Mikko Kuhalampi

SOFTWARE PRODUCT LINES AND COMPONENT
REUSE - IMPACT ON CAPABILITIES AND COMPETI-
TIVENESS OF AN ORGANIZATION

@

N~

H

JYVASKYLAN YLIOPISTO

INFORMAATIOTEKNOLOGIAN TIEDEKUNTA
2019

ABSTRACT

Kuhalampi, Mikko

Software product lines and component reuse - impact on capabilities and com-
petitiveness of an organization

Jyvéskyld: University of Jyvaskyld, 2019, 73 pp.

Information systems science, Master’s Thesis

Supervisor(s): Halttunen, Veikko

This thesis evaluates the impacts of the utilization of Software product lines
(SPL) and component reuse on capabilities and competitiveness of an organiza-
tion. The SPL method is closely linked to new product development and the
ability of a company to manage software processes. While writing this paper,
the author was working in a company offering SaaS-based products in B2B
market. The project group aims at achieving competitive advantage to the firm
through growing its product portfolio and to ensure that the customers will
stick as customers in the future as well. The competition in software business is
tierce, and the companies are forced to create new ways to do business in order
to keep up with the development. Solutions really need to bring value to its cus-
tomers and bind them tightly to the provider. In this thesis, software product
lines were approached as an asset in the software product process - the re-
search questions being: How the utilization of Software product lines and com-
ponent reuse affects organizations’ capabilities and competitiveness, what are
the benefits and shortcomings of the method, what is the impact of component
reuse on the efficiency of new product development, and how the companies
utilize the methods. The software development process itself is crucial for the
success of a company in keeping up with the constant change. In the thesis, the
terms of SPL and new product development were explained, as well as the rela-
tionship that they have. Also, the link between capabilities, competitiveness and
software product lines was explained. In the empirical part, several companies
working with different software as a service - products and development pro-
jects, were interviewed about the usage and possibilities of SPL and reuse. This
was done through executing semi-structured theme interviews, where the re-
spondents of five different companies were interviewed. The results showed,
that the efficient utilization of these methods require commitment throughout
the company. Implementing SPL and reuse gives the company benefits in de-
velopment efficiency, movement of workforce and product quality, for example.
The goal of this research was to find out the benefits and shortcomings of the
method and discover the impacts that the utilization of the method has on or-
ganizations’ capabilities and competitiveness.

Keywords: software business, SaaS, software product lines, new product devel-
opment, software components, component reuse

TIIVISTELMA

Kuhalampi, Mikko

Ohjelmistotuotantolinjat ja komponenttien uudelleenkaytté - vaikutukset orga-
nisaatioiden kyvykkyyteen ja kilpailukykyyn

Jyvaskyla: Jyvaskyldn yliopisto, 2019, 73 s.

Tietojdrjestelmaétiede, pro gradu -tutkielma

Ohjaaja(t): Halttunen, Veikko

Tassd tutkielmassa tarkastellaan Ohjelmistotuotantolinjojen (Software product
lines) ja komponenttien uudelleenkdyton (Component reuse) vaikutuksia yri-
tyksen kyvykkyyteen ja kilpailukykyyn. Toimintatapa liittyy olennaisesti myos
uuden liiketoiminnan luomiseen ja yrityksen kykyyn hallita ohjelmistoproses-
seja. Teoreettisena pohjana tutkielmalle kdytetddn ohjelmistotuotantolinjoihin ja
ohjelmistokomponenttien uudelleenkdyttoon liittyvdd aiempaa tutkimustietoa.
Tutkielman kirjoittamisen aikana kirjoittaja toimi osana rekrytoinnin SaaS-
palvelua tarjoavan yrityksen projektia, jossa tavoitteena on tuotevalikoiman
laajentaminen kilpailuedun saamiseksi markkinalla. Kilpailu ohjelmistoliike-
toiminnassa on kiihtynyt niin kovaksi, ettd yritysten tdytyy jatkuvasti etsid uu-
sia tapoja kasvattaa liiketoimintaansa ja sitouttaa asiakkaitaan. Yritysten taytyy
pystyd tuottamaan asiakkaalle aitoa lisdarvoa tarjoamalla pitkdlle kehitettyd
palvelua ja sopivia tuotteita heiddn tarpeisiinsa. Tdssd tutkielmassa kaytiin lapi
ohjelmistotuotantolinjojen kdyton merkitys ja aiempi tutkimustieto aiheesta,
sekd pyritddn selvittdmddn ohjelmistotuotantolinjojen sekd komponenttien uu-
delleenkdyton vaikutus yrityksen kyvykkyyteen sekd kilpailukykyyn. Tutki-
muskysymyksind toimivat: miten ohjelmistotuotantolinjat ja komponenttien
uudelleenkaytto vaikuttavat organisaatioiden kyvykkyyteen ja kilpailukykyyn,
mitd hyotyjd ja haittoja ndilld toimintatavoilla on, mitkd ovat uudelleenkédyton
vaikutukset uusien tuotteiden kehitykseen, ja miten yritykset hyodyntavit ndita
toimintatapoja. Empiriaosiossa haettiin vastauksia ndihin kysymyksiin kvalita-
tiivisen haastattelututkimuksen avulla. Tutkimus suoritettiin puolistrukturoi-
tuna teemahaastatteluna, ja siind haastateltiin viiden eri SaaS-palveluita ja oh-
jelmistoprojekteja tarjoavien yritysten henkilostod. Tutkimus osoitti, ettd tutkit-
tujen toimintatapojen implementointi ja niiden hyddyntdminen vaatii koko or-
ganisaation sitoutumista. Ohjelmistotuotantolinjat ja komponenttien uudel-
leenkdytto toimintatapoina muun muassa tehostavat yrityksen ohjelmistokehi-
tystd, mahdollistavat helpomman tyovoiman liikkumisen yrityksen sisélld, ja
tuovat tuotteille luotettavuutta ja laatua. Toisaalta ndméd toimintatavat voivat
myo6s hidastaa yrityksen kykyéd reagoida tapahtuviin muutoksiin. Tamén tut-
kimuksen tavoitteena oli 16ytdad toimintatapojen hyodyt ja haitat, sekd ymmar-
tad niiden vaikutuksia yrityksen kilpailukykyyn ja kyvykkyyteen.

Asiasanat: ohjelmistotuotantolinjat, ohjelmistoliiketoiminta, SaaS, tuotekehitys,
ohjelmistokomponentti, uudelleenkaytto

FIGURES

Figure 1 - Software product lines (Hallsteinsen et al. 2008)cccccccevrenneae. 12
Figure 2 - Cycle of the software product line process. (Gomaa, 2005)................. 13
Figure 3 - Development of product lines (Northrop, 2002)...........ccccccoecvvirurencnene. 15
Figure 4 - Software component reuse process. (Forsell, 2002)ccccccccueuenene 16
Figure 5 - Reuse metrics and models (Frakes & Terry, 1996).........ccccccevvvueunnnee. 18
Figure 6 - Component reuse based on Mansell (2000)ccccccuveireinineninnenne. 19
Figure 7 - Economics of software product line engineering based on Vander
Linden, Schmid and Rommes, 2007 . ..o eeeeeeee e 20
Figure 8 - Expected NPV for architectural scenarios AS1 and AS2 and strategic
scenarios SS1 and SS2 (Wesselius, 2000)c.c.ccvueerirreninieenieinnreineeneeceereennenes 23
Figure 9 - The stage-gate system based on Cooper (1990)........cccccceueueecirnrucncnne. 27
Figure 10 - The five levels of software process maturity (Paulk, 2002) 31
Figure 11 - Effectiveness of capabilities important to competitiveness. (Lesser &
Ban, 2000) ..c.veueeeeeieieieeetee et 33
Figure 12- Benefits of SPL and component reuse............ccoccceeveuevinecinieinincninnennnn. 59
Figure 13 - Potential shortcomings of product line architecture........................... 60
TABLES

Table 1 - Relationship between SPLs and DSPLs (Hinchey, Park & Schmid, 2012)
.. 25
Table 2 - General information about the interviewed companies........................ 39

Table 3 - Interviewed organizations and their views on SPL and reuse. 57

CONTENTS

ABSTRACT ... 2
TIIVISTELMA ...ttt 3
1 INTRODUCTIONccoioiiiiiiiiiiiiceiee e 7
2 SOFTWARE PRODUCT LINES.........ccccovviniiniininninninnisnsssceene 11
21 Theoretical review of software product lines............ccceecevvrcinccnnnnene. 11

2.2 Components and COMPONENt TEUSEccvrueuirirueririeriniereieieieieereenenes 15

2.2.1 Component Ireuse PrOCESS..........cccuerviiruiriiieiirinieieesieeereesnenenes 16

2.2.2 Strengths and difficulties of the organizations implementing

1S3 0T 18

2.3 Differences between software product line engineering and single
system development...........cocucuiiiiiiiiininicc e 20

2.4 Business strategies and return on investment for SPL......................... 21

2.5 Benefits and pitfalls of software product lines...........ccccccovvuevncinnnene. 22

2.6 Software product lines and component reuse in the future................ 24

2.7 New product developmentcccccoueevireinieiniinineineceeeeeenes 26

2.7.1 Defining new product developmentcccccceevrciininnnnnee. 26

2.7.2 The process of new product developmentccccccvvununnnneee. 27

2.8 Chapter cONCIUSIONc.cccciiiiiiiiiiiiricccec e 28

3 LINKING SOFTWARE PRODUCT LINES AND COMPONENT REUSE

TO CAPABILITY AND COMPETITIVENESScccccoviiiiiiniiiiiicccias 29
3.1 Organizational capability as a tool for success of an organization30
3.2 COmMPEtItIVENESS......cc.eeuiiiiiiiiiiiiieieerece e 32
3.3 IMPACES .o 34
3.4 Component reuse apProachcceeveeirerieiieiineneineneeereeeeeeeeeaes 34
3.5 Chapter CONCIUSIONcevirieirieiiieicicccce e 35
CARRYING OUT THE RESEARCH.......ccccoovuiiiiiriecireeecee s 36
41 Background and goals............ccccoouiiiiiiiiiii, 36
4.2 Presenting the research methodccccccoviiniiiiiiniiniiie 37
4.3 Data collection.........ccccoiiiiiiiiiiiiiiiiiic e 38
4.4 Data analysis........cccccocioiiiiiiiiiiiiicci e 40
RESULTS ..ottt 42
51 General information and interviewees’ backgrounds.......................... 42

5.2 Software product linescoccueeririeinincnieineccerceeeeee 44

5.3 COMPONENE TEUSE......oouirriniiiiiieieiirieieieteteee ettt 49

5.4 Linkage to competitiveness and capabilitiesccccccevriiiinnnnes 53
6 DISCUSSIONociiiiiiiiiiiisiinininirinissnis s 57
7 CONCLUSIONociciiiiiiiitttttt ettt sttt 61
REFERENCES........cocoiiiiiiiiiiniiiicinsinnis st 66

APPENDIX T ottt sttt ettt sttt 70

1 INTRODUCTION

Competition in software business is fierce between different kinds of service
providers. In order to keep up with the development, service providers must
continuously develop their products, and even more importantly - look for new
possible business opportunities. “From being considered a configuration mech-
anism for electronic systems, software has become the core of most modern sys-
tems supporting individuals, companies and societies” (Bosch & Eklund, 2012).

Currently, this is a large phenomenon in the industry. Companies are con-
stantly looking for ways to bring more value to their customers. Especially, in
software as a service business (SaaS), the providers cannot be sure if the cus-
tomer is planning to change the provider or not. Also, the sales process can be
long, and it is not an easy task to get new customers fast enough. This brings an
opportunity to increase efficiency by component reuse and creating software
product lines (SPL).

This subject is very interesting, as many software companies suffer the
problems of slow development processes and growing demands of the custom-
ers. This thesis was made while working in an organization that provides re-
cruitment software and recruitment platforms for its clients, currently working
on widening their product portfolio. In this thesis, software product lines are an
enabling and resource-saving act in an organization. By using software product
lines companies can achieve significant savings - by approaching the system
development to consider a family of software products, not just one single sys-
tem (Gomaa, 2005). Organizations that use SPL are widening the use of them to
the whole organization and even over boundaries outside their own organiza-
tion (Bosch, 2009). This thesis focuses on the impacts that the implementation of
the approach has on companies’ success. Capabilities and competitiveness play
a large role in the success of a company, and therefore the link between them
and SPL approach is evaluated. Many earlier studies have brought up potential
benefits and shortcomings of the method, but the problem is the measurement
and verification of the impacts is challenging, as the SPL impacts are more long-
term results. This is why it is interesting to study the linkage to capabilities and
competitiveness, as the earlier studies mostly have focused on individual bene-

8

tits of the method concerning software business. Quite few studies exist on the
matter, especially with a straight linkage. Also, the concept of component reuse
is an interesting topic, as it is widely used and is going through changes as the
usage of external component libraries is constantly growing. The earlier studies
have studied SPL from different perspectives but linking the usage of SPL and
component reuse straight to capabilities and competitiveness is not widely
studied.

There is quite a lot of research both on software product lines and compo-
nent reuse. However, the results are not always in line with each other - some
agree with the benefits and still suggest wide usage of product line architecture,
and some promote agile methods over SPL (Ahmed & Capretz, 2010). Main
sources of earlier research information concerning product lines and reuse are
the studies by Kédkold and Duenas (2006), Clements & Northrop (2003), Forsell
(2002) and Northrop (2002). The studies mentioned provided thorough infor-
mation basis for product lines and its impacts on organizations” success. Nu-
merous researches have studied the basis of software product lines and its pro-
cess. Some research has also been made on the benefits and shortcomings of the
method - however, it is problematic, as the measurement of the results is chal-
lenging. The results have offered separate benefits and shortcomings of the re-
sults, but there is a gap in connecting the impacts of SPL and component reuse
to organization capabilities and competitiveness, and that is what this research
aims at studying.

Also, the way of thinking in an organization has a massive impact on the
results. To achieve the right spirit within the company, studying this subject can
help in many ways. In order to create such atmosphere, the organization must
decide to work in a significant way and stick to it, until it becomes a habit.
Achieving effective and lasting results demands strong commitment from the
entire organization (Ahmed & Capretz, 2010). This way, the base processes stay
as they are, and the companies can keep constantly looking for new business
opportunities in the field. Also, when an organization has products with similar
technical backgrounds, if a problem is spotted or a better solution is invented,
the solution can be taken into use in all the systems (Metzger & Pohl, 2014).

This study is set to consider software businesses and SaaS-based products.
The impact that software product lines have on the capability and competitive-
ness of a company from the point of view of component reuse, is evaluated. In
the empirical part the focus will be on examining the potential of SPL use and
the reuse of components. SPL use brings many possibilities in software product
development. It is also examined how the companies use this method and do
they see SPL as a potential option in the future as well.

Software product lines work as theoretical background to this thesis. The
idea behind software product lines is closely related to new product develop-
ment. The aim of this study is to highlight the impacts of software product lines
approach in to organizations’ capability and competitiveness. Usually when
companies start using product lines, they aim at decreasing development costs,
reducing product time to market, expanding their product portfolio or to

9

achieve commonality in different products from the point of view of user expe-
rience (Bosch & Bosch-Sijtsema, 2010). The process of New product develop-
ment (NPD) is also reviewed as it is closely related to SPL. The process is con-
sidered from the point of view of SaaS-based products - when answering to
customer needs, how to evaluate whether to build new features to the existing
product or develop a completely new product.

Getting deeper into the subject, there is a need for definitions for the key
terms. A software product line is a portfolio of similar software-based systems or
products that are produced from an internally shared set of software assets
while using common means of production (Clements & Northrop, 2003, Clem-
ents, 2002). Software product line engineering is defined as “an industrially vali-
dated methodology for developing software products and software-intensive
systems faster, at lower costs, and with better quality” (Kdkold & Duenas, 2006).
Organizational capability is the ability of a company to manage their resources
effectively and thus gain advantage over competitors. This usually means effec-
tive management of employees and following customer demands. (Grant, 1996).
Organizational capability and competitiveness are closely linked to each other -
competitiveness can be gained through a high level of organizational capability.
Lee (2001) states, that the attractiveness of an organization and its ability to cre-
ate competitive advantage can be seen as factors of organizational capacity.
Competitiveness means the ability of an organization to survive in the market
competition. One can measure competitiveness for example by price, marketing
or internal knowledge.

Needless to say, that in the rapidly changing world of software business,
the organizations competing in it must be able to react to change. Therefore, all
the resources that can be saved in the current development processes are worth
a lot. The research question of this study goes as follows:

e How the utilization of software product lines and component reuse
affects organizations’ capabilities and competitiveness in Software
business?

Alongside the research question, a set of sub-questions are presented:

e What are the benefits and shortcomings of software product line
approach?

e What is the impact of component reuse on efficiency in the process
of new product development?

e How do software companies utilize product lines and component
reuse?

The objective is to detect the benefits and shortcomings that using SPL
brings to the organization. Also, this study tries to find answers how to meas-
ure these impacts. It is important to remember, that this thesis does not consider

10

agile methods or its impacts on capabilities or competitiveness. Focus is on
software product lines and component reuse. Bringing agile methods to this
study would make it difficult to get any reliable outcomes from the study.

Especially new product development is a process that takes a lot of devel-
opment resources and therefore is closely linked to software product lines engi-
neering. The research subject itself is important, because the cost-savings the
organizations can make are significant, and the number of SaaS-based products
is very large and is continuously growing. This means, that there will be a huge
demand in the future for ways to reduce the resources needed in time-
consuming development.

The structure of the thesis goes as follows: First, the subject is approached
through a wide literature review to find the theoretical basis that is behind
software product lines and component reuse. After that, the habits of Finnish
software companies are approached through conducting a semi-structured
theme interview, to get a thorough picture of the benefits and shortcomings of
reuse and find out the characteristics of different use cases and their results.
While conducting a qualitative research, theme interviews work as a reliable
source of data. The topics and themes are discussed beforehand, but the main
questions are asked only in the interview.

11

2 SOFITWARE PRODUCT LINES

In this section, software product lines are presented as a theoretical basis of this
thesis. First, software product lines (SPLs) are reviewed from the theoretical
point of view. After that, the differences between other approaches is evaluated.
Also, possible business strategies for using SPL are reviewed as well as poten-
tial benefits and pitfalls of the method. After this, a brief look into the future of
software product lines and software product line engineering is provided.

2.1 Theoretical review of software product lines

Software product lines play a large role in daily actions of companies. The tradi-
tional way to develop software is to develop single systems —which means de-
veloping each system individually. For software product lines, the development
approach is a lot larger - it considers a whole family of software systems. This
approach involves analyzing which features of the software product family are
common, optional or alternatives. (Gomaa, 2005). SPL is a very efficient way to
enhance new product development and widen the whole product family
through product lines. The differences between software product line engineer-
ing and single system development will be reviewed in the next chapter. Ac-
cording to Clements and Northrop (2003), “A product line is a set of products
that together address a particular market segment or fulfill a particular mis-
sion”. Bosch (2009) states, that software product lines can be seen as the most
successful approach to intra-organizational reuse. Numerous companies have
been able to make their R&D processes a lot more efficient and to widen their
product portfolio through software product lines. Product lines offer a great
level of configurability that can only be reached by using shared software com-
ponents in the systems. Through this kind of development, also customer expe-
rience can become a lot better and consistent. Needless to say, software product

12

lines have a significant impact on a company’s business, when the way of work-
ing is executed right. (Bosch, 2009).

Product lines bring along several kinds of benefits for the following areas:
Requirements, architectural design, components, modeling and analysis, testing,
planning, processes and people. (Clements & Northrop, 2003). For example, it
can make these processes more effective by reusing the existing architectures
and solutions of the company. Commonly used components also make testing a
lot easier. In planning, usage of SPL can make it easier to evaluate time esti-
mates more realistically. From the requirements perspective, using product
lines lowers the workload, as most of the requirements are common with other
products. Therefore, time is saved, as there is no need for further requirements
analysis. (Clements & Northrop, 2003). From the architectural point of view, the
earlier products help a lot, as there is no need for using all the normal effort to
design, as the base already exists. Components share detailed designs between
existing and new products. They can easily be reused, as well as the documen-
tation can be eased. There is no need to start from zero. By using product lines,
analysis and modeling can also be made a lot easier. According to Hallsteinsen
et al. (2008), product lines have a significant impact on efficiency and the teams
feel a lot more confident about the time frames they put in to projects. Also, in
terms of testing the teams save a lot of time by using already existing patterns
that are partly or completely tested. Data reuse and common ways of working
make it easier for organizations to move employees between projects, as they
have a good information on the product, even though they worked on another
one completely.

Domain Domain Domain Domain
analysis design implementation testing

Domaingspecific (reusable) artifas
+ Business planning Analysis for
+ Product information potential reuse le—»
+ New requirements (scoping)

Product Product Product Product

. . . > . Product
analysis design implementation testing

Feedback as development evolves

Traceability Information/Product flow
Development
activity

Figure 1 - Software product lines (Hallsteinsen et al. 2008)

13

In Figure 1, Hallsteinsen et al. (2008) present a figure to characterize soft-
ware product lines. They employ a two-life-cycle approach that separates do-
main and application engineering.

Gomaa (2005) describes the process of software product lines and product
line engineering in various ways. A good example of the product line process in
is presented in Figure 2. Gomaa (2005) posits, that most of the application re-
quirements come from outside the process. The product line engineering starts
with product line analysis models, architecture and reusable components from
the existing products. After that, process moves from product line reuse library
to application engineering. In this phase, it is examined whether the application
is ready for further development or if there still are unsatisfied requirements or
errors in the application. In this thesis, more attention will be given to compo-
nents and component reuse. Components are explained further in the next
chapter.

Product line requirements Product line requirements and analysis models,

product line architecture, reusable components

Product line engineering

Product line
reuse
library

Application requirements Application Application

engineering

Unsatisfied requirements, errors, adaptations

Figure 2 - Cycle of the software product line process. (Gomaa, 2005)

According to Gomaa (2005), the goal of SPL usage is to design a software
architecture for the product line, which has common components, optional
components, and variant components. Common components are needed by all
members of the product family, optional components by part of the family and
variant components are widely used by different members of the family, but
demand modifications before usage. By doing this, the organization can focus
on adapting and configuring the existing architecture to fit the new needs, in-
stead of starting with nothing.

There has been a lot of research on SPLs in the 21st century, and it is seen
as a process that is able to improve efficiency in software development and new

14

product development. Kdkold and Duenas (2006) divide the research areas of
software product line engineering and management to five different areas:

e Product line management

e Product line requirements engineering

e Product line architecture

e Product line testing

e Specific product line engineering issues

In this thesis, the focus is on the overall process of software product lines, and
its impacts on organizations” development processes and new product devel-
opment. In today’s research and conversations on software product lines, the
term Dynamic Software Product Line (DSPL) comes up quite often. DSPL’s will
be explained further in section 2.1.5.

Product lines are also widely used in industrial fields. There has been a lot
of discussion about the differences and commonalities in the approaches of in-
dustrial product lines and software product lines. Rabiser, Schmid, Becker,
Botterweck, Galster, Groher and Weyns (2018) found, that even though the in-
dustrial and academic software product lines focus on different parts of the
process, the basis of product line thinking stays the same. According to Rabiser
et al. (2018), recent research topics in academic research such as entire software
ecosystems and multi-product lines, or dynamic product lines are not covered
as much in recent industry research. This is natural, as software product lines
bring along more options to add in.

Northrop (2002) presents the development of existing product lines in the
following Figure 3. SPL development is divided to three different parts: Core
asset development, product development and management. Core asset devel-
opment is about establishing production capability for products, and product
development is implementing the requirements for individual products. Man-
agement is about handling the process as a whole. Northrop (2002) mentioned,
that management both at the technical and organizational levels must be
strongly committed to the software product line effort to ensure success in im-
plementing product lines.

15

Product line development

Core asset Product
development development

Management

Figure 3 - Development of product lines (Northrop, 2002)

2.2 Components and component reuse

In this chapter, the importance of component reuse is highlighted. First, the re-
use process and its phases are discussed. The usage of software product lines
enables component reuse on a whole new level - reusable components are
building blocks that can be used more than once to build a new system. Accord-
ing to Forsell, Halttunen and Ahonen (2000) a component is a common term for
reusable piece of software. In this thesis, components are both software compo-
nents and business-related components. Considering the business-related im-
pacts of software product lines on capability and competitiveness, it is neces-
sary to also consider the business components as potential elements of reuse.
According to Frakes and Kang (2005) “Software reuse will only succeed if it
makes good business sense”. This is true, as the main goal of software reuse is
to improve quality and make the processes more efficient - thus, create more
profit.

16

2.2.1 Component reuse process

To understand the way component reuse, it is needed to get familiar with the its
process. Component reuse process consists of many different phases (Forsell et
al. 2000). Reuse process can be divided to four main activities:

e managing the reuse infrastructure

e producing reusable assets

e brokering reusable assets

e consuming reusable assets
(Lim, 1998; Forsell et al. 2000; Forsell, 2002).

In this case, Lim (1998) originally defines components as “assets” to em-
phasize that components are more than just code. First of the main activities,
managing the reuse infrastructure, is the most important one. It plans and
drives forward the next three phases - therefore, it manages the whole process.
Forsell (2000) presents the following figure to illustrate the process of software
reuse. In the model, the producing, brokering and consuming components are
tied with the entire software development process. The main thing is, that the
reuse process is a key part in the overall software product line process - and it
is there to stay. The model considers only the most important parts of reuse-
oriented development, but it gives a good image of how the process relates to
the development process.

emm ==

Brokering
Components

Managing Software
Development Process

————— - e am wf

Figure 4 - Software component reuse process. (Forsell, 2002)

17

Succeeding in the reuse process naturally demands efficient management
of the process. This means, that the management should be the first thing to
consider when launching a reuse program in a company. The management is
seen as a critical aspect in the process (Lim, 1998). The planning of the process
and defining the reusable components and reuse in the organization. Managing
the products means managing the components. The quality of the components
plays a key role in making the process profitable. Forsell (2002) divides man-
agement of the reuse process to three parts: management of the process, man-
agement of the products and management of the people. By combining these
tasks, it is possible to spread the reuse process to the whole organization.

In Figure 4, Forsell (2002) describes producing components, brokering
components and consuming components as parts of the reuse-oriented software
development process. Next, those terms are reviewed shortly.

Producing components holds in the design and producing of the compo-
nents. It involves two main phases - domain analysis and component creation.
By analyzing the domain, it is possible to identify all the reusable components.
Software components are created in different software projects and systems.
The same methods and techniques are valid also in component producing, but
usually reuse perspective sets more criteria for the creation phase in order for
the components to be reusable. Naturally some maintenance and fixes are
needed, but the workload is significantly smaller than starting with nothing.
(Forsell, 2002)

Brokering components means giving the components to the whole organi-
zation to use. This means for example component reuse across different projects.
Brokering also creates trust to existing components and thus they are used more
widely. Lim (1998) mentions five tasks to brokering components: assessing,
procuring, certifying, adding, and deleting components. Brokering is more than
just maintaining the component repository - it also includes a lot of validation
and verification of components before they are put into the repository.

Consuming components is usually defined as finding, understanding,
modifying and integrating components. Also, documentation holds an im-
portant role as part of component consuming. Documentation makes the pro-
cess more efficient than it was before. An important thing before consuming the
components is to identify the system we are working with and plausible com-
ponents to it (Forsell, 2002).

Frakes and Terry (1996) mention, that a reuse program and process must
be planned, deliberate and systematic in order to maximize the profits pro-
duced. They have studied the metrics and models of reuse a lot and highlight
the importance of reuse impact measurement. If the impacts cannot be meas-
ured, it is difficult to explain the potential of reuse and product line thinking to
the management. In Figure 5, Frakes and Terry (1996) present the main metrics
and models of reuse. The main metrics are categorized into following types:
reuse cost-benefit models, maturity assessment, amount of reuse, failure modes,
reusability and library metrics.

Cost-benefit
analysis

18

Reuse metrics
and models

Reuse library
metrics

Maturity Reusability
assessment assessment

Failure modes

Amount of reuse)
analysis

Figure 5 - Reuse metrics and models (Frakes & Terry, 1996)

2.2.2 Strengths and difficulties of the organizations implementing reuse

In this chapter, the characteristics of organizations that are likely to succeed
with reuse, and the ones are not, are presented. Certain characteristics are de-
manded when an organization is going to implement systematic reuse. Mansell
(2006) presents aspects that reuse-positive organizations usually have:

A reuse technique already, and new development reuses compo-
nents.

An organizational structure that supports reuse, and a repository.
A common view on reuse and its benefits for the whole organiza-
tion.

A reuse process that is continuously managed, and a process for
quality management exists.

A common way to do reuse in other sectors too, such as documen-
tation, design and analysis.

A habit, that all stakeholders are a part of the project definition and
planning.

This list of characteristics that the organizations usually has is in line with
other research papers too, but nicely concludes the most common and beneficial
qualities. Mansell (2006) also presents main difficulties that organizations have
in implementing reuse:

Developers themselves are responsible for maintenance and sup-
port of the assets, leads to reduced motivation.

Benefits or reuse are not identified.

The developer and the asset share a dependency.

The development of reusable assets has unclear guidelines.

19

e Reuse is not considered as an institutional issue.
e Reuse is more ad-hoc than systematic.

These aspects define very well the characteristics that are not beneficial for
the organization when implementing component reuse or product lines. The
requirements for the organization are even more strict with product lines. This
means, there are certain characteristics the organization should and should not
have when implementing the approach. They have a large impact on the out-
come of the implementation.

Figure 6 demonstrates a schema of common identified reuse scenarios. In
systematic reuse, the components are developed with an idea that it will be re-
used later. In other projects or products, the existing component can be found
either from the repository or another solution when a function is called, it is
found from the repository. Repository stands for a library of reusable assets
which is established usually in the beginning of implementing reuse. Manage-
ment usually controls the usage and current state of the repository. When a
component is reused from project to another unplanned, Mansell (2006) calls it
“ad-hoc reuse”. Sometimes reuse can happen also between different develop-
ment environments both systematically and ad-hoc. No specific identified loca-
tion means, that there is no mechanism or certain place that the components are
putin.

Management

Component Reusable Component
|

Repository

&

Function call Ad-hoc reuse Systematic reuse

+ >

&

No specific identified
mm location s

Project A Project B Project C Project D

Development environment A Development environment B

Figure 6 - Component reuse based on Mansell (2006)

20

2.3 Differences between software product line engineering and
single system development

To understand the reasons and factors behind these approaches, we must go
deeper into characteristics of them. K&kolda and Duenas (2006) present two pri-
mary ways that SPL engineering differentiates from developing single systems:
First, they mention that SPL engineering demands two distinct software devel-
opment processes: domain engineering and application engineering. In this case,
domain engineering characterizes the variability of the product line, and by that
establishes a widely-used software platform to develop high quality applica-
tions in a short time frame in the product line. Shortly, application engineering
exploits the product line. (Kdkold & Duenas, 2006)

Second, they mention, that SPL engineering needs to define and manage
variability in the whole product family. In this case, variability is approached in
every domain artefact, such as models, components, test cases etc. This way the
customers can have tailored solutions precisely to their needs (Kdkold & Duen-
as, 2006). Van der Linden, Schmid and Rommes (2007) present in Figure 7 the
differences of single systems development and product lines. As it shows, the
up-front investment is larger in the beginning with SPL, but costs start to get
significantly lower when the organization has three or more systems, that share
the same technical platform.

A Single systems —»
Accumulated Product line
effort
Break-even peint
\ —»
Up-front | \
investment _ *[Lower costs
I per system
I
I
Approx. 3 systems Number of

different systems

Figure 7 - Economics of software product line engineering based on Vander Linden,
Schmid and Rommes, 2007.

21

Organizations do not end up using product lines by accident. Usually some
kind of evaluation is done to increase efficiency in the future. According to
Clements, Kazman and Klein (2001), the primary benefit of architecture evalua-
tion is, that it uncovers problems that cannot be ignored -else, they would be
orders of magnitude more expensive to modify and correct later. Architecture
evaluation produces better architectures. In these evaluations, product lines
usually look tempting, but they demand higher investments in the beginning
than other solutions. Therefore, the decision makers need to be convinced about
the possible outcomes in the future. The importance of the architecture in soft-
ware systems is highlighted, because it defines the modifiability, performance,
security, availability and reliability of the system in the future. If the base is not
working properly, there are no development tricks to write some qualities out
of the system. (Clements et al. 2001)

2.4 Business strategies and return on investment for SPL

Implementing SPLs can be a major success for a company. Bosch and Bosch-
Sijtsema (2010) mention, that in some cases adopting software product lines
allowed reducing development expenses by 50% or more and decreasing defect
density with significant results. Successful software businesses focus on one of
three following strategies: Operational excellence, Customer intimacy or prod-
uct innovativeness. Firms aiming at operational excellence try to give their cli-
ents the best total cost of using the product. The main goal is to reach higher
productivity and lower overall costs. Customer-intimate organizations want to
have a high-level complete solution they can provide the customer with. They
constantly seek for long-term relationships with customers and usually custom-
ize the products for their customers to keep them satisfied and tied to the prod-
uct. Product-innovative companies aim at providing customers with the best
products and they target mass-markets. They want to act rapidly and grab new
business opportunities before others. This way they gain the major part of po-
tential customers before others can provide such products. (Kidkold, 2003)

Bockle, Clements, McGregor, Muthig and Schmid (2004) have researched
the potential return on investment (ROI) of using SPL engineering. According
to the authors, managers are constantly asking for evidence of the results to de-
fend their vision of using software product lines. ROI calculations are a way for
managers to argue on behalf their decisions. They came up with a model, that
can calculate the costs and benefits that can be expected from various product
development situations. Bockle et al. (2004) suggest, that organizations “should
engineer your products in a way that takes advantage of their commonalities
while controlling their differences”. Software product lines are usually the more
economical way in the long run.

22

2.5 Benefits and pitfalls of software product lines

In this chapter, the research focuses on benefits and shortcomings of software
product lines usage presented by earlier research. The first part presents the
benefits and the second part presents the shortcomings. Software product lines
have a major set of benefits, but one cannot forget the potential shortcomings of
applying the approach in to use.

SPL usage can bring a lot of benefits and positive effects in an organization.
For example, one of the largest and clearest outcomes is the reduced time-to-
market. The main thing is, by using SPL organizations can reduce the
timeframe between identifying the market need and bringing the product to
market significantly. This is mainly because of the large building blocks made
while implementing SPL, which generates the opportunity of reuse of product
architecture. (Wesselius, 2006). Of course, the organization must also consider
the time that is needed to build such a product line architecture. The planning
and building of the structure take time in the beginning. This may postpone the
generated income to result. By using SPL, companies reduce the time-to-market,
and thus speed up the income.

Figure 8 (Wesselius, 2006) presents well the net present value differences
in the cases where a product line platform is built and not built. In Architectural
scenario 1 a platform is not built, and the products are developed one by one. In
Architectural scenario 2, development is started by building a software plat-
form. Wesselius defines the strategic scenarios as follows:

“SS1: products will be demanded that can be developed on the basis of the

platform until at least 2013

SS2: products will be demanded that can be developed on the basis of the

platform until 2009. From 2011 onwards, the products will require features

that require entirely different platform.”
By looking at the results, it is clear that the most beneficial scenario is AS2 in
case of SS1. This points out, that when we can assume the platform to work as a
base also in the future, the best result will follow. In this case, the probability of
SS1 was seen as almost 100%, so the this supports decision making a lot: choos-
ing to build the platform is beneficial in the long term, but has costs in the be-
ginning. (Wesselius, 2006)

23

Cumulative NPV for Architectural/Strategic scenario
Combinations
1500000
1000000

500000
. — = - ® ®

500000 ZOQE. 2006/1/007 2008 2009 2010 2011 2012 2013 2014
-1000000

L

-1500000

e=@==/\52 in case of S52 AS1 in case of §51 AS1 in case of 552 AS2 in case of 551

Figure 8 - Expected NPV for architectural scenarios AS1 and AS2 and strategic scenarios
SS1 and SS2 (Wesselius, 2006)

Another clear benefit caused by SPL usage is cross-product compatibility.
Product line engineering can bring many opportunities to sell upgrades to dif-
ferent products, especially the ones with long lifetime. Upgrades can be for ex-
ample service packs, newer versions of the system or new functionalities or im-
proved performance (Wesselius, 2006). Often these upgrades are things that the
clients are willing to pay for and this can be a very beneficial business model for
the company to add functionalities and respond to customer needs. This will
raise the level of customer experience and bring revenue to the organization.
(Clements & Northrop, 2003). When several different systems are built on the
same platform, by responding to customer needs and creating new functionali-
ties, the organization has to do the basic work only once, and then the solution
can be copied to the other systems too. This also lowers significantly the overall
development costs needed. If the systems do not have the same base platform,
the upgrade sales profit numbers are going to be remarkably smaller. The situa-
tion where the company can benefit from reusing the upgrades and versions in
several systems, can be approached by defining strategic scenarios for customer
needs in terms of upgrades and defining the expected reduction of costs of reus-
ing these upgrades. (Clements & Northrop, 2003).

Software product lines can make a remarkable difference in efficiency, but
it can also bring different kinds of pitfalls, especially when the process is not
managed properly. Software product lines can become victims of their own
success and challenges start to pile up costs. These challenges can be for exam-
ple relatively high coordination costs, slower release cycles and high system-
level error density (Bosch & Bosch-Sijtsema, 2011). Wesselius (2006) presents the
following shortcomings in their research: Platform over-design and perfection-
ism, short-term focus, lack of vision and decision making. Platform over-design
means, that the management can end up perfectionating “the perfect product
line architecture”, which demands a lot of time and resources. Also, it will make
the development period longer for the product line platform, which is not ideal.

24

As the development period takes longer, the return-on-investment will start
later than in a reasonably developed architecture. By drifting into perfectionism,
the organization can also end up creating features to the architecture, that are
never used. Needless to say, that is simply a waste of resources. Wesselius (2006)
posits, that “the firm cannot afford to be prepared for everything”.

Short-term focus can also be a setback in terms of long-term plans. This
simply is a consequence of setting the time horizon too near and causing the
management to miss potential long-term business opportunities. Wesselius
(2006), points out, that on the other hand it can also lead to ignoring possible
future costs. An important thing to understand is, that investments in software
product line engineering demand time to be profitable - by applying these
methods, organizations will probably not see rapid change. The results will take
time. The decision, whether to trust the payback to come, depends on the or-
ganization itself. It is easier for the management to set short-term goals and see
if they work or not. If the payback is a long-term process, they are also seen as
more risky options. (Wesselius, 2006). The uncertainties about the future results
in long-term can be tackled by net present value calculations and challenging
the organization to constantly think also about the larger change that is about to
happen in the organization.

This is closely related to another pitfall for SPL use - lack of vision and
clear decision making. Especially in organizations that are not holding on to
their own priorities, executing product line architecture is a challenging mission.
The management must stick to their decisions in order to make SPL architecture
work. The demands and vision cannot change constantly. This shortcoming can
be prevented by defining the strictly the strategic scenarios and visions of the
future. This way the organization can be sure that everyone is aware of what
will happen next.

Many earlier studies on SPL mention few benefits and shortcomings of the
method, but they do not take the problems in testing in to account - testing both
SPLs itself and their impacts is a hard task. Testing the product line itself can
help to explain the level of results achieved. Engstrom and Runeson (2011)
summarize the challenges in SPL testing in to three main challenges: how to
handle the large number of tests needed, how to balance the effort made for
reusable components and how to handle the variability within a product line.

2.6 Software product lines and component reuse in the future

Software product lines have been studied a lot in the 215t century. In this chap-
ter, the future of SPL engineering is going to be evaluated -what kind of chal-
lenges will it face and some variations of a normal software product line. As the
tield evolves, there will also be changes in the procedures. Software product
line engineering will be needed in the future and it will keep up with the devel-
opment of the field (Gomaa, 2005).

25

As earlier mentioned, the term of Dynamic Software Product Lines (DSPL)
is becoming more common. According to Hinchey, Park and Schmid (2012),
dynamic software product lines extend the existing product line approaches by
moving the capabilities to runtime, and helping to ensure system adaptations to
lead to desirable properties. In table 1, the authors present the main relation-
ships and differences of SPLs and DSPLs. Nowadays DSPLs are also seen as
possible beneficial alternative as an architecture model. The largest benefits that
DSPL usage brings, is possible systematic engineering foundations that it can
provide to adaptive and self-adaptive systems.

Classic software product lines
Variability management describes
different possible systems.
Reference architecture provides a
common framework for a ser of
individual product architectures.

Business scoping identifies the
common market for the set of
products.

Two-life-cycle approach describes
two engineering life cycles, one
for domain engineering and one
for application engineering.

Dynamic software product lines
Variability management describes
different adaptations of the system.
DSPL architecture is a single sys-
tem architecture, which provides a
basis for all possible adaptations of
the system.

Adaptability scoping identifies the
range of adaptation the DSPL sup-
ports

Two life cycles: the DSPL engineer-
ing life cycle aims at systematic
development of the adaptative sys-
tem, and the usage life cycle ex-

ploits adaptability in use.
Table 1 - Relationship between SPLs and DSPLs (Hinchey, Park & Schmid, 2012)

High usage of product lines has also raised research on larger contexts. Bosch
(2008) highly recommends the companies to add to their software product line
thinking also a bigger picture, Software ecosystems. Software ecosystems bring
the original software product line and the existing platform to a larger context.
Bosch (2009) states, that once an organization has decided to make its own plat-
form available from outside the organizational boundaries, the existing soft-
ware product lines can be modified to software ecosystems. By offering these
kinds of ecosystems, it is easier for the company to conquer new clients as they
seem to follow the ones that seem to be further in their actions than others.
More value can be brought to customers, attractiveness is raised for new cus-
tomers and a platform is a bigger process to change than just a mere software
product.

Both dynamic software product lines and software ecosystems are good
examples of the development of the original SPL method. The original software
product line engineering will stay as a valued method for improving efficiency.
Nowadays, reuse is not only done in own repositories of an organization, but

26

code is also reused from open source libraries. Software developers obtain pri-
vate benefits from writing components and sharing their code, and collectively
contribute to the development of software overall (Haefliger, Von Krogh &
Spaeth, 2008). They also mention, that developers benefit from project-external
components and reduce overlapping development significantly. Several studies
concerning reuse also mentioned open source libraries as a possible resource of
large-scale software reuse.

2.7 New product development

In this chapter, the term of New product development is explained and how it
is seen in different organizations. First, the term is introduced in more of a gen-
eral setting, and afterwards moving to IT perspective and its possibilities in
achieving competitive advantage.

New product development is very closely related to software product line
engineering. A large amount of the advantages achieved by using SPL is caused
by increased efficiency and savings in the process of new product development
(Van der Linden et al, 2007). In this chapter, the process of new product devel-
opment is reviewed and it is approached from the point of view of software
product lines. The term new product development is explained thoroughly, and
the process of NPD is presented.

2.7.1 Defining new product development

New product development is defined as the process of bringing a new product
to market. It includes idea generation and idea screening, concept development
and testing, business analysis, prototype and market testing, technical imple-
mentation, and plans for product commercialization and launch. (Pavlou & El
Sawy, 2006). According to Clark & Fujimoto (1991), new product development
is a strategic process in which firms integrate inputs from R&D scientists, engi-
neers, and marketers to jointly develop and launch new products. New prod-
ucts play a very important role in the ability of a company to accomplish com-
petitive advantage. The results can contribute to the growth of a company and
profitability and have a significant impact on them (Veryzer, 1998). Including IT
in the process of new product development will help in data-analysis, enable
more efficient communication and better problem solving, and achieve much
higher levels of integration (Nambisan, 2003).

New product development is also a lot about innovation. There are multi-
ple different possibilities for software ventures in terms of innovation and busi-
ness model and product design. Two venture groups are presented