
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Hypervisor-based Protection of Code

© 2019 IEEE.

Accepted version (Final draft)

Kiperberg, Michael; Leon, Roee; Resh, Amit; Algawi, Asaf; Zaidenberg, Nezer J.

Kiperberg, M., Leon, R., Resh, A., Algawi, A., & Zaidenberg, N. J. (2019). Hypervisor-based
Protection of Code. IEEE Transactions on Information Forensics and Security, 14(8), 2203-2216.
https://doi.org/10.1109/TIFS.2019.2894577

2019

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

1

Hypervisor-based Protection of Code
Michael Kiperberg∗, Roee Leon†, Amit Resh‡, Asaf Algawi† and Nezer J. Zaidenberg §

∗Faculty of Sciences
Holon Institute of Technology

Israel
Email: michaelkip@hit.ac.il

†Department of Mathematical IT
University of Jyväskylä

Finland
Emails: roee.leonn@gmail.com, asaf.algawi@gmail.com

‡School of Computer Engineering
Shenkar College of Engineering, Design and Art

Israel
Email: amitr44@gmail.com
§School of Computer Science

The College of Management, Academic Studies
Israel

Email: nzaidenberg@me.com

Abstract—The code of a compiled program is susceptible to
reverse-engineering attacks on the algorithms and the business
logic that are contained within the code. The main existing
countermeasure to reverse-engineering is obfuscation. Generally,
obfuscation methods suffer from two main deficiencies: (a) the
obfuscated code is less efficient than the original, and (b) with
sufficient effort, the original code may be reconstructed. We
propose a method that is based on cryptography and virtual-
ization. The most valuable functions are encrypted and remain
inaccessible even during their execution, thus preventing their
reconstruction. A specially crafted hypervisor is responsible for
decryption, execution and protection of the encrypted functions.
We claim that the system can provide protection even if the
attacker: (a) has access to the operating system kernel, and (b)
can intercept communication over the system bus. The evaluation
of the system’s efficiency suggests that it can compete with and
outperform obfuscation-based methods.

Index Terms—Security, code protection, cryptography, virtual
machine monitors, trusted platform module,

I. INTRODUCTION

A compiled program is susceptible to two types of attacks:
theft and tampering. The main countermeasure against

these attacks is obfuscation, which can be defined as a transfor-
mation that produces a more complex program but which has
the same observable behavior [1]. Several taxonomies classify
the different obfuscation methods by the abstraction level
(source code, machine code), the unit (instruction, function,
program), or the target (data, code) of the performed trans-
formation [2]. According to this classification, the abstraction
level of our method is machine code, its unit of transformation
is function, and it mainly targets code. Specifically our method
does not protect variables [3], [4], [1], [5], the stack [6], [7],
[8] or any other information that does not reside within a
function.

There is a wide range of approaches to code protection. The
simplest forms of code protection are:
• instruction reordering [4], [9], in which independent

instructions of the original program are permuted
• instruction substitution [4], [10], [11], in which sequences

of instructions are replaced by other but equivalent se-
quences

• garbage insertion [4], in which the transformation inserts
new sequences of instructions that do not affect the
execution of the program

• dead code insertion [1], in which the transformation
inserts new sequences of instructions that are never
executed

All these methods are vulnerable to automatic attacks [12],
[13], [14], [15].

A more sophisticated method of code protection is encoding,
which either encrypts [16] or compresses portions of the
original program and decodes these portions back prior to
their execution. However, even when an encryption is used, the
cryptographic key is embedded in the decryption algorithms
[17], [18], [19], and therefore can be extracted [20], [21],
[22]. Moreover, since the code eventually must be decrypted, it
can be extracted during run-time. Therefore, such methods are
usually combined with run-time analysis prevention methods
[23], [24].

A particular case of encoding is virtualization, in which
the program is translated to a different instruction set, and
then executed by a special embedded interpreter [4], [25].
Automatic [26] and semi-automatic [27] attacks have been
proposed for this method.

The performance degradation due to obfuscation depends
on the sophistication of the obfuscation method. For exam-
ple, the Obfuscator-LLVM [28] specifies which obfuscation

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

2

techniques should be applied to an executable. When only
instruction substitution is applied, the performance penalty is
≈ 12% on average. However, when additional techniques are
added, e.g. bogus control flow, control flow flattening, function
annotations, etc., the execution times increase by a factor of
15–35. Stunnix [29] and Tigress [30] produce executables that
are slower by a factor of ≈ 9 [31].

Our method can be classified as encoding, since it encrypts a
set of functions and then decrypts them prior to their execution.
However, there are two advantages to our method over current
methods:

1) In our method, the decryption key is not embedded in
the decryption algorithm, but rather the key is stored in
a widely available hardware device (TPM).

2) In our method, the decrypted code is protected by a
hypervisor, during its execution, thus making the method
safe even in presence of a run-time analysis tool.

We show that the performance degradation of our method is
5%-25% on average, depending on an application.

A hypervisor is a software module that can monitor and
control the execution of an operating system. The monitoring
and controlling capabilities are provided by an extension to
the original processor’s instruction set, called a virtualization
extension. Virtualization extensions are available on processors
designed by Intel (VT-x) [32], AMD (AMD-V) [33] and ARM
[34]. Our method is implemented on Intel processors but can
easily be ported to AMD and ARM.

Trusted Platform Module (TPM) [35] is a standard that
defines a device with a non-volatile memory and a predefined
set of cryptographic functions. The system described in this
paper uses the TPM to store the decryption key (by sealing
and unsealing it).

Throughout this paper we refer to the entity that wants to
protect the program as the distributor, and to the potentially
malicious entity that uses the program as the user.

A. VMX

Many modern processors are equipped with a set of exten-
sions to their basic instruction set architecture that enables
them to execute multiple operating system simultaneously.
This paper discusses Intel’s implementation of these exten-
sions, which they call Virtual Machine Extensions (VMX).
The software that governs the execution of the operating
systems is called a hypervisor and each operating system
(with the processes it executes) is called a guest. Transitions
from the hypervisor to the guest are called VM-entries and
transitions from the guest to the hypervisor are called VM-
exits. While VM-entries occur voluntarily by the hypervisor,
VM-exits are caused by events that occur during the guest’s
execution. The events may be synchronous, e.g. execution
of INVLPG instruction, or asynchronous, e.g. page-fault or
general-protection exception. The event that causes a VM-exit
is recorded for future use by the hypervisor. A special data
structure called Virtual Machine Control Structure (VMCS)
allows the hypervisor to specify the events that should trigger
a VM-exit, as well as many other settings of the guest.

Intel’s Extended Page Table (EPT), a technology generally
called Secondary Level Address Translation (SLAT), allows
the hypervisor to configure a mapping between the physical
address space, as it is perceived by a guest, to the real physical
address space. Similarly to the virtual page table, EPT allows
the hypervisor to specify the access rights for each guest
physical page. When a guest attempts to access a page that is
either not mapped or has inappropriate access rights, an event
called an EPT-violation occurs, triggering a VM-exit.

Input-Output Memory Management Unit (IOMMU) allows
the hypervisor to specify the mapping of the physical address
space as perceived by the hardware devices to the real physical
address space. It is a complementary technology to the EPT
that allows a construction of a coherent guest physical address
space for both the operating system and the devices.

B. System Description
The system described in this paper consists of an UEFI

application and an encryption tool. The encryption tool allows
the distributor to encrypt a set of selected functions in a
given program. The UEFI application initializes a hypervisor
that enables the execution of encrypted functions by running
the operating system (and all its processes) as a guest. An
encrypted program starts executing as usual but whenever
it jumps to an encrypted function, a VM-exit occurs. The
hypervisor decrypts the function and executes the decrypted
function in user-mode (in the context of the hypervisor). When
the function returns, the hypervisor performs a VM-entry and
the normal program execution continues.

The main benefit of using a hypervisor is its ability to
construct an isolated environment, which is inaccessible from
the outside of the hypervisor. Like the hypervisor, the op-
erating system can also construct an isolated environment. In
principle, the system described in this paper can be realized as
a module in an operating system. However, the security of this
module will depend on the security of all the other code that
executes in kernel mode: the operating system and the device
drivers. Studies show [36] that the number of software defects
increases with the size of the software. Some of these defects
(1%–2% [37]) can be classified as security vulnerabilities.
The size of operating system varies between 20 to 50 million
lines of code [37]. Moreover, since every hardware vendor
can produce a device driver that executes in kernel mode, the
size of the code executing in kernel mode is unlimited. In
contrast, the size of the hypervisor presented in this paper is
10,000 lines of code, which makes it a much better candidate
to provide the described security guarantees.

The UEFI application uses the TPM to unseal the decryption
key, which is stored (in its sealed form) in a local file. After
activating the hypervisor the (unsealed) key is delivered to
the hypervisor through a secure communication channel. The
configuration of EPT and IOMMU does not map the pages
that contain the key and the decrypted functions, making them
inaccessible both from the guest and from a hardware device.

C. Threat Model
We argue that the system described in this paper can

withstand the following types of attacks:

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

3

• malicious code executing in user-mode or kernel-mode,
• malicious hardware devices connected via a DMA con-

troller equipped with IOMMU,
• sniffing on any bus.

More precisely, we claim that even in the presence of all
the above types of attacks, the attacker cannot obtain the
decryption key nor the decrypted functions.

We admit that the system is vulnerable to attacks that:
1) broadcast on buses or
2) move the TPM to another (malicious) machine.

Finally, we assume that the firmware, including the code that
executes in SMM [38], is trustworthy.

Since the protocol by which the secret key is delivered to
the TPM is not covered by this paper, and in order to make
the description herein self-contained, we assume that the TPM
already contains the secret key needed for code decryption.

We admit that key distribution is not required in
obfuscation-based methods. If the complexity of key distri-
bution is unacceptable, obfuscation-based methods are the
preferred choice.

We further note that the safety of the hypervisor is guar-
anteed by its design, which is presented in this paper. We do
not impose any limitations on the attacker with this regard.
Specifically, an attacker’s inability to execute code in the
hypervisor is not an assumption but rather a consequence of
the hypervisor’s design.

II. RELATED WORK

The idea of utilizing a hypervisor’s ability for creating
an isolated environment for security applications is not new.
Hypervisors were used for integrity verifications [39], [40],
[41], for creating isolated domains inside an operating system
[42], for creating malware [43], and for detecting and ana-
lyzing malware [44]. However, to the best of our knowledge,
hypervisors were never used for code protection.

There is a wide range of approaches to code protection.
Among the different methods, from an operational point of
view the system described in this paper is most closely related
to encoding-based methods. However, the security guarantees
of the system are comparable to those given by obfuscation-
based methods.

Encoding-based methods encrypt portions of a program and
the decrypt them prior to their execution. The decryption key
is embedded in the decryption algorithms and therefore can
be extracted. Moreover, since the code eventually must be
decrypted, it can be extracted during run-time. A notable
advantage of these methods is their performance. Since the
encrypted code is decrypted only once, during the program’s
loading, the overhead of this protected method is minimal.
Commercial examples of this method, PELock [45] and UPX
[46], indeed show a negligible overhead but are vulnerable to
automatic code extraction [47].

The security guarantees of obfuscation-based methods can
be summarized as follows: ”increase the reverse-engineering
costs in a sufficiently discouraging manner for an adversary”
[28, p. 1]. This guarantee is achieved by applying various
transformations to the program that should be protected. There

are numerous transformations ranging from basic instruction
substitutions, which replaces a = b + c by a = b − (−c),
to control-flow flattening, which reorganizes the flow between
basic blocks of a function. Obviously, applying several trans-
formations together improves the security but degrades the
performance of the system. Stunnix [29] is a commercial
source code obfuscator for different programming languages,
including C++, Perl and JavaScript. Tigress [30] is an open-
source C-language obfuscator/virtualizer. Obfuscator-LLVM
[28] is an open-source obfuscator that works on LLVM bit-
code. It can obfuscate programs written in all the languages
supported by LLVM. Obfuscator-LLVM also implements a
wide variety of obfuscating transformations. The execution
time of programs protected by Obfuscator-LLVM can increase
by a factor of 15–35. Stunnix and Tigress produce executables
that are slower by a factor of ≈ 9 [31].

In comparison to the methods described above, we argue
that our system provides stronger security guarantees than both
methods. Our system outperforms Obfuscator-LLVM when a
reasonable set of transformations is applied.

III. THE HYPERVISOR

The main component of the described system is a hyper-
visor, which utilizes the VMX instruction set extension. This
section provides a short overview of this component. Section
V-A contains a detailed description of the hypervisor’s ini-
tialization and operation. There are two types of hypervisors:
full hypervisors and thin hypervisors. Full hypervisors like
Xen[48], VMware Workstation [49], Oracle VirtualBox [50]
can execute several operating systems concurrently. The main
goal of VMX was to provide software developers with means
to construct efficient full hypervisors. Thin hypervisors, in
contrast, can execute only a single operating system. Their
main purpose is to enrich the functionality of an operating
system. The main benefit of a hypervisor over kernel modules
(device drivers) is the hypervisor’s ability to create an isolated
environment, which is important in some cases. For example,
SecVisor [39] is a thin hypervisor that validates an operating
system’s integrity, TrustVisor [51] is a thin hypervisor that
provides code and data integrity and secrecy services to user
mode applications, and BitVisor [52] is a thin hypervisor that
encrypts data that is transmitted to hard drives. In general,
since thin hypervisors are much smaller than full hypervisors,
they are superior in their performance, security and reliability.
The hypervisor described in this paper is a thin hypervisor that
is able to:

1) intercept attempts to execute an encrypted function,
2) decrypt the function,
3) execute the function.

The hypervisor was written from scratch to achieve an optimal
performance.

Similarly to an operating system, a hypervisor does not
execute voluntarily but responds to events, e.g. execution of
special instructions, generation of exceptions, access to mem-
ory locations, etc. The hypervisor can configure interception
of (almost) each event. Interception of an event (a VM-
exit) is similar to handling of an interrupt, i.e. a predefined

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

4

function is executed by the processor. Another similarity with
an operating system is the hypervisor’s ability to configure
the access rights to each memory page through a data struc-
ture, named EPT, that resembles the virtual page table. The
configuration that is specified in EPT is activated when the
processor leaves the code of the hypervisor and is deactivated
when the processor switches to the hypervisor to handle an
event. Therefore, the hypervisor can configure a page to be
accessible only by the hypervisor by marking the page as
inaccessible in the EPT.

Our hypervisor operates as follows. During its initialization,
the hypervisor allocates a memory region and configures the
EPT to make this region inaccessible. Then, the hypervi-
sor configures interception of attempts to execute encrypted
functions (actually, as explained in section V-B this is done
by intercepting a special exception). Finally, the hypervisor
boots the operating system. The hypervisor remains passive
until the operating system loads a protected program and an
encrypted function is executed. The encrypted function gener-
ates an exception which is intercepted by the hypervisor. The
hypervisor decrypts the encrypted function to the pre-allocated
and protected memory region. The decrypted function executes
inside the hypervisor and upon completion returns to the
original program (outside the hypervisor).

IV. PREPARATIONS

In order to protect her code, the distributor has to encrypt
the sensitive code and install the necessary files on a target
machine. These processes are described in the following
paragraphs.

A. Encryption

Encryption is performed in a granularity of a function. It
receives as input a text file that specifies the executable files
and the functions to be encrypted as well as the encryption
key to be used.

The encryption tool produces an output file that contains the
encrypted versions of all the functions that were selected for
encryption. We call this output file a database. In addition to
the generation of the database file, the encryption tool ”erases”
the instructions of the selected functions. The erasing of code
is performed by replacing the original instructions by a special
instruction. We call the resulting file a protected executable.

The special instruction we have chosen is the HLT instruc-
tion. When executed in kernel mode, the HLT instruction
causes the processor to halt. In user mode however, this
instruction generates a general protection exception, which
can be intercepted by the hypervisor. Any instruction that
generates an exception can qualify as a special instruction,
in this sense. For example, the INT3 instruction generates a
breakpoint exception and therefore can be used to replace the
functions’ original instructions.

The encryption tool is implemented as a command line
program. It can be invoked from a standard makefile rule or as
a post-build action, thus allowing the distributor to automate
the encryption process.

The system described in this paper supports simultaneous
execution of only a single protected executable, or to be
precise, a single protected process. We plan to add support
for multiple processes in the future.

B. Target Installation

In UEFI enabled systems, after a successful initialization,
the firmware loads a sequence of executable images, called
UEFI applications. The sequence is stored in a firmware-
defined non-volatile storage. Each element in the sequence
points to a location that contains an UEFI application. After
loading an UEFI application to the memory, the firmware
calls the application’s main function. If the main function
returns, the firmware loads the next application and so on.
Typically, the operating system’s boot loader is implemented
as an UEFI application, whose main function does not return.
The firmware settings screen allows the boot sequence to be
configured.

The system described in this paper is implemented as a
UEFI application. In order to install the system, the distributor
should perform the following steps:

1) place the UEFI application at a location accessible by
the firmware: local disk, USB device, TFTP server or
possibly others,

2) modify the boot sequence so that the application is
pointed by the first element of the boot sequence,

3) store the code decryption key by performing the boot
process.

During its first execution, the application asks the user to enter
the code decryption key. Then, the application encrypts the key
using a TPM, a process called sealing, and stores the resulting
encrypted key in a local file.

During subsequent executions, the application reads the file
and decrypts its contents using the TPM, thus obtaining the
code decryption key. As will be explained in section VI, it
is impossible to obtain the code decryption key from another
UEFI application.

The distributor should store the database file, which was
produced during the encryption phase, on a local drive that is
accessible by the firmware. We recommend the use of the ESP
(EFI System Partition). The ESP can be mounted and become
a regular folder, which simplifies updates of the configuration
file after the initial provisioning.

We note that it is possible to deliver the key to the TPM from
a remote entity. There are several protocols and technologies
[53], [54], [55] that allow one entity to prove its authenticity
and obtain a key from a remote entity. This topic however is
beyond the scope of this paper.

V. OPERATION

The UEFI application, during its execution, obtains the
code decryption key using the TPM, loads the database file,
initializes a hypervisor, and returns to firmware. The firmware
typically proceeds by loading the operating system boot loader.
The hypervisor remains in the main memory and continues its
operation even after the application terminates. The hypervisor
is responsible for detecting attempts to execute encrypted

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

5

Real
Physical
Space

Guest
Physical
Space

. . .

. . .

32

. . .

. . .

32

. . .

. . .

32

. . .

. . .

32

. . .

. . .

Fig. 1. EPT configuration that maps guest physical pages (bottom) to real
physical pages (top). Real physical pages whose index is a multiple of 32
(red rectangles) are safe pages, which are used exclusively by the hypervisor.
Guest’s physical pages whose index is a multiple of 32 are mapped to the
last pages in the real physical address space. The code and the data of the
hypervisor (blue rectangles) are mapped as read-only (blue lines) to the guest
physical address space.

functions (whose instruction were replaced by a special in-
struction). When such an attempt is detected, the hypervisor
decrypts the function, and executes it on behalf of the original
program. During this execution, the hypervisor protects the
decrypted version of the function from being exposed. The
rest of this section provides a detailed explanation about the
initialization and the operation of the system.

A. Initialization

The UEFI application starts by allocating a persistent
memory block (a memory block that can be used after the
application terminates), and loading the database file into this
memory block. Fortunately, file reading is one of the services
provided by the UEFI firmware.

Next, the UEFI application loads the encrypted key from a
file and decrypts it using the TPM. The communication with
the TPM is carried over a secure channel, thus eliminating
man-in-the-middle attacks. When the decryption is completed,
the application forces the TPM to transit to a state in which
it is no longer possible to decrypt the key file.

Finally, the UEFI application allocates a persistent memory
block, and initializes a hypervisor. During the hypervisor’s
initialization, the EPT and IOMMU are set up. The EPT
defines a mapping between physical addresses as perceived
by the operating system, and the real physical addresses.
In this sense, EPT is similar to the page tables that map
virtual addresses to physical addresses. For this reason, EPT is
called a secondary level address translation (SLAT). IOMMU
defines a mapping between physical addresses as perceived by
hardware devices and the real physical addresses. Both EPT
and IOMMU define not only the mapping of the perceived
addresses but also their access rights.

Fig. 1 depicts the mapping that the hypervisor establishes
during its initialization. The mapping organization chases two
goals.

1) The first goal is protection of the hypervisor’s code and
data from malicious modification. This goal is achieved

by setting the access rights of the hypervisor’s code and
data to be read-only.

2) The second goal is protection of decrypted code from
cache eviction attacks. Section VI contains a detailed
discussion of this attack and its prevention. Here, we
just note that this goal is achieved by a technique called
page-coloring. In essence, this technique allows the
reservation of some portion of the processor’s cache to
be used exclusively by the hypervisor. This reservation
is performed by excluding all pages whose index is a
multiple of 32 from the mapping. Thus, the portion of
the cache that backs those pages cannot be affected by
malicious code executing inside the guest.

Before establishing the new mapping, the hypervisor copies
the contents of pages whose index is a multiple of 32 to the
pages that correspond to them in the mapping. In order to
understand the necessity of this step, consider the following
scenario. The firmware stores some value in page 32 before the
hypervisor’s initialization, and loads this value from page 32
after the initialization. Let us assume that page 32 is mapped to
page 10032. The first access will store some value to physical
page 32. The second access however will load the value from
page 10032. Therefore, the contents of page 32 must be copied
to page 10032. The hypervisor uses the pages whose indexes
are a multiple of 32 to store sensitive information, like the
code of decrypted functions and the decryption key. That is
why we call these pages safe pages.

B. Transitions

A protected executable can run as usual without any in-
terference while only functions that were not selected for
encryption are called. The hypervisor silently waits for an
encrypted function to be called. Recall that the encryption
tool replaces the original instructions of a function that was
selected for encryption by a special instruction that generates
an exception. The hypervisor is configured to intercept that
specific kind of exception, namely the general protection
exceptions. When such an exception is generated, a VM-
exit occurs. The processor saves the guest’s state to VMCS,
loads the hypervisor’s state from VMCS, and begins execution
of the hypervisor’s defined VM-exit handler. The handler
checks whether the general protection exception was caused
by execution of an encrypted function. If not, the hypervisor
injects the exception to the guest, thus delegating the exception
handling to the operating system. If the hypervisor detects
an attempt to execute an encrypted function, it locates, in
the database, the encrypted version of this function, which
was loaded during the hypervisor’s initialization. Then, the
hypervisor decrypts the function to one or more safe pages.
Finally, the hypervisor makes some preparations and jumps to
the decrypted function.

In order to understand the nature of the preparations that
were mentioned in the previous paragraph, we shall discuss
the virtual address space of the hypervisor. Fig. 2 illustrates
the virtual address space layouts of the hypervisor and the
guest. In the x86-64 instruction set, code and memory accesses
are instruction-relative. This means that the same sequence

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

6

Operating System

...

Data

...

Protected Code

...

Regular Code

...

...

Unmapped Page

Safe Page

...

Hypervisor

...

Data

...

Decrypted Code

...

Fig. 2. Virtual address space layouts of the hypervisor and the guest
during protected function execution. The code and the data structures of the
hypervisor are not mapped in the guest. The protected code is decrypted to
a safe page. The virtual address of the protected function in the hypervisor
corresponds to its virtual address in the guest. The mapping of the pages
that store data are identical in the hypervisor and the guest. The code of the
operating system is not mapped in the hypervisor.

Page 1

A: call B
return

B: M← 42
call C
call D
return

C: return

Page 2

D: return

Page 3

M: dq

Fig. 3. Sample program. The program consists of four functions (A, B, C,
D) and of one variable (M). The functions A, B and C reside in the first page.
The function D resides in the second page. The variable M resides in the third
page. In this program only the function B is encrypted.

of instructions will give different results if executed from
different virtual addresses. Therefore, it is highly important
to execute the decrypted functions from their natural virtual
addresses. Usually operating systems divide the virtual address
space into two large regions. In 64-bit Windows, the upper half
of the 64-bit space contains the code and data of the kernel,
while the lower half contains the code and data of a process.
The hypervisor mimics this behavior by holding its code and
data in the upper half of its virtual address space; the lower half
is reserved for decrypted functions and their data. Whenever
the hypervisor decrypts a function to a safe page, it maps
this safe page such that the virtual address of the decrypted
function equals to the virtual address of the protected function.
Finally, the hypervisor transitions to user-mode (under context
of the hypervisor) and jumps to the decrypted function. (These
two operations are performed by a single IRET instruction.)

The execution of the decrypted function continues until
it generates an exception. The hypervisor can handle some
exceptions; others are injected to the operating system. During
its execution, a decrypted function, can attempt to read from,
or write to, a page that is not mapped in the hypervisor’s
virtual address space. In such a case, the hypervisor will
copy the corresponding mapping from the operating system’s
virtual address space. When the decrypted function completes
and the hypervisor returns to the guest, the mappings that
were constructed are retained for future invocations of that

function. However, the operating system is free to reorganize
its mappings (e.g. due to paging), thus making the hypervisor’s
mapping invalid. The handling of different cases is described
in Algorithm 1.

The algorithm sketches the implementation of the hyper-
visor’s VM-exit handler. Each VM-exit is caused by some
condition that occurred in the guest (or during the guest’s
execution). The main condition that the hypervisor intercepts is
a general protection exception. General protection exceptions
can occur either due to execution of a HLT instruction or for
some other reason. The hypervisor should provide a special
handling only for the first case (lines 3–16); in the second case,
the hypervisor should inject the exception to the operating
system (lines 1–2).

Algorithm 1 Hypervisor’s VM-exit handler
1: if #GP and RIP is not in protected function then
2: Inject and return to guest
3: else if #GP and RIP is in protected function then
4: while TRUE do
5: Enter user-mode at RIP and await interrupts
6: if #GP or #PF[INSTR] then
7: if RIP not in protected function then
8: Return to guest
9: if RIP is not mapped then

10: Allocate a safe page & fill it with HLTs
11: Map the page to RIP
12: Decrypt function at RIP
13: else if #PF[DATA] and mapped in guest then
14: Copy mapping
15: else
16: Inject and return to guest
17: else if INVLPG then
18: Clear virtual table
19: Return to guest

The hypervisor reacts to a special instruction-induced gen-
eral protection exception by entering a loop (line 4–16).
At the beginning of each iteration (line 5), the hypervisor
transitions to user-mode (without returning to guest) and sets
the instruction pointer to the same address that generated the
general protection exception. The execution continues until an
exception occurs in user-mode. We demonstrate the handling
of different exceptions by an example (see Fig. 3), and then
describe the algorithm line-by-line.

Consider a program that contains 4 functions A, B, C, D
and a variable M, that are stored in three memory pages:
the first page contains the functions A, B and C, the second
page contains the function D, and the third page contains
the variable M. The functions are implemented as follows: A
calls B and returns, C and D return immediately, B accesses
the variable M, calls C, calls D and returns. We now dissect
the execution of this program under the assumption that the
function B is encrypted and that the page containing M is not
mapped in the operating system.

1) The function A executes normally and calls B. The
function B attempts to execute an HLT. A VM-exit

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

7

occurs and the hypervisor enters user-mode (line 5).
Since the page containing B is not mapped in the hyper-
visor, a page-fault occurs. The error code of this page-
fault indicates that it was caused by an instruction fetch
(denoted by #PF[INSTR] on line 6). The instruction
pointer is in a protected function (the condition on line
7 does not hold) but the address is not mapped in the
hypervisor (the condition on line 9 does hold), therefore
the hypervisor allocates a safe page (which is a physical
page), fills it with HLTs, and maps it to the (virtual) page
containing B. Finally, the hypervisor locates the entry
corresponding to B in the database, and decrypts it.

2) The loop continues. The hypervisor enters user-mode.
The function B accesses the variable M, which is not
mapped in the hypervisor. A page-fault exception oc-
curs. The error code indicates data access (denoted by
#PF[DATA] on line 13). According to our assumption,
the page that contains the variable M is not mapped in
the guest. Therefore, the hypervisor injects the exception
to the guest (line 16).

3) The guest operating system maps the page that contains
the variable M, and resumes the execution of the func-
tion B. However, from the guest’s perspective B still
contains HLTs, and its execution causes a VM-exit.

4) The hypervisor enters user-mode (line 5), which imme-
diately generates a page-fault exception, since the page
that contains the variable M is still not mapped in the
hypervisor. The hypervisor copies the mapping from the
guest (line 14) and the loop continues.

5) The hypervisor enters user-mode (line 5). The function
B continues its execution and calls the function C, which
resides with B in the same page. This page was filled
with HLTs during its allocation. A general-protection
exception occurs (line 6). Since the instruction pointer
is not in a protected function (line 7), the hypervisor
returns to the guest.

6) The function C executes as usual in the guest and
then returns to B, which is filled with HLTs from
the perspective of the guest. A VM-exit occurs. The
hypervisor enters user-mode and the execution of B
continues, until it calls D. Since the page containing D
is not mapped, a page-fault exception occurs. The error
code indicates instruction fetch (denoted by #PF[INSTR]
on line 6). The instruction pointer is not in a protected
function (the condition on line 7 holds), therefore the
hypervisor returns to the guest.

7) The function D executes as usual in the guest and then
returns to B. A VM-exit occurs. The hypervisor enters
user-mode (line 5). The function B continues and even-
tually returns to A. From the hypervisor’s perspective
the function A is filled with HLTs. A general-protection
exception occurs. Since the instruction pointer is not in
a protected function, the hypervisor returns to the guest
(line 8).

The algorithm begins by checking the reason for the VM-
exit. If the VM-exit is due to a general-protection exception
that was not caused by a HLT, the hypervisor injects this

gs TEB PEB LDR

Module1 Module2 ... Modulen

Fig. 4. The path to the executable images of the current process. The special
register ”gs” points to a data structure that describes the current thread (TEB).
The TEB data structure points to a data structure that describes the current
process (PEB). The PEB data structure points to a data structure that represents
a linked list of all the modules (programs and libraries) loaded by the current
process.

exception to the guest (line 2). If the VM-exit is due to
execution of a protected function, the hypervisor begins a loop.
At the beginning of each iteration, the hypervisor attempts
to execute the protected function. Eventually the execution
generates an exception. The hypervisor checks the type of the
generated exception.

• If it is either a general-protection exception, which is
generated by jumping to an unknown location (which
does not contain a decrypted function) in a safe page, or
a page-fault exception caused by an instruction fetch, the
hypervisor checks whether the instruction pointer resides
in a protected function. If the instruction pointer is not in
a protected function, the hypervisor returns to the guest
(line 8), in order to continue the execution there. If the
instruction pointer is in a protected function, it is possible
that the page containing this function is not yet mapped
in the hypervisor. In such case, the hypervisor allocates
a safe page and fills it with HLTs. The filling guarantees
that any jump outside a decrypted function generates an
exception. Finally, the hypervisor decrypts the protected
function.

• If the exception type is a page-fault caused by data access
and this data is mapped in the guest, then the hypervisor
copies the mapping from the guest (line 14). If, however,
the data is not mapped in the guest, then the hypervisor
injects the exception to the guest, thus requesting the
operating system to map the accessed data.

During execution of regular functions or handling of inter-
rupts and exceptions, the operating system may modify the
mappings of virtual pages. The hypervisor may have copies of
some of these mappings, which were modified by the operating
system. Thus, it is essential for the hypervisor to intercept all
such modifications. Fortunately, according to Intel’s specifi-
cation [32], since the processor stores portions of mapping
information in its caches (TLBs), the operating system is
required to inform the processor of all modifications through
a special instruction, INVLPG. The hypervisor intercepts this
instruction, and responds to it by erasing all the entries that
were copied from the operating system (lines 17–19).

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

8

C. OS Dependence
During some VM-exits the hypervisor needs to check

whether the instruction pointer resides in a protected function
(line 7 in Algorithm 1). The check is performed in three steps:

1) Firstly, the hypervisor finds the so called base address —
the address at which the protected program was loaded.

2) Then, the hypervisor calculates the offset of the instruc-
tion pointer from the base address,

3) Finally, the hypervisor searches for a function with the
calculated offset in the database.

In order to find the base address, the hypervisor uses the oper-
ating system’s data structures. We describe the data structures
that are used in 64-bit versions of Windows (see Fig. 4). In
Windows, the segment register gs points to a data structure
called the Thread Environment Block (TEB), which reflects
information about the currently executing thread. The TEB
contains a field that points to a data structure called the Process
Environment Block (PEB), which reflects information about
the currently executing process. The PEB contains a field that
points to a data structure (LDR) that represents a linked list
of all executable images (programs and libraries) loaded by
the process. Each entry in this linked list contains the name
of the image, its base and its size, thus allowing us to find
an image that contains a specific address. Some of these data
structures may be paged-out by the operating system from the
main memory to the disk. Therefore, the hypervisor may need
to force the operating system to load these data structures to
the main memory. This is done, by injecting artificial page-
fault exceptions to the guest.

VI. SECURITY

We argue that the described system can withstand the
following types of attacks:
• malicious code executing in user-mode or kernel-mode,
• malicious hardware devices connected via a DMA con-

troller equipped with IOMMU,
• processor-memory bus sniffing.

More precisely, we claim that even in presence of all the above
types of attacks, the attacker cannot obtain the decryption key
nor the decrypted functions.

We admit that the system is vulnerable to attacks that:
1) broadcast on buses or
2) move the TPM to another (malicious) machine.

Finally, we assume that the firmware, including the code that
executes in SMM, which is more privileged than a hypervisor,
is trustworthy. If an attacker is able to broadcast on the CPU–
memory bus, he can modify the memory directly; neither EPT
nor IOMMU can stop him. Finally, consider an attacker that
can move the TPM to another machine where he can install
malicious firmware. The firmware can execute the normal
sequence of Extends, thus the ”correct” values in the PCRs.
At this stage the firmware can Unseal the decryption key.

A. Memory Protection
Secondary level address translation (SLAT), or extended

page table (EPT) according to Intel’s terminology, is a mech-
anism that allows hypervisors to control the mapping of

Virtual
Page
Table

Extened
Page
Table

x y z

Guest

Virtual
Page
Table

x z

Hypervisor

Fig. 5. Address translations in the guest and the hypervisor. When the guest
accesses a virtual address x, it is translated to a guest physical address y via
the guest’s virtual page table, then y is translated to a real physical address
z via EPT. When the hypervisor accesses a virtual address x, it is translated
to a real physical address via the hypervisor’s virtual page table.

physical page addresses as they are perceived by the operating
system to the real physical addresses. In this sense, SLAT is
similar to virtual page tables, a mechanism that allows the
operating system to control the mapping of addresses as they
are perceived by the process to the real physical addresses.
When a process in a virtualized environment attempts to load
a variable at (a virtual) address x, this address is first translated
by the virtual page tables to a guest physical address y, then y
is translated by EPT to a (real) physical address z (see Fig. 5).
The virtual page table is configured by the operating system,
while the EPT is configured by the hypervisor.

Input-output memory management unit (IOMMU) is an
additional memory translation mechanism. In contrast to vir-
tual page tables and EPT, IOMMU translates addresses that
are accessed not by the processor but by hardware devices.
Interestingly, the configuration tables of EPT and IOMMU
are almost identical.

Protection from malicious access (reading and writing) to
the hypervisor’s code and data, as well as to the code of
decrypted functions is carried out via a special and identical
configuration of the EPT and IOMMU mapping. According
to this configuration, all the sensitive memory regions are not
mapped and are therefore inaccessible from the guest or from
a hardware device. The EPT and IOMMU mapping provide
the first two security guarantees.

We note that since all the hypervisor’s memory is allocated
via a call to the UEFI memory allocation function, a regular
non-malicious operating system will obey this allocation and
will not attempt to access this memory region. However only
the EPT prevents the operating system from doing so.

The EPT allows the hypervisor to hide the decrypted
functions from the operating system and applications including
dynamic analysis tools, like debuggers. Likewise, the system,
utilizing regular countermeasures (NX bit) [56], is immune
to most of the code injection attacks. However the system
is prone to more sophisticated attacks, like return-oriented
programming, that use the code of the decrypted functions
themselves to achieve a malicious behavior. In our case the
attacker cannot study the original code, since it is encrypted.
Therefore, we believe that it is much harder to carry out a
successful attack of this type.

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

9

Physical address Tag Set Byte

47 11 6

Fig. 6. An example of a last level cache organization of associativity 4 with
6 slices and 2048 sets in each slice. The 6 least significant bits of the physical
address select the byte in the cache line. The next 11 bytes select the set. The
slice is determined by applying a hash function to the set and the tag fields
of the physical address.

B. Cache Evictions

The third security guarantee, protection from bus sniffing, is
much more challenging to achieve. We want to ensure that the
sensitive data, the decryption key and the decrypted functions,
are never transmitted over the bus. In other words, the sensitive
data should reside in the processor’s caches at all times.

The cache of Intel processors has three levels (see Fig.
6): the first is the fastest but the smallest, and the last is
the slowest and the largest. The last level cache (LLC) is
divided into several slices of equal size. Each slice has 2048
sets and each set has multiple 64-bytes lines. (The number of
lines in a set is called associativity.) The processor evicts data
from the cache to the main memory either as a response to
a special instruction (e.g. WBINVD), which can be intercepted
by the hypervisor, or in order to store some new data. When
an instruction accesses the physical address x, the processor
determines the cache set in which the data at address x should
be stored: the slice is determined by applying an unknown hash
function on bits 6–63 of x, the set number is determined by
bits 6–16 of x (bits 0–5 determine the bytes number inside the
cache line). After the set is determined, the processor selects
one of the lines in the set for eviction. We note that access
to address x can cause eviction of data from address y only
if x and y are mapped to same set. Each page is mapped to
4096/64 = 64 consecutive sets and only the 2048/64 = 32th
page following it will potentially (since there is more than one
slice) be mapped to the same sets. This observation allows the
hypervisor to protect its sensitive data (namely the decryption
key and the decrypted functions) from cache eviction attacks,
by reserving the pages 0, 32, 64, 96, . . . for its own use. The
idea of memory allocation that takes into account the cache
layout is not new, but it was implemented previously mainly
for performance considerations [57], [58].

The size of the cache limits the total size of the de-
crypted functions. Current processors are equipped with at
least 8192KB L3 cache [59], which translates to a limit
of 8192/32 = 256KB. This limitation can decrease the
performance significantly, since when the (relevant portion
of the) cache becomes full, the hypervisor is forced to erase
previously decrypted functions, and then eventually to decrypt

them again. Note, however, that the limitation is imposed not
on the total size of all the encrypted functions, but on the total
size of the functions that participate in a single call sequence.

C. Decryption Key

Trusted Platform Module (TPM) is a standard that defines
a hardware device with a non-volatile memory and predefined
set of cryptographic functions. The device itself can be imple-
mented as a standalone device mounted on the motherboard,
or it can be embedded in the CPU packaging [60, p. 139].
Each TPM is equipped with a public/private key-pair that can
be used to establish a secure communication channel between
the CPU and the TPM. The non-volatile memory is generally
used to store cryptographic keys. The processor of a TPM
can decrypt data using a key stored in its memory without
transmitting this key on the bus.

One of the main abilities of the TPM is environment
integrity verification. The TPM contains a set of Platform
Configuration Registers (PCRs) that contain (trustworthy) in-
formation about the current state of the environment. These
registers can be read but cannot be assigned. The only way
to modify the value of these registers is by calling a special
function, Extend(D) that computes a hash of the given
value D and the current value of the PCR, and sets the result
as the new value of PCR. The UEFI firmware is responsible
for initializing the PCRs and for extending them with the code
of UEFI application before jumping to these applications. An
application that wants to check its own integrity can compare
the relevant PCR with a known value.

Another important ability of the TPM is symmetric cryptog-
raphy. The TPM provides two functions: SEAL and UNSEAL.
The first function encrypts a given plaintext and binds it to
the current values of the PCRs. The second function decrypts
the given ciphertext but only if the PCR values are the same
as when the SEAL function was called.

Algorithm 2 UEFI Application Initialization Sequence
1: if FileExists(”key.bin”) then
2: EncryptedKey ← FileRead(”key.bin”)
3: Key ← Unseal(EncryptedKey)
4: else
5: Key ← Input()
6: EncryptedKey ← Seal(Key)
7: FileWrite(”key.bin”, EncryptedKey)
8: Extend(0)

Algorithm 2 presents the initialization sequence of our UEFI
application. The application first checks whether a file named
”key.bin” already exists (line 1). If so, its contents are read and
unsealed producing a decryption key (line 2–3), which is then
stored in a safe page. If, on the other hand, the ”key.bin” file
is missing, the application asks the user to type the key (line
5), which is then sealed and stored in a file (lines 6–7). In any
case, the PCRs are extended with a (meaningless) value (line
9), thus preventing other UEFI applications and the operating
system to unseal the contents of the ”key.bin” file.

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

10

The UNSEAL function is executed by the TPM and its
result is transmitted to the CPU over the bus. In order to
protect the decryption key in the presence of a bus sniffer, our
UEFI application establishes a secure communication channel
(OIAP session). During the initialization of the channel, the
application encrypts the messages using the public part of the
key that is embedded in the TPM.

VII. PERFORMANCE

The performance of the described system depends greatly on
the set of encrypted functions. The amount of the intellectual
property contained within a program may vary, and so does
the set of encrypted functions. We note that the performance
is affected not only by the amount of encrypted functions, but
also by the interconnections between these functions. This fact
complicates the performance evaluation, since the functions
to be encrypted are not known. Our evaluation is, therefore,
randomized, in part.

The evaluation presented below answers the following ques-
tions:

1) How the mere existence of the hypervisor degrades the
performance?

2) How our system compares to obfuscation with respect
to performance?

3) What is the expected performance degradation when X%
of a program is encrypted?

4) To what extent an initially poor performance can be
improved?

The first question was answered by executing multiple
unencrypted benchmarking tools on a system with an active
hypervisor. For the second question, we protected the same
program using our system and using Obfuscator-LLVM and
measured the performance overhead. In order to answer the
third question we performed a randomized experiment, during
which function sets of different sizes were randomly selected
for encryption. Finally, for the fourth question, we show that
the hypervisor’s built-in profiler can be used to improve an
initially poor performance by two orders of magnitude.

All the experiments were performed in the following envi-
ronment:
• CPU: Intel Core i5-4570 CPU @ 3.20GHz (4 physical

cores)
• RAM: 8.00 GB
• OS: Windows 10 Pro x86-64 Version 1709 (OS Build

16299.248)
• C/C++ Compiler: Microsoft C/C++ Optimizing Com-

piler Version 19.00.23026 for x86

A. Hypervisor Performance Impact

We start by demonstrating the performance impact of the
hypervisor on the operating system. We picked three bench-
marking tools for Windows:

1) PCMark 10 – Basic Edition. Version Info: PCMark 10
GUI – 1.0.1457 64 , SystemInfo – 5.4.642, PCMark 10
System 1.0.1457,

2) PassMark Performance Test. Version Info: 9.0 (Build
1023) (64-Bit),

Total

Essential

Productivity

Digital

3,164

7,029

5,195

2,356

2,900

6,726

4,795

2,205
Without HV

With HV

Fig. 7. The scores (larger is better) reported by PCMark in 4 categories:
Digital Content Creation, Productivity, Essential and Total.

Total

CPU

2D

3D

Memory

Disk

2,682

7,423

824

570

1,847

4,215

2,551

7,359

766

541

1,726

4,130
Without HV

With HV

Fig. 8. The scores (larger is better) reported by PassMark in 6 categories:
Disk, Memory, 3D, 2D, CPU and Total.

3) Novabench. Version Info: 4.0.3 November 2017.
Each tool performs several tests and displays a score for
each test. We invoked each tool twice: with and without the
hypervisor. The results of PCMark, PassMark and Novabench
are depicted in Fig. 7, 8 and 9, respectively. We can see that
the performance penalty of the hypervisor is approximately
5% on average.

Total

CPU

RAM

GPU

Disk

891

530

171

107

82

887

528

170

107

81 Without HV
With HV

Fig. 9. The scores (larger is better) reported by Novabench in 5 categories:
Disk, GPU, RAM, CPU and Total.

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

11

Original

Our System

SUB

BCF

FLA

SUB+BCF+FLA

14.7

15.4

16.4

24.6

768

2,063.2

Fig. 10. Execution times in seconds of the original, encrypted and obfuscated
versions 7-Zip in the second experiment.

B. Comparison

In this test, we analyze the Obfuscator-LLVM [28] perfor-
mance impact compared to our method. We cloned the latest
Obfuscator-LLVM directly from the official Git repository and
built a 32-bit version. For the comparison, we protected 7-Zip
using Obfuscator-LLVM and using our system. Specifically,
we tested the ”extracting files from an archive (the e command
line option)” and used a 7z compressed tarball of the latest
Linux kernel to date (4.15.6).

We performed two tests which differed in the set
of functions that was selected for protection. In the
first test the set included the functions DecodeToDic,
DecodeReal2,WriteRem that constitute ≈ 1% of the total
execution time. In the second test we added DecodeReal to
the set of functions that now constitute ≈ 84% of the total
execution time. In both tests the functions were encrypted
using our system and obfuscated using Obfuscator-LLVM
with the following obfuscating transformations: instruction
substitution (SUB), bogus control flow (BCF) and control flow
flattening (FLA).

In the first test, Obfuscator-LLVM and our system both
showed an overhead of ≈ 5%. In the second test, the
overhead of our system was still ≈ 5%, while the overhead
of Obfuscator-LLVM was ≈ 13500%. Fig. 10 presents the
execution times of:

1) the original program,
2) the same program protected using our system,
3) the same program protected using Obfuscator-LLVM

with SUB alone,
4) the same program protected using Obfuscator-LLVM

with BCF alone,
5) the same program protected using Obfuscator-LLVM

with FLA alone,
6) the same program protected using Obfuscator-LLVM

with SUB, BCF and FLA.
The results are quite expected. Our system is not affected

by the contents of the functions, and/or the number of times
the function is called as long as the protected code mostly
executes in the hypervisor.

C. Randomized Experiment: Lame

For this experiment we used the main executable file of the
LAME MP3 encoder [61]. We downloaded the latest LAME
source from SourceForge and built a 32-bit version of LAME
on Windows 10 Professional x64. We chose a predetermined

0 2 4 6 8 10

0

5

10

15

20

Protected Executable Index

E
xe

cu
tio

n
Ti

m
e

O
ve

rh
ea

d
[%

] Conf. 1
Conf. 2
Conf. 3

Fig. 11. The overhead of protected executables. Each line represents a single
configuration. A mark on a line represents an average execution time overhead
(in percents) of a protected executable compared to the original executable.
Consider the mark inside the dashed square, which corresponds to P4 when
run in the first configuration. According to this mark, P4 is slower than the
original program (P0) by 7.9%.

set S that includes all functions that belong to the lame
namespace. The set S covers 56% of LAME’s main executable
functions. For the encryption, we constructed 11 subsets of
S: S0, S1, . . . S10 ⊆ S, where Si consists of i

10 fraction of
functions from S selected at random. The encryption resulted
in 11 protected executables P0, P1, . . . , P10, where P0 is the
original program and P10 has all the functions in S encrypted.
Each executable was invoked 1000 times in three different
configurations (3000 times in total):

1) fixed bit rate 128kbps encoding — default LAME be-
havior,

2) fixed bit rate jstereo 128kbps encoding, high quality,
3) fast encode, low quality (no psycho-acoustics).

We measured the average execution time for each configura-
tion (1–3) and each protected executable Pi. Fig. 11 depicts
the overhead of the encrypted executables in percents.

D. Randomized Experiment: 7-Zip

For this experiment we selected a large subset of 7-Zip
functions. Our set S included all the functions of the LZMA
algorithm. These functions lay within the ” Lzma” namespace
and are prefixed with Lzma within the source code. We
analyzed the decompression time of the latest Linux kernel
to date (4.15.6). As in section VII-C, for the encryption,
we constructed 11 subsets of S: S0, S1, . . . S10 ⊆ S, where
Si consists of i

10 fraction of functions from S selected at
random. The encryption resulted in 11 protected executables
P0, P1, . . . , P10, where P0 is the original program and P10 has
all the functions in S encrypted. Each executable was invoked
1000 times and its average execution time was measured.
Fig. 12 depicts the overhead of the encrypted executables in
percents.

E. Built-in Profiler

The built-in profiler allows one to get a better view of the
relationships between the encrypted and non-encrypted func-
tions. This information might be critical as every branching

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

12

0 2 4 6 8 10

0

5

10

Protected Executable Index

E
xe

cu
tio

n
Ti

m
e

O
ve

rh
ea

d
[%

]

Fig. 12. The overhead of protected executables. A mark on a line represents
an average execution time overhead (in percents) of a protected executable
compared to the original executable.

to a non-encrypted function requires two costly operations:
a VM-entry and a VM-exit. As the number of transitions
between encrypted and non-encrypted functions increases, so
does the total execution time of the program. The built-in
profiler records all the transitions from an encrypted to a non-
encrypted function (step 8 in Algorithm 1). For each transition,
the hypervisor stores the faulting address (i.e. the address of
the non-encrypted function) and the total number of transitions
to this address that occurred during the current execution.

The dynamic analysis behavior of the built-in profiler pro-
vides a great advantage over static analysis as the control flow
of a program frequently depends on its input and cannot be
known in advance. However, a combination of the two analysis
techniques may be used to ease the profiling process.

We note that it may be undesirable or impossible to encrypt
some functions that are suggested by the profiler. Functions
residing in shared libraries, that are used by both protected and
regular programs, cannot be encrypted. The effect of encrypt-
ing a function, that is called from encrypted and non-encrypted
functions, is unpredictable, since the transitions overhead from
encrypted functions decreases, but the transitions overhead
from non-encrypted functions increases. Finally, the decrypted
functions are stored in the processor’s cache, which has a
limited capacity. Therefore, encryption of too many functions
can lead to thrashing and performance degradation.

F. Case Study: OpenSSL

In this case study, we analyze an OpenSSL library [62],
libcrypto, which provides fundamental cryptographic functions
for libssl. We cloned the latest openssl from its original
Git repository and built a 32-bit version of libcrypto DLL
on Windows 10 Professional x64. We used the OpenSSL
command line tool in order to invoke functions from libcrypto
DLL. Specifically, we used its RSA private key generation
command, genrsa. Each test was executed 1000 times and
an average execution time was computed.

We demonstrate how our built-in profiler may be used
to improve the performance overhead. At each iteration, we
select a set of functions for encryption, run the system and
augment the set of selected functions according to the profiler’s

0 2 4 6 8 10 12
0

200

400

600

Profiling Iterations

E
xe

cu
tio

n
Ti

m
e

O
ve

rh
ea

d
[%

]

Fig. 13. The overhead of the protected executable during profiling iterations.
A mark at position i represents the overhead in percents of the protected
executable compared to the original executable at the ith iteration. Note the
exponential behavior of the overhead improvement.

suggestions. This allows us to improve the performance of the
protected program by two orders of magnitude.

For the first iteration, we selected two vital functions, each
of which caused hundreds of thousands of branchings (each
branching and return requires a VM-entry and a VM-exit). The
execution time of the program increased by 573%.

The branchings we have encountered during the profiling
process can be divided into three types:

1) a direct call to an internal function,
2) an indirect call to an internal function using the Export

Address Table,
3) a direct call to an external function.

Type 1 is the simplest as the function to be called is a real
function — it lies within the protected executable and can
be referenced by its name in the configuration file. Type
2 represents a function that was generated automatically by
the compiler. It does not have a name and therefore must
be referenced by its address in the configuration file. Type
3 requires encryption of the external DLL that contains the
called function.

For the second iteration, we augmented the set of encrypted
functions according to the profiler suggestion. The execution
time overhead improved from 573% to 214% of the original’s.
One should note here that encrypting a function, suggested by
the profiler, does not necessarily yield better results initially
as it may contain additional branchings (e.g. see the second
iteration in Fig. 13).

We performed 12 iterations in total. The last profiling
iteration was composed of 59 encrypted functions from which
61% are a result of type 1 branching and 39% are a result of
type 2 branching. During our tests we found that encrypting
type 3 branching until our last phase gave little benefit. The
execution time overhead of the last iteration was 18% of the
original’s. It should be noted that the process could continue
further in order to achieve even better results. Fig. 13 depicts
the results we obtained.

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

13

Compression Decompression
Original 122.7143 6.4979
Protected 122.7701 6.5617

TABLE I
EXECUTION TIME (IN MILLISECONDS) OF 7-ZIP TESTS.

G. Case Study: 7-Zip

In this case study, we analyze 7-Zip, a file archiver. We
downloaded 7-Zip source code from the official website and
built a 32-bit version of 7-Zip. Two main functionalities of
7-Zip were tested:

1) adding files to an archive (the ”a” command line option),
2) extracting files from an archive (the ”e” command line

option).
For each of the tests, we selected 3 important functions of 7-
Zip that are called during compression and decompression.
Afterwards, we downloaded the latest stable Linux kernel
(4.15.6) tarball from kernel.org. For the first test, we decom-
pressed the tarball and compressed the resultant tar file using
the 7-Zip archive option. For the second test, we decompressed
the resultant 7z file using the 7-Zip extract option. During
the profiling process, we discovered that the compiler in-
lined most of the frequently-called functions. Therefore, few
profiling iterations were required. In both tests, the overhead of
the encrypted program was less than 1%. The exact execution
times are presented in Table I.

Section VII-B compares the performance of an encrypted 7-
Zip with the performance of an obfuscated 7-Zip. The section
concludes that the performance degradation of an encrypted
7-Zip is ≈5%. The discrepancy with the result of this section
(1%) is due to the profiling iterations that were applied in this
case.

H. Case Study: Apache Web Server

In this case study, we analyze the Apache HTTP Server [63].
Specifically, we selected two libraries that are heavily used
by Apache. The first library, libhttpd, contains, among
other things, core HTTP functionallity such as URI parsing
and HTTP Request reading. The second library is the Apache
Portability Runtime library, libapr, which provides consis-
tent interfaces to underlying OS-specific infrastructure (e.g.,
network sockets). We downloaded the latest (httpd-2.4.34)
Apache HTTP Server Unix sources directly from the official
Apache website along with all the required dependencies
(APR, APR-Util, APR-Iconv, Expat and PCRE). The HTTP
daemon, httpd, was built in 32-bit Release configuration
using the built-in makefile, while all of the other dependencies
were built using Microsoft Visual Studio 2015 in 32-bit
RelWithDebInfo configuration. As a starting point, we selected
three functions, within libhttpd, that are heavily used by
Apache for HTTP requests handling. As our benchmark utility,
we used the Apache Benchmark (ab) tool. We measured the
time it took for the server to handle 20,000 requests (-n
option in ab). Table II summarizes the benchmark results
of the original (unencrypted) application and the encrypted
application after 0, 1 and 2 iterations of the profiler.

Case Handling Time
Original 11.46
Iteration 0 17.7
Iteration 1 15.6
Iteration 2 13.8

TABLE II
EXECUTION TIME (IN SECONDS) OF APACHE TESTS.

VIII. CONCLUSIONS

We have seen that the described system can provide high
security guarantees. In most cases, the performance penalty of
the system is insignificant; in others, the built-in profiler can
improve the performance dramatically.

The described system protects only native code. However,
the system can be extended to support managed and interpreted
languages by, first, translating programs written in these lan-
guages to native code, and then encrypting them.

The implementation described in this paper uses virtualiza-
tion in order to create an isolated environment. We believe that
similar security guarantees and performance can be achieved
by using SGX [64] instead of VMX.

REFERENCES

[1] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

[2] S. Banescu and A. Pretschner, A Tutorial on Software Obfuscation.
Elsevier, 01 2017.

[3] B. Anckaert, M. H. Jakubowski, R. Venkatesan, and C. W. Saw,
“Runtime protection via dataflow flattening,” in Emerging Security
Information, Systems and Technologies, 2009. SECURWARE’09. Third
International Conference on. IEEE, 2009, pp. 242–248.

[4] F. B. Cohen, “Operating system protection through program evolution.”
Computers & Security, vol. 12, no. 6, pp. 565–584, 1993.

[5] S. Goldwasser and G. N. Rothblum, “On best-possible obfuscation,” in
Theory of Cryptography Conference. Springer, 2007, pp. 194–213.

[6] S. Bhatkar and R. Sekar, “Data space randomization,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2008, pp. 1–22.

[7] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro, “Data
randomization,” Technical Report TR-2008-120, Microsoft Research,
2008. Cited on, Tech. Rep., 2008.

[8] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in Operating Systems, 1997., The Sixth Workshop on Hot
Topics in. IEEE, 1997, pp. 67–72.

[9] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Security and Privacy (SP), 2012 IEEE Symposium
on. IEEE, 2012, pp. 601–615.

[10] R. El-Khalil and A. D. Keromytis, “Hydan: Hiding information in
program binaries,” in International Conference on Information and
Communications Security. Springer, 2004, pp. 187–199.

[11] M. Jacob, M. H. Jakubowski, P. Naldurg, C. W. N. Saw, and R. Venkate-
san, “The superdiversifier: Peephole individualization for software pro-
tection,” in International Workshop on Security. Springer, 2008, pp.
100–120.

[12] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
“Code obfuscation against symbolic execution attacks,” in Proceedings
of the 32nd Annual Conference on Computer Security Applications.
ACM, 2016, pp. 189–200.

[13] A. Salem and S. Banescu, “Metadata recovery from obfuscated pro-
grams using machine learning,” in Proceedings of the 6th Workshop on
Software Security, Protection, and Reverse Engineering. ACM, 2016,
p. 1.

[14] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in Security
and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 674–
691.

1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2894577, IEEE
Transactions on Information Forensics and Security

14

[15] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “Viewdroid: To-
wards obfuscation-resilient mobile application repackaging detection,”
in Proceedings of the 2014 ACM conference on Security and privacy in
wireless & mobile networks. ACM, 2014, pp. 25–36.

[16] J. Cappaert, B. Preneel, B. Anckaert, M. Madou, and K. De Bosschere,
“Towards tamper resistant code encryption: Practice and experience,” in
International Conference on Information Security Practice and Experi-
ence. Springer, 2008, pp. 86–100.

[17] J. Bringer, H. Chabanne, and E. Dottax, “White box cryptography:
Another attempt.” IACR Cryptology ePrint Archive, vol. 2006, no. 2006,
p. 468, 2006.

[18] M. Karroumi, “Protecting white-box aes with dual ciphers,” in Interna-
tional Conference on Information Security and Cryptology. Springer,
2010, pp. 278–291.

[19] Y. Xiao and X. Lai, “A secure implementation of white-box aes,” in
Computer Science and its Applications, 2009. CSA’09. 2nd International
Conference on. IEEE, 2009, pp. 1–6.

[20] O. Billet, H. Gilbert, and C. Ech-Chatbi, “Cryptanalysis of a white box
aes implementation,” in International Workshop on Selected Areas in
Cryptography. Springer, 2004, pp. 227–240.

[21] Y. De Mulder, P. Roelse, and B. Preneel, “Cryptanalysis of the xiao–lai
white-box aes implementation,” in International Conference on Selected
Areas in Cryptography. Springer, 2012, pp. 34–49.

[22] B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel, “Cryptanalysis
of white-box des implementations with arbitrary external encodings,” in
International Workshop on Selected Areas in Cryptography. Springer,
2007, pp. 264–277.

[23] B. Abrath, B. Coppens, S. Volckaert, J. Wijnant, and B. De Sutter,
“Tightly-coupled self-debugging software protection,” in Proceedings
of the 6th Workshop on Software Security, Protection, and Reverse
Engineering. ACM, 2016, p. 7.

[24] P. Ferrie, “Attacks on more virtual machine emulators,” Symantec
Technology Exchange, vol. 55, 2007.

[25] A. Averbuch, M. Kiperberg, and N. J. Zaidenberg, “An efficient vm-
based software protection,” in Network and System Security (NSS), 2011
5th International Conference on, Sept 2011, pp. 121–128.

[26] J. Kinder, “Towards static analysis of virtualization-obfuscated binaries,”
in Reverse Engineering (WCRE), 2012 19th Working Conference on.
IEEE, 2012, pp. 61–70.

[27] R. Rolles, “Unpacking Virtualization Obfuscators,” in Proceedings of
the 3rd USENIX Conference on Offensive Technologies, ser. WOOT’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 1–1.

[28] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM
– software protection for the masses,” in Proceedings of the IEEE/ACM
1st International Workshop on Software Protection, SPRO’15, Firenze,
Italy, May 19th, 2015, B. Wyseur, Ed. IEEE, 2015, pp. 3–9.

[29] “Stunnix C/C++ Obfuscator,” http://stunnix.com/, 2018, [Online; ac-
cessed 25-Feb-2018].

[30] “The Tigress C Diversifier/Obfuscator,” http://tigress.cs.arizona.edu/,
2018, [Online; accessed 25-Feb-2018].

[31] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt, “De-anonymizing programmers via code
stylometry,” in 24th USENIX Security Symposium (USENIX Security),
Washington, DC, 2015.

[32] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation, 2007, vol. 3.

[33] “AMD64 Architecture Programmer’s Manual Volume 2: System Pro-
gramming,” AMD, 2010.

[34] “ARM architecture reference manual ARMv8-A,” ARM Ltd., 2013.
[35] T. Morris, “Trusted platform module,” in Encyclopedia of cryptography

and security. Springer, 2011, pp. 1332–1335.
[36] M. Lipow, “Number of faults per line of code,” IEEE Transactions on

software Engineering, no. 4, pp. 437–439, 1982.
[37] O. Alhazmi, Y. Malaiya, and I. Ray, “Security vulnerabilities in software

systems: A quantitative perspective,” in IFIP Annual Conference on Data
and Applications Security and Privacy. Springer, 2005, pp. 281–294.

[38] L. Duflot, D. Etiemble, and O. Grumelard, “Using cpu system man-
agement mode to circumvent operating system security functions,”
CanSecWest/core06, 2006.

[39] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity oses,” in ACM
SIGOPS Operating Systems Review, vol. 41, no. 6. ACM, 2007, pp.
335–350.

[40] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 380–395.

[41] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang, “Hima: A hypervisor-
based integrity measurement agent,” in Computer Security Applications
Conference, 2009. ACSAC’09. Annual. IEEE, 2009, pp. 461–470.

[42] J. Rutkowska and R. Wojtczuk, “Qubes os architecture,” Invisible Things
Lab Tech Rep, vol. 54, 2010.

[43] S. T. King and P. M. Chen, “Subvirt: Implementing malware with virtual
machines,” in Security and Privacy, 2006 IEEE Symposium on. IEEE,
2006, pp. 14–pp.

[44] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction,” in Proceed-
ings of the 14th ACM conference on Computer and communications
security. ACM, 2007, pp. 128–138.

[45] PELock LLC. PELock: Software Protection. [Online]. Available:
https://www.pelock.com/

[46] The UPX Team. UPX: the Ultimate Packer for eXecutables. [Online].
Available: https://upx.github.io/

[47] J. Raber, “Columbo: High perfomance unpacking,” in Software Analysis,
Evolution and Reengineering (SANER), 2017 IEEE 24th International
Conference on. IEEE, 2017, pp. 507–510.

[48] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003, pp.
164–177.

[49] VMware. VMware Workstation Pro. [Online]. Available: https:
//www.vmware.com/il/products/workstation-pro.html

[50] Oracle. VirtualBox. [Online]. Available: https://www.virtualbox.org/
[51] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,

“Trustvisor: Efficient tcb reduction and attestation,” in Security and
Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010, pp. 143–158.

[52] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,
T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba,
Y. Shinjo, and K. Kato, “Bitvisor: A thin hypervisor for enforcing i/o
device security,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE
’09. New York, NY, USA: ACM, 2009, pp. 121–130.

[53] D. Schellekens, B. Wyseur, and B. Preneel, “Remote attestation on
legacy operating systems with trusted platform modules,” Science of
Computer Programming, vol. 74, no. 1-2, pp. 13–22, 2008.

[54] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, “A
minimalist approach to remote attestation,” in Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2014. IEEE, 2014,
pp. 1–6.

[55] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. OHanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” International Journal of Information Security, vol. 10, no. 2,
pp. 63–81, 2011.

[56] S. Andersen and V. Abella, “Data execution prevention. changes to
functionality in microsoft windows xp service pack 2, part 3: Memory
protection technologies,” 2004.

[57] R. E. Kessler and M. D. Hill, “Page placement algorithms for large
real-indexed caches,” ACM Transactions on Computer Systems (TOCS),
vol. 10, no. 4, pp. 338–359, 1992.

[58] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page coloring-
based multicore cache management,” in Proceedings of the 4th ACM
European conference on Computer systems. ACM, 2009, pp. 89–102.

[59] Intel. 8th Generation Intel Core i7 Processors.
[Online]. Available: https://ark.intel.com/products/series/122593/
8th-Generation-Intel-Core-i7-Processors

[60] C. Lambrinoudakis, G. Pernul, and M. Tjoa, Trust, Privacy and
Security in Digital Business: 4th International Conference, TrustBus
2007, Regensburg, Germany, September 3-7, 2007, Proceedings, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2007.
[Online]. Available: https://books.google.co.il/books?id=ci-rNuWTLa4C

[61] “LAME,” http://lame.sourceforge.net/, 2018, [Online; accessed 25-Feb-
2018].

[62] OpenSSL Software Foundation, “OpenSSL: Cryptography and SSL/TLS
Toolkit,” https://www.openssl.org/, 2018, [Online; accessed 25-Feb-
2018].

[63] Apache. The Apache HTTP Server Project. [Online]. Available:
https://httpd.apache.org/

[64] V. Costan and S. Devadas, “Intel SGX Explained.” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016.

