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Abstract 

Several calls have been made for replacing coefficient 𝛼 with more contemporary model-based 

reliability coefficients in psychological research. Under the assumption of unidimensional 

measurement scales and independent measurement errors, two leading alternatives are composite 

reliability and maximal reliability. Of these two, the maximal reliability statistic, or equivalently 

Hancock’s H, has received a significant amount of attention in recent years. The difference 

between composite reliability and maximal reliability is that the former is a reliability index for a 

scale mean (or unweighted sum), whereas the latter estimates the reliability of a scale score 

where indicators are weighted differently based on their estimated reliabilities. The formula for 

the maximal reliability weights has been derived using population quantities; however, their 

finite-sample behavior has not been extensively examined. Particularly, there are two types of 

bias when the maximal reliability statistic is calculated from sample data: (a) the sample 

maximal reliability estimator is a positively biased estimator of population maximal reliability; 

and (b) the true reliability of composites formed with maximal reliability weights calculated 

from sample data is on average less than the population reliability. Both effects are more 

pronounced in small-sample scenarios (e.g., < 100). We also demonstrate that the composite 

reliability estimator for equally-weighted composite exhibits substantially less bias, which makes 

it a more appropriate choice for the small-sample case. 

Keywords: maximal reliability, composite reliability, Hancock’s H, omega total, 

weighted composites, simulations, small sample bias 



Finite Sample Behavior of Maximal Reliability 3 
 

A Cautionary Note on the Finite Sample Behavior of Maximal Reliability 

Summary estimates of reliability for psychometric instruments serve two main purposes 

in primary research. First, they provide an assessment of the quality of measurement in latent 

variable models (Raykov, 1997). Second, in cases where regression or path analyses are 

performed using (weighted or unweighted) sums of scale scores, reliability estimates can be used 

to correct for attenuation of coefficients due to random measurement error (Cole & Preacher, 

2014; Nimon, Zientek, & Henson, 2012). Outside of primary research, reliability estimates also 

feature centrally in correcting correlations for measurement error attenuation in meta-analyses 

(Schmidt & Hunter, 2015, Chapter 3). As such, obtaining unbiased estimates of reliability is of 

key interest in both primary and secondary studies. 

Although coefficient 𝛼1 continues to be the most popular reliability estimator in 

psychological research, its use rests on some strict measurement assumptions (e.g., tau-

equivalence) that are unlikely to be met in practice (Cho & Kim, 2015; McNeish, 2017; Sijtsma, 

2009). Consequently, model-based reliability estimators, such as maximal reliability (𝜌$%&, or 

equivalently, Hancock’s H) and composite reliability (𝜌'( , or equivalently 𝜔*+*%,), have been 

recommended as more modern alternatives to alpha (McNeish, 2017). Like coefficient 𝛼, both of 

these estimators are applicable under scale unidimensionality and independence of measurement 

errors, but relax the assumption of equally reliable indicators required by coefficient 𝛼. Because 

both maximal reliability and composite reliability work with the same set of assumptions, these 

indices are often recommended as two equally preferable alternatives (McNeish, 2017). 

Both maximal reliability and composite reliability estimate the reliability of a scale score 

or index formed as the sum of the indicators (composite), but differ in how the score is calculated. 

With composite reliability, the composite score is based on equal weights (i.e., an unweighted 
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sum), whereas maximal reliability involves weighting each indicator differently to maximize the 

reliability of the composite score. Indeed, giving more weight to more reliable indicators is 

intuitively appealing, and a number of simulation studies have shown good performance of the 

maximal reliability estimator (e.g., Penev & Raykov, 2006; Raykov, 2004; Raykov, Gabler, & 

Dimitrov, 2015). However, these investigations have focused on the large sample context, which 

may not be representative of the bulk of applied research studies. This is problematic because 

there are important limitations to the small-sample applications of the maximal reliability index 

that are currently overlooked in the literature, as is evident from a number of recent articles that 

recommend its use without discussing these limitations (e.g., Dimitrov, Raykov, & AL-Qataee, 

2015; Gabler & Raykov, 2017; McNeish, 2017).  

In this research, however, we demonstrate the following two issues: (a) the maximal 

reliability estimator (𝜌-$%&) is a positively biased estimator of population maximal reliability; and 

(2) the true sample reliability (𝑟$%&) of composites formed with maximal reliability weights is 

less than the population maximal reliability. Moreover, both of these effects are most 

pronounced in small samples (e.g., < 100). For researchers looking for a successor to coefficient 

𝛼 for reliability estimation in latent variable models, the practical implication of the first result 

above is that when using maximal reliability, reliability will be over- rather than under-estimated, 

as would be the case with coefficient 𝛼. For those who prefer working with scale scores, these 

opposing effects are compounded, leading to overestimation of both population and sample 

reliability. That is, when calculating maximal reliability composites from small samples, applied 

researchers will form composites which will be, on average, markedly less reliable than what the 

calculated statistic would indicate. The equally-weighted composite and the associated 
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composite reliability estimator, on the other hand, exhibit substantially less bias, which makes 

them more appropriate in small-sample scenarios for both of these applications. 

We begin by reviewing the literature on the reliability of composites of congeneric 

measures, with an emphasis on the maximal reliability weights and the associated maximal 

reliability estimator. Thereafter, we show the equivalence of maximal reliability weights and 

regression coefficients calculated from factor analysis results, which leads to an equivalence of 

the maximal reliability estimator and the coefficient of determination. Based on this equivalence, 

we contend that the maximal reliability estimator is a positively biased estimator of population 

maximal reliability. We demonstrate this result by means of a simulation study comparing the 

relative performance of maximal reliability and equal weights composites, in terms of the 

relative degree of bias present in both estimators under a variety of research conditions (in 

particular, sample sizes). We conclude by discussing the implications of these results for the use 

of reliability indices with small samples. 

Maximal Reliability 

Congeneric Measures and Reliability 

Following past research in this area (e.g., Penev & Raykov, 2006; Raykov, 2004), we are 

interested in a set of k congeneric items, which measure the same underlying latent variable with 

possibly different units and measurement locations, as well as random error variances (Jöreskog, 

1971). For simplicity, we assume throughout this research that k > 1 and all location parameters 

are zero. The following relationship thus holds: 

𝑦0 = 𝜆0𝜂 + 𝜀0, (1) 
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where each yi is an indicator (i = 1 through k), 𝜂 denotes the underlying latent variable, the λi are 

the loadings relating each indicator to the latent variable, and the εi are random measurement 

errors in the yi, assumed to be uncorrelated with both the latent variable and among themselves.  

The reliability of a weighted composite is the squared correlation between the composite 

and the latent variable that it measures, calculated as a non-linear function of the loadings, 

weights, and error variances of each indicator; more formally (e.g., H. Li, Rosenthal, & Rubin, 

1996, Appendix B): 

𝜌6 =
𝑉𝑎𝑟(𝜂);∑ 𝑤0𝜆0>

0?@ AB

𝑉𝑎𝑟(𝜂);∑ 𝑤0𝜆0>
0?@ AB + ∑ [(𝑤0)B𝑉𝑎𝑟(𝜀0)]>

0?@

, (2) 

where Var(𝜂) is the variance of the latent variable, the wi are the weights assigned to each 

indicator, the λi are the loadings as before, and the Var(εi) are the variances of the measurement 

errors.  

Maximal Reliability 

The maximum reliability of a linear composite can be expressed in terms of individual 

indicator reliabilities (ρi, cf., Bentler, 2007; Conger, 1980; H. Li, 1997; Raykov, 2004): 

𝜌$%& =
∑ FG

HIFG
J
GKH

@L∑
FG

HIFG
J
GKH

, (3) 

which is maximized when the weights of the individual indicators are defined as follows: 

𝑤$%&G =
MG

NG(@OMG)
. (4) 

Furthermore, given that the individual indicator reliabilities ρi can be expressed as: 

𝜌0 =
NG
P

NG
PLQ%R(SG)

, (5) 

 the maximal reliability weights then become: 
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𝑤$%&G =
NG

Q%R(SG)
. (6) 

That is, for a composite of congeneric measures to exhibit maximum reliability, the weight for 

each indicator should be set to the ratio of its loading to its error variance. The expression shown 

in Eq. 3 is equivalent to Hancock’s coefficient H (e.g., Hancock, 2001, pp. 380–382; Hancock & 

Mueller, 2001), which figures prominently in discussions on power analysis and effect sizes 

when comparing latent means (Hancock, 2001)2. This index has received considerable attention 

in the past. Under either label, studies have examined the change in this index when the number 

of indicators of a latent variable changes (Raykov & Hancock, 2005), its use in multilevel 

designs (Geldhof, Preacher, & Zyphur, 2014; Raykov & Penev, 2009), the assessment of its 

invariance over time or in distinct populations (Raykov, 2005), and its role in statistical power in 

covariance structure modeling (Penev & Raykov, 2006), to name just a few. It is clear that this 

concept, in either of its formulations, has wide applicability in a number of different research 

scenarios as indicated by a recent call for the replacement of coefficient 𝛼 by 𝜌$%& and other 

model-based reliability statistics in psychological research (McNeish, 2017). 

Although the maximal reliability estimator is most commonly referred to as 𝜌$%& in 

methodological research, it is more commonly used under the alternative label of coefficient H in 

applied research. To gain a better understanding of the sample sizes involved in empirical 

applications of coefficient H, we reviewed all articles citing the work of Hancock and Mueller 

(2001) in Google Scholar resulting in a collection of 198 unique applied research articles written 

in the English language in which coefficient H was applied to sample data3. The median sample 

size was 3444, indicating that the coefficient is most commonly applied to large samples. Of the 

198 articles reviewed, however, 31 (or 15.6%) employed samples less than 150. An additional 43 

(or 21.7%) studies had samples in the 150-250 range. Given that the maximal reliability 
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estimator has been used with widely varying sample sizes in applied research and that the recent 

publications in premier methodological journals (e.g., Gabler & Raykov, 2017; McNeish, 2017; 

Raykov et al., 2015) advocate its use, it is important to understand the behavior of the statistic in 

finite samples, which is neither theoretically explained nor empirically demonstrated in any of 

the existing studies. 

Finite-Sample Behavior of Maximal Reliability: An Explanation of the Bias 

The maximal reliability weights are optimal (i.e., maximize reliability) when they are 

derived from population data where the scales consist of congeneric items with known 

reliabilities. However, the performance of the maximal reliability weights may be sub-optimal 

when these conditions do not hold. Particularly, researchers rarely work with full populations, 

and indicator reliabilities are typically unknown and must be estimated. In these scenarios, both 

sampling error and estimation errors of individual indicator reliabilities can substantially 

influence the performance of the maximal reliability estimator. Both sources of error depend on 

sample size, and we argue that there are small-sample scenarios that are problematic for the 

maximal reliability estimator, but which have not been thoroughly addressed in the literature. 

Our concern is motivated by a large body of evidence demonstrating that, in small 

samples, several measures of association are biased estimators of their population counterparts, 

such as the Pearson correlation coefficient (r) and its square (Shieh, 2010; Skidmore & 

Thompson, 2011; Wang & Thompson, 2007; Zumbo, Williams, & Zimmerman, 2003), the 

coefficient of determination (R2) in multiple regression (Leach & Henson, 2007; Shieh, 2008; 

Yin & Fan, 2001), and the canonical correlation coefficient (Leach & Henson, 2014; Thompson, 

1990), to name a few. Moreover, this small-sample overestimation tends to be more pronounced 

when effect sizes are low (Thompson, 1999; Vacha-Haase & Thompson, 2004). Similar 
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overestimation has also been shown to arise in other reliability estimates, such as the greatest 

lower bound (glb; Bentler, 2009; Ten Berge & Sočan, 2004). Although small-sample bias has 

neither been formally described nor systematically studied with respect to maximal reliability, it 

seems reasonable to expect that the sample maximal reliability estimator would not be unbiased, 

for two reasons. First, estimates of model parameters, such as those of 𝜆0, 𝑉𝑎𝑟(𝜂), and 𝑉𝑎𝑟(𝜀0) 

in Eq. 2, may be biased. In particular, commonly-used maximum likelihood estimates have been 

proven to be unbiased only asymptotically (Bollen, 1989; see also Cordeiro & Cribari-Neto, 

2014; Kosmidis, 2014). Indeed, several authors have warned that reliability indices may not be 

trustworthy in small samples because factor analysis estimates may be biased (e.g., Raykov, 

1997; Sijtsma, 2009). Second, even if both 𝜆T0 and 𝑉𝑎𝑟(𝜀U)V  were unbiased, estimation error in 

these statistics will lead to bias in the maximal reliability estimator, as we will explain next. 

To see why the maximal reliability estimator is biased even when unbiased estimates are 

used in its calculation, it is helpful to consider it within the framework of multiple regression. 

The multiple regression model can be written as follows (where all variables are expressed as 

deviations from their means, with no loss of generality): 

𝐲 = 𝐗𝛃 + 𝛍, (7) 

where y is a N × 1 vector of response values, β is a k × 1 vector of regression coefficients, X is a 

N × k matrix of observations for the predictors, and 𝛍 is a N × 1 vector of errors, which are 

assumed to be uncorrelated with the predictors. The ordinary least squares (OLS) estimate of 𝛃	is 

calculated as: 

𝛃\ = 𝐒&&O@𝐬&_, (8) 
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where 𝐒&&O@ is the inverse of the k×k sample variance-covariance matrix of the k predictors and 

𝐬&_ is a k × 1 vector of the sample covariances between each predictor and the response variable. 

The coefficient of determination for the regression in Eq. 7 is given by: 

𝑅B = 𝛃\a𝐬&_. (9) 

There is a direct correspondence between the maximal reliability estimator and the 

coefficient of determination in multiple regression shown in Eq. 9. This equivalence derives 

from the fact that the fitted values of the regression, 𝐲- = 𝛃\𝐗, are composites of the predictors 

that are maximally correlated with the dependent variable. Now, consider a regression of a latent 

variable on its indicators: 

𝛈 = 𝐘𝛃 + 𝛍, (10) 

where 𝛈 is a N × 1 vector of values of the common factor, β is the k × 1 vector of regression 

coefficients, Y is the N × k matrix of observations for the indicators, and 𝛍 is the N × 1 vector of 

uncorrelated errors. Although it would seem that estimating this regression would not be possible 

because no case values of 𝛈, are observed, the regression coefficients 𝛃 can be estimated because 

the OLS estimator in Eq. 8 requires only information about the sample variances and covariances. 

Although the sample covariances between a latent and an observed variable are not observed, the 

OLS estimator can be applied to model-implied covariances. Assuming that the latent variable 

has unit variance in the sample, the model-implied covariances between the latent variable and 

its indicators are equivalent to the estimated factor loadings (𝛌e). Further, the model-implied 

variance-covariance matrix of the indicators is given as:  

𝚺\𝒚𝒚 = 𝛌e𝛌ea + 𝚯\ , (11) 

where 𝚯\  is a diagonal k × k matrix of estimated error variances (𝑉𝑎𝑟(𝜀U)V ). The maximal 

reliability weights can therefore be expressed as5: 
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𝐰$%& = 𝚺\__O@𝛌e. (12) 

The maximal reliability weights discussed here are equivalent to the weights used to 

create factor scores proposed by Thurstone (1935) (compare, for example, Eq. 11 above with Eq. 

1 in Grice, 2001). The estimated maximal reliability is then given by: 

𝜌-$%& = 𝐰$%&
a 𝛌e, (13) 

which is equivalent with the coefficient of determination in Eq. 9 because of equivalence 

between 𝛃\ and 𝐰$%& , and 𝛌e and 𝐬&_.  

This derivation is novel, as the equivalence of both quantities has not thus far been 

recognized in the literature on maximal reliability. Having established the equivalence of both 

formulations of the maximal reliability estimator, we now focus on its behavior when applied to 

finite samples. In an ideal scenario where the factor model holds in the population and 𝜆T0 and 

𝑉𝑎𝑟(𝜀U)V  are unbiased and independent, the model–implied moments of 𝛔l&_ and 𝚺\&& are unbiased 

estimators of their population counterparts, thereby yielding unbiased estimates of the 

coefficients in the regressions of factors on observed indicators (as per Eq. 8 for the OLS 

estimator), which are equivalent to maximal reliability weights except for a scaling difference. 

The relevance of the OLS regression framework for the small-sample characteristics of the 

maximal reliability estimator stems from the fact that even under this ideal scenario where OLS 

estimates of regression coefficients are unbiased, the R2 statistic calculated from sample data is 

positively biased (Cohen, Cohen, West, & Aiken, 2003, Chapter 3.5). Given the important 

effects of sample size on the degree of bias in the R2 statistic (Yin & Fan, 2001), we also expect 

bias in the maximal reliability estimator to diminish as sample size increases. 
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True and Estimated Composite Reliability 

Although the maximal reliability estimator is typically used as an estimator of population 

maximal reliability, the composite scores may also be of interest in some research settings. 

Therefore, two important questions are: (a) how reliable are the maximal reliability composites 

calculated from sample data; and (b) how does this reliability compare to the population maximal 

reliability? The sample reliability (𝑟) of a composite is defined as the squared correlation of that 

composite with the case values of the underlying latent variable in the sample; Table 1 provides 

the definitions of all reliability values considered in this article. As stated above, the maximal 

reliability composites are equivalent to the factor score estimators proposed by Thurstone (1935), 

which have been shown to become more weakly correlated with the true latent variable values as 

sample size decreases (Grice, 2001). Therefore, the expected value of the sample reliability of a 

composite formed with maximal reliability weights, 𝑟$%&, is anticipated to be systematically 

smaller than the population maximal reliability, 𝜌$%&. 

Given that the two effects described in this section operate in opposite directions, 

researchers using composites created with maximal reliability weights in small samples will be 

faced with a dual challenge. On the one hand, their estimate of the reliability of the composite 

will be, on average, higher than the population value of the same. On the other hand, the sample 

reliability of said composite can be expected to be lower than the population value: 

𝔼[𝑟$%&] < 𝜌$%& < 𝔼[𝜌-$%&]. (13) 

Taken together, the net effect is a weighted composite that will appear much more reliable than 

is truly the case, that is, the total discrepancy between 𝔼[𝑟$%&] and 𝔼[𝜌-$%&] widens with 

decreasing N, as we demonstrate later in our simulation experiments.  
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The two sources of bias can be intuitively attributed to how the reliability estimates affect 

the calculation of indicator weights. On the one hand, indicators whose reliability estimates are 

affected by estimation error in a positive direction are given larger weights, leading to positive 

bias in 𝜌-$%&. On the other hand, the calculated weights are unlikely to be exactly optimal, 

because indicator reliability estimates are not error-free. Therefore, we can expect that the use of 

equal weights and the associated composite reliability estimator would mitigate these biases such 

that the sample reliability, estimated reliability, and population reliability would be 

approximately equal (i.e., 𝔼[𝑟'(] ≅ 𝜌'( ≅ 𝔼[𝜌-'(]). To be sure, we cannot expect the composite 

reliability estimator to be completely unbiased, as it is a ratio (i.e., proportion of unit-weighted 

true score variance over observed score variance), and these are generally biased to some extent 

even if their input quantities are not. Nevertheless, the composite reliability estimator should still 

be less biased than the maximal reliability estimator, because it uses equal, fixed weights rather 

than estimating them from sample data. However, the relative small-sample performance of the 

two reliability coefficients has not yet been systematically examined. Indeed, Raykov and 

colleagues (Raykov et al., 2015; Raykov & Marcoulides, 2016) emphasize the large-sample 

nature of model-based reliability coefficients, noting that factor analysis estimators such as 

maximum likelihood are only asymptotically unbiased, and call for future work on establishing 

the sample sizes where researchers could safely rely on asymptotic theory. Although our formal 

analysis above reveals that the maximal reliability estimator is, in principle, biased within finite 

samples, the actual extent of the problem in any given modeling situation is unknown. Therefore, 

we conducted a series of Monte Carlo simulation experiments to address these gaps.  



Finite Sample Behavior of Maximal Reliability 14 
 

Simulation Design and Results 

Our set of Monte Carlo simulations consisted of the following specifications. First, we 

generated data following a multivariate normal distribution from a model containing a single 

common factor measured with 3, 5, 7, or 9 indicators6. In one set of conditions, the loadings of 

each indicator on the common factor were all equal at 0.6, 0.7, or 0.8. In a second set of 

conditions, the loadings were unequal but centered around the same base loadings as before, as 

follows. First, a vector containing all elements from 1 to the desired number of indicators (i.e., 3, 

5, 7, or 9) was constructed. Second, the vector was standardized to zero mean and unit variance. 

Third, the resulting vector was multiplied by a factor of 0.10. Finally, the base loading for the 

condition (0.6, 0.7, or 0.8) was added. The full listing of all loadings employed in the unequal 

loadings condition is included in Table 2. For each scenario, measurement errors were specified 

to give the indicators unit variance. We also varied the size of the generated sample at 25, 50, 75, 

100, 150, 300, 500, and 1000. All conditions were fully-crossed in a factorial design for a total of 

192 different simulated conditions: number of indicators (4) x base loadings (3) x loading 

equality (2) x sample size (8), with 10,000 replications each. Data were generated by first 

generating a vector of latent variable scores, which was then multiplied by the factor loading 

vector after which random error was added. All data generation and parameter estimation steps 

were carried out in the R Statistical Environment (R Core Team, 2016); factor models were 

estimated with the lavaan package (Rosseel, 2012), using the maximum likelihood technique and 

a correctly specified model for all scenarios. Annotated simulation and analysis code is available 

in Appendix D. 
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Simulation Results 

Convergence was not a major issue, which is to be expected because the model was 

correctly specified (convergence rates, per unique combination of conditions, ranged from 93% 

to 100%), and therefore we simply discarded the non-convergent replications. Within those 

replications that converged, in some conditions we encountered several inadmissible solutions 

due to Heywood cases. These were much more prevalent in the small sample size conditions, 

rising to as much as 28% of the converged replications for the case of N = 25, 3 indicators, and 

unequal loadings with a base loading of 0.60; in this condition, only 67% of all replications were 

both convergent and admissible. Whereas Heywood case can be an indication of model 

misspecification, they can also be a result of sampling variability of the variance estimates in a 

correctly specified model (Kolenikov & Bollen, 2012). Thus, after concluding that the Heywood 

case is not to be interpreted as evidence of model misspecification, researchers often re-estimate 

the model with a constraint that the error term is positive (Savalei & Kolenikov, 2008). However, 

as explained by Savalei and Kolenikov, this constraint leads to problems for model test statistics 

and may therefore be suboptimal. Constraining error terms to be positive is problematic for the 

maximal reliability statistic as well. Although estimates obtained this way satisfy the assumption 

that the error variances are positive, as required for the calculation of the maximal reliability 

weights, the estimates obtained this way converge to values that are arbitrarily close to zero and 

consequently 𝜌-$%& is arbitrarily close to one7. Therefore, following earlier research on factor 

score estimation (e.g., Grice, 2001), we discarded all replications that contained Heywood cases8.  

We calculated the maximal and composite reliability estimators and also created 

composites of the observed indicators using either the maximal reliability or equal weights. 

Taking the squared correlation between these composites and the latent variable values used in 



Finite Sample Behavior of Maximal Reliability 16 
 

data generation gives the true reliability of each of those composites in the sample: 𝑟$%& and 𝑟'(. 

This allowed us to compare maximal and composite reliability estimators to 𝑟$%& and 𝑟'(, as 

well as 𝜌$%& and	𝜌'( . 

For the case of unequal population loadings, the overall degree of bias in 𝜌-$%& and 𝑟$%& 

was, respectively, 1.4%, and -1.5%, when compared to the population maximal reliability; in the 

case of equal population loadings, these biases were 1.6% and -1.6%, respectively. The 

performance of CR was identical over the equal and unequal loading conditions, and the biases 

for 𝜌-'(  and 𝑟'(	were 0.0% and -0.1%, respectively. The seemingly small global bias in the 

maximal reliability case, however, obscures some specific scenarios in which the bias is more 

prominent. As expected, these are the simulation conditions with the poorest measurement 

conditions; that is, those with the fewest indicators, the smallest samples and the weakest 

loadings. Conversely, bias decreases with increasing sample size, more indicators, and stronger 

loadings. 

Tables 3 and 4 show the results of selected conditions for the unequal and equal loading 

scenarios, respectively (full results for all conditions are presented in Appendixes B and C). The 

results show that in several scenarios, the maximal reliability estimators are severely affected by 

bias, whereas the composite reliability estimators are relatively unbiased. It is also critical to 

realize that the biases demonstrated here for 𝜌-$%& and 𝑟$%& operate in opposite directions. To see 

how this compounds the problem, consider the case of equal loadings, sample size of 25, 3 

indicators, and loadings of 0.6 (the first row of Table 4). In this scenario, the long-run average of 

𝜌-$%& is 18.8% higher than the population value of the index, whereas 𝑟$%& is, on average, 8.7% 

lower than the population value. This leads to an overall 27.5% (18.8% + 8.7%) discrepancy 

between the estimated and true sample reliability of a composite. Similar calculations can be 



Finite Sample Behavior of Maximal Reliability 17 
 

made for all other results presented in Tables 3 and 4. Therefore, even if the biases present in 

𝜌-$%& and 𝑟$%& may not be individually large, their opposing nature (i.e., 𝜌-$%& is a positively 

bias estimator of 𝜌$%& and 𝑟$%& on average falls below 𝜌$%&) leads to composites that are 

believed to be much more reliable than is truly the case. That is, the estimated reliability that 

researchers observe from a composite that was created with maximal reliability weights is 

positively biased, compared to the population value, whereas the true reliability of the same 

composite is negatively biased, compared to the population value. 

To more clearly show the effects of the various design conditions on the maximal 

reliability estimates, we present next a series of plots of the estimates and population values for 

equal and unequal loadings under selected conditions. Figure 1 shows maximal reliability 

estimates for the case of 3 indicators and 0.6 loadings over a range of sample sizes, for the equal 

[Panel (a)] and unequal [Panel (b)] loadings conditions. Figure 2 shows the same estimates for 

the case of 3 indicators, a sample size of 25, and over the range of loading values examined here. 

Finally, Figure 3 shows the estimates for the case of 0.6 loadings, sample size of 25, and 

indicators from 3 through 9. 

As these Figures show, both 𝜌-$%&	and 𝑟$%& converge on 𝜌$%& as measurement 

conditions improve. That is, for any given value of the loadings and the number of indicators, 

results obtained from larger samples will be closer, on average, to the population values than 

those obtained from smaller samples. The same pattern occurs when the sample size and number 

of indicators are held fixed, with the results improving as loading strength increases; when 

sample size and loading strength are fixed, unbiasedness improves as the number of indicators 

increases. A comparison between the two panels in each figure reveals that these effects operate 

similarly in both the equal and unequal loading conditions. 
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Figures 2 and 3 showed results for N = 25, to showcase the maximal reliability bias in its 

most extreme. To address more realistic sample sizes, Figures 4 and 5 display the same results as 

in Figures 2 and 3 but with N = 150. As these show, the bias in maximal reliability estimates, 

though improving as measurement conditions improve (e.g., more indicators and stronger 

loadings), is still noticeable. That the performance of maximal reliability increases raises the 

question of how many indicators are necessary for the bias to become negligible. Although our 

focus on 3- to 9-indicator scales covers the majority of empirical research, scales that are much 

longer are still fairly common in psychological assessment and personality research. To address 

this scenario, we ran a small additional simulation with only the poorest measurement conditions 

of those included in our original design (sample size of 25 or 50, base loadings of .6 or .7) but 

increased the number of items to 20. Results from this simulation run (not reported, but available 

from the first author) revealed minimal bias (e.g., in the 3% range), though still in the expected 

direction. 

Turning now to the case of equally-weighted composites, we note that 𝜌-'( , as well as 𝑟'( 

of equal-weighted composites, are largely unbiased with respect to 𝜌'( . In contrast with the 

results presented above for maximal reliability, the largest discrepancy between 𝜌-'(  and 𝑟'( is 

only 3.7% (also in the first row of Table 4). Moreover, Figures 6, 7, and 8 parallel those for 

maximal reliability results shown above in Figures 1, 2, and 3. As these clearly show, the 

composite reliability estimates do not suffer from the same issues as the maximal reliability 

procedure. In particular, the 𝜌-'(	are quite close to both the population 𝜌'(  as well as the sample 

𝑟'(. Tables 3 and 4 (for selected conditions), as well as Appendixes B and C (full results), 

provide further evidence of the lack of bias exhibited by both 𝜌-'(  and 𝑟'(. That is, on average, 
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the estimated composite reliability that researchers observe from their results is very close to the 

true reliability of the composite, thus making this an appealing alternative for applied scenarios.  

Finally, we also include, in Appendixes B and C, a calculation of the relative bias of each 

estimator, by taking the difference between the estimated value of the reliability of a composite 

and its true sample reliability, which can be calculated from the case values of the latent 

variables that were generated as part of the simulation (but which would not be available to 

applied researchers). These results show that bias in the maximal reliability estimator is 

substantial under suboptimal measurement conditions and always exceeds that of the composite 

reliability estimates, which were largely unaffected.  

Separating the Sources of Bias in the Maximal reliability estimator 

Bias in the maximal reliability estimator stems from both: (a) the small-sample bias in the 

maximum likelihood estimators of the factor model parameters used as input (i.e., estimated 

loadings and error variances); and (b) bias arising from the reliability maximization formula 

itself. Particularly, in our simulation, the estimated error variances were negatively biased. 

Therefore, it is fair to ask how large the relative contributions of the two sources of bias might be 

in a given application. In finite samples, does the bias in the maximum likelihood estimates 

dominate over bias engendered by the maximal reliability formula, or vice versa? To address this 

question, we extracted all loading and error variance estimates from the simulations and centered 

them at their population values – thereby artificially removing bias from the estimates – followed 

by recalculating all reliability estimates and composites. The results for these additional analyses 

are shown in Tables 5 and 6  

The maximal reliability estimates obtained from this alternative approach therefore 

reflected the bias specifically due to the maximal reliability weights rather than that due to 
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maximum likelihood estimation of the factor model parameters. Comparing the results in Table 5 

and Table 6 against the corresponding results in Table 3 and Table 4 reveals that on average, 

about two thirds of the bias of maximal reliability estimates remain even when the bias of the 

loading and error variance estimates was eliminated. The sample reliabilities of the maximal 

reliability composites also increased slightly, which is explained by the fact that our centering 

procedure increased the average error variance estimates, thereby mostly eliminating scenarios 

where one indicator was substantially overweighted at the expense of other indicators, due to 

having an error variance estimate close to zero.  

As expected, eliminating bias from the factor model estimates also affected the composite 

reliability estimates, leading to a negative bias. However, even under the poorest modeling 

conditions examined here – N = 25, 3 indicators, and all loadings at 0.60 – the bias of the 

composite reliability estimator was only -1.7%, as compared with 10.2% for the maximal 

reliability estimator. The sample reliabilities of the unit-weighted composites are unaffected 

because they do not depend on the loading estimates. 

Empirical Illustration 

We now provide an empirical illustration and comparison of the two techniques. For this 

purpose, we employ the large personality dataset from Johnson (2014)9. These data were 

collected as part of a large-scale effort aimed at the further development and validation of the 

IPIP-NEO personality scales. The full inventory consists of 300 items, of which we focus on the 

Assertiveness subscale of the Extraversion construct (the E3 scale in the original research), 

comprised of four items (I12: “Take charge”, I42: “Try to lead others”, I72: “Take control of 

things”, and I102: “Wait for others to lead the way”; the latter item is reverse-coded), measured 

on a 5-point scale. This scale is a part of a reduced IPIP-NEO-120 inventory for which Johnson 
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has collected a sample of N = 619,150. Because some of the observations contained missing data 

for the variables of interest, we use only complete cases, reducing the sample size to N = 605,607. 

Out of this reduced sample, we took random samples of N = 25, N = 50, N = 100, N = 500, and N 

= 1000, to showcase the performance of both reliability indices. Table 7 presents the 

standardized loading and error variance estimates for each of these analyses. These can be 

plugged into Eq. 2 using either maximal reliability weights (e.g., Eq. 6) or equal weights to 

calculate the maximal and composite reliability indices, respectively. As expected, the estimate 

of maximal reliability is always higher than that of composite reliability and this difference is 

larger in smaller samples, consistent with our claim that 𝜌-$%& is positively biased in small 

samples. 

Discussion and Conclusions 

In this research, we examined the finite-sample performance of the maximal reliability 

estimator as well as that of composites formed with maximal reliability weights. Although prior 

literature has shown that the use of weights equal to the ratio of the loading to the measurement 

error variance for each indicator produces composites with maximal reliability, these expressions 

were derived in the context of population values. However, our analysis of the finite sample 

behavior of the maximal reliability estimator reveals a positive bias, and that the actual sample 

reliability of the maximal reliability composites falls short of population maximal reliability. 

These biases are much more pronounced with small sample sizes (e.g., < 100), tending to 

diminish as sample size increases and being minimally noticeable with samples larger than 1,000. 

In comparison, the reliability of equally-weighted composites was unaffected by sample size and 

the associated composite reliability coefficient was a virtually unbiased estimator of the 

population composite reliability. Moreover, we showed that the finite-sample bias in the 
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maximal reliability estimator is not simply attributable to bias in the maximum likelihood 

estimators of the input quantities (i.e., estimates of loadings and error variances), but can be 

mostly attributed to the maximal reliability formula itself. 

This investigation contributes to the existing literature in two ways. First, while previous 

studies have noted that reliability estimates can be biased in small samples because the factor 

analysis estimates used as input for their calculation can be biased (e.g., Raykov et al., 2015; 

Raykov & Marcoulides, 2016; Sijtsma, 2009), how estimation error of the indicator reliabilities 

impacts maximal reliability has not been addressed. Using a multiple regression framework, we 

provide the first statistical explanation of small-sample bias in the maximal reliability estimator. 

Second, our results extend the recent research by Raykov et al. (2015) on choosing between 

maximal and composite reliability. Whereas Raykov and colleagues presented a technique for 

testing the equivalence of the two indices in a given application, they do not present any explicit 

recommendations on which reliability estimator and set of indicator weights should be used. 

Similarly, McNeish (2017), while recommending both 𝜌-p(  and 𝜌-'(  (under labels Coefficient H 

and 𝜔*+*%,) as “successors” to coefficient 𝛼 in psychological research, refrains from making 

recommendations or providing any criteria for choosing between the two indices in a given 

application. 

To answer the question of which of the two indices is more appropriate for applied 

research, we need to consider how they differ and the two different purposes of these reliability 

estimates: (a) as an overall indicator of measurement quality in latent variable models; and (b) as 

a measure of reliability when working with actual composites (e.g., aggregate test scores). The 

only difference between the two reliability indices is in how the indicators are weighted in their 

calculation. When indicator reliability is homogeneous – that is, all indicators of a latent variable 
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are equally reliable – both indices will lead to identical values in the population. However, the 

indices are not equivalent when calculated from sample estimates because estimation error 

makes the individual reliability estimates, and consequently the weights used in the maximal 

reliability estimator, uneven. On the other hand, when indicator reliability is heterogeneous – that 

is, when some indicators are more reliable than others – this should lead to performance 

advantages for the maximal reliability approach, as it is designed to exploit heterogeneous 

reliabilities by differentially weighting the indicators in its calculation (cf., McNeish, 2017).  

When used as a model quality index in latent variable modeling, it may not matter so 

much how reliable the composites are compared to what could be constructed in an ideal case. 

Rather, the more important issue is that that the estimator performs in a predictable manner, 

independently of sample size (i.e., 𝜌-$%& should be an unbiased estimator of 𝜌$%&). This is 

particularly relevant for the equal loadings scenarios, where the maximal and composite 

reliability estimators converge asymptotically, and therefore the choice between the techniques is 

made solely based on their finite-sample performance. As our results show, in this case the 

composite reliability estimator should be preferred throughout all examined conditions, as the 

estimated composite reliability is uniformly closer to its population value. This suggests that the 

current practice of relying mostly on the composite reliability estimator (Raykov et al., 2015) 

may in fact be superior to the maximal reliability estimator for this purpose.  

When working with actual composites, the choice of the reliability estimator is a part of 

the more general choice of how the indicators should be weighted, which is a more general 

question preceding any summary assessment of reliability. Although weighting the indicators to 

maximize reliability is in principle appealing, a large body of previous research provides strong 

support for the robustness and utility of equal weights and unit weights in particular (e.g., Bobko, 
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Roth, & Buster, 2007; Cohen, 1990; Cohen et al., 2003, pp. 97–98; Raju, Bilgic, Edwards, & 

Fleer, 1999). The same conclusion can be drawn from our results as well: in the population with 

unequal indicator reliabilities, the discrepancy in reliability between maximal reliability and 

equally-weighted composites was very small; and in small samples, equal weights produced 

more reliable composites than the maximal reliability weights calculated from sample data. 

Therefore, the fact that the maximal reliability statistic is larger than composite reliability 

calculated from the same sample cannot always be interpreted as evidence that the maximal 

reliability composites provide a meaningful advantage over equally-weighted sums (cf., 

McNeish, 2017). Indeed, although these simpler composites may not be optimal in the 

population, their robustness to sampling variability may make them more appropriate for use 

with small samples. 

When calculating composites, the primary concern is not whether the reliability statistics 

are unbiased estimators of their population counter parts, but how accurately they estimate the 

sample reliability of the composites (i.e., 𝜌-$%& should be an unbiased estimator of 𝑟$%&). A 

potential bias has important implications not only for interpreting research findings in the 

presence of measurement error, but also for those instances where reliability information is used 

to correct for attenuation both in primary studies (Cole & Preacher, 2014) and in meta-analyses 

(Nimon et al., 2012; Schmidt & Hunter, 2015, Chapter 3). In this situation, the maximal 

reliability estimator is potentially more problematic because the results are affected by two 

sources of bias, 𝜌-$%& > 𝜌$%& and 𝑟$%& < 𝜌$%&, and may make composites appear much more 

reliable than is truly the case, leading to undercorrection for attenuation. Whereas this bias may 

not be very large in many of the conditions examined here, it can be avoided altogether by using 

the composite reliability estimator, which is essentially unbiased. 
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Given that our simulation considered a variety of other factors in addition to sample size 

(e.g., loading strength, number of indicators, and loading heterogeneity), we can offer some 

practical counsel to applied researchers on the situations in which the bias in maximal reliability 

estimates would likely manifest in sufficient strength to make its use unadvisable. The full 

simulation results, presented in Appendix B, provide applied researchers with the ability to look 

up the scenario that most closely resembles their particular research conditions in order to make 

an informed decision on which reliability estimator to use. When working with composites, a 

sum of the two biases needs to be considered and compared against the amount of bias one is 

willing to tolerate. As our results show, there are conditions where the use of maximal reliability 

estimates and composites is not advisable, and some of these include what would traditionally be 

considered large samples. For example, scenarios with unequal loadings, 3 indicators, base 

loading strength of 0.6 and up to (and including) samples of N = 150 are problematic if one 

requires less than 5% bias. With a more conservative 1% level, even 1000 observations are 

insufficient. Although unbiasedness improves as measurement conditions improve, our results 

show that the maximal reliability estimates and weights can hardly be recommended with poor 

measurement conditions and sample sizes under N = 100.  

Although our results are supportive of the use of the composite reliability statistic as a 

general reliability estimate, it is important to point out that both composite reliability and 

maximal reliability assume a congeneric measurement model, both these statistics, which in 

practice means that the indicators form a unidimensional scale and measurement errors are 

independent (McNeish, 2017). In practice, this assumption means that after partialling out the 

common factor, the items are independent and there are no subdimensions in the scale. Such 

scale homogeneity would require that item similarity or positioning in the instrument has no 
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effect on their correlations (Kelley & Pornprasertmanit, 2016), and would imply that arbitrary 

reweighting of the scale items or even item elimination would only affect the reliability but not 

the validity of the composite score. In other words, adding or removing items can alter the 

accuracy of the scale, but not its nature. Clearly, although not as stringent as the tau-equivalence 

assumptions of coefficient 𝛼, the congeneric model is still relatively rigid and may not always 

hold in real applications. For instance, items may load on more than one factor (Marsh, Morin, 

Parker, & Kaur, 2014), and measurement errors may intercorrelate for methodological and/or 

substantive reasons (Cole, Ciesla, & Steiger, 2007; Reddy, 1992).  

From a practical perspective, the question is therefore not whether the scale is exactly 

unidimensional, but whether it is sufficiently unidimensional for the congeneric measurement 

model to be a useful approximation (Rodriguez, Reise, & Haviland, 2016). If strict 

unidimensionality does not hold, the weaker assumption of essential unidimensionality (e.g., 

Yang & Green, 2011) may be applied if the items measure one main dimension but are 

contaminated with other sources of nuisance variation, such as item context effects. In this case, 

bifactor models, where each indicator loads on both a general and a group factor, accompanied 

by the hierarchical omega reliability statistics can be useful (see McNeish, 2017; Rodriguez et al., 

2016). Rodriquez et al. explain several tests that can be applied to evaluate whether this 

alternative approach is necessary.  

 Finally, although our results can be interpreted as indicating that the usefulness of the 

maximal reliability estimator can be limited in applied research settings, particularly when 

working with small samples and a limited number of indicators, the source of bias presented in 

this article also opens up an avenue for the development of bias corrections for maximal 

reliability. Indeed, a number of studies have examined finite-sample bias in various model-free 
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composite reliability estimators (e.g., Benton, 2015; Osburn, 2000; Shapiro & Ten Berge, 2000; 

Ten Berge & Sočan, 2004), which has led to the development of successful corrective procedures 

(e.g., Hunt & Bentler, 2013; J. Li & Bentler, 2011; Shapiro & Ten Berge, 2000). Given the 

equivalencies shown here between the maximal reliability estimator and R2, the numerous 

techniques that have been developed in the multiple regression context for obtaining adjusted R2 

values could potentially be adapted to the maximal reliability case (Shieh, 2008; Walker, 2007). 

Our preliminary examination of the formulas included in Shieh (2008) and bootstrapped versions 

of these corrections (J. Li & Bentler, 2011), reported in Appendix G, indicates that although 

there is some improvement in correcting the positive bias shown by 𝜌-$%& (as the correction 

formulas are intended to reduce the estimates), the improvements are mostly of limited 

magnitude, but in some simulation conditions result in negative bias. Moreover, even with the 

corrections, the bias of 𝜌-$%& remains generally larger than the bias of 𝜌-'( . In addition, these 

corrections do not address the other issue discussed here, namely that 𝑟$%& is negatively biased, 

because they only focus on the correction of the estimated maximal reliability. Therefore, future 

work should examine the potential for other bias correction approaches to the estimation of 

model-dependent composite reliability based on maximal reliability weights. One such clear 

example is the work of Penev and Raykov (2010), who developed a correction formula that can 

be used with composites of dichotomous indicators and their maximal reliability estimate, with 

an additional application for the calculation of confidence intervals for the same. Clearly, much 

more work is needed in this area in order to develop, and further validate, correction procedures 

that take into account the dual issues of: (a) an estimate of maximal reliability (𝜌-$%&) that is 

positively biased compared to its population value; and (b) the negative bias in the true reliability 

of the composites compared to population maximal reliability. However, until such corrective 
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procedures are developed and extensively tested, researchers are advised to be cautious about the 

use of the maximal reliability approach with small samples. 
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Footnotes 

1 This reliability index is more commonly known as “Cronbach’s alpha” in the literature. However, the 
index was not originally invented by Cronbach and he himself regrets that it carries his name (Cronbach 
& Shavelson, 2004).  

2 Consider that the formula for Hancock’s coefficient H is 𝐻 =
∑

ℓG
P

HIℓG
P

J
GKH

@L∑
ℓG
P

HIℓG
P

J
GKH

, where ℓ0B (the squared 

standardized factor loading of indicator i) is the individual reliability of the indicator i, assuming a 
correctly specified single-factor model, as is the case here, and equivalent to 𝜌0 in Eq. 3.  
3 The complete list of all studies reviewed is available in Appendix F. 
4 In the few cases where a publication reported multiple studies, we noted the smallest of the samples, as 
that is an indicator of the lower threshold at which researchers still feel comfortable applying coefficient 
H.   
5 The weights calculated this way are equivalent to those calculated from the ratio of the loading to the 
error variance for each individual indicator, up to a scaling constant that is not relevant for obtaining 
maximal reliability estimates. See Appendix A for an empirical demonstration using the two examples 
from Raykov et al. (2015). 
6 This range from 3 to 9 indicators covers the majority of scales used in empirical psychological research 
(McNeish, 2017). For example, Peterson and Kim (2013, p. 196, Table 2) report the results of a large-
scale review of psychological, educational, and management research employing composite reliability 
coefficients and note that, out of 2,448 scales where the number of items was reported, only 24 (or 1.7%) 
had more than 9 items. 
7 This can be presented formally as a function of reliability: 𝑝𝑙𝑖𝑚

Mlw→@
(𝜌-$%&) = 1 because both the numerator 

and denominator of Equation 3 grow infinitely large: 𝑝𝑙𝑖𝑚
Mlw→@

y∑ MlG
@OMlG

>
0?@ z , 𝑝𝑙𝑖𝑚

Mlw→@
y1 + ∑ MlG

@OMlG
>
0?@ z = ∞, for 

all 𝑗 ∈ ⌈1, 𝑘⌉ 
8 As a robustness check, we re-estimated the inadmissible replications with a model that included 
inequality constraints forcing all variance estimates to be greater than zero (Savalei & Kolenikov, 
2008).These results showed even greater bias for 𝜌-$%& . The results based on all runs (both unconstrained 
and constrained) are shown in Appendix E. 
9 Retrieved from http://osf.io/tbmh5 on January 12, 2017. 
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Table 1 

Notation and Description for Reliability Coefficients 

Reliability Coefficients Description 
𝜌$%& Population maximal reliability  

 
Proportion of weighted population true score variance over 
population observed score variance. Based on composites formed 
using weights equal to the ratios of population factor loadings and 
measurement error variances.  
 
Estimated as 𝜌-$%& in finite samples. 
 

𝑟$%& True sample maximal reliability 
 
Squared sample correlation between the true factor scores retained 
from the data generation process and composites created using 
maximal reliability weights (equal to the ratio of estimated 
loadings and error variances).  
 

𝜌'(  Population composite reliability  
 
Proportion of unit-weighted population true score variance over 
population observed score variance. Based on composites formed 
using unit weights (i.e., weights of 1).   
 
Estimated as 𝜌-'( in finite samples. 
 

𝑟'( True sample composite reliability 
 
Squared sample correlation between true factor scores and 
composites created using unit weights. 
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Table 2  

Loadings for the Unequal Loadings Simulation Condition 

Base 
Loading 

Number of 
Indicators 

Loadings Vector 

0.6 3 [0.500, 0.600, 0.700] 
 5 [0.474, 0.537, 0.600, 0.663, 0.726] 
 7 [0.461, 0.507, 0.554, 0.600, 0.646, 0.693, 0.739] 
 9 [0.454, 0.490, 0.527, 0.563, 0.600, 0.637, 0.673, 0.710, 0.746] 

0.7 3 [0.600, 0.700, 0.800] 
 5 [0.574, 0.637, 0.700, 0.763, 0.826] 
 7 [0.561, 0.607, 0.654, 0.700, 0.746, 0.793, 0.839] 
 9 [0.554, 0.590, 0.627, 0.663, 0.700, 0.737, 0.773, 0.810, 0.846] 

0.8 3 [0.700, 0.800, 0.900] 
 5 [0.674, 0.737, 0.800, 0.863, 0.926] 
 7 [0.661, 0.707, 0.754, 0.800, 0.846, 0.893, 0.939] 
 9 [0.654, 0.690, 0.727, 0.763, 0.800, 0.837, 0.873, 0.910, 0.946] 

Note: loadings only presented to three decimals here for ease of exposition.  
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Table 3  

Results for Unequal Loadings (Selected Conditions) 

Sample Size 
Indicators 
Loadings 

Difference between population and sample statistics 
Maximal reliability Composite reliability 

Population 
(𝜌-$%& − 𝜌$%&) 

Sample 
(𝑟$%& − 𝜌$%&) 

Population 
(𝜌-'( − 𝜌'( ) 

Sample 
(𝑟'( − 𝜌'() 

Mean RMSE Mean RMSE Mean RMSE Mean RMSE 
25 3 0.6 15.2 % 24.8% -9.3 % 23.8% 4.6 % 19.0% 1.3 % 18.6% 
50 3 0.6 10.7 % 19.7% -7.6 % 17.7% 2.5 % 13.8% 0.2 % 13.2% 
75 3 0.6 8.1 % 16.9% -6.3 % 14.3% 1.3 % 11.4% -0.2 % 10.8% 
25 5 0.6 8.4 % 12.6% -8.4 % 17.9% 0.3 % 10.9% -0.2 % 12.4% 
50 5 0.6 4.2 % 8.7% -4.6 % 11.2% -0.4 % 8.1% -0.4 % 8.8% 
75 5 0.6 2.6 % 6.7% -2.9 % 8.2% -0.2 % 6.6% -0.2 % 7.2% 
25 3 0.7 6.8 % 13.9% -6.8 % 16.3% 1.0 % 11.8% -0.1 % 12.4% 
50 3 0.7 4.8 % 10.9% -4.7 % 11.2% 0.5 % 8.5% -0.2 % 8.6% 
75 3 0.7 3.7 % 9.3% -3.6 % 8.7% 0.2 % 6.8% -0.3 % 7.0% 
25 5 0.7 3.4 % 6.8% -4.7 % 10.8% -0.5 % 7.1% -0.6 % 8.1% 
50 5 0.7 1.7 % 4.7% -2.2 % 6.2% -0.4 % 4.9% -0.3 % 5.5% 
75 5 0.7 1.1 % 3.6% -1.4 % 4.6% -0.2 % 4.0% -0.2 % 4.5% 
25 3 0.8 2.0 % 6.9% -3.9 % 9.1% -0.1 % 6.7% -0.6 % 7.3% 
50 3 0.8 1.6 % 5.4% -2.4 % 5.7% 0.0 % 4.6% -0.3 % 5.1% 
75 3 0.8 1.4 % 4.8% -1.8 % 4.3% -0.1 % 3.8% -0.2 % 4.0% 
25 5 0.8 1.1 % 3.2% -2.0 % 5.0% -0.4 % 4.0% -0.5 % 4.8% 
50 5 0.8 0.7 % 2.4% -1.0 % 2.8% -0.2 % 2.7% -0.2 % 3.1% 
75 5 0.8 0.4 % 1.8% -0.6 % 2.2% -0.1 % 2.1% -0.1 % 2.6% 
Note: The Mean values shown are calculated as (average estimate for a condition – population 
value) / population value. Root mean square error (RMSE) values shown are calculated as square 
root of average squared difference between estimate and population value / population value. 
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Table 4 

Results for Equal Loadings (Selected Conditions) 

Sample Size 
Indicators 
Loadings 

Difference between population and sample statistics 
Maximal reliability Composite reliability 

Population 
(𝜌-$%& − 𝜌$%&) 

Sample 
(𝑟$%& − 𝜌$%&) 

Population 
(𝜌-'( − 𝜌'( ) 

Sample 
(𝑟'( − 𝜌'() 

Mean RMSE Mean RMSE Mean RMSE Mean RMSE 
25 3 0.6 18.2 % 27.2% -8.9 % 24.4% 4.9 % 19.1% 1.5 % 18.6% 
50 3 0.6 12.3 % 20.7% -7.8 % 18.5% 2.4 % 14.0% 0.3 % 13.2% 
75 3 0.6 8.6 % 16.6% -6.5 % 15.3% 1.1 % 11.8% -0.2 % 10.8% 
25 5 0.6 10.2 % 14.0% -9.4 % 19.5% 0.3 % 11.0% -0.1 % 12.5% 
50 5 0.6 4.4 % 8.8% -5.0 % 12.2% -0.4 % 8.3% -0.4 % 8.9% 
75 5 0.6 2.6 % 6.9% -3.1 % 8.9% -0.2 % 6.8% -0.2 % 7.2% 
25 3 0.7 8.9 % 15.5% -6.9 % 17.1% 0.9 % 12.1% 0.0 % 12.4% 
50 3 0.7 5.6 % 11.2% -4.8 % 12.0% 0.4 % 8.6% -0.2 % 8.8% 
75 3 0.7 3.5 % 8.5% -3.5 % 9.3% 0.0 % 7.1% -0.3 % 7.0% 
25 5 0.7 4.2 % 7.6% -5.5 % 12.4% -0.6 % 7.2% -0.6 % 8.2% 
50 5 0.7 1.7 % 5.0% -2.5 % 7.1% -0.4 % 5.0% -0.3 % 5.7% 
75 5 0.7 1.1 % 4.0% -1.5 % 5.2% -0.2 % 4.0% -0.2 % 4.5% 
25 3 0.8 4.0 % 8.2% -4.2 % 10.3% -0.2 % 7.0% -0.4 % 7.5% 
50 3 0.8 2.3 % 5.6% -2.5 % 6.8% -0.1 % 4.9% -0.2 % 5.1% 
75 3 0.8 1.4 % 4.3% -1.7 % 5.0% -0.1 % 3.9% -0.2 % 4.0% 
25 5 0.8 1.6 % 4.0% -2.7 % 6.8% -0.5 % 4.1% -0.5 % 4.9% 
50 5 0.8 0.7 % 2.7% -1.1 % 3.8% -0.2 % 2.7% -0.2 % 3.2% 
75 5 0.8 0.4 % 2.1% -0.7 % 2.9% -0.1 % 2.1% -0.1 % 2.6% 
Note: The Mean values shown are calculated as (average estimate for a condition – population 
value) / population value. Root mean square error (RMSE) values shown are calculated as square 
root of average squared difference between estimate and population value / population value. 
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Table 5 

Results for Unequal Loadings Based on Unbiased Estimates (Selected Conditions) 

Sample Size 
Indicators 
Loadings 

Difference between population and sample statistics 
Maximal reliability Composite reliability 

Population 
(𝜌-$%& − 𝜌$%&) 

Sample 
(𝑟$%& − 𝜌$%&) 

Population 
(𝜌-'( − 𝜌'( ) 

Sample 
(𝑟'( − 𝜌'() 

Mean RMSE Mean RMSE Mean RMSE Mean RMSE 
25 3 0.6 9.3 % 24.6% -7.4 % 25.5% -1.7 % 18.1% 1.3 % 18.8% 
50 3 0.6 7.6 % 19.9% -6.8 % 18.5% -1.0 % 13.4% 0.2 % 13.3% 
75 3 0.6 6.1 % 16.7% -5.9 % 14.7% -0.8 % 11.3% -0.2 % 10.8% 
25 5 0.6 6.1 % 12.2% -7.3 % 18.8% -1.6 % 11.1% -0.2 % 12.7% 
50 5 0.6 3.3 % 8.2% -4.3 % 11.1% -0.9 % 8.1% -0.4 % 8.9% 
75 5 0.6 2.0 % 6.5% -2.8 % 8.1% -0.6 % 6.6% -0.2 % 7.2% 
25 3 0.7 4.7 % 13.7% -5.5 % 16.5% -1.6 % 11.8% -0.1 % 12.5% 
50 3 0.7 3.7 % 10.8% -4.2 % 11.0% -0.9 % 8.4% -0.2 % 8.6% 
75 3 0.7 2.9 % 9.0% -3.4 % 8.6% -0.6 % 6.8% -0.3 % 6.9% 
25 5 0.7 2.5 % 6.5% -4.1 % 10.6% -1.1 % 7.1% -0.6 % 8.2% 
50 5 0.7 1.3 % 4.5% -2.1 % 6.1% -0.6 % 4.9% -0.3 % 5.6% 
75 5 0.7 0.8 % 3.6% -1.3 % 4.5% -0.4 % 3.9% -0.2 % 4.5% 
25 3 0.8 2.2 % 7.0% -3.1 % 8.7% -1.0 % 6.7% -0.6 % 7.4% 
50 3 0.8 1.6 % 5.5% -2.1 % 5.5% -0.5 % 4.7% -0.3 % 5.0% 
75 3 0.8 1.3 % 4.7% -1.7 % 4.2% -0.3 % 3.7% -0.2 % 4.0% 
25 5 0.8 0.9 % 3.1% -1.8 % 4.7% -0.6 % 3.9% -0.5 % 4.7% 
50 5 0.8 0.5 % 2.3% -0.9 % 2.8% -0.3 % 2.6% -0.2 % 3.1% 
75 5 0.8 0.3 % 1.8% -0.6 % 2.1% -0.2 % 2.1% -0.1 % 2.5% 
Note: The Mean values shown are calculated as (average estimate for a condition – population 
value) / population value. Root mean square error (RMSE) values shown are calculated as square 
root of average squared difference between estimate and population value / population value. 
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Table 6 

Results for Equal Loadings Based on Unbiased Estimates (Selected Conditions) 

Sample Size 
Indicators 
Loadings 

Difference between population and sample statistics 
Maximal reliability Composite reliability 

Population 
(𝜌-$%& − 𝜌$%&) 

Sample 
(𝑟$%& − 𝜌$%&) 

Population 
(𝜌-'( − 𝜌'( ) 

Sample 
(𝑟'( − 𝜌'() 

Mean RMSE Mean RMSE Mean RMSE Mean RMSE 
25 3 0.6 10.2 % 26.7% -7.5 % 26.6% -1.7 % 18.3% 1.5 % 18.9% 
50 3 0.6 8.2 % 21.3% -7.1 % 19.9% -1.0 % 13.7% 0.3 % 13.4% 
75 3 0.6 6.4 % 16.9% -6.1 % 15.9% -0.8 % 11.6% -0.2 % 10.9% 
25 5 0.6 7.1 % 13.3% -8.2 % 20.7% -1.6 % 11.1% -0.1 % 12.8% 
50 5 0.6 3.6 % 8.4% -4.7 % 12.2% -0.9 % 8.2% -0.4 % 8.9% 
75 5 0.6 2.1 % 6.6% -3.0 % 8.9% -0.6 % 6.8% -0.2 % 7.2% 
25 3 0.7 5.3 % 15.1% -5.8 % 18.2% -1.6 % 12.0% 0.0 % 12.6% 
50 3 0.7 3.9 % 11.0% -4.4 % 12.3% -0.9 % 8.7% -0.2 % 8.7% 
75 3 0.7 2.7 % 8.3% -3.3 % 9.3% -0.6 % 7.1% -0.3 % 7.0% 
25 5 0.7 3.0 % 7.0% -4.8 % 12.3% -1.1 % 7.2% -0.6 % 8.3% 
50 5 0.7 1.4 % 4.7% -2.3 % 6.9% -0.6 % 5.0% -0.3 % 5.6% 
75 5 0.7 0.8 % 3.8% -1.4 % 5.2% -0.4 % 4.0% -0.2 % 4.5% 
25 3 0.8 2.5 % 7.8% -3.6 % 10.7% -1.0 % 7.0% -0.4 % 7.6% 
50 3 0.8 1.6 % 5.3% -2.3 % 6.7% -0.5 % 4.8% -0.2 % 5.1% 
75 3 0.8 1.1 % 4.1% -1.6 % 5.0% -0.4 % 3.9% -0.2 % 4.1% 
25 5 0.8 1.1 % 3.7% -2.4 % 6.4% -0.7 % 4.0% -0.5 % 4.9% 
50 5 0.8 0.5 % 2.6% -1.1 % 3.7% -0.3 % 2.7% -0.2 % 3.2% 
75 5 0.8 0.3 % 2.1% -0.7 % 2.8% -0.2 % 2.1% -0.1 % 2.6% 
Note: The Mean values shown are calculated as (average estimate for a condition – population 
value) / population value. Root mean square error (RMSE) values shown are calculated as square 
root of average squared difference between estimate and population value / population value. 
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Table 7 

Empirical Illustration Results 

Estimate Sample 
N = 25 N = 50 N = 100  N = 500  N = 1000  Full data 

𝜆T�@B 0.795 0.846 0.720 0.855 0.855 0.867 
𝜆T��B 0.715 0.731 0.790 0.738 0.740 0.821 
𝜆T��B 0.948 0.838 0.844 0.848 0.782 0.778 
𝜆T�@�B 0.585 0.526 0.584 0.695 0.640 0.747 

𝑉𝑎𝑟(𝜀�@B)V , 0.368 0.285 0.481 0.269 0.269 0.289 
𝑉𝑎𝑟(𝜀��B)V , 0.489 0.465 0.376 0.455 0.453 0.525 
𝑉𝑎𝑟(𝜀��B)V , 0.102 0.298 0.287 0.282 0.389 0.329 
𝑉𝑎𝑟(𝜀�@�B)V , 0.658 0.723 0.659 0.517 0.591 0.665 

𝜌-$%& 0.924 0.865 0.852 0.881 0.861 0.868 
𝜌-'(  0.851 0.830 0.827 0.866 0.842 0.855 

Note: The full data had an N = 605,607 (only cases with no missing data were included). All 
loading and error variance estimates are standardized. 
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Panel (a). Equal Loading Condition 

 

Panel (b). Unequal Loading Condition 

Figure 1. Maximal Reliability Estimates over Sample Size 
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Panel (a). Equal Loading Condition 

 

Panel (b). Unequal Loading Condition 

Figure 2. Maximal Reliability Estimates over Loading Strength (N = 25, 3 indicators) 
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Panel (a). Equal Loading Condition 

 

Panel (b). Unequal Loading Condition 

Figure 3. Maximal Reliability Estimates over Number of Indicators (N = 25, 0.6 loadings) 

 

  

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

3 5 7 9

Estimated

Population

True Rel

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

3 5 7 9

Estimated

Population

True Rel

(𝜌-$%&) 

(𝜌$%&) 

(𝑟$%&) 

(𝜌-$%&) 

(𝜌$%&) 

(𝑟$%&) 



Finite Sample Behavior of Maximal Reliability 49 
 

 

Panel (a). Equal Loading Condition 

 

Panel (b). Unequal Loading Condition 

Figure 4. Maximal Reliability Estimates over Loading Strength (N = 150, 3 indicators) 
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Panel (a). Equal Loading Condition 

 

Panel (b). Unequal Loading Condition 

Figure 5. Maximal Reliability Estimates over Number of Indicators (N = 150, 0.6 loadings) 
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Panel (a). Equal Loading Condition 

 

Panel (b). Unequal Loading Condition 

Figure 6. Composite Reliability Estimates over Sample Size 
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Panel (a). Equal Loading Condition 

 

Panel (b). Unequal Loading Condition 

Figure 7. Composite Reliability Estimates over Loading Strength (N = 25, 3 indicators) 
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Panel (a). Equal Loading Condition 

 

Panel (b). Unequal Loading Condition 

Figure 8. Composite Reliability Estimates over Number of Indicators (N = 25, 0.6 loadings) 
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Supplemental Material, “A Note on the Finite Sample Behavior of Maximal Reliability” 

 

Appendix A – Equivalence of Maximal Reliability Weights and Regression Weights 

In the first example employed by Raykov et al. (2015), the vectors of loadings, error 

variances and weights were as follows: 

𝛌 = [1.00, 1.25,1.50,1.75, 2.00]	

𝛉 = [2.00, 2.50, 3.00, 3.50, 4.00]	

𝐰$%& = [0.50, 0.50, 0.50, 0.50, 0.50] 

Using the formula for maximal reliability presented in the main body of this research (Eq. 

2), the resulting value of this index is 0.7894737 (@ 0.789 in the original). Using these same 

vectors, we can calculate the value of the maximal reliability index using the regression 

formulation as follows: 

𝚺__ = 𝛌𝛌a + 𝛙	

=

⎣
⎢
⎢
⎢
⎡
3.0000		1.2500		1.5000		1.7500		2.0000
1.2500		4.0625		1.8750		2.1875		2.5000
1.5000		1.8750		5.2500		2.6250		3.0000
1.7500		2.1875		2.6250		6.5625		3.5000
2.0000		2.5000		3.0000		3.5000		8.0000⎦

⎥
⎥
⎥
⎤
	

𝐰$%& = 𝚺𝒚𝒚O𝟏𝛌	

= [0.1052632,0.1052632, 0.1052632, 0.1052632,0.1052632]	

𝜌$%& = 𝐰𝒎𝒂𝒙
𝒕𝛌	

= 0.7894737 

Thus under both the traditional maximal reliability computations and the regression 

formulation presented here, exactly the same value for the maximal reliability index is obtained. 
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It is also easy to see that both sets of weights are the same (in this first example, equal weights 

are deemed optimal) up to a scaling constant.  

Consider now the second example, where: 

𝛌 = [1.00,1.25,1.50, 1.75, 2.00]	

𝛉 = [1.00,2.00, 3.00, 4.00, 5.00]	

𝐰$%& = [1.000, 0.6250,0.5000, 0.4375, 0.4000] 

The population value of the maximal reliability index in this case would be 0.803818 (@ 

0.804 in the original). The vector of weights that can be obtained following the regression form 

is: 

𝐰$%& = 𝚺𝒚𝒚O𝟏𝛌	

= [0.19619865, 0.12262416, 0.09809933, 0.08583691, 0.07847946] 

The proportional relationship among the different weights is the same in both cases (e.g., 

the ratio of the first weight to the second is 1.6 in both cases, and so on), but the approaches 

differ in how the composite is scaled. In fact, the second vector of weights can be obtained by 

multiplying the first by 0.1961987. Using the second set of weights to calculate the maximal 

reliability index using the regression formulas leads to the same value as originally provided in 

the example. 
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Supplemental Material, “A Cautionary Note on the Finite Sample Behavior of Maximal 

Reliability” 

 

Appendix B – Full Simulation Results for Unequal Loadings 

Table B1  

Full Simulation Results for Unequal Loadings (Bias) 

Sample 
Size 

Indicators Loadings Diifference between estimate, population value, and sample statistic 
Maximal reliability Composite reliability 

Estimate 
vs. pop. 
(𝜌-𝑚𝑎𝑥 −
𝜌𝑚𝑎𝑥) 

Sample 
reliability 

vs. pop 
(𝑟𝑚𝑎𝑥 −
𝜌𝑚𝑎𝑥) 

Est. vs. 
sample 

reliability 
(𝜌-𝑚𝑎𝑥 −
𝑟𝑚𝑎𝑥) 

Estimate 
vs. pop. 
(𝜌-𝐶𝑅 −
𝜌𝐶𝑅) 

Sample 
reliability 

vs. pop 
(𝑟𝐶𝑅 −
𝜌𝐶𝑅) 

Est. vs. 
sample 

reliability 
(𝜌-𝐶𝑅 −
𝑟𝐶𝑅) 

25 3 0.6 15.2 % -9.3 % 24.5 % 4.6 % 1.3 % 3.3 % 
50 3 0.6 10.7 % -7.6 % 18.3 % 2.5 % 0.2 % 2.2 % 
75 3 0.6 8.1 % -6.3 % 14.4 % 1.3 % -0.2 % 1.5 % 
100 3 0.6 6.8 % -5.2 % 12.0 % 1.1 % -0.1 % 1.2 % 
150 3 0.6 4.8 % -3.7 % 8.5 % 0.6 % -0.1 % 0.7 % 
300 3 0.6 2.4 % -1.9 % 4.3 % 0.3 % 0.0 % 0.3 % 
500 3 0.6 1.4 % -1.2 % 2.6 % 0.1 % 0.0 % 0.2 % 

1000 3 0.6 0.7 % -0.6 % 1.3 % 0.1 % 0.0 % 0.1 % 
25 5 0.6 8.4 % -8.4 % 16.9 % 0.3 % -0.2 % 0.5 % 
50 5 0.6 4.2 % -4.6 % 8.8 % -0.4 % -0.4 % 0.0 % 
75 5 0.6 2.6 % -2.9 % 5.5 % -0.2 % -0.2 % 0.0 % 
100 5 0.6 1.8 % -2.1 % 3.9 % -0.2 % -0.2 % 0.0 % 
150 5 0.6 1.1 % -1.4 % 2.5 % -0.1 % -0.2 % 0.1 % 
300 5 0.6 0.6 % -0.6 % 1.2 % 0.0 % 0.0 % 0.0 % 
500 5 0.6 0.3 % -0.4 % 0.7 % 0.0 % -0.1 % 0.0 % 

1000 5 0.6 0.2 % -0.2 % 0.3 % 0.0 % 0.0 % 0.0 % 
25 7 0.6 5.1 % -6.5 % 11.6 % -0.6 % -0.4 % -0.2 % 
50 7 0.6 2.1 % -2.8 % 4.9 % -0.4 % -0.3 % -0.1 % 
75 7 0.6 1.3 % -1.8 % 3.1 % -0.3 % -0.3 % 0.0 % 
100 7 0.6 0.9 % -1.3 % 2.2 % -0.2 % -0.2 % 0.0 % 
150 7 0.6 0.6 % -0.8 % 1.4 % -0.1 % -0.1 % 0.0 % 
300 7 0.6 0.3 % -0.4 % 0.7 % -0.1 % -0.1 % 0.0 % 
500 7 0.6 0.2 % -0.3 % 0.4 % -0.1 % 0.0 % 0.0 % 

1000 7 0.6 0.1 % -0.1 % 0.2 % 0.0 % 0.0 % 0.0 % 
25 9 0.6 3.4 % -5.0 % 8.3 % -0.8 % -0.5 % -0.2 % 
50 9 0.6 1.3 % -2.1 % 3.4 % -0.4 % -0.3 % -0.1 % 
75 9 0.6 0.9 % -1.3 % 2.2 % -0.2 % -0.2 % 0.0 % 
100 9 0.6 0.6 % -1.0 % 1.6 % -0.2 % -0.1 % 0.0 % 
150 9 0.6 0.4 % -0.6 % 1.0 % -0.1 % -0.1 % 0.0 % 
300 9 0.6 0.2 % -0.3 % 0.5 % -0.1 % -0.1 % 0.0 % 
500 9 0.6 0.1 % -0.2 % 0.3 % 0.0 % 0.0 % 0.0 % 

1000 9 0.6 0.1 % -0.1 % 0.2 % 0.0 % 0.0 % 0.0 % 
25 3 0.7 6.8 % -6.8 % 13.6 % 1.0 % -0.1 % 1.1 % 
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50 3 0.7 4.8 % -4.7 % 9.4 % 0.5 % -0.2 % 0.7 % 
75 3 0.7 3.7 % -3.6 % 7.3 % 0.2 % -0.3 % 0.5 % 
100 3 0.7 3.0 % -2.8 % 5.7 % 0.2 % -0.2 % 0.4 % 
150 3 0.7 2.1 % -1.9 % 4.0 % 0.1 % -0.1 % 0.2 % 
300 3 0.7 1.0 % -0.9 % 2.0 % 0.0 % 0.0 % 0.1 % 
500 3 0.7 0.6 % -0.6 % 1.2 % 0.0 % 0.0 % 0.0 % 

1000 3 0.7 0.3 % -0.3 % 0.6 % 0.0 % 0.0 % 0.0 % 
25 5 0.7 3.4 % -4.7 % 8.1 % -0.5 % -0.6 % 0.1 % 
50 5 0.7 1.7 % -2.2 % 3.9 % -0.4 % -0.3 % 0.0 % 
75 5 0.7 1.1 % -1.4 % 2.4 % -0.2 % -0.2 % 0.0 % 
100 5 0.7 0.7 % -1.0 % 1.7 % -0.2 % -0.2 % 0.0 % 
150 5 0.7 0.5 % -0.7 % 1.1 % -0.1 % -0.1 % 0.0 % 
300 5 0.7 0.2 % -0.3 % 0.5 % 0.0 % 0.0 % 0.0 % 
500 5 0.7 0.1 % -0.2 % 0.3 % 0.0 % 0.0 % 0.0 % 

1000 5 0.7 0.1 % -0.1 % 0.2 % 0.0 % 0.0 % 0.0 % 
25 7 0.7 2.0 % -3.2 % 5.2 % -0.6 % -0.5 % -0.1 % 
50 7 0.7 0.8 % -1.3 % 2.1 % -0.3 % -0.2 % -0.1 % 
75 7 0.7 0.5 % -0.9 % 1.4 % -0.2 % -0.2 % 0.0 % 
100 7 0.7 0.4 % -0.6 % 1.0 % -0.1 % -0.1 % 0.0 % 
150 7 0.7 0.3 % -0.4 % 0.6 % -0.1 % -0.1 % 0.0 % 
300 7 0.7 0.1 % -0.2 % 0.3 % 0.0 % -0.1 % 0.0 % 
500 7 0.7 0.1 % -0.1 % 0.2 % 0.0 % 0.0 % 0.0 % 

1000 7 0.7 0.0 % -0.1 % 0.1 % 0.0 % 0.0 % 0.0 % 
25 9 0.7 1.3 % -2.3 % 3.6 % -0.5 % -0.4 % -0.1 % 
50 9 0.7 0.5 % -1.0 % 1.5 % -0.2 % -0.2 % 0.0 % 
75 9 0.7 0.4 % -0.6 % 1.0 % -0.1 % -0.1 % 0.0 % 
100 9 0.7 0.3 % -0.5 % 0.7 % -0.1 % -0.1 % 0.0 % 
150 9 0.7 0.2 % -0.3 % 0.5 % -0.1 % -0.1 % 0.0 % 
300 9 0.7 0.1 % -0.2 % 0.2 % 0.0 % 0.0 % 0.0 % 
500 9 0.7 0.1 % -0.1 % 0.1 % 0.0 % 0.0 % 0.0 % 

1000 9 0.7 0.0 % 0.0 % 0.1 % 0.0 % 0.0 % 0.0 % 
25 3 0.8 2.0 % -3.9 % 5.9 % -0.1 % -0.6 % 0.5 % 
50 3 0.8 1.6 % -2.4 % 4.0 % 0.0 % -0.3 % 0.3 % 
75 3 0.8 1.4 % -1.8 % 3.1 % -0.1 % -0.2 % 0.2 % 
100 3 0.8 1.2 % -1.4 % 2.6 % 0.0 % -0.1 % 0.1 % 
150 3 0.8 0.9 % -0.9 % 1.8 % 0.0 % -0.1 % 0.0 % 
300 3 0.8 0.5 % -0.5 % 0.9 % 0.0 % 0.0 % 0.0 % 
500 3 0.8 0.3 % -0.3 % 0.6 % 0.0 % 0.0 % 0.0 % 

1000 3 0.8 0.1 % -0.1 % 0.3 % 0.0 % 0.0 % 0.0 % 
25 5 0.8 1.1 % -2.0 % 3.1 % -0.4 % -0.5 % 0.1 % 
50 5 0.8 0.7 % -1.0 % 1.6 % -0.2 % -0.2 % 0.0 % 
75 5 0.8 0.4 % -0.6 % 1.1 % -0.1 % -0.1 % 0.0 % 
100 5 0.8 0.3 % -0.4 % 0.7 % -0.1 % -0.1 % 0.0 % 
150 5 0.8 0.2 % -0.3 % 0.5 % -0.1 % -0.1 % 0.0 % 
300 5 0.8 0.1 % -0.1 % 0.2 % 0.0 % 0.0 % 0.0 % 
500 5 0.8 0.1 % -0.1 % 0.2 % 0.0 % 0.0 % 0.0 % 

1000 5 0.8 0.0 % 0.0 % 0.1 % 0.0 % 0.0 % 0.0 % 
25 7 0.8 0.7 % -1.2 % 1.9 % -0.3 % -0.3 % 0.0 % 
50 7 0.8 0.3 % -0.5 % 0.9 % -0.2 % -0.1 % 0.0 % 
75 7 0.8 0.2 % -0.4 % 0.6 % -0.1 % -0.1 % 0.0 % 
100 7 0.8 0.1 % -0.3 % 0.4 % -0.1 % -0.1 % 0.0 % 
150 7 0.8 0.1 % -0.2 % 0.3 % -0.1 % 0.0 % 0.0 % 
300 7 0.8 0.0 % -0.1 % 0.1 % 0.0 % 0.0 % 0.0 % 
500 7 0.8 0.0 % -0.1 % 0.1 % 0.0 % 0.0 % 0.0 % 

1000 7 0.8 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 
25 9 0.8 0.4 % -0.9 % 1.3 % -0.3 % -0.3 % 0.0 % 
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50 9 0.8 0.2 % -0.4 % 0.6 % -0.1 % -0.1 % 0.0 % 
75 9 0.8 0.1 % -0.2 % 0.4 % -0.1 % -0.1 % 0.0 % 
100 9 0.8 0.1 % -0.2 % 0.3 % -0.1 % -0.1 % 0.0 % 
150 9 0.8 0.1 % -0.1 % 0.2 % 0.0 % 0.0 % 0.0 % 
300 9 0.8 0.0 % -0.1 % 0.1 % 0.0 % 0.0 % 0.0 % 
500 9 0.8 0.0 % 0.0 % 0.1 % 0.0 % 0.0 % 0.0 % 

1000 9 0.8 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 
Note: The values shown are calculated as (average estimate for a condition – population value) / 
population value. Est. = Estimate, Pop. = Population 
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Table B2  

Full Simulation Results for Unequal Loadings (RMSE) 

Sample 
Size 

Indicators Loadings Difference between population and sample statistics 
Maximal reliability Composite reliability 

Population 
RMSE 

(𝜌-$%& −
𝜌$%&) 

Sample 
RMSE 
(𝑟$%& −
𝜌$%&) 

Population 
RMSE 
(𝜌-'( −
𝜌'( ) 

Sample 
RMSE 
(𝑟'( −
𝜌'( ) 

25 3 0.6 24.80% 23.80% 19.00% 18.60% 
50 3 0.6 19.70% 17.70% 13.80% 13.20% 
75 3 0.6 16.90% 14.30% 11.40% 10.80% 
100 3 0.6 14.80% 12.30% 9.80% 9.50% 
150 3 0.6 12.30% 9.50% 8.20% 7.60% 
300 3 0.6 8.00% 6.20% 5.70% 5.40% 
500 3 0.6 5.70% 4.50% 4.40% 4.30% 

1000 3 0.6 3.80% 2.90% 3.20% 3.00% 
25 5 0.6 12.60% 17.90% 10.90% 12.40% 
50 5 0.6 8.70% 11.20% 8.10% 8.80% 
75 5 0.6 6.70% 8.20% 6.60% 7.20% 
100 5 0.6 5.70% 6.60% 5.70% 6.20% 
150 5 0.6 4.50% 5.00% 4.60% 5.00% 
300 5 0.6 3.20% 3.40% 3.20% 3.50% 
500 5 0.6 2.40% 2.50% 2.40% 2.70% 

1000 5 0.6 1.70% 1.70% 1.80% 1.90% 
25 7 0.6 8.00% 14.20% 8.50% 9.60% 
50 7 0.6 5.10% 7.70% 5.80% 6.60% 
75 7 0.6 4.20% 5.60% 4.60% 5.30% 
100 7 0.6 3.50% 4.70% 3.90% 4.60% 
150 7 0.6 2.90% 3.50% 3.30% 3.60% 
300 7 0.6 2.10% 2.40% 2.30% 2.60% 
500 7 0.6 1.60% 1.80% 1.80% 2.00% 

1000 7 0.6 1.10% 1.30% 1.30% 1.40% 
25 9 0.6 5.60% 11.10% 6.70% 7.90% 
50 9 0.6 3.90% 5.90% 4.40% 5.30% 
75 9 0.6 3.20% 4.30% 3.60% 4.20% 
100 9 0.6 2.70% 3.60% 3.00% 3.70% 
150 9 0.6 2.20% 2.80% 2.40% 3.00% 
300 9 0.6 1.50% 2.00% 1.70% 2.00% 
500 9 0.6 1.20% 1.50% 1.30% 1.60% 

1000 9 0.6 0.80% 1.10% 1.00% 1.10% 
25 3 0.7 13.90% 16.30% 11.80% 12.40% 
50 3 0.7 10.90% 11.20% 8.50% 8.60% 
75 3 0.7 9.30% 8.70% 6.80% 7.00% 
100 3 0.7 7.90% 7.20% 5.80% 6.00% 
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150 3 0.7 6.60% 5.50% 4.80% 4.80% 
300 3 0.7 4.30% 3.50% 3.40% 3.50% 
500 3 0.7 3.30% 2.60% 2.70% 2.70% 

1000 3 0.7 2.20% 1.80% 1.90% 1.90% 
25 5 0.7 6.80% 10.80% 7.10% 8.10% 
50 5 0.7 4.70% 6.20% 4.90% 5.50% 
75 5 0.7 3.60% 4.60% 4.00% 4.50% 
100 5 0.7 3.20% 3.80% 3.40% 3.90% 
150 5 0.7 2.50% 2.90% 2.70% 3.00% 
300 5 0.7 1.80% 2.00% 1.90% 2.20% 
500 5 0.7 1.30% 1.50% 1.40% 1.70% 

1000 5 0.7 0.90% 1.10% 1.10% 1.20% 
25 7 0.7 4.40% 7.80% 5.30% 6.20% 
50 7 0.7 2.90% 4.20% 3.30% 4.00% 
75 7 0.7 2.40% 3.10% 2.80% 3.20% 
100 7 0.7 2.00% 2.60% 2.30% 2.80% 
150 7 0.7 1.70% 2.00% 1.80% 2.30% 
300 7 0.7 1.10% 1.50% 1.30% 1.60% 
500 7 0.7 0.90% 1.10% 1.00% 1.30% 

1000 7 0.7 0.70% 0.80% 0.70% 0.90% 
25 9 0.7 3.10% 5.80% 4.00% 4.90% 
50 9 0.7 2.20% 3.20% 2.60% 3.20% 
75 9 0.7 1.80% 2.40% 2.10% 2.60% 
100 9 0.7 1.50% 2.10% 1.80% 2.20% 
150 9 0.7 1.20% 1.50% 1.40% 1.80% 
300 9 0.7 0.90% 1.10% 1.00% 1.20% 
500 9 0.7 0.70% 0.90% 0.80% 1.00% 

1000 9 0.7 0.40% 0.50% 0.60% 0.70% 
25 3 0.8 6.90% 9.10% 6.70% 7.30% 
50 3 0.8 5.40% 5.70% 4.60% 5.10% 
75 3 0.8 4.80% 4.30% 3.80% 4.00% 
100 3 0.8 4.20% 3.70% 3.20% 3.60% 
150 3 0.8 3.70% 2.70% 2.60% 2.70% 
300 3 0.8 2.50% 1.80% 1.80% 2.00% 
500 3 0.8 1.90% 1.40% 1.40% 1.50% 

1000 3 0.8 1.30% 0.90% 1.10% 1.10% 
25 5 0.8 3.20% 5.00% 4.00% 4.80% 
50 5 0.8 2.40% 2.80% 2.70% 3.10% 
75 5 0.8 1.80% 2.20% 2.10% 2.60% 
100 5 0.8 1.60% 1.70% 1.80% 2.10% 
150 5 0.8 1.30% 1.40% 1.40% 1.80% 
300 5 0.8 0.90% 0.90% 1.00% 1.20% 
500 5 0.8 0.60% 0.60% 0.80% 0.90% 

1000 5 0.8 0.40% 0.40% 0.60% 0.70% 
25 7 0.8 2.10% 3.30% 2.90% 3.50% 
50 7 0.8 1.40% 1.80% 1.80% 2.30% 
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75 7 0.8 1.20% 1.40% 1.50% 1.80% 
100 7 0.8 0.90% 1.20% 1.20% 1.50% 
150 7 0.8 0.70% 0.90% 1.00% 1.30% 
300 7 0.8 0.50% 0.60% 0.80% 0.90% 
500 7 0.8 0.40% 0.50% 0.50% 0.60% 

1000 7 0.8 0.30% 0.30% 0.40% 0.40% 
25 9 0.8 1.50% 2.40% 2.10% 2.80% 
50 9 0.8 0.90% 1.40% 1.40% 1.80% 
75 9 0.8 0.80% 1.00% 1.20% 1.40% 
100 9 0.8 0.60% 0.80% 1.00% 1.30% 
150 9 0.8 0.50% 0.70% 0.70% 1.00% 
300 9 0.8 0.40% 0.50% 0.50% 0.70% 
500 9 0.8 0.30% 0.30% 0.40% 0.50% 

1000 9 0.8 0.20% 0.20% 0.30% 0.40% 
Note: Root mean square error (RMSE) values shown are calculated as square root of average 
squared difference between estimate and population value / population value.  
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Supplemental Material, “A Note on the Finite Sample Behavior of Maximal Reliability” 

 

Appendix C – Full Simulation Results for Equal Loadings 

Table C1 

Full Simulation Results for Equal Loadings (Bias) 

Sample 
Size 

Indicators Loadings Relative difference 
Maximal reliability Composite reliability 

Estimate 
vs. pop. 
(𝜌-𝑚𝑎𝑥 −
𝜌𝑚𝑎𝑥) 

Sample 
reliability 

vs. pop 
(𝑟𝑚𝑎𝑥 −
𝜌𝑚𝑎𝑥) 

Est. vs. 
sample 

reliability 
(𝜌-𝑚𝑎𝑥 −
𝑟𝑚𝑎𝑥) 

Estimate 
vs. pop. 
(𝜌-𝐶𝑅 −
𝜌𝐶𝑅) 

Sample 
reliability 

vs. pop 
(𝑟𝐶𝑅 −
𝜌𝐶𝑅) 

Est. vs. 
sample 

reliability 
(𝜌-𝐶𝑅 −
𝑟𝐶𝑅) 

25 3 0.6 18.2% -8.9% 27.1% 4.9% 1.5% 3.4% 
50 3 0.6 12.3% -7.8% 20.1% 2.4% 0.3% 2.1% 
75 3 0.6 8.6% -6.5% 15.1% 1.1% -0.2% 1.3% 
100 3 0.6 6.6% -5.1% 11.7% 0.9% -0.2% 1.0% 
150 3 0.6 4.2% -3.4% 7.6% 0.4% -0.1% 0.5% 
300 3 0.6 1.8% -1.6% 3.4% 0.2% 0.0% 0.2% 
500 3 0.6 1.0% -1.0% 2.0% 0.1% 0.0% 0.1% 

1000 3 0.6 0.5% -0.5% 1.0% 0.1% 0.0% 0.1% 
25 5 0.6 10.2% -9.4% 19.5% 0.3% -0.1% 0.5% 
50 5 0.6 4.4% -5.0% 9.4% -0.4% -0.4% 0.0% 
75 5 0.6 2.6% -3.1% 5.7% -0.2% -0.2% 0.0% 
100 5 0.6 1.8% -2.2% 4.1% -0.2% -0.2% 0.0% 
150 5 0.6 1.2% -1.4% 2.6% -0.1% -0.2% 0.1% 
300 5 0.6 0.6% -0.7% 1.3% 0.0% 0.0% 0.0% 
500 5 0.6 0.3% -0.4% 0.8% 0.0% -0.1% 0.0% 

1000 5 0.6 0.2% -0.2% 0.4% 0.0% 0.0% 0.0% 
25 7 0.6 6.1% -7.4% 13.4% -0.7% -0.4% -0.2% 
50 7 0.6 2.4% -3.2% 5.5% -0.4% -0.3% -0.1% 
75 7 0.6 1.5% -2.1% 3.5% -0.3% -0.3% 0.0% 
100 7 0.6 1.1% -1.5% 2.5% -0.2% -0.2% 0.0% 
150 7 0.6 0.7% -0.9% 1.6% -0.1% -0.1% 0.0% 
300 7 0.6 0.3% -0.5% 0.8% -0.1% -0.1% 0.0% 
500 7 0.6 0.2% -0.3% 0.5% -0.1% -0.1% 0.0% 

1000 7 0.6 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 9 0.6 4.0% -5.7% 9.7% -0.8% -0.5% -0.3% 
50 9 0.6 1.6% -2.4% 4.0% -0.4% -0.3% -0.1% 
75 9 0.6 1.0% -1.5% 2.5% -0.2% -0.2% 0.0% 
100 9 0.6 0.7% -1.1% 1.8% -0.2% -0.2% 0.0% 
150 9 0.6 0.5% -0.7% 1.2% -0.1% -0.1% 0.0% 
300 9 0.6 0.2% -0.4% 0.6% -0.1% -0.1% 0.0% 
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500 9 0.6 0.2% -0.2% 0.3% 0.0% 0.0% 0.0% 
1000 9 0.6 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 3 0.7 8.9% -6.9% 15.8% 0.9% 0.0% 0.9% 
50 3 0.7 5.6% -4.8% 10.4% 0.4% -0.2% 0.6% 
75 3 0.7 3.5% -3.5% 7.0% 0.0% -0.3% 0.3% 
100 3 0.7 2.7% -2.6% 5.2% 0.1% -0.2% 0.3% 
150 3 0.7 1.6% -1.6% 3.3% 0.0% -0.1% 0.1% 
300 3 0.7 0.7% -0.8% 1.5% 0.0% 0.0% 0.0% 
500 3 0.7 0.4% -0.5% 0.9% 0.0% 0.0% 0.0% 

1000 3 0.7 0.2% -0.2% 0.5% 0.0% 0.0% 0.0% 
25 5 0.7 4.2% -5.5% 9.8% -0.6% -0.6% 0.0% 
50 5 0.7 1.7% -2.5% 4.2% -0.4% -0.3% 0.0% 
75 5 0.7 1.1% -1.5% 2.6% -0.2% -0.2% 0.0% 
100 5 0.7 0.8% -1.1% 1.9% -0.2% -0.2% 0.0% 
150 5 0.7 0.5% -0.7% 1.2% -0.1% -0.1% 0.0% 
300 5 0.7 0.3% -0.3% 0.6% 0.0% 0.0% 0.0% 
500 5 0.7 0.1% -0.2% 0.4% 0.0% 0.0% 0.0% 

1000 5 0.7 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 7 0.7 2.5% -3.8% 6.3% -0.6% -0.5% -0.1% 
50 7 0.7 1.0% -1.5% 2.5% -0.3% -0.2% -0.1% 
75 7 0.7 0.6% -1.0% 1.6% -0.2% -0.2% 0.0% 
100 7 0.7 0.4% -0.7% 1.2% -0.1% -0.1% 0.0% 
150 7 0.7 0.3% -0.5% 0.7% -0.1% -0.1% 0.0% 
300 7 0.7 0.1% -0.2% 0.4% 0.0% -0.1% 0.0% 
500 7 0.7 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 

1000 7 0.7 0.0% -0.1% 0.1% 0.0% 0.0% 0.0% 
25 9 0.7 1.6% -2.8% 4.4% -0.5% -0.4% -0.1% 
50 9 0.7 0.7% -1.2% 1.8% -0.2% -0.2% 0.0% 
75 9 0.7 0.4% -0.7% 1.2% -0.1% -0.1% 0.0% 
100 9 0.7 0.3% -0.5% 0.9% -0.1% -0.1% 0.0% 
150 9 0.7 0.2% -0.4% 0.6% -0.1% -0.1% 0.0% 
300 9 0.7 0.1% -0.2% 0.3% 0.0% 0.0% 0.0% 
500 9 0.7 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 

1000 9 0.7 0.0% -0.1% 0.1% 0.0% 0.0% 0.0% 
25 3 0.8 4.0% -4.2% 8.2% -0.2% -0.4% 0.2% 
50 3 0.8 2.3% -2.5% 4.7% -0.1% -0.2% 0.1% 
75 3 0.8 1.4% -1.7% 3.0% -0.1% -0.2% 0.1% 
100 3 0.8 1.0% -1.2% 2.2% -0.1% -0.1% 0.1% 
150 3 0.8 0.6% -0.8% 1.4% -0.1% -0.1% 0.0% 
300 3 0.8 0.3% -0.4% 0.7% 0.0% 0.0% 0.0% 
500 3 0.8 0.2% -0.2% 0.4% 0.0% 0.0% 0.0% 

1000 3 0.8 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 5 0.8 1.6% -2.7% 4.3% -0.5% -0.5% 0.0% 
50 5 0.8 0.7% -1.1% 1.8% -0.2% -0.2% 0.0% 
75 5 0.8 0.4% -0.7% 1.1% -0.1% -0.1% 0.0% 
100 5 0.8 0.3% -0.5% 0.8% -0.1% -0.1% 0.0% 
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150 5 0.8 0.2% -0.4% 0.6% -0.1% -0.1% 0.0% 
300 5 0.8 0.1% -0.2% 0.3% 0.0% 0.0% 0.0% 
500 5 0.8 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 

1000 5 0.8 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 
25 7 0.8 1.0% -1.8% 2.7% -0.4% -0.3% 0.0% 
50 7 0.8 0.4% -0.7% 1.1% -0.2% -0.1% 0.0% 
75 7 0.8 0.3% -0.5% 0.7% -0.1% -0.1% 0.0% 
100 7 0.8 0.2% -0.3% 0.5% -0.1% -0.1% 0.0% 
150 7 0.8 0.1% -0.2% 0.3% -0.1% 0.0% 0.0% 
300 7 0.8 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
500 7 0.8 0.0% -0.1% 0.1% 0.0% 0.0% 0.0% 

1000 7 0.8 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 
25 9 0.8 0.6% -1.3% 1.9% -0.3% -0.3% 0.0% 
50 9 0.8 0.3% -0.5% 0.8% -0.1% -0.1% 0.0% 
75 9 0.8 0.2% -0.4% 0.5% -0.1% -0.1% 0.0% 
100 9 0.8 0.1% -0.3% 0.4% -0.1% -0.1% 0.0% 
150 9 0.8 0.1% -0.2% 0.3% 0.0% 0.0% 0.0% 
300 9 0.8 0.0% -0.1% 0.1% 0.0% 0.0% 0.0% 
500 9 0.8 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 

1000 9 0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Note: The values shown are calculated as (average estimate for a condition – population value) / 
population value. Est. = Estimate, Pop. = Population 
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Table C2 

Full Simulation Results for Equal Loadings (RMSE) 

Sample 
Size 

Indicators Loadings Difference between population and sample statistics 
Maximal reliability Composite reliability 

Population 
RMSE 

(𝜌-$%& −
𝜌$%&) 

Sample 
RMSE 
(𝑟$%& −
𝜌$%&) 

Population 
RMSE 
(𝜌-'( −
𝜌'( ) 

Sample 
RMSE 
(𝑟'( −
𝜌'( ) 

25 3 0.6 27.20% 24.40% 19.10% 18.60% 
50 3 0.6 20.70% 18.50% 14.00% 13.20% 
75 3 0.6 16.60% 15.30% 11.80% 10.80% 
100 3 0.6 13.70% 12.90% 10.00% 9.60% 
150 3 0.6 10.40% 9.70% 8.40% 7.60% 
300 3 0.6 6.40% 6.20% 5.90% 5.40% 
500 3 0.6 4.80% 4.60% 4.60% 4.30% 

1000 3 0.6 3.30% 3.00% 3.20% 3.00% 
25 5 0.6 14.00% 19.50% 11.00% 12.50% 
50 5 0.6 8.80% 12.20% 8.30% 8.90% 
75 5 0.6 6.90% 8.90% 6.80% 7.20% 
100 5 0.6 5.80% 7.20% 5.70% 6.20% 
150 5 0.6 4.60% 5.60% 4.60% 5.00% 
300 5 0.6 3.30% 3.70% 3.30% 3.50% 
500 5 0.6 2.40% 2.80% 2.40% 2.70% 

1000 5 0.6 1.80% 1.90% 1.80% 1.90% 
25 7 0.6 8.90% 15.90% 8.70% 9.80% 
50 7 0.6 5.50% 8.70% 5.80% 6.60% 
75 7 0.6 4.50% 6.30% 4.60% 5.40% 
100 7 0.6 3.90% 5.30% 4.00% 4.60% 
150 7 0.6 3.10% 4.00% 3.30% 3.80% 
300 7 0.6 2.30% 2.80% 2.30% 2.60% 
500 7 0.6 1.80% 2.10% 1.80% 2.00% 

1000 7 0.6 1.30% 1.50% 1.30% 1.40% 
25 9 0.6 6.20% 12.60% 6.80% 7.90% 
50 9 0.6 4.20% 6.70% 4.60% 5.40% 
75 9 0.6 3.50% 4.90% 3.60% 4.20% 
100 9 0.6 3.00% 4.20% 3.00% 3.70% 
150 9 0.6 2.40% 3.20% 2.50% 3.00% 
300 9 0.6 1.70% 2.20% 1.80% 2.20% 
500 9 0.6 1.30% 1.70% 1.30% 1.70% 

1000 9 0.6 1.00% 1.20% 1.00% 1.20% 
25 3 0.7 15.50% 17.10% 12.10% 12.40% 
50 3 0.7 11.20% 12.00% 8.60% 8.80% 
75 3 0.7 8.50% 9.30% 7.10% 7.00% 
100 3 0.7 7.00% 7.50% 6.10% 6.20% 
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150 3 0.7 5.40% 5.80% 5.00% 4.80% 
300 3 0.7 3.60% 3.80% 3.50% 3.50% 
500 3 0.7 2.70% 2.80% 2.70% 2.70% 

1000 3 0.7 1.90% 1.90% 1.90% 1.90% 
25 5 0.7 7.60% 12.40% 7.20% 8.20% 
50 5 0.7 5.00% 7.10% 5.00% 5.70% 
75 5 0.7 4.00% 5.20% 4.00% 4.50% 
100 5 0.7 3.40% 4.20% 3.40% 3.90% 
150 5 0.7 2.80% 3.40% 2.80% 3.10% 
300 5 0.7 1.90% 2.30% 1.90% 2.20% 
500 5 0.7 1.40% 1.70% 1.40% 1.70% 

1000 5 0.7 1.10% 1.20% 1.10% 1.20% 
25 7 0.7 4.80% 9.30% 5.40% 6.30% 
50 7 0.7 3.20% 4.90% 3.40% 4.10% 
75 7 0.7 2.60% 3.70% 2.80% 3.30% 
100 7 0.7 2.30% 3.10% 2.30% 2.90% 
150 7 0.7 1.80% 2.40% 2.00% 2.30% 
300 7 0.7 1.30% 1.70% 1.40% 1.60% 
500 7 0.7 1.00% 1.30% 1.00% 1.30% 

1000 7 0.7 0.70% 0.90% 0.70% 0.90% 
25 9 0.7 3.60% 7.00% 4.10% 5.00% 
50 9 0.7 2.50% 3.80% 2.70% 3.30% 
75 9 0.7 2.00% 2.90% 2.10% 2.60% 
100 9 0.7 1.80% 2.50% 1.80% 2.20% 
150 9 0.7 1.50% 1.90% 1.50% 1.80% 
300 9 0.7 1.00% 1.30% 1.00% 1.30% 
500 9 0.7 0.80% 1.00% 0.80% 1.00% 

1000 9 0.7 0.60% 0.70% 0.60% 0.70% 
25 3 0.8 8.20% 10.30% 7.00% 7.50% 
50 3 0.8 5.60% 6.80% 4.90% 5.10% 
75 3 0.8 4.30% 5.00% 3.90% 4.00% 
100 3 0.8 3.40% 4.20% 3.30% 3.60% 
150 3 0.8 2.70% 3.10% 2.70% 2.90% 
300 3 0.8 1.90% 2.10% 1.90% 2.00% 
500 3 0.8 1.40% 1.70% 1.40% 1.50% 

1000 3 0.8 1.10% 1.10% 1.10% 1.10% 
25 5 0.8 4.00% 6.80% 4.10% 4.90% 
50 5 0.8 2.70% 3.80% 2.70% 3.20% 
75 5 0.8 2.10% 2.90% 2.10% 2.60% 
100 5 0.8 1.80% 2.30% 1.90% 2.20% 
150 5 0.8 1.40% 1.90% 1.40% 1.80% 
300 5 0.8 1.00% 1.20% 1.00% 1.20% 
500 5 0.8 0.80% 1.00% 0.80% 1.00% 

1000 5 0.8 0.60% 0.70% 0.60% 0.70% 
25 7 0.8 2.60% 4.80% 2.90% 3.60% 
50 7 0.8 1.70% 2.60% 1.80% 2.30% 
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75 7 0.8 1.40% 2.10% 1.50% 1.80% 
100 7 0.8 1.20% 1.70% 1.30% 1.60% 
150 7 0.8 1.00% 1.30% 1.10% 1.30% 
300 7 0.8 0.80% 1.00% 0.80% 0.90% 
500 7 0.8 0.50% 0.80% 0.50% 0.60% 

1000 7 0.8 0.40% 0.50% 0.40% 0.50% 
25 9 0.8 1.90% 3.60% 2.20% 2.90% 
50 9 0.8 1.40% 2.00% 1.40% 1.80% 
75 9 0.8 1.10% 1.60% 1.20% 1.50% 
100 9 0.8 1.00% 1.40% 1.00% 1.30% 
150 9 0.8 0.70% 1.10% 0.70% 1.00% 
300 9 0.8 0.50% 0.70% 0.50% 0.70% 
500 9 0.8 0.40% 0.50% 0.40% 0.50% 

1000 9 0.8 0.30% 0.40% 0.30% 0.40% 
Note: Root mean square error (RMSE) values shown are calculated as square root of average 
squared difference between estimate and population value / population value. 
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Supplemental Material, “A Note on the Finite Sample Behavior of Maximal Reliability” 

 

Appendix D – Annotated Simulation and Analysis Code 

 
# Loads the lavaan (for data analysis) and MASS (for data generation) libraries 
 
library(lavaan) 
library(MASS) 
 
# Defines the function that calculates the reliability of a composite based on loadings (l), 
# errors (r), and weights (w) 
 
cr.implied <- function(l, r, w){ 
   
  numer <- sum(w * l) ^ 2 
  denom <- numer + sum((w ^ 2) * r) 
  cr <- numer / denom 
  return(cr) 
   
} 
 
# These are the different simulation conditions and values of the levels within each 
 
SSIZE <- c(25, 50, 75, 100, 150, 300, 500, 1000) 
INDICATORS <- c(3, 5, 7, 9) 
LOADINGS <- c(.6, .7, .8) 
EQFACTOR <- c(0, 1) 
LOAD.SD <- .1 
REPLICATIONS <- 10000 
 
design.matrix <- expand.grid(ssize = SSIZE, 
                             indic = INDICATORS, 
                             loads = LOADINGS, 
                             eqfactor = EQFACTOR) 
 
# The following block of code is repeated for each different condition in the simulation 
 
for(i in 1:nrow(design.matrix)){ 
   
  design <- design.matrix[i,] 
   
  # This defines the single-factor analysis model 
   
  lav.model <- paste(paste('T =~ ', paste('X', 1:design$indic, sep = '', collapse = ' + '), sep = ''),  
                     'T ~~ 1*T', sep = '\n') 
   
  # This defines the single-factor analysis model with constrained error variances 
   
  lav.model.negvar <- paste(lav.model,  
                            paste('X', 1:design$indic, ' ~~ ', 'varx', 1:design$indic,'*X',  
                                  1:design$indic, sep = '', collapse = '\n'),  
                            paste('varx', 1:design$indic, ' > 0', sep = '', collapse = '\n'), 
                            sep = '\n') 
   
  # Defines the loadings, whether equal or unequal 
   
  if(design$eqfactor == 1){ 
     
    loadings.vector <- rep(design$loads, design$indic) 
     
  } else { 
     
    loadings.vector <- as.numeric(scale(1:design$indic) * LOAD.SD + design$loads) 
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  } 
   
  # Defines the vector of errors that gives the indicators unit variance 
   
  errors.vector <- (1 - loadings.vector**2) 
   
  # The following block of code returns a list of latent variable case values and indicator data 
   
  set.seed(1) 
   
  sim.data <- lapply(1:REPLICATIONS, function(x){ 
     
    lv <- rnorm(design$ssize, 0, sqrt(1)) 
     
    eresid <- mvrnorm(n = design$ssize, 
                      mu = rep(0, design$indic), 
                      Sigma = diag(errors.vector)) 
     
    dat <- lv %*% t(loadings.vector) + eresid 
     
    colnames(dat) <- c(paste('X', 1:design$indic, sep = '')) 
     
    list(lv = lv, data = dat) 
     
  }) 
   
  # The following block of code performs the main analyses 
   
  results <- lapply(sim.data, function(x){ 
     
    neg.var <- FALSE 
 
    # Executes a confirmatory factor analysis with the unconstrained model and factor variance equal to 1 
         
    lav.cfa <- cfa(lav.model, data = as.data.frame(x$data), std.lv=TRUE) 
 
    # Checks for convergence; the rest of the code is not executed if the analysis did not converge 
     
    if(inspect(lav.cfa, 'converged')){ 
       
      # Extracts the indicator errors from the results of the confirmatory factor analysis 
       
      errors <- coef(lav.cfa)[c(paste('X', 1:design$indic, '~~X', 1:design$indic, sep = ''))] 
       
      # Checks if any errors are negative; the code inside this block only executes if one or more errors 
are negative 
          # The neg.var flag is set to identify the replication in later analysis 
          # The confirmatory factor analysis is run again but using the constrained model previously 
defined 
          # The errors from the new analysis (now constrained to be positive) are extracted 
       
      if(any(errors < 0)){ 
        neg.var <- TRUE 
        lav.cfa <- cfa(lav.model.negvar, data = as.data.frame(x$data), std.lv=TRUE) 
        errors <- coef(lav.cfa)[c(paste('varx', 1:design$indic, sep = ''))] 
      } 
       
      # Extracts the loading estimates from the results of the confirmatory factor analysis 
       
      loadings <- coef(lav.cfa)[c(paste('T=~X', 1:design$indic, sep = ''))] 
       
      # Calculates the maximal reliability weights as the ratio of loadings to errors 
       
      weights <- loadings / errors 
       
      # Calculates the estimated maximal reliability based on loading and error estimates, and weights 
       
      mr.estim <- cr.implied(l = loadings, 



Finite Sample Behavior of Maximal Reliability 70 
 
                             r = errors, 
                             w = weights) 
       
      # Calculates the estimated composite reliability based on loading and error estimates, and unit 
weights 
       
      cr.estim <- cr.implied(l = loadings, 
                             r = errors, 
                             w = 1) 
       
      # Creates a composite of the indicators using the maximal reliability weights 
       
      mr.comp <- x$data %*% weights 
       
      # Creates a composite of the indicators using unit/equal weights 
       
      eq.comp <- rowSums(x$data) 
       
      # Calculates the true reliability of the maximal reliability composite as the squared correlation 
      # of the composite and case values of the latent variable (from the data generation process) 
       
      mr.true <- cor(mr.comp, x$lv)**2 
       
      # Calculates the true reliability of the equal weights composite as the squared correlation 
      # of the composite and case values of the latent variable (from the data generation process) 
       
      cr.true <- cor(eq.comp, x$lv)**2 
       
      # Returns a list of all results 
       
      list(loadings = loadings, 
           errors = errors, 
           cr.estim = cr.estim, 
           mr.estim = mr.estim, 
           cr.true = cr.true, 
           mr.true = mr.true, 
           neg.var = neg.var) 
       
    } else { 
       
      # If the confirmatory factor analysis did not converge, no results are returned 
       
      NULL 
       
    } 
     
  }) 
   
  # The results object is saved for later processing 
   
  save(results, file = paste('Results_', i, '.Rdata', sep = '')) 
  print(paste('Completed: ', i, ' of ', nrow(design.matrix) , sep = '')) 
   
} 
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Supplemental Material, “A Note on the Finite Sample Behavior of Maximal Reliability” 

 

Appendix E – Complete Results from the Simulation Including Replications that 

Were Rerun with Constrained Estimation 

Table E1 

Results for Equal Loadings (Selected Conditions) 

Sample Size 
Indicators 
Loadings 

Difference between population and sample statistics 
Maximal reliability Composite reliability 

Population 
(𝜌-$%& − 𝜌$%&) 

Sample 
(𝑟$%& − 𝜌$%&) 

Population 
(𝜌-'( − 𝜌'( ) 

Sample 
(𝑟'( − 𝜌'() 

Mean RMSE Mean RMSE Mean RMSE Mean RMSE 
25 3 0.6 28.4% 37.4% -14.1% 28.7% 5.8% 18.8% 0.6% 19.0% 
50 3 0.6 16.0% 26.3% -10.0% 21.0% 2.4% 13.9% -0.1% 13.4% 
75 3 0.6 10.3% 19.4% -7.3% 16.6% 1.3% 11.6% -0.2% 10.8% 
25 5 0.6 12.0% 16.5% -10.7% 22.2% -0.1% 11.7% -0.3% 12.9% 
50 5 0.6 4.5% 8.9% -5.0% 12.5% -0.4% 8.4% -0.3% 8.9% 
75 5 0.6 2.6% 6.9% -3.0% 8.9% -0.2% 6.8% -0.2% 7.2% 
25 3 0.7 12.8% 19.7% -9.0% 19.9% 1.2% 12.0% -0.2% 12.7% 
50 3 0.7 6.3% 12.5% -5.4% 12.9% 0.4% 8.6% -0.3% 8.8% 
75 3 0.7 3.7% 8.9% -3.5% 9.6% 0.1% 7.1% -0.2% 7.0% 
25 5 0.7 4.7% 8.0% -5.6% 13.2% -0.5% 7.5% -0.5% 8.3% 
50 5 0.7 1.7% 5.0% -2.3% 7.1% -0.3% 5.0% -0.3% 5.7% 
75 5 0.7 1.1% 4.0% -1.5% 5.2% -0.2% 4.0% -0.2% 4.5% 
25 3 0.8 5.2% 9.4% -5.3% 11.8% -0.2% 7.0% -0.5% 7.6% 
50 3 0.8 2.4% 5.7% -2.5% 6.9% -0.1% 4.9% -0.2% 5.1% 
75 3 0.8 1.5% 4.3% -1.5% 5.1% 0.0% 3.9% 0.0% 4.0% 
25 5 0.8 1.7% 4.0% -2.6% 6.8% -0.4% 4.2% -0.3% 4.9% 
50 5 0.8 0.7% 2.7% -1.1% 3.8% -0.2% 2.7% -0.2% 3.2% 
75 5 0.8 0.4% 2.1% -0.7% 2.9% -0.1% 2.1% -0.1% 2.6% 
Note: The Mean values shown are calculated as (average estimate for a condition – population 
value) / population value. Root mean square error (RMSE) values shown are calculated as square 
root of average squared difference between estimate and population value / population value. 
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Table E2 

Results for Unequal Loadings (Selected Conditions) 

Sample Size 
Indicators 
Loadings 

Difference between population and sample statistics 
Maximal reliability Composite reliability 

Population 
(𝜌-$%& − 𝜌$%&) 

Sample 
(𝑟$%& − 𝜌$%&) 

Population 
(𝜌-'( − 𝜌'( ) 

Sample 
(𝑟'( − 𝜌'() 

Mean RMSE Mean RMSE Mean RMSE Mean RMSE 
25 3 0.6 25.7% 35.4% -13.9% 27.8% 5.5% 18.7% 0.5% 18.7% 
50 3 0.6 16.2% 27.1% -10.0% 20.2% 2.7% 13.6% -0.1% 13.3% 
75 3 0.6 11.7% 22.0% -7.6% 16.0% 1.7% 11.4% 0.0% 10.8% 
25 5 0.6 10.8% 15.4% -9.9% 20.4% -0.3% 11.6% -0.4% 12.7% 
50 5 0.6 4.2% 9.1% -4.6% 11.6% -0.3% 8.2% -0.3% 8.9% 
75 5 0.6 2.5% 6.8% -2.8% 8.3% -0.2% 6.6% -0.2% 7.2% 
25 3 0.7 11.7% 18.8% -9.1% 18.5% 1.1% 11.7% -0.5% 12.5% 
50 3 0.7 6.7% 13.8% -5.6% 12.1% 0.4% 8.5% -0.4% 8.6% 
75 3 0.7 4.5% 10.9% -3.9% 9.3% 0.2% 6.8% -0.3% 7.0% 
25 5 0.7 4.2% 7.6% -5.0% 11.6% -0.6% 7.3% -0.6% 8.2% 
50 5 0.7 1.6% 4.7% -2.2% 6.2% -0.4% 4.9% -0.3% 5.5% 
75 5 0.7 1.0% 3.6% -1.3% 4.6% -0.2% 4.0% -0.2% 4.5% 
25 3 0.8 4.4% 8.9% -4.8% 9.9% -0.1% 6.7% -0.6% 7.5% 
50 3 0.8 2.7% 6.7% -2.7% 6.1% -0.1% 4.7% -0.2% 5.0% 
75 3 0.8 1.9% 5.6% -1.9% 4.6% -0.1% 3.8% -0.1% 4.0% 
25 5 0.8 1.5% 3.7% -2.2% 5.2% -0.4% 4.1% -0.4% 4.8% 
50 5 0.8 0.7% 2.4% -0.9% 2.9% -0.2% 2.7% -0.1% 3.1% 
75 5 0.8 0.4% 1.8% -0.6% 2.2% -0.2% 2.1% -0.1% 2.6% 
Note: The Mean values shown are calculated as (average estimate for a condition – population 
value) / population value. Root mean square error (RMSE) values shown are calculated as square 
root of average squared difference between estimate and population value / population value. 
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Table E3 

Full Simulation Results for Unequal Loadings 

Sample 
Size 

Indicators Loadings Relative difference 
Maximal reliability Composite reliability 

Estimate 
vs. pop. 
(𝜌-𝑚𝑎𝑥 −
𝜌𝑚𝑎𝑥) 

Sample 
reliability 

vs. pop 
(𝑟𝑚𝑎𝑥 −
𝜌𝑚𝑎𝑥) 

Est. vs. 
sample 

reliability 
(𝜌-𝑚𝑎𝑥 −
𝑟𝑚𝑎𝑥) 

Estimate 
vs. pop. 
(𝜌-𝐶𝑅 −
𝜌𝐶𝑅) 

Sample 
reliability 

vs. pop 
(𝑟𝐶𝑅 −
𝜌𝐶𝑅) 

Est. vs. 
sample 

reliability 
(𝜌-𝐶𝑅 −
𝑟𝐶𝑅) 

25 3 0.6 25.7% -13.9% 39.6% 5.5% 0.5% 5.0% 
50 3 0.6 16.2% -10.0% 26.2% 2.7% -0.1% 2.8% 
75 3 0.6 11.7% -7.6% 19.3% 1.7% 0.0% 1.7% 
100 3 0.6 8.5% -5.8% 14.3% 1.2% -0.2% 1.4% 
150 3 0.6 5.6% -4.0% 9.6% 0.7% -0.1% 0.8% 
300 3 0.6 2.6% -2.0% 4.6% 0.3% 0.0% 0.3% 
500 3 0.6 1.4% -1.2% 2.6% 0.1% -0.1% 0.2% 

1000 3 0.6 0.7% -0.6% 1.3% 0.1% 0.0% 0.1% 
25 5 0.6 10.8% -9.9% 20.7% -0.3% -0.4% 0.1% 
50 5 0.6 4.2% -4.6% 8.8% -0.3% -0.3% 0.0% 
75 5 0.6 2.5% -2.8% 5.3% -0.2% -0.2% 0.0% 
100 5 0.6 1.9% -2.0% 3.9% -0.1% -0.1% 0.0% 
150 5 0.6 1.1% -1.3% 2.4% -0.1% 0.0% -0.1% 
300 5 0.6 0.5% -0.6% 1.1% -0.1% 0.0% -0.1% 
500 5 0.6 0.3% -0.4% 0.7% -0.1% -0.1% 0.0% 

1000 5 0.6 0.1% -0.2% 0.3% 0.0% 0.0% 0.0% 
25 7 0.6 5.6% -6.9% 12.5% -0.9% -0.4% -0.5% 
50 7 0.6 2.1% -2.9% 5.0% -0.4% -0.4% 0.0% 
75 7 0.6 1.3% -1.7% 3.0% -0.2% -0.2% 0.0% 
100 7 0.6 1.0% -1.3% 2.3% -0.2% -0.2% 0.0% 
150 7 0.6 0.6% -0.8% 1.4% -0.1% -0.1% 0.0% 
300 7 0.6 0.3% -0.4% 0.7% 0.0% 0.0% 0.0% 
500 7 0.6 0.2% -0.2% 0.4% 0.0% 0.0% 0.0% 

1000 7 0.6 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 9 0.6 3.6% -5.0% 8.6% -0.7% -0.5% -0.2% 
50 9 0.6 1.4% -2.0% 3.4% -0.4% -0.2% -0.2% 
75 9 0.6 0.9% -1.3% 2.2% -0.3% -0.2% -0.1% 
100 9 0.6 0.6% -1.0% 1.6% -0.2% -0.2% 0.0% 
150 9 0.6 0.4% -0.6% 1.0% -0.1% 0.0% -0.1% 
300 9 0.6 0.2% -0.3% 0.5% -0.1% 0.0% -0.1% 
500 9 0.6 0.1% -0.2% 0.3% 0.0% 0.0% 0.0% 

1000 9 0.6 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 3 0.7 11.7% -9.1% 20.8% 1.1% -0.5% 1.6% 
50 3 0.7 6.7% -5.6% 12.3% 0.4% -0.4% 0.8% 
75 3 0.7 4.5% -3.9% 8.4% 0.2% -0.3% 0.5% 
100 3 0.7 3.3% -3.0% 6.3% 0.1% -0.2% 0.3% 



Finite Sample Behavior of Maximal Reliability 74 
 

150 3 0.7 2.3% -1.9% 4.2% 0.2% 0.0% 0.2% 
300 3 0.7 1.0% -1.0% 2.0% 0.0% -0.1% 0.1% 
500 3 0.7 0.6% -0.5% 1.1% 0.0% 0.0% 0.0% 

1000 3 0.7 0.3% -0.3% 0.6% 0.0% 0.0% 0.0% 
25 5 0.7 4.2% -5.0% 9.2% -0.6% -0.6% 0.0% 
50 5 0.7 1.6% -2.2% 3.8% -0.4% -0.3% -0.1% 
75 5 0.7 1.0% -1.3% 2.3% -0.2% -0.2% 0.0% 
100 5 0.7 0.7% -1.0% 1.7% -0.2% -0.2% 0.0% 
150 5 0.7 0.5% -0.6% 1.1% -0.1% -0.1% 0.0% 
300 5 0.7 0.2% -0.3% 0.5% -0.1% -0.1% 0.0% 
500 5 0.7 0.1% -0.2% 0.3% 0.0% 0.0% 0.0% 

1000 5 0.7 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 7 0.7 2.1% -3.1% 5.2% -0.6% -0.4% -0.2% 
50 7 0.7 0.9% -1.3% 2.2% -0.3% -0.2% -0.1% 
75 7 0.7 0.5% -0.8% 1.3% -0.2% -0.2% 0.0% 
100 7 0.7 0.4% -0.6% 1.0% -0.1% -0.1% 0.0% 
150 7 0.7 0.2% -0.4% 0.6% -0.1% -0.1% 0.0% 
300 7 0.7 0.1% -0.2% 0.3% -0.1% -0.1% 0.0% 
500 7 0.7 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 

1000 7 0.7 0.0% -0.1% 0.1% 0.0% 0.0% 0.0% 
25 9 0.7 1.3% -2.2% 3.5% -0.5% -0.4% -0.1% 
50 9 0.7 0.5% -1.0% 1.5% -0.3% -0.2% -0.1% 
75 9 0.7 0.3% -0.6% 0.9% -0.2% -0.2% 0.0% 
100 9 0.7 0.2% -0.5% 0.7% -0.1% -0.1% 0.0% 
150 9 0.7 0.2% -0.3% 0.5% -0.1% -0.1% 0.0% 
300 9 0.7 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
500 9 0.7 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 

1000 9 0.7 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
25 3 0.8 4.4% -4.8% 9.2% -0.1% -0.6% 0.5% 
50 3 0.8 2.7% -2.7% 5.4% -0.1% -0.2% 0.1% 
75 3 0.8 1.9% -1.9% 3.8% -0.1% -0.1% 0.0% 
100 3 0.8 1.5% -1.5% 3.0% 0.0% -0.1% 0.1% 
150 3 0.8 1.0% -1.0% 2.0% 0.0% -0.1% 0.1% 
300 3 0.8 0.5% -0.5% 1.0% 0.0% -0.1% 0.1% 
500 3 0.8 0.3% -0.3% 0.6% 0.0% 0.0% 0.0% 

1000 3 0.8 0.2% -0.1% 0.3% 0.0% 0.0% 0.0% 
25 5 0.8 1.5% -2.2% 3.7% -0.4% -0.4% 0.0% 
50 5 0.8 0.7% -0.9% 1.6% -0.2% -0.1% -0.1% 
75 5 0.8 0.4% -0.6% 1.0% -0.2% -0.1% -0.1% 
100 5 0.8 0.3% -0.4% 0.7% -0.1% -0.1% 0.0% 
150 5 0.8 0.2% -0.3% 0.5% -0.1% -0.1% 0.0% 
300 5 0.8 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
500 5 0.8 0.0% -0.1% 0.1% 0.0% 0.0% 0.0% 

1000 5 0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
25 7 0.8 0.8% -1.3% 2.1% -0.4% -0.3% -0.1% 
50 7 0.8 0.3% -0.6% 0.9% -0.2% -0.2% 0.0% 
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75 7 0.8 0.2% -0.3% 0.5% -0.1% -0.1% 0.0% 
100 7 0.8 0.2% -0.2% 0.4% -0.1% 0.0% -0.1% 
150 7 0.8 0.1% -0.2% 0.3% 0.0% 0.0% 0.0% 
300 7 0.8 0.0% -0.1% 0.1% 0.0% 0.0% 0.0% 
500 7 0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

1000 7 0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
25 9 0.8 0.5% -0.9% 1.4% -0.3% -0.2% -0.1% 
50 9 0.8 0.2% -0.4% 0.6% -0.1% -0.1% 0.0% 
75 9 0.8 0.1% -0.2% 0.3% -0.1% -0.1% 0.0% 
100 9 0.8 0.1% -0.2% 0.3% 0.0% -0.1% 0.1% 
150 9 0.8 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
300 9 0.8 0.0% -0.1% 0.1% 0.0% 0.0% 0.0% 
500 9 0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

1000 9 0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Note: The values shown are calculated as (average estimate for a condition – population value) / 
population value. 
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Table E4 

Full Simulation Results for Equal Loadings 

Sample 
Size 

Indicators Loadings Relative difference 
Maximal reliability Composite reliability 

Estimate 
vs. pop. 
(𝜌-𝑚𝑎𝑥 −
𝜌𝑚𝑎𝑥) 

Sample 
reliability 

vs. pop 
(𝑟𝑚𝑎𝑥 −
𝜌𝑚𝑎𝑥) 

Est. vs. 
sample 

reliability 
(𝜌-𝑚𝑎𝑥 −
𝑟𝑚𝑎𝑥) 

Estimate 
vs. pop. 
(𝜌-𝐶𝑅 −
𝜌𝐶𝑅) 

Sample 
reliability 

vs. pop 
(𝑟𝐶𝑅 −
𝜌𝐶𝑅) 

Est. vs. 
sample 

reliability 
(𝜌-𝐶𝑅 −
𝑟𝐶𝑅) 

25 3 0.6 28.4% -14.1% 42.5% 5.8% 0.6% 5.2% 
50 3 0.6 16.0% -10.0% 26.0% 2.4% -0.1% 2.5% 
75 3 0.6 10.3% -7.3% 17.6% 1.3% -0.2% 1.5% 
100 3 0.6 7.5% -5.5% 13.0% 1.0% -0.2% 1.2% 
150 3 0.6 4.2% -3.7% 7.9% 0.4% -0.2% 0.6% 
300 3 0.6 1.9% -1.6% 3.5% 0.2% 0.0% 0.2% 
500 3 0.6 1.1% -0.9% 2.0% 0.1% 0.0% 0.1% 

1000 3 0.6 0.5% -0.5% 1.0% 0.1% 0.0% 0.1% 
25 5 0.6 12.0% -10.7% 22.7% -0.1% -0.3% 0.2% 
50 5 0.6 4.5% -5.0% 9.5% -0.4% -0.3% -0.1% 
75 5 0.6 2.6% -3.0% 5.6% -0.2% -0.2% 0.0% 
100 5 0.6 1.8% -2.2% 4.0% -0.2% -0.2% 0.0% 
150 5 0.6 1.2% -1.4% 2.6% -0.1% -0.1% 0.0% 
300 5 0.6 0.6% -0.7% 1.3% 0.0% 0.0% 0.0% 
500 5 0.6 0.3% -0.4% 0.7% 0.0% -0.1% 0.1% 

1000 5 0.6 0.2% -0.2% 0.4% 0.0% 0.0% 0.0% 
25 7 0.6 6.3% -8.0% 14.3% -1.1% -0.7% -0.4% 
50 7 0.6 2.4% -3.2% 5.6% -0.4% -0.3% -0.1% 
75 7 0.6 1.4% -2.0% 3.4% -0.3% -0.3% 0.0% 
100 7 0.6 1.0% -1.5% 2.5% -0.2% -0.2% 0.0% 
150 7 0.6 0.7% -0.9% 1.6% -0.1% 0.0% -0.1% 
300 7 0.6 0.3% -0.5% 0.8% -0.1% -0.1% 0.0% 
500 7 0.6 0.2% -0.3% 0.5% 0.0% 0.0% 0.0% 

1000 7 0.6 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 9 0.6 4.1% -6.0% 10.1% -0.9% -0.5% -0.4% 
50 9 0.6 1.6% -2.4% 4.0% -0.4% -0.3% -0.1% 
75 9 0.6 1.0% -1.5% 2.5% -0.2% -0.2% 0.0% 
100 9 0.6 0.7% -1.1% 1.8% -0.2% -0.2% 0.0% 
150 9 0.6 0.5% -0.7% 1.2% -0.1% -0.1% 0.0% 
300 9 0.6 0.3% -0.3% 0.6% 0.0% 0.0% 0.0% 
500 9 0.6 0.2% -0.2% 0.4% 0.0% 0.0% 0.0% 

1000 9 0.6 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 3 0.7 12.8% -9.0% 21.8% 1.2% -0.2% 1.4% 
50 3 0.7 6.3% -5.4% 11.7% 0.4% -0.3% 0.7% 
75 3 0.7 3.7% -3.5% 7.2% 0.1% -0.2% 0.3% 
100 3 0.7 2.6% -2.6% 5.2% 0.0% -0.2% 0.2% 
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150 3 0.7 1.6% -1.7% 3.3% 0.0% -0.1% 0.1% 
300 3 0.7 0.8% -0.7% 1.5% 0.0% 0.0% 0.0% 
500 3 0.7 0.4% -0.5% 0.9% 0.0% -0.1% 0.1% 

1000 3 0.7 0.2% -0.3% 0.5% 0.0% 0.0% 0.0% 
25 5 0.7 4.7% -5.6% 10.3% -0.5% -0.5% 0.0% 
50 5 0.7 1.7% -2.3% 4.0% -0.3% -0.3% 0.0% 
75 5 0.7 1.1% -1.5% 2.6% -0.2% -0.2% 0.0% 
100 5 0.7 0.8% -1.1% 1.9% -0.1% -0.1% 0.0% 
150 5 0.7 0.5% -0.7% 1.2% -0.1% -0.1% 0.0% 
300 5 0.7 0.2% -0.3% 0.5% -0.1% -0.1% 0.0% 
500 5 0.7 0.1% -0.2% 0.3% 0.0% 0.0% 0.0% 

1000 5 0.7 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 7 0.7 2.5% -3.8% 6.3% -0.6% -0.5% -0.1% 
50 7 0.7 1.0% -1.5% 2.5% -0.2% -0.2% 0.0% 
75 7 0.7 0.6% -1.0% 1.6% -0.2% -0.2% 0.0% 
100 7 0.7 0.5% -0.7% 1.2% -0.1% -0.1% 0.0% 
150 7 0.7 0.3% -0.4% 0.7% 0.0% 0.0% 0.0% 
300 7 0.7 0.1% -0.2% 0.3% -0.1% -0.1% 0.0% 
500 7 0.7 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 

1000 7 0.7 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 9 0.7 1.6% -2.7% 4.3% -0.5% -0.4% -0.1% 
50 9 0.7 0.7% -1.1% 1.8% -0.2% -0.1% -0.1% 
75 9 0.7 0.4% -0.8% 1.2% -0.2% -0.2% 0.0% 
100 9 0.7 0.3% -0.5% 0.8% -0.1% -0.1% 0.0% 
150 9 0.7 0.2% -0.4% 0.6% -0.1% -0.1% 0.0% 
300 9 0.7 0.1% -0.2% 0.3% 0.0% 0.0% 0.0% 
500 9 0.7 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 

1000 9 0.7 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
25 3 0.8 5.2% -5.3% 10.5% -0.2% -0.5% 0.3% 
50 3 0.8 2.4% -2.5% 4.9% -0.1% -0.2% 0.1% 
75 3 0.8 1.5% -1.5% 3.0% 0.0% 0.0% 0.0% 
100 3 0.8 1.0% -1.2% 2.2% -0.1% -0.1% 0.0% 
150 3 0.8 0.6% -0.8% 1.4% -0.1% -0.1% 0.0% 
300 3 0.8 0.3% -0.4% 0.7% 0.0% 0.0% 0.0% 
500 3 0.8 0.2% -0.2% 0.4% 0.0% -0.1% 0.1% 

1000 3 0.8 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
25 5 0.8 1.7% -2.6% 4.3% -0.4% -0.3% -0.1% 
50 5 0.8 0.7% -1.1% 1.8% -0.2% -0.2% 0.0% 
75 5 0.8 0.4% -0.7% 1.1% -0.1% -0.1% 0.0% 
100 5 0.8 0.3% -0.5% 0.8% -0.1% -0.1% 0.0% 
150 5 0.8 0.2% -0.3% 0.5% -0.1% -0.1% 0.0% 
300 5 0.8 0.1% -0.2% 0.3% 0.0% 0.0% 0.0% 
500 5 0.8 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 

1000 5 0.8 0.0% -0.1% 0.1% 0.0% 0.0% 0.0% 
25 7 0.8 1.0% -1.7% 2.7% -0.3% -0.3% 0.0% 
50 7 0.8 0.4% -0.7% 1.1% -0.1% -0.1% 0.0% 



Finite Sample Behavior of Maximal Reliability 78 
 

75 7 0.8 0.3% -0.4% 0.7% -0.1% -0.1% 0.0% 
100 7 0.8 0.2% -0.3% 0.5% -0.1% -0.1% 0.0% 
150 7 0.8 0.1% -0.2% 0.3% -0.1% -0.1% 0.0% 
300 7 0.8 0.1% -0.1% 0.2% 0.0% 0.0% 0.0% 
500 7 0.8 0.0% -0.1% 0.1% 0.0% 0.0% 0.0% 

1000 7 0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
25 9 0.8 0.7% -1.3% 2.0% -0.3% -0.2% -0.1% 
50 9 0.8 0.3% -0.5% 0.8% -0.1% -0.1% 0.0% 
75 9 0.8 0.2% -0.3% 0.5% -0.1% -0.1% 0.0% 
100 9 0.8 0.1% -0.2% 0.3% 0.0% -0.1% 0.1% 
150 9 0.8 0.1% -0.2% 0.3% 0.0% 0.0% 0.0% 
300 9 0.8 0.0% -0.1% 0.1% 0.0% 0.0% 0.0% 
500 9 0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

1000 9 0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Note: The values shown are calculated as (average estimate for a condition – population value) / 
population value.  
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Table E5 

Full Simulation Results for Unequal Loadings (RMSE) 

Sample 
Size 

Indicators Loadings Difference between population and sample statistics 
Maximal reliability Composite reliability 

Population 
RMSE 

(𝜌-$%& −
𝜌$%&) 

Sample 
RMSE 
(𝑟$%& −
𝜌$%&) 

Population 
RMSE 
(𝜌-'( −
𝜌'( ) 

Sample 
RMSE 
(𝑟'( −
𝜌'( ) 

25 3 0.6 35.4% 27.8% 18.7% 18.7% 
50 3 0.6 27.1% 20.2% 13.6% 13.3% 
75 3 0.6 22.0% 16.0% 11.4% 10.8% 
100 3 0.6 18.0% 13.2% 9.8% 9.5% 
150 3 0.6 13.8% 9.8% 8.2% 7.6% 
300 3 0.6 8.2% 6.2% 5.7% 5.4% 
500 3 0.6 5.7% 4.5% 4.4% 4.3% 

1000 3 0.6 3.8% 2.9% 3.2% 3.0% 
25 5 0.6 15.4% 20.4% 11.6% 12.7% 
50 5 0.6 9.1% 11.6% 8.2% 8.9% 
75 5 0.6 6.8% 8.3% 6.6% 7.2% 
100 5 0.6 5.7% 6.6% 5.7% 6.2% 
150 5 0.6 4.5% 5.0% 4.6% 5.0% 
300 5 0.6 3.2% 3.4% 3.2% 3.5% 
500 5 0.6 2.4% 2.5% 2.4% 2.7% 

1000 5 0.6 1.7% 1.7% 1.8% 1.9% 
25 7 0.6 8.8% 15.4% 9.0% 9.9% 
50 7 0.6 5.3% 7.7% 5.8% 6.6% 
75 7 0.6 4.2% 5.6% 4.6% 5.3% 
100 7 0.6 3.5% 4.7% 3.9% 4.6% 
150 7 0.6 2.9% 3.5% 3.3% 3.6% 
300 7 0.6 2.1% 2.4% 2.3% 2.6% 
500 7 0.6 1.6% 1.8% 1.8% 2.0% 

1000 7 0.6 1.1% 1.3% 1.3% 1.4% 
25 9 0.6 5.9% 11.7% 6.9% 7.9% 
50 9 0.6 3.9% 5.9% 4.4% 5.3% 
75 9 0.6 3.2% 4.3% 3.6% 4.2% 
100 9 0.6 2.7% 3.6% 3.0% 3.7% 
150 9 0.6 2.2% 2.8% 2.4% 3.0% 
300 9 0.6 1.5% 2.0% 1.7% 2.0% 
500 9 0.6 1.2% 1.5% 1.3% 1.6% 

1000 9 0.6 0.8% 1.1% 1.0% 1.1% 
25 3 0.7 18.8% 18.5% 11.7% 12.5% 
50 3 0.7 13.8% 12.1% 8.5% 8.6% 
75 3 0.7 10.9% 9.3% 6.8% 7.0% 
100 3 0.7 9.0% 7.4% 5.8% 6.0% 
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150 3 0.7 6.9% 5.6% 4.8% 4.8% 
300 3 0.7 4.3% 3.5% 3.4% 3.5% 
500 3 0.7 3.3% 2.6% 2.7% 2.7% 

1000 3 0.7 2.2% 1.8% 1.9% 1.9% 
25 5 0.7 7.6% 11.6% 7.3% 8.2% 
50 5 0.7 4.7% 6.2% 4.9% 5.5% 
75 5 0.7 3.6% 4.6% 4.0% 4.5% 
100 5 0.7 3.2% 3.8% 3.4% 3.9% 
150 5 0.7 2.5% 2.9% 2.7% 3.0% 
300 5 0.7 1.8% 2.0% 1.9% 2.2% 
500 5 0.7 1.3% 1.5% 1.4% 1.7% 

1000 5 0.7 0.9% 1.1% 1.1% 1.2% 
25 7 0.7 4.5% 8.0% 5.3% 6.2% 
50 7 0.7 2.9% 4.2% 3.3% 4.0% 
75 7 0.7 2.4% 3.1% 2.8% 3.2% 
100 7 0.7 2.0% 2.6% 2.3% 2.8% 
150 7 0.7 1.7% 2.0% 1.8% 2.3% 
300 7 0.7 1.1% 1.5% 1.3% 1.6% 
500 7 0.7 0.9% 1.1% 1.0% 1.3% 

1000 7 0.7 0.7% 0.8% 0.7% 0.9% 
25 9 0.7 3.2% 5.8% 4.0% 4.9% 
50 9 0.7 2.2% 3.2% 2.6% 3.2% 
75 9 0.7 1.8% 2.4% 2.1% 2.6% 
100 9 0.7 1.5% 2.1% 1.8% 2.2% 
150 9 0.7 1.2% 1.5% 1.4% 1.8% 
300 9 0.7 0.9% 1.1% 1.0% 1.2% 
500 9 0.7 0.7% 0.9% 0.8% 1.0% 

1000 9 0.7 0.4% 0.5% 0.6% 0.7% 
25 3 0.8 8.9% 9.9% 6.7% 7.5% 
50 3 0.8 6.7% 6.1% 4.7% 5.0% 
75 3 0.8 5.6% 4.6% 3.8% 4.0% 
100 3 0.8 4.8% 3.8% 3.2% 3.6% 
150 3 0.8 3.8% 2.9% 2.6% 2.7% 
300 3 0.8 2.5% 1.8% 1.8% 2.0% 
500 3 0.8 1.9% 1.4% 1.4% 1.5% 

1000 3 0.8 1.3% 0.9% 1.1% 1.1% 
25 5 0.8 3.7% 5.2% 4.1% 4.8% 
50 5 0.8 2.4% 2.9% 2.7% 3.1% 
75 5 0.8 1.8% 2.2% 2.1% 2.6% 
100 5 0.8 1.6% 1.7% 1.8% 2.1% 
150 5 0.8 1.3% 1.4% 1.4% 1.8% 
300 5 0.8 0.9% 0.9% 1.0% 1.2% 
500 5 0.8 0.6% 0.6% 0.8% 0.9% 

1000 5 0.8 0.4% 0.4% 0.6% 0.7% 
25 7 0.8 2.1% 3.4% 2.9% 3.5% 
50 7 0.8 1.4% 1.8% 1.8% 2.3% 
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75 7 0.8 1.2% 1.4% 1.5% 1.8% 
100 7 0.8 0.9% 1.2% 1.2% 1.5% 
150 7 0.8 0.7% 0.9% 1.0% 1.3% 
300 7 0.8 0.5% 0.6% 0.8% 0.9% 
500 7 0.8 0.4% 0.5% 0.5% 0.6% 

1000 7 0.8 0.3% 0.3% 0.4% 0.4% 
25 9 0.8 1.5% 2.4% 2.1% 2.8% 
50 9 0.8 0.9% 1.4% 1.4% 1.8% 
75 9 0.8 0.8% 1.0% 1.2% 1.4% 
100 9 0.8 0.6% 0.8% 1.0% 1.3% 
150 9 0.8 0.5% 0.7% 0.7% 1.0% 
300 9 0.8 0.4% 0.5% 0.5% 0.7% 
500 9 0.8 0.3% 0.3% 0.4% 0.5% 

1000 9 0.8 0.2% 0.2% 0.3% 0.4% 
Note: Root mean square error (RMSE) values shown are calculated as square root of average 
squared difference between estimate and population value / population value. 
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Table E6 

Full Simulation Results for Equal Loadings (RMSE) 

Sample 
Size 

Indicators Loadings Difference between population and sample statistics 
Maximal reliability Composite reliability 

Population 
RMSE 

(𝜌-$%& −
𝜌$%&) 

Sample 
RMSE 
(𝑟$%& −
𝜌$%&) 

Population 
RMSE 
(𝜌-'( −
𝜌'( ) 

Sample 
RMSE 
(𝑟'( −
𝜌'( ) 

25 3 0.6 37.4% 28.7% 18.8% 19.0% 
50 3 0.6 26.3% 21.0% 13.9% 13.4% 
75 3 0.6 19.4% 16.6% 11.6% 10.8% 
100 3 0.6 15.0% 13.4% 10.0% 9.6% 
150 3 0.6 10.5% 9.9% 8.4% 7.6% 
300 3 0.6 6.4% 6.2% 5.9% 5.4% 
500 3 0.6 4.8% 4.6% 4.6% 4.3% 

1000 3 0.6 3.3% 3.0% 3.2% 3.0% 
25 5 0.6 16.5% 22.2% 11.7% 12.9% 
50 5 0.6 8.9% 12.5% 8.4% 8.9% 
75 5 0.6 6.9% 8.9% 6.8% 7.2% 
100 5 0.6 5.8% 7.2% 5.7% 6.2% 
150 5 0.6 4.6% 5.6% 4.6% 5.0% 
300 5 0.6 3.3% 3.7% 3.3% 3.5% 
500 5 0.6 2.4% 2.8% 2.4% 2.7% 

1000 5 0.6 1.8% 1.9% 1.8% 1.9% 
25 7 0.6 9.5% 17.2% 9.2% 10.0% 
50 7 0.6 5.6% 8.7% 5.9% 6.6% 
75 7 0.6 4.5% 6.3% 4.6% 5.4% 
100 7 0.6 3.9% 5.3% 4.0% 4.6% 
150 7 0.6 3.1% 4.0% 3.3% 3.8% 
300 7 0.6 2.3% 2.8% 2.3% 2.6% 
500 7 0.6 1.8% 2.1% 1.8% 2.0% 

1000 7 0.6 1.3% 1.5% 1.3% 1.4% 
25 9 0.6 6.5% 13.3% 7.1% 8.0% 
50 9 0.6 4.2% 6.7% 4.6% 5.4% 
75 9 0.6 3.5% 4.9% 3.6% 4.2% 
100 9 0.6 3.0% 4.2% 3.0% 3.7% 
150 9 0.6 2.4% 3.2% 2.5% 3.0% 
300 9 0.6 1.7% 2.2% 1.8% 2.2% 
500 9 0.6 1.3% 1.7% 1.3% 1.7% 

1000 9 0.6 1.0% 1.2% 1.0% 1.2% 
25 3 0.7 19.7% 19.9% 12.0% 12.7% 
50 3 0.7 12.5% 12.9% 8.6% 8.8% 
75 3 0.7 8.9% 9.6% 7.1% 7.0% 
100 3 0.7 7.1% 7.7% 6.1% 6.2% 



Finite Sample Behavior of Maximal Reliability 83 
 

150 3 0.7 5.4% 5.8% 5.0% 4.8% 
300 3 0.7 3.6% 3.8% 3.5% 3.5% 
500 3 0.7 2.7% 2.8% 2.7% 2.7% 

1000 3 0.7 1.9% 1.9% 1.9% 1.9% 
25 5 0.7 8.0% 13.2% 7.5% 8.3% 
50 5 0.7 5.0% 7.1% 5.0% 5.7% 
75 5 0.7 4.0% 5.2% 4.0% 4.5% 
100 5 0.7 3.4% 4.2% 3.4% 3.9% 
150 5 0.7 2.8% 3.4% 2.8% 3.1% 
300 5 0.7 1.9% 2.3% 1.9% 2.2% 
500 5 0.7 1.4% 1.7% 1.4% 1.7% 

1000 5 0.7 1.1% 1.2% 1.1% 1.2% 
25 7 0.7 4.9% 9.4% 5.4% 6.3% 
50 7 0.7 3.2% 4.9% 3.4% 4.1% 
75 7 0.7 2.6% 3.7% 2.8% 3.3% 
100 7 0.7 2.3% 3.1% 2.3% 2.9% 
150 7 0.7 1.8% 2.4% 2.0% 2.3% 
300 7 0.7 1.3% 1.7% 1.4% 1.6% 
500 7 0.7 1.0% 1.3% 1.0% 1.3% 

1000 7 0.7 0.7% 0.9% 0.7% 0.9% 
25 9 0.7 3.6% 7.1% 4.1% 5.0% 
50 9 0.7 2.5% 3.8% 2.7% 3.3% 
75 9 0.7 2.0% 2.9% 2.1% 2.6% 
100 9 0.7 1.8% 2.5% 1.8% 2.2% 
150 9 0.7 1.5% 1.9% 1.5% 1.8% 
300 9 0.7 1.0% 1.3% 1.0% 1.3% 
500 9 0.7 0.8% 1.0% 0.8% 1.0% 

1000 9 0.7 0.6% 0.7% 0.6% 0.7% 
25 3 0.8 9.4% 11.8% 7.0% 7.6% 
50 3 0.8 5.7% 6.9% 4.9% 5.1% 
75 3 0.8 4.3% 5.1% 3.9% 4.0% 
100 3 0.8 3.4% 4.2% 3.3% 3.6% 
150 3 0.8 2.7% 3.1% 2.7% 2.9% 
300 3 0.8 1.9% 2.1% 1.9% 2.0% 
500 3 0.8 1.4% 1.7% 1.4% 1.5% 

1000 3 0.8 1.1% 1.1% 1.1% 1.1% 
25 5 0.8 4.0% 6.8% 4.2% 4.9% 
50 5 0.8 2.7% 3.8% 2.7% 3.2% 
75 5 0.8 2.1% 2.9% 2.1% 2.6% 
100 5 0.8 1.8% 2.3% 1.9% 2.2% 
150 5 0.8 1.4% 1.9% 1.4% 1.8% 
300 5 0.8 1.0% 1.2% 1.0% 1.2% 
500 5 0.8 0.8% 1.0% 0.8% 1.0% 

1000 5 0.8 0.6% 0.7% 0.6% 0.7% 
25 7 0.8 2.6% 4.8% 2.9% 3.6% 
50 7 0.8 1.7% 2.6% 1.8% 2.3% 
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75 7 0.8 1.4% 2.1% 1.5% 1.8% 
100 7 0.8 1.2% 1.7% 1.3% 1.6% 
150 7 0.8 1.0% 1.3% 1.1% 1.3% 
300 7 0.8 0.8% 1.0% 0.8% 0.9% 
500 7 0.8 0.5% 0.8% 0.5% 0.6% 

1000 7 0.8 0.4% 0.5% 0.4% 0.5% 
25 9 0.8 1.9% 3.6% 2.2% 2.9% 
50 9 0.8 1.4% 2.0% 1.4% 1.8% 
75 9 0.8 1.1% 1.6% 1.2% 1.5% 
100 9 0.8 1.0% 1.4% 1.0% 1.3% 
150 9 0.8 0.7% 1.1% 0.7% 1.0% 
300 9 0.8 0.5% 0.7% 0.5% 0.7% 
500 9 0.8 0.4% 0.5% 0.4% 0.5% 

1000 9 0.8 0.3% 0.4% 0.3% 0.4% 
Note: Root mean square error (RMSE) values shown are calculated as square root of average 
squared difference between estimate and population value / population value. 

 
 

  



Finite Sample Behavior of Maximal Reliability 85 
 

Supplemental Material, “A Note on the Finite Sample Behavior of Maximal Reliability” 

 

Appendix F – List of Reviewed Articles 

Authors Publication Year Sample 
Size 

Neff, Kristin D.; Whittaker, T.; Karl, 
Anke 

Journal of Personality Assessment Forth. 215 

Derby, Dustin C.; Weinert, Daniel J. Organizational Justice 2016 500 
Ruzgar, Nursel Selver; Kocak, Akin; 
Ruzgar, Bahadtin 

WSEAS Transactions on Business 
and Economics 

2015 720 

Reid, M. Jamila; Webster-Stratton, 
Carolyn; Baydar, Nazli 

Journal of Clinical Child and 
Adolescent Psychology 

2004 882 

Vautier, Stephane Journal of Personality Assessment 2004 888 
Vautier, Stephane; Callahan, Stacey; 
Moncany, Delphine; Sztulman, Henri 

Structural Equation Modeling 2004 1017 

Buehner, Markus; Krumm, Stefan; 
Pick, Marion 

Intelligence 2005 124 

Yang, Sung-Un; Grunig, James E. Journal of Communication 
Management 

2005 317 

Brunner, Martin; SÜβ, Heinz-Martin Educational and Psychological 
Measurement 

2005 1233 

Buehner, Markus; Krumm, Stefan; 
Ziegler, Matthias; Pluecken, Tonja 

Journal of Individual Differences 2006 121 

Bühner, Markus; König, Cornelius J.; 
Pick, Marion; Krumm, Stefan 

Human Performance 2006 135 

Hofferth, Sandra L. Sociological Methodology 2006 605 
Jensen, G. L.; Vellas, Bruno; Garry, 
Phillip; Charney, Pam; others 

The Journal of Nutrition, Health & 
Aging 

2006 1324 

Miller, Carla K.; Gutschall, Melissa 
Davis; Lawrence, Frank 

Public Health Nutrition 2007 108 

Loyens, Sofie MM; Rikers, Remy 
MJP; Schmidt, Henk G. 

Studies in Higher Education 2007 180 

Loyens, Sofie MM; Rikers, Remy 
MJP; Schmidt, Henk G. 

European Journal of Psychology of 
Education 

2007 209 

Yang, Sung-Un Journal of Public Relations Research 2007 300 
Lew, Magdeleine DN; Schmidt, Henk 
G. 

Proceedings Ascilite Singapore 2007 327 

Gignac, Gilles E.; Palmer, Benjamin 
R.; Stough, Con 

Journal of Personality Assessment 2007 363 

Gignac, Gilles E.; Bates, Timothy C.; 
Jang, Kerry L. 

Personality and Individual 
Differences 

2007 539 

Whiteside-Mansell, Leanne; Ayoub, 
Catherine; McKelvey, Lorraine; 

Parenting: Science and Practice 2007 1122 
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Faldowski, Richard A.; Hart, Andrea; 
Shears, Jeffery 
Loyens, Sofie MM; Rikers, Remy 
MJP; Schmidt, Henk G. 

Instructional Science 2008 98 

Miller, Carla K.; Gutschall, Melissa Health Education & Behavior 2008 103 
Yun, Seong-Hun Journal of Public Relations Research 2008 113 
Shears, Jeffrey K.; Whiteside-
Mansell, Leanne; McKelvey, 
Lorraine; Selig, James 

Social Work Research 2008 315 

Ziegler, Matthias; Buehner, Markus Educational and Psychological 
Measurement 

2008 341 

Myers, Nicholas D.; Feltz, Deborah 
L.; Chase, Melissa A.; Reckase, Mark 
D.; Hancock, Gregory R. 

Educational and Psychological 
Measurement 

2008 799 

Derby, Dustin C.; Smith, Thomas J. Measurement and Evaluation in 
Counseling and Development 

2008 1680 

Owen, Steven V.; Toepperwein, Mary 
Anne; Marshall, Carolyn E.; 
Lichtenstein, Michael J.; Blalock, 
Cheryl L.; Liu, Yan; Pruski, Linda A.; 
Grimes, Kandi 

Science Education 2008 1754 

Thompson, Amanda L.; Mendez, 
Michelle A.; Borja, Judith B.; Adair, 
Linda S.; Zimmer, Catherine R.; 
Bentley, Margaret E. 

Appetite 2009 150 

Levy, Susan S.; Readdy, R. Tucker Measurement in Physical Education 
and Exercise Science 

2009 151 

Rotgans, Jerome; Schmidt, Henk Educational Studies 2009 155 
Mitchell, Mary M.; Knowlton, Amy AIDS Patient Care and STDs 2009 207 
Loyens, Sofie MM; Rikers, Remy 
MJP; Schmidt, Henk G. 

British Journal of Educational 
Psychology 

2009 212 

Silvia, Paul J.; Martin, Christopher; 
Nusbaum, Emily C. 

Thinking Skills and Creativity 2009 226 
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