978-3-319-67262-5_15
http://dx.doi.org/10.1109/MCC.2014.51

Boucher, Sol, Anuj Kalia, David G. Andersen, and Michael Kaminsky. 2018. “Putting the

"Micro" Back in Microservice”. In 2018 USENIX Annual Technical Conference, USENIX

ATC 2018, Boston, MA, USA, July 11-13, 2018. Edited by Haryadi S. Gunawi and Benjamin

Reed, 645–650. USENIX Association. https://www.usenix.org/conference/

atc18/presentation/boucher.

Buyya, Rajkumar, Satish Narayana Srirama, Giuliano Casale, Rodrigo N. Calheiros, Yogesh

Simmhan, Blesson Varghese, Erol Gelenbe, et al. 2019. “A Manifesto for Future Generation

Cloud Computing: Research Directions for the Next Decade”. ACM Comput. Surv. 51 (5):

105:1–105:38. doi:10.1145/3241737.

Buyya, Rajkumar, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.

2009. “Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility”. Future Generation Comp. Syst. 25 (6): 599–616. doi:10.

1016/j.future.2008.12.001.

Cloudflare. 2018. “Cloudflare Workers”. Visited on November 21, 2018. https://www.

cloudflare.com/products/cloudflare-workers/.

CNCF. 2018. Serverless whitepaper. Technical report. Cloud Native Computing Foundation.

Visited on November 13, 2018. https://github.com/cncf/wg-serverless.

Eivy, Adam. 2017. “Be Wary of the Economics of "Serverless" Cloud Computing”. IEEE

Cloud Computing 4 (2): 6–12. doi:10.1109/MCC.2017.32.

Eyk, Erwin Van, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann, and Simon Eis-

mann. 2018. “A SPEC RG Cloud Group’s Vision on the Performance Challenges of FaaS

Cloud Architectures”. In Companion of the 2018 ACM/SPEC International Conference on

Performance Engineering, ICPE 2018, Berlin, Germany, April 09-13, 2018, edited by Katinka

Wolter, William J. Knottenbelt, André van Hoorn, and Manoj Nambiar, 21–24. ACM. doi:1

0.1145/3185768.3186308.

Eyk, Erwin Van, Alexandru Iosup, Simon Seif, and Markus Thömmes. 2017. “The SPEC

cloud group’s research vision on FaaS and serverless architectures”. In Proceedings of the

2nd International Workshop on Serverless Computing, WOSC@Middleware 2017, Las Ve-

gas, NV, USA, December 12, 2017, 1–4. ACM. doi:10.1145/3154847.3154848.

95

https://www.usenix.org/conference/atc18/presentation/boucher
https://www.usenix.org/conference/atc18/presentation/boucher
http://dx.doi.org/10.1145/3241737
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
https://www.cloudflare.com/products/cloudflare-workers/
https://www.cloudflare.com/products/cloudflare-workers/
https://github.com/cncf/wg-serverless
http://dx.doi.org/10.1109/MCC.2017.32
http://dx.doi.org/10.1145/3185768.3186308
http://dx.doi.org/10.1145/3185768.3186308
http://dx.doi.org/10.1145/3154847.3154848

Eyk, Erwin Van, Lucian Toader, Sacheendra Talluri, Laurens Versluis, Alexandru Uta, and

Alexandru Iosup. 2018. “Serverless is More: From PaaS to Present Cloud Computing”. IEEE

Internet Computing 22 (5): 8–17. doi:10.1109/MIC.2018.053681358.

Farahabady, Mohammad Reza Hoseiny, Young Choon Lee, Albert Y. Zomaya, and Zahir

Tari. 2017. “A QoS-Aware Resource Allocation Controller for Function as a Service (FaaS)

Platform”. In Service-Oriented Computing - 15th International Conference, ICSOC 2017,

Malaga, Spain, November 13-16, 2017, Proceedings, edited by E. Michael Maximilien, An-

tonio Vallecillo, Jianmin Wang, and Marc Oriol, 10601:241–255. Lecture Notes in Computer

Science. Springer. doi:10.1007/978-3-319-69035-3_17.

Foster, Ian T., Yong Zhao, Ioan Raicu, and Shiyong Lu. 2009. “Cloud Computing and Grid

Computing 360-Degree Compared”, volume abs/0901.0131. arXiv: 0901.0131. http:

//arxiv.org/abs/0901.0131.

Fouladi, Sadjad, Riad S. Wahby, Brennan Shacklett, Karthikeyan Balasubramaniam, William

Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith Winstein. 2017. “En-

coding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads”.

In 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2017,

Boston, MA, USA, March 27-29, 2017, edited by Aditya Akella and Jon Howell, 363–376.

USENIX Association. https : / / www . usenix . org / conference / nsdi17 /

technical-sessions/presentation/fouladi.

Fox, Geoffrey C., Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2017.

“Status of Serverless Computing and Function-as-a-Service(FaaS) in Industry and Research”.

CoRR abs/1708.08028. arXiv: 1708.08028. http://arxiv.org/abs/1708.

08028.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design Patterns:

Elements of reusable object-oriented software. Addison-Wesley.

Gannon, Dennis, Roger S. Barga, and Neel Sundaresan. 2017. “Cloud-Native Applications”.

IEEE Cloud Computing 4 (5): 16–21. doi:10.1109/MCC.2017.4250939.

96

http://dx.doi.org/10.1109/MIC.2018.053681358
http://dx.doi.org/10.1007/978-3-319-69035-3_17
http://arxiv.org/abs/0901.0131
http://arxiv.org/abs/0901.0131
http://arxiv.org/abs/0901.0131
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
http://arxiv.org/abs/1708.08028
http://arxiv.org/abs/1708.08028
http://arxiv.org/abs/1708.08028
http://dx.doi.org/10.1109/MCC.2017.4250939

Glikson, Alex, Stefan Nastic, and Schahram Dustdar. 2017. “Deviceless edge computing:

extending serverless computing to the edge of the network”. In Proceedings of the 10th

ACM International Systems and Storage Conference, SYSTOR 2017, Haifa, Israel, May 22-

24, 2017, edited by Doron Chen, Peter Desnoyers, and Eyal de Lara, 28:1. ACM. doi:10.

1145/3078468.3078497.

Google. 2018. “Google Cloud Functions”. Visited on February 7, 2018. https://cloud.

google.com/functions/.

Hellerstein, Joseph M., Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-Smith, Vikram

Sreekanti, Alexey Tumanov, and Chenggang Wu. 2019. “Serverless Computing: One Step

Forward, Two Steps Back”. http://cidrdb.org/cidr2019/papers/p119-

hellerstein-cidr19.pdf.

Hendrickson, Scott, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkataramani, An-

drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016. “Serverless Computation with

OpenLambda”. In 8th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud

2016, Denver, CO, USA, June 20-21, 2016. Edited by Austin Clements and Tyson Condie.

USENIX Association. https://www.usenix.org/conference/hotcloud16/

workshop-program/presentation/hendrickson.

Hohpe, Gregor, and Bobby Woolf. 2004. Enterprise integration patterns: Designing, build-

ing, and deploying messaging solutions. Addison-Wesley.

Hong, Sanghyun, Abhinav Srivastava, William Shambrook, and Tudor Dumitras. 2018. “Go

Serverless: Securing Cloud via Serverless Design Patterns”. In 10th USENIX Workshop on

Hot Topics in Cloud Computing, HotCloud 2018, Boston, MA, USA, July 9, 2018. Edited

by Ganesh Ananthanarayanan and Indranil Gupta. USENIX Association. https://www.

usenix.org/conference/hotcloud18/presentation/hong.

Horner, Nathaniel, and Inês Azevedo. 2016. “Power usage effectiveness in data centers:

overloaded and underachieving”. The Electricity Journal 29 (4): 61–69. ISSN: 1040-6190.

doi:https://doi.org/10.1016/j.tej.2016.04.011.

IBM. 2018. “IBM Cloud Functions”. Visited on February 7, 2018. https://www.ibm.

com/cloud/functions.

97

http://dx.doi.org/10.1145/3078468.3078497
http://dx.doi.org/10.1145/3078468.3078497
https://cloud.google.com/functions/
https://cloud.google.com/functions/
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud18/presentation/hong
https://www.usenix.org/conference/hotcloud18/presentation/hong
http://dx.doi.org/https://doi.org/10.1016/j.tej.2016.04.011
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions

Ishakian, Vatche, Vinod Muthusamy, and Aleksander Slominski. 2018. “Serving Deep Learn-

ing Models in a Serverless Platform”. Edited by Abhishek Chandra, Jie Li, Ying Cai, and

Tian Guo: 257–262. doi:10.1109/IC2E.2018.00052.

ISO. 2014. ISO/IEC 17788:2014 Information technology – Cloud computing – Overview and

vocabulary. Standard. International Organization for Standardization.

Jackson, David, and Gary Clynch. 2018. “An Investigation of the Impact of Language Run-

time on the Performance and Cost of Serverless Functions”. In 2018 IEEE/ACM Interna-

tional Conference on Utility and Cloud Computing Companion, UCC Companion 2018,

Zurich, Switzerland, December 17-20, 2018, edited by Alan Sill and Josef Spillner, 154–

160. IEEE. doi:10.1109/UCC-Companion.2018.00050.

Jamshidi, Pooyan, Aakash Ahmad, and Claus Pahl. 2013. “Cloud Migration Research: A

Systematic Review”. IEEE Trans. Cloud Computing 1 (2): 142–157. doi:10.1109/TCC.

2013.10.

Jonas, Eric, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. 2017. “Oc-

cupy the cloud: distributed computing for the 99%”: 445–451. doi:10.1145/3127479.

3128601.

Jonas, Eric, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khandelwal,

Qifan Pu, Vaishaal Shankar, et al. 2019. “Cloud Programming Simplified: A Berkeley View

on Serverless Computing”. CoRR abs/1902.03383. arXiv: 1902.03383. http://arxi

v.org/abs/1902.03383.

Kleinrock, Leonard. 2003. “An Internet vision: the invisible global infrastructure”. Ad Hoc

Networks 1 (1): 3–11. doi:10.1016/S1570-8705(03)00012-X.

Kritikos, Kyriakos, and Pawel Skrzypek. 2018. “A Review of Serverless Frameworks”. In

2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion,

UCC Companion 2018, Zurich, Switzerland, December 17-20, 2018, edited by Alan Sill and

Josef Spillner, 161–168. IEEE. doi:10.1109/UCC-Companion.2018.00051.

98

http://dx.doi.org/10.1109/IC2E.2018.00052
http://dx.doi.org/10.1109/UCC-Companion.2018.00050
http://dx.doi.org/10.1109/TCC.2013.10
http://dx.doi.org/10.1109/TCC.2013.10
http://dx.doi.org/10.1145/3127479.3128601
http://dx.doi.org/10.1145/3127479.3128601
http://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
http://dx.doi.org/10.1016/S1570-8705(03)00012-X
http://dx.doi.org/10.1109/UCC-Companion.2018.00051

Lane, Kin. 2013. Overview of the backend as a service (BaaS) space. Technical report. htt

p://www.integrove.com/wp-content/uploads/2014/11/api-evangeli

st-baas-whitepaper.pdf.

Lavoie, Samuel, Anthony Garant, and Fábio Petrillo. 2019. “Serverless architecture effi-

ciency: an exploratory study”. CoRR abs/1901.03984. arXiv: 1901.03984. http://

arxiv.org/abs/1901.03984.

Lehvä, Jyri, Niko Mäkitalo, and Tommi Mikkonen. 2017. “Case Study: Building a Server-

less Messenger Chatbot”. In Current Trends in Web Engineering - ICWE 2017 International

Workshops, Liquid Multi-Device Software and EnWoT, practi-O-web, NLPIT, SoWeMine,

Rome, Italy, June 5-8, 2017, Revised Selected Papers, edited by Irene Garrigós and Manuel

Wimmer, 10544:75–86. Lecture Notes in Computer Science. Springer. doi:10 . 1007 /

978-3-319-74433-9_6.

Leitner, Philipp, Erik Wittern, Josef Spillner, and Waldemar Hummer. 2019. “A mixed-

method empirical study of Function-as-a-Service software development in industrial prac-

tice”. Journal of Systems and Software 149:340–359. doi:10.1016/j.jss.2018.12.

013.

Lloyd, Wes, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep Pallickara. 2018a.

“Serverless Computing: An Investigation of Factors Influencing Microservice Performance”.

In 2018 IEEE International Conference on Cloud Engineering, IC2E 2018, Orlando, FL,

USA, April 17-20, 2018, edited by Abhishek Chandra, Jie Li, Ying Cai, and Tian Guo, 159–

169. IEEE Computer Society. doi:10.1109/IC2E.2018.00039.

Lloyd, Wes, Minh Vu, Baojia Zhang, Olaf David, and George H. Leavesley. 2018b. “Im-

proving Application Migration to Serverless Computing Platforms: Latency Mitigation with

Keep-Alive Workloads”. In 2018 IEEE/ACM International Conference on Utility and Cloud

Computing Companion, UCC Companion 2018, Zurich, Switzerland, December 17-20, 2018,

edited by Alan Sill and Josef Spillner, 195–200. IEEE. doi:10.1109/UCC-Companion.

2018.00056.

99

http://www.integrove.com/wp-content/uploads/2014/11/api-evangelist-baas-whitepaper.pdf
http://www.integrove.com/wp-content/uploads/2014/11/api-evangelist-baas-whitepaper.pdf
http://www.integrove.com/wp-content/uploads/2014/11/api-evangelist-baas-whitepaper.pdf
http://arxiv.org/abs/1901.03984
http://arxiv.org/abs/1901.03984
http://arxiv.org/abs/1901.03984
http://dx.doi.org/10.1007/978-3-319-74433-9_6
http://dx.doi.org/10.1007/978-3-319-74433-9_6
http://dx.doi.org/10.1016/j.jss.2018.12.013
http://dx.doi.org/10.1016/j.jss.2018.12.013
http://dx.doi.org/10.1109/IC2E.2018.00039
http://dx.doi.org/10.1109/UCC-Companion.2018.00056
http://dx.doi.org/10.1109/UCC-Companion.2018.00056

López, Pedro Garcia, Marc Sánchez Artigas, Gerard Paris, Daniel Barcelona Pons, Álvaro

Ruiz Ollobarren, and David Arroyo Pinto. 2018. “Comparison of Production Serverless

Function Orchestration Systems”. CoRR abs/1807.11248. arXiv: 1807.11248. http:

//arxiv.org/abs/1807.11248.

Lynn, Theo, Pierangelo Rosati, Arnaud Lejeune, and Vincent C. Emeakaroha. 2017. “A Pre-

liminary Review of Enterprise Serverless Cloud Computing (Function-as-a-Service) Plat-

forms”. In IEEE International Conference on Cloud Computing Technology and Science,

CloudCom 2017, Hong Kong, December 11-14, 2017, 162–169. IEEE Computer Society.

doi:10.1109/CloudCom.2017.15.

Malawski, Maciej, Kamil Figiela, Adam Gajek, and Adam Zima. 2017. “Benchmarking Het-

erogeneous Cloud Functions”. In Euro-Par 2017: Parallel Processing Workshops - Euro-Par

2017 International Workshops, Santiago de Compostela, Spain, August 28-29, 2017, Revised

Selected Papers, edited by Dora Blanco Heras, Luc Bougé, Gabriele Mencagli, Emmanuel

Jeannot, Rizos Sakellariou, Rosa M. Badia, Jorge G. Barbosa, et al., 10659:415–426. Lecture

Notes in Computer Science. Springer. doi:10.1007/978-3-319-75178-8_34.

Malawski, Maciej, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil Figiela. 2017. “Server-

less execution of scientific workflows: Experiments with HyperFlow, AWS Lambda and

Google Cloud Functions”. Future Generation Computer Systems. ISSN: 0167-739X. doi:ht

tps://doi.org/10.1016/j.future.2017.10.029.

McGrath, M. Garrett, and Paul R. Brenner. 2017. “Serverless Computing: Design, Imple-

mentation, and Performance”. In 37th IEEE International Conference on Distributed Com-

puting Systems Workshops, ICDCS Workshops 2017, Atlanta, GA, USA, June 5-8, 2017,

edited by Aibek Musaev, João Eduardo Ferreira, and Teruo Higashino, 405–410. IEEE Com-

puter Society. doi:10.1109/ICDCSW.2017.36.

McGrath, M. Garrett, Jared Short, Stephen Ennis, Brenden Judson, and Paul R. Brenner.

2016. “Cloud Event Programming Paradigms: Applications and Analysis”. In 9th IEEE In-

ternational Conference on Cloud Computing, CLOUD 2016, San Francisco, CA, USA, June

27 - July 2, 2016, 400–406. IEEE Computer Society. doi:10.1109/CLOUD.2016.0060.

Mell, Peter, and Tim Grance. 2011. “The NIST definition of cloud computing”.

100

http://arxiv.org/abs/1807.11248
http://arxiv.org/abs/1807.11248
http://arxiv.org/abs/1807.11248
http://dx.doi.org/10.1109/CloudCom.2017.15
http://dx.doi.org/10.1007/978-3-319-75178-8_34
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.10.029
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.10.029
http://dx.doi.org/10.1109/ICDCSW.2017.36
http://dx.doi.org/10.1109/CLOUD.2016.0060

Microsoft. 2018a. “Cloud Design Patterns”. Visited on January 16, 2019. https://docs.

microsoft.com/en-us/azure/architecture/patterns/.

. 2018b. “Microsoft Azure Functions”. Visited on February 7, 2018. https://

azure.microsoft.com/en-us/services/functions/.

Nastic, Stefan, Thomas Rausch, Ognjen Scekic, Schahram Dustdar, Marjan Gusev, Bojana

Koteska, Magdalena Kostoska, Boro Jakimovski, Sasko Ristov, and Radu Prodan. 2017. “A

Serverless Real-Time Data Analytics Platform for Edge Computing”. IEEE Internet Com-

puting 21 (4): 64–71. doi:10.1109/MIC.2017.2911430.

Nygard, Michael T. 2007. Release it!: Design and Deploy Production-Ready Software. Prag-

matic Bookshelf.

Oakes, Edward, Leon Yang, Kevin Houck, Tyler Harter, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. 2017. “Pipsqueak: Lean Lambdas with Large Libraries”. In 37th

IEEE International Conference on Distributed Computing Systems Workshops, ICDCS Work-

shops 2017, Atlanta, GA, USA, June 5-8, 2017, edited by Aibek Musaev, João Eduardo Fer-

reira, and Teruo Higashino, 395–400. IEEE Computer Society. doi:10.1109/ICDCSW.

2017.32.

OWASP. 2018. OWASP Top 10 (2017) Interpretation for Serverless. Technical report. Open

Web Application Security Project. Visited on February 22, 2018. https://www.owasp.

org/images/5/5c/OWASP-Top-10-Serverless-Interpretation-en.

pdf.

Pahl, Claus. 2015. “Containerization and the PaaS Cloud”. IEEE Cloud Computing 2 (3):

24–31. doi:10.1109/MCC.2015.51.

Petrenko, Maksym, Mahabal Hegde, Christine Smit, Hailiang Zhang, Paul Pilone, Andrey

A Zasorin, and Long Pham. 2017. “Giovanni in the Cloud: Earth Science Data Exploration

in Amazon Web Services”. American Geophysical Union (AGU) Fall Meeting. Visited on

March 28, 2018. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.

gov/20180000712.pdf.

101

https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://docs.microsoft.com/en-us/azure/architecture/patterns/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
http://dx.doi.org/10.1109/MIC.2017.2911430
http://dx.doi.org/10.1109/ICDCSW.2017.32
http://dx.doi.org/10.1109/ICDCSW.2017.32
https://www.owasp.org/images/5/5c/OWASP-Top-10-Serverless-Interpretation-en.pdf
https://www.owasp.org/images/5/5c/OWASP-Top-10-Serverless-Interpretation-en.pdf
https://www.owasp.org/images/5/5c/OWASP-Top-10-Serverless-Interpretation-en.pdf
http://dx.doi.org/10.1109/MCC.2015.51
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180000712.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180000712.pdf

Podjarny, Guy. 2017. “Serverless Security implications—from infra to OWASP”. Visited on

February 28, 2018. https://snyk.io/blog/serverless-security-implica

tions-from-infra-to-owasp/.

Roberts, Mike. 2016. “Serverless Architectures”. Visited on February 1, 2018. https:

//martinfowler.com/articles/serverless.html.

Rotem-Gal-Oz, Arnon. 2012. SOA Patterns. Manning Publications, Shelter Island.

Sbarski, Peter, and S Kroonenburg. 2017. Serverless Architectures on AWS: With examples

using AWS Lambda. Manning Publications, Shelter Island.

Segal, Ory, Shaked Zin, and Avi Shulman. 2018. The Ten Most Critical Security Risks in

Serverless Architectures. Technical report. Visited on September 20, 2018. https://www.

puresec.io/hubfs/SAS-Top10-2018/PureSec%20-%20SAS%20Top%2010%

20-%202018.pdf.

Spillner, Josef. 2017. “Snafu: Function-as-a-Service (FaaS) Runtime Design and Implemen-

tation”. CoRR abs/1703.07562. arXiv: 1703.07562. http://arxiv.org/abs/

1703.07562.

Spillner, Josef, Cristian Mateos, and David A. Monge. 2017. “FaaSter, Better, Cheaper: The

Prospect of Serverless Scientific Computing and HPC”. In High Performance Computing -

4th Latin American Conference, CARLA 2017, Buenos Aires, Argentina, and Colonia del

Sacramento, Uruguay, September 20-22, 2017, Revised Selected Papers, edited by Esteban

E. Mocskos and Sergio Nesmachnow, 796:154–168. Communications in Computer and In-

formation Science. Springer. doi:10.1007/978-3-319-73353-1_11.

Taibi, Davide. 2019. “Serverless anti-patterns”. Serverless Days Helsinki. Visited on May 26,

2019. https://research.tuni.fi/clowee/news/serverless-anti-

patterns/.

Tsuruoka, Yukio. 2016. “Cloud Computing - Current Status and Future Directions”. JIP 24

(2): 183–194. doi:10.2197/ipsjjip.24.183.

102

https://snyk.io/blog/serverless-security-implications-from-infra-to-owasp/
https://snyk.io/blog/serverless-security-implications-from-infra-to-owasp/
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://www.puresec.io/hubfs/SAS-Top10-2018/PureSec%20-%20SAS%20Top%2010%20-%202018.pdf
https://www.puresec.io/hubfs/SAS-Top10-2018/PureSec%20-%20SAS%20Top%2010%20-%202018.pdf
https://www.puresec.io/hubfs/SAS-Top10-2018/PureSec%20-%20SAS%20Top%2010%20-%202018.pdf
http://arxiv.org/abs/1703.07562
http://arxiv.org/abs/1703.07562
http://arxiv.org/abs/1703.07562
http://dx.doi.org/10.1007/978-3-319-73353-1_11
https://research.tuni.fi/clowee/news/serverless-anti-patterns/
https://research.tuni.fi/clowee/news/serverless-anti-patterns/
http://dx.doi.org/10.2197/ipsjjip.24.183

Varghese, Blesson, and Rajkumar Buyya. 2018. “Next generation cloud computing: New

trends and research directions”. Future Generation Comp. Syst. 79:849–861. doi:10.1016/

j.future.2017.09.020.

Villamizar, Mario, Oscar Garces, Lina Ochoa, Harold Castro, Lorena Salamanca, Mauricio

Verano, Rubby Casallas, et al. 2017. “Cost comparison of running web applications in the

cloud using monolithic, microservice, and AWS Lambda architectures”. Service Oriented

Computing and Applications 11 (2): 233–247. doi:10.1007/s11761-017-0208-y.

Wagner, Brandon, and Arun K. Sood. 2016. “Economics of Resilient Cloud Services”. In

2016 IEEE International Conference on Software Quality, Reliability and Security, QRS

2016, Companion, Vienna, Austria, August 1-3, 2016, 368–374. IEEE. doi:10.1109/QRS-

C.2016.56.

Walker, Mike J. 2017. “Hype Cycle for Emerging Technologies, 2017”. Visited on Febru-

ary 7, 2018. https://www.gartner.com/smarterwithgartner/top-trend

s-in-the-gartner-hype-cycle-for-emerging-technologies-2017/.

Wang, Liang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael M. Swift.

2018. “Peeking Behind the Curtains of Serverless Platforms”. In 2018 USENIX Annual

Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018. Edited by

Haryadi S. Gunawi and Benjamin Reed, 133–146. USENIX Association. https://www.

usenix.org/conference/atc18/presentation/wang-liang.

Wolf, Oliver. 2016. “Serverless Architecture in short”. Visited on February 16, 2018. http

s://specify.io/concepts/serverless-baas-faas.

Yan, Mengting, Paul C. Castro, Perry Cheng, and Vatche Ishakian. 2016. “Building a Chatbot

with Serverless Computing”. In Proceedings of the 1st International Workshop on Mashups

of Things and APIs, MOTA@Middleware 2016, Trento, Italy, December 12-13, 2016, 5:1–

5:4. ACM. doi:10.1145/3007203.3007217.

Youseff, L., M. Butrico, and D. Da Silva. 2008. “Toward a Unified Ontology of Cloud Com-

puting”. In 2008 Grid Computing Environments Workshop, 1–10. IEEE. doi:10.1109/

GCE.2008.4738443.

103

http://dx.doi.org/10.1016/j.future.2017.09.020
http://dx.doi.org/10.1016/j.future.2017.09.020
http://dx.doi.org/10.1007/s11761-017-0208-y
http://dx.doi.org/10.1109/QRS-C.2016.56
http://dx.doi.org/10.1109/QRS-C.2016.56
https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://specify.io/concepts/serverless-baas-faas
https://specify.io/concepts/serverless-baas-faas
http://dx.doi.org/10.1145/3007203.3007217
http://dx.doi.org/10.1109/GCE.2008.4738443
http://dx.doi.org/10.1109/GCE.2008.4738443

Zambrano, Brian. 2018. Serverless Design Patterns and Best Practices: Build, secure, and

deploy enterprise ready serverless applications with AWS to improve developer productivity.

Packt Publishing.

104

	1 Introduction
	1.1 Research problem
	1.2 Outline

	2 Serverless computing
	2.1 Background
	2.2 Defining serverless
	2.3 Backend-as-a-Service and Function-as-a-Service
	2.4 Comparison to other cloud computing models
	2.5 FaaS processing model
	2.6 Use cases
	2.7 Service providers
	2.8 Security
	2.9 Economics of serverless
	2.10 Drawbacks and limitations

	3 Serverless design patterns
	3.1 Composition patterns
	3.1.1 Routing Function
	3.1.2 Function Chain
	3.1.3 Fan-out/Fan-in
	3.1.4 Externalized State
	3.1.5 State Machine
	3.1.6 Thick Client

	3.2 Event patterns
	3.2.1 Event Processor
	3.2.2 Periodic Invoker
	3.2.3 Polling Event Processor
	3.2.4 Event Broadcast

	3.3 Integration patterns
	3.3.1 Aggregator
	3.3.2 Proxy
	3.3.3 Strangler
	3.3.4 Valet Key

	3.4 Availability patterns
	3.4.1 Function Warmer
	3.4.2 Singleton
	3.4.3 Bulkhead
	3.4.4 Throttler
	3.4.5 Circuit Breaker

	4 Migration process
	4.1 Image Manager
	4.2 Serverless Image Manager
	4.2.1 Pattern selection

	4.3 New patterns
	4.3.1 Async Response
	4.3.2 Task Controller
	4.3.3 Local Threader
	4.3.4 Prefetcher
	4.3.5 Throttled Recursion

	5 Evaluation
	5.1 Developer perspective
	5.2 Performance perspective
	5.3 Economic perspective

	6 Conclusion
	Bibliography

