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Abstract: Dyslexia is the most common neurological learning disability found worldwide.

Though it can seriously hinder individuals’ academic success, detecting and treating it early

on can drastically reduce its negative effect. Detecting dyslexia reliably and with ease is thus

of paramount importance. In this thesis, a method using machine learning and eye movement

data to predict if the reader has dyslexia is presented. By using the design science approach, it

was possible to obtain new information regarding the data used in addition to a model capable

of reliably predicting reading disorders. Support Vector Machine and Random Forest were

the methods studied and applied to the data. The best model was obtained by the Support

Vector Machine classifier using Random Forest to select the most important features: the

general accuracy achieved was 89.8% and the accuracy of detecting dyslexics was 75.9%.

Keywords: Dyslexia, machine learning, eye movement, Support Vector Machine, Random

Forest, design science

Suomenkielinen tiivistelmä: Lukemisen erityisvaikeus eli dysleksia on maailmanlaajuisesti

yleisin neurologinen oppimisvaikeus. Se voi hoitamattomana merkittävästi haitata yksilön

akateemista menestystä. Erityisvaikeuden tunnistaminen ja hoitaminen aikaisessa vaiheessa

voi kuitenkin vähentää huomattavasti häiriön aiheuttamia ongelmia. Tässä tutkimuksessa

esitetään menetelmä tunnistaa dysleksia koneoppimisen avulla silmänliikedatasta. Hyödyn-

tämällä suunnittelutieteen periaatteita oli mahdollista saada uutta tietoa käytettyyn aineistoon
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liittyen sekä luoda koneoppimismalli, joka pystyy luotettavasti tunnistamaan lukemisen eri-

tyisvaikeudesta kärsivät henkilöt. Tutkimuksessa käytettiin tukivektorikone- ja satunnaismetsä-

menetelmiä ennustavien mallien luomiseksi. Parhaan saadun mallin tunnistamisen yleis-

tarkkuus oli 89,8% ja dyslektikkojen tunnistamisen tarkkuus 75,9%.

Avainsanat: Dysleksia, koneoppiminen, silmänliikkeet, tukivektorikone, satunnaismetsä,

suunnittelutiede
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1 Introduction

Dyslexia is the most common neurological learning disability (Handler, Fierson, et al. 2011).

It causes difficulties in reading, writing and spelling. All these can affect academic success,

self-esteem, and social-emotional development. As approximately 10% of the people world-

wide are dyslexic, it is a concern of many children and adults around the world. Finding

a way to help the lives of a dyslexic would be of great benefit to whole societies. Studies

(Snowling and Hulme 2012; Torgesen 2000; Glazzard 2010) have shown that the earlier

dyslexia is detected and support is given in teaching, the more its negative effects can be mit-

igated. Therefore, developing a reliable and objective screening method to diagnose dyslexia

at an early age would be of utmost importance.

Using an eye-tracker, it is possible to record the movements of eyes during various activi-

ties. Tracking them during reading is especially fruitful in the case of dyslexics, as it has been

proven that readers with dyslexia have different eye movements than normal readers (Rayner

1998). Dyslexics display more and longer fixations, shorter saccades, and overall more irreg-

ular eye movement (Deans et al. 2010; De Luca et al. 2002; Lefton et al. 1979). Knowledge

of this phenomenon serves as a valuable starting point in building a tool to separate normal

readers from dyslexics. For this purpose, machine learning provides methods in identifying

patterns and making predictions based on them. Combining the known differences between

dyslexic and normal eye movements with the feature-based predictions provided by machine

learning methods seems a natural combination to be tested.

Applying machine learning in the detection of dyslexia from eye movements is a relatively

new approach. Rello and Ballesteros (2015), Lustig (2016) and Benfatto et al. (2016) have

studied this method and obtained promising results. All studies applied the Support Vector

Machine classifier for separating dyslexics from normal readers. Lustig additionally used

Feed-Forward Neural Networks in the classification with good results. All of the studies

conclude that predicting the reading ability of individuals from eye movements recorded

with eye-tracking can be efficient and reliable.

In this thesis, we applied machine learning in detecting students with dyslexia from a large
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eye movement recordings data. The data had been collected for a study regarding Internet

reading skills among students with and without learning disabilities. Our goal was to create

a software that could reliably predict individuals with dyslexia from the given data. Addi-

tionally, we wanted to gain understanding on how to best use the available data to detect

dyslexia.

The research method for this thesis was based on the design science methodology. As stated

by Holmström, Ketokivi, and Hameri (2009), design science is "research that seeks (i) to

explore new solution alternatives to solve problems, (ii) to explain this explorative process,

and (iii) to improve the problem-solving process". The goal, in our case, was to understand

how to best utilize machine learning methods to detect the students with dyslexia. Our goal

was achieved by using iterations, in which a new approach was tried, the results recorded,

and a new goal set based on these results. By using these iterations and the designed artifact,

we also gained more knowledge and understanding of the problem and the data.

As the most important result of this study, a model based on a Support Vector Machine

classifier was created capable of separating dyslexic individuals from normal readers with

an accuracy of 89.8%. This model used Random Forest in first selecting the most relevant

eye movement features to create a better prediction. Furthermore, the most relevant features

found agree with other studies regarding the idiosyncrasies of dyslexics’ eye movements.

Other valuable results include gaining more knowledge in what features are relevant and

the fact we were able to find another usage for the data originally gathered for a different

purpose.

This thesis begins with an overview of dyslexia and how it can be detected from eye move-

ments in Chapter 2. In Chapter 3 the data and how it was obtained is discussed. After that,

in Chapter 4, there is a brief discussion of the theory behind the chosen machine learning

methods. Then, in Chapter 5, the different methods used in this study and the feature extrac-

tion from the data is explained. Chapter 6 discusses the results obtained by the used methods

implementing the machine learning algorithms. Finally, the conclusion of this thesis is in

Chapter 7.
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2 Background

This chapter discusses dyslexia and its traits, as well as the basics of eye movements. The

connection between these two is also presented. In addition, other studies similar to this one

are discussed.

2.1 Dyslexia

Dyslexia is defined as a neurological learning disorder characterized by reading and spelling

impairments despite normal intelligence (Frazier 2016). In more detail, Lyon, Shaywitz, and

Shaywitz (2003) explain that dyslexia is "characterized by difficulties with accurate and/or

fluent word recognition and by poor spelling and decoding abilities ... Secondary conse-

quences may include problems in reading comprehension and reduced reading experience".

These difficulties are generally regarded to be due to impairment in the phonological pro-

cessing of language (MacFarlane et al. 2010), though Hautala (2012) also points out that

alternative views indicate a connection between deficient visual and/or attentional processes

and problems in fluent reading. The phonologic-deficit hypothesis states that dyslexics have

difficulty in understanding the connection between written letters and the sounds they con-

stitute (Shaywitz 1998). In this study, the focus is on people with developmental dyslexia,

which is defined as the inability to develop an effortless reading skill (Hautala 2012).

The prevalence of dyslexia has been estimated to be about 5% to 10% (Shaywitz 1998). This

differs depending on the estimation criteria. The study by Katusic et al. (2001) indicates a

prevalence of 5.3% to 11.8% depending on the formula used. Hautala (2012) also speci-

fies that approximately 6% to 17% of humans are considered to have at least mild problems

in reading. Regarding the gender distribution of dyslexics, Shaywitz (1998) notes that pre-

viously "it was believed that dyslexia affected boys primarily; however, more recent data

indicate similar numbers of affected boys and girls".

The reading difficulties caused by dyslexia can have many kinds of negative effects. Dyslexia

has been shown to greatly reduce the learning ability of students and subsequently make at-

taining academic success much harder (Undheim 2009). It may also limit the individuals’
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life-choices as they may try to avoid studies and jobs that involve reading. According to

Undheim, dyslexics also tend to be overachievers, which results in more stress. With the

modern days of continual information search in the form of web text, inviduals with difficul-

ties in reading and spelling are also predicted to have problems in creating a relevant query

for information retrieval, finding useful terms in documents, and thus in understanding key

concepts for refining their search (MacFarlane et al. 2010). The not-so-obvious effects of

dyslexia include damaging the pupils’ self-esteem and self-concept, creating a sense of help-

lessness regarding control of success attained by learning, and feelings of isolation (Glazzard

2010). Additionally, dyslexia appears to have a negative impact on working practices and

career progression (Morris and Turnbull 2007).

According to Snowling and Hulme (2012), the importance of identifying and providing in-

tervention for children with dyslexia at an early age has been emphasized for many years.

Glazzard (2010) stresses the need of an early diagnosis for dyslexia, because it can stop

pupils’ development of learned helplessness and begin improving their confidence. Glazzard

found that pupils’ confidence, self-concept, and self-esteem made a change to the better after

the diagnosis. Vellutino et al. (2004) also explain that children with reading disorders "can

acquire at least grade-level reading skills if they are identified early and are provided with

comprehensive and intensive reading instruction tailored to their individual needs". There-

fore, developing a fast, reliable, and simple method for screening dyslexia would be highly

beneficial. In this study, we chose to use eye movement data captured with an eye-tracker to

detect dyslexia.

2.2 Eye movements

The two main types of eye movements in reading are fixations and saccades (Rayner 1998).

Fixations are defined as movements made when the eye is relatively still and focused on a

target (Deans et al. 2010). These can last from tens of milliseconds to several seconds though

usually lasting 200 to 300 milliseconds while reading (Holmqvist et al. 2011). According to

Eden et al. (1994), the average duration of a fixation is 225 milliseconds when the participant

reads silently. In between each fixation, the eye moves rapidly. This rapid movement is

called a saccade. During saccades, the eye scans and processes the information between the
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Figure 1. A visualisation of fixations and saccades during reading.

fixation points (Eden et al. 1994). Saccade amplitude refers to the angular distance the eye

travels during this movement. Backward saccades are referred to as regressions. Typically, a

saccade lasts 30 to 80 milliseconds. Figure 1 shows a visualisation of these eye movements

when reading. The circles indicate fixations and the arrows saccades.

Holmqvist et al. (2011) explain that, in addition to fixations and saccades, the eye displays a

group of other movements. During a fixation the eye is not actually completely still; it has

three types of micro-movements: tremor, microsaccades, and drifts. According to Holmqvist

et al., these eye movements are “...mostly studied to understand human neurology”. During

the end of a saccade the eye usually ‘wobbles’ slightly before coming to a stop. This move-

ment is referred to as a glissade. Furthermore, when following a moving target people’s

eyes make a movement called smooth pursuit. It is a slower movement than a saccade and

requires a target to follow with the eyes. As fixations and saccades are the most relevant eye

movements for understanding reading, these were chosen as the eye movements to examine

in this study.

The movements of the human eyes are tracked by using an eye-tracker. The most widely

used method to estimate where someone is looking on the stimulus is based on pupil and

corneal reflection tracking. The goal is to first detect the position of the pupil and the corneal

reflection and then calculate their geometric centres. These centres are then used to calculate

their relative distance to each other. Because the pupil moves faster than the corneal reflec-

tion, the position of the gaze can be calculated based on their relation. For the eye-tracker

to know how this relation corresponds to the points in the stimulus, a calibration must be

performed. The calibration gives the eye-tracker examples on how the participants pupil and

corneal reflection relation relates to the stimulus area. (Holmqvist et al. 2011)
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2.3 Eye movements and dyslexia

The connection between eye movements and dyslexia is a well-established fact (Rayner

1998). People with a reading disability display more and longer fixations, shorter saccade du-

ration and length, and more regressions than normal readers (Rayner 1998; Deans et al. 2010;

De Luca et al. 2002). Additionally, Lefton et al. (1979) showed that dyslexic readers’ eye

movements are "chaotic, frequent, of longer duration, and generally unsystematic" and that

the normal developmental gains in eye movements made by children cannot be detected in

dyslexics. The underlying reason for the eye movement abnormalities is proposed to be due

to difficulties the person has in reading and understanding the text, i.e., the eye movements

reflect these problems (Rayner 1998; Hyönä and Olson 1995).

Using the observations on fixation and saccadic differences as a starting point for predicting

dyslexia, we can see the possibilities machine learning methods offer. The goal of supervised

machine learning as stated by Kotsiantis, Zaharakis, and Pintelas (2007) is "to build a concise

model of the distribution of class labels in terms of predictor features". Once the model has

been created, it can be used to quickly and efficiently predict the values of the class labels.

In this case, the knowledge on the differences in eye movements for a normal and dyslexic

reader could be used to select suitable attributes from the eye tracking data to use as the

predictor features to separate the two classes. In addition to machine learning being able to

help in separating the classes, there are methods that can help in determining the relevant eye

movement attributes for this classification. By using these methods, it could also be possible

to gain a better understanding of the studied problem.

Despite thorough researching, only three papers were found regarding the use of machine

learning methods in detecting dyslexia from eye movements. Nevertheless, these studies

show that it is possible to separate dyslexic people from nondyslexic using machine learning

with a good accuracy. The first study published by Rello and Ballesteros (2015) presents

a model, based on the Support Vector Machine classifier, which is capable of detecting

dyslexia with an accuracy of 81,18%. Lustig (2016) compared several machine learning

methods; the best results were obtained with Support Vector Machines and Feed-Forward

Neural Networks at an accuracy of 83%. Additionally, Benfatto et al. (2016) also used

Support Vector Machines to develop classification models capable of separating high-risk
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dyslexia subjects from low-risk subjects with a high accuracy. These studies suggest that

there is interest in finding new ways to apply machine learning in predicting dyslexia from

eye movements, which was the goal of this study.
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3 Data

In this chapter the data used for the research is discussed from the perspectives of how it has

been obtained and what it contains. Obtaining relevant data is an important step in creating

a machine learning model capable of correct predictions.

3.1 Collection of the data

The data used for this research was given by the eSeek project group from the Department

of Psychology at the University of Jyväskylä. Their research project was about Internet

reading skills among Finnish students with and without learning disabilities. The data had

been obtained over the course of three years and contains data of 165 youngsters with an

average age of 12.5 years: their results of the tests done, eye-movement data, and partial

analysis of these. The students had been chosen from a class of about 400 students. Of the

chosen students, 30 (18%) met the criteria for a reading disorder based on choosing the 10th

worst percentile of the reading fluency performance score. This criteria was used to label the

students as either dyslexic or normal readers. When compared to the general prevalence of

dyslexia established in section 2.1, the dyslexics in this data are slightly over-represented.

The eye movements of the participants were recorded using an EyeLink 1000 (SR Research,

manual) eye-tracker with a sampling frequency of 1000 Hz. A Dell Precision T5500 work-

station with an Asus VG-236 monitor (1920 x 1080, 120 Hz, 52 x 29 cm) at the viewing

distance of 60 cm was used for displaying the stimuli. The calibration of the device was per-

formed before the experiment and repeated between trials, if visible head movements were

made, a drift was detected on the researcher’s screen used for following the eye movements,

or the calibration error exceeded .30 visual degrees. (Hautala et al. 2018)

During the experiment, participants completed a practice task and then 10 simulated infor-

mation search tasks. The tasks consisted of reading the contextualized question and then

selecting a search result (out of four options), which would help them answer the question.

An example of the given question is "Find out why pandas are endangered?" (Hautala et

al. 2018)
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Figure 2. Example of the question page shown during the task. The questions are in Finnish.

The eye movement data that was focused on in this research was obtained from the question

page shown to the participants. Figure 2 shows one question page, in which four sentences

and a "Continue" button were displayed. The second and third sentence had an important

role; one contained the task (question) for this information search, the other was a distractor

with irrelevant information regarding the task. The placement of these varied between the

tasks, i.e., the task question could also be on the third row and the distractor respectively on

the second.

In the case of figure 2, the distractor is the third sentence. The first sentence reads "The

reclusive panda is a herbivore that moves slowly". The second sentence, which is the task,

reads "Find out why pandas are endangered". The distractor sentence translates to "The

endangered pandas spend their time looking for food and resting". Finally, the last sentence

reads "Contrary to normal bears, giant pandas do not hibernate".

3.2 Data preprocessing

The obtained data is structured by containing one fixation per row. The 10 tasks and the

practice task that the participants completed are henceforth referred to as trials for clarity’s

sake, as this is their name in the data file.
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Figure 3. Graph showing the distribution of fixation and saccade durations in the data.

The eye movement data was also cleaned up before being used for creating the feature sets in

this study. The SPSS Statistics (IBM Corporation) software was used for the preprocessing.

The steps conducted are below:

• The participants with no reading fluency performance score were left out, because this

score was needed in establishing whether the participant had a reading disorder or not.

• The data of the practice trial was removed, as it was focused on getting the participants

ready for the actual tasks.

• The first fixation of each trial was removed due to the tracking being inaccurate at this

stage.

• The rows that contained the value "1" in the BadData column were removed. This

label indicated that the particular data row contained bad data.

• Participant with the id 396 was removed due to missing too much relevant data after

the above operations.

After the preprocessing, 161 students were left in the data file. Of these, 30 are recognized

as having a reading disorder based on their reading fluency performance score.
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4 Machine learning methods

The machine learning methods used in this study are presented in more detail in this chapter.

The selection of Support Vector Machines and Random Forest as the used methods is also

discussed.

4.1 Background

As stated by Alpaydin (2009), machine learning is "programming computers to optimize a

performance criterion using example data or past experience". It employs statistics theory

to give the computer the ability to learn from data (Alpaydin 2014). Common cases for

using machine learning involve problems that cannot be solved directly by any method or

the knowledge required to solve them does not exist. In these cases, amassing a lot of data

and letting the machine learning model find certain patterns and regularities can produce a

solution to the problem. Generally, this process is known as "fitting" the model. It may not be

possible to acquire a perfect solution; rather, the goal is to construct a useful approximation.

(Alpaydin 2014)

Classification of machine learning methods can be done by task and by application. The tasks

are generally divided into supervised and unsupervised tasks. When categorizing machine

learning by application, interest is on the desired output. When the goal is to classify the

inputs into two or more classes, the machine learner deals with classification. If the desired

output is continuous, e.g., numbers, the method type belongs to the regression category. In

the case of this study, the goal is to separate dyslexics from normal readers. Additionally, we

know what kind of patterns to teach the machine learner, so we have a binary classification

problem with supervised learning.

On the advantages of machine learning, Kotsiantis, Zaharakis, and Pintelas (2007) state that

"people are often prone to making mistakes during analyses or, possibly, when trying to

establish relationships between multiple features. This makes it difficult for them to find

solutions to certain problems. Machine learning can often be successfully applied to these

problems, improving the efficiency of systems and the designs of machines". The benefits of
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machine learning thus include removing a part of the human error involved. For diagnosing

dyslexia reliably, removing some of this error could prove to be significant.

The chosen machine learning methods for this thesis were Support Vector Machine and Ran-

dom Forest. These were selected because they are currently widely used methods. Support

Vector Machine has also been previously used in studies of this field (Benfatto et al. 2016;

Rello and Ballesteros 2015; Lustig 2016), so this was chosen to establish the baseline results.

4.2 Support Vector Machine

Support Vector Machine (SVM), presented by Cortes and Vapnik (1995), is a widely used

and effective classification method. It has succesfully been applied in face detection (Osuna,

Freund, and Girosit 1997) and text recognition (Wang, Babenko, and Belongie 2011), among

other problems (Noble et al. 2004; Mountrakis, Im, and Ogole 2011; Noble et al. 2004).

SVM separates classes by mapping the input vectors into a high dimensional feature space

through the chosen non-linear mapping (Cortes and Vapnik 1995). In this space an optimal

hyperplane is found for the separable classes. Figure 4 shows the optimal hyperplane and its

margins. This hyperplane is defined as the linear decision function with a maximal margin

between the data points of the two classes. Maximising this margin has been proven to

reduce the generalization error (Vapnik 1999).

Suppose we are given a set of training data D, with n data points

D = {(xi,yi)|xi ∈ Rp,yi ∈ {−1,1}}n
i=1 (4.1)

where xi is a p-dimensional real number and yi the class which xi belongs to (either 1 or -1).

The data points are said to be linearly separable if

yi(w · xi +b)≥ 1, ∀i = 1, . . . ,n (4.2)

where w is a vector perpendicular to the hyperplane and b
‖w‖ the offset of the hyperplane
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Figure 4. Example of an SVM with a maximum-margin hyperplane separating two classes.

The dashed lines represent the margins. The dots on both margins are support vectors.

from the origin along w.

If the training data is linearly separable, the margin hyperplanes can be selected in a way that

there are data points between them. The distance between the margins, which is 2
‖w‖ , can

then be tried to be maximized. Maximising this distance involves minimizing ‖w‖. Thus,

this is the optimization problem, with the constraint 4.2.

However, in real-world problems the data cannot usually be linearly separated without error.

This problem is handled by introducing slack variables ξi≥ 0, i= 1, . . . ,n (Cortes and Vapnik

1995) so that

yi(w · xi +b)≥ 1−ξi, ∀i = 1, . . . ,n (4.3)

These slack variables allow the data points to be a small distance ξi on the wrong side of the

hyperplane. The optimization function thus becomes

13



min
w,ξ

{1
2
‖w‖2 +C

n

∑
i=1

ξi

}
, (4.4)

where C is a constant chosen by the user. With a bigger value of C, the penalty for training

errors is higher. The constraint of this optimization function is equation 4.3.

The above function is still only for solving linear classifications. In the case of one class

being divided by the other, linear classification cannot achieve good results. This can be

solved by using a non-linear classifier created by using the kernel trick (originally proposed

by Aizerman, Braverman, and Rozonoer (1964)). Boser, Guyon, and Vapnik (1992) pro-

posed this method in 1992. The kernel trick consists of mapping the original space into a

much higher dimension, which presumably makes the separation problem easier. In the re-

sulting algorithm, every dot product is replaced by a non-linear kernel K(x,xi). The form of

these functions is

f (x) =
n

∑
i=1

yiαiK(x,xi), (4.5)

where xi is the image of a support vector in the input space and αi is the weight of a support

vector in the feature space (Cortes and Vapnik 1995).

In this study, the SVM implementation used was from the Python module Scikit-learn (Pe-

dregosa et al. 2011). Internally this SVM implementation uses the libsvm library, which is

wrapped in C (Chang and Lin 2011). In this implementation, the radial basis function kernel

is

K(xi,x j) = exp(−γ ‖xi− x j‖2), f or γ > 0, (4.6)

where γ is a parameter specified by the user with the keyword gamma.

Using this kernel the decision function is

sgn
{ n

∑
i=1

yiαi exp(−γ ‖xi− x j‖2)+ρ

}
, f or γ > 0 (4.7)
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The other kernel choices available in the Scikit-learn module (Pedregosa et al. 2011) are

• Linear: 〈x,x′〉

• Polynomial: (γ 〈x,x′〉+ r)d , where d defines the degree and r serves to trade off the

influence of higher-order versus lower-order terms.

• Sigmoid: tanh(γ 〈x,x′〉+ r), where r serves the same purpose as in the polynomial

kernel above.

4.3 Random Forest

Random Forests (RF) have been used with good results in various tasks, including data min-

ing (Verikas, Gelzinis, and Bacauskiene 2011), bioinformatics and computational biology

(Boulesteix et al. 2012), and remote sensing (Belgiu and Drăguţ 2016). Random Forest is a

classifier that consists of an ensemble of randomized decision trees, which vote for the most

popular class (Breiman 2001).

The decision tree classifier consists of a rooted tree, which contains nodes t0, ..., tn,n∈N that

each represent a subspace Xtn ⊆ X . The root node t0 corresponds to the input space X . Each

node t is labeled with a split st . The splits divide the nodes’ subspace Xt into two subspaces,

which are represented by the nodes’ children. (Louppe 2014)

Formally, a Random Forest is defined (Breiman 2001) as a classifier consisting of a collec-

tion of tree structured classifiers {hk(x,Tk), k = 1, . . .}, where Tk are independent identically

distributed random vectors, and each tree casts a unit vote for the most popular class at input

x.

The goodness of the decision tree classifier splits is specified by the impurity measure, also

called the Gini index (Alpaydin 2014). According to Alpaydin, a split in the tree is pure "if

after the split, for all branches, all the instances choosing a branch belong to the same class".

For more details on the Gini index, see Louppe (2014) page 45.

A part of the user-adjustable parameters for Random Forest involve controlling when the

splitting of the nodes is stopped (Louppe 2014). This is important to prevent overfitting of

the model. The following parameters are used to control when a node t is set as a terminal
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Figure 5. A decision tree created for a binary classification problem. The tree contains five

nodes, of which three (t2, t3, t4) are terminal nodes. Two splits partition the input space into

three subspaces. (Figure inspired by Louppe (2014))

node:

• min_impurity_decrease, the minimum number of samples to set t as a terminal

node.

• max_depth, the maximum depth of a tree. If t is at the depth of max_depth, set t

as a terminal node.

• min_impurity_decrease the minimum decrease in impurity to set t as a terminal

node.

• min_samples_leaf the minimum number of samples required to set t as a terminal

node.

Additionally, when decision trees are built into a random forest, two more parameters be-

come relevant. The number of trees in the forest is defined by the n_estimators parame-

ter. Having a larger number of trees is usually better, but that also increases the computation

time for the model. When splitting a node in the decision tree, the feature used for the split

is selected from a random subset of features. The amount of features chosen into this subset

is determined by the max_features parameter. (Louppe 2014)

16



Figure 6. The partitions caused by the splits in decision tree 5. Red dots represent objects of

class c1 while blue dots represent objects of class c2. (Figure inspired by Louppe (2014))

Decision trees and other tree-based methods are lucrative as explained by Louppe (2014),

because they:

• are non-parametric,

• intrinsically implement feature selection,

• are robust to outliers or errors in labels,

• handle heterogeneus data (ordered or categorical variables, or a mix of both).

Additionally, Cutler, Cutler, and Stevens (2012) state that Random Forests are appealing,

because they:

• naturally are capable of regression and classification,

• have a built in estimate of generalization error,

• can be used directly for high-dimensional problems.

In this study, the Random Forest implementation used was also taken from the Scikit-learn

Python module (Pedregosa et al. 2011). It is important to notice that unlike the original
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Random Forest method (Breiman 2001), the Scikit-learn implementation does not let each

decision tree classifier vote for a single class. Instead, it combines the classifiers by averaging

their probabilistic prediction.

4.4 Hyperparameter optimization

When fitting a machine learning model to the data, the goal is to obtain the best possible fit,

i.e., the smallest generalization error. As described in the previous sections 4.2 and 4.3,

machine learning models typically have a variety of parameters that affect their behaviour.

These parameters are called hyperparameters, and they are set before the model is trained.

Appropriate configuration of the hyperparameters is necessary to produce a model with the

best performance for the problem in question. (Claesen and De Moor 2015)

The most widely used methods in hyperparameter optimization are grid search and manual

search (Bergstra and Bengio 2012). Manually searching for the best hyperparameters in-

volves making educated guesses and comparing the results obtained from the model. Grid

search, on the other hand, involves doing an exhaustive search through a manually specified

group of hyperparameters and their values for the machine learning algorithm. Below is an

example of the grid search parameters used to optimize a SVM model using the radial basis

function kernel.

C : [1000,2000,3000,5000,7000,10000,20000,50000,100000,500000,1000000]

γ : [0.00004,0.00006,0.00008,0.0001,0.0005,0.001,0.005,0.01] (4.8)

Bergstra and Bengio (2012) explain that the benefits of using grid search include the sim-

plicity of implementation and trivial parallelization. Additionally, grid search is reliable in

low dimensional spaces and does not include technical barriers to manual optimization. The

major drawback of using grid search is the curse of dimensionality, as the number of com-

binations to go through grows exponentially with the number of hyperparameters. In our

case, the simplicity of implementing grid search and easy access to manually optimize the

hyperparameters made it very lucrative. After initial experiments, grid search was selected
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as the chosen method, as the results obtained were satisfactory.

4.5 Cross-validation

When determining how well a machine learning model performs, using only one data set

can pose problems. Regarding the general performance of the model, it is difficult to say

how well the model will perform in the future on other data sets, if trained and validated on

only one set. Also, comparing the expected error of learning algorithms, whether completely

different algorithms or the same one using different hyperparameters, is very challenging

with just one data set. (Alpaydin 2014)

For the reasons stated above, having a different set of data for validation is important. In fact,

having several training sets would be even better. Using only one validation set increases the

risk of possible anomalies. Additionally, the machine learning method may contain random

factors affecting the result. To reliably evaluate the effect of these factors it is necessary

to use more than one validation set. (Alpaydin 2014) One way of achieving this is to use

cross-validation.

Cross-validation aims to assess how a machine learning model will generalize to new, unseen

data. One round of cross-validation consists of partitioning a data sample into a number of

subsets called folds. One fold is selected as the validation data set and the rest form the

training data. Most methods involve doing multiple rounds of cross-validation with different

subsets to reduce variability. 10-fold cross-validation has been shown to be the best method

for comparing models when using real-world datasets (Kohavi et al. 1995). For our study,

ensuring that the relative amount of both classes is preserved in the folds was important. This

procedure is called stratification.
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5 The implementation

In this chapter, the script used to obtain the results of this study is explained. Additionally,

the feature extraction methods used are also described. The algorithm was programmed in

Python using the Scikit-Learn module for the machine learning algorithms. Additionally, the

Pandas module was used for handling the data. For the complete code, see YouSource.

5.1 Overview of the script

The script created for producing our results has the following stages: initialization of the data,

feature extraction and generation, training and evaluation of models, and displaying results.

The feature extraction and generation stage is explained in more depth in section 5.2.

The initialization of the data contains a few important tasks. The wanted columns from the

whole data are selected using Pandas. Simultaneously, the cells containing unknown values

are transformed into cells containing a whitespace. These cells are then replaced to cells

containing "0". The matrix used to store the extracted data is also prepared depending on the

feature set to be created.

The part of the script used for training the model and getting the prediction results uses a

self-created cross-validation and grid search method. This method is shown in Algorithm 1.

The training and evaluation are done in cycles; each cycle consists of training the model and

obtaining the results. The cycles constant determines how many times the whole cross-

validation cycle is done. p1 and p2 are two hyperparameters chosen to be optimized. For

SVM, C and gamma were optimized. Respectively, for Random Forest, max_features

and n_estimators were selected to be optimized. For each new hyperparameter com-

bination, the model is created again to ensure that it does not contain any memory of past

trainings.

For our study, we selected to use 5-fold cross-validation, because more folds would have re-

duced the amount of students with dyslexia in each fold to a too small amount. Additionally,

using fever folds was computationally faster. The whole cross-validation process is repeated
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100 times to reduce the effect of randomness on the results. A similar approach was used

in the study by Mantau et al. (2017), where a 5-fold cross-validation was used to deduce the

best parameters, and the whole training and testing process was repeated ten times. This was

done to evaluate the performance of the models.

Algorithm 1 The algorithm for training and evaluating the machine learning model with

cross-validation
for i = 1, ... , cycles do

for p1, p2 in hyperParameters do

Create five cross-validation folds

for each cross-validation fold do

Create classifier

Fit model with data

Store resulting predictions

Calculate and store confusion matrix

end for

end for

end for

Put resulting models in order based on the recall score for predicting dyslexics

The combinations of hyperparameters are compared against each other by a performance

metric. In our case, we used the recall score of dyslexics predicted. Recall is the fraction

of correctly predicted samples out of all the samples of the positive class. This was chosen

as the performance metric in this research as it was deemed more important to correctly

detect the dyslexics than normal readers. In addition to the recall score, we also observed

the overall accuracy of the model. Using only the accuracy score is not enough, because the

classes are unbalanced in our data. It would be possible to obtain an accuracy of 81.5% by

just declaring all of the test subjects as normal readers. This would give a false picture of the

model’s performance.

In the case of Random Forest, the algorithm also calculates the feature importances for each

model created in the cross-validation folds. The ten most important features for each model

are saved into a list. From this list it is possible to obtain a number of the most often occuring
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features and use them to create a new feature set. This is one of the methods used to create a

feature set in this study; section 5.2 describes this in more detail.

Finally, the script displays the results. The charts are created with the Pyplot module from

the Matplotlib library and other relevant information is displayed in the console window.

The confusion matrices are calculated for every model for each fold in the cross-validation

process. After the cycles have been completed, the mean confusion matrix for each model is

calculated and displayed.

5.2 Feature extraction, selection and generation

In the case of a binary classification problem, the goal of feature generation is to choose the

features that best separate the two classes. For this study, this meant finding features that

help distinguish dyslexics from non-dyslexics by their eye movement patterns. We chose to

test several different approaches for generating feature sets. These approaches were based

on the results of the research survey conducted, and also on the ideas devised during the

meetings of our research group.

The feature sets used and their dimensions (rows x features) are:

• Averaged (AVG): 161 x 4

• Transition matrix average (TMA): 161 x 24

• Transition matrix (TM): 161 x 240

• Trials on rows (TR): 1610 x 24

• Transition matrix with histograms (TMH): 161 x 760

• Features chosen with RF (RFFn): 161 x n

The first feature set generated (AVG) contains the participants’ total fixation count, aver-

age fixation duration, average saccade amplitude and average saccade duration. This is the

most basic feature set created in this study. The saccade amplitude and saccade duration are

partially tied to each other, as the larger the amplitude, the longer the saccade lasts.

The rest of the feature sets, apart from RFFEAT, have been created using eye movement tran-

sition matrices. The transition matrix is a catalogue of all area of interest (AOI) sequences
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F T D L

F 11 1 2 3

T 2 16 5 6

D 1 7 8 0

L 0 4 8 4

Figure 7. Example of a transition matrix used in this study.

of a length equal to the dimension of the matrix (Holmqvist et al. 2011). The matrix, in fig-

ure 7, consists of the AOIs listed in rows and columns, and the cells with numbers indicate

how many times gaze has shifted from one AOI to another. In our case, the AOIs are the

four sentences on the question page of the experiment. They are labeled in the following

way: First sentence (F), Task sentence (T), Distractor sentence (D) and Last sentence (L).

For instance, in the example 7, the participant looked from the distractor to the task sentence

more often (7 times) than to the first sentence (once).

The difference between the traditional transition matrix, and the one we used, is that in our

transition matrix we placed the number of fixations within an AOI on the diagonal. This

was considered relevant because dyslexics have been known to have more fixations while

reading, as stated in section 2.3. In the example figure 7, we can see that the participants’

gaze shifted within the task sentence 16 times.

The chart in figure 8 illustrates all the generated feature sets apart from RFFn. In the lower

half are the feature sets generated with their details placed in the order of increasing com-

plexity from left to right. The black arrows indicate what extracted data was used for each

feature set. The figures in the top half show the progression of our method used to extract

features from the data.

We conjectured that the transitions between these sentences could be useful in separating the

readers with difficulties from normal readers. The hypothesis was that dyslexics would have

more difficulty finding the task sentence out of the four than normal readers. This would

cause them to have a more erratic gaze movement among the sentences, and by comparing

transition matrices it should be possible to notice this difference.
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Figure 8. This chart displays the feature sets apart from RFFn and the hierarchy of their

generation.
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The feature set TM used transition matrices from each trial. It also contained the sums of

fixation durations and saccadic amplitudes for each sentence in each trial. On the other hand,

the feature set TMA used the mean values of transition matrices. Additionally, the fixation

duration averages and saccadic amplitude averages per each sentence over all trials were

included. The intention behind using the mean values was to lower the dimensionality of the

feature set and possibly reduce the noise.

The feature set TR is created by using the TM feature set and transferring the data of the

trials to each row. This causes it to contain 161 ∗ 10 = 1610 rows, because there were ten

trials for each participant. Once the data of each trial has been transferred, each participant’s

"dyslexia" value is calculated by the trials voting. Each trial of the participant casts a vote;

if the trial predicts the participant to be dyslexic, a one is given, else a zero. If the total

amount of votes for each participant is greater than five, then the participant is predicted to

have dyslexia.

For the TMH feature set, we used the transition matrix data with histograms containing five

bins for fixation duration, saccade duration and saccade amplitude. The transition matrix

data was the same as in the TM feature set. The histograms were created separately for

each sentence in every trial. This causes the feature set to have transitionmatrix f eatures+

bins∗values∗ sentences∗ trials = 160+5∗3∗4∗10 = 760 features. The bin intervals were

calculated beforehand by evenly dividing the entire range of data values into five equally

sized partitions.

Each of the feature sets is normalized before saved in to the csv files. The normalization is

done with equation 5.1. In the equation, the data values are rescaled to have values between

0 and 1.

xscaled =
x− xmin

xmax− xmin
(5.1)

When selecting variable subsets for better predictive power, the methods used can be divided

into three groups: wrappers, filters and embedded methods (Guyon and Elisseeff 2003).

Wrappers score the subsets with the machine learner based on their predictive power. Filters
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utilize general features such as correlation to remove the least interesting variables regardless

of the chosen predictor. Embedded methods incorporate the selection of variable subsets in

the process of training, thus perfoming feature selection and classification simultaneously.

In this study, the algorithm used resembles the embedded method the most.

The method applied for creating the RFFn feature sets involves using Random Forest to first

select the most important features, which are then given to SVM for classifying the data.

Similar methods to this have been used in previous studies (Yang et al. 2014). The method

used in this study involves first calculating the feature importances with RF for each fold ro-

tation in every cycle for all the hyperparameter combinations. Of these feature importances,

the 10 most important ones are saved at each fold rotation. Once the hyperparameter com-

bination with the best recall value for the dyslexia class has been found, the n most frequent

features are extracted into their own feature set, where n is the amount chosen. The amounts

used were 10, 20, 30, 35 and 40. These were heuristically selected to find the feature set that

produces the best results.

26



6 Results

This chapter discusses the results obtained in this study. These results were all achieved by

using the method described earlier in chapter 5 with 100 cycles and a 5-fold cross-validation.

The scores presented here for each model are averages of the 100 cycles. The error given is

the standard deviation of these results.

Table 1 shows an overview of the best results. The "Method" column indicates the machine

learning method used to produce the model. The "Bal" tag indicates that the class weights

were balanced for the Scikit-learn library SVM by adjusting them inversely in proportion

to class frequencies. The second column holds the names of the feature sets as given in

section 5.2. The "Accuracy" column holds the average fraction of correct predictions for all

of the hundred models created during the algorithm. The error given is the standard deviation

of these accuracy scores. The final column contains the average recall scores for the class of

dyslexics of the hundred models created.

Table 1. Best models created with their accuracy and recall scores. These are the average

results over 100 cycles.

Method Feature set Accuracy Recall

SVM RFF35 89.8%±4.7% 75.9%±17.1%

TR 86.4%±1.8% 55.7%±6.4%

SVM Bal RFF35 89.7%±4.0% 84.8%±14.0%

RF RFF35 86.9%±4.6% 54.0%±20.4%

6.1 Support Vector Machine

The radial basis function kernel was heuristically selected as the kernel used by SVM, be-

cause it appeared to produce the best results.

The best results for SVM were achieved by the RFFn feature sets. These results are displayed

in table 2 below. The first column holds the name of the feature set; in this case the number

after "RFF" indicates how many of the most important features this feature set contains, e.g.,
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"RFF10" contains the top ten most important features. The two last columns contain the

hyperparameter values.

By balancing the class weights the recall score of the RFF35 model was improved signifi-

cantly with a minor decrease in accuracy.

Table 2. Results for SVM using the feature sets generated by Random Forest. These are the

average results over 100 cycles.

Feature set Accuracy Recall C gamma

RFF10 85.7%±5.7% 57.5%±20.6% 8000 0.05

RFF20 86.5%±5.0% 61.4%±20.6% 30 1.0

RFF30 89.9%±4.6% 73.8%±17.5% 30 1.1

RFF35 89.8%±4.7% 75.9%±17.1% 30 1.09

RFF40 89.5%±4.7% 74.5%±17.1% 30 0.9

RFF35 Bal 89.7%±4.0% 84.8%±14.0% 1 1

Table 3 displays the results obtained with SVM by using the rest of the feature sets. The best

accuracy and recall score were obtained with the TR feature set.

Table 3. Results for SVM using the generated feature sets apart from RFFn.

Feature set Accuracy Recall C gamma

AVG 85.0%±2.1% 42.8%±18.1% 100000 0.05

TMA 80.9%±2.8% 46.5%±19.6% 500 0.09

TM 78.2%±3.9% 38.5%±19.3% 1000 0.001

TMH 85.0%±3.1% 41.6%±19.5% 200 0.009

TR 86.4%±1.8% 55.7%±6.4% 50000 0.1

Presented in figure 9 are the recall score results obtained with SVM and the RFF35 feature

set. On the y-axis is the recall score for the class of dyslexics. The x-axis displays the number

of the hyperparameter combination. The hyperparameter values used are below
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C : 1,10,20,30,50,75,100,300,500,1000,5000,10000

γ : 0.00001,0.0001,0.001,0.01,0.1,0.4,0.5,0.55,0.6,0.65,0.8,0.9,1,1.08,1.09,1.1,1.11

(6.1)

The large variation of the recall score is explained by the algorithm cycle, which first goes

through the values of the C hyperparameter and then changes gamma to the next value. Each

dip in the graph is due to a too small value of C.

It is important to notice how much the chosen hyperparameters affect the performance of

the model. This exemplifies the importance of doing a thorough grid-search in search of the

best hyperparameter values regarding the need of the model. In our case, we deemed the

correct classification of the students with dyslexia the most important goal. In addition, we

also wanted to achieve a good general accuracy for the model.

6.2 Random Forest

The best results obtained by the Random Forest classifier are displayed in table 4. The

two last columns contain the hyperparameters optimized with grid-search and used by each

model.

As can be seen, the results are not as good as with SVM. Even by using the RFF35 feature

set the results did not improve much.

Table 4. Results for RF using the generated feature sets.

Feature set Accuracy Recall Max_features n_estimators

AVG 80.7%±5.5% 50.2%±19.2% 4 10

TMA 83.6%±5.0% 41.3%±19.2% 18 30

TM 81.7%±5.3% 36.9%±20.1% 240 20

TMH 84.5%±4.6% 39.9%±19.2% 550 20

TR 86.7%±1.1% 36.3%±5.1% 24 20

RFF35 85.4%±1.1% 42.6%±19.7% 5 20
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Figure 9. This chart illustrates the variance in the recall score of the dyslexia class with

different hyperparameter values.
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Figure 10. This chart shows how many of the top 10 features in each fold rotation (500

rotations in total) were related to each sentence.

6.3 Feature observations

By analysing the most relevant features obtained in the RFF set, interesting observations

were made. Figure 10 displays the amount of features related to each sentence chosen for

the top 10 most important features each fold rotation. The total amount of features chosen

is 10 ∗ f olds ∗ cycles = 10 ∗ 5 ∗ 100 = 5000. Of these, 2900 (58%) were related to the first

sentence on the task question page. This relation means that the feature was generated from

gaze activity in the first sentence. Figure 10 shows that the rest of the sentences had a much

lesser effect in creating features that help separate the two classes. This is an observation

that the psychology department researchers in our team had also noted in their work.

The different trials were also shown to influence feature importance. Figure 11 presents the

amount of features related to each trial chosen for the top 10 each fold rotation. The total

amount of fold rotations is again 5000. The features generated from T2 data occur most

often (32%), indicating a high significance in classifying the two classes correctly. For the

rest of the trials, the feature count stays somewhat in the same range, with low points at

T6 and T9. The high importance of T2 is speculated to be the result of the participants not

having established a context for the text read. Knowing the context helps readers read faster

as they are able to predict upcoming words (Hawelka et al. 2015). But readers with a reading
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disorder suffer more from not knowing the context of the text than fluent readers. This could

explain the importance of T2 trial features in separating the two classes; at this point of the

research the participants had not yet seen enough trials to establish the context and form of

the question page text. Later on in the experiment, the context is established and thus it is

harder to distinguish the readers with difficulties from the normal.

Figure 11. This chart shows how many of the top 10 features in each fold rotation (500

rotations in total) were related to each trial.

The feature occurrences in each fold rotation were also proven to display certain phenomena.

Figure 12 shows the amount of times the most important features were picked. We can see

that features concerning the first sentence (indicated by an "F") and ones from T2 have

occured most often, indicating their importance, as stated above. In addition, by looking at

the histogram bin numbers in the feature names, we can also see that in the case of saccadic

features, the most frequent bin is the first. Respectively, for the features that are created from

fixation data, the most important bin is the last. These observations indicate that the shortest

saccades and the longest fixations help the classification the most. This is a conclusion that

agrees with the results obtained by Deans et al. (2010) and De Luca et al. (2002).

We can also notice that features extracted from saccadic data are more important than ones

from fixation data. The use of transition matrices did not contribute greatly to the classi-

fication; only one feature in the 35 most important features is from a traditional transition

matrix. The other three features in this list (T2F-F, T10T-T and T3D-D) are the amounts of
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fixations made on the indicated sentence.

Figure 12. This chart displays the occurence of each feature in the top 10 most important

features each cycle (100 in total).

6.4 Additional results

A quick test was conducted on detecting attentional difficulties with the TMH feature set.

Random Forest was used, as earlier, to first measure the feature importance’s and then the

top 30 features were given to SVM for creating models. The best result gained was with

an accuracy of 81.4%± 6.4% and a recall of 44.7%± 21.2%. The value used to define
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Figure 13. This chart displays the occurence of each feature in the top 10 most important

features each cycle (100 in total). These results are for attentional difficulties.

the classes of normal students and those with attentional difficulties was obtained with the

ATTEX test (Klenberg et al. 2010). As expected, the accuracy and recall scores indicate that

the same features used for predicting dyslexia do not work as well for predicting attentional

difficulties. The feature occurences that are presented in figure 13 show that the features from

the transition matrix were more useful in detecting attentional difficulties than dyslexia. This

indicates that there could be more value in using transition matrices for detecting attentional

difficulties.
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7 Conclusion and future work

In this study, we set out to produce a machine learning model capable of reliably detecting

students with reading disorders using eye movement data. The machine learning algorithms

selected were the Support Vector Machine and Random Forest. Using the design science

principles in an iterative fashion, we were able to achieve our goal and also gain more knowl-

edge regarding the problem. The best model, with an accuracy of 89.8%, was achieved with

the Support Vector Machine by using a feature set created from the most relevant eye move-

ment features selected by Random Forest.

This study showed very promising results in being able to detect students with reading dis-

orders based on their eye movements. A simpler experiment could be set up with the partic-

ipants concentrating on reading more text. From the eye movement data obtained this way,

a similar set of the most important features could be extracted by using the histogram matrix

feature set and Random Forests feature importance measurement. The model created this

way could then possibly be used as a pre-screening tool for dyslexia detection.

The results obtained by the best RFFn models also reflect the possibilities of fine-tuning. The

different hyperparameter combination possibilities were not searched through exhaustively.

By, for example, testing values of C between 1.0 and 1.1, and possibly going even further,

it could be possible to slightly improve the models accuracy. Regarding the most important

features selected (top 35 in the case of the best model), it can be seen from the results that

creating models with the top 31, 32, 33 or 34 features could possibly yield better results. In

addition to fine-tuning the model, removing possible outliers, i.e., exceptions in the data that

do not obey the general rule, from the data could very likely improve the results.

Another factor likely affecting the results are the data cells with missing values. As stated

in section 5.1, these missing values were replaced by zeroes. However, methods exist to

imputate data into these missing values. These algorithms were considered but left out due

to time constraints.

For future work and the use of the results in this study, it is important to take into account

the Finnish language orthography. Finnish language, along with Spanish, Greek, Italian and
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Germany, has a transparent orthography (Serrano and Defior 2008). This means that the

written symbols (graphemes) correspond to the spoken sounds (phonemes) of the language.

English, on the other hand, has an opaque orthography, i.e., graphemes may correspond to

the same phonemes and vice versa. Serrano and Defior state that "in languages with a more

transparent orthography like Spanish, dyslexia seems to involve less severe deficits than

those found in opaque writing systems". Additionally, in transparent orthographies, reading

accuracy appears to be less important than reading speed in detecting dyslexia (Serrano and

Defior 2008). Thus, the results of this study may not be directly applicable to languages of

more opaque orthographies.

Additionally, it is worth mentioning that using Random Forest as the feature selection method

is most probably not optimal. Better suited feature selection algorithms most likely exist.

The article by Dash and Liu (1997) contains a comprehensive overview of the various meth-

ods. Selecting a group of different algorithms and comparing the feature sets created by

them could prove to be fruitful. Our choice of using Random Forests feature importance

measurements for feature selection was based on ease of use as Random Forest was already

implemented in our algorithm.

Using the design science principle proved to be useful for this study. The problem-solving

process in our research was improved by each new result obtained by the designed machine

learning artifact. By using iterations, we were able to gain new knowledge of the problem

in each cycle and improve the method used to create the feature sets and the validation

algorithm. Without this cyclic motion obtaining the results would have been a great deal

more difficult.

The short test conducted to detect attentional difficulties indicated the potential usefulness of

transition matrices. It has been shown that in the case of ADHD, individuals have difficul-

ties controlling their eye movements (Munoz et al. 2003). Therefore, by creating a suitable

feature set based on transition matrices and other applicatory data, detecting attentional dif-

ficulties reliably from eye movements could prove to be possible with a similar approach.

Using the design science iterations could also possibly lead to new information regarding

this problem.
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