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Abstract

Hospitalization of elderly patients can lead to serious adverse effects on their functional capability. Identifying the
underlying factors leading to such adverse effects is an active area of medical research. The purpose of the current
paper is to show the potential of artificial intelligence in the form of machine learning to complement the existing
medical research. This is accomplished by studying the outcome of hospitalization of elderly patients as a supervised
learning task. A rich set of features characterizing the medical and social situation of elderly patients is leveraged
and using confusion matrices, association rule mining, and two different classes of supervised learning algorithms,
it is shown that the need for help and supervision are the most important features predicting whether these patients
will return home after hospitalization. Such findings can help to improve hospitalization and rehabilitation of elderly

patients.
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1. Introduction

Basic activities of daily living (short ADLs) are fun-
damental to ensure that older people are able to live in-
dependently without care. These ADLs include activi-
ties such as bathing, dressing, using a toilet, and eating.
Hospitalization of previously independent older patients
due to an acute medical illness often leads to a situation
in which the patients find themselves unable to perform
one of these activities independently anymore [1]. Con-
sequently, they cannot return to their old lives but are
dependent on help also after their stay at the hospital.
This undesirable side-effect is called hospital associated
disability (HAD).

HAD is associated with the advent of serious adverse
events, such as mortality, morbidity, institutionalization
and re-hospitalizations, affecting both the individuals
(reduced quality of life or even death) and the soci-
ety (e.g., higher use of caregivers and other resources,
greater health care expenditure). It can be actuated al-
though the illness that necessitated the hospitalization
was successfully treated [2, 3, 4] and although the pa-
tients admission diagnosis was not related to a decline in
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ADLs [5]. Saltvedt et al. [6] showed that geriatric eval-
uation and management units where older patients are
encouraged to participate in ADLs during hospitaliza-
tion significantly reduce mortality of the patients. How-
ever, according to Covinsky et al. [7], approximately
one-third of elderly patients have an ADL disability that
they did not have before the hospitalization. Thus, HAD
is a serious problem and understanding the most impor-
tant factors leading to it could help the elderly and save
many resources.

The purpose of this paper is to find accurate pre-
diction methods for the outcome of hospitalization of
elderly patients and to recognize the strongest factors
predicting HAD. Earlier studies have pointed out that
high age, comorbid disease, depression, cognitive im-
pairment, limited social support and physical frailty can
cause HAD [1, 2, 7, 8]. Table 1 provides an overview
of previous studies concerned with predicting HAD. It
summarizes for all of these studies the analyzed data,
used methods, and main findings. As can be seen
from the table, all of the existing studies used linear
techniques originating from statistics such as t-tests, y?
tests, or logistic regression.

However, comparative research on supervised learn-
ing algorithms has shown that linear methods such as
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logistic regression are not competitive with and con-
stantly outperformed by more complex and nonpara-
metric methods such as random forest [9, 10, 11]. Ran-
dom forest has been a preferred choice especially in
many medical applications because it not only shows
very good prediction performance but is also known for
its ability to identify important variables [12]. This abil-
ity to identify important variables is generally a crucial
property for health care applications as it increases the
interpretability of the models, which helps medical de-
cision makers to understand and use these models as
clinical decision support [13, 14]. Another reason why
random forest may be advantageous is that it has proved
to be more robust toward imbalanced data. This is im-
portant here because—as in many other, particularly
medicine related, applications—our real world data set
is imbalanced and misclassifying a minority class ob-
servation is more serious than misclassifying a majority
class observation.

Hence, our analysis adds to the existing studies in
two respects. First, we use random forest to automat-
ically learn a model that best fits the data. We show that
this model outperforms the logistic regression model.
Second, we use methodological triangulation of differ-
ent analysis techniques to improve the technical sound-
ness of the presented approaches [15]. This triangulated
analysis gives more confidence on our final conclusion
that previously estimated needs for help and supervision
are the most important predictors for HAD.

2. Data

The data was prospectively collected from four na-
tional hospitals in Finland located in Helsinki, Joensuu,
Jyviskyld and Kuopio. Only patients who arrived from
home, that is, not the ones who became sick while they
were already in hospital, were included in the study.
Moreover, to be included in the data collection patients
had to be 65 years old or older, and had to be admit-
ted from home to a hospital due to an acute illness or
sudden worsening of a chronic illness.

A total of 835 patients who fulfilled these inclusion
criteria was included in the study. The outcome of hos-
pitalization was defined (i) as the categorical variable
discharge to home, institutionalized, or dead, and (ii)
simply as binary variable distinguishing discharge to
home or institutionalized or dead. For three cases in
our data the dependent variable was missing. Since we
needed the information of hospitalization outcome in all
our analysis techniques those three cases were deleted.

The patients who did not return home were desig-
nated to be the cohort of interest (i.e., the ones with

HAD). Thus, the distribution of patients with HAD in
the data set was very similar to the general occurrences
of HAD estimated by Covinsky et al. [7]. One third
(i.e., 285) of the patients in our dataset were either insti-

tutionalized or dead, exactly as the estimated occurrence
of HAD (see Section 1).

2.1. Features

The collected data features 100 variables, two depen-
dent and 98 independent features related to the patients
health and social status. 92 of the 98 original features
are categorical. The majority of these features are or-
dinal (Likert-scale) such as walking stairs that has the
categories without difficulty, with help, and not at all.
However, there are also some purely categorical vari-
ables in the collected data, such as gender and location.
All original variables were transformed into numerical
features, either real-valued or binary ones. Moreover, as
described more detailed below, the absence of a value
was encoded with a separate category for each variable
because it can provide valuable information.

For some of our analysis techniques (see Section 3)
we need our whole data in binary format. For this,
we categorized the six non-categorical features (age,
hemoglobin, white blood cell count, glucose level,
sodium level, potassium level) and one-hot encoded
all variables with an additional variable indicating the
missing information. This led to a target data with 381
features. Removal of constant features left us with 332
binary features.

2.2. Missing data

Altogether, our dataset has less than 3% of missing
data. However, 53% of the variables are incomplete.
These missing values occur in 701 (84%) of the obser-
vations. That means that for only 16% of the patients
we have values for all variables. Furthermore, the miss-
ing data are not evenly distributed variablewise. On the
one hand, a lot of features have only a couple (less than
four) or no missing values. On the other hand, a few
features have many missing values. One example of the
latter case is the glucose level, which has more than 50%
missing values. The absence of a glucose level for a pa-
tient in our data set usually indicates that based on pre-
vious examinations the value was assumed to be within
the normal range. That means that some features in our
data are reported only for certain patients with certain
conditions and the occurrence of a missing value is ac-
tually related to the reason why it is missing. Thus, the
data are missing not at random (MNAR) [20].

To deal with the MNAR sparsity pattern we encoded
for each feature that had missing values a new category



Table 1: Related work

Authors | Data Method Main findings

Zisberg | 684 patients aged 70 or older of two | correlation Mobility inside the hospital, continence care,

et al. | Israeli tertiary medical centers analysis, path | and length of stay were associated with HAD.

[16] analysis

Lees et | 257 patients aged 65-80 undergo- | logistic regres- | Elderly patients discharged to home after

al. [17] | ing emergency general surgery at | sion hospitalization were younger, had fewer in-
the University of Alberta Hospital hospital complications and lower American
in Canada Society of Anesthesiologists class.

Covinsky| 2293 patients aged 70 or older from | x> tests and | The oldest patients were the most likely to de-

et al. | University Hospitals of Cleveland, | logistic regres- | velop a HAD.

[2] USA in Ohio, USA

sion

Gill et | 754 community-living persons | confidence Hospitalization of the elderly was strongly as-
al. [1] aged 70 years or older who were | intervals, Cox | sociated with loss of an ADL, especially for
nondisabled at baseline, in New | model frail individuals.
Haven, Connecticut, USA
Carlson | 122 patients aged 60 or older of an | t-test, y” tests, | Poor functional homeostasis was significantly
et al. | acute care geriatric inpatient unit of | logistic regres- | associated with HAD independently of other
[18] university hospital in Texas, USA sion patient’s characteristics.
Wu et | 804 patients aged 80 years or older | ordinal logistic | The strongest independent predictor of HAD
al. [19] | who stayed in a USA hospital (Beth | regression was the ADL score at baseline. For patients
Israel Hospital, Boston; Metro- | models independent in ADLs at baseline, the presence
Health Medical Center, Cleveland; of an orthopedic diagnosis was associated with
Marshfield Clinic/St. Joseph’s poorer subsequent function. However, for pa-
Hospital, Marshfield; University of tients with four or more ADL dependencies at
California Los Angeles Medical baseline, orthopedic diagnoses was not inde-
Center, Los Angeles) at least 48 pendently associated with HAD.
hours
Inouye 188 patients aged 70 or older ad- | t-test, y” tests, | The risk of functional decline in ADLs in-
et al. | mitted to the medicine service at | proportional creased linearly with the number of risk fac-
[5] Yale-New Haven hospital, USA hazards model | tors, suggesting that the predisposition to func-

tional decline may result from the cumulative
effects of multiple impairments.

indicating the missing information. This strategy was
chosen for two reasons. First, it ensures that we do not
need imputation, which is difficult or even impossible
with a MNAR pattern. Second, missingness patterns
might reveal interesting information itself. For exam-
ple, as explained above, the glucose level was collected
and reported mainly for patients with non-normal levels.
Hence, the missingness of the patient’s glucose level is
an indicator that this level was in normal range. More-
over, as illustrated in Figure 1 the distribution of dis-
charged to home patients is different for missing val-
ues (i.e., when there are missing values, less patients
are discharged to home than usually). We do not want
to delete this information but uncover it in case it is re-
lated to the outcome of hospitalization. Hence, for each

variable with missing values a new category indicating
the availability of this features was created.

2.3. Class imbalance

Another challenge of our data set is the class im-
balance of the collected data. In various application
areas—especially medicine—the class of interest (e.g.,
patient having a disease) is underrepresented in the data
while the majority of the data represent the control
cases. Classifiers built on such imbalanced data often
are biased toward the majority class [21]. As in many
real medical data sets we have less cases of the class of
interest (i.e., one third of the patients belong to the HAD
class) than control cases (i.e., the class of return home
patients). This means that the trivial classifier that sim-
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Figure 1: Distribution of discharged to home patients for selected variables.

that were not discharged to home.

ply assigns every patient to the most common (returning
home) class would achieve an accuracy of 66% while
having 0% sensitivity.

The class imbalance also means that we cannot eval-
uate our classification models based on the accuracy.
Thus, instead of concentrating on a high accuracy we
compare our classification models based on the area un-
der the ROC curve (AUC). The AUC is more indepen-
dent of class skew because it measures the ranking abil-
ities of the classifier. It is equivalent to the probability
that the classifier will rank a randomly selected posi-
tive observation (in our case, HAD patient) higher than
a randomly selected negative observation (i.e., a return-
ing home patient in our case). Hence, an AUC value
around 0.5 is no better than random guessing while an
AUC of 1 presents perfect classification.

To deal with the class imbalance problem in classi-
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The missing values (denoted as —1) appear more often with patients

fication different procedures have been introduced (for
a recent review see Vanhoeyveld and Martens [22] and
references therein). These procedures can mainly be di-
vided into procedures that operate on the classification
algorithm (cost-sensitive methods) and procedures that
operate on the data (sampling methods). Cost-sensitive
methods assign larger weights to observations of the
minority class. As a consequence, minority class mis-
classification is more costly which impedes the trivial
systematic classification to the majority class. Sam-
pling methods modify the training set by sampling a
smaller majority training set (undersampling) or repeat-
ing observations from the minority training set (over-
sampling).

A popular sampling technique of the latter case is
synthetic minority oversampling (SMOTE) [23]. SMOTE
creates observations that are synthetic interpolations of



the minority class. This produces clusters around each
observation from the minority class instead of simply
duplicating observations (such as the random oversam-
pling method does). In a recent study by Bach et al.
[24], different solutions to deal with imbalanced data
were compared in the context of medicine (i.e., predic-
tion of osteoporosis). They experimented with different
classifiers and procedures to cope with their imbalanced
data and showed that oversampling the minority (i.e.,
osteoporosis) class using SMOTE resulted in higher AUC
values for all tested classifiers.

Liu et al. [25] introduced the EasyEnsemble
method. The EasyEnsemble method samples from
the training set as many observations from the majority
class as there are observations from the minority class
in the training set. This procedure is repeated until each
majority class observation is sampled into one training
set. Then, each balanced training set is used to train the
classifier and the outputs of those learners are combined
for the prediction. This method was tested on classifi-
cation tasks for imbalanced data sets and found to out-
perform other sampling techniques by Vanhoeyveld and
Martens [22].

3. Methods

Our analysis was based on a combination of different
data mining and machine learning techniques [26], all
with the goal to find the most important predictor for
HAD from the data:

o Confusion matrix to identify the single variables
that predict HAD the best

e Association rule mining to determine interesting
patterns in the data that co-occur (i) with HAD pa-
tients and (ii) with the patients that return home

o Supervised learning to (i) find the model that pre-
dict HAD the best using all information from the
data including the missingness information and (ii)
identify the features most useful for the supervised
models utilizing feature importance measures

3.1. Direct effect of single variables using confusion
matrices

First, we determined the importance of the 332 bi-
nary features originating from the one-hot-encoding de-
scribed in Section 2. For each of these features, we com-
puted the confusion matrix of this single feature with the
dependent variable institutionalized or dead. We then

used the formula for accuracy (i.e., the sum of true pos-
itives and true negatives divided by the number of ob-
servations) to determine the importance of the variables.
All variables that had a higher accuracy than the default
classifier that always predicts the most common class
(i.e., discharge to home) and is right in 66% (546 out of
832) of the cases, were considered to be informative.

3.2. Association rule mining

Second, we used association rule mining to automat-
ically detect what patterns and if-then rules could be
found in the binarized data. In association rule min-
ing, these pattern and rules are usually represented in
forms of implication rules [26, 27]. If I is the set of
all items and §,, a subset of I (S, € I) then a trans-
action t; € T, where T denotes the set of all transac-
tions, is said to contain S, if S,, is a subset of #;. The
number of all transactions of a dataset that contain a
particular itemset is its support count. It is defined as
o) =t | S Ct;,t; € T}, where | - | stands for the
number of elements in a set.

An association rule is an implication expression of
the form §,, —» §,, where S,,,S, Cland S,,N S, = 0.
The goodness of such a rule is typically assessed by its
support and confidence. The support determines how
often a rule is applicable to a given data set. It is defined
as s(S,, &> S,) = % The confidence assesses
how frequently items in S, appear in transactions that
contain S, and is defined as ¢(S,, = S,) = %
3.3. Supervised learning using logistic regression and

random forest

Third, we wanted to predict HAD using supervised
learning. As identified in Table 1, logistic regression
seems to be still the standard technique to predict HAD.
We believe that this due to two reasons. First, logistic
regression is known for its straightforward interpretabil-
ity [13, 14], which is a property that is (as discussed in
Section 1) of great importance in medical applications.
Second, logistic regression is probably the most estab-
lished multivariate prediction technique for binary out-
comes in statistics.

Our other supervised learning technique is random
forest. Previous research has highlighted the great po-
tential of random forest for biomedical applications
[28, 29]. They are one of the best state-of-art classifiers
known in machine learning and require only very little
parameter tuning [30, 31]. Moreover, random forests
are often preferred choices in biomedical applications
because of their embedded feature importance measure
which facilitates interpretability [12]. For example, as



recently shown by Masetic and Subasi [28], random for-
est not only proved to be the best classifier detecting
congestive heart failure but at the same time expressed
also useful medical knowledge.

Another advantage of random forests is their suitabil-
ity for imbalanced data sets as described above. Ran-
dom forest classifiers seem to be more robust to such
imbalanced data because they have a method for balanc-
ing error [30]. Khoshgoftaar et al. [32] compared differ-
ent classifiers (naive bayes, support vector machines, k
nearest neighbors, decision tree) on benchmark datasets
with imbalanced class distributions. They concluded
that random forest works best for imbalanced data. Sim-
ilarly, Khalilia et al. [29] pointed out the advantages of
random forest for imbalanced data.

Random forests are ensemble learners based on deci-
sion trees that overcome the disadvantages of decision
trees while virtually keeping their main advantages [33].
Decision tree classifiers build a hierarchical tree-like
structure of the training data where every node repre-
sents one feature test condition and every directed edge
represents one decision. At each node, they split the
data so that each partition has a purer class distribution.
This purity of class distribution is usually estimated by
the Gini index. The Gini index of a data partition X is
defined as

C
GX)=1-) P(lX?, (1)
i=1

where C denotes the number of classes and P (¢;|X) the
probability of class ¢; in X [34]. A Gini index value
of zero is gained if all observations in a data partition
belong to the same class (the probability of that class is
1 while the probability of all other classes is 0), while
larger values indicate less pure class divisions. Thus, at
each node the selected split is the one with the lowest
Gini index.

Decision trees handle high-dimensional data well
and are—although nonlinear—highly amenable to hu-
man model interpretation as they provide understand-
able rules on the splitting attributes. A further strong
point of decision trees is their ability to handle mixed
data types such as categorical and continuous features.
However, if fully grown, they are prone to overfitting
(i.e., suffer from high variance) and thus often lead to
reduced prediction performance on the test set.

While a single decision tree is highly prone to overfit-
ting, the average of a multitude of uncorrelated trees is
not [30]. Consequently, a random forest classifier solves
the overfitting problem of single fully grown decision
trees by bagging many of such trees and introducing two

sources of randomness: (i) randomness in the data and
(ii) randomness in the features. Bagging is a process in
which each decision tree is constructed from a bootstrap
sample drawn from the original data set and the predic-
tion of a new observation is made by taking the mode
(average in case of regression) of all trees. Thus, ran-
domness in the data is the result of bagging since the
bootstrap samples ensure that the trees in the forest are
built on different training sets. Randomness in the fea-
tures is the result of considering for each split of a deci-
sion tree only a small number of features g, with g be-
ing a user defined parameter and typically much smaller
than the total number of features p (default p = /g).

If many trees were trained on the same data and if
all features were considered in each split, the trees of
such a forest were strongly correlated or even duplicates
of each other. However, the trees of a random forest
are not correlated since each tree in the random forest
model is grown on a different set of data and consid-
ers only a subset of the features as splitting attributes on
each node. Hence, the random forest leads to improved
performance because it decreases the variance (overfit-
ting) of the model without increasing the bias. As such,
they are frequently the winning classifiers in machine
learning competitions [9, 10].

4. Results

Below we report the results of our different analysis
techniques outlined in Section 3. As explained we were
not only interested in a prediction model with high per-
formance but also in finding most explanatory variables
expressing what characteristics of elderly patients are
associated with so permanent adverse effects on func-
tionality that they cannot be discharged anymore, but
need long-term care or even die after being hospitalized
for reason of acute illness. Thus, we also discuss for
each technique the most important predictors.

All experiments were implemented in Python 3.6.2
(using scikit- and imbalanced-learn packages) and Mat-
lab R2016b for association rule mining.

4.1. Direct effect of single variables using confusion
matrices

All informative predictor variables (i.e., features that
provide a clearer distribution than the default) are listed
in Table 2. As can be seen from the table, 56 out of the
332 features were identified to be more informative than
the default predictor and the need for supervision was
the most important variable with a prediction accuracy
of 67% (560 out of 832 cases).



Table 2: List of one-hot encoded features that were more accurate in prediction than the default classifier that always predicts the most common

class and is correct in 546 out of 832 (66%) of the cases.

correctly correctly
variable name classified variable name classified
need_for_supervision_2.0 560 pain_nan 559
remembering_new_things_3.0 559 need_for_help_nan 558
confusion_3.0 556 eating_2.0 555
need_for_help_how_often_2.0 555 mobility _aids_nan 554
falling_3.0 551 shakiness_3.0 551
confusion_4.0 551 mobility_aids_4.0 551
living_before_admission_nan 550 alzheimer_2.0 550
depression_2.0 550 mobility_aids_5.0 550
confusion_2.0 550 mental_disorder 2.0 550
psychosis_2.0 549 need_for_help_4.0 548
underweight_2.0 548 arthralgia_nan 548
heartburn_nan 548 stroke_3.0 548
walking_stairs_nan 548 need_for_supervsion_nan 548
alcohol 2.0 548 numbing_of_bag_nan 548
back_pain_nan 547 oedema_nan 547
dyspnoea_in_strain_nan 547 dyspnoea_in_rest_nan 547
excema-nan 547 constipation_nan 547
dizziness_nan 547 falling_nan 547
shakiness_nan 547 stroke_nan 547
speak_difficulty_3.0 547 speak_difficulty _nan 547
walking_room_3.0 547 walking_room_nan 547
walking_outside_4.0 547 walking_outside_nan 547
walking_and_carrying_bag_nan 547 using_toilet_nan 547
finger_dexterity _nan 547 washing_nan 547
cutting_toe_nails_nan 547 eating_nan 547
mobility_aids_2.3 547 need_for_supervsion_1.0 547
multimorbidity _binary_2.0 547 delusions_2.0 547
gastrointestinal_symptoms_nan 547 loss_of_balance_nan 547

4.2. Association rules

Our goal with the second technique was to find rules
of strongly associated features in our data that indicate
that a patient is in risk to be institutionalized or die.
Since only one third of the observations in our data actu-
ally contain patients that died or were institutionalized,
we started with a relatively small value for the support
but the highest value for the confidence to achieve reli-
able and accurate rules.

Table 3 shows the result when setting the support to
0.6 and searching for rules with HAD on the right hand
side of the rule with as high confidence as possible. The
first rule that we obtained with this strategy had a con-
fidence of 100%. All patients that needed help one to
five times a week and for which pain was missing, were
institutionalized or died (see rule number 1 in Table 3).
Similarly, all underweight patients for whom the need
for help was missing were institutionalized or died (rule
2 in Table 3).

The following rules did not have full confidence but
a higher support. More than 64% of those patients with
Parkinson who needed help one to five times a week
(1.1% of the data) were institutionalized or died (rule
3). As already detected with confusion matrices, the

need for help appeared again to be a good indicator for
HAD. More than half of the patients who needed help
one to five times a week (21.3% of all patients in the
data) were institutionalized or died (rule 8). This per-
centage is even higher if the patient lived alone before
admission to the hospital (rule 7). The alone (living)
situation in combination with the need for help is also
reflected by rule 4 and 5. If the patient is single or a
widow(er) and he or she needs help or suffers from con-
fusion, HAD is more likely. If we search for interesting
rules with home at the right hand side, we obtain rule 9
stating that if a patient does not need help (note both bi-
narized categories of help demand variables measure the
same), he or she will probably (confidence more than
93%) return home.

In summary, association rule mining reflected the im-
portance of the variables that measure the amount of
help the elderly patients needed already before hospi-
talization. If a patient did not need help or supervision,
he or she will probably return home. If a patient needed
some help, it is likely that he or she will be institutional-
ized or die after hospitalization. This is especially true
if the patient is alone (i.e., lives alone and/or is single or
widowed).



Table 3: Association rules having HAD (rule 1-8) and home (rule 9) on the right hand side.

nr | rule support | confidence
1 | {pain: missing, need for help: 1-5 times a week} — {HAD} 0.6% 100%

2 | {need for help: missing, underweight: yes } - {HAD} 0.6% 100%

3 | {Parkinson: yes, need for help: 1-5 times a week} — {HAD} 1.1% 64.3%

4 | {marital status: single, need for help: 1-5 times a week} — {HAD} 1.1% 60%

5 | {marital status: widowed, confusion: every other day} — {HAD} 0.7% 60%

6 | {pain: missing, walking and carrying bag: can but its difficult without help} — {HAD} | 4.7% 59.1%

7 | {living before admission: alone, need for help: 1-5 times a week} — {HAD} 14.3% 52%

8 | {need for help: 1-5 times a week} — {HAD} 21.3% 51%

9 | {need for help: no, need for help how often: no need} = { home } 10% 93.2%

4.3. Supervised learning

We finalized our triangulated analysis by predicting
HAD using supervised learning. As pointed out in the
introduction, we were especially interested in the per-
formance of the random forest classifier in comparison
to the logistic regression classifier because this appears
to be the main (exclusive) classification model in medi-
cal research to predict HAD (see Table 1).

In order to assess the performance of the different
models the data set was split into training (70%) and
test set (30%). Grid-search hyperparameter optimiza-
tion with 10-fold cross-validation was used to evalu-
ate the individual models on the training set. The final
model using the best performing combination of hyper-
parameters was then refit on the full training data set
and the performance was evaluated on the independent
test set. The test set was untouched during the entire
training and model selection process and only used for
the final model evaluation. Therefore, it was ensured
that no information of the test set was revealed during
model training and parameter optimization.

As discussed above our data is challenging because
of the missing data and the class imbalance. To find
what works best for our classification problem and
our algorithms we experimented with all strategies dis-
cussed in Section 2: the cost-sensitive procedure (us-
ing balanced class weights in the classification algo-
rithm), different sampling of the training data (i.e., ran-
dom oversampling, SMOTE, random undersampling, and
EasyEnsemble), and none for comparison.

A random forest with 1000 estimators' and Gini im-
purity (see 1) as splitting criterion was used. The maxi-
mum number of features was grid searched. For logistic

'In the beginning, the number of trees was also grid searched.
However, more trees were always better and we observed that after
1000 trees there was no gain in performance anymore but a longer
computation time.

regression the best penalty and regularization parame-
ter were grid searched. Moreover, we searched for the
best dimension reduction (principal component analy-
sis, non-negative matrix factorization, or none) and best
scaling (standardization, min-max-scaling, or none).

Table 4 shows the experimental results. Pipelines
were used in combination with the grid search to chain
the preprocessing (scaling and dimension reduction)
steps together with the classifiers and to ensure that no
information from the test set was leaked into the train-
ing set. That means that we encapsulated all steps in
a single estimator and automatically tried all possible
combinations of the specified preprocessings and clas-
sifier parameters without touching the test set. Thus,
the final parameters and preprocessing reported in the
table and applied to the test set correspond to the ones
returned by scikit-learn’s pipeline and grid search (i.e.,
best_params from the GridSearchCV).

The different preprocessings tested for our models
gave consistently the same result. The random for-
est models performed the best with no preprocessing
(no scaling and no dimension reduction) and the logis-
tic regression with standard scaling and no dimension
reduction (see column best preprocessing in Table 4).
Similarly, there was only little difference between the
tested configurations regarding the grid searched values
of hyperparameters (see column best parameters in Ta-
ble 4). For example, for all random forest models we
obtained the best results when only a small number of
maximum features were considered at each split (i.e.,
the best value for ¢ in our random forest models always
was either 3 or 4, see rows 1-6 in Table 4). We fur-
ther observed that our logistic regression models always
performed better with L2 than with L1 regularization
(see rows 7—12 in Table 4). Although L1 regularization
could probably lead to better model interpretability by
zeroing weights (pruning variables) with higher proba-
bility than L2 regularization, the results indicate that the



Table 4: Performance of random forest and logistic regression classification algorithms using pipelines in grid searches with 10-fold cross-validation

for different strategies to deal with the data imbalance.

classifier

strategy to deal with the data imbalance

best preprocessing best parameters AUC

Random forest with number of none

none qg=3,nrT =1000 | 0.770

. _ balanced class weights in classifier none qg=4,nrT =1000 | 0.767

trees in the forest (nrT = 1000) ¢ ..
and a grid search cross-validation random oversampling of the training data none q=4,nrT =1000 | 0.768
SMOTE of the training data none qg=3,nrT =1000 | 0.778

over the number of features (¢ =

random undersampling of the training data none g =3,nrT =1000 | 0.749

2.3.4.5.10, ¥p. p/2, or p) EasyEnsemble of the training data none q=3,nT =1000 | 0.771
. . . . none standard scaling L=2,C=0.001 0.717
gr(())ilss-txllzlfiifszlOSV\Zrltht}%endpse?arlig balanced class weights in classifier standard scaling L=2,C=0.001 0.723
(L = lor2) and the inverse random oversam.pl.ing of the training data standard scal%ng L=2,C=001 0.722
of regularization strength (C = SMOTE of the tralnlng dat{i . standard scal}ng L=2,C=0.001 0.729
0.001,0.01,0.1, 1, 10, or 100) random undersampling of the training data standard scaling L=2,C=001 0.697
oo e e EasyEnsemble of the training data standard scaling L=2,C=001 0.716

latter one, which assumes zero-mean Gaussian prior dis-
tribution over the weights, produces models with greater
predictive power.

As reported in the table, random forest clearly out-
performed logistic regression in all tested combinations
(see column AUC in Table 4). We further observed that
in comparison to the logistic regression model, increas-
ing the class weights for the HAD class reduced the
AUC of the random forest. This might be because of
the architecture of the random forest model that auto-
matically reduces overfitting [30]. Furthermore, more
involved sampling procedures performed better than the
random ones (SMOTE outperformed random oversam-
pling, EasyEnsemble outperformed random undersam-
pling) and oversampling of the training data led to better
results on the test data than undersampling. Altogether,
random forest with SMOTE oversampling gave the best
results with an AUC of 0.78.

The last set of experiments we performed concerned
the feature ranking of the models. To find the features
that played the most important role in the prediction, we
ranked the feature importances of the best random for-
est model. This feature ranking is shown in Figure 2.
The figure illustrates once again the importances of all
features that measure the amount of help needed by the
patients. The need for help how often is selected as the
most important feature for the prediction task, followed
by the general need for help and the need for supervi-
sion. In summary, also our final technique nominated
the importance of the need for help and supervision fea-
tures.

5. Conclusions

Prediction of the HAD syndrome has a great clini-
cal value and understanding the underlying factors as-
sociated with HAD is a first step to better plan hospi-

talization of elderly patients. In particular, prevention
and treatment of HAD consists of personally applied
enhanced rehabilitation, which should be started early
and be effective enough to prevent or treat the HAD. An
enhanced rehabilitation is physically strenuous for the
patient, and requires expertise and costs. Therefore, it is
important to identify patients in risk of HAD soon after
admitting into an hospital to start their rehabilitation as
early as possible.

Although previous studies have tried to find factors
associated with HAD (see Section 1), none of these have
leveraged machine learning techniques. This paper pre-
sented a first attempt in this direction to automatically
identify the relations of many health and social vari-
ables to the outcome of hospitalization of elderly pa-
tients. More precisely, using triangulation of different
analysis techniques, it was shown that the need for help
and supervision are the most important features predict-
ing whether an elderly patient will return home after
hospitalization due to an acute illness.

Our findings support earlier medical studies (see Sec-
tion 1, especially Table 1). Indeed, the age of the pa-
tients itself was not found to be an as strong feature as
pointed out in previous works (see, for example, [17, 2]
described in Table 1 in comparison to Figure 2). How-
ever, our results confirm earlier studies that identified
physical frailty and the ADL score at baseline as sig-
nificant predictors for HAD (see, for example, [1, 19]
described in Table 1). The worse the physical frailty
and the ADL score at baseline, the more help and su-
pervision the elderly patients needed already before ad-
mission to the hospital. Thus, our recommendation is
to pay special attention to physical frail patients who al-
ready needed some help before their hospital admission
and to provide them with special care and rehabilitation
practice.

Future work will repeat the presented analysis



scheme for larger data from more hospitals. Although
the random forest model outperformed the logistic re-
gression model and SMOTE oversampling further im-
proved the performance, an AUC of 0.78 is still quite
distant from perfect classification. Thus, future work
could benefit from a larger sample size of HAD patients
for building models with refined AUC and sensitivity.

Finally, it would be interesting to exploit the poten-
tial of adding various secondary health care data to the
model [35]. For example, current work [36, 37, 38]
focuses on automatic summarizing methods for clini-
cal free text notes. We expect that our model could
be further enhanced if our raw data could be enriched
by such high-level interpretations summarizing clinical
free text notes describing the elderly patients. Another
example of interesting secondary data is the increas-
ing prevalence of self-taken or automated measurements
at home that are accumulating personal health records
(PHRs) in commercial and public data management sys-
tems. These PHRs may also provide relevant predic-
tors to expedite the clinical decision making with HAD
patients in the future. In Finland, for instance, all the
citizens will be allowed to store a validated set of self-
measurements into the national Patient Data Repository
as of 2018.
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Figure 2: Feature importances of the random forest model. The need_for_help_how _often is the most important variable, followed by the general
need_for_help and need_for_supervision.
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