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Chapter 1

Surrogate-assisted evolutionary optimization of
large problems

Tinkle Chugh, Chaoli Sun, Handing Wang, and Yaochu Jin

Abstract This chapter presents some recent advances in surrogate-assisted evolu-
tionary optimization of large problems. By large problems, we mean either the num-
ber of decision variables is large, or the number of objectives is large, or both. These
problems pose challenges to evolutionary algorithms themselves, constructing sur-
rogates and surrogate management. To address these challenges, we proposed two
algorithms, one called kriging-assisted reference vector guided evolutionary algo-
rithm (K-RVEA) for many-objective optimization, and the other called cooperative
swarm optimization algorithm (SA-COSO) for high-dimensional single-objective
optimization. Empirical studies demonstrate that K-RVEA works well for many-
objective problems having up to ten objectives, while SA-COSA outperforms the
state-of-the-art algorithms on 200-dimensional single-objective test problems.
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1.1 Introduction

Many industrial and real-world optimization problems involve more than three ob-
jectives and/or large number of decision variables. Evolutionary algorithms (EAs)
have been widely used in the literature [12, 14, 15, 19] to solve single objective
problems (SOPs) and multiobjective optimization problems (MOPs). However, their
applicability to solve large optimization problems is limited. Further, problems with
(computationally) expensive objective functions and/or constraints raise more chal-
lenges in using EAs. The main issue of EAs is that they consume too many function
evaluations to reach a sub-optimal solution. To reduce the computational cost of the
evaluation based on objective and constraint functions, several methods have been
proposed in the field of surrogate-assisted optimization, where the expensive eval-
uations are replaced by cheap surrogates. For more details about surrogate-assisted
optimization, see [10, 23]. This chapter highlights the major challenges in solv-
ing problems with a large number of objectives (known as many-objective prob-
lems) and a large number of decision variables (large-scale optimization problems).
In addition, we present two recently proposed algorithms called Kriging-assisted
reference vector guided EA (K-RVEA) and surrogate-assisted cooperative swarm
optimization algorithm (SA-COSO) in the field of expensive many-objectives and
large-scale optimization.

In last few years, evolutionary many-objective optimization has received much
attention and numerous algorithms have been proposed. For more details, see a re-
cent survey on many-objective optimization [28]. The major change to the tradi-
tional algorithms such as NSGA-II [17] or SPEA2 [60] is the reduction in the se-
lection pressure as the number of objecitves increases. Measures to alleviate the
reduction of selection pressure include modifying dominance selection criterion
[13, 26, 27, 40], using decomposition in the objective space [7, 54], using some
indicator to select solutions [4, 47, 59], or intrduction of a secondary selection cri-
terion [16, 56]. Despite the existence of numerous algorithms, their applicability to
real-world problems with a large number of objectives is limited. In large-scale op-
timization for both MOPs and SOPs, numerous EAs have been proposed. For more
details about algorithms in large-scale optimization, see [34].

Practitioners and engineers in industry often need to solve problems with many-
objectives and/or a large number of decision variables. In past few decades, many
algorithms have been proposed in the filed of surrogate-assisted optimization. For
more details about these algorithms, see [10, 23, 48]. A general framework of an
SAEA is given in Figure 1.1.

As can be seen from the framework, an initial set of samples is generated e.g. by
using design of experiments[32]. These samples are evaluated with computationally
intensive simulations or expensive experiments to obtain their objective function
values. The evaluated samples are then used to build surrogates for the given objec-
tive functions. An appropriate EA is then used with the surrogates to find samples
for the next iteration. The selected samples after using the EA are evaluated with the
simulations and combined with the previously evaluated ones for further training of
surrogates. This process is continued until a termination criterion e.g. the allowed
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Fig. 1.1: A framework representing the steps in an SAEA for solving expensive
MOPs

maximum number of expensive function evaluations, is met. The best solutions from
all the evaluated ones are used the final solutions. In the following, we elaborate on
challenges based on the framework for large optimization problems.

1.2 Challenges for solving large optimization problems

Based on the framework in Figure 1.1, one needs to address several key challenges
as follows.

1.2.1 Selection of surrogate technique

The first important challenge is to select an appropriate surrogate technique. So far,
many existing regression models have been used in surrogate-assisted optimization,
such as artificial neural networks [24], radial basis function networks (RBFNs) [43],
polynomial repression [58], Kriging models [8], support vector regression [46], etc.
Different techniques have different working methodologies and are suited for differ-
ent kinds of problems. To enhance the robustness of surrogates for different prob-
lems, multiple surrogates rather than a single surrogate are combined as an ensemble
[25, 21, 29, 48].

However, either a large number of objectives or a large number of decision vari-
ables give rise to challenges to SAEAs. For expensive MOPs, more than one surro-
gate is needed if each objective is approximated by an independent surrogate [49].
The search becomes easily misled due to the accumulated error from multiple sur-
rogates. Therefore, a number of existing surrogate-assisted multi-objective evolu-
tionary algorithms (SAMOEAs) employ a single surrogate to guide the selection
instead of using multiple separate surrogates for objectives. For example, a per-
formance indicator like hypervolume can be approximated using a Kriging model
[41], and the population after the non-dominated sort [51] can be pre-selected by
a surrogate based on classification [53]. Also for expensive large-scale problems,
those well-known surrogates cannot guarantee an acceptable error and computa-
tional complexity at the same time. For instance, the complexity of the Kriging
model dramatically increases with the increasing number of decision variables [9],
whereas neural networks have been applied to expensive large-scale problems [10].



1.2.2 Size of training data

The second challenge is to use sufficient samples for training the surrogates. Gen-
erally, the minimal number of needed samples for a satisfactory surrogate expo-
nentially increases as the number of decision variables increases. In other words, a
large number of samples is required for training surrogates for large-scale problems.
However, in many cases, only a small size data is available, which makes large-scale
problems very challenging in SAEAs.

As far as we know, the current research of SAEAs mainly focuses on problems
with up to 30 decision variables, which even cannot be viewed as large-scale prob-
lems. For medium- or small-size expensive problems, hundreds or thousands of ex-
act function evaluations are still required [29, 48, 57]. In [31], the algorithm needs
to reduce the dimension for the problems with 50 decision variables, otherwise there
would be not enough training samples for building surrogates. Only most recently,
SAEAs that are able to handle problems having more than 50 decision variables
have been reported [43, 44].

Therefore, for large-scale problems, one needs to utilize the available samples
appropriately considering the performance of the surrogates.

1.2.3 Selection of evolutionary algorithm

The next challenge is the choice of the EA. Ideally, any EA can be used to find sam-
ples for the next iteration. However in practice, different EAs perform differently
and have sensitivity towards the number of objectives and decision variables. For
example, cooperative coevolutionary algorithms [52] and the social learning particle
swarm optimization algorithm [6] are good at solving large-scale problems. More-
over, MOEAs for many-objective optimization have different selection methodolo-
gies rather than Pareto dominance only that is commonly used for MOPs with two
or three objectives [28].

Therefore, combining the elements of EA within the surrogate management is
crucial to obtain solutions especially for large optimization problems.

1.2.4 Updating the surrogates

Another challenge which is the most important one in developing an SAEA is how
to select samples for updating the surrogates, which is often known as model man-
agement or evolution control [22].

For SOPs, two types of samples are usually selected to update the surrogates. Ob-
viously, the sample that is predicted as the optimum can help the surrogates improve
the accuracy of the promising area [24, 23]. Also, selecting some samples from the
region that the current surrogates cannot predict with a high confidence level fur-



ther explores the search space [5, 29, 48]. In Kriging-based SAEAs, different infill
sampling criteria balancing those two types of samples are employed to select new
samples [35], expected improvement (ExI) [18] and lower condence bound (LCB)
[31] for instance.

The sample selection for MOPs is more complicated than for SOPs, because
one needs to consider both convergence and diversity [2]. In the literature, several
approaches have been used, such as selecting a set of uniformly distributed samples
in the objective space [3, 9, 33] or a set of isolated samples in the decision space [1,
36], and using ExI [55], LCB [38] or expected hypervolume improvement [37, 42].

1.2.5 Computational cost for training the surrogates

One more challenge which is important especially but usually ignored in the liter-
ature is the training time of surrogates. For many-objective optimization problems,
it costs more computational time if each objective is approximated by a single sur-
rogate. For large-scale problems, the training time dramatically increases because
of the training dataset in a large size. It has been shown that the training time of
training a Kriging model for large-scale problems is unacceptable [8]. Therefore,
it may happen that the training time is longer than evaluating an objective function
and the whole aim of reducing the computation time is jeopardized.

1.3 Methods for large and expensive optimization problems

As mentioned, certain challenges exist for developing an SAEA especially for large
optimization problems. Most of these challenges like selecting samples and using
the elements of EAs are part of the surrogate management. Surrogate or model
management is vital for the performance of an SAEA. It usually includes how to
approximate, how and when to update the surrogates. In case of many-objective op-
timization, one needs to take care of both convergence and diversity especially in
the objective space when selecting samples for training/updating the surrogates. In
case of large scale problems, the purpose of the model used for, model selection and
the method to select data for training/updating a model with expected performance
are very important for finding a good optimal results of computationally expen-
sive problems. Next, we present the details of two methods: K-RVEA, which was
proposed for many-objective computationally expensive problems, and SA-COSO,
which was proposed for large-scale complex problems.



1.3.1 A Kriging assisted reference vector guided evolutionary
algorithm

Handling computationally expensive many-objective optimization problems has not
received much attention in the evolutionary computation community. One reason
in restraining the use of existing surrogate-based algorithms is the appropriate se-
lection of samples to train and improve the accuracy of the surrogates and also the
performance of the EA used. Moreover, the incorporation of elements of the EA
used in managing the surrogates is essential for a better performance. The recently
proposed algorithm K-RVEA starts the process of filling the gap between two fields
focusing on many-objectives and computationally expensive function evaluations.

Two major building blocs in K-RVEA are the EA (RVEA [7]) and Kriging mod-
els [20]. RVEA is also a recently proposed EA for many-objective optimization.
The envoronmental selection in RVEA is performed based on a criterion called an-
gle penalized distance (APD) with the help of reference vectors. For more details
about RVEA, see [7]. To alleviate the computational cost, Kriging models are used
because of their ability to provide uncertainty information of the approximated val-
ues.

In K-RVEA, one of the major elements is the integration of the surrogates and the
EA used. Most SAEAs manage the surrogates without incorporating the elements of
the EA used. Therefore, the potential use of the EA used cannot be utilized properly.
In K-RVEA, the incorporation of reference vectors, APD and uncertainty informa-
tion from the Kriging models are used for managing the surrogates. In addition, an
appropriate set of samples is selected to reduce the training time of the surrogates.
In the algorithm, we use two sets of reference vectors, adaptive and fixed are used
in K-RVEA for managing the surrogates, which direct the search towards the Pareto
front. The algorithm has three phases as presented in Algorithm 1: : 1) initialization,
2) using RVEA with the surrogates and 3) updating the surrogates. In the algorithm,
two archives A1 and A2 are used for storing the samples for training the surrogates
and for storing all the evaluated samples, respectively.

In the initialization phase, an initial set of samples is generated with some design
of experiment technique. These samples are evaluated with the expensive objec-
tive functions and the evaluated samples are added to two archives A1 and A2. The
archive A1 is used to store solutions for training the Kriging models and A2 for stor-
ing all the evaluated samples. After building the Kriging models, Kriging models
are used to approximate the objective function values. After a prefixed number of
evaluations or generations with RVEA, samples are selected for updating the surro-
gates.

The next step in the algorithm is to select samples for updating the surrogates,
which is vital in the surrogate management. Samples for updating the surrogates
should be selected considering both convergence and diversity. To achieve that, we
use the convergence criterion of RVEA i.e. APD, uncertainty information from the
Kriging models and the reference vectors. As stated in [22], uncertain samples not
only help in improving the accuracy of surrogates but also enhance the diversity.



Algorithm 1: K-RVEA

Input: FE™*, maximum number of expensive function evaluations
Output: nondominated solutions of all evaluated ones from A2
*Initialization*®
1. Create an initial population P generated with some design of experiment technique
2. Initialize the number of function evaluations FE = 0 and two empty archives A1 = A2 = ¢
3. Evaluate the population P with the original expensive functions and add them to A/ and
A2, update FE = FE + |P|
while FE < FE™* do
4. Train surrogates for each objective function by using individuals in A1
Using the surrogates with RVEA*
5. Run RVEA with Kriging models to find the individuals to update the surrogates
*Updating the surrogates*
6. Select individuals from the previous step using a selection strategy and denote the set
by /
7. Re-evaluate I with the original expensive functions and update FE = FE + |I|, update
Al =A1UJ and A2 =A2U1
8. Remove extra individuals from A1 using management of training archive
| 9.Gotostep4

Therefore, we select samples based on the needs of convergence and diversity. For
instance, if a satisfactory degree of diversity has been achieved, we select samples
using APD. Otherwise, the uncertainty from the Kriging models is used in selecting
samples. To measure the need of diversity, the number of empty reference vectors is
measured, which provides an indication of increase or decrease in diversity.

Selected samples are evaluated with original expensive functions and added to
the archives A1 and A2. The size of the training data set can influence the training
time. Therefore, to decrease the computation time further, some of the samples are
removed from Al in step 8 by using reference vectors. Evaluated samples in A1 are
then used to update the surrogates. The algorithm is terminated after a prefixed max-
imum number of expensive function evaluations. For full details about the selection
strategy and the management of the training archive, see [9].

1.3.2 A Surrogate-assisted Cooperative Swarm Optimization
Algorithm

Despite the success of various surrogate techniques reported in the literature, most
of these techniques have been verified only on low-dimensional problems, mainly
because a large number of training samples are needed to build a sufficiently accu-
rate surrogate for large-scale problems, which is often not affordable. The surrogate-
assisted cooperative swarm optimization algorithm, called SA-COSO, aims to push
the boundary of surrogate-assisted optimization techniques for solving large-scale
time-consuming problems up to a dimension of 200.



Multi-swarm algorithms have shown to be effective in striking a good balance
between exploration and exploitation [39]. Based on these findings, two coopera-
tive PSO variants, one being a PSO with a constriction factor [11], called PSO in
this chapter for simplicity, and the other a social learning based PSO (SL-PSO) [6],
are integrated to solve computationally expensive large-scale problems. These two
PSO variants cooperate in such a way that a particle in the PSO learns not only
from its personal and global best particles, but also from the global best of the SL-
PSO, where the particles in the SL-PSO may learn also from promising solutions
contributed by the PSO. On the other hand, the SL-PSO aims to perform the ex-
ploratory search on the global surrogate model, while the PSO, assisted mainly by a
local fitness estimation strategy (FES), focuses on the fast local search. The general
framework of the surrogate-assisted cooperative swarm optimization algorithm is
given in Figure 1.2.

Real Fitness evaluation ( Real fitness evaluation
DB

Demonstrators

o, _—

Fitness Fitness
approximation P
RBE network approximation

FES-assisted PSO RBF-assisted SL-PSO
gbests.pso

Fig. 1.2: Coupling between FES-assisted PSO and RBF-assisted SL-PSO in SA-
COSO.

In Figure 1.2, DB represents an archive for storing the positions (decision vari-
ables) and their corresponding fitness values evaluated using the computationally
expensive exact objective function. All data stored in DB will be utilized to train the
RBEN as the surrogate model for all individuals in both FES-assisted PSO and RBF-
assisted SL-PSO. Different from FES for particle swarm optimization (FESPSO)
presented in [45], the fitness of a particle in the FES-assisted PSO will be approx-
imated using the RBFN instead of the fitness evaluation using the exact objective
function when the condition for using FES is not satisfied in order to further reduce
the expensive fitness evaluations. Although the RBFN surrogate is also involved, the
fitness of most particles in the PSO is estimated using FES. For simplicity, we term
the PSO assisted mainly by the FES and sometimes also by the RBFN surrogate
FES-assisted PSO. The particle in FES-assisted PSO will be evaluated using the



exact computationally expensive function only when its approximated fitness is po-
tentially promising, i.e., if it is better than the current personal best, or the estimated
fitness has a large degree of uncertainty. gbests; pso in Figure 1.2 is the global best
position found by the RBF-assisted SL-PSO. Since the SL-PSO algorithm is meant
for global search on an RBFN global surrogate, each individual in the FES-assisted
PSO will update its velocity according to Eq. (1.1) in order to avoid premature con-
vergence into a local optimum, in which the individual learns not only from its own
personal best position and the global best position of its own population, but also
from the global best position obtained by the RBF-assisted SL-PSO.

via(t+1) = x(via(t) + c1r1(pia(t) — xia(t))
+eara(pea(t) —xia(t)) +c3r3(Prg.a(t) — xia(t))) (L.1)

where 1 <i <m, r, r, and r3 are three uniformly generated random numbers in
the range [0, 1], c1, ¢z and c¢3 are positive constants, where ¢; is called cognitive
parameter, and ¢, and c¢3 are both called social coefficients. x is the constriction

factor, with
2k

T 29— /(92— 49)

where ¢ is the sum of the cognitive parameter and social coefficients. In general,
¢ > 4 and therefore, both the cognitive parameter and social coefficient are usually
set to 2.05. As there are two social coefficients in Eq. (1.1), we set ¢; + ¢3 to 2.05.
k is a real number in the range (0,1]. pry = (Pre,1,Pre2;- - - Pre,p) is the global best
position obtained by the RBF-assisted SL-PSO (gbests; pso)-

From Figure 1.2, we can see that all solutions that re-evaluated using the exact
fitness function are saved in the archive DB. The data in the archive are used for
model training on the one hand, and on the other hand, some of them will be ran-
domly chosen to be the demonstrators in RBF-assisted SL-PSO. The position of the
Jj-th particle will be updated as follows:

(1.2)

X

Xja(t) +Axjq(t +1) if pri(t) < prJL-

xjq(t) otherwise (1.3)

)de(l-i- 1) = {
with
A)de(t-i- l) =r ‘A)de(l) “+7r - ()de(t) —de(l)) +r3-€- (fd(t) —de(l)) (1.4)

where 1 < j <n, k € K;, K; is a subset of the union of 7 solutions in the current
SL-PSO and rn solutions randomly chosen from DB whose fitness values are better
than that of the j-th particle to be updated. pr;, 0 < pr; <1, is arandomly generated
probability and prJL is the probability threshold for particle j to update its position,
r1, 2 and r3 are three random number uniformly generated in the range [0, 1], x4
represents the d-th (1 < d < D) element of particle k whose fitness is better than

io1%ja (1) . . .
f(x)), %4(t) = Liorxielt) is the mean position value on d-th dimension of the swarm,



€ is a parameter called the social influence factor that controls the influence of %;(t).
Please note that if no other solution is better than particle j, then the original position
of this particle will be kept and participate in the evolution in the next generation.

C Start \:l

Initialization a population for FES-assisted PSO and
a population for RBF-assisted PSO

|

Save all results that evaluated using the real fitness
function in the archive and train an RBF network

,/\‘*-,_‘
_—The termination ~—_ N Determine the best positions found by FES-assisted

‘Wiion is satisfied?— PSO and RBF-assisted SL-PSO, respectively
st ¢
Y
Determine the best solution found till now

Output the best
position found so far v
Call FES-assisted PSO algorithm
—Y ¥
(" End )

— Call RBF-assisted SL-PSO algorithm

v

Update the archive
'
Re-train the RBF network

Fig. 1.3: The flowchart of SA-COSO.

Figure 1.3 gives the flowchart of the SA-COSO algorithm. Two populations will
be firstly generated and evaluated using the exact fitness function for both FES-
assisted PSO and RBF-assisted SL-PSO, all solutions will be then saved to an
archive for RBF model training. After that, the FES-assisted PSO and RBF-assisted
SL-PSO algorithms are used to find their optimal results assisted by the approxima-
tion techniques. The global best solution gbest of SA-COSO algorithm will be the
minimum value of the best positions found by FES-assisted PSO and RBF-assisted
SL-PSO, that is, ghest = min{gbestpso, gbests;_pso }, Where gbestpso and gbests; _pso
are the global best positions found by FES-assisted PSO and RBF-assisted SL-PSO,
respectively. In the following, we present the details of the fitness estimation strat-
egy for PSO and the surrogate-management in SL-PSO, including training of the
RBF network and update of the archive (DB).



1.3.2.1 FES-assisted PSO

The main steps of FES-assisted PSO are same to the canonical PSO, which includes
the approaches to update the positions of individuals, to calculate the fitness values,
and to determine the personal best positions and the global best position of the
swarm. In the following, we will firstly give an explanation of the fitness estimation
strategy used in FES-assisted PSO, and then will present a detailed description of
each main step in FES-assisted PSO.

FES was firstly proposed by Sun et al. [45] based on the position relationship in
PSO to approximate the fitness of the closest neighbor of particle i once its fitness is
known. It has been demonstrated AS an effective approach to reduce the number of
fitness evaluations for expensive optimization problems. As the PSO in SA-COSO
is closely coupled with the SL-PSO, the mechanism for updating the velocity has
been slightly modified as described in Eq. (1.1). Thus, the fitness estimation strategy
proposed in [45] must be adapted accordingly. We rewrite the equations for updating
the position of particle i and particle j (i,j € {1,2,...,m,i # j}), respectively as
follows.

xi(t+1) = x;(t) + 2 ((x;(t) = x;(t = 1)) + e (pi(2) — x:(2)) +
carp(Pg(t) —xi(1)) + c3riz(Prg (1) — xi(1)))
= (1+x(1 —cirjy —carip — c313))X;(t) —
xXi(t — 1)+ xeirapi(t) + xcorppg(t) + xc3raprg(t)  (1.5)

xj(t+1) = x;(1) + 2((x; () —x;(t = 1)) +c1rji (p; (1) —
X;(t)) +carjp(pe(t) —x;(1)) + c3r 3(Pre () — X;(1)))
= (l +){(1 —cCirj; —Crjp —C3l‘j3))Xj(l‘) —
xXX;(t— 1)+ xeirjipj(t) + xcor jpPg (t) + xc3rj3prg(t)  (1.6)

By combining and rearranging Egs. (1.5) and (1.6), we can introduce a virtual posi-
tion:

X (t+1) =x;(t+ 1)+ xxi(t = 1)+ (1+ x(1 —cirji —carjp — c3rj3) )X (1) +
xeirjip;(t) + xear jppg(t) + xc3rj3prg(t)
=x;(t+1)+xx;(t = 1)+ (1+2(1 —ciri — corip — c3133))Xi(t) +
xeiripi(t) + xcarppg(t) + xcariapr(t)
(1.7)

Consequently, the fitness of the virtual position can be approximated using the
weighted average of f(x;(t + 1)), f(xi(t — 1)), f(x;(t)), f(p;(?)), f(pe(r)) and
f(Prg(2)) orof f(x;(t+1)), f(x;(t = 1)), £(xi(2)), f(pi(t)), £(pg(¢)) and f(pre (1))

in the following form:
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where
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(1.11)
WD, = ! + ! + ! + ! + ! + ! (1.12)

di(t+1) dj(t—=1) di(t) dpi(t) dg(t) dpg(t)

where d,'(f+ 1), d,’([ — 1), dj([), dpj(l), dj(t+ 1), dj(t — 1), d,’(l), dpl'(t), dg(t) and
dy, (1) are the distances between the virtual position x, (7 + 1) and x;(r + 1), x;(t — 1),
X;(1), p;(t), xj(r+1),x;(t— 1), x;(t), pi(), p¢(¢) and p, (), respectively. Here, all
distances are Euclidean distance.

Seen from Egs. (1.8) to (1.12), the relationship between the fitness values of
f(xi(t+1)) and f(x;(r + 1)) can be established as follows:

fFES(Xj(t+1)):dj(t+1)'WFnevv (1.13)

where

WD WS f(x(r=1))  f(xi(t)) fi(t)  fPe(t)  f(pre(t))
WD, dj(t—1) di(1) dpi(1) d,(t) dre(t)

(1.14)

WEie, =

So Eq. (1.13) will be used to estimate the fitness of any particle j in the swarm
whose fitness has not been finally determined, provided that the fitness of particle
i in the same iteration is known. For each new population, all individuals will be
evaluated using the real fitness function at the first generation, and otherwise the
fitness of an individual will be

Frr(X;) If the fitness of the individual j has not
f(x;)= been approximated using Eq. (1.13)
mini—p >, j—1{/Fps(X;j)} Otherwise
(1.15)



where frpr(x;) is the value approximated by RBFN, and fi¢(X;) represents the
value approximated by FES using the fitness value of individual i.

The personal best of all particles will then be updated in the next step. For each
particle, if its fitness value in the current iteration is calculated using the RBFN and
is better than its personal best, then its personal best will be replaced. However, if
the current fitness value is estimated using FES and is better than the personal best,
we will also compare the fitness estimated using the RBFN with the personal best.
When both fitness values of the particle, one estimated using FES and the other
calculated using the RBFN, are better than the personal best, we will verify the
fitness of this particle using the real objective function. So eventually, the personal
best of this particle will be updated only if its exact fitness value is better than the
personal best.

From the above description, we can see that a particle will be evaluated using
the exact fitness function only if both its fitness values estimated using the RBFN
and using FES are better than its personal best. If this situation does not occur, no
particle in the current iteration will be estimated using the exact fitness function,
which is undesirable. To avoid false convergence, i.e., the PSO converges to a mini-
mum of the surrogate that is not an optimum of the original fitness function, we will
re-evaluate the particles if their fitness value estimated using FES has a degree of
uncertainty larger than the average. The average degree of uncertainty of the esti-
mated fitness is defined as the average difference between the fitness calculated by
the RBFN and FES:

DF = Y |f(xi) — fror(x;)| /m. (1.16)
i=1

Note that if the fitness of a particle is calculated using the RBFN, the difference will
be 0. For particle i, if |f(x;) — frer(x;)| is larger than the mean difference DF, it
will be re-evaluated using the exact fitness function and the personal best position
of this particle will be updated only if the fitness value is better than the personal
best.

Finally, the global best of the FES-assisted PSO needs to be updated, which is
similar to the canonical PSO. The main different point is that in FES-assisted PSO,
if the new global best is estimated using the RBFN or FES, it will be re-evaluated
using the exact fitness function and replaces the current global best if the fitness
value using the real fitness function is indeed better.

1.3.2.2 RBF-assisted SL-PSO

In the social learning particle swarm optimization algorithm, a particle (termed im-
itator) learns from the behaviors of different particles in the current swarm that
have better fitness values (termed demonstrators) than the imitator. In this work, an
RBFN is used to learn the global profile of the fitness landscape and therefore the
fitness values of all particles in SL-PSO are estimated using the RBF network. Due
to the fitness estimation errors introduced by the RBFN, the real fitness values of the
demonstrators may be actually worse than the imitator. To avoid false convergence



of the SL-PSO, n particles stored in the DB will be randomly chosen as potential
demonstrators for updating the particles in the current swarm. Note that all particles
stored in DB are evaluated using the real fitness function.

Once the position and velocity of all particles are updated, their fitness value
will be estimated using the RBFN and update the personal best of each particle
accordingly. If the best particle (according to the RBFN) is better than the current
global best, the best particle is re-evaluated using the exact fitness function. If the
real fitness value of this particle is indeed better than the current global best, replace
the global best with the best particle.

Note that in each iteration of the surrogate-assisted SL-PSO, at most one fitness
evaluation using the real objective function will be conducted.

1.3.2.3 Update the archive DB

The particles stored in the archive DB are used not only to serve as demonstrators
in SL-PSO, but also to train the RBFN, however, not all particles will be used to
train the RBFN in SA-COSO in order to reduce the computational time. The size
of the archive will be limited and the particles to be saved in the archive should
be properly selected. As the RBFN is meant to serve as a global surrogate and the
SL-PSO is supposed to perform global search, the samples for training the RBFN
must be ensured that the trained RBFN can model a slightly larger region than that
covered by the SL-PSO, but still be most relevant to the current swarm. For all
particles that re-evaluated using the exact fitness function in the new population, the
distance between their positions and those of particles in SL-PSO will be calculated.
For each of them, if the distance is less than the maximum distance between the
positions of particles in the archive and those of the population of SL-PSO, then
this particle will be saved in the archive to replace the corresponding particle which
has the largest distance in the archive to the population of SL-PSO. The authors can
refer to the example presented in [44] for further understanding the strategy. Note
that all distances in this work are calculated using the Euclidean distance.

1.4 Numerical experiments

In this section, we present some numerical results on standard benchmark many-
objective and large scale optimization problems. First, we present the results by
using the K-RVEA algorithm



1.4.1 Experimental result analysis of K-RVEA

For testing K-RVEA on many-objective optimization problems, we used DTLZ
problems with three to 10 objectives. The number of decision variables is kept fixed
to 10 in all problems. The algorithm is also compared with a widely used surrogate-
assisted algorithm ParEGO by using hypervolume as the performance criterion. We
use the same values of different parameters used in both algorithms, which are as
follows:

Number of independent runs: 15

Number of expensive function evaluations: 200,

Number of function evaluations in using EA with surrogate: 10000,

Crossover operator: simulated binary crossover with probability of 0.2 and dis-
tribution index of 10 and

5. Mutation operator: polynomial mutation with probability of 1/number of vari-
ables with distribution index of 50.

b

We used Wilcoxon statistical test with a confidence interval of 5% to compare
different algorithms. The results of hypervolume with two different algorithms are
shown in Table 1.1. For measuring the hypervolume, we used the worst objective
function values of all runs from both the algorithms as the reference point. As can
be seen, K-RVEA outperformed ParEGO in all benchmark problems used.

Nondominated solutions for a three-objective DTLZ7 problem from both the al-
gorithms from the run with maximum hypervolume are shown in Figure 1.4. As can
be seen, solutions obtained with K-RVEA are near to the Pareto front. The problem
has a disconnected Pareto front. Therefore, it is difficult to find solutions in all parts
of the objective space. The ParEGO algorithm randomly generates a reference vec-
tor for updating the surrogates, which does not necessary guide to the Pareto front.
Therefore, for such problems, reference vector adaptation as done in K-RVEA is
helpful.

A parallel coordinate plot for nondominated solutions of 10-objective DTLZ2
problem is shown in Figure 1.5. As can be seen, solutions obtained with K-RVEA
has wider ranges of values than ParEGO. In other words, the K-RVEA algorithm
has a better distribution of solutions in the objective space. As mentioned, the K-
RVEA adaptively focuses on convergence and diversity. The DTLZ2 problem is
relatively easier to solve compared to other problems in DTLZ suite. The K-RVEA
algorithm major focuses on convergence for finding a representative set of Pareto
optimal solutions.

1.4.2 Experimental results analysis of SA-COSO

In order to evaluate the effectiveness of SA-COSO for solving large-scale expensive
optimization problems, we perform a set of experiments on 200-dimensional test
problems listed in Table 1.2 and compare the performance of SA-COSO with that



Table 1.1: Comparison of K-RVEA and ParEGO using hypervolume. The results
are compared with Wilcoxon statistical test of 5% confidence interval, 1 in the table
represents that K-RVEA performed better than ParEGO

|Problem| k | |K -RVEA| | | |ParEGO| |

Min Mean Max Min | Mean | Max
0.9992| 0.9998 [1.0000(1(0.9356( 0.9547 [0.9710
1.0000| 1.0000 {1.0000|1(0.9685| 0.9768 |0.9824
1.0000| 1.0000 [1.0000|1(0.9855| 0.9917 [0.9973
0.9996| 0.9999 [1.0000(1(0.9991| 0.9995 [0.9999
0.9212| 0.9293 [0.9343(10.7562| 0.7867 |0.8216
0.9602| 0.9729 [0.9846(1(0.7777| 0.8082 [0.8570
0.9512| 0.9665 [0.9861(1(0.7627| 0.7946 0.8222
0.8857| 0.9240 [0.9558(1(0.6508| 0.6705 [0.6918
0.9363| 0.9588 [0.9837(1(0.8950( 0.9211 [0.9525
0.9665| 0.9845 [0.9987(1(0.9230( 0.9461 [0.9628
0.9831| 0.9903 [0.9992(1(0.9594| 0.9728 [0.9873
0.9985| 0.9996 [1.0000(1(0.9950( 0.9971 [0.9982
0.7557| 0.8207 |0.8778(1(0.5710| 0.6368 [0.7430
0.7998| 0.8817 [0.9334(1(0.5935| 0.7471 0.8702
0.7782| 0.8756 [0.9438(1(0.6365| 0.7333 [0.8080
0.7230| 0.8252 [0.9147(1(0.4915| 0.6260 [0.7394
0.7824| 0.7859 |0.7914(1|0.6486| 0.6768 |0.6959
0.5848| 0.5907 [0.5995(10.5036( 0.5214 [0.5460
0.4603| 0.4672 |0.4746(1|0.3899| 0.4221 |0.4419
0.2217| 0.2246 [0.2265(1(0.2029( 0.2109 [0.2202
0.8928| 0.9164 |0.9480(1(0.4502| 0.4592 |0.4711
0.8591| 0.9251 [0.9520(1]0.4384| 0.4542 0.4846
0.7443| 0.8803 [0.9135(1(0.3802| 0.4039 [0.4559
0.6199| 0.6303 [0.6399(1(0.2494| 0.2929 [0.3953
0.4094| 0.4322 |0.4528(1(0.2736| 0.2845 [0.3189
0.2771| 0.3284 [0.3700(1(0.1382| 0.1678 [0.2118
0.2107| 0.3327 [0.3705(1(0.0668| 0.0838 [0.1562
0.0688| 0.2159 [0.3134|1(0.0240| 0.0438 [0.1274
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of PSO, FESPSO, SL-PSO, RBF-assisted SL-PSO and COSO. Refer to Table 1.3
for the definition of the algorithms investigated here. Among them, FESPSO and
RBF-assisted SL-PSO are two surrogate assisted particle swarm algorithms, while
the rest are not. All experimental results are obtained over 20 independent runs in
Matlab®R2014b.

The sizes of poppso and popg;_pso in our algorithm are set to 30 and 200, respec-
tively. In SA-SOCO and PSO, the cognitive parameters are all set to 2.05, while
for the social coefficients, as it is also set to 2.05 in the canonical PSO and there
are two social parameters in SA-COSO, we empirically set the social coefficient to
1.025. The parameters prt and € in RBF-assisted SL-PSO are set to 1 and 0, respec-
tively. As the RBFN is utilized for learning the contour of the fitness landscape, the
complexity of the RBFN should not be overly large. Therefore, in the experiments,
the RBFN stops learning if the maximum number of its hidden nodes (max_node)
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reaches eight or the mean squared errors of the RBFN is less than 0.1. Correspond-
ingly, the minimum size of training data can be set to max_node * D + max_node for
the RBF network with eight hidden nodes. In our experiment, the size of the archive
DB (Npp) is set to max_node x D + 10, which is slightly larger than the minimum
requirement on the size of training data. The width of the Gaussian function is set
adaptively according to the number of data pairs (solutions) saved in archive DB as

follows:
d_max(k,d) = max{x;y|i € {1,2,...,Npg}} (1.17)



Table 1.2: Characteristics of six benchmark problems.

Benchmark Description Characteristics Global Optimum
Problem (f(x*))
F1 [30] Ellipsoid Unimodal 0.0
F2 [29, 30] Rosenbrock Multimodal with narrow val-|0.0
ley
F3[29, 30] Ackley Multimodal 0.0
F4 [29, 30] Griewank Multimodal 0.0
F5[29, 30] Shifted Rotated Rastrigin Very complicated multi-|-330.0
modal
F6 [29, 30] Rotated hybrid Composition|Very complicated multi-{120.0
Function modal

Table 1.3: Definition of algorithms the SA-COSO compared.

Algorithms Definision

PSO Particle swarm optimization with the constriction factor to update velocity [11]

FESPSO Fitness estimation strategy assisted PSO [45]

SL-PSO A social learning based particle swarm optimization [6]

RBF-assisted SL-PSO|SL-PSO assisted by a radial basis function network

COSO The cooperative swarm optimization without surrogate model assistance
d_min(k,d) = min{x;4|i € {1,2,...,Npp}} (1.18)

Yioi /2 ldmax(k.d) — dmin(k.d)|
O =
t

, (1.19)

where d_max(k,d) and d_min(k,d) represent the maximum and minimum values of
dimension d at iteration k in DB. ¢ represents the current iteration, D is the dimension
of the problem to be optimized and Npgp is the total number of particles (number of
training samples) saved in the archive. The maximum number of fitness evaluations
is set to 1,000.

In order to make fair comparisons, the population size of both PSO and FESPSO
is set to 30, the size of SL-PSO and SLPSO_RBF is set to 200, and the size of COSO
is set to 230. The parameters of the RBF-assisted SL-PSO and in COSO are set the
same as those in SA-COSO.

Table 1.4 lists the statistical results of all algorithms under comparison on 200-
dimensional test problems averaged 20 independent runs, including the results of the
Wilcoxon rank sum tests calculated at a significance level of o = 0.05, where ‘=’
indicates that there is no statistically significant difference between the results ob-
tained by SA-COSO and the compared algorithm, ‘+’ indicates that the compared
algorithm is significantly outperformed by SA-COSO according to a Wilcoxon rank
sum test, while ‘—’ means that SA-COSO is significantly outperformed by the
compared algorithm. From Table 1.4, we can see that SA-COSO can obtain bet-
ter results on all these problems, which confirms that our method performs well on



high-dimensional problems. We also plot the convergence profiles of the compared
algorithms in Figure 1.6. Note that as the population sizes of the algorithms un-
der comparison are different, the initial best fitness of the different algorithms are
different. From Figure 1.6, we can see that the solution obtained by SA-COSO con-
tinuously improves as the optimization proceeds. The experimental results on 200-
dimensional problems confirm the promising performance of the proposed method
on the high-dimensional problems.

Table 1.4: Comparisons of the statistical results on 200-D benchmark problems.

Approach Mean(Wilcoxon |Std. Approach Mean(Wilcoxon |Std.
test) test)

PSO 8.7570e+04(+) |5.8963e+03 PSO 3.3073e+03(+) |2.2346e+02

FESPSO 9.2915e+04(+) |5.4782e+03 FESPSO 3.3245e+03(+) |2.8726e+02
FI SL-PSO 8.3447e+04(+) |3.0600e+03 Fa4 SL-PSO 2.9726e+03(+) |1.6242e+02

RBF-assisted  |5.3455e+04(+) |1.5658e+04 RBF-assisted  |1.9394e+03(+) |3.5615e+02

SL-PSO SL-PSO

COSO 8.3989e+04(+) |4.5144e+03 COSO 3.0148e+03(+) |1.6510e+02

SA-COSO 1.6382e+04 2.9811e+03 SA-COSO 5.7776e+02 1.0140e+02

PSO 3.9989e+04(+) |3.0511e+03 PSO 5.5872e+03(+) |3.4360e+02

FESPSO 4.1495e+04(+4) |4.4760e+03 FESPSO 5.4966e+03(+) |3.4179e+02
" SL-PSO 3.8801e+04(+) |2.4071e+03 F5 SL-PSO 5.2454e+03(+) |1.6168e+02

RBF-assisted  |5.3149e+04(+) |5.5807e+03 RBF-assisted  |4.7900e+03(+) |2.7671e+02

SL-PSO SL-PSO

COSO 3.9679e+04(+) |2.3388e+03 COSO 5.2272e+03(+) |1.5075e+02

SA-COSO 1.6411e+04 4.0965¢+03 SA-COSO 3.9275e+03 2.7254e+02

PSO 2.0647e+01(+) |1.4147e-01 PSO 1.4162e+03(+) |3.4170e+01

FESPSO 2.0632e+01(+) |1.2730e-01 FESPSO 1.5035e+03(+) |3.6865e+01
F3 SL-PSO 2.0328e+01(+) |6.9280e-02 F6 SL-PSO 1.5045e+03(+) |1.5512e+01

RBF-assisted  [2.1022e+01(+) |3.6218e-02 RBF-assisted 1.4228e+03(+) [2.7529e+01

SL-PSO SL-PSO

COSO 2.0356e+01(+) |1.1736e-01 COSO 1.4972e+03(+) [1.6516e+01

SA-COSO 1.7868e+01 2.2319¢-02 SA-COSO 1.3473e+03 2.4665e+01

1.5 Summary and future work

This chapter has discussed several challenges in using surrogates for large problems,
i.e. problems with a large number of objectives and/or decision variables. Different
algorithms are proposed for such problems which are also tested on two different
real-world applications. Future work may include developing algorithms to combine
the two different approaches in using surrogates for many-objectives and large-scale
problems, incorporating user preferences [50], and handling constrained and mixed-
integer optimization problems.
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