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Abstract
As an emerging research field, multiobjective robust optimization employs minmax
robustness as the most commonly used concept. Light robustness is a concept in which
a parameter, tolerable degradations, can be used to control the loss in the objective
function values in the most typical scenario for gaining in robustness. In this paper,
we develop a lightly robust interactive multiobjective optimization method, LiRoMo,
to support a decision maker to find a most preferred lightly robust efficient solution
with a good balance between robustness and the objective function values in the most
typical scenario. In LiRoMo, we formulate a lightly robust subproblem utilizing an
achievement scalarizing function which involves a reference point specified by the
decision maker. With this subproblem, we compute lightly robust efficient solutions
with respect to the decision maker’s preferences. With LiRoMo, we support the deci-
sion maker in understanding the lightly robust efficient solutions with an augmented
value path visualization. We use two measures ‘price to be paid for robustness’ and
‘gain in robustness’ to support the decisionmaker in considering the trade-offs between
robustness and quality. As an example to illustrate the advantages of the method, we
formulate and solve a simple investment portfolio optimization problem.
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1 Introduction

Manydecision-makingproblems involvemultiple criteria to be optimized and they also
include uncertainty from different sources such as uncertain future developments and
imprecise measurements. Due to the uncertainty, the outcome of implementing a deci-
sion can become unexpected and undesired. In recent years, both researchers and prac-
titioners have started to pay attention to dealing with multiple criteria and the involved
uncertainty simultaneously. The approaches employed depend on the availability of
data and the expert knowledge of the decision maker. When enough data about the
uncertainty are available, problems can be solved with stochastic approaches (see e.g.,
Gutjahr and Pichler 2016) and when the expert judgments on fuzzy memberships can
be relied on, fuzzy approaches can be implemented (see e.g., Inuiguchi et al. 1990). On
the other hand, when there is no sufficient data available or the decisionmaker does not
have sufficient knowledge to judge the memberships, robust optimization approaches
can be utilized (see e.g., Ide and Schöbel 2016; Wiecek and Dranichak 2016).

In robust optimization approaches, typically the uncertainty is modeled as param-
eters whose exact values are not known but are assumed to stem from a set. We call
this set an uncertainty set. Possible realizations of the unknown parameters are called
scenarios, which are the elements in the uncertainty set. We call the most typical
or expected scenario the nominal scenario and the objective function values in the
nominal scenario as the nominal quality. In order to find solutions when uncertainty
is taken into account, different robustness concepts have been developed. Flimsily
robust solutions (Bitran 1980; Ide and Schöbel 2016) are the best solutions in one of
the possible realizations of the uncertain parameters. Highly robust solutions (Bitran
1980; Dranichak andWiecek 2018; Goberna et al. 2018; Ide and Schöbel 2016) are the
best solutions in all the possible realizations of uncertain parameters at the same time.
The most common concepts used in multiobjective robust optimization belong to the
family of minmax robustness concepts (e.g., Bokrantz and Fredriksson 2017; Ehrgott
et al. 2014; Eichfelder et al. 2017; Kuroiwa and Lee 2012). For minmax robustness,
we optimize the objective functions in the worst case over all scenarios. The solutions
computed are said to be minmax robust efficient.

However, minmax robust efficient solutions are not always easy to compute. In
addition, the conservatism of minmax robustness has been recognized in single objec-
tive cases (see e.g., Ben-Tal et al. 2010; Bertsimas and Sim 2004; Schöbel 2014), i.e.,
the objective function value of a minmax robust solution is usually not that good in
other scenarios. Also, the decision maker may not be willing to make decisions based
on the worst possible realizations of the uncertain parameters. On the other hand,
if a solution is found only by optimizing in the nominal scenario, the possibility of
realizations of other scenarios is ignored. So, the decision maker may want to focus
on the nominal scenario but make decisions which are still valid in other scenarios.
Based on the consideration of both robustness and the nominal quality, developments
in single objective cases have led to different concepts in controlling the degradation
of the objective function value in the nominal scenario (see e.g., Ben-Tal et al. 2004,
2009, 2010; Bertsimas and Sim 2004; Goerigk and Schöbel 2016; Schöbel 2014).
These concepts share the same idea of balancing between robustness and the nominal
quality.
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Similar thoughts have initiated developments inmultiobjective optimization inHas-
sanzadeh et al. (2014), Ide and Schöbel (2016), Kuhn et al. (2016). In Hassanzadeh
et al. (2014), a multiobjective version of the concept proposed in Bertsimas and Sim
(2004) has been developed and the robust optimization problem is solved based on
the augmented Chebychev function (see e.g., Steuer and Choo 1983). The concept
of light robustness has been originally proposed in Fischetti and Monaci (2009) for
single objective linear problems with uncertain parameters which stem from an inter-
val uncertainty set and generalized in Schöbel (2014) for other types of uncertainty
sets and quasi-convex objective functions. It has been extended to light robust effi-
ciency for multiobjective cases in Ide and Schöbel (2016). The idea of light robust
efficiency is to find a robust solution with tolerable degradations in the nominal qual-
ity. Concepts based on light robustness have been developed in Kuhn et al. (2016)
for problems where uncertain parameters are involved in one of the two objectives
in bi-objective optimization problems. An algorithm for bi-objective combinatorial
optimization problems with a finite uncertainty set has also been developed. Solution
methods for supporting a decisionmaker to find amost preferred lightly robust efficient
solution when uncertainty is involved in multiple objectives have not been published.

In light robustness, the loss in the nominal quality is controlled by a parameter,
indicating tolerable degradations in nominal quality. With respect to the tolerable
degradations in the nominal quality, we optimize in the worst case to seek for a most
robust solution. By doing so, usually, the computed solutions do not have as good
quality in the worst case as minmax robust efficient solutions but they are usually
better in terms of nominal quality. It is proven in Ide and Schöbel (2016) that with
a sufficiently large tolerance on the degradations in the nominal quality, a computed
lightly robust efficient solution is a minmax robust efficient solution. The relation-
ships between minmax robust efficient, lightly robust efficient and nominal efficient
solutions are analyzed in Zhou-Kangas and Schöbel (2018). It is also proven that the
lightly robust efficient solutions are good trade-offs between robustness and the nom-
inal quality. Thus, with the concept of light robust efficiency, the decision maker can
focus on the nominal quality but find solutions that are also valid in other scenarios.
This is why we focus on utilizing the concept of light robustness.

In the solution process of amultiobjective optimization problem, the decisionmaker
can utilize the parameter, tolerable degradations in the nominal quality, to control the
trade-off between robustness and the nominal quality in order to find a solution with
a good balance in both respects. As there usually is a set of efficient solutions, the
decision maker needs support to understand the trade-offs among the objectives to
choose a final solution. When robustness is considered in the solution process, the
decision maker needs further support, not only for the trade-offs among the objectives
but also the trade-offs between robustness and the nominal quality.

In this paper, we focus on applying light robustness for decision support and develop
an interactive method, LiRoMo, to support the decision maker to find a good balance
between robustness and the nominal quality by finding a most preferred lightly robust
efficient solution. Interactive methods (see e.g., Miettinen 1999; Steuer 1986) are a
category of solution methods for multiobjective optimization problems. With interac-
tive methods, the interactive solution process starts by presenting an initial solution
to the decision maker. If the decision maker is not satisfied, (s)he can specify pref-

123



394 Y. Zhou-Kangas, K. Miettinen

erences for a more desired solution. Then, a scalarized subproblem is solved to find
a new solution which satisfies the preferences as well as possible. This process con-
tinues until the decision maker finds a most preferred solution. During the interactive
solution process, the decision maker can learn about the problem, for example, some
specific properties of the problem. The decision maker can also learn about the attain-
able objective function values and at the same time learn how achievable her or his
own preferences are.

When seeking a most preferred lightly robust efficient solution, the decision maker
needs to consider the robustness and the nominal quality of solutions at the same time.
So, (s)he should be provided the opportunity not only to learn about the problem, the
attainable objective function values, and her or his own preferences but also to learn
about the trade-offs between robustness and the nominal quality. With an interactive
method, we can provide such support. As a result, the decision maker can eventually
find a final solution with a satisfactory balance between robustness and the nominal
quality.

The decision maker directs the interactive solution process and we need to gen-
erate solutions utilizing the decision maker’s preferences. As a common approach
to compute efficient solutions in multiobjective optimization, scalarization functions
combine multiple objectives (and preferences) into a single objective such that an
optimal solution of the scalarized problem is an efficient solution to the multiobjective
optimization problem. Scalarization for computing minmax robust efficient solutions
has been discussed in Bokrantz and Fredriksson (2017). In the LiRoMo method, we
formulate a lightly robust subproblem based on an achievement scalarization func-
tion (Wierzbicki 1986). For computing lightly robust efficient solutions efficiently, we
reformulate the subproblem by utilizing the properties of the objective functions and
the uncertainty sets. For supporting the decision maker to understand the trade-offs
between robustness and the nominal quality, we quantify the gain in robustness and
the price to be paid for robustness. In order to effectively illustrate the solutions to the
decision maker, we augment the value path visualization (Miettinen 2014) to support
the decision maker.

The rest of the paper is organized as follows: Sect. 2 describes the definitions and
background information needed which is followed by Sect. 3 where we formulate the
lightly robust subproblembasedon the achievement scalarizing function andpresent its
reformulation. In Sect. 4, we describe the LiRoMomethod for supporting the decision-
making process of balancing between robustness and quality. Then we formulate and
solve an investment portfolio optimization problem to demonstrate the application of
the LiRoMo method in Sect. 5 and conclude in Sect. 6.

2 Preliminaries

2.1 Multiobjective optimization under uncertainty

We consider multiobjective optimization problems where some parameters in the
objective functions are unknown but stem from an uncertainty set U in the follow-
ing form:
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(
minimize ( f1(x, ξ), . . . , fk(x, ξ))

subject to x ∈ X

)
ξ∈U

, (1)

where x = (x1, . . . , xn)T is the decision vector which belongs to a feasible set X ∈ R
n

and ξ represents the uncertain parameters which stem from the set U . We assume that
a nominal scenario ξ̂ is known. When robustness does not play a role, the problem is
solved in the nominal scenario as a deterministic problem:

minimize
(
f1(x, ξ̂ ), . . . , fk(x, ξ̂ )

)
subject to x ∈ X .

(2)

We call problem (2) a nominal problem and for each x ∈ X , we define the objective
vector f nom(x) := ( f1(x, ξ̂ ), . . . , fk(x, ξ̂ ))T as its nominal quality. We say that x∗
is an efficient (or Pareto optimal) solution to (2), if there does not exist any x ′ ∈ X
such that f nomi (x ′) ≤ f nomi (x∗) for all i = 1, ..., k and f nomj (x ′) < f nomj (x∗) for at
least one j . The set of efficient solutions to (2) is denoted by Xnom. Problem (2) can
be solved with methods for deterministic multiobjective optimization problems in the
following form where no uncertainty is involved:

minimize ( f1(x), . . . , fk(x))
subject to x ∈ X .

(3)

For decision making, it is usually useful for the decision maker to know the ranges
of the objective function values in Xnom. The ideal objective vector zideal and the
nadir objective vector znad can provide information on the ranges. The ideal objective
vector is formed by the individual optima of each objective function. The nadir objec-
tive vector gives the upper bounds of the objective vectors correspond to Xnom. The
nadir objective vector can be approximated by for example the payoff table (see e.g.,
Miettinen 1999; Steuer 1986). This approximated vector can over or underestimate the
nadir objective vector. There are also other ways to approximate the nadir objective
vector (see e.g., Deb et al. 2010). For computational reasons, we also define a utopian
objective vector zuto = (zideal1 − a, . . . , zidealk − a)T , where a > 0 is a small scalar.

2.2 Minmax robustness

Minmax robust efficient solutions are found by optimizing in the worst case. The
values of the uncertain parameters with which a solution x ∈ X attains its worst
objective function values are called the worst-case scenarios or simply worst cases.
For a fixed x ∈ X , finding its worst-case objective vector(s) requires maximizing k
objectives simultaneously. If the problem is objective-wise uncertain, i.e., the uncertain
parameters in the objective functions do not relate to each other, see (Ehrgott et al.
2014) for a formal definition, there exists a single worst-case scenario. Otherwise,
there usually exists a set of worst-case scenarios.

In this paper, we employ the concept called point-based minmax robustness (see
Fliege and Werner 2014; Kuroiwa and Lee 2012) for optimizing in the worst case. A
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396 Y. Zhou-Kangas, K. Miettinen

point-based minmax robust optimization problem is defined as follows:

minimize

(
sup
ξ∈U

f1(x, ξ), . . . , sup
ξ∈U

fk(x, ξ)

)

subject to x ∈ X .

(4)

In this formulation, with a fixed x ∈ X , the worst-case objective function values are
represented by an objective vector. This vector is formed by the individual maxima
of each objective function with respect to the uncertain parameters involved. So, we
consider a single worst case objective vector in the solution process of problems
regardless of if the problem is objective-wise uncertain or not. However, the point-
based worst case usually does not realize i.e., the objective functions do not attain
their worst values simultaneously unless the problem is objective-wise uncertain. We
use f wc(x) := ( f1(x, ξ̄ ), . . . , fk(x, ξ̄ ))T to represent a point-based minmax robust
objective vector for a fixed x ∈ X . The vector f wc consists of the individual maxima
of each objective function. We refer to f wc as the worst case.

If the decision maker wishes to concentrate only on robustness, we can solve prob-
lem (4) to find point-based minmax robust efficient solutions for her or him. For
helping the decision maker to understand the ranges of the objective function values
of the point-based robust efficient solutions, we can identify the robust ideal objective
vector zideal,wc and the robust nadir objective vector znad,wc. The robust ideal objective
vector zideal,wc is formed by the individual minima of the objective functions in prob-
lem (4) and znad,wc can be approximated by the payoff table. Corresponding to the
nominal utopian objective vector, we also have the robust utopian objective vectors
zuto,wc = (zideal,wc1 − a, . . . , zideal,wck − a)T , where a > 0 is a small scalar.

2.3 Light robustness

In the concept of light robustness, we assume that the set Xnom is nonempty. The idea
is that we first determine some x̂ ∈ Xnom, and thenwe look for themost robust solution
(i.e., optimize in the worst case) with tolerable degradations in the nominal quality.
The tolerable degradations are given by ξ ∈ R

k , whose component εi represents the
allowed degradation of f nomi .

For each x̂ ∈ Xnom, the point-based lightly robust problem with respect to (1) can
be defined as follows:

minimize

(
sup
ξ∈U

f1(x, ξ), . . . , sup
ξ∈U

fk(x, ξ)

)

subject to x ∈ X
f nomi (x) ≤ f nomi (x̂) + εi for all i = 1, . . . , k.

(5)

In this formulation, we refer to F light(x̂, ε) := {x ∈ X : f nomi (x) ≤ f nomi (x̂) +
εi for all i = 1, . . . , k} as the lightly robust feasible set. Lightly robust efficient
solutions are identified by optimizing in the worst case with respect to the lightly
robust feasible set. We say that a solution x light,∗ ∈ F light(x̂, ε) is lightly robust
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Fig. 1 Light robustness

efficient if there does not exists any solution x light,∗∗ ∈ F light(x̂, ε) such that
f wci (x light,∗∗) ≤ f wci (x light,∗) for all i = 1, . . . , k and f wcj (x light,∗∗) < f wcj (x light,∗)
for at least one j . The set of lightly robust efficient solutions is denoted by X light,ε.

By varying the value of ε, we can alter the trade-offs between robustness and
the nominal quality in (5). Figure 1 illustrates the idea of light robustness with two
objectives. The dashed line represents the set f nom(Xnom). The dot represents the
nominal objective vector f nom(x̂) of the pre-selected nominal efficient solution x̂ .
With a given ε, the area which can contain the nominal objective vectors of lightly
robust efficient solutions is indicated by the dotted lines.

In Zhou-Kangas and Schöbel (2018), the gain in robustness and the price to be
paid for robustness are defined for fixed nominal efficient and lightly robust efficient
solutions. With fixed x̂ ∈ Xnom and x light,ε ∈ X light,ε, we can quantify the gain in
robustness by comparing their corresponding objective vectors in the worst case with
the following measure:

gain(x light,ε, x̂) = ‖ f wc(x̂) − f wc(x light,ε)‖∞. (6)

The notation ‖ · ‖∞ represents the L∞ norm, which tells the maximum gain in robust-
ness among the objectives. Other norms can also be used, for example, ‖ · ‖1 can give
the value on the average gain in robustness among the objectives. Analogously, with
fixed x̂ ∈ Xnom and x light,ε ∈ X light,ε, we can quantify the price to be paid for robust-
ness by comparing their corresponding objective vectors in the nominal scenario with
the following measure:

price(x light,ε, x̂) = ‖ f nom(x̂) − f nom(x light,ε)‖∞. (7)

2.4 Achievement scalarizing function

As mentioned earlier, one approach to solving multiobjective optimization problems
in the form of (3) is to formulate a single objective optimization subproblem by
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398 Y. Zhou-Kangas, K. Miettinen

scalarizing. The achievement scalarizing function (Wierzbicki 1986) is one of the
widely used scalarizing functions. In this paper, we utilize the following subproblem
based on a variant of the achievement scalarizing function:

minimize α + ρ

k∑
i=1

wi ( fi (x) − z̄i )

subject to wi ( fi (x) − z̄i ) ≤ α for all i = 1, . . . , k
x ∈ X ,

(8)

where ρ is a small scalar bounding the trade-offs among the objectives, z̄ is a reference
point and its components z̄i are aspiration levels which represent the desired values of
the objective function fi given by the decision maker. We have presented subproblem
(8) in a differentiable form (assuming that the objective functions are differentiable),
where the auxiliary variable α is used for the transformation from a minmax form
(see e.g., Miettinen 1999). The positive weight vector w sets a direction which the
reference point is projected onto the set of objective vectors corresponding to the
efficient solutions. We refer to w as projection direction.

As discussed in the literature (e.g., inBranke et al. 2008;Miettinen 1999;Wierzbicki
1986), any optimal solution of (8) is an efficient solution for (2) and any efficient
solution with trade-offs bounded by ρ can be found by changing z̄. Such solutions
are also called properly efficient solutions (for details, see e.g., Wierzbicki 1986). The
achievement scalarizing function works independently of the problem and preferences
considered. For example, the reference point can be feasible or infeasible and the
problem can be convex or nonconvex.

3 Computing lightly robust efficient solutions

3.1 Lightly robust subproblem based on the achievement scalarizing function

In this section, we assume that max
ξ∈U

fi (x, ξ) exists for all i = 1, . . . , k for a fixed

x ∈ X . The existence of max
ξ∈U

fi (x, ξ) for all i = 1, . . . , k can be guaranteed for

example when X is finite, U is compact and fi (x, ·) : U → IRk is continuous in ξ

for every fixed x ∈ X . Based on (5) and (8), a lightly robust subproblem based on
achievement scalarizing function can be given as follows:

minimize α + ρ

k∑
i=1

wi (max
ξ∈U

fi (x, ξ) − zi )

subject to fi (x, ξ̂ ) ≤ fi (x̂, ξ̂ ) + εi for all i = 1, . . . , k
wi (max

ξ∈U
fi (x, ξ) − zi ) ≤ α for all i = 1, . . . , k

x ∈ X .

(9)

Theorem 1 Any optimal solution of (9) is a lightly robust efficient solution for (1).
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Proof Let x∗ be an optimal solution of (9) and assume that it is not lightly robust
efficient to problem (1). Then there exists x ′ ∈ F light(x̂, , ε), such that f wci (x ′) ≤
f wci (x∗) for all i = 1, ..., k and f wcj (x ′) < f wcj (x∗) for at least one j . So we have

max
i

[wi (max
ξ∈U

fi (x ′, ξ) − zi )] + ρ

k∑
i=1

(max
ξ∈U

fi (x
′, ξ) − zi ) < max

i
[wi (max

ξ∈U
fi (x

∗, ξ) −

zi )] + ρ

k∑
i=1

(max
ξ∈U

fi (x
∗, ξ) − zi ). This contradicts with the assumption that x∗ is an

optimal solution to (9). Thus x∗ is a lightly robust efficient solution to (1). 	


The formulation (9) involves finding the optimal solution of the maximization
problem to identify the worst-case value of each objective function, i.e., the problem
max
ξ∈U

fi (x, ξ) for a fixed x ∈ X . So, using (9) to find a lightly robust solution requires

solving a more complicated optimization problem than for a deterministic problem
with (8). As mentioned in the literature (e.g., in Ben-Tal et al. 2009, 2015), problem
(9) cannot be efficiently solved in a general case. Next, we reformulate the problem
so that it can be efficiently solved by making some assumptions.

3.2 Reformulating the lightly robust subproblem

Reformulating problems to compute robust optimal solutions is a research topic with a
long history in single objective optimization (see e.g., Ben-Tal and Nemirovski 1998;
Bertsimas and Sim 2004; Soyster 1973).

Here we utilize the properties of fi (x, ξ) and U . The following result has been
presented in Corollary 2.14 in Tuy (2016):

Lemma 2 A real-valued quasi-convex function g(x) on a compact convex set C attains
its maximum at an extreme point of C.

We consider the uncertainty set conv(U) which is called a polyhedral uncertainty
set. It is defined by a set of scenarios U = {ξ1, . . . , ξm} as the extreme points of the
convex hull. The result in Lemma 2 has been utilized in Kuhn et al. (2016) for reducing
polyhedral uncertainty sets to discrete uncertainty sets involved in one of the objective
functions in bi-objective optimization problems. It has also been utilized in Ehrgott
et al. (2014) for replacing conv(U) by U for objective-wise uncertain problems. Since
in this paper, we optimize in the point-based worst case for finding lightly robust
efficient solutions, problem (9) has the following equivalent reformulation:

Theorem 3 Let conv(U) be a polyhedral uncertainty set with extreme points U =
{ξ1, ..., ξm} and fi quasi-convex in ξ for every fixed x ∈ X and i = 1, . . . , k. Problem
(9) is equivalent to the following reformulation:
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minimize α + ρ

k∑
i=1

wi (γ − z̄i )

subject to x ∈ X
fi (x, ξ̂ ) ≤ fi (x̂, ξ̂ ) + ε for all i = 1, . . . , k
wi (γ − z̄i ) ≤ α

fi (x, ξ j ) ≤ γ for all i = 1, . . . , k and j = 1, . . . ,m.

(10)

Proof Based on Lemma 2, fi attains its maximum over conv(U) at an extreme point
of it with the assumption that fi is quasi-convex in ξ for every fixed x . So we have

max
ξ∈conv(U)

fi (x, ξ) = max
j

fi (x, ξ
j ).

Corresponding to using α in (8), we use the auxiliary variable γ (which is a scalar
valued variable) to bound max

i
max

j
fi (x, ξ j ), i.e., we can solve (9) by considering the

extreme points of conv(U) and the objective function which gives the largest value. 	

Based on e.g., Kuhn et al. (2016), polyhedral uncertainty sets include interval

uncertainty sets (see e.g., Fischetti and Monaci 2009; Schöbel 2014) as special cases.
When the uncertain parameters vary in intervals, we obtain a box as the uncertainty
set, which is a special polyhedron. On the other hand, affine objective functions are
also quasi-convex. So, (10) is also valid for problems with such characteristics.

If we have a multiobjective optimization problem with ξ stemming from a set U
with a finite number of scenarios, i.e., U is a finite uncertainty set, we can use the
reformulation (10) to solve the problem. In this case, we do not need to assume that fi
is quasi-convex in ξ for every fixed x ∈ X since we can directly compare the objective
vectors in the scenarios.

4 The LiRoMomethod

As introduced earlier, finding minmax robust efficient or nominal efficient solutions
may not well serve the purpose of considering both robustness and the nominal quality.
Minmax robust efficient solutions can have bad objective function values in other
scenarios and the decision maker may not want to make decisions based on the worst
possible realizations of the uncertain parameters. Nominal efficient solutions only
concentrate on the nominal quality and other scenarios are ignored. Lightly robust
efficient solutions can have both aspects incorporated. In this section, we propose the
LiRoMo method to support the decision maker to find a most preferred lightly robust
efficient solution with a preferred balance between robustness and the nominal quality.
We first discuss the LiRoMo method in general. Then, we present its steps followed
by a detailed discussion on the steps.

Using a reference point to find a most preferred efficient solution for the decision
maker in an interactive method has been used in earlier research for deterministic
problems for example in Nakayama and Sawaragi (1984), Wierzbicki (1986). In the
LiRoMo method, we also utilize reference points as a means for the decision maker
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to express preference information. We first find a nominal efficient solution x̂ which
satisfies the preferences of the decision maker as well as possible. This is done by
solving (8) based on the reference point specified by the decision maker. Then, based
on the tolerable degradations of the nominal quality, which are also specified by the
decision maker, we optimize in the worst case to find a lightly robust efficient solution
by solving (9).

When the decision maker studies a lightly robust efficient solution, (s)he needs
to understand its essence with respect to both robustness and the nominal quality.
For the nominal quality, the decision maker needs to consider the nominal objective
function values of the lightly robust efficient solution. For robustness, the concept of
light robustness only finds the most robust solution with respect to the tolerable degra-
dations. It is not enough to purely rely on this fact. Without additional information,
it is hard for the decision maker to understand the trade-off between robustness and
nominal quality, i.e., if the robustness gained is worthy of the sacrifice in the nominal
quality.

Thus, we provide some additional information to help the decision maker to under-
stand the trade-off between robustness and the nominal quality. In order to provide
this information, we can utilize the gain in robustness to compare the lightly robust
efficient and nominal efficient solutions in the worst case and use the price to be paid
for robustness to compare the two solutions in the nominal scenario. As the objective
function values can have very different scales, the original forms of gain in robustness
and price to be paid for robustness presented in (6) and (7) need to be normalized. In
the LiRoMo method, we calculate the gain in robustness as

gain(x light,ε, x̂) =
∥∥∥∥∥∥
(

f wc1 (x light,ε) − f wc1 (x̂)

znad,wc1 − zuto,wc1

, . . . ,
f wck (x light,ε) − f wck (x̂)

znad,wck − zuto,wck

)T
∥∥∥∥∥∥∞

.

(11)
The value of gain(x light,ε, x̂) quantifies how much better the lightly robust efficient
solution is in the worst case compared to the nominal efficient solution. The value
of gain(x light,ε, x̂) represents the largest percentage that x light,ε is better in terms of
the worst-case objective function values than x̂ in the ranges of the objective vectors
corresponding to the minmax robust efficient solutions. In addition, we also calculate
the price to be paid for robustness:

price(x light,ε, x̂)

=
∥∥∥∥∥∥
(

f nom1 (x light,ε) − f nom1 (x̂)

znad1 − zuto1

, . . . ,
f nomk (x light,ε) − f nomk (x̂)

znadk − zutok

)T
∥∥∥∥∥∥∞

. (12)

The value of price(x light,ε, x̂) quantifies how much worse the lightly robust efficient
solution is in the nominal scenario compared to the nominal efficient solution. The
value of price(x light,ε, x̂) presents the largest percentage that x light,ε is worse than x̂ in
terms of the nominal objective function values in the ranges of the objective vectors
corresponding to the nominal efficient solutions. If price(x light,ε, x̂) is larger than
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gain(x light,ε, x̂), more nominal quality is sacrificed compared to the gain in robustness.
By combining the comparison of the two measures and the nominal objective vectors
of the lightly robust efficient solution, the decision maker can consider her or his
preferences in both respects and make informed decisions.

After understanding the presented lightly robust efficient solution, the decision
maker needs to consider two different types of preference information for finding
a more desired lightly robust efficient solution. First, (s)he needs to consider the
preferences for a more interesting nominal efficient solution. Second, (s)he needs to
consider the tolerable degradations in the nominal quality. The decision maker could
also consider how much (s)he wants to gain in robustness by the maximum tolerable
loss in the nominal quality which is specified by the tolerable degradations.

From the computation point of view, incorporating preferences on the gain in robust-
ness can be achieved by adding additional constraints to the lightly robust problem.
However, from a decision-making point of view, the decision maker should know the
attainable objective function values and the trade-off between robustness and nominal
quality verywell. For example, with an unrealistic preference in the tolerance and gain,
it may happen that there are no feasible lightly robust efficient solutions because the
decision maker sacrifices too little but hopes to gain too much. This is why we do not
request the preference information on the gain in robustness from the decision maker
in LiRoMo but concentrate on finding a satisfactory lightly robust efficient solution
by allowing the decision maker to alter her or his preferences in the nominal objective
vector in the form of reference points and specifying the tolerable degradations.

The steps of the LiRoMo method are the followings:

Initialization. Present zideal, znad and zideal,wc and znad,wc to the decision maker. Set
the iteration counter c = 0.

Step 1. Ask the decision maker to specify the desired values of each objective
function which forms the reference point z̄.

Step 2. Solve (8) to find a nominal efficient solution x̂ c.
Step 3. Present the objective vector corresponding to x̂ c to the decisionmaker.
Step 4. Ask the decision maker to specify her or his preferences on howmuch

(s)he is willing to sacrifice in the nominal quality to gain robustness
which forms the tolerable degradations ε for the preferred nominal
solution.

Step 5. With x̂ c and ε, solve (9) to find a lightly robust efficient solution
x (light,ε)c and compute the gain in robustness gain(x (light,ε)c , x̂ c) and
the price to be paid for robustness price(x (light,ε)c , x̂ c).

Step 6. Present the nominal objective vectors corresponding to x (light,ε)c and
x̂ c together with the values of gain(x (light,ε)c , x̂ c) and price(x (light,ε)c ,

x̂ c) to the decision maker.
Step 7. If the decision maker is satisfied, terminate the solution process and

set x (light,ε)c as the final solution. Otherwise, continue.
Step 8. If the decision maker wishes to alter the trade-offs between robustness

and the nominal quality, i.e., modify the tolerable degradations, ask
the decision maker to give a new preferred value of ε, set c = c + 1
and go to step 3. If the decision maker wants to change her or his
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preferences on the nominal efficient solution, set c = c + 1 and go to
step 1.

In the initialization step, the nominal ideal and nadir objective vectors are presented
to the decision maker to help her or him to have a general idea of the ranges of the
objective function values among the nominal solutions. This helps the decision maker
to specify the reference point in step 1. The robust ideal objective vector and the robust
nadir objective vector are also presented to help the decision maker to grasp a picture
on the ranges of the objective function values of solutions in the worst case if (s)he
fully concentrates on robustness. This can help her or him to specify the tolerable
degradations in the nominal quality later. In step 2, we solve (8) to find the nominal
efficient solution x̂ c using z̄ as the reference point. Then, we can present the objective
vector corresponding to x̂ c to the decision maker in step 3 and ask the decision maker
to specify her or his preferences on ε in step 4.

In step 5, with x̂ c and ε, we solve (9) to find a lightly robust efficient solution
x (light,ε)c . The value of ε is closely related to the reservation levels (see e.g., Granat
et al. 1994). Reservation levels are limits of objective function values that the decision
maker cannot accept to go beyond. In our context, the decision maker wants to avoid
any nominal objective vector worse than f nom(x̂) + ε. So, with a fixed f nom(x̂), if
a decision maker changes the value of ε, (s)he changes the limits of the acceptable
nominal objective vector beyondwhich the corresponding solutions should be avoided.
This means that changing the value of ε can be understood as changing the reservation
levels.

When solving (9), we use f nom(x̂ c) + ε as the reference point. This is because of
two reasons. First, the value of f nom(x̂ c)+ε is still acceptable for the decision maker.
Second, (s)he is expecting the most robust solution within the range of f nom(x̂ c)
and f nom(x̂ c) + ε, so (s)he is willing to sacrifice until the limits of the acceptable
nominal objective function values to gain robustness. We set the projection vector
w = 1

f nom(x̂ c)+ε− f nom(x̂ c) = 1
ε
because in the ideal situation, x̂ c is a lightly robust

efficient solution. If x̂ c is not a lightly robust efficient solution, we may preserve the
preferences on the trade-offs among the objectives with this projection direction.

In order to efficiently solve (9), we can use the reformulation presented in the sub-
problem (10). Correspondingly, we can compare the objective function values in the
scenarios which specify U to find the point-based worst-case objective vector for com-
puting the value ofgain(x (light,ε)c , x̂ c). For computing the value ofprice(x (light,ε)c , x̂ c),
we only need to evaluate the two solutions in the nominal scenario. If the problem
does not meet the assumptions in the reformulation, it is possible to represent the
uncertainty set by a set of discrete scenarios by utilizing a good sampling technique
presented e.g., in Simpson et al. (2001). When we replace the uncertainty set by a set
of sampled discrete scenarios, we can use the reformulation presented in (10).

In step 6, we visualize f nom(x (light,ε)c ) and f nom(x̂ c) together with the values
of gain(x (light,ε)c , x̂ c) and price(x (light,ε)c , x̂ c) to the decision maker. As mentioned
earlier, by combining the two types of information, the decision maker can understand
the trade-offs in the objectives and also consider balancing between robustness and
the nominal quality.
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Fig. 2 Visualizing a lightly robust efficient solutions

For illustrating the computed lightly robust efficient solutions in step 6, we augment
the value path visualization (Miettinen 2014) to help the decision maker to understand
the essence of the solutions. Figure 2 shows an example of visualizing a lightly robust
efficient solution with its corresponding nominal objective vector and other related
information. In the example figure, there are three objectives represented by bars.
The minima and maxima of the bars represent the nominal ideal and nadir values,
respectively. The filled part of the bar is the objective function value of the nominal
efficient solution which satisfies the reference point best. The triangles mark the toler-
able degradations (i.e., the value until which the decision maker is willing to sacrifice
to gain robustness). The value path illustrates the nominal objective vector of the cur-
rent lightly robust efficient solution. The gain in robustness (marked as g in the figure)
and the price to be paid for robustness (marked as p in the figure) are illustrated by
the horizontal bars on the upper left corner.

When a decisionmaker sees the visualization, (s)he considers the nominal objective
function values of the lightly robust efficient solution. This is because of the nature of
concentration on the nominal scenario in light robustness. If the values are acceptable,
(s)he then further considers if the gained robustness is worthy of the sacrifice in the
nominal quality by simply comparing the lengths of the bars marked by g and p. If the
decision maker asks, we can present their numerical values.

To summarize, in the figure, the decision maker can see five types of information:

• The nominal objective function values of the current nominal efficient solution
which satisfies the reference point best in the colored bars.

• The nominal objective function values of the current lightly robust efficient solu-
tion.

• The change in the nominal quality, i.e., the difference between the markers of the
value path and the filled part of the bars.

• How much better the current lightly robust efficient solution is compared to the
worst acceptable one.
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• How much robustness (s)he has gained in the solution compared to the sacrificed
nominal quality.

The five types of information together help the decision maker to understand the
current lightly robust efficient solution in terms of its nominal quality, the relationships
with the nominal efficient solution and the trade-offs between robustness and nominal
quality. They also help the decision maker to analyze what kind of changes (s)he
should make to get a more desired solution by specifying the preferences for the next
iteration. If (s)he sees that the tolerable degradations can be still modified while the
gain in robustness is not sufficient, (s)he can relax the value of ε to get a more robust
solution. If (s)he is not willing to sacrificemore in the nominal quality or is not satisfied
by the nominal objective function values of the lightly robust efficient solution, (s)he
can try to provide a new reference point to change the nominal efficient solution.

After presenting the lightly robust efficient solution, if the decision maker is sat-
isfied, we terminate the solution process with x (light,ε)c as the final solution. If the
decision maker wishes to continue the solution process, we calculate a new solution
based on her or his preferences. By interacting with the decision maker, we support
her or him to find a satisfactory lightly robust efficient solution based on her or his
preferences on the nominal objective function values and the tolerable degradations. If
the decisionmaker so desires, the objective vector of the final solution in theworst case
can also be presented. In case that the worst-case objective vector is not acceptable,
the decision maker can provide new preferences to get a new solution.

5 Example in investment portfolio optimization

Portfolio optimization problems have been considered in the literature but with differ-
ent concepts of robustness. In this section, we formulate a simple investment portfolio
optimization problem with uncertainty in future developments. We solve this problem
to demonstrate the ability of the LiRoMo method in supporting the decision maker to
find a most preferred balance between robustness and the nominal quality.

The main products of a start-up Company A are software products. Now the owners
of the company are considering investing in some stocks for long-term return. Just like
in any portfolio investment problem, they want to maximize the return on investment
and minimize the risks. They plan to study the long-term historical data of the stocks
to find a good composition for their investment portfolio. However, it is also possible
that their investment will be withdrawn as a mid-term or even a short-term investment
if they discover and initiate a new interesting project. Here, the uncertainty comes
from the fact that Company A does not know exactly which of the time frames should
be used in the portfolio optimization. In this case, we have three discrete scenarios in
the uncertainty set including the short-term data, mid-term data, and long-term data.
CompanyAwants to concentrate on a long-term investment, so using long-term data is
considered as the nominal scenario and using short- and mid-term data are considered
as the other two possible scenarios.

In the solution process, we aim at finding a composition of investments, which is
goodwith respect to all scenarios and especially not too bad as a long-term investment.
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Weapply theLiRoMomethod and interactwith a decisionmaker to find a lightly robust
investment portfolio with good return and acceptable risks in long-term but at the same
time with not too bad return and risks at any earlier withdrawal.

Asmentioned before, the objectives of the investment includemaximizing the return
on investment and minimizing the risks. Different risk measures providing different
insights are used in the literature such as the standard deviation, β index, Sharpe index,
and Treynor index (see e.g., Reilly and Brown 2011). In this paper, we use the Sharpe
index and the Treynor index to be maximized as the standard deviation is related to
the Sharpe index and the β index is related to the Treynor index and we only consider
indices with a low correlation. Briefly speaking, the Sharpe index indicates how well
a portfolio uses risk to get return and the Treynor index measures the volatility in
the market to calculate the value of a portfolio adjusted risk. In order to avoid any
failure in unexpected behaviors in a single or a few good stocks, we also minimize
the maximum amount of investment in a single stock among all the invested stocks.
The problem is formulated as a multiobjective optimization problem with uncertain
parameters in the objectives:

maximize f1(x) =
n∑

i=1

pti j − pt−1
i j

pt−1
i j

xi

maximize f2(x) = 1
σ j

(
n∑

i=1

pti j − pt−1
i j

pt−1
i j

xi − r̃

)

maximize f3(x) = 1
β j

(r̄ j − r̃)

minimize f4(x) = maxi xi
subject to xi ≥ 0

n∑
i=1

xi = 1

pti j ∈ Pt
i

pt−1
i j ∈ Pt−1

i .

(13)

In the formulation, f1 represents the return on investment, f2 represents the Sharpe
index, f3 represents the Treynor index, and f4 represents the maximum investment in
a single stock. In this formulation, if the value of f1 is smaller than 1, there is loss in the
investments. The decision variables xi represent the proportion of the total amount of
investment in the stock i and there are in total n stocks for investment. The parameters
pti j , p

t−1
i j are the historical buying and selling prices of the stock i when the time frame

j is used, where t stands for the most recent time and t −1 represent the previous time
period. The notation r̃ represents the risk-free rate and r̄ j is the average return rate of
the portfolio when the time frame j is used. The standard deviation of the return on
the portfolio in the time frame j is denoted by σ j . The beta index is denoted by β j in
the time frame j . The value of the beta index depends on the return on investment of
the investment portfolio.

The parameters can have different values depending on the time frame used. Each
parameter has three different possible values to consider, i.e., when short-, mid-, and
long-term data are used in optimizing the portfolio. So, we have two uncertainty
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sets Pt
i and Pt−1

i and each uncertainty set has three elements. For example, we have
Pt
i = {ptis, ptim, ptil}where s stands for the short-time frame,m stands for themid-term

time frame and l stands for long-time frame. The nominal values of the sets are ptil and
pt−1
il . The indices σ j , and β j depend on the data in the time frame (i.e., pt−1

i j and pti j ).
Note that in the formulation, f4(x) does not involve uncertain parameters but different
investment portfolios (i.e., solutions) correspond to different values of f4(x). Problem
(13) can be reformulated for computing lightly robust efficient solutions based on
problem (5).

As for the historical data of the portfolios, we downloaded 10 different NAS-
DAQ stocks from Google finance https://www.google.com/finance and computed the
needed indices.We started our solution process by calculating the nominal ideal objec-
tive vector and approximating the nadir objective vector with the payoff table. We
have zideal = (1.677, 118.85, 0.1266, 0.1)T and znad = (0.636, 25.665, 0.0478, 1)T .
We also calculated and approximated the robust ideal and nadir objective vectors
zideal,wc = (1.34, 89.67, 0.093, 0.1)T and znad,wc = (0.38, 23.37, 0.0289, 1)T . One
should note that since the first three objectives are to be maximized, the corresponding
components in the ideal objective vector are higher than those of the nadir objective
vector. In this problem, the uncertain parameters stem from discrete sets, so we utilized
the reformulation (10) to compute the lightly robust efficient solutions.

Initialization.We presented the nominal ideal and nadir objective vectors to the deci-
sion maker as the ranges of the objective function values of the nominal efficient
solutions. We also presented the robust ideal and nadir objective vectors to the deci-
sion maker as the ranges in the minmax robust efficient solutions.

Initial solution.Based on the ranges, the decisionmaker specified the reference point:
z̄0 = (1.1, 75, 0.1, 0.5)T .With the preferences, we first solved (8) and found x̂0. Then,
we presented the nominal objective function values of x̂0 to the decision maker and
asked him to specify his preferences on the tolerable degradation. Then, we solved
the reformulated lightly robust problem and found an initial lightly robust efficient
solution and presented it to the decision maker as shown in Fig. 3. Based on this
solution, the decision maker could not accept the loss in the investments even though
the price to be paid for robustness resulted in a good gain in robustness.

Iteration 1. So, we asked him to specify a new reference point. Based on the new
reference point z̄1 = (1.1, 85, 0.1, 0.35)T , we calculated x̂1. Based on the objective
function values of x̂1, the decision maker specified the tolerable degradations. With
the tolerable degradations ε1 = (0.05, 10, 0.008, 0.09)T and x̂1, we calculated a new
lightly robust efficient solution by solving (10). We presented its nominal objective
vector to the decision maker as in Fig. 4. With the solution, the decision maker could
make only little profit even though he noticed that the price to be paid for robustness
resulted in a much bigger amount of gain in robustness.

Iteration 2. The decision maker decided to try to provide a really good aspiration
level to the return on investment with less emphasis on other objectives. With z̄2 =
(1.8, 20, 0.05, 1)T , we calculated x̂2. Based on f nom(x̂2), the decisionmaker specified
ε2 = (0.1, 28, 0, 0.1)T , we again solved (10) and found a new lightly robust efficient
solution as illustrated in Fig. 5. The decision maker noticed that even though the
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Fig. 3 Initial solution

Fig. 4 Iteration 1

return on investment was good, the investment was rather risky and the lightly robust
efficient solution was very different from the nominal efficient solution. Since the
nominal objective function values of the lightly robust efficient solution were not
acceptable, he did not even consider the trade-off between robustness and the nominal
quality.

Iteration3.Thedecisionmaker provided anew referencepoint z̄3 = (1.2, 40, 0.11, 1)T

with which we computed x̂3. With the presented f nom(x̂3), the decision maker spec-
ified the tolerable degradations ε3 = (0.08, 20, 0.008, 0.09)T . Based on x̂3 and ε3,
we calculated and presented a new lightly robust efficient solution to the decision
maker as in Fig. 6. In this solution, the decision maker noticed that the Treynor index
increased as she intended. However, there were losses in the investment. As before,
since this solution was not acceptable, he did not consider comparing the values of
gain in robustness and price to be paid for robustness.
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Fig. 5 Iteration 2

Fig. 6 Iteration 3

Iteration 4. The decision maker tried with another reference point with a better
aspiration level on return on investment z̄4 = (1.5, 85, 0.1, 0.35)T . After know-
ing f nom(x̂4) which we computed, he also decided not to allow the return on
investment and the Sharpe index to degrade as much as in previous iterations with
ε4 = (0.05, 10, 0.008, 0.09)T . Using x̂4 and ε4, we found a new lightly robust effi-
cient solution as in Fig. 7. The decisionmaker liked the solution in terms of its nominal
objective function values and the balance in the price to be paid for and the gain in
robustness.

Termination. Even though the decision maker liked the solution in the previous itera-
tion, he still provided a new reference point z̄5 = (1.7, 55, 0.1, 0.25)T to try to increase
the return on investment by lowering the Sharpe index. After knowing f nom(x̂5), he
decided to further reduce the tolerable degradations of the return on investment and
the Sharpe index with ε5 = (0.04, 5, 0.008, 0.09)T . With the new preference infor-
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Fig. 7 Iteration 4

Fig. 8 Final solution

mation, the solution present in Fig. 8 was obtained. The decision maker found that this
lightly robust efficient solution had better nominal objective function values than in
the previous iteration with the reduced tolerable degradations. In addition, the gain in
robustness was worthy of the sacrifice in the nominal quality with a preferred balance.
So, he decided to terminate the solution process.

During the solution process, the decision maker chose to provide reference points
and tolerable degradations for the computation of lightly robust efficient solutions. In
the beginning of the solution process, the decision maker took some iterations to learn
about the attainable objective function values and how he could utilize the reference
point and the value of ε to guide the solution process toward the kind of solutions
she desires. In the last two iterations, the decision maker was able to find a desirable
lightly robust efficient solution and utilize ε to fine-tune the solution. In addition, the
comparison between the price to be paid for and the gain in robustness served as useful
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information for the decision maker to make an informed decision. The final solution
found was satisfactory with a good return on investment and acceptable risk levels.

6 Conclusions

In this paper, we consideredmultiobjective optimization problemswhere some param-
eters are uncertain in the objective functions. In order to support the decision maker to
find amost preferred solutionwith a good balance between robustness and the nominal
quality, we developed the LiRoMomethod by utilizing the concept of light robustness.
It is the first interactive method using light robustness. In the LiRoMo method, the
decision maker can alter the trade-offs between robustness and the nominal quality by
changing tolerable degradations in the nominal quality. As a support for the decision
maker to consider the balance, we quantified the price to be paid for robustness and
the gain in robustness in each computed lightly robust efficient solution. In addition,
we visualized the lightly robust efficient solutions and related information to help the
decision maker to understand them with an augmented value path visualization.

We formulated an investment portfolio optimization problem and solved it with
the LiRoMo method involving a decision maker to demonstrate the advantages of the
method. With the support provided by the method, the decision maker was able to
explore the objective function values of the solutions of the problem and eventually
found a lightly robust efficient solution with a good balance between robustness and
the nominal quality.

In this paper, we reformulated the lightly robust problem based on the achievement
scalarizing function under some assumptions: the objective functions are quasi-convex
with respect to the uncertain parameter with a fixed decision vector and the uncertain
parameters stem from polyhedral uncertainty sets. An immediate continuation of this
research is to efficiently compute lightly robust solutions formore general problems. In
the current version of the interactive method, it is possible that the trade-offs between
the objective function values of the lightly robust efficient solutions are different from
those of the nominal efficient solution. The reason is that the preferences on the nominal
objective function values are first considered in the form of a reference point. When
calculating the lightly robust efficient solution, the focus is on the robustness. Thus,
another interesting future research direction is to refine interactive methods to further
maintain the preferences set in the nominal objective function values in the lightly
robust efficient solutions.

Acknowledgements Open access funding provided byUniversity of Jyväskylä (JYU).We thankDr. Dmitry
Podkopaev for various discussions in formulating the investment portfolio optimization problem.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/


412 Y. Zhou-Kangas, K. Miettinen

References

Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805. https://doi.
org/10.1287/moor.23.4.769

Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A (2004) Adjustable robust solutions of uncertain linear
programs. Math Progr 99(2):351–376. https://doi.org/10.1007/s10107-003-0454-y

Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton
Ben-Tal A, Bertsimas D, Brown DB (2010) A soft robust model for optimization under ambiguity. Oper

Res 58(4–part–2):1220–1234. https://doi.org/10.1287/opre.1100.0821
Ben-Tal A, Hazan E, Koren T, Mannor S (2015) Oracle-based robust optimization via online learning. Oper

Res 63(3):628–638. https://doi.org/10.1287/opre.2015.1374
Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53. https://doi.org/10.1287/opre.

1030.0065
Bitran GR (1980) Linear multiple objective problems with interval coefficients. Manag Sci 26(7):694–706.

https://doi.org/10.1287/mnsc.26.7.694
Bokrantz R, Fredriksson A (2017) Necessary and sufficient conditions for Pareto efficiency in robust mul-

tiobjective optimization. Eur J Oper Res 262(2):682–692. https://doi.org/10.1016/j.ejor.2017.04.012
Branke J, Deb K, Miettinen K, Slowinski R (eds) (2008) Multiobjective optimization, interactive and

evolutionary approaches. Springer, New York
Deb K, Miettinen K, Chaudhuri S (2010) Toward an estimation of nadir objective vector using a hybrid of

evolutionary and local search approaches. IEEE Trans Evol Comput 14(6):821–841. https://doi.org/
10.1109/TEVC.2010.2041667

Dranichak GM, Wiecek MM (2018) On highly robust efficient solutions to uncertain multiobjective linear
programs. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2018.07.035

Ehrgott M, Ide J, Schöbel A (2014) Minmax robustness for multi-objective optimization problems. Eur J
Oper Res 239(1):17–31. https://doi.org/10.1016/j.ejor.2014.03.013

Eichfelder G, Krüger C, Schöbel A (2017) Decision uncertainty in multiobjective optimization. J Glob
Optim 69(2):485–510. https://doi.org/10.1007/s10898-017-0518-9

FischettiM,MonaciM (2009) Light robustness. InR.K.Ahuja, R.H.Möhring, andC.D. Zaroliagis, editors,
Robust and Online Large-Scale Optimization: Models and Techniques for Transportation Systems,
pages 61–84. Springer. https://doi.org/10.1007/978-3-642-05465-5_3

Fliege J, Werner R (2014) Robust multiobjective optimization & applications in portfolio optimization. Eur
J Oper Res 234(2):422–433. https://doi.org/10.1016/j.ejor.2013.10.028

Goberna M, Jeyakumar V, Li G, Vicente-Pérez J (2018) Guaranteeing highly robust weakly efficient solu-
tions for uncertain multi-objective convex programs. Eur J Oper Res 270(1):40–50. https://doi.org/
10.1016/j.ejor.2018.03.018

Goerigk M, Schöbel A (2016) Algorithm engineering in robust optimization. In: Kliemann L, Sanders P
(eds) Algorithm engineering: selected results and surveys. Springer, New York, pp 245–279. https://
doi.org/10.1007/978-3-319-49487-6_8

Granat J,KreglewskiK, Paczynski J, StachurskiA (1994) IAC-DIDASN++modularmodeling andoptimiza-
tion systems theoretical foundations. Report of the Institute of Automatic. Control, WarsawUniversity
of Technology

GutjahrWJ, Pichler A (2016) Stochastic multi-objective optimization: a survey on non-scalarizingmethods.
Ann Oper Res 236(2):475–499. https://doi.org/10.1007/s10479-013-1369-5

Hassanzadeh F, Nemati H, Sun M (2014) Robust optimization for interactive multiobjective programming
with imprecise information applied to R&D project portfolio selection. Eur J Oper Res 238(1):41–53.
https://doi.org/10.1016/j.ejor.2014.03.023

Ide J, Schöbel A (2016) Robustness for uncertain multi-objective optimization: a survey and analysis of
different concepts. OR Spectr 38(1):235–271. https://doi.org/10.1007/s00291-015-0418-7

InuiguchiM, IchihashiH, TanakaH (1990) Fuzzy programming: a survey of recent developments. In Shi-Yu,
H, Jaques T (eds) Stochastic versus fuzzy approaches to multiobjective mathematical programming
under uncertainty. Springer, New York, pp 45–68. https://doi.org/10.1007/978-94-009-2111-5_4

Kuhn K, Raith A, Schmidt M, Schöbel A (2016) Bi-objective robust optimisation. Eur J Oper Res
252(2):418–431. https://doi.org/10.1016/j.ejor.2016.01.015

Kuroiwa D, Lee GM (2012) On robust multiobjective optimization. Vietnam J Math 40(2–3):305–317
Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, Berlin

123

https://doi.org/10.1287/moor.23.4.769
https://doi.org/10.1287/moor.23.4.769
https://doi.org/10.1007/s10107-003-0454-y
https://doi.org/10.1287/opre.1100.0821
https://doi.org/10.1287/opre.2015.1374
https://doi.org/10.1287/opre.1030.0065
https://doi.org/10.1287/opre.1030.0065
https://doi.org/10.1287/mnsc.26.7.694
https://doi.org/10.1016/j.ejor.2017.04.012
https://doi.org/10.1109/TEVC.2010.2041667
https://doi.org/10.1109/TEVC.2010.2041667
https://doi.org/10.1016/j.ejor.2018.07.035
https://doi.org/10.1016/j.ejor.2014.03.013
https://doi.org/10.1007/s10898-017-0518-9
https://doi.org/10.1007/978-3-642-05465-5_3
https://doi.org/10.1016/j.ejor.2013.10.028
https://doi.org/10.1016/j.ejor.2018.03.018
https://doi.org/10.1016/j.ejor.2018.03.018
https://doi.org/10.1007/978-3-319-49487-6_8
https://doi.org/10.1007/978-3-319-49487-6_8
https://doi.org/10.1007/s10479-013-1369-5
https://doi.org/10.1016/j.ejor.2014.03.023
https://doi.org/10.1007/s00291-015-0418-7
https://doi.org/10.1007/978-94-009-2111-5_4
https://doi.org/10.1016/j.ejor.2016.01.015


Decision making in multiobjective optimization problems... 413

Miettinen K (2014) Survey of methods to visualize alternatives in multiple criteria decision making prob-
lems. OR Spectrum 36(1):3–37. https://doi.org/10.1007/s00291-012-0297-0

Nakayama H, Sawaragi Y (1984) Satisficing trade-off method for multiobjective programming and its
applications. IFAC Proc Vol 17(2):1345–1350. https://doi.org/10.1016/S1474-6670(17)61162-5

Reilly FK, Brown KC (2011) Investment analysis and portfolio management. Cengage Learning, South
Western

Schöbel A (2014) Generalized light robustness and the trade-off between robustness and nominal quality.
Math Methods Oper Res 80(2):161–191. https://doi.org/10.1007/s00186-014-0474-9

Simpson TW, Lin DK, Chen W (2001) Sampling strategies for computer experiments: design and analysis.
Int J Reliab Appl 2(3):209–240

Soyster AL (1973) Technical note—convex programming with set-inclusive constraints and applications to
inexact linear programming. Oper Res 21(5):1154–1157. https://doi.org/10.1287/opre.21.5.1154

Steuer RE (1986) Multiple criteria optimization: theory, computation, and applications. Wiley, Hoboken
Steuer RE, Choo E-U (1983) An interactive weighted Tchebycheff procedure for multiple objective pro-

gramming. Math Progr 26(3):326–344. https://doi.org/10.1007/BF02591870
Tuy H (2016) Convex analysis and global optimization. Springer, New York
Wiecek MM, Dranichak GM (2016) Robust multiobjective optimization for decision making under uncer-

tainty and conflict. In: Gupta A, Capponi A, Smith JC, Greenberg HJ (eds) Optimization challenges
in complex, networked and risky systems. INFORMS, pp 84–114. https://doi.org/10.1287/educ.2016.
0153

Wierzbicki AP (1986) On the completeness and constructiveness of parametric characterizations to vector
optimization problems. OR Spectrum 8(2):73–87. https://doi.org/10.1007/BF01719738

Zhou-Kangas Y, Schöbel A (2018) The price of multiobjective robustness: analyzing solution sets to uncer-
tain multiobjective problems (Manuscript)

123

https://doi.org/10.1007/s00291-012-0297-0
https://doi.org/10.1016/S1474-6670(17)61162-5
https://doi.org/10.1007/s00186-014-0474-9
https://doi.org/10.1287/opre.21.5.1154
https://doi.org/10.1007/BF02591870
https://doi.org/10.1287/educ.2016.0153
https://doi.org/10.1287/educ.2016.0153
https://doi.org/10.1007/BF01719738

	Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multiobjective optimization under uncertainty
	2.2 Minmax robustness
	2.3 Light robustness
	2.4 Achievement scalarizing function

	3 Computing lightly robust efficient solutions
	3.1 Lightly robust subproblem based on the achievement scalarizing function
	3.2 Reformulating the lightly robust subproblem

	4 The LiRoMo method
	5 Example in investment portfolio optimization
	6 Conclusions
	Acknowledgements
	References




